Science.gov

Sample records for acid-based cationic surfactants

  1. Spectral and Acid-Base Properties of Hydroxyflavones in Micellar Solutions of Cationic Surfactants

    NASA Astrophysics Data System (ADS)

    Lipkovska, N. A.; Barvinchenko, V. N.; Fedyanina, T. V.; Rugal', A. A.

    2014-09-01

    It has been shown that the spectral characteristics (intensity, position of the absorption band) and the acid-base properties in a series of structurally similar hydroxyflavones depend on the concentration of the cationic surfactants miramistin and decamethoxin in aqueous solutions, and the extent of their changes is more pronounced for hydrophobic quercetin than for hydrophilic rutin. For the first time, we have determined the apparent dissociation constants of quercetin and rutin in solutions of these cationic surfactants (pKa1) over a broad concentration range and we have established that they decrease in the series water-decamethoxin-miramistin.

  2. Biological and surface-active properties of double-chain cationic amino acid-based surfactants.

    PubMed

    Greber, Katarzyna E; Dawgul, Małgorzata; Kamysz, Wojciech; Sawicki, Wiesław; Łukasiak, Jerzy

    2014-08-01

    Cationic amino acid-based surfactants were synthesized via solid phase peptide synthesis and terminal acylation of their α and ε positions with saturated fatty acids. Five new lipopeptides, N-α-acyl-N-ε-acyl lysine analogues, were obtained. Minimum inhibitory concentration and minimum bactericidal (fungicidal) concentration were determined on reference strains of bacteria and fungi to evaluate the antimicrobial activity of the lipopeptides. Toxicity to eukaryotic cells was examined via determination of the haemolytic activities. The surface-active properties of these compounds were evaluated by measuring the surface tension and formation of micelles as a function of concentration in aqueous solution. The cationic surfactants demonstrated diverse antibacterial activities dependent on the length of the fatty acid chain. Gram-negative bacteria and fungi showed a higher resistance than Gram-positive bacterial strains. It was found that the haemolytic activities were also chain length-dependent values. The surface-active properties showed a linear correlation between the alkyl chain length and the critical micelle concentration.

  3. Recent advances in gemini surfactants: oleic Acid-based gemini surfactants and polymerizable gemini surfactants.

    PubMed

    Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Gemini surfactants recently developed by our research group are introduced from the standpoints of their syntheses, aqueous solution properties, and potential applications. Two series of gemini surfactants are introduced in this short review, the first of which is the oleic acid-based gemini surfactants, and the second is the polymerizable gemini surfactants. These gemini surfactants have been developed not only as environmentally friendly materials (the use of gemini surfactants enables the reduction of the total consumption of surfactants in chemical products owing to their excellent adsorption and micellization capabilities at low concentrations) but also as functional organic materials.

  4. Amino acid-based surfactants – do they deserve more attention?

    PubMed

    Bordes, Romain; Holmberg, Krister

    2015-08-01

    The 20 standard amino acids (together with a few more that are not used in the biosynthesis of proteins) constitute a versatile tool box for synthesis of surfactants. Anionic, cationic and zwitterionic amphiphiles can be prepared and surfactants with several functional groups can be obtained by the proper choice of starting amino acid. This review gives examples of procedures used for preparation and discusses important physicochemical properties of the amphiphiles and how these can be taken advantage of for various applications. Micelles with a chiral surface can be obtained by self-assembly of enantiomerically pure surfactants and such supramolecular chirality can be utilized for asymmetric organic synthesis and for preparation of mesoporous materials with chiral pores. Surfactants based on amino acids with two carboxyl groups are effective chelating agents and can be used as collectors in mineral ore flotation. A surfactant based on cysteine readily oxidizes into the corresponding cystine compound, which can be regarded as a gemini surfactant. The facile and reversible cysteine-cystine transformation has been taken advantage of in the design of a switchable surfactant. A very attractive aspect of surfactants based on amino acids is that the polar head-group is entirely natural and that the linkage to the hydrophobic tail, which is often an ester or an amide bond, is easily cleaved. The rate of degradation can be tailored by the structure of the amphiphile. The ester linkage in betaine ester surfactants is particularly susceptible to alkaline hydrolysis and this surfactant type can be used as a biocide with short-lived action. This paper is not intended as a full review on the topic. Instead it highlights concepts that are unique to amino acid-based surfactants and that we believe can have practical implications.

  5. Solubilization of pentanol by cationic surfactants and binary mixtures of cationic surfactants

    SciTech Connect

    Morgan, M.E.

    1993-12-31

    The research reported here has included studies of the solubilization of pentanol in hexadecylpyridinium chloride (CPC), trimethyletetradecylammonium chloride (C{sub 14}Cl), benzyldimethyltetradecylammonium chloride (C{sub 14}BzCl), benzyldimethylhexadecylpyridinium chloride (C{sub 16}BzCl), hexadecyltrimethylammonium bromide (CTAB), and binary mixtures of CPC + C{sub 16}BzCl and C{sub 14}Cl + C{sub 14}BzCl. Rather than using calorimetric methods, this project will employ headspace chromatography to measure solubilization of pentanol over a wide range of solute concentrations. While not yielding as much thermodynamic data as calorimetry, headspace chromatography is a more direct measure of the extent of solubilization. Using headspace chromatography, is a more direct measure of the extent of solubilization. Using headspace chromatography, this study will seek to determine whether strongly synergistic mixture ratios exist in the case of binary cationic surfactant systems. There are two equilibria in the pentanol-water-surfactant system: (1) The pentanol solubilized in micelles is in equilibrium with the monomeric pentanol in solution, and (2) the monomeric pentanol is in equilibrium with the pentanol in the vapor above the solution. To establish the link between the two equilibria, a sample of the vapor above pure liquid pentanol must be collected, in order to find the activity of pentanol in solution. Also, a calibration curve for various concentrations of pentanol in solution. From this type of data it is possible to infer both the concentration of pentanol solubilized in micelles and the concentrations of pentanol in the ``bulk`` solution outside the micelles. The method is equally applicable to systems containing a single surfactant as well as mixtures of surfactants.

  6. Oleic acid-based gemini surfactants with carboxylic acid headgroups.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Matsuda, Wataru; Takamatsu, Yuichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2011-01-01

    Anionic gemini surfactants with carboxylic acid headgroups have been synthesized from oleic acid. The hydrocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via an ester bond, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via disuccinyl units. The surfactants exhibit pH-dependent protonation-deprotonation behavior in aqueous solutions. In alkaline solutions (pH 9 in the presence of 10 mmol dm(-3) NaCl as the background electrolyte), the surfactants can lower the surface tension as well as form molecular assemblies, even in the region of low surfactant concentrations. Under acidic (pH 3) or neutral (pH 6-7) conditions, the surfactants are intrinsically insoluble in aqueous media and form a monolayer at the air/water interface. In this study, we have investigated physicochemical properties such as the function of the hydrocarbon chain length by means of static surface tension, pyrene fluorescence, dynamic light scattering, surface pressure-area isotherms, and infrared external reflection measurements.

  7. Removal of cesium ions from clays by cationic surfactant intercalation.

    PubMed

    Park, Chan Woo; Kim, Bo Hyun; Yang, Hee-Man; Seo, Bum-Kyoung; Moon, Jei-Kwon; Lee, Kune-Woo

    2017-02-01

    We propose a new approach to remediate cesium-contaminated clays based on intercalation of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) into clay interlayers. Intercalation of DTAB was found to occur very rapidly and involved exchanging interlayer cations. The reaction yielded efficient cesium desorption (∼97%), including of a large amount of otherwise non-desorbable cesium ions by cation exchange with ammonium ions. In addition, the intercalation of DTAB afforded an expansion of the interlayers, and an enhanced desorption of Cs by cation exchange with ammonium ions even at low concentrations of DTAB. Finally, the residual intercalated surfactants were easily removed by a decomposition reaction with hydrogen peroxide in the presence of Cu(2+)/Fe(2+) catalysts.

  8. Modification of Wyoming montmorillonite surfaces using a cationic surfactant.

    PubMed

    Xi, Yunfei; Frost, Ray L; He, Hongping; Kloprogge, Theo; Bostrom, Thor

    2005-09-13

    Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.

  9. Lichenysin-geminal amino acid-based surfactants: Synergistic action of an unconventional antimicrobial mixture.

    PubMed

    Coronel-León, Jonathan; Pinazo, Aurora; Pérez, Lourdes; Espuny, Mª José; Marqués, Ana Mª; Manresa, Angeles

    2017-01-01

    Recently it has been demonstrated that catanionic mixtures of oppositely charged surfactants have improved physicochemical-biological properties compared to the individual components. Isotherms of mixtures of an anionic biosurfactant (lichenysin) and a cationic aminoacid surfactant (C3(LA)2) indicate a strong interaction suggesting the formation of a new "pseudo-surfactant". The antimicrobial properties of the mixture lichenysin and C3(LA)2 M80:20, indicate a synergistic effect of the components. The mechanism of action on the bacterial envelope was assessed by flow cytometry and Transmission Electron Microscopy.

  10. Delamination behavior of silicate layers by adsorption of cationic surfactants.

    PubMed

    Lee, Seung Yeop; Kim, Soo Jin

    2002-04-15

    Smectite that has reacted for 48 h with hexadecyltrimethylammonium (HDTMA) cations equivalent to 0.01-3.0 times the cation exchange capacity (CEC) converts to HDTMA-smectite. The microstructure of this organoclay is observed using X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). When Na cations in the interlayer of clay are exchanged with HDTMA ions, the changes in internal and external surface configuration are augmented by the intercalation of organic surfactants, showing a heterogeneous increase of interlayer spacings. As HDTMA loading increases, the chance of delaminated layers being developed increases locally in the low-charge interlayer regions by the sufficient adsorption of organic surfactants beyond the CEC due to the tendency of alkyl chain interaction.

  11. Physicochemical properties of oleic acid-based partially fluorinated gemini surfactants.

    PubMed

    Sakai, Kenichi; Umemoto, Naoki; Aburai, Kenichi; Takamatsu, Yuichiro; Endo, Takeshi; Kitiyanan, Boonyarach; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko

    2014-01-01

    We have developed oleic acid-based partially fluorinated gemini surfactants with carboxylic acid headgroups. The fluorocarbon chain is covalently bound to the terminal carbonyl group of oleic acid via a -CH(2)CH(2)OCO- unit, and the carboxylic acid headgroups are introduced to the cis double bond of oleic acid via -OCOCH(2)CH(2)- units. The aqueous solution properties of these surfactants were studied at pH 9 in the presence of 10 mmol dm–3 NaCl by means of static surface tension, pyrene fluorescence, and dynamic light scattering measurements. The resulting surface tension data demonstrate that the partially fluorinated gemini surfactants exhibit excellent surface activity in their dilute aqueous solutions. In addition, the surfactants are suggested to form micellar aggregates 2–4 nm in diameter. We also studied the aqueous temperature-concentration phase diagrams of the partially fluorinated gemini surfactants (disodium salts) on the basis of visual observations (through a crossed polarizer), polarized optical microscopy, and small angle X-ray scattering measurements. Several phase states including micellar solution phase, hexagonal phase, bicontinuous cubic phase, and lamellar phase were observed along with the coexistence of these phases in certain regions. Assemblies with lesser positive curvature tend to be formed with increasing surfactant concentration, increasing temperature, and increasing fluorocarbon chain length. A comparison of the phase diagrams of the partially fluorinated and hydrogenated surfactant systems suggests that close molecular packing is inhibited within the assemblies of the partially fluorinated surfactants because of the limited miscibility between the fluorocarbon and hydrocarbon units. To the best of our knowledge, this is the first systematic report focusing on the temperature-concentration phase diagrams of (partially) fluorinated gemini surfactants over a wide range of compositions and temperatures.

  12. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    PubMed

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  13. Simultaneous determination of cationic surfactants and nonionic surfactants by ion-association titration.

    PubMed

    Sakai, Tadao; Teshima, Norio; Takatori, Yasufumi

    2003-09-01

    A simultaneous determination of cationic and nonionic surfactants has been developed using ion-association titration. Tetrabromophenolphthalein ethyl ester (TBPE) was used as an indicator. Benzalkonium reacted with TBPE to form a blue ion-associate in the organic phase. When tetrakis(4-fluorophenyl)borate was added dropwise to the solution, the color of the organic phase turned to yellow at the equivalence point. In addition, when a large amount of potassium ion was added to a solution including Triton X-100, Triton X-100 could be determined by the same technique as described above because of formation of the K+-Triton X-100 cation. The proposed method is available for the stepwise determination of cationic and nonionic surfactants in mixtures.

  14. α-Gel formation by amino acid-based gemini surfactants.

    PubMed

    Sakai, Kenichi; Ohno, Kiyomi; Nomura, Kazuyuki; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko

    2014-07-08

    Ternary mixtures being composed of surfactant, long-chain alcohol, and water sometimes form a highly viscous lamellar gel with a hexagonal packing arrangement of their crystalline hydrocarbon chains. This molecular assembly is called "α-crystalline phase" or "α-gel". In this study, we have characterized α-gels formed by the ternary mixtures of amino acid-based gemini surfactants, 1-hexadecanol (C16OH), and water. The surfactants used in this study were synthesized by reacting dodecanoylglutamic acid anhydride with alkyl diamines and abbreviated as 12-GsG-12 (s: the spacer chain length of 2, 5, and 8 methylene units). An amino acid-based monomeric surfactant, dodecanoylglutamic acid (12-Glu), was also used for comparison. At a fixed water concentration the melting point of the α-gel increased with increasing C16OH concentration, and then attained a saturation level at the critical mole ratio of 12-GsG-12/C16OH = 1/2 under the normalization by the number of hydrocarbon chains of the surfactants. This indicates that, to obtain the saturated α-gel, a lesser amount of C16OH is required for the gemini surfactants than for the monomeric one (the critical mole ratio of 12-Glu/C16OH = 1/3). Small- and wide-angle X-ray scattering measurements demonstrated an increase in the long-range d-spacing of the saturated α-gels in the order 12-Glu <12-G8G-12 < 12-G5G-12 < 12-G2G-12. In the three gemini surfactant systems, the decreased spacer chain length resulted in the increased maximum viscosity and elastic modulus of the saturated α-gels at a given water concentration. This is caused by the decreased amount of excess water being present outside the α-gel structure (or the increased amount of water incorporated between the surfactant-alcohol bilayers). To the best of our knowledge, this is the first report focusing on the formation of α-gel in gemini surfactant systems.

  15. Solution properties and emulsification properties of amino acid-based gemini surfactants derived from cysteine.

    PubMed

    Yoshimura, Tomokazu; Sakato, Ayako; Esumi, Kunio

    2013-01-01

    Amino acid-based anionic gemini surfactants (2C(n)diCys, where n represents an alkyl chain with a length of 10, 12, or 14 carbons and "di" and "Cys" indicate adipoyl and cysteine, respectively) were synthesized using the amino acid cysteine. Biodegradability, equilibrium surface tension, and dynamic light scattering were used to characterize the properties of gemini surfactants. Additionally, the effects of alkyl chain length, number of chains, and structure on these properties were evaluated by comparing previously reported gemini surfactants derived from cystine (2C(n)Cys) and monomeric surfactants (C(n)Cys). 2C(n)diCys shows relatively higher biodegradability than does C(n)Cys and previously reported sugar-based gemini surfactants. Both critical micelle concentration (CMC) and surface tension decrease when alkyl chain length is increased from 10 to 12, while a further increase in chain length to 14 results in increased CMC and surface tension. This indicates that long-chain gemini surfactants have a decreased aggregation tendency due to the steric hindrance of the bulky spacer as well as premicelle formation at concentrations below the CMC and are poorly packed at the air/water interface. Formation of micelles (measuring 2 to 5 nm in solution) from 2C(n)diCys shows no dependence on alkyl chain length. Further, shaking the mixtures of aqueous 2C(n)diCys surfactant solutions and squalane results in the formation of oil-in-water type emulsions. The highly stable emulsions are formed using 2C₁₂diCys or 2C₁₄diCys solution and squalane in a 1:1 or 2:1 volume ratio.

  16. Comprehensive study of tartrazine/cationic surfactant interaction.

    PubMed

    Shahir, Afshin Asadzadeh; Javadian, Soheila; Razavizadeh, Bi Bi Marzieh; Gharibi, Hussein

    2011-12-15

    Interaction of a food dye, tartrazine, with some cationic conventional and gemini surfactants, tetradecyltrimethylammonium bromide (TTAB), N,N'-ditetradecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (14,4,14), and N,N'-didodecyl-N,N,N',N'-tetramethyl-N,N'-butanediyl-diammonium dibromide (12,4,12), were first investigated comprehensively employing conductometry, tensiometry, and UV-visible spectroscopy. Tartrazine was found to behave in the same manner as aromatic counterions. The formation of ion pairs reflected as a considerable increase of the surfactant efficiency in tensiometry plots and their stoichiometry were determined by Job's method of continuous variations. For the tartrazine/TTAB system, nonionic DS(3), ionic DS(2-), and/or DS(2)(-) ion pairs, their small premicelles, and tartrazine-rich micelles were constituted as well as dye-containing TTAB-rich micelles. Insoluble J-aggregates of DS(-) ion pairs and cylindrical surfactant-rich micelles were also formed in tartrazine/gemini surfactant systems and recognized by transmission electron microscopy. The zeta potential and the size of the aggregates were determined using dynamic light scattering and confirmed the suggested models for the processes happening in each system. Cyclic voltammetry was applied successfully to track all of these species using tartrazine's own reduction peak current for the first time.

  17. Correlation between surface free energy of quartz and its wettability by aqueous solutions of nonionic, anionic and cationic surfactants.

    PubMed

    Zdziennicka, Anna; Szymczyk, Katarzyna; Jańczuk, Bronisław

    2009-12-15

    The measurements of the advancing contact angle for water, glycerol, diiodomethane and aqueous solutions of Triton X-100 (TX-100), Triton X-165 (TX-165), sodium dodecyl sulfate (SDDS), sodium hexadecyl sulfonate (SHDS), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) on quartz surface were carried out. On the basis of the contact angles values obtained for water, glycerol and diiodomethane the values of the Lifshitz-van der Waals component and electron-acceptor and electron-donor parameters of the acid-base component of the surface free energy of quartz were determined. The determined components and parameters of the quartz surface free energy were used for interpretation of the influence of nonionic, anionic and cationic surfactants on the wettability of the quartz. From obtained results it was appeared that the wettability of quartz by nonionic and anionic surfactants practically does not depend on the surfactants concentration in the range corresponding to their unsaturated monolayer at water-air interface and that there is linear dependence between adhesional and surface tension of aqueous solution of these surfactants. This dependence for TX-100, TX-165, SDDS and SHDS can be expressed by lines which slopes are positive. This slope and components of quartz surface free energy indicate that the interaction between the water molecules and quartz surface might be stronger than those between the quartz and surfactants molecules. So, the surface excess of surfactants concentration at the quartz-water interface is probably negative, and the possibility of surfactants to adsorb at the quartz/water film-water interface is higher than at the quartz-water interface. This conclusion is confirmed by the values of the adhesion work of "pure" surfactants, aqueous solutions of surfactants and water to quartz surface. In the case of the cationic surfactants the relationship between adhesional and surface tension is more complicated than that for

  18. Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure.

    PubMed

    Zhang, Yaxin; Zhao, Yan; Zhu, Yong; Wu, Huayong; Wang, Hongtao; Lu, Wenjing

    2012-01-01

    The adsorption of cationic-nonionic mixed surfactant onto bentonite and its effect on bentonite structure were investigated. The objective was to improve the understanding of surfactant behavior on clay mineral for its possible use in remediation technologies of soil and groundwater contaminated by toxic organic compounds. The cationic surfactant used was hexadecylpyridinium bromide (HDPB), and the nonionic surfactant was Triton X-100 (TX100). Adsorption of TX100 was enhanced significantly by the addition of HDPB, but this enhancement decreased with an increase in the fraction of the cationic surfactant. Part of HDPB was replaced by TX100 which decreased the adsorption of HDPB. However, the total adsorbed amount of the mixed surfactant was still increased substantially, indicating the synergistic effect between the cationic and nonionic surfactants. The surfactant-modified bentonite was characterized by Brunauer-Emmett-Teller specific surface area measurement, Fourier transform infrared spectroscopy, and thermogravimetric-derivative thermogravimetric/differential thermal analyses. Surfactant intercalation was found to decrease the bentonite specific surface area, pore volume, and surface roughness and irregularities, as calculated by nitrogen adsorption-desorption isotherms. The co-adsorption of the cationic and nonionic surfactants increased the ordering conformation of the adsorbed surfactants on bentonite, but decreased the thermal stability of the organobentonite system.

  19. USE OF CATIONIC SURFACTANTS TO MODIFY SOIL SURFACES TO PROMOTE SORPTION AND RETARD MIGRATION OF HYDROPHOBIC ORGANIC COMPOUNDS

    EPA Science Inventory

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote adsorption of hydrophobic organic compounds (HOC). Batch and column experiments were performed to investigate this phenomenon with the cationic surfactant dodecylpyridinium (DP), a se...

  20. Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants.

    PubMed

    Zhou, Chengcheng; Wang, Fengyan; Chen, Hui; Li, Meng; Qiao, Fulin; Liu, Zhang; Hou, Yanbo; Wu, Chunxian; Fan, Yaxun; Liu, Libing; Wang, Shu; Wang, Yilin

    2016-02-17

    This work reports that cationic micelles formed by cationic trimeric, tetrameric, and hexameric surfactants bearing amide moieties in spacers can efficiently kill Gram-negative E. coli with a very low minimum inhibitory concentration (1.70-0.93 μM), and do not cause obvious toxicity to mammalian cells at the concentrations used. With the increase of the oligomerization degree, the antibacterial activity of the oligomeric surfactants increases, i.e., hexameric surfactant > tetrameric surfactant > trimeric surfactant. Isothermal titration microcalorimetry, scanning electron microscopy, and zeta potential results reveal that the cationic micelles interact with the cell membrane of E. coli through two processes. First, the integrity of outer membrane of E. coli is disrupted by the electrostatic interaction of the cationic ammonium groups of the surfactants with anionic groups of E. coli, resulting in loss of the barrier function of the outer membrane. The inner membrane then is disintegrated by the hydrophobic interaction of the surfactant hydrocarbon chains with the hydrophobic domains of the inner membrane, leading to the cytoplast leakage. The formation of micelles of these cationic oligomeric surfactants at very low concentration enables more efficient interaction with bacterial cell membrane, which endows the oligomeric surfactants with high antibacterial activity.

  1. Elucidating the Higher Stability of Vanadium (V) Cations in Mixed Acid Based Redox Flow Battery Electrolytes

    SciTech Connect

    Vijayakumar, M.; Wang, Wei; Nie, Zimin; Sprenkle, Vincent L.; Hu, Jian Z.

    2013-11-01

    The Vanadium (V) cation structures in mixed acid based electrolyte solution were analysed by density functional theory (DFT) based computational modelling and 51V and 35Cl Nuclear Magnetic Resonance (NMR) spectroscopy. The Vanadium (V) cation exists as di-nuclear [V2O3Cl2.6H2O]2+ compound at higher vanadium concentrations (≥1.75M). In particular, at high temperatures (>295K) this di-nuclear compound undergoes ligand exchange process with nearby solvent chlorine molecule and forms chlorine bonded [V2O3Cl2.6H2O]2+ compound. This chlorine bonded [V2O3Cl2.6H2O]2+ compound might be resistant to the de-protonation reaction which is the initial step in the precipitation reaction in Vanadium based electrolyte solutions. The combined theoretical and experimental approach reveals that formation of chlorine bonded [V2O3Cl2.6H2O]2+ compound might be central to the observed higher thermal stability of mixed acid based Vanadium (V) electrolyte solutions.

  2. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    PubMed

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  3. NMR study of the dynamics of cationic gemini surfactant 14-2-14 in mixed solutions with conventional surfactants.

    PubMed

    Jiang, Yan; Lu, Xing-Yu; Chen, Hong; Mao, Shi-Zhen; Liu, Mai-Li; Luo, Ping-Ya; Du, You-Ru

    2009-06-18

    Three kinds of conventional surfactants, namely, two nonionic surfactants [polyethylene glycol (23) lauryl ether (Brij-35) and Triton X-100 (TX-100)], one cationic surfactant [n-tetradecyltrimethyl ammonium bromide (TTAB)], and an anionic surfactant [sodium n-dodecyl sulfate (SDS)}, were mixed into the quaternary ammonium gemini surfactant [C(14)H(29)N(+)(CH(3))(2)](2)(CH(2))(2).2Br(-) (14-2-14) in aqueous solution. The exchange rate constants between 14-2-14 molecules in the mixed micelles and those in the bulk solution were detected using two nuclear magnetic resonance (NMR) methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). The results obtained from these two methods were consistent. Both showed that mixing a nonionic conventional surfactant, either Brij-35 or TX-100, enhanced the exchange process between the 14-2-14 molecules in the mixed micelles and those in the bulk solution. In contrast, the anionic surfactant SDS and the cationic surfactant TTAB slowed the process slightly.

  4. Enhanced spectrophotometric determination of Losartan potassium based on its physicochemical interaction with cationic surfactant.

    PubMed

    Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam

    2015-02-05

    In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62×10(5) M(-1) and 1.38×10(5); respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa=0.422). The developed method is linear over the range 0.5-28 μg mL(-1). The accuracy was evaluated and was found to be 99.79±0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations.

  5. Enhanced spectrophotometric determination of Losartan potassium based on its physicochemical interaction with cationic surfactant

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Laila; Abdel-Aziz, Lobna; Gaied, Mariam

    2015-02-01

    In this study, a simple and sensitive spectrophotometric method was developed for determination of Losartan potassium (LST K), an angiotensin-II receptor (type AT1) antagonist, in presence of cationic surfactant cetyltrimethylammonium bromide (CTAB). The physicochemical interaction of LST K with CTAB was investigated. The effect of cationic micelles on the spectroscopic and acid-base properties of LST K was studied at pH 7.4. The binding constant (Kb) and the partition coefficient (Kx) of LST K-CTAB were 1.62 × 105 M-1 and 1.38 × 105; respectively. The binding of LST K to CTAB micelles implied a shift in drug acidity constant (ΔpKa = 0.422). The developed method is linear over the range 0.5-28 μg mL-1. The accuracy was evaluated and was found to be 99.79 ± 0.509% and the relative standard deviation for intraday and interday precision was 0.821 and 0.963; respectively. The method was successfully applied to determine LST K in pharmaceutical formulations.

  6. Effect of alkyl properties and head groups of cationic surfactants on retention of cesium by organoclays.

    PubMed

    Wang, Tsing-Hai; Hsieh, Chi-Jung; Lin, Shih-Min; Wu, Ding-Chiang; Li, Ming-Hsu; Teng, Shi-Ping

    2010-07-01

    Cationic surfactants modified clays exhibit high sorptive capability toward anionic radionuclides but retention of cationic radionuclides was concurrently reduced. In this study, organoclays were synthesized by intercalating a variety of primary/quaternary alkylammonium species (NH(2)R/(CH(3))(3)N(+)RBr(-), where R = benzyl, dodecyl, and octadecyl) into bentonite MX-80. The effect of surfactant's properties on enhancing or limiting cationic sorption capability was investigated by performing Cs sorption experiments. Experimental results were analyzed using the MINEQL+ software by considering Cs uptake by structural and edge sorption sites. Bentonites that were intercalated with primary alkylammonium surfactants had a higher sorptive capacity than those intercalated with quaternary alkylammonium surfactants. Samples intercalated with octadecyl-bearing surfactants had the lowest sorption rate. XRD and FTIR analyses revealed that each organoclay had a characteristic arrangement of alkyl chains. The cation retention of organoclays was dominated by the extent of hydrophobic interactions affected by the local distribution and arrangement of surfactants. The intercalated primary alkylammoniun surfactants tended to transform into local clusters with a high packing density, leaving more structural sites available for Cs uptake. In contrast, the NH(3)R(+)-surfactants tended to form a denser monolayer over clay surface, inhibiting the retention of Cs at structural sites.

  7. Cationic Gemini surfactant at the air/water interface.

    PubMed

    Qibin, Chen; Xiaodong, Liang; Shaolei, Wang; Shouhong, Xu; Honglai, Liu; Ying, Hu

    2007-10-15

    The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the

  8. Cationic surfactants derived from lysine: effects of their structure and charge type on antimicrobial and hemolytic activities.

    PubMed

    Colomer, A; Pinazo, A; Manresa, M A; Vinardell, M P; Mitjans, M; Infante, M R; Pérez, L

    2011-02-24

    Three different sets of cationic surfactants from lysine have been synthesized. The first group consists of three monocatenary surfactants with one lysine as the cationic polar head with one cationic charge. The second consists of three monocatenary surfactants with two amino acids as cationic polar head with two positive charges. Finally, four gemini surfactants were synthesized in which the spacer chain and the number and type of cationic charges have been regulated. The micellization process, antimicrobial activity, and hemolytic activity were evaluated. The critical micelle concentration was dependent only on the hydrophobic character of the molecules. Nevertheless, the antimicrobial and hemolytic activities were related to the structure of the compounds as well as the type of cationic charges. The most active surfactants against the bacteria were those with a cationic charge on the trimethylated amino group, whereas all of these surfactants showed low hemolytic character.

  9. Adsorption of cationic monomeric and gemini surfactants on montmorillonite and adsolubilization of vitamin E.

    PubMed

    Sakai, Kenichi; Nakajima, Erimi; Takamatsu, Yuichiro; Sharma, Suraj C; Torigoe, Kanjiro; Yoshimura, Tomokazu; Esumi, Kunio; Sakai, Hideki; Abe, Masahiko

    2008-01-01

    Adsorption of a cationic gemini surfactant (1,2-bis(dodecyldimethylammonio) ethane dibromide, 12-2-12) and the corresponding monomeric surfactant (dodecyltrimethylammonium bromide, DTAB) on montmorillonite has been characterized with a combination of adsorption isotherm, interlayer spacing and FT-IR spectroscopic data. Adsolubilization of vitamin E into the adsorbed surfactant layers has also been studied. The adsorption isotherm data reveal that the adsorption of the two surfactants is driven by the two factors: one is the cation exchange that occurs on the interlayer basal planes and the other is the hydrophobic interaction between hydrocarbon chains of the surfactants. Although the adsorbed amount measured in the saturation region (in mol g(-1)) is almost identical for the two surfactants, the conformation of the intercalated surfactant molecules differs significantly from each other. The adsorption of DTAB results in a lateral bilayer arrangement in the limited interlayer space, whereas 12-2-12 gives a normal bilayer arrangement in the expanded interlayer space. Adsolubilization of vitamin E takes place into the adsorbed surfactant layers, and interestingly, all the vitamin E molecules added in the montmorillonite suspensions are hybridized at lower surfactant concentrations due to the great specific surface area of the clay material. Since the maximum adsolubilization amount is usually obtained just below the critical micelle concentration, the gemini surfactant is deemed to be more efficient than the corresponding monomeric one to achieve the great adsolubilization amount.

  10. Modelling of the Critical Micelle Concentration of Cationic Gemini Surfactants Using Molecular Connectivity Indices.

    PubMed

    Mozrzymas, Anna

    2013-01-01

    Modelling of the critical micelle concentrations (cmc) using the molecular connectivity indices was performed for a set of 21 cationic gemini surfactants with medium-length spacers. The obtained model contains only the second-order Kier and Hall molecular connectivity index. It is suggested that the index (2)χ includes some information about flexibility. The obtained model was used to predict log10 cmc of other cationic gemini surfactants. The agreement between calculated and experimental values of log10 cmc for the gemini surfactants that were not used in the correlation is very good.

  11. Self-aggregation of cationic surfactants onto oxidized cellulose fibers and coadsorption of organic compounds.

    PubMed

    Alila, S; Aloulou, F; Beneventi, D; Boufi, S

    2007-03-27

    In this work, the adsorption of cationic surfactant and organic solutes on oxidized cellulose fibers bearing different amounts of carboxylic moieties was investigated. The increase in the amount of -COOH groups on cellulose fibers by TEMPO oxidation induced a general rise in surfactant adsorption. For all tested conditions, that is, cellulose oxidation level and surfactant alkyl chain length (C12 and C16), adsorption isotherms displayed a typical three-region shape with inversion of the substrate zeta-potential which was interpreted as reflecting surfactant adsorption and aggregation (admicelles and hemimicelles) on cellulose fibers. The addition of organic solutes in surfactant/cellulose systems induced a decrease in surfactant cac on the cellulose surface thus favoring surfactant aggregation and the formation of mixed surfactant/solute assemblies. Adsorption isotherms of organic solutes on cellulose in surfactant/cellulose/solute systems showed that solute adsorption is strictly correlated to (i) the surfactant concentration, solute adsorption increases up to the surfactant cmc, where solute partitioning between the cellulose surface and free micelles causes a drop in adsorption, and to (ii) solute solubility and functional groups. The specific shape of solutes adsorption isotherms at a fixed surfactant concentration was interpreted using a Frumkin adsorption isotherm, thus suggesting that solute uptake on cellulose fibers is a coadsorption and not a partitioning process. Results presented in this study were compared with those obtained in a previous work investigating solute adsorption in anionic surfactant/cationized cellulose systems to better understand the role of surfactant/solute interactions in the coadsorption process.

  12. Spectroscopic study on interaction between three cationic surfactants with different alkyl chain lengths and DNA.

    PubMed

    Guo, Lili; Zhang, Zhaohong; Qiao, Heng; Liu, Miao; Shen, Manli; Yuan, Tianxin; Chen, Jing; Dionysiou, Dionysios D

    2015-01-01

    In this study, the interaction between cationic surfactants with different alkyl chain lengths, such as hexyltrimethyl ammonium bromide (HTAB), dodecyltrimethyl ammonium bromide (DTAB) and cetyltrimethyl ammonium bromide (CTAB), and DNA was investigated by UV-vis spectroscopy, fluorescence spectroscopy and viscosity techniques. The results showed that these three cationic surfactants with different hydrocarbon chain lengths could all interact with DNA. Their binding modes were estimated and their interaction strength was compared. In addition, the effects of the surfactant, NaCl and phosphate ion concentrations on the interaction were reviewed. It is wished that this work would provide some valuable references to investigate the influence of cationic surfactants with different alkyl chain lengths on DNA.

  13. Semi-quantitative determination of cationic surfactants in aqueous solutions using gold nanoparticles as reporter probes.

    PubMed

    Kuong, Chi-Lap; Chen, Wei-Yu; Chen, Yu-Chie

    2007-03-01

    Concentrations of cationic surfactants in aqueous solutions have been estimated on the basis of changes in the color of gold nanoparticles, used as reporter probes. We have shown that the colors of gold nanoparticles with anionic protective groups on their surfaces shift from red to indigo/purple and then back to red in a range of cationic surfactant solutions in which concentrations vary from very low to above the theoretical CMCs. The color changes occur near the theoretical CMCs, presumably because the presence of surfactant micelles in the solution prevents the gold nanoparticles from aggregating. We have used gold nanoparticles as reporter probes to determine the concentrations of cationic surfactants in products such as hair conditioners, which often contain large amounts of alkyltrimethylammonium halides. Although this approach can only provide an estimate, it can be performed simply by addition of a given amount of gold nanoparticles to a series of diluted solutions, without the need for instruments or labor-intensive procedures.

  14. Self-aggregation of cationic dimeric surfactants in water-ionic liquid binary mixtures.

    PubMed

    Martín, Victoria Isabel; Rodríguez, Amalia; Laschewsky, André; Moyá, María Luisa

    2014-09-15

    The micellization of four dimeric cationic surfactants ("gemini surfactants") derived from N-dodecyl-N,N,N-trimethylammonium chloride was studied in pure water and in water-ionic liquid (IL) solutions by a wide range of techniques. The dimeric surfactants are distinguished by their rigid spacer groups separating the two surfactant motifs, which range from C3 to C5 in length. In order to minimize organic ion pairing effects as well as the role of the ionic liquids as potential co-surfactants, ILs with inorganic hydrophilic anions and organic cations of limited hydrophobicity were chosen, namely ethyl, butyl, and hexyl-3-imidazolium chlorides. (1)H NMR two-dimensional, 2D, rotating frame nuclear Overhauser effect spectroscopy measurements, ROESY, supported this premise. The spacer nature hardly affects the micellization process, neither in water nor in water-IL solutions. However, it does influence the tendency of the dimeric surfactants to form elongated micelles when surfactant concentration increases. In order to have a better understanding of the ternary water-IL surfactant systems, the micellization of the surfactants was also studied in aqueous NaCl solutions, in water-ethylene glycol and in water-formamide binary mixtures. The combined results show that the ionic liquids play a double role in the mixed systems, operating simultaneously as background electrolytes and as polar organic solvents. The IL role as organic co-solvent becomes more dominant when its concentration increases, and when the IL alkyl chain length augments.

  15. Effect of curcumin on the binding of cationic, anionic and nonionic surfactants with myoglobin

    NASA Astrophysics Data System (ADS)

    Mondal, Satyajit; Ghosh, Soumen

    2017-04-01

    Interaction of a globular protein, myoglobin and different surfactants has been studied in the absence and presence of curcumin in phosphate buffer at pH = 7.4 by UV-VIS spectrophotometry, fluorimetry and fluorescence polarization anisotropy methods. Results show that heme environment of myoglobin is changed by cationic cetyltrimethylammonium bromide (CTAB) and sodium N-dodecanoyl sarcosinate (SDDS). In the presence of curcumin, CTAB cannot change the heme; but SDDS can make change. Nonionic surfactant N-decanoyl-N-methylglucamine (Mega 10) cannot change the heme environment. Protein is unfolded by the surfactant. Curcumin can prevent the unfolding of protein in the low concentration region of ionic surfactants such as CTAB and SDDS. In nonionic surfactant media, curcumin accelerates the denaturation process. Due to myoglobin-curcumin complex formation, rotational motion of curcumin decreases in surfactant media and so anisotropy increases.

  16. Accurately tuning the charge on giant polyoxometalate type Keplerates through stoichiometric interaction with cationic surfactants.

    PubMed

    Kistler, Melissa L; Patel, Komal G; Liu, Tianbo

    2009-07-07

    We report an approach of exploring the interaction between cationic surfactants and a type of structurally well-defined, spherical "Keplerate" polyoxometalate (POM) macroanionic molecular clusters, {Mo72V30}, in aqueous solution. The effectiveness of the interaction can be determined by monitoring the size change of the "blackberry" supramolecular structures formed by the self-assembly of {Mo72V30} macroions, which is determined by the effective charge density on the macroions. Long-chain surfactants (CTAB and CTAT) can interact with {Mo72V30} macroions stoichiometrically and lower their charge density. Consequently, the blackberry size decreases continuously with increasing surfactant concentration in solution. On the other hand, for short-chain surfactants (e.g., OTAB), a larger fraction of surfactants exist as discrete chains in solution and do not strongly interact with the macroions. This approach shows that a controllable amount of suitable surfactants can accurately tune the charge on large molecular clusters.

  17. [Nutrition, acid-base metabolism, cation-anion difference and total base balance in humans].

    PubMed

    Mioni, R; Sala, P; Mioni, G

    2008-01-01

    The relationship between dietary intake and acid-base metabolism has been investigated in the past by means of the inorganic cation-anion difference (C(+)(nm)-A(-)(nm)) method based on dietary ash-acidity titration after the oxidative combustion of food samples. Besides the inorganic components of TA (A(-)(nm)-C(+)(nm)), which are under renal control, there are also metabolizable components (A(-)(nm)-C(+)(nm)) of TA, which are under the control of the intermediate metabolism. The whole body base balance, NBb(W), is obtained only by the application of C(+)(nm)-A(-)(nm) to food, feces and urine, while the metabolizable component (A(-)(nm)-C(+)(nm)) is disregarded. A novel method has been subsequently suggested to calculate the net balance of fixed acid, made up by the difference between the input of net endogenous acid production: NEAP = SO(4)(2-)+A(-)(m)-(C(+)(nm)-A(-)(nm)), and the output of net acid excretion: NAE = TA + NH(4)(+) - HCO(3)(-). This approach has been criticized because 1) it includes metabolizable acids, whose production cannot be measured independently; 2) the specific control of metabolizable acid and base has been incorrectly attributed to the kidney; 3) the inclusion of A-m in the balance input generates an acid overload; 4) the object of measurement in making up a balance has to be the same, a condition not fulfilled as NEAP is different from NAE. Lastly, by rearranging the net balance of the acid equation, the balance of nonmetabolizable acid equation is obtained. Therefore, any discrepancy between these two equations is due to the inaccuracy in the urine measurement of metabolizable cations and/or anions.

  18. Molecular connectivity indices for modeling the critical micelle concentration of cationic (chloride) Gemini surfactants.

    PubMed

    Mozrzymas, Anna

    2017-01-01

    The molecular connectivity indices were used to derive the simple model relating the critical micelle concentration of cationic (chloride) gemini surfactants to their structure. One index was selected as the best to describe the effect of the structure of investigated compounds on critical micelle concentration consistent with the experimental results. This index encodes the information about molecular size, the branches, and also the information about heteroatoms. The selected model can be helpful in designing novel chloride gemini surfactants.

  19. Wettability of a quartz surface in the presence of four cationic surfactants.

    PubMed

    Zhang, Lei; Wang, Zeng-Lin; Li, Zhen-Quan; Zhang, Lu; Xu, Zhi-Cheng; Zhao, Sui; Yu, Jia-Yong

    2010-12-21

    Advancing contact angle (θ) measurements were carried out for aqueous solutions of four cationic surfactants, hexadecanol glycidyl ether ammonium chloride (C(16)PC), guerbet alcohol hexadecyl glycidyl ether ammonium chloride (C(16)GPC), hexadecanol polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)(EO)(3)PC), and guerbet alcohol hexadecyl polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)G(EO)(3)PC), on the quartz surface using the sessile drop analysis. The influences of surfactant type and bulk concentration on contact angle were expounded, and the changes in adhesional tension and adhesion work were discussed. The contact angle increases up to a maximum with the increasing concentration for all cationic surfactants. Surfactants with branched chain have more hydrophobic group density on the quartz surface, which results in higher values of maxima in contact angle curves. When ethylene oxide groups CH(2)CH(2)O were incorporated in the hydrophobic group, the decrease in contact angle maximum was observed for C(16)(EO)(3)PC and C(16)G(EO)(3)PC. Moreover, an increase in quartz-water interfacial free energy (γ(SL)) has been observed due to the adsorption of four cationic surfactants. The four cationic surfactants can form a monolayer with alignment structure on the quartz surface through electrostatic interaction and then form the bilayer with increasing bulk concentration. In contrast with literature, the maximal contact angles may not necessarily correspond to the beginning of the formation of bilayer for cationic surfactants at the quartz-water interface. Moreover, the concentrations corresponding to maximal contact angles for C(16)PC and C(16)(EO)(3)PC were much lower than their CMC. The contact angle passes through a maximum at a concentration obviously higher than CMC for C(16)G(EO)(3)PC.

  20. Extended delivery of an anionic drug by contact lens loaded with a cationic surfactant.

    PubMed

    Bengani, Lokendrakumar C; Chauhan, Anuj

    2013-04-01

    Drug eluding contact lenses can be very effective vehicles for ophthalmic drug delivery, but are incapable of releasing drug for more than a few hours. We propose to optimize the interactions of the polymer matrix of the contact lens with the hydrophobic tails of ionic surfactants to adsorb the surfactant molecules on the polymer with high packing and thus create a high surface charge. Ionic drugs can then adsorb on the charged surfactant coated surfaces with high affinity to reduce the transport rates, leading to extended release. Specifically, we show control release of an anionic drug dexamethasone 21-disodium phosphate from poly-hydroxyethyl methacrylate (p-HEMA) contact lenses by utilizing cationic surfactant (cetalkonium chloride). The partition coefficient of the drug increase exponentially with surfactant loading in the gel in at least qualitative agreement with the Debye-Hückel theory. The drug adsorbs on the surfactant covered polymer, and can also diffuse along the surface with diffusivity lower than that for the free drug, leading to a reduction in the effective diffusivity, which is the weighted combination of the free and surface diffusivities. The addition of surfactant did not impact transparency of lenses, and had additional benefits of increase in wettability and significant reduction in protein absorption. With a surfactant loading of about 10%, the drug release duration was increased from about 2 h to 50 h in 1-day ACUVUE(®) contact lenses, proving the viability of using surfactant for increasing drug release durations.

  1. The intercalation of a vermiculite by cationic surfactants and its subsequent swelling with organic solvents.

    PubMed

    Williams-Daryn, S; Thomas, R K

    2002-11-15

    We have measured the dimensions of the interlamellar space following intercalation of a vermiculite by a range of cationic surfactants and followed the subsequent swelling of the organoclay compounds with several organic solvents. A single vermiculite (Eucatex) was used with three series of surfactants, N-alkyltrimethylammonium bromides, N,N'-dialkyldimethylammonium bromides, and the gemini cationic surfactants, alpha,omega-bis (N-alkyldimethylammonium) alkanes. In all cases well-defined stoichiometric compounds are obtained and the amount of surfactant intercalating the layer indicates that there are two factors controlling this amount, charge neutralization of the clay and hydrophobic packing. Packing arguments are used to deduce the fraction of non-charge-neutralizing material in the interlamellar space. It is clear that by altering the surfactant charge and structure it is possible to control the degree to which adsorption beyond charge neutralization occurs in these complexes, which is important when the capacity of such complexes to sorb other materials is considered. The general pattern of swelling of the surfactant/vermiculite complex by toluene suggests that the maximum expansion of the intralamellar space is limited by the longest chain in the surfactant. In contrast to earlier results we found that these vermiculites could be swollen by alkanes as well as aromatic solvents. This is attributed to the greater hydrophobicity of the interior of an organoclay formed from a clay of higher charge density.

  2. ENVIRONMENTAL RESEARCH BRIEF: USE OF CATIONIC SURFACTANTS TO MODIFY AQUIFER MATERIALS TO REDUCE THE MOBILITY OF HYDROPHOBIC ORGANIC COMPOUNDS

    EPA Science Inventory

    Cationic surfactants can be used to modify surfaces of soils and subsurface materials to promote sorption of hydrophobic organic compounds (HOC) and retard their migration. For example, cationic surfactants could be injected into an aquifer downgradient from a source of HOC conta...

  3. On the Spacer Group Effect on Critical Micelle Concentration of Cationic Gemini Surfactants Using Molecular Connectivity Indices.

    PubMed

    Mozrzymas, Anna

    2016-01-01

    The important factor which differentiates gemini surfactants from conventional monomeric surfactants is the spacer group. The molecular connectivity method was used to study the effect of the spacer group on critical micelle concentration of cationic gemini surfactants. Two models were derived employing only Kier and Hall molecular connectivity indices. The relationships were developed for a set of 17 gemini surfactants with various spacer groups only. These models can be used to design the structure of the spacer group and in consequence novel cationic gemini surfactants more active in micelle formation.

  4. Non-extraction flow injection determination of cationic surfactants using eriochrome black-T

    NASA Astrophysics Data System (ADS)

    Ensafi, Ali A.; Hemmateenejad, B.; Barzegar, S.

    2009-09-01

    A new, rapid, sensitive, non-extraction batch, and flow injection spectrophotometric method for the determination of cationic surfactants (CSs) such as cetyltrimethyl ammonium bromide (CTAB), tetra-n-butyl ammonium chloride (TBAC) and cetylpyridinium chloride (CPC) is proposed. The method is based on the interaction of cationic surfactants with eriochrome black-T to form an ion-association complex. This complex has strong absorbance at 708 nm. The effects of chemical parameters and FIA variables on the determination of cationic surfactants were studied in detail, especially for CTAB. Under optimum conditions, the two linear calibration ranges of the method are 3.0 × 10 -6 to 5.0 × 10 -3 mol L -1 CTAB, CPB and DTAB for the batch spectrophotometric method and 2.0 × 10 -6 to 2.0 × 10 -4 mol L -1 CTAB, CPB and TBC for the flow injection spectrophotometric method. The sample throughput was 35 ± 5 samples h -1 at room temperature. The relative standard deviations for 10 replicates of analysis of (2.0, 0.6 and 0.2) × 10 -4 mol L -1 CTAB were 1.2, 1.3, and 0.8%, respectively. In addition, the influence of potential interfering substances on the determination of cationic surfactants was studied. The proposed method is simple and rapid, using no toxic organic solvents. It was applied to the determination of trace CS in industrial wastewater with satisfactory results.

  5. The interactions between cationic cellulose and Gemini surfactant in aqueous solution.

    PubMed

    Zhao, Shaojing; Cheng, Fa; Chen, Yu; Wei, Yuping

    2016-05-05

    Due to the extensive application of cationic cellulose in cosmetic, drug delivery and gene therapy, combining the improvement effect of surfactant-cellulose complexes, to investigate the properties of cellulose in aqueous solution is an important topic from both scientific and technical views. In this study, the phase behavior, solution properties and microstructure of Gemini surfactant sodium 5-nonyl-2-(4-(4-nonyl-2-sulfonatophenoxy)butoxy)phenyl sulfite (9-4-9)/cationic cellulose (JR400, the ammonium groups are directly bonded to the hydroxyethyl substituent with a degree substitution of 0.37) mixture was investigated using turbidity, fluorescence spectrophotometer and shear rheology techniques. As a control, the interaction of corresponding monovalent surfactant, sodium 2-ethoxy-5-nonylbenzenesulfonate (9-2) with JR400 in aqueous solution was also studied. Experimental results showed that 9-4-9/JR400 mixture has lower critical aggregation concentration (CAC) and critical micelle concentration (CMC) (about one order of magnitude) than 9-2/JR400 mixture. A low concentration of Gemini surfactant 9-4-9 appeared to induce an obvious micropolarity and viscosity value variation of the mixture, while these effects required a high concentration of corresponding monovalent one. Furthermore, dynamic light scattering (DLS) and transmission electron microscopy (TEM) measurements illuminated the formation and collapse procedure of network structure of the 9-4-9/JR400 mixture, which resulted in the increase and decrease of viscosity. These results suggest that the molecular structure of the surfactant has a great effect on its interaction with cationic cellulose. Moreover, the Gemini surfactant/cationic cellulose mixture may be used as a potencial stimuli-responsive drug delivery vector which not only load hydrophilic drugs, but also deliver hydrophobic substances.

  6. Retention of pesticides in soil columns modified in situ and ex situ with a cationic surfactant.

    PubMed

    Rodríguez-Cruz, María Sonia; Sánchez-Martín, Maria Jesús; Andrades, María Soledad; Sánchez-Camazano, María

    2007-05-25

    A study of the effect of a clayey soil modified in situ and ex situ with the cationic surfactant octadecyltrimethylammonium bromide (ODTMA), on the retention of linuron, atrazine and metalaxyl was carried out. Leaching of these compounds was studied in columns of a natural clayey soil and the same clayey soil modified by direct injection of the surfactant in situ, and in columns of a natural sandy soil and the same sandy soil modified by intercalation of a barrier of the clayey soil saturated ex situ with the surfactant. Breakthrough curves indicated the total immobilization of linuron in modified soils and a decrease in the leaching kinetics of atrazine and metalaxyl compared to what was obtained in the natural soil. The results indicate the use of the clayey soil modified in situ or ex situ with the surfactant ODTMA could be of interest in the immobilization of pesticides of different hydrophobicities.

  7. Effect of cationic/anionic organic surfactants on evaporation induced self assembled tin oxide nanostructured films

    NASA Astrophysics Data System (ADS)

    Khun Khun, Kamalpreet; Mahajan, Aman; Bedi, R. K.

    2011-01-01

    Tin oxide nanostructures with well defined morphologies have been obtained through an evaporation induced self assembly process. The technique has been employed using an ultrasonic nebulizer for production of aersol and its subsequent deposition onto a heated glass substrate. The precursor used for aersol production was modified by introducing cationic and anionic surfactants namely cetyl trimethyl ammonium bromide and sodium dodecyl sulphate respectively. The effect of surfactants on the structural, electrical and optical properties of self assembled tin oxide nanostructures were investigated by using X-ray diffraction, field emission scanning electroscope microscopy, two probe technique and photoluminiscence studies. The results reveal that high concentration of surfactants in the precursor solution leads to reduction in crystallite size with significant changes in the morphology of tin oxide nanostructures. Photoluminiscence studies of the nanostructures show emissions in the visible region which exhibit marked changes in the intensities upon variation of surfactants in the precursor solutions.

  8. Investigation of the electrokinetic properties of paraffin suspension. 2. In cationic and anionic surfactant solutions.

    PubMed

    Chibowski, Emil; Wiacek, Agnieszka; Holysz, Lucyna; Terpilowski, Konrad

    2005-08-16

    Electrical phenomena at nonionogenic hydrophobic surfaces (solid or liquid) in water, electrolyte, and/or surfactant solutions still attract research. In part 1 of this paper we described the electrokinetic behavior of paraffin wax suspension in water and electrolyte solutions (NaCl or LaCl3). On the basis of the latest data of water structure near hydrophobic surfaces it was concluded that immobilized water dipoles at the interface can play an essential role in the zeta potential formation. In this paper were investigated the zeta potentials of paraffin wax in cationic surfactants cetyltrimethylammonium bromide, C16H33(CH3)3NBr, and octadecyltrimethylammonium chloride, C18H37(CH3)3NCl, and anionic surfactant sodium dodecyl sulfate, C12H25SO4Na. Also changes in wettability of the paraffin surface due to the surfactant's adsorption were studied via wetting contact angle measurements and calculation of the surface free energy. It was concluded that at a low surfactant concentration (10(-6) M) the water dipole structure still contributes to the zeta potential, but at a higher one the zeta potential is determined by the surfactant molecules' adsorption. A special role of OH- ions is also clearly seen. Moreover, a functional relationship was found between the surface free energy of the surfactant-covered paraffin surface and the zeta potential.

  9. Sorption of benzene and naphthol to organobentonites intercalated with short chain cationic surfactants.

    PubMed

    Shen, Yun-Hwei

    2002-01-01

    This work studies the sorption of benzene and naphthol by bentonites exchanged with quaternary ammonium surfactants tetramethylammonium (TMA) ion, benzyltrimethylammonium (BTMA) ion, tetraethylammonium (TEA) ion, and benzyltriethylammonium (BTEA) ion to elucidate how exchanged short chain organic cations affect the mechanistic function of the modified bentonite. Local high charge density areas are found at interlamellar surfaces of bentonite and intercalated short chain organic cations aggregate preferentially at these sites to form organic carbon phase effective in nonionic organic compounds (NOC) uptake. Experimental results indicate that the amount of benzene uptake decreases as the size of intercalated organic cation increases from TMA to BTMA to TEA to BTEA, presumably due to the different structures of organic carbon phase formed in organobentonite. In addition, benzene sorption capacity of organobentonite modified with short chain organic cation is highly sensitive to the cation exchange capacities (CEC) of bentonite used.

  10. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    PubMed

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant.

  11. Superior SWNT dispersion by amino acid based amphiphiles: designing biocompatible cationic nanohybrids.

    PubMed

    Brahmachari, Sayanti; Das, Dibyendu; Das, Prasanta Kumar

    2010-11-28

    Stable aqueous SWNT dispersion up to 92% was achieved using amino acid based amphiphiles through a structure-property investigation. The nanohybrids showed remarkable serum stability and biocompatibility to mammalian cells.

  12. A thermosensitive carrageenan-based polymer: synthesis, characterization and interactions with a cationic surfactant.

    PubMed

    Gaweł, Kamila; Karewicz, Anna; Bielska, Dorota; Szczubiałka, Krzysztof; Rysak, Katarzyna; Bonarek, Piotr; Nowakowska, Maria

    2013-07-01

    Novel polyelectrolytes were obtained by grafting N-isopropylacrylamide (NIPAM) on the ι-carrageenan (CAR) chain. Two polymers with different grafting degrees were synthesized. The polymers were found to show the lower critical solution temperature (LCST) close to that of PNIPAM. The LCST values were dependent on the concentration of salt and cationic surfactant. The interactions of CAR-graft-PNIPAM with a model cationic surfactant-dodecyltrimethyl ammonium chloride (DTAC) in water and 0.15M NaCl were studied. It was found that both ι-carrageenan and CAR-graft-PNIPAM polymers interact with DTAC. The presence of CAR-graft-PNIPAM in the solution of DTAC induces formation of surfactant aggregates at the critical aggregation concentration much lower than the cmc of the surfactant. Cac increased with ionic strength. The values of cac for CAR-graft-PNIPAM - DTAC system and standard free enthalpy changes attributed to the complexation process were determined. The results obtained for CAR-graft-PNIPAM were compared with these for the non-modified ι-carrageenan. The surfactant interactions with non-modified and grafted polymers were found to be different in nature.

  13. Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica.

    PubMed

    Zhou, Qiong; Somasundaran, P

    2009-03-15

    Adsorption behavior of cationic C(12)-C(4)-C(12) gemini surfactant on silica has been investigated, along with that of nonionic surfactant n-dodecyl-beta-D-maltoside (DM). While DM alone shows meager adsorption on silica, because of the lack of any electrostatic adsorption, cationic gemini adsorbs significantly on the oppositely charged silica surface. Due to the electrostatic nature of cationic gemini adsorption on silica, solution pH affects adsorption of C(12)-C(4)-C(12) gemini dramatically. Meanwhile, C(12)-C(4)-C(12) gemini hemimicelle size at silica/water interface does not seem to change with solution pH. For the mixtures of DM and cationic C(12)-C(4)-C(12) gemini, there is a sharp increase of DM adsorption at silica/water interface, up to 100 times more than DM alone. After mixing with DM, saturation adsorption of cationic C(12)-C(4)-C(12) gemini decreases, due to competition for adsorption sites from DM. At the same time, in its mixture with DM, there is an increased adsorption of C(12)-C(4)-C(12) gemini in the rising part of the adsorption isotherm. Hydrophobic chain-chain interactions, especially with two hydrophobic chains in one C(12)-C(4)-C(12) gemini molecule, and adsorbed C(12)-C(4)-C(12) gemini molecule acting as an anchor or nucleation sites for forming mixed aggregates with DM on silica surface, are attributed to the marked adsorption synergy between DM and cationic C(12)-C(4)-C(12) gemini. The adsorption of surfactants and their mixtures has a marked effect on silica surface charge and silica's wettability.

  14. Modulation of pyridinium cationic lipid-DNA complex properties by pyridinium gemini surfactants and its impact on lipoplex transfection properties.

    PubMed

    Sharma, Vishnu Dutt; Lees, Julia; Hoffman, Nicholas E; Brailoiu, Eugen; Madesh, Muniswamy; Wunder, Stephanie L; Ilies, Marc A

    2014-02-03

    The study presents the effects of blending a cationic gemini surfactant into cationic lipid bilayers and its impact on the plasmid DNA compaction and delivery process. Using nanoDSC, dynamic light scattering, zeta potential, and electrophoretic mobility measurements, together with transfection (2D- and 3D-) and viability assays, we identified the main physicochemical parameters of the lipid bilayers, liposomes, and lipoplexes that are affected by the gemini surfactant addition. We also correlated the cationic bilayer composition with the dynamics of the DNA compaction process and with transfection efficiency, cytotoxicity, and the internalization mechanism of the resultant nucleic acid complexes. We found that the blending of gemini surfactant into the cationic bilayers fluidized the supramolecular assemblies, reduced the amount of positive charge required to fully compact the plasmid DNA and, in certain cases, changed the internalization mechanism of the lipoplexes. The transfection efficiency of select ternary lipoplexes derived from cationic gemini surfactants and lipids was several times superior to the transfection efficiency of corresponding binary lipoplexes, also surpassing standard transfection systems. The overall impact of gemini surfactants into the formation and dynamic of cationic bilayers was found to depend heavily on the presence of colipids, their nature, and amount present in lipoplexes. The study confirmed the possibility of combining the specific properties of pyridinium gemini surfactants and cationic lipids synergistically to obtain efficient synthetic transfection systems with negligible cytotoxicity useful for therapeutic gene delivery.

  15. Cationic surfactants for control of fresh- and saltwater mollusks in nuclear cooling systems

    SciTech Connect

    Post, R.M.; Mallen, E.; Lehmann, F.

    1991-11-01

    One result of the release of the US Nuclear Regulatory Commission's Generic Letter 89-13, Service Water Problems Affecting Safety-Related Equipment, was the heightened awareness of the nuclear industry to the problems of macrofouling in heat exchange systems. The principal mollusk species that contribute to freshwater macrofouling problems are Asiatic Clam (southern United States) and Zebra Mussel (Great Lakes). The predominant saltwater fouling mollusks are the Blue Mussel (Pacific, northern Atlantic), Ribbed Mussel (southern Atlantic, Gulf Coast), and American Oyster (Atlantic, Gulf Coast). The nuclear community's awareness of macrofouling problems and the ineffectiveness of intermittent chlorination programs have led to the development of several chemical control technologies for eliminating macrofouling organism infestation. One technology that has proven effective for the control of macrofouling organisms is the periodic addition of a combination of two cationic charged surfactants, specifically, alkyldimethylbenzylammonium chloride (QUAT) and dodecyl guanidine hydrochloride (DGH). Experience with the cationic surfactants at several nuclear power plants is reported.

  16. Anaerobic biodegradability and inhibitory effects of some anionic and cationic surfactants.

    PubMed

    Pérez-Armendáriz, Beatriz; Moreno, Yésica Mayett; Monroy-Hermosillo, Oscar; Guyot, Jean Pierre; González, Rosa O

    2010-09-01

    The anaerobic biodegradability and inhibitory effects on the methane production of three different surfactants, two anionic: sodium lauryl sulfate (SLS) and sodium dodecylbenzene sulfonate (SDBS), and a cationic surfactant: trialkyl-methylammonium chloride (TMAC), were evaluated with two different anaerobic sludges, granular and flocculent. Five different concentrations of the surfactants, 5, 50, 100, 250 and 500 mg/L, were tested. SLS was biodegraded at concentrations of 5, 50 and 100 mg/L with flocculent sludge and at 100 and 250 mg/L with granular sludge. However an inhibitory effect on methane production was observed in both sludges at 500 mg/L. The results indicate that SDBS was not biodegradable under anoxic conditions. TMAC was slightly degraded 50 and 100 mg/L with the flocculent sludge, and from 100 to 500 mg/L with the granular sludge.

  17. Study of monoprotic acid-base equilibria in aqueous micellar solutions of nonionic surfactants using spectrophotometry and chemometrics.

    PubMed

    Babamoradi, Hamid; Abdollahi, Hamid

    2015-10-05

    Many studies have shown the distribution of solutes between aqueous phase and micellar pseudo-phase in aqueous micellar solutions. However, spectrophotometric studies of acid-base equilibria in these media do not confirm such distribution because of the collinearity between concentrations of chemical species in the two phases. The collinearity causes the number of detected species to be equal to the number of species in a homogenous solution that automatically misinterpreted as homogeneity of micellar solutions, therefore the collinearity is often neglected. This interpretation is in contradiction to the distribution theory in micellar media that must be avoided. Acid-base equilibrium of an indicator was studied in aqueous micellar solutions of a nonionic surfactant to address the collinearity using UV/Visible spectrophotometry. Simultaneous analysis (matrix augmentation) of the equilibrium and solvation data was applied to eliminate the collinearity from the equilibrium data. A model was then suggested for the equilibrium that was fitted to the augmented data to estimate distribution coefficients of the species between the two phases. Moreover, complete resolution of concentration and spectral profiles of species in each phase was achieved.

  18. Superamphiphilic nanocontainers based on the resorcinarene - Cationic surfactant system: Synergetic self-assembling behavior

    NASA Astrophysics Data System (ADS)

    Gaynanova, Gulnara A.; Bekmukhametova, Alina M.; Kashapov, Ruslan R.; Ziganshina, Albina Yu.; Zakharova, Lucia Ya.

    2016-05-01

    Self-organization in the mixed system based on water-soluble aminomethylated calix[4]arene with sulfonatoethyl groups at the lower rim and classical cationic surfactant cetyltrimethylammonium bromide has been studied by the methods of tensiometry, conductometry, spectrophotometry, dynamic and electrophoretic light scattering. The values of the critical association concentration, the size and zeta potential values, and the solubilization capacity of mixed aggregates toward the hydrophobic probe (Sudan I) were determined.

  19. Aquatic toxicity and biodegradability of advanced cationic surfactant APA-22 compatible with the aquatic environment.

    PubMed

    Yamane, Masayuki; Toyo, Takamasa; Inoue, Katsuhisa; Sakai, Takaya; Kaneko, Youhei; Nishiyama, Naohiro

    2008-01-01

    Cationic surfactant is a chemical substance used in hair conditioner, fabric softener and other household products. By investigating the relationship between the aquatic toxicity and the chemical structures of two types of mono alkyl cationic surfactants, alkyl trimethylammonium salts and alkyl dimethylamine salts, we have found that the C22 alkyl chain length is effective to reduce the toxicity. Besides, we have recognized that the amidopropyl functional group contributes to the enhanced biodegradability by investigating the biodegradation trend of (alkylamidopropyl)dimethylamine salt (alkyl chain length: C18). Based on these findings, we have developed mono alkyl cationic surfactant called APA-22, N-[3-(dimethylamino)propyl]docosanamide salt. APA-22 is formed by the C22 alkyl chain, amidopropyl functional group and di-methyltertiary amine group. We evaluated the aerobic and anaerobic biodegradability of APA-22 by two standard methods (OECD Test Guideline 301B and ECETOC technical document No.28) and found that this substance was degraded rapidly in both conditions. The toxicity to algae, invertebrate and fish of this substance are evaluated by using OECD Test Guideline 201, 202 and 203, respectively. All acute toxicity values are >1 mg/L, which indicates that environmental toxicity of this substance is relatively less toxic to aquatic organism. In addition, we estimated the biodegradation pathway of APA-22 and observed the complete disappearance of APA-22 and its intermediates during the test periods. Based on the environmental data provided above, we concluded that APA22 is more compatible with the aquatic environment compared to other cationic surfactants with mono long alkyl chain.

  20. Mode changes associated with oil droplet movement in solutions of gemini cationic surfactants.

    PubMed

    Banno, Taisuke; Miura, Shingo; Kuroha, Rie; Toyota, Taro

    2013-06-25

    Micrometer-sized self-propelled oil droplets in nonequilibrium systems have attracted much attention, since they form stable emulsions composed of oil, water, and surfactant which represent a primitive type of inanimate chemical machinery. In this work, we examined means of controlling the movement of oil droplets by studying the dynamics of n-heptyloxybenzaldehyde droplets in phosphate buffers containing alkanediyl-α,ω-bis(N-dodecyl-N,N-dimethylammonium bromide) (nG12) with either tetramethylene (4G12), octaethylene (8G12), or dodecamethylene (12G12) chains in the linker moiety. Significant differences in droplet dynamics were observed to be induced by changes in the linker structure of these gemini cationic surfactants. In a phosphate buffer containing 30 mM 4G12, self-propelled motion of droplets concurrent with the formation of molecular aggregates on their surfaces was observed, whereas the fusion of oil droplets was evident in both 8G12 and 12G12 solutions. We also determined that the surface activities and the extent of molecular self-assembly of the surfactants in phosphate buffer were strongly influenced by the alkyl chain length in the linker moiety. We therefore conclude that the surface activities of the gemini cationic surfactant have important effects on the oil-water interfacial tension of oil droplets and the formation of molecular aggregates and that both of these factors induce the unique movement of the droplets.

  1. Extraction and separation of cationic surfactants from river sediments: application to a spectrophotometric determination of cationic surfactant in an aquatic environment using membrane filters.

    PubMed

    Sun, H F; Hase, T; Hata, N; Kasahara, I; Taguchi, S

    2001-11-01

    The quantitative extraction of cationic surfactant (CS+) in river sediments was studied. Further, the developed method was applied to the spectrophotometric determination of CS+ in urban river sediment samples by solid-phase extraction with membranes. A mixture of methanol and hydrochloric acid was proposed as an eluent. Dried sediment was digested in the eluent under ultrasonic irradiation. After elution, the eluent was evaporated to almost dryness. The residue was dissolved in a small volume of methanol and diluted to a certain volume with water. The pH of the solution was adjusted to 4-5 to separate iron and some other metals as precipitates of hydroxides. The solution was passed through two-piled membranes: first glass-fiber and then polytetrafluoroethylene (PTFE) membranes. A small volume of methanol was passed through the membranes to elute any CS+ retaining on the membranes. After passing the methanol solution through a cationic exchange resin column, the retained CS+ was eluted with methanol containing a high concentration of sodium chloride. Water, Bromophenol Blue (BPB) and hydrochloric acid were added to the solution. The solution was passed through a mixed cellulose ester membrane filter to retain an ion associate of CS+.BPB-. The retained ion associate was dissolved in a small volume of N,N-dimethylformamide together with the membrane filter, followed by the addition of triethanolamine to make the solution alkaline. The absorbance due to BPB2- was measured at 603 nm against a reagent blank. This method was applied to the determination of CS+ in river water and sediment. A cationic surfactant in sediments at 10(-5) mol kg-1 levels was detected with satisfactory precision. It was found that CS+ was about 500-fold enriched in the sediment from water at the place where domestic wastewater was discharged.

  2. Adsorption of a cationic surfactant by a magsorbent based on magnetic alginate beads.

    PubMed

    Obeid, Layaly; El Kolli, Nadia; Dali, Noëlle; Talbot, Delphine; Abramson, Sébastien; Welschbillig, Mathias; Cabuil, Valérie; Bée, Agnès

    2014-10-15

    Adsorption of cetylpyridinium chloride (CPC), a cationic surfactant, by magnetic alginate beads (MagAlgbeads) was investigated. The magnetic adsorbent (called magsorbent) was prepared by encapsulation of magnetic functionalized nanoparticles in an alginate gel. The influence on CPC adsorption of several parameters such as contact time, pH and initial surfactant concentration was studied. The equilibrium isotherm shows that adsorption occurs through both electrostatic interactions with charge neutralization of the carboxylate groups of the beads and hydrophobic interactions inducing the formation of surfactant aggregates in the beads. The dosage of calcium ions released in the solution turns out to be a useful tool for understanding the adsorption mechanisms. Adsorption is accompanied by a shrinking of the beads that corresponds to a 45% reduction of the volume. Adsorption kinetic experiments show that equilibrium time is strongly dependent on the surfactant concentration, which monitors the nature of the interactions. On the other hand, since the pH affects the ionization state of adsorption sites, adsorption depends on the pH solution, maximum adsorption being obtained in a large pH range (3.2-12) in agreement with the pKa value of alginate (pKa=3.4-4.2). Finally, due to the formation of micelle-like surfactants aggregates in the magnetic alginate beads, they could be used as a new efficient magsorbent for hydrophobic pollutants.

  3. Cationic gemini surfactants with cleavable spacer: chemical hydrolysis, biodegradation, and toxicity.

    PubMed

    Tehrani-Bagha, A R; Holmberg, K; van Ginkel, C G; Kean, M

    2015-07-01

    The paper describes synthesis and characterization of a new type of cationic gemini surfactant, which has dodecyl tails and a spacer that contains an ester bond. The nomenclature used to describe the structure is 12Q2OCO1Q12, with Q being a quaternary ammonium group and the numbers indicating the number of methylene or methyl groups. Due to the close proximity to the two quaternary ammonium groups, the ester bond is very stable on the acid side and very labile already at slightly alkaline conditions. The hydrolysis products are two single chain surfactants (i.e. 12Q2OH and 12Q1COOH) which are less surface active than the intact gemini surfactant. 12Q2OCO1Q12 was found to be readily biodegradable, i.e. it gave more than 60% biodegradation after 28 days. This is interesting because similar gemini surfactants but with ester bonds in the tails instead of the spacer, have previously been found not to be readily biodegradable. The gemini surfactant was found to be toxic to aquatic organisms (ErC50 value of 0.27 mg/l), although less toxic than the two hydrolysis products.

  4. Adsorption of Amino Acids and Glutamic Acid-Based Surfactants on Imogolite Clays.

    PubMed

    Bonini, Massimo; Gabbani, Alessio; Del Buffa, Stefano; Ridi, Francesca; Baglioni, Piero; Bordes, Romain; Holmberg, Krister

    2017-03-07

    Aluminum oxide surfaces are of utmost interest in different biotech applications, in particular for their use as adjuvants (i.e., booster of the immune response against infectious agents in vaccines production). In this framework, imogolite clays combine the chemical flexibility of an exposed alumina surface with 1D nanostructure. This work reports on the interaction between amino acids and imogolite, using turbidimetry, ζ-potential measurements, and Fourier transform infrared spectroscopy as main characterization tools. Amino acids with different side chain functional groups were investigated, showing that glutamic acid (Glu) has the strongest affinity for the imogolite surface. This was exploited to prepare a composite material made of a synthetic surfactant bearing a Glu polar head and a hydrophobic C12 alkyl tail, adsorbed onto the surface of imogolite. The adsorption of a model drug (rhodamine B isothiocyanate) by the hybrid was evaluated both in water and in physiological saline conditions. The findings of this paper suggest that the combination between the glutamate headgroup and imogolite represents a promising platform for the fabrication of hybrid nanostructures with tailored functionalities.

  5. Refolding of urea denatured cytochrome c: Role of hydrophobic tail of the cationic gemini surfactants.

    PubMed

    Patel, Rajan; Mir, Muzaffar Ul Hassan; Singh, Upendra Kumar; Beg, Ilyas; Islam, Asimul; Khan, Abbul Bashar

    2016-12-15

    The refolding of urea denatured horse heart cytochrome c (h-cyt-c) under the influence of ester based cationic gemini surfactants [ethane-1, 2-diyl bis(N, N-dimethyl-N-alkylammoniumacetoxy) dichlorides] 16-E2-16, 14-E2-14 and 12-E2-12 (n-E2-n) was performed by using UV-visible, fluorescence and circular dichroism (CD) spectroscopic techniques. We found that n-E2-n geminis promote the formation of molten globule (MG) like state upon addition into the urea denatured h-cyt-c. The comparative study of refolding of denatured h-cyt-c with n-E2-n, cationic gemini surfactant show stabilization of MG-like state influenced by hydrophobic interactions. The formation of MG-like state from the unfolded protein confirms the presence of some regular structures induced by n-E2-n gemini surfactants. Thermodynamic parameters for refolding of h-cyt-c by n-E2-n were also measured and the m-values of all the refolded states of h-cyt-c by n-E2-n show marked difference. The higher m-values correspond to the larger hydrophobic chain length indicates that refolding ability of the n-E2-n depends on the alkyl chain length. The result is related to the stronger hydrophobic forces due to the presence of two head groups and two hydrophobic hydrocarbon tails. This study showed that these cationic gemini surfactants were efficiently utilized in the protein refolding studies.

  6. Mutual Lewis acid-base interactions of cations and anions in ionic liquids.

    PubMed

    Holzweber, Markus; Lungwitz, Ralf; Doerfler, Denise; Spange, Stefan; Koel, Mihkel; Hutter, Herbert; Linert, Wolfgang

    2013-01-02

    Solute properties are known to be strongly influenced by solvent molecules due to solvation. This is due to mutual interaction as both the properties of the solute and of the solvent strongly depend on each other. The present paper is based on the idea that ionic liquids are cations solvated by anions and anions solvated by cations. To show this (in this system strongly pronounced) interaction the long time established donor-acceptor concept for solvents and ions in solution by Viktor Gutmann is extended to ionic liquids. A number of solvent parameters, such as the Kamlet-Abboud-Taft and the Dimroth-Reichardt E(T) scale for ionic liquids neglect this mutual influence, which, however, seems to be in fact necessary to get a proper description of ionic liquid properties. It is shown how strong such parameters vary when the influence of the counter ion is taken into account. Furthermore, acceptor and donor numbers for ionic liquids are presented.

  7. Study of the Formation and Solution Properties of Worm-Like Micelles Formed Using Both N-Hexadecyl-N-Methylpiperidinium Bromide-Based Cationic Surfactant and Anionic Surfactant

    PubMed Central

    Yan, Zhihu; Dai, Caili; Feng, Haishun; Liu, Yifei; Wang, Shilu

    2014-01-01

    The viscoelastic properties of worm-like micelles formed by mixing the cationic surfactant N-hexadecyl-N-methylpiperidinium bromide (C16MDB) with the anionic surfactant sodium laurate (SL) in aqueous solutions were investigated using rheological measurements. The effects of sodium laurate and temperature on the worm-like micelles and the mechanism of the observed shear thinning phenomenon and pseudoplastic behavior were systematically investigated. Additionally, cryogenic transmission electron microscopy images further ascertained existence of entangled worm-like micelles. PMID:25296131

  8. Microemulsion formation and phase behavior of anionic and cationic surfactants with sodium dodecyl sulfate and cetyltrimethylammonium bromide

    SciTech Connect

    Li, X.; Lin, E.; Zhao, G.; Xiao, T.

    1996-12-01

    The phase behavior and solubilization of multiphase microemulsions in mixed anionic-cationic surfactant systems were studied for fixed ratio of water-to-oil and surfactant-to-alcohol. In the mixed surfactants (sodium dodecyl sulfate + cetyltrimethylammonium bromide)/heptane/alcohol/water systems, microemulsions and birefringement phases are formed by adjusting the surfactant ratio {epsilon} and the cationic weight fraction {delta}. The bicontinuous (or w/o microemulsion) {yields} birefringement o/w microemulsion transition takes place and microemulsion domain enlarges with increasing {epsilon}. The optimum surfactant concentration {gamma} increases and the corresponding optimum {delta} decreases with increasing {epsilon} and both of them decrease with increasing the alcohol chain length butanol to hexanol. The birefringent region shrinks rapidly with increasing alcohol and/or CTAB weight fractions in total surfactant concentration. Conductivity measurements have been performed in the single-phase region of the system containing mixed surfactants and alcohols at 25 C. The conductivity results indicate where a transition takes place and which of these different types of phase structures may be in the single-phase of the system containing anionic-cationic mixed surfactants.

  9. Interactions and hybrid complex formation of anionic algal polysaccharides with a cationic glycine betaine-derived surfactant.

    PubMed

    Covis, Rudy; Vives, Thomas; Gaillard, Cédric; Benoit, Maud; Benvegnu, Thierry

    2015-05-05

    The interaction between anionic algal polysaccharides ((κ)-, (ι)-, (λ)-carrageenans, alginate and ulvan) and a cationic glycine betaine (GB) amide surfactant possessing a C18:1 alkyl chain has been studied using isothermal titration calorimetry (ITC), zeta-potential measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), and surface tension measurements. It was observed that this cationic surfactant derived from renewable raw materials induced cooperative binding with the anionic polymers at critical aggregation concentration (CAC) and the CAC values are significantly lower than the corresponding critical micelle concentration (CMC) for the surfactant. The CMC of cationic GB surfactant was obtained at higher surfactant concentration in polysaccharide solution than in pure water. More interestingly, the presence of original polysaccharide/surfactant hybrid complexes formed above the CMC value was evidenced from (κ)-carrageenan by microscopy (TEM and AFM). Preliminary investigations of the structure of these complexes revealed the existence of surfactant nanoparticles surrounded with polysaccharide matrix, probably resulting from electrostatic attraction. In addition, ITC measurements clearly showed that the interactions of the κ-carrageenan was stronger than for other polysaccharides ((ι)-, (λ)-carrageenans, alginate and ulvan). These results may have important impact on the use of the GB amide surfactant in formulations based on algal polysaccharides for several applications such as in food, cosmetics, and detergency fields.

  10. Composition-insensitive highly viscous wormlike micellar solutions formed in anionic and cationic surfactant systems.

    PubMed

    Aramaki, Kenji; Iemoto, Suzuka; Ikeda, Naoaki; Saito, Keitaro

    2010-01-01

    We investigated phase behavior and rheological properties of aqueous micellar phase formed in water/cocoyl glutamate neutralized with triethanol amine (CGT-n)/hexadecyl trimethylammonium salt (CTAB or CTAC) systems, where n is a degree of neutralization. Micellar phase appears in wide composition range with respect to the surfactant mixing fraction in ternary phase diagrams at 25 degrees C. At high mixing fraction of cationic surfactant in the water/CGT-n/CTAB systems, one can observe a highly viscous micellar phase in which worm-like micelles are expected to form. Contrary to conventional systems in which worm-like micelles are formed, the zero-shear viscosity of the micellar solution in the water/CGT-n/CTAB system with n=1.2 increases with the addition of cationic cosurfactant and once decreases after a maximum, then increases again and decreases after the second maximum. At n=1.5 and 2, highly viscous solution is observed in the relatively wide range of surfactant mixing fraction instead of two maxima of the viscosity curve observed at n=1.2. In the case of CTAC instead of CTAB we can observe narrow composition range for the maximum viscosity. Frequency sweep measurements were performed on the highly viscous samples in the water/CGT-1.5/CTAB system. Typical viscoelastic behavior of worm-like micellar solutions is observed; i.e. the curves of storage (G') and loss (G") moduli make a crossover and the data points of G' and G" can be fitted to the Maxwell model. Relaxation time against the mixing fraction of two surfactants behaves similarly to the zero-shear viscosity change, whereas the plateau modulus continuously increases in the plateau region for the zero-shear viscosity curve.

  11. Surfactant-free, cationic latices of poly(BMA-co-MMA) using AIBA initiator.

    PubMed

    Lee, Ki-Chang

    2013-09-01

    When polymer particles come into use, especially, for photonic crystal applications, their diameter, dispersivity, and refractive indices become very important. Poly(benzyl methacrylate) is known to be a kind of high refracive materials (n = 1.57) compared to poly(methyl methacrylate) (n = 1.49). Not many work was concerned for surfactant-free emulsion polymerization of benzyl methacrylate or its copolymerization using cationic initiators. Narrowly dispersed cationic poly(BMA-co-MMA) and PBMA latices were synthesized successfully by surfactant-free emulsion polymerization with AIBA. The influences of BMA/MMA ratio, BMA/MMA monomer and initiator concentrations, addition of DVB/EGDMA crosslink agent, and polymerization temperature on the kinetics and on the particle size and molecular weight were studied. Monodisperse cationic charged PBMA and poly(BMA-coMMA) latices with particle diameters varying between 160-494 nm and polymer molecular weights of the order 1.25 x 10(4) to 7.55 x 10(4) g/mol were prepared. The rate of polymerization increased with increasing MMA concentration in BMA/MMA ratio, AIBA concentration, DVB crosslink agent, and polymerization temperature. The particle diameter increased with BMA concentration in BMA/MMA ratio, AIBA concentration, and BMA/MMA monomer concentration. The molecular weight increased with BMA concentration in BMA/MMA ratio and BMA/MMA monomer concentration. The glass transition temperature of the latex copolymers decreased with increasing amount of BMA from 375 K for PMMA to 321 K for PBMA. It was, thus, found that the particle diameter and rate of polymerization as well as the polymer molecular weight for surfactant-free emulsion polymerization of BMA and MMA can be controlled easily by controlling the BMA/MMA ratio, BMA/MMA monomer concentration, AIBA concentration, and polymerization temperature.

  12. Time-Resolved SAXS Spectra after Rapidly Mixing Anionic and Cationic Surfactants

    SciTech Connect

    Koga, Mayuko; Sasaki, Shigeo

    2006-05-05

    The temporal evolution of nano-structures in mixing the aqueous solutions of anionic and cationic surfactants was investigated by measuring time-resolved SAXS spectra. It is found that vesicles formed just after mixing annihilate to be followed by the lamella formation. The peak intensity due to the vesicle structure decays exponentially with an elapsing time. The peak intensity assigned to the lamella structure grows with a power law of time. The decay time of vesicle and the exponent of power function of time describing the lamella growth increase with NaCl concentration. These results indicate that the electrostatic interaction affects the stability of nano-structures.

  13. Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant.

    PubMed

    Akbal, Feryal

    2005-02-01

    In this study the sorption of phenol and 4-chlorophenol on pumice modified with the cationic surfactants hexadecyltrimethyl ammonium bromide (HDTMA) and benzyldimethyl tetradecylammonium chloride (BDTDA) was investigated. Experimental studies indicate that HDTMA-pumice and BDTDA-pumice have the capability to remove phenol and 4-chlorophenol from aqueous solution. The influence of initial concentration and adsorbent dosage was studied. The adsorption of phenol and 4-chlorophenol increased with increasing initial concentration and decreased with increasing amount of adsorbent used. The Freundlich adsorption isotherm was found to describe well the equilibrium adsorption data. The parameters of the Freundlich model have been determined using the adsorption data.

  14. [Color reaction of cationic surfactants on bromphenol red and its analytical applications].

    PubMed

    Huang, C

    2000-04-01

    The suitable conditions, mechanism, characteristics and analytical applications of bromphenol red (BPR) reacting on cationic surfactants (CSAA) such as cetylpyridinium bromide (CPB) or cetyltrimetryl ammonium bromide (CTAB) were investigated. The results show that the single molecular CSAA reacts on BPR to form an ion-associate complex at pH 5.0-6.0, and its molar ratio (CSAA:BPR) is 3:2. Based on this color reaction, the critical micelle concentration (CMC) of CTAB and CPB was determined, and the possibility for the determination of trace CTAB and CPB were proposed.

  15. Interaction between bovine serum albumin and equimolarly mixed cationic-anionic surfactants decyltriethylammonium bromide-sodium decyl sulfonate.

    PubMed

    Lu, Run-Chao; Cao, Ao-Neng; Lai, Lu-Hua; Zhu, Bu-Yao; Zhao, Guo-Xi; Xiao, Jin-Xin

    2005-03-25

    The interactions of bovine serum albumin (BSA) with the anionic surfactant sodium decylsulfonate (C10SO3), the cationic surfactant decyltriethylammonium bromide (C10NE) and equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 were investigated by surface tension, viscosity, dynamic light scattering (DLS) and circular dichroism (CD). It was shown that the single ionic surfactant C10SO3 or C10NE has obvious interaction with BSA. The presence of C10SO3 or C10NE modified BSA structure. However, the equimolarly mixed cationic-anionic surfactants C10NE-C10SO3 showed very weak interactions with BSA. The surface tension-log concentration (gamma-logC) plot for the aqueous solutions of C10NE-C10SO3/BSA mixtures coincided with that of C10NE-C10SO3 solutions. Viscometry showed that there is no significant change in the rheological properties for the C10NE-C10SO3/BSA mixed solutions. DLS showed that BSA monomers and mixed aggregates of C10NE-C10SO3 existed in the C10NE-C10SO3/BSA mixed solutions. From CD spectra no obvious modification of BSA structure in the presence of C10NE-C10SO3 mixtures was observed. The weak interactions between BSA and C10NE-C10SO3 might be explained in terms of the very low critical micelle concentration (cmc) of C10NE-C10SO3 mixtures that made the concentration of ionic surfactant monomers much lower than that needed for inducing the modification of BSA structure. In other words, the very strong synergism between oppositely charged cationic and anionic surfactants makes the formation of cationic-anionic surfactant mixed aggregates in the bulk solution a more favorable process than binding to proteins.

  16. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies.

    PubMed

    Guo, Qing; Zhang, Zhaohong; Song, Youtao; Liu, Shuo; Gao, Wei; Qiao, Heng; Guo, Lili; Wang, Jun

    2017-02-01

    In this study, the interaction between DNA and several cationic surfactants with different head groups such as ethyl hexadecyl dimethyl ammonium bromide (EHDAB), hexadecyl dimethyl benzyl ammonium chloride (HDBAC), and cetyl pyridinium bromide (CPB) were investigated by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, gel electrophoresis, and viscosity technologies. The results show that these cationic surfactants can interact with DNA and major binding modes are electrostatic and hydrophobic. Also, CPB and HDBAC molecules interact with DNA by partial intercalation, and CPB has slightly stronger intercalation than HDBAC, while EHDAB interacts with DNA by non-intercalation. The different head groups of the surfactant molecules can influence the interaction strength. CPB has the stronger interaction with DNA than the others. Moreover, surfactant concentration, the ratio of DNA and fluorescence probe, ionic strength can influence the interaction. The surfactants may interact with DNA by the competition reactions with BR for DNA-BR. The increase of ionic strength may favor the surface binding between DNA and surfactants to some extent. This work provides deep mechanistic insight on the toxicity of cationic surfactants with different head groups to DNA molecules.

  17. Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon.

    PubMed

    Choi, Hyun-Doc; Cho, Jung-Min; Baek, Kitae; Yang, Jung-Seok; Lee, Jae-Young

    2009-01-30

    The effect of a cationic surfactant on the adsorption of Cr(VI) on activated carbon was investigated using cetylpyridinium chloride (CPC). At a concentration below the critical micelle concentration (CMC) of CPC, the adsorption of CPC and Cr(VI) reached equilibrium within 60 min, while it took 180 min at the concentration above CMC. CPC decreased the adsorption rate of Cr(VI) and increased the adsorption amount of Cr(VI) onto activated carbon. To analyze adsorption phenomena of Cr(VI), adsorption kinetic and isotherm were used and fitted well with the pseudo-second order kinetic model and Langmuir adsorption model, respectively. CPC introduced a cationic functional group on the surface of activated carbon and provided an adsorption site for Cr(VI).

  18. Spectroscopy and computational studies on the interaction of octyl, dodecyl, and hexadecyl derivatives of anionic and cationic surfactants with adenosine deaminase.

    PubMed

    Ajloo, Davood; Mahmoodabadi, Najmeh; Ghadamgahi, Maryam; Saboury, Ali Akbar

    2016-07-01

    Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.

  19. New cationic vesicles prepared with double chain surfactants from arginine: Role of the hydrophobic group on the antimicrobial activity and cytotoxicity.

    PubMed

    Pinazo, A; Petrizelli, V; Bustelo, M; Pons, R; Vinardell, M P; Mitjans, M; Manresa, A; Perez, L

    2016-05-01

    Cationic double chain surfactants have attracted much interest because they can give rise to cationic vesicles that can be used in biomedical applications. Using a simple and economical synthetic approach, we have synthesized four double-chain surfactants with different alkyl chain lengths (LANHCx). The critical aggregation concentration of the double chain surfactants is at least one order of magnitude lower than the CMC of their corresponding single-chain LAM and the solutions prepared with the LANHCx contain stable cationic vesicles. Encouragingly, these new arginine derivatives show very low haemolytic activity and weaker cytotoxic effects than conventional dialkyl dimethyl ammonium surfactants. In addition, the surfactant with the shortest alkyl chain exhibits good antimicrobial activity against Gram-positive bacteria. The results show that a rational design applied to cationic double chain surfactants might serve as a promising strategy for the development of safe cationic vesicular systems.

  20. Preparation of Tremorine and Gemini Surfactant Precursors with Cationic Ethynyl-Bridged Digold Catalysts.

    PubMed

    Grirrane, Abdessamad; Álvarez, Eleuterio; García, Hermenegildo; Corma, Avelino

    2017-02-24

    Tremorine and precursors of gemini surfactants were synthesised in a one-pot, three-step, double-catalytic A(3) coupling reaction and characterised by structural and spectroscopic methods. The cationic [Au(I) (L1)]SbF6 complex is a more active catalyst compared to neutral L2- and L3-Au(I) bis(trifluoromethanesulfonyl)imidate complexes (L1, L2=Buchwald-type biaryl phosphane; L3=triphenylphosphine) in promoting the double A(3) coupling of ethynyltrimethylsilane, secondary amines (cyclic, aliphatic, or aromatic) and formaldehyde. The solvent influences the catalytic performance by desilylation of silyl acetylene or deactivation of the catalyst by a halide anion. Acetylide-bridged cationic digold(I) L1 and L2 complexes were isolated and characterised by means of single-crystal X-ray structure analysis and their spectroscopic properties. Iodine in the acetylene reagent deactivates the Au(I) catalyst by formation of the less active iodido-bridged cationic digold(I) L1 complex, which was fully characterised by single-crystal X-ray crystal structure analysis and spectroscopy. The nature of the phosphine ligand of the gold complexes used as catalyst affects the stability and activity of the formed cationic ethynyl-bridged Au(I)2 -L intermediates, isolation of which lends support to the proposed double A(3) coupling mechanism.

  1. Resonance Rayleigh scattering method for the determination of cationic surfactants with chromium(VI)-iodide system.

    PubMed

    Liu, Shaopu; Shi, Yan; Liu, Zhongfang; Luo, Hongqun; Kong, Ling

    2006-05-01

    A method for detecting and identifying cationic surfactant in some chemical samples for daily use that include Head & Shoulder Ampoule and Slek Shower Lotion has been developed. In an acid medium, chromium(VI) oxidizes I(-) to produce I(2), I(2) binds excess of I(-) to form I(3)(-), and I(3)(-) can further react with a cationic surfactant (CS) (such as cetyldimethyl benzylammonium chloride (CDBAC), Zephiramine (Zeph), cetylpyridinium bromide (CPB), tetradecyl pyridinium bromide (TPB) and cetyltrimethylammonium bromide (CTAB)) to form ion-association complexes [CS][I(3)]. This results in a significant enhancement of resonance Rayleigh scattering (RRS) and appearance of new RRS spectra. The RRS spectral characteristics of the ion-association complexes, the influencing factors and the optimum conditions of the reactions have been investigated. The intensities of RRS are directly proportional to the concentration of CS. CS in samples are collected using a treated anion exchange column and subsequently complexed by I(3)(-); then the RRS intensities of CS complex are determined at 495 nm. The reactions have high sensitivities, and their detection limits are 7.05 - 9.62 ng/mL for different CS. The effects of foreign substances are investigated and the results show that the method has good selectivity.

  2. Surfactant-free synthesis of biodegradable, biocompatible, and stimuli-responsive cationic nanogel particles.

    PubMed

    Urakami, Hiromitsu; Hentschel, Jens; Seetho, Kellie; Zeng, Hanxiang; Chawla, Kanika; Guan, Zhibin

    2013-10-14

    Nanogels have attracted much attention lately because of their many potential applications, including as nanocarriers for drug and gene delivery. Most nanogels reported previously, however, are not biodegradable, and their synthesis often requires the use of surfactants. Herein we report a surfactant-free method for the preparation of biodegradable, biocompatible, and stimuli-responsive cationic nanogels. The nanogels were synthesized by simply coaservating linear polymer precursors in mixed solvents followed by in situ cross-linking with homobifunctional cross-linkers. The versatility of this approach has been demonstrated by employing two different polymers and various cross-linkers to prepare nanogel particles with diameters ranging from 170 to 220 nm. Specifically, disulfide-containing tetralysine (TetK)- and oligoethylenimine (OEI)-based prepolymers were prepared and the subsequent nanogels were formed by covalently cross-linking the polymer coacervate phase. Nanogel particles are responsive to pH changes, increasing in size and zeta-potential with concomitant lowering of solution pH. Furthermore, as revealed by AFM imaging, nanogel particles were degradable in the presence of glutathione at concentrations similar to those in intracellular environment (10 mM). Both the nanogel and the polymer precursors were determined to exhibit minimal cytotoxicity against fibroblast 3T3 cells by flow cytometric analyses and fluorescent imaging. This study demonstrates a new surfactant-free method for preparing biodegradable, biocompatible, and stimuli-responsive nanogels as potential nanocarriers for the delivery of drugs and genes.

  3. Effects of dietary cation-anion difference on the acid-base status of dry cows.

    PubMed

    Vagnoni, D B; Oetzel, G R

    1998-06-01

    Responses in dry matter intake (DMI) and acidbase balance to three sources of anionic salts (dietary cation-anion difference = -63 to -40 meq/kg of dry matter), an acidified fermentation by-product, MgSO4.7H2O + NH4Cl, and MgSO4.7H2O + CaCl2.2H2O + CaSO4, were evaluated relative to the responses of cows fed a control diet (dietary cationanion difference = 203 meq/kg of dry matter) that did not contain anionic salts. Diets were fed for 1-wk periods to eight nonlactating Holsteins assigned to two replicated 4 x 4 Latin squares. Daily DMI increased as time of access to the diet increased up to d 5; mean DMI over d 5 to 7 was reduced by dietary anionic salts. Diets containing anionic salts induced a mild metabolic acidosis that was completely compensated by nonrespiratory mechanisms (decreased blood bicarbonate and base excess; pCO2 and pH values were unaffected). Urinary pH values and bicarbonate excretion were reduced, and urinary NH4+ and titratable acidity excretion were increased, for cows fed diets containing anionic salts. Strong ion difference in urine was decreased by dietary anionic salts because of the relatively greater excretions of Cl- and S2- versus Na+ and K+ by cows fed these diets. Dietary anionic salts decreased mean ruminal pH by 0.12 units, possibly because of the reduced strong ion difference of ruminal fluid. Dietary anionic salts increased mean ruminal NH3 concentration by 2.2 mM, probably because of the higher nonprotein N content of these diets. The strong negative relationship (r2 = 0.95) between urinary pH and net acid excretion by cows fed the diets containing anionic salts suggested that urinary pH measurement might be a useful tool to assess the degree of metabolic acidosis that was imposed by dietary anionic salts.

  4. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.

    PubMed

    Li, Dongcui; Kelkar, Manish S; Wagner, Norman J

    2012-07-17

    Coacervation in mixtures of polyelectrolytes and surfactants with opposite charge is common in nature and is also technologically important to consumer health care products. To understand the complexation behavior of these systems better, we combine multiple experimental techniques to systematically study the polymer/surfactant binding interactions and the phase behavior of anionic sodium dodecyl sulfate (SDS) surfactant in cationic JR 400 polymer aqueous solutions. The phase-behavior study resolves a discrepancy in the literature by identifying a metastable phase between the differing redissolution phase boundaries reported in the literature for the surfactant-rich regime. Isothermal titration calorimetry analyzed within the framework of the simple Satake-Yang model identifies binding parameters for the surfactant-lean phase, whereas a calculation for polymer-bound micelles coexisting with free micelles is analyzed in the surfactant-rich redissolution regime. This analysis provides a preliminary understanding of the interactions governing the observed phase behavior. The resulting thermodynamic properties, including binding constants and the molar Gibbs free energies, enthalpies, and entropies, identify the relative importance of both hydrophobic and electrostatic interactions and provide a first approximation for the corresponding microstructures in the different phases. Our study also addresses the stability and metastability of oppositely charged polyelectrolytes and surfactant mixtures.

  5. Monitoring the architecture of anionic κ-carrageenan/cationic glycine betaine amide surfactant assemblies by dilution: A multiscale approach.

    PubMed

    Gaillard, C; Wang, Y; Covis, R; Vives, T; Benoît, Maud; Benvegnu, T

    2017-01-02

    The interaction between glycine betaine-based cationic surfactant and algal polysaccharide κ-carrageenan was studied by investigating the dilution effect of the surfactant/polymer assemblies driven by electrostatic interactions. Two aqueous solutions of cationic surfactant and κ-carrageenan at two molar ratios (3.5 and 0.8) diluted with factors of 5 and 10 times, were tested by various analytical methods including a multiscale observation by Transmission Electron Microscopy (TEM) and Laser Scanning Confocal Microscopy (LSCM) to understand the solution behavior of surfactant and oppositely charged polymer at both nano- and micrometer scale. Raman spectroscopy as well as confocal Raman imaging were applied to give Supplementary information about the surfactant/polysaccharide interactions and the distribution of assemblies. These analyses confirmed the formation of singular hybrid surfactant/polymer nano-, microobjects and they revealed the influence of dilution on the nanostructures. These results give an insight of the mechanism of the dilution effect on surfactant/polymer assemblies that could be valuable in pharmaceutical formulations, food and cosmetics fields.

  6. Interaction of sodium polyacrylate adsorbed on TiO2 with cationic and anionic surfactants.

    PubMed

    Li, Haiyan; Tripp, Carl P

    2004-11-23

    Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was used to identify the structures formed during the adsorption of sodium polyacrylate (NaPA) on charged TiO2 particles and to determine the subsequent interaction of the adsorbed polymer structure with cationic and anionic surfactants. The nature of the polymer structure was deduced from the adsorbed amount in tandem with the information obtained from monitoring the change in the relative intensity of the COO- and COOH infrared bands. In particular, it is found that the relative number of COO- and COOH groups on the polymer backbone for the adsorbed state differs from that of the same polymer in solution. This difference is due to a shift in the population of COO-/COOH groups on the polymer backbone that arises when the COO- groups bind to positively charged sites on the surface. A change in the number COO-/COOH groups on the polymer is thus related to a change in the bound fraction of polymer. It is shown that the initial NaPA approaching the bare surface adopts a flat conformation with high bound fraction. Once the bare sites on the surface are covered, the accommodation of additional polymer on the surface requires the existing adsorbed layer to adopt a conformation with a lower bound fraction. When the adsorbed NaPA is probed with a solution containing the anionic surfactant sodium dodecyl sulfate (SDS), the SDS competes for surface sites and displaces some of the bound NaPA segments from the surface, giving rise to an polymer layer adsorbed with an even lower bound fraction. In contrast, addition of a solution containing the cationic surfactant cetyltrimethylammonium bromide (CTAB) results in the binding of the surfactant directly to the free COO- sites on the adsorbed polymer backbone. Confirmation of a direct interaction of the CTAB headgroup with the free COO- groups of the polymer is provided by intensity changes in the headgroup IR bands of the CTAB.

  7. Spectroscopic detection, reactivity, and acid-base behavior of ring-dimethoxylated phenylethanoic acid radical cations and radical zwitterions in aqueous solution.

    PubMed

    Bietti, Massimo; Capone, Alberto

    2004-01-23

    A product and time-resolved kinetic study of the one-electron oxidation of ring-dimethoxylated phenylethanoic acids has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations or radical zwitterions depending on pH, and pK(a) values for the corresponding acid-base equilibria have been measured. The radical cations undergo decarboxylation with first-order rate constants (k(dec)) ranging from <10(2) to 5.6 x 10(4) s(-1) depending on radical cation stability. A significant increase in k(dec) (between 10 and 40 times) is observed on going from the radical cations to the corresponding radical zwitterions. The results are discussed in terms of the ease of intramolecular side chain to ring electron transfer required for decarboxylation, in both the radical cations and radical zwitterions.

  8. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature.

  9. Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates

    SciTech Connect

    Li Yanbao; Tjandra, Wiliana; Tam, Kam C.

    2008-08-04

    Nanoporous hydroxyapatite was synthesized utilizing cationic surfactants as templates. The effects of cetyltrimethylammonium bromide and reaction temperatures on the phase and morphology of HA were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The thermal stability of nanoporous structures was studied by XRD and thermal analyzers (TGA/DTA), while the pore structure of HA was observed using high resolution TEM. It was found that the pore size was about 1 nm, and the pore structure of HA was thermally stable up to 700 deg. C and the pore size did not change with reaction temperature and CTAB:PO{sub 4}{sup 3-} ratio. The possible formation mechanism of nanoporous structure was proposed.

  10. Effects of cationic surfactant exposure to a bivalve mollusc in stream mesocosms

    SciTech Connect

    Belanger, S.E.; Davidson, D.H.; Cherry, D.S. . Environmental Science Dept.); Farris, J.L.; Reed, D. . Univ. Center for Environmental and Hazardous Materials Studies and Biology Dept.)

    1993-10-01

    Effects of the cationic surfactant lauryl trimethyl ammonium chloride (C[sub 12]-TMAC) on growth, reproduction, cellulolytic enzyme activity, and larval colonization of Asiatic clams (Corbicula fluminea) were investigated in experimental stream mesocosms. Clams from three different populations and of two known morphotypes were evaluated for growth in two 8-week experiments in fall 1989 and spring 1990. Growth was impaired at 185 [mu]g/L. It is not known at this time to what extent the effects on pediveligers would be manifested relative to recruitment to later life stages. These findings were compared to a published safety assessment for mono-alkyl quanternaries, of which TMAC is a member. The findings reported here do not substantially alter conclusions from previous studies; however, clams appear to be among the more sensitive taxa studied thus far.

  11. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    PubMed

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples.

  12. Experimenting with Synthesis and Analysis of Cationic Gemini Surfactants in a Second-Semester General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Anzovino, Mary E.; Greenberg, Andrew E.; Moore, John W.

    2015-01-01

    A laboratory experiment is described in which students synthesize a variety of cationic gemini surfactants and analyze their efficacy as fabric softeners. Students perform a simple organic synthesis reaction and two analytical tests (one qualitative and one quantitative), and use the class data to assess the synthesized products. The experiment…

  13. Capillary zone electrophoretic separation of neutral species of chloro-s-triazines in the presence of cationic surfactant monomers.

    PubMed

    Lin, C E; Wang, T Z; Huang, H C; Hsueh, C C; Liu, Y C

    2000-05-05

    Chloro-s-triazines are difficult to separate by capillary zone electrophoresis (CZE), due to their low pKa values. However, these analytes can be effectively separated by CZE in the presence of cationic surfactant monomers, such as tetradecylammonium bromide (TTAB) and dodecyltrimethylammonium bromide (DTAB). The separation mechanism based on a 1:1 binding of analytes to cationic surfactant monomers is proposed. The binding constants of chloro-s-triazines to cationic surfactant monomers are estimated. The results show that the strength of the interactions of these analytes with TTAB monomers is considerably strong, whereas that of the corresponding analyte with DTAB monomers is about 12- to 14-fold weaker. A linear correlation of binding constants with log P(ow) (the logarithm of the partition coefficient of analytes between 1-octanol and aqueous phases) indicates that the migration order of these chloro-s-triazines depends primarily on their hydrophobicity. Moreover, the skewed peaks of chloro-s-triazines observed may reveal the occurrence of adsolubilization of these analytes in the adsorbed cationic surfactant layer on the capillary surface.

  14. Surfacted ferrofluid based dispersive solid phase extraction; a novel approach to preconcentration of cationic dye in shrimp and water samples.

    PubMed

    Fasih Ramandi, Negin; Shemirani, Farzaneh

    2015-10-15

    Surfacted ferrofluid (S-FF) is a stable colloid dispersion of magnetic nanoparticles in a carrier liquid which possesses magnetic properties and fluidity simultaneously. Specifically in S-FF coating magnetic nanoparticles with a suitable surfactant provides steric repulsions to prevent particles agglomeration. Selecting the function of surfactant can be engineered according to its application. In the present study, for the first time the application of S-FF in dispersive solid phase extraction of methylene blue (as a cationic dye model) in water and shrimp samples was investigated. For this purpose, in order to use ionic liquid as carrier fluid, the surface of Fe3O4 nanoparticles was coated by an anionic surfactant in a polar medium to form a hydrophilic layer around magnetic nanoparticles. In addition to hydrophobic interactions between the analyte and carbonic chain of surfactant, the retention of cationic dye was mainly governed by attractive electrostatic interactions between polar head of surfactant and dye. Under optimized conditions, the relative standard deviation is 2.9%, the limit of detection is 2.5 μg L(-1), and the preconcentration factor is 135.

  15. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    PubMed

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  16. Interaction of a biosurfactant, Surfactin with a cationic Gemini surfactant in aqueous solution.

    PubMed

    Jin, Lei; Garamus, Vasil M; Liu, Fang; Xiao, Jingwen; Eckerlebe, Helmut; Willumeit-Römer, Regine; Mu, Bozhong; Zou, Aihua

    2016-11-01

    The interaction between biosurfactant Surfactin and cationic Gemini surfactant ethanediyl-1,3-bis(dodecyldimethylammonium bromide) (abbreviated as 12-3-12) was investigated using turbidity, surface tension, dynamic light scattering (DLS) and small angle neutron scattering (SANS). Analysis of critical micelle concentration (CMC) values in Surfactin/12-3-12 mixture indicates that there is synergism in formation of mixed Surfactin/12-3-12 micelles. Although Surfactin and 12-3-12 are oppositely charged in phosphate buffer solution (PBS, pH7.4), there are no precipitates observed at the concentrations below the CMC of Surfactin/12-3-12 system. However, at the concentration above CMC value, the Surfactin/12-3-12 mixture is severely turbid with high 12-3-12 content. DLS and SANS measurements follow the size and shape changes of mixed Surfactin/12-3-12 aggregates from small spherical micelles via elongated aggregates to large bulk complexes with increasing fraction of Gemini surfactant.

  17. Kinetic and thermodynamic studies on the adsorption of anionic surfactant on quaternary ammonium cationic cellulose.

    PubMed

    Zhang, Yuanzhang; Shi, Wenjian; Zhou, Hualan; Fu, Xing; Chen, Xuan

    2010-06-01

    Removal of anionic surfactants from aqueous solutions by adsorption onto quaternary ammonium cationic cellulose (QACC) was investigated. The effects of solution acidity, initial concentration, adsorption time, and temperature on the adsorption of sodium dodecyl-benzene sulfonate (SDBS), sodium lauryl sulfate (SLS), and sodium dodecyl sulfonate (SDS) were studied. The kinetic experimental data fit well with the pseudo-second-order model; the rate constant of the adsorption increased with temperature. The values of apparent activation energy for the adsorption were calculated as ranging from 10.2 to 17.4 kJ/ mol. The adsorption isotherm can be described by the Langmuir isotherm. The values of thermodynamic parameters (deltaH0, deltaS0, and deltaG0) for the adsorption indicated that this process was spontaneous and endothermic. At 318 K, the saturated adsorption capacities of QACC for SDBS, SLS, and SDS were 1.75, 1.53, and 1.39 mmol/g, respectively. The adsorption process was mainly chemisorption and partially physisorption. The results show that QACC is effective for the removal of anionic surfactants.

  18. Modification of bentonite with a cationic surfactant: An adsorption study of textile dye Reactive Blue 19.

    PubMed

    Ozcan, Adnan; Omeroğlu, Ciğdem; Erdoğan, Yunus; Ozcan, A Safa

    2007-02-09

    The utilization of modified bentonite with a cationic surfactant (dodecyltrimethylammonium (DTMA) bromide) as an adsorbent was successfully carried out to remove a synthetic textile dye (Reactive Blue 19 (RB19)) by adsorption, from aqueous solutions. Batch studies were carried out to address various experimental parameters such as pH, contact time and temperature. The surface modification of bentonite with a surfactant was examined using the FTIR spectroscopic technique and elemental analysis. Effective pH for the adsorption of RB19 onto DTMA-bentonite was around 1.5. The Langmuir isotherm model was found to be the best to represent the equilibrium with experimental data. The maximum adsorption capacity (q(max)) has been found to be 3.30x10(-4)molg(-1) or 206.58mgg(-1). The thermodynamic study indicated that the adsorption of RB19 onto DTMA-bentonite was favored with the negative Gibbs free energy values. The pseudo-second-order rate equation was able to provide the best description of adsorption kinetics and the intraparticle diffusion model was also applicable up to 40min for the adsorption of RB19 onto DTMA-bentonite.

  19. Application of membrane filters for spectrophotometric determination of cationic surfactants in river water and sediment.

    PubMed

    Huij-Feng, S; Takamori, M; Hata, N; Kasahara, I; Taguchi, S

    2001-01-01

    Cationic surfactant (CS+) in urban river water and sediment was extracted and determined spectrophotometrically with 2 membrane filters. The CS+ in the water samples, mostly in the form of an ion associate with the coexisting anionic surfactant (AS), was collected on a polytetrafluoroethylene (PTFE) membrane filter and eluted with methanol. Bromphenol blue (BPB), hydrochloric acid, and water were added to the methanol solution successively, and the mixed solution was filtered through a mixed cellulose ester membrane filter. The CS+-BPB- ion associate, formed by a counter ion exchange, was collected on the filter and dissolved into N,N-dimethylformamide (DMF) together with the mixed cellulose ester membrane filter. After addition of 2 drops of triethanolamine, the absorbance of the DMF solution was measured. The CS+ in sediment samples was extracted with methanol by ultrasonic irradiation; the methanol solution was then passed through a PTFE membrane filter and evaporated to dryness. The CS+ was redissolved in a small amount of methanol. For water samples, recoveries and relative standard deviations for 0.30 microM benzyldimethyl-tetradecylammonium ion, a standard material, were > or =93 and < or =5%, with a detection limit of 0.02 microM. Concentrations of CS+ in sediments were much higher than those in water samples, indicating that CS+ is adsorbed on the surface of the sediment.

  20. Faster photodegradation rate and higher dioxin yield of triclosan induced by cationic surfactant CTAB.

    PubMed

    Qiao, Xianliang; Zheng, Xiaodong; Xie, Qing; Yang, Xianhai; Xiao, Jie; Xue, Weifeng; Chen, Jingwen

    2014-06-30

    Triclosan has received extensive attention as it has been frequently detected in the aquatic environment. Photolysis was found to be a major pathway governing the fate of triclosan in the aquatic environment. However, the effects of surfactants that usually coexist with triclosan, on the photodegradation of triclosan, are largely unknown. In this study, the effects of selected surfactants on the photodegradation of triclosan were investigated experimentally. The results show that anionic sodium dodecyl benzene sulfonate, sodium dodecyl sulfate and neutral polyoxyethylene (20) sorbitan monooleate inhibit the photolysis of triclosan, whereas cationic cetyltrimethylammonium bromide (CTAB) significantly accelerates the photodegradation rate of triclosan. The interactions between the hydrophilic group of CTAB and anionic triclosan lead to the apparent decrease of pKa of triclosan from 8.4 to 6.1, which increase the fraction of anionic triclosan from 4% to 89% in neutral solution. A red shift in the UV-VIS absorption spectrum is exhibited, thus leading to the increased photodegradation rate of triclosan. The accelerations caused by CTAB were observed under xenon lamp and Hg lamp irradiances, as well as under natural sunlight. Effect of CTAB demonstrated pH dependence with significantly enhancement under pH 5∼9 and inhibition at pH=3. The presence of CTAB also increased the yield of 2,8-dichlorodibenzo-p-dioxin from the photolysis of triclosan about 7 times at pH=7.

  1. Oil-in-water microemulsions based on cationic surfactants with a hydroxyalkyl fragment in the head group

    NASA Astrophysics Data System (ADS)

    Mirgorodskaya, Alla B.; Yackevich, Ekaterina I.; Zakharova, Lucia Ya.; Konovalov, Alexander I.

    2013-04-01

    The stable oil-in-water microemulsions with a high water content were formed on the basis of cationic surfactants, including those that contain a hydroxyalkyl fragment in the head group. These systems can bind the water- and oil-soluble reagents into a single aggregate formed by self-assembling components. The size, surface and electrokinetic potentials of aggregates in the surfactant/n-hexane/n-butanol/water microemulsions were determined. Besides, their catalytic effect on the cleavage of carboxylic acid esters was evaluated. The behavior of the system was shown to be determined not only by hydrophobic and electrostatic interactions but also by specific interactions, i.e., hydrogen bonds.

  2. Cationic vesicles based on biocompatible diacyl glycerol-arginine surfactants: physicochemical properties, antimicrobial activity, encapsulation efficiency and drug release.

    PubMed

    Tavano, L; Pinazo, A; Abo-Riya, M; Infante, M R; Manresa, M A; Muzzalupo, R; Pérez, L

    2014-08-01

    Physicochemical characteristics of cationic vesicular systems prepared from biocompatible diacyl glycerol-arginine surfactants are investigated. These systems form stable cationic vesicles by themselves and the average diameter of the vesicles decreases as the alkyl chain length of the surfactant increases. The addition of DPPC also modifies the physicochemical properties of these vesicles. Among the drugs these cationic formulations can encapsulate, we have considered Ciprofloxacin and 5-Fluorouracil (5-FU). We show that the percentage of encapsulated drug depends on both the physicochemical properties of the carrier and the type of drug. The capacity of these systems to carry different molecules was evaluated performing in vitro drug release studies. Finally, the antimicrobial activity of empty and Ciprofloxacin-loaded vesicles against Gram-positive and Gram-negative bacteria has been determined. Three bacteria were tested: Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. The in vitro drug release from all formulations was effectively delayed. Empty cationic vesicles showed antimicrobial activity and Ciprofloxacin-loaded vesicles showed similar or higher antimicrobial activity than the free drug solution. These results suggest that our formulations represent a great innovation in the pharmaceutical field, due to their dual pharmacological function: one related to the nature of the vehiculated drug and the other related to the innate antibacterial properties of the surfactant-based carriers.

  3. Enhanced aqueous solubility of polycyclic aromatic hydrocarbons by green diester-linked cationic gemini surfactants and their binary solutions

    NASA Astrophysics Data System (ADS)

    Panda, Manorama; Fatma, Nazish; Kabir-ud-Din

    2016-07-01

    Three homologues of a novel biodegradable diester-linked cationic gemini surfactant series, CmH2m+1 (CH3)2N+(CH2COOCH2)2N+(CH3)2CmH2m+1.2Cl- (m-E2-m; m = 12, 14, 16), were used for investigation of the solubilization of polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, anthracene and pyrene in single as well as binary surfactant solutions. Physicochemical parameters of the pure/mixed systems were derived by conductivity and surface tension measurements. Dissolution capacity of the equimolar binary surfactant solutions towards the PAHs was studied from the molar solubilization ratio (MSR), micelle-water partition coefficient (Km) and free energy of solubilization (ΔGs0) of the solubilizates. Influence of hydrophobic chain length of the dimeric surfactants on solubilization was characterized. Aqueous solubility of the PAHs was enhanced linearly with concentration of the surfactant in all the pure and mixed gemini-gemini surfactant systems.

  4. Use of the ternary phase diagram of a mixed cationic/glucopyranoside surfactant system to predict mesostructured silica synthesis.

    PubMed

    Xing, Rong; Rankin, Stephen E

    2007-12-15

    Mixed surfactant systems have the potential to impart controlled combinations of functionality and pore structure to mesoporous metal oxides. Here, we combine a functional glucopyranoside surfactant with a cationic surfactant that readily forms liquid crystalline mesophases. The phase diagram for the ternary system CTAB/H(2)O/n-octyl-beta-D-glucopyranoside (C(8)G(1)) at 50 degrees C is measured using polarized optical microscopy. At this temperature, the binary C(8)G(1)/H(2)O system forms disordered micellar solutions up to 72 wt% C(8)G(1), and there is no hexagonal phase. With the addition of CTAB, we identify a large area of hexagonal phase, as well as cubic, lamellar and solid surfactant phases. The ternary phase diagram is used to predict the synthesis of thick mesoporous silica films via a direct liquid crystal templating technique. By changing the relative concentration of mixed surfactants as well as inorganic precursor species, surfactant/silica mesostructured thick films can be synthesized with variable glucopyranoside content, and with 2D hexagonal, cubic and lamellar structures. The domains over which different mesophases are prepared correspond well with those of the ternary phase diagram if the hydrophilic inorganic species is assumed to act as an equivalent volume of water.

  5. pH-Sensitive self-propelled motion of oil droplets in the presence of cationic surfactants containing hydrolyzable ester linkages.

    PubMed

    Banno, Taisuke; Kuroha, Rie; Toyota, Taro

    2012-01-17

    Self-propelled oil droplets in a nonequilibrium system have drawn much attention as both a primitive type of inanimate chemical machinery and a dynamic model of the origin of life. Here, to create the pH-sensitive self-propelled motion of oil droplets, we synthesized cationic surfactants containing hydrolyzable ester linkages. We found that n-heptyloxybenzaldehyde oil droplets were self-propelled in the presence of ester-containing cationic surfactant. In basic solution prepared with sodium hydroxide, oil droplets moved as molecular aggregates formed on their surface. Moreover, the self-propelled motion in the presence of the hydrolyzable cationic surfactant lasted longer than that in the presence of nonhydrolyzable cationic surfactant. This is probably due to the production of a fatty acid by the hydrolysis of the ester-containing cationic surfactant and the subsequent neutralization of the fatty acid with sodium hydroxide. A complex surfactant was formed in the aqueous solution because of the cation and anion combination. Because such complex formation can induce both a decrease in the interfacial tension of the oil droplet and self-assembly with n-heptyloxybenzaldehyde and lauric acid in the aqueous dispersion, the prolonged movement of the oil droplet may be explained by the increase in heterogeneity of the interfacial tension of the oil droplet triggered by the hydrolysis of the ester-containing surfactant.

  6. Self-assembly thermodynamics of pH-responsive amino-acid-based polymers with a nonionic surfactant.

    PubMed

    Bogomolova, Anna; Keller, Sandro; Klingler, Johannes; Sedlak, Marian; Rak, Dmytro; Sturcova, Adriana; Hruby, Martin; Stepanek, Petr; Filippov, Sergey K

    2014-09-30

    The behavior of pH-responsive polymers poly(N-methacryloyl-l-valine) (P1), poly(N-methacryloyl-l-phenylalanine) (P2), and poly(N-methacryloylglycyne-l-leucine) (P3) has been studied in the presence of the nonionic surfactant Brij98. The pure polymers phase-separate in an acidic medium with critical pHtr values of 3.7, 5.5, and 3.4, respectively. The addition of the surfactant prevents phase separation and promotes reorganization of polymer molecules. The nature of the interaction between polymer and surfactant depends on the amino acid structure in the side chain of the polymer. This effect was investigated by dynamic light scattering, isothermal titration calorimetry, electrophoretic measurements, small-angle neutron scattering, and infrared spectroscopy. Thermodynamic analysis revealed an endothermic association reaction in P1/Brij98 mixture, whereas a strong exothermic effect was observed for P2/Brij98 and P3/Brij98. Application of regular solution theory for the analysis of experimental enthalpograms indicated dominant hydrophobic interactions between P1 and Brij98 and specific interactions for the P2/Brij98 system. Electrophoretic and dynamic light scattering measurements support the applicability of the theory to these cases. The specific interactions can be ascribed to hydrogen bonds formed between the carboxylic groups of the polymer and the oligo(ethylene oxide) head groups of the surfactant. Thus, differences in polymer-surfactant interactions between P1 and P2 polymers result in different structures of polymer-surfactant complexes. Specifically, small-angle neutron scattering revealed pearl-necklace complexes and "core-shell" structures for P1/Brij98 and P2/Brij98 systems, respectively. These results may help in the design of new pH-responsive site-specific micellar drug delivery systems or pH-responsive membrane-disrupting agents.

  7. Alkyl-imidazolium glycosides: non-ionic-cationic hybrid surfactants from renewable resources.

    PubMed

    Salman, Abbas Abdulameer; Tabandeh, Mojtaba; Heidelberg, Thorsten; Hussen, Rusnah Syahila Duali; Ali, Hapipah Mohd

    2015-08-14

    A series of surfactants combining carbohydrate and imidazolium head groups were prepared and investigated on their assembly behavior. The presence of the imidazolium group dominated the interactions of the surfactants, leading to high CMCs and large molecular surface areas, reflected in curved rather than lamellar surfactant assemblies. The carbohydrate, on the other hand, stabilized molecular assemblies slightly and reduced the surface tension of surfactant solutions considerably. A comparative emulsion study discourages the use of pure alkyl imidazolium glycosides owing to reduced assembly stabilities compared with APGs. However, the surfactants are believed to have potential as component in carbohydrate based surfactant mixtures.

  8. Assessment of the potential irritation and photoirritation of novel amino acid-based surfactants by in vitro methods as alternative to the animal tests.

    PubMed

    Benavides, Tomas; Martínez, Verónica; Mitjans, Montserrat; Infante, María Rosa; Moran, Carmen; Clapés, Pere; Clothier, Richard; Vinardell, María Pilar

    2004-09-01

    The ultraviolet-A radiation damage effects on skin and eyes will be increased by phototoxic compounds which could be present in pharmaceutical or cosmetic formulations. Great efforts have been made in the last years to find surfactants to replace those with phototoxic potential in commercial use. Series of different in vitro models for phototoxicity, included to validated neutral red uptake (NRU) 3T3 phototoxicity assay are useful screening tools. The phototoxic effects of a novel family of glycerol amino acid-based surfactant compounds were examined via these assays. Human red blood cells and two immortalised cell lines, murine fibroblast cell line 3T3, and one human keratinocyte cell line, HaCaT, were the in vitro models employed to predict potential photoirritation. The phototoxic end-points assessed were hemolysis (human red blood cell test) and resazurin transformation to resorufin and NRU in cell culture methods. The results suggest that no phototoxic effects by any new amino acid derived-surfactants, could be identified.

  9. Enhanced sorption of organic contaminants by smectitic soils modified with a cationic surfactant

    SciTech Connect

    Sheng, G.; Wang, X.; Wu, S.; Boyd, S.A.

    1998-07-01

    Soils, subsoils, and aquifer materials can be modified with hydrophobic cationic surfactants to increase their sorptive capabilities for organic contaminants. In this study, the authors evaluated the adsorption/desorption of hexadecyltrimethylammonium (HDTMA) by smectitic soils, and the sorptive characteristics of the resultant organo-modified soils for trichloroethylene and chlorobenzene. Adsorption of HDTMA with loading levels up to 70% of the cation exchange capacity (0.70 CEC) was nearly quantitative and resulted in an equivalent release of Ca{sup 2+} from the soils, indicating ion exchange as the sole mechanism over this range. At higher loadings, HDTMA is adsorbed by both ion exchange and hydrophobic bonding. The selectivity coefficients for HDTMA replacing Ca{sup 2+} were very high (10{sup 9}-10{sup 7} between 0.1 and 0.8 CEC), indicating the high chemical stability of HDTMA-soil complexes at these loadings. Desorption is more significant for HDTMA adsorbed via hydrophobic bonding than via ion exchange. Sorption coefficients for trichloroethylene and chlorobenzene on HDTMA-modified soils (0.7 CEC) were 20 to 60 and 100 to 350 times higher, respectively, than those on the corresponding unmodified soils. The HDTMA derived phase was 10 to 30 and 80 to 160 times more effective than natural soil organic matter as a sorptive phase for trichloroethylene and chlorobenzene, respectively. A synergistic effect on sorption of trichloroethylene and chlorobenzene in binary solute systems was observed. The sorptive characteristics of HDTMA modified smectitic soils for organic contaminants are similar to those of pure HDTMA-smectites.

  10. An electronic spectroscopic study of micellisation of surfactants and solvation of homomicelles formed by cationic or anionic surfactants using a solvatochromic electron donor acceptor dye.

    PubMed

    Kedia, Niraja; Sarkar, Amrita; Purkayastha, Pradipta; Bagchi, Sanjib

    2014-10-15

    Solvatochromic absorption and fluorescence bands of a donor-acceptor dye have been utilised for following the micellisation and for probing the polarity of the aqueous homomicellar phase provided separately by cationic (cetyltrimethylammonimum bromide, CTAB and dodecyltrimethylammonimum bromide, DTAB) and anionic (sodium dodecyl sulphate, SDS) surfactant. Results indicate that for a low concentration of surfactant (below cmc) the dye forms a dimer in aqueous solution. In a micellar media, however, the dye exists as monomers. A strong dye-micelle interaction, as indicated by the shift of the solvatochromic intramolecular charge transfer band of the dye, has also been indicated. The absorption and fluorescence parameters of the dye have been utilised for studying the onset of aggregation of the surfactants. An iterative procedure has been developed for the estimation of cmc and the distribution coefficient (KD) of the dye between the aqueous and the micellar phase. All the parameters provide convergent values of cmc. A high value of KD indicates that the dye exists predominantly in the micellar phase. The solvatochromic parameters characterising the dipolarity-polarisability (π(*)) and H-bond donation ability (α) of modes of solvation interaction in different micellar media have been estimated. The dye is found to distribute itself between two regions in a catanionic vesicle formed by surfactants SDS and DTAB, one being relatively polar than other. The distribution coefficients have been found out using the fluorescence data.

  11. Behavior of cationic surfactants and short-chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability II. Wettability of polymers.

    PubMed

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-10-15

    The wettability of polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) by aqueous solutions of cetyltrimethylammonium bromide (CTAB) mixtures with short-chain alcohols such as methanol, ethanol, and propanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols, was studied on the basis of advancing contact-angle measurements by the sessile drop method over a wide range of alcohol and cationic surfactant concentrations where they can be present in solution in monomeric or aggregated form. It should be noted that the contact angles for aqueous solution mixtures of cationic surfactants with propanol on PTFE surfaces were measured earlier and presented in our previous paper. From the obtained contact-angle values the relationships between cos theta and surface tension of the solutions (gamma(LV)) and that between adhesion tension and gamma(LV) were considered. The relationship between the cos theta and the reciprocal of gamma(LV) was also discussed. From these relationships the critical surface tension of PTFE and PMMA wetting and the correlation between the adsorption of cationic surfactant and alcohol mixtures at water-air and polymer-water interfaces were deduced. On the basis of the contact angles and components and parameters of the surface tension of surfactants, alcohols, and polymers also the Gibbs and Guggenheim-Adam isotherm of adsorption and the effective concentration of alcohols and surfactants at polymer-water interfaces were calculated. Next, the work of adhesion of solution to polymer surface with regard to the surface monolayer composition was discussed. The analysis of the contact angles with regard to adsorption of surfactants and alcohols at polymer-water and water-air interfaces allowed us to conclude that the PTFE wetting depends only on the contribution of the acid-base interactions to the surface tension of aqueous solutions of cationic surfactant and alcohol mixtures, and the adhesion work of solution to its

  12. Unlimited-volume Electrokinetic Stacking Injection in Sweeping Capillary Electrophoresis Using a Cationic Surfactant

    PubMed Central

    Gong, Maojun; Wehmeyer, Kenneth R.; Limbach, Patrick A.; Heineman, William R.

    2008-01-01

    Sweeping is an effective and convenient way for online sample preconcentration in micellar electrokinetic chromatography (MEKC). The usual procedure includes a hydrodynamic injection step carried out by applying pressure to the sample vial followed by the subsequent sweeping and separation processes. The injected sample volume is limited by the dimensions of the capillary because a part of the capillary has to be left free of sample solution for the subsequent sweeping and separation steps. In addition, when a short capillary, such as 4-10 cm, is used for sweeping, the injected sample volume is small even if the entire capillary is filled with sample solution. In order to solve this problem, an electrokinetic stacking injection (EKSI) scheme was developed by using a cationic surfactant, dodecyltrimethylammonium bromide, for sweeping in capillary electrophoresis. An experimental model was proposed, and the entire process was theoretically analyzed. According to the theoretical discussion, the optimal conditions for two model analytes, 5-carboxyfluorescein (5-FAM) and sodium fluorescein (FL), were experimentally determined. The injected sample plug lengths for 5-FAM and FL under 20.1 kV for 60 min were experimentally estimated as 836 and 729 cm, corresponding to 28- and 24-fold the effective capillary length, respectively. The EKSI scheme resulted in increased detection factors for 5-FAM and FL of 4.5×103 and 4.0×103 using 60-minute injection relative to a traditional pressure injection. PMID:16944881

  13. Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene

    NASA Astrophysics Data System (ADS)

    Xu, Jinghong; Cai, Xia; Shen, Fenglei

    2016-08-01

    The preparation of nanocomposite films composed of UV-curable polyurethane acrylate (PUA) and modified graphene were demonstrated in this paper. Cetyl trimethyl ammonium bromide modified graphene (CTAB-G) was prepared via intercalation of cationic surfactant and subsequently incorporated into PUA by UV curing technology. Fourier transform infrared spectra, wide-angle X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the structure and morphology of CTAB-G, as well as CTAB-G/PUA nanocomposite films. The results revealed that the CTAB-G sheets were layer-by-layer structure and dispersed uniformly in PUA matrix. Thermal gravimetric analysis showed that the thermal stabilities of UV-curable PUA nanocomposite films in this work were much higher than that of PUA nanocomposites previously reported. Dynamic mechanical analysis indicated that the dynamic mechanical properties of nanocomposite films were greatly enhanced in the presence of modified graphene sheets. In addition, the CTAB-G/PUA nanocomposite films exhibited improved dielectric properties and electrical conductivities compared with the pure PUA.

  14. Modification of bentonite with cationic surfactant for the enhanced retention of bisphenol A from landfill leachate.

    PubMed

    Li, Yi; Jin, Fenglai; Wang, Chao; Chen, Yunxiao; Wang, Qing; Zhang, Wenlong; Wang, Dawei

    2015-06-01

    Bentonite was modified with cationic surfactant hexadecyl trimethyl ammonium bromide (HTAB) as landfill liner to retard the transportation of bisphenol A (BPA) for the first time. The modification was confirmed to form a lateral bi-layer in the interlayer space of bentonite by scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The introduction of HTAB into the internal position of bentonite led to an increased interlayer space of bentonite from 15.0 to 20.9 Å and a higher sorption affinity for BPA (10.449 mg/g of HTAB-bentonite and 3.413 mg/g of raw bentonite). According to the Freundlich model, the maximum adsorption capacity of the HTAB-bentonite was found to be 0.410 mg/g. The sorption capacity of raw bentonite and HTAB-bentonite both decreased at alkaline conditions. Although the hydraulic conductivity of HTAB-bentonite was higher than that of raw bentonite, results of laboratory permeability and column tests indicated that HTAB-bentonite obviously extended the BPA breakthrough time by 43.4 %. The properties of the HTAB-bentonite revealed its notable advantages as components of landfill liners material to retain BPA in leachate.

  15. The Effects of Cationic Surfactants on Marine Biofilm Growth on Hydrogels

    NASA Astrophysics Data System (ADS)

    Smith, M. J.; Adam, G.; Duncan, H. J.; Cowling, M. J.

    2002-09-01

    A method for the quantification of biofilm formation on hydrogel protective coatings for optical sensors and cameras has been developed using fluorescein diacetate (FDA) hydrolysis. In conjunction with these measurements the release of the fouling resistant cationic surfactants benzalkonium chloride, tallowbenzyldimethylammonium chloride and dicocodimethylammonium chloride was measured, using high performance liquid chromatography (HPLC), to enable correlation to be made between release and biofilm resistance and thus determine the active lifetime of such coatings. Results indicate that the twin-chained material, dicocodimethylammonium chloride, produced superior biofouling resistance as, at the 12 week time point, little fouling was detected on this coating. The hydrogel containing the long-chained tallowbenzyldimethylammonium chloride (mainly C16 and C18 chains) was the next best fouling resistant material, withstanding biofilm formation for 9 weeks. This correlates with the fact that each of these materials had an extremely slow to zero release rate, due to their irreversible binding to the hydrogel over the experimental timescale. In comparison the shorter chained benzalkonium chloride (mainly C12 and C14), showed signs of biofilm formation at the 3 week time point.

  16. Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis

    PubMed Central

    2011-01-01

    Monodispersed CdS nanocrystals with controllable shape and phase have been successfully synthesized in this study by adding cationic surfactant in noninjection synthesis system. With the increase of the amount of cetyltrimethylammonium chloride (CTAC) added, the shape of the CdS nanocrystals changed from spherical to multi-armed, and the phase changed from zinc-blende to wurtzite. It was found that halide ion Cl- plays a key role in the transformation, and other halide ions such as Br- can also induce similar transformation. We proposed that the strong binding between Cd2+ and halide ions reduced the reactivity of the precursors, decreased the nuclei formed in the nucleation stage, and led to the high concentration of precursor in the growth stage, resulting in the increase of size and phase transformation of CdS nanocrystals. In addition, it was found that the multi-armed CdS nanocrystals lost quantum confinement effect because of the increase of the size with the increase of the concentration of CTAC. PMID:21711888

  17. Effect of cationic surfactants on characteristics and colorimetric behavior of polydiacetylene/silica nanocomposite as time-temperature indicator

    NASA Astrophysics Data System (ADS)

    Nopwinyuwong, Atchareeya; Kitaoka, Takuya; Boonsupthip, Waraporn; Pechyen, Chiravoot; Suppakul, Panuwat

    2014-09-01

    Polydiacetylene (PDA)/silica nanocomposites were synthesized by self-assembly method using polymerizable amphiphilic diacetylene monomers, 10,12-pentacosadiynoic acid (PCDA). Addition of cationic surfactants (PDADMAC and CTAB) to PDA/SiO2 nanocomposites induced higher intermolecular force which affected their size, shape and color transition. Pure PDA, PDA/SiO2, PDA/SiO2/PDADMAC and PDA/SiO2/CTAB were investigated by particle size analysis, TEM, SEM, UV-vis spectroscopy and FT-IR. It was found that the PDA/SiO2 nanocomposites exhibited slightly larger particle sizes than those of other samples. The PDA/SiO2 nanocomposites with a core-shell structure were almost regarded as spherical-shaped particles. Cationic surfactants, especially CTAB, presumably affected the particle size and shape of PDA/SiO2 nanocomposites due to the disruption of hydrogen bonding between PDA head group and ammonium group. The colorimetric response of both PDA/SiO2/surfactant and surfactant-free PDA/SiO2 aqueous solutions directly changed in relation to time and temperature; thus they were expected to be applied as a new polymer-based time-temperature indicator (TTI).

  18. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations.

    PubMed

    Timmer, Niels; Droge, Steven T J

    2017-03-07

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.

  19. Sorption of Cationic Surfactants to Artificial Cell Membranes: Comparing Phospholipid Bilayers with Monolayer Coatings and Molecular Simulations

    PubMed Central

    2017-01-01

    This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively. PMID:28187261

  20. Effects of copper sources and dietary cation-anion balance on copper availability and acid-base status in dairy calves.

    PubMed

    Xin, Z; Waterman, D F; Hemken, R W; Harmon, R J; Jackson, J A

    1991-09-01

    Twenty-four Holstein and Jersey calves (14 Holstein), 4 to 11 d of age, were assigned randomly to six treatments in a 2 x 3 factorial arrangement to examine the effects of Cu sources and dietary cation-anion balance on Cu availability and acid-base balance. Treatments were cationic basal diet (20 meq of dietary cation-anion balance on a DM basis), cationic basal diet supplemented with CuO, cationic basal diet supplemented with CuSO4, anionic basal diet (-10 meq), anionic basal diet supplemented with CuO, and anionic basal diet supplemented with CuSO4. Copper sources did not show any effect on growth of calves. The cationic diet increased calf growth compared with the anionic diet at wk 12 of the experiment. Blood pH was increased by the cationic diet in comparison with the anionic diet at wk 8 and 12. Blood pH also was increased by CuSO4 compared with CuO treatment in the early period of the treatment. Blood bicarbonate concentration was decreased by CuO and the anionic diet. Interactions between Cu sources and cation-anion balance were found for blood pH and bicarbonate concentration. Liver Cu concentration was increased by CuSO4 but not by CuO supplementation compared with control. Therefore, CuSO4 was found to be highly available, whereas CuO was a very poorly available source of Cu for young calves.

  1. Simultaneous removal of dyes and metal cations using an acid, acid-base and base modified vermiculite as a sustainable and recyclable adsorbent.

    PubMed

    Stawiński, Wojciech; Węgrzyn, Agnieszka; Freitas, Olga; Chmielarz, Lucjan; Mordarski, Grzegorz; Figueiredo, Sónia

    2017-01-15

    The aim of this work was the modification of vermiculite in order to produce a low cost, efficient and sustainable adsorbent for dyes and metals. Three activation methods consisting of acid, base and combined acid/base treatment were applied to improve the of vermiculite's adsorption properties. Adsorbents were tested in single, bi- and tricomponent solutions containing cationic dyes and Cu(2+) cations. The raw material showed low adsorption capacity for dyes and metal. The acid/base treated vermiculite had very good adsorption capacity toward dyes while the maximum adsorption capacity for Cu(2+) did not change comparing to the starting material. The alkaline treated vermiculite was a good adsorbent for metals, while still being able to remove dyes on the level of the not treated material. Moreover, it was shown that the materials may be regenerated and used in several adsorption-desorption cycles. Furthermore, it was possible to separate adsorbed dyes from metals that were desorbed, using as eluents ethanol/NaCl and 0.05M HNO3, respectively. This opens a possibility for sustainable disposal and neutralization of both of the pollutants or for their further applications in other processes.

  2. Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface.

    PubMed

    Lozano, Neus; Pinazo, Aurora; Pérez, Lourdes; Pons, Ramon

    2010-02-16

    In this Article, we study the binary surface interactions of 1,2-dimyristoyl-rac-glycero-3-O-(N(alpha)-acetyl-L-arginine) hydrochloride (1414RAc) with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) on 0.1 M sodium chloride solutions. 1414RAc is a novel monocationic surfactant that has potential applications as an antimicrobial agent, is biodegradable, and shows a toxicity activity smaller than that of other commercial cationic surfactants. DPPC phospholipid was used as a model membrane component. The dynamic surface tension of 1414RAc/DPPC aqueous dispersions injected into the saline subphase was followed by tensiometry. The layer formation for the mixtures is always accelerated with respect to DPPC, and surprisingly, the surface tension reduction is faster and reaches lower surface tension values at surfactant concentration below its critical micellar concentration (cmc). Interfacial dilational rheology properties of mixed films spread on the air/water interface were determined by the dynamic oscillation method using a Langmuir trough. The effect of surfactant mole fraction on the rheological parameters of 1414RAc/DPPC mixed monolayers was studied at a relative amplitude of area deformation of 5% and a frequency of 50 mHz. The monolayer viscoelasticity shows a nonideal mixing behavior with predominance of the surfactant properties. This nonideal behavior has been attributed to the prevalence of electrostatic interactions.

  3. The wettability of polytetrafluoroethylene and polymethyl methacrylate by aqueous solution of two cationic surfactants mixture.

    PubMed

    Szymczyk, Katarzyna; Zdziennicka, Anna; Jańczuk, Bronisław; Wójcik, Wiesław

    2006-01-01

    adhesion work of aqueous solution of surfactant to polymer surface, it was found that for PTFE and PMMA the changes of the contact angle of aqueous solution of two cationic surfactants mixtures on their surfaces as a function of the solution concentration resulted only from the decrease of the polar component of the solution surface tension.

  4. Analyzing freely dissolved concentrations of cationic surfactant utilizing ion-exchange capability of polyacrylate coated solid-phase microextraction fibers.

    PubMed

    Chen, Yi; Droge, Steven T J; Hermens, Joop L M

    2012-08-24

    A 7-μm polyacrylate (PA) coated fiber was successfully employed to determine freely dissolved concentrations of cationic surfactants by solid-phase microextraction (SPME) and utilizing the capability of the PA-coating to sorb organic cations via ion-exchange at carboxylic groups. Measured fiber-water partitioning coefficients (K(fw)) were constant below a fiber loading of 2mmol per liter polyacrylate, allowing for simple and accurate analysis in a concentration range that is relevant from a risk assessment point of view. Ion-exchange was confirmed to be the main sorption mechanism because of a decreasing K(fw) with either higher CaCl(2) concentrations or lower pH, and maximum fiber uptake at the polyacrylate cation-exchange capacity (CEC, at 30mmol/L PA). Fiber-water sorption isotherms were established in various aqueous media in toxicological relevant concentrations. The developed SPME method has a high potential for application in ecotoxicological studies, as demonstrated in sorption studies with humic acid in different electrolyte solutions at aqueous concentrations down to the sub nM range. Cationic surfactant sorption affinities for humic acid also depend on medium composition but are orders of magnitude higher than to the PA fiber on a sorbent weight basis.

  5. Seasonal evolution of anionic, cationic and non-ionic surfactant concentrations in coastal aerosols from Askö, Sweden

    NASA Astrophysics Data System (ADS)

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine

    2015-04-01

    Surfactants present in atmospheric aerosols are expected to enhance the activation into cloud droplets by acting on one of the two key parameters of the Köhler equation: the surface tension, σ. But because the magnitude of this effect and its regional and temporal variability are still highly uncertain [1,2], various approaches have been developed to evidence it directly in the atmosphere. This work presents the analysis of surfactants present in PM2.5 aerosol fractions collected at the coastal site of Askö, Sweden (58° 49.5' N, 17° 39' E) from July to October 2010. The total surfactant fraction was extracted from the samples using an improved double extraction technique. Surface tension measurements performed with the pendant drop technique [3] indicated the presence of very strong surfactants (σ ~ 30 - 35 mN/m) in these aerosols. In addition, these extractions were combined with colorimetric methods to determine the anionic, cationic and non-ionic surfactant concentrations [4,5], and provided for the first time interference-free surfactant concentrations in atmospheric aerosols. At this site, the total surfactant concentration in the PM2.5 samples varied between 7 to 150 mM and was dominated by anionic and non-ionic ones. The absolute surface tension curves obtained for total surfactant fraction displayed Critical Micelle Concentrations (CMC) in the range 50 - 400 uM, strongly suggesting a biological origin for the surfactants. The seasonal evolution of these concentrations and their relationships with environmental or meteorological parameters at the site will be discussed. [1] Ekström, S., Nozière, B. et al., Biogeosciences, 2010, 7, 387 [2] Baduel, C., Nozière, B., Jaffrezo, J.-L., Atmos. Environ., 2012, 47, 413 [3] Nozière, B., Baduel, C., Jaffrezo, J.-L., Nat. Commun., 2014, 5, 1 [4] Latif, M. T.; Brimblecombe, P. Environ. Sci. Technol., 2004, 38, 6501 [5] Pacheco e Silva et al., Method to measure surfactant in fluid, 2013, US 2013/0337568 A1

  6. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: Effect of acid/base, oxidant, surfactant and morphology

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Mathur, Pavan

    2015-02-01

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the α-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3- bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  7. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: effect of acid/base, oxidant, surfactant and morphology.

    PubMed

    Kumar, Ravinder; Mathur, Pavan

    2015-02-05

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the α-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3(-) bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  8. Phase stability of Keplerate-type polyoxomolybdates controlled by added cationic surfactant.

    PubMed

    Fan, Dawei; Hao, Jingcheng

    2009-05-15

    Phase stability of two nanometer-scale Keplerate-type polyoxomolybdates, (NH(4))(42)[Mo(VI)(72)Mo(V)(60)O(372)(CH(3)COO)(30)(H(2)O)(72)]300H(2)O10CH(3)COONH(4) ({Mo(132)}) and Mo(VI)(72)Fe(III)(30)O(252)L(102)ca. 180H(2)O with L=H(2)O/CH(3)COO(-)/Mo(2)O(n-)(8/9) ({Mo(72)Fe(30)}), can be easily achieved by controlling the concentration of a cationic surfactant, tetradecyltrimethylammonium bromide (TTABr), in aqueous solution. Precipitates and floccules were observed when the stoichiometric ratios of rTTA+/{Mo132} and rTTA+/{Mo72Fe30} were 40:1 and 90:1, respectively, which were determined by zeta potential measurements. The surface charge properties and structure morphologies of {Mo(132)} and {Mo(72)Fe(30)} induced by controlling cationic TTABr in aqueous solution were determined by zeta potential measurements and transmission electron microscopy (TEM) observations. {Mo(132)} and {Mo(72)Fe(30)} can self-assemble into supramolecular "Blackberry" structures and exist at compositions less than the stoichiometric ratios of rTTA+/{Mo132} and rTTA+/{Mo72Fe30} in aqueous solution. Above the 1:1 stoichiometric ratio of TTABr/{Mo(132)} or TTABr/{Mo(72)Fe(30)}, the precipitates and floccules dissolve. Dynamic laser light scattering (DLS) measurements clearly demonstrated that the R(h) values have essentially no angular dependence at excess amounts of TTABr, suggesting the presence of spherically symmetric aggregates of {Mo(132)} and {Mo(72)Fe(30)}. Bilayer-like structures in aqueous solution were also demonstrated by TEM images. The interesting phase transition observed in our model systems of {Mo(132)} and {Mo(72)Fe(30)} macroanions with high chemical stability, similar shape, and masses could provide models for the understanding of more complex polyelectrolyte solutions and self-assembled soft magnetic materials and in bioapplications for highly selective adsorbents of proteins with different molecular sizes and charges.

  9. pH-induced motion control of self-propelled oil droplets using a hydrolyzable gemini cationic surfactant.

    PubMed

    Miura, Shingo; Banno, Taisuke; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2014-07-15

    Self-propelled motion of micrometer-sized substances has drawn much attention as an autonomous transportation system. One candidate vehicle is a chemically driven micrometer-sized oil droplet. However, to the best of our knowledge, there has been no report of a chemical reaction system controlling the three-dimensional motion of oil droplets underwater. In this study, we developed a molecular system that controlled the self-propelled motion of 4-heptyloxybenzaldehyde oil droplets by using novel gemini cationic surfactants containing carbonate linkages (2G12C). We found that, in emulsions containing sodium hydroxide, the motion time of the self-propelled oil droplets was longer in the presence of 2G12C than in the presence of gemini cationic surfactants without carbonate linkages. Moreover, in 2G12C solution, oil droplets at rest underwent unidirectional, self-propelled motion in a gradient field toward a higher concentration of sodium hydroxide. Even though they stopped within several seconds, they restarted in the same direction. 2G12C was gradually hydrolyzed under basic conditions to produce a pair of the corresponding monomeric surfactants, which exhibit different interfacial properties from 2G12C. The prolonged and restart motion of the oil droplets were explained by the increase in the heterogeneity of the interfacial tension of the oil droplets.

  10. Micelle-vesicle-micelle transition in aqueous solution of anionic surfactant and cationic imidazolium surfactants: Alteration of the location of different fluorophores.

    PubMed

    Dutta, Rupam; Ghosh, Surajit; Banerjee, Pavel; Kundu, Sangita; Sarkar, Nilmoni

    2017-03-15

    The presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (CnmimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, CnmimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM). Zeta potential (ζ) measurement clearly indicates that the incorporation efficiency of C16mimCl in SDBS micelle is better than the other one due to the involvement of strong hydrophobic as well as electrostatic interaction between the two associated molecules. Turbidity and DLS measurements clearly suggest the formation of vesicles over a wide range of concentration. Finally, the rotational motion of C153 and R6G has also been monitored at different mole fractions of CnmimCl in SDBS-CnmimCl (n=12, 16) solution mixtures. The hydrophobic C153 molecules preferentially located in the bilayer region of vesicle, whereas hydrophilic R6G can be solubilized at surface of the bilayer, inner water pool or outer surface of vesicles. It is observed that rotational motion of R6G is altered significantly in SDBS-CnmimCl solution mixtures in presence of different mole fractions of CnmimCl. Additionally, the translational diffusion motion of R6G is monitored using fluorescence correlation spectroscopy (FCS) techniques to get a complete scenario about the location and translational diffusion of R6G.

  11. Formation and characteristics of aqueous two-phase systems formed by a cationic surfactant and a series of ionic liquids.

    PubMed

    Wei, Xi-Lian; Wang, Xiu-Hong; Ping, A-Li; Du, Pan-Pan; Sun, De-Zhi; Zhang, Qing-Fu; Liu, Jie

    2013-11-15

    Aqueous two-phase systems (ATPS) were obtained in the aqueous mixtures of a cationic surfactant and a series of ionic liquids (ILs). The effects of IL structure, temperature and additives on the phase separation were systematically investigated. The microstructures of some ATPS were observed by freeze-fracture replication technique. Lyotropic liquid crystal was found in the bottom phase besides micelles under different conditions. Remarkably, both IL structure and additives profoundly affected the formation and properties of the ATPSs. The phase separation can be attributed to the existence of different aggregates and the cation-π interactions of the cationic surfactant with the ILs, which has a significant role in the formation of ATPS. The extraction capacity of the studied ATPS was also evaluated through their application in the extraction of two biosubstances. The results indicate that the ILs with BF4(-) as anion show much better extraction efficiencies than the corresponding ILs with Br(-) as anion do under the same conditions. l-Tryptophan was mainly distributed into the NPTAB-rich phase, while methylene blue and capsochrome were mainly in the IL-rich phase.

  12. Structure and performance of cationic assembly dispersed in amphoteric surfactants solution as a shampoo for hair damaged by coloring.

    PubMed

    Nagahara, Yasuo; Nishida, Yuichi; Isoda, Masanori; Yamagata, Yoshifumi; Nishikawa, Naoki; Takada, Koji

    2007-01-01

    In recent years, hair coloring gains popularity as a trend of consumer's hair care. This coloring frequently damages hair. In response to this, a new shampoo-base was developed for repairing hair damaged by coloring. The new shampoo-base was prepared by dispersing cationic assembly in a solution of amphoteric surfactants. The mixture of behenyl trimethyl ammonium chloride (C22TAC) and behenyl alcohol (C22OH) was applied as the cationic assembly, which are dispersed in amido propyl betaine laurate (LPB) solution. LPB, which behaves as an amphoteric surfactant, was used as the wash-base. It was verified from the results on the measurements of DSC, calorimeter polarization, cryo-SEM and X-ray diffraction that the cationic assembly has a crystalline structure in the LPB solution. The new shampoo-base was highly efficient to change the color-damaged hair from hydrophilic to hydrophobic. The friction level of the hair washed with the new shampoo-base recovered to the same state as that of healthy hair. The exfoliation of cuticle was reduced after washing with the new shampoo-base.

  13. Interaction of a food-grade cationic surfactant (lauric arginate) with food-grade biopolymers (pectin, carrageenan, xanthan, alginate, dextran, and chitosan).

    PubMed

    Bonnaud, Marieange; Weiss, Jochen; McClements, David J

    2010-09-08

    Lauric arginate (LAE) is a food-grade cationic surfactant that is a highly potent antimicrobial active against a wide range of food pathogens and spoilage organisms. In compositionally complex environments, the antimicrobial activity of cationic LAE is likely to be impacted by its interactions with other charged components. The purpose of this study was to characterize the interactions between cationic LAE and various food grade biopolymers with different charge characteristics: anionic (pectin, alginate, carrageenan, xanthan), neutral (dextran), and cationic (chitosan). Isothermal titration calorimetry (ITC) and turbidity measurements were used to characterize surfactant-biopolymer interactions and the solubility of any aggregates formed. ITC and turbidity measurements suggested that no complex formation occurred between the cationic LAE and the cationic or neutral biopolymers, although the critical micelle concentration (cmc) of the surfactant was changed because of excluded volume effects. On the other hand, ITC measurements indicated a strong binding interaction between cationic LAE and anionic biopolymers. The amount of surfactant bound and the solubility of the aggregates formed depended strongly on biopolymer type. The results of this study have important implications for the application of LAE in compositionally complex systems.

  14. Time resolved SAXS to study the complexation of siRNA with cationic micelles of divalent surfactants.

    PubMed

    Falsini, Sara; Ristori, Sandra; Ciani, Laura; Di Cola, Emanuela; Supuran, Claudiu T; Arcangeli, Annarosa; In, Martin

    2014-04-07

    The complexation of siRNA (small interfering RNA) with cationic micelles was studied using time dependent synchrotron SAXS. Micelles were formed by two types of divalent cationic surfactants, i.e. Gemini bis(quaternary ammonium) bromide with variable spacer length (12-3-12, 12-6-12, 12-12-12) and a weak electrolyte surfactant (SH14) with triazine head. Immediately after mixing (t < 50 ms), new large aggregates appeared in solution and the scattering intensity at low q increased. Concomitantly, the presence of a quasi-Bragg peak at q ∼ 1.5 nm(-1) indicated core structuring within the complexes. We hypothesize that siRNA and micelles are alternately arranged into "sandwiches", forming domains with internal structural coherence. The process of complex reorganization followed a first-order kinetics and was completed in less than about 5 minutes, after which a steady state was reached. Aggregates containing Geminis were compact globular structures whose gyration radii Rg depended on the spacer length and were in the order of 7-27 nm. Complexes containing SH14 (Rg = 14-16 nm) were less ordered and possessed a looser internal arrangement. The obtained data, joint with previous structural investigation using Dynamic Light Scattering, Zeta Potential and Small Angle Neutron Scattering, are encouraging evidence for using these systems in biological trials. In fact we showed that transfection agents can be obtained by simply mixing a micelle solution of the cationic surfactant and a siRNA solution, both of which are easily prepared and stable.

  15. Evidence of self-aggregation of cationic surfactants in a choline chloride+glycerol deep eutectic solvent.

    PubMed

    Pal, Mahi; Singh, Ranjan K; Pandey, Siddharth

    2015-08-24

    Based on fluorescence probe, electrical conductivity, surface tension, small-angle X-ray/dynamic light scattering, and transmission electron microscopy experiments, we present the first clear lines of evidence for self-aggregation of cationic surfactants of the n-alkyltrimethylammonium family within an archetypical deep eutectic solvent comprised of a 1:2 molar mixture of choline chloride and glycerol. Estimated thermodynamic parameters suggest this self-aggregation process to be less entropically driven than that in water. These novel water-free self-assemblies might serve as dynamic soft templates to direct the growth of size- or shape-tailored nanoparticles within water-restricted media.

  16. Solution Behavior and Interaction of Pepsin with Carnitine Based Cationic Surfactant: Fluorescence, Circular Dichroism, and Calorimetric Studies.

    PubMed

    Ghosh, Subhajit; Dolai, Subhrajyoti; Patra, Trilochan; Dey, Joykrishna

    2015-10-01

    The present work reports the pH-induced conformational changes of pepsin in solution at room temperature. The conformational change makes the protein surface active. The protein was found to be present in the partially denatured state at pH 8 as well as at pH 2. The fluorescence probe and circular dichroism (CD) spectra suggested that the most stable state of pepsin exists at pH 5. The binding affinities of pepsin in its native and denatured states for a D,L-carnitine-based cationic surfactant (3-hexadecylcarbamoyl-2-hydroxypropyl)trimethylammonium chloride (C16-CAR) were examined at very low concentrations of the surfactant. The thermodynamics of the binding processes were investigated by use of isothermal titration calorimetry. The results were compared with those of (3-hexadecylcarbamoylpropyl)trimethylammonium chloride (C16-PTAC), which is structurally similar to C16-CAR, but without the secondary -OH functionality near the headgroup. None of the surfactants were observed to undergo binding with pepsin at pH 2, in which it exists in the acid-denatured state. However, both of the surfactants were found to spontaneously bind to the most stable state at pH 5, the partially denatured state at pH 8, and the alkaline denatured state at pH 11. Despite the difference in the headgroup structure, both of the surfactants bind to the same warfarin binding site. Interestingly, the driving force for binding of C16-CAR was found to be different from that of C16-PTC at pH ≥ 5. The steric interaction of the headgroup in C16-CAR was observed to have a significant effect on the binding process.

  17. Density functional theory study of interaction, bonding and affinity of group IIb transition metal cations with nucleic acid bases

    NASA Astrophysics Data System (ADS)

    Bagchi, Sabyasachi; Mandal, Debasish; Ghosh, Deepanwita; Das, Abhijit K.

    2012-05-01

    The structure, bonding, and energetics of the complexes obtained from the interaction between the most stable tautomeric forms of free DNA and RNA bases and Zn2+, Cd2+ and Hg2+ cations have been studied using density functional B3LYP method. The 6-311+G (2df, 2p) basis set along with LANL2DZ pseudopotentials for the cations are used in the calculations. The tautomerization paths of the nucleobases are investigated and transition states between the tautomeric forms of the free bases are located. The relative stability of the complexes and the tautomers of the free nucleobases are discussed referring to MIA and relative energy values. For uracil, thymine and adenine, interaction of the metal cations with the most stable tautomers form the least stable molecular complexes. For cytosine and guanine, the stability of the metalated complexes differs significantly. The enthalpy (ΔH), entropy (TΔS) and free energy (ΔG) of the complexes at 298 K have also been calculated.

  18. Acid-base treated vermiculite as high performance adsorbent: Insights into the mechanism of cationic dyes adsorption, regeneration, recyclability and stability studies.

    PubMed

    Stawiński, Wojciech; Węgrzyn, Agnieszka; Dańko, Tomasz; Freitas, Olga; Figueiredo, Sónia; Chmielarz, Lucjan

    2017-04-01

    Additional treatment with NaOH of acid activated vermiculite results in even higher increase in the adsorption capacity in comparison to samples modified only in acidic solution (first step of activation) with respect to raw material. Optimization of treatment conditions and adsorption capacity for two cationic dyes (methylene blue (MB) and astrazon red (AR)), also as binary mixture, was evaluated. The capacity, based on column studies, increased from 48 ± 2 to 203 ± 4 mg g(-1) in the case of methylene blue and from 51 ± 1 to 127 ± 2 mg g(-1) in the case of astrazon red on starting and acid-base treated material, respectively. It was shown that adsorption mechanism changes for both cationic dyes after NaOH treatment and it results in decrease of adsorption rate. In binary mixtures methylene blue is bound stronger by adsorbent and astrazon red may be removed in initial stage of adsorption. Extensive studies on desorption/regeneration process proved high efficiency in recyclable use of all materials. Although cation exchange capacity decreases due to acid treatment, after base treatment exchange properties are used more efficiently. On the other hand, increased specific surface area has less significant contribution into the adsorption potential of studied materials. Obtained adsorbents worked efficiently in 7 adsorption-regeneration cycles and loss of adsorption capacity was observed only in two first cycles.

  19. Action of a cationic surfactant on the activity and removal of bacterial biofilms formed under different flow regimes.

    PubMed

    Simões, Manuel; Pereira, Maria Olivia; Vieira, Maria João

    2005-01-01

    The action of the cationic surfactant cetyltrimethylammonium bromide (CTAB) was investigated to control biofilms (aged 7d) formed by Pseudomonas fluorescens on stainless-steel slides, using flow cells reactors, under turbulent and laminar flow. The effect of CTAB was also investigated using planktonic cells in the presence and absence of BSA, by measuring the cellular respiratory activity and the ATP released. The action of CTAB on biofilms was assessed by means of cellular respiratory activity and variation of biofilm mass, immediately and 3, 7 and 12h after the application of CTAB. The physical stability of the biofilm was also assessed using a rotating device, where the effect of the surfactant on the biofilm stability was evaluated through the variation of the mass remaining on the surface. CTAB significantly reduced the activity of the planktonic cells probably due to the rupture of the cells. This effect was significantly reduced in the presence of BSA. Planktonic cells were more easily inactivated than bacteria in biofilms. Biofilms formed under laminar flow were more susceptible than those formed under turbulent flow, but in both cases total inactivation was not achieved. Biofilm recovery was observed, in terms of respiratory activity, in almost all the cases studied. CTAB application by itself did not promote the detachment of biofilms. The physical stability tests showed that the synergistic action of the surfactant and the application of high shear stress to the biofilm increase its detachment.

  20. Enhancement of a Lewis acid-base interaction via solvation: ammonia molecules and the benzene radical cation.

    PubMed

    Chiang, Chi-Tung; Freindorf, Marek; Furlani, Thomas; DeLeon, Robert L; Richard, John P; Garvey, James F

    2007-07-12

    The interaction between ammonia and the benzene radical cation has been investigated by gas-phase studies of mass selected ion clusters {C(6)H(6)-(NH(3))(n=0-8)}(+) via tandem quadrupole mass spectrometry and through calculations. Experiments show a special stability for the cluster ion that contains four ammonias: {C(6)H(6)(NH(3))(4)}(+). Calculations provide evidence that the first ammonia forms a weak dative bond to the cyclohexadienyl radical cation, {C(6)H(6)-NH(3)}(+), where there is a transfer of electrons from ammonia to benzene. Additional solvating ammonia molecules form stabilizing hydrogen bonds to the ring-bound ammonia {C(6)H(6)-NH(3)}(+).(NH(3))(n), which cause cooperative changes in the structure of the cluster complex. Free ammonia is a weak hydrogen bond donor, but electron transfer from NH(3) to the benzene ring that strengthens the dative bond will increase the hydrogen acidity and the strength of the cluster hydrogen bonds to the added ammonia. A progressive "tightening" of this dative bond is observed upon addition of the first, second, and third ammonia to give a cluster stabilized by three N-(+)H x N hydrogen bonds. This shows that the energetic cost of tightening the dative bond is recovered with dividends in the formation of stable cluster hydrogen bonds.

  1. Effect of dietary cation-anion difference on ruminal metabolism, total apparent digestibility, blood and renal acid-base regulation in lactating dairy cows.

    PubMed

    Martins, C M M R; Arcari, M A; Welter, K C; Gonçalves, J L; Santos, M V

    2016-01-01

    The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production.

  2. Characterization of the nanostructure of complexes formed by single- or double-stranded oligonucleotides with a cationic surfactant.

    PubMed

    Liu, Xiaoyang; Abbott, Nicholas L

    2010-12-02

    We report the use of dynamic light scattering (DLS), small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) to characterize the nanostructure of complexes formed by either single- or double-stranded oligonucleotides with a cationic surfactant (cetyltrimethylammonium bromide, CTAB) in aqueous solution (1 mM Li(2)SO(4)). For single-stranded oligonucleotides 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', both the appearance of two Bragg peaks (at 0.14 and 0.28 Å(-1)) in SAXS spectra with a spacing of 1:2 and form factor fits to SANS spectra are consistent with the presence of multilamellar vesicles (with, on average, 6-9 layers with a periodicity of 45-48 Å). Some samples showed evidence of an additional Bragg peak (at 0.20 Å(-1)) associated with periodic packing (with a periodicity of 31 Å) of the oligonucleotides within the lamellae of the nanostructure. The nucleotide composition of the single-stranded oligonucleotides was also found to impact the number and size of the complexes formed with CTAB. In contrast to 5'-A(20)-3' and 5'-CCCCATTCTAGCAGCCCGGG-3', 5'-T(20)-3' did not change the state of aggregation of CTAB (globular micelles) over a wide range of oligonucleotide:CTAB charge ratios. These results support the proposition that hydrophobic interactions, as well as electrostatics, play a central role in the formation of complexes between cationic amphiphiles and single-stranded oligonucleotides and thus give rise to nanostructures that depend on nucleotide composition. In contrast to the single-stranded oligonucleotides, for double-stranded oligonucleotides mixed with CTAB, three Bragg peaks (0.13, 0.23, and 0.25 Å(-1)) in SAXS spectra with a spacing ratio of 1:√3:√4 and characteristic changes in SANS spectra indicate formation of a hexagonal nanostructure. Also, the composition of the double-stranded oligonucleotides did not measurably impact the nanostructure of complexes formed with CTAB, suggesting that electrostatic

  3. Effect of ultrafine gold particles and cationic surfactant on burning as-grown single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Nihey, F.; Iijima, S.

    2000-10-01

    Mizoguti et al. (Chem. Phys. Lett. 321 (2000) 297) reported that amorphous carbon (a-C) contained in as-grown single-wall carbon nanotubes could be burned preferentially by using ultrafine gold particles and cationic surfactant, benzalkonium chloride (BKC). We confirmed this result and found additionally that the optimum concentration of the ultrafine gold particles and BKC were, respectively, 0.6 atom% and 7 g/l. We studied the roles of ultrafine gold particles and BKC in this phenomenon; the ultrafine gold particles catalyzed the oxidation of carbonaceous materials leading to the decrease of the burning temperatures. BKC had the function of homogenizing the a-C aggregation states, which resulted in the burning of a-C in a narrow temperature range.

  4. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: essential oil (thyme oil) and cationic surfactant (lauric arginate).

    PubMed

    Chang, Yuhua; McLandsborough, Lynne; McClements, David Julian

    2015-04-01

    The influence of a cationic surfactant (lauric arginate, LAE) on the physical properties and antimicrobial efficacy of thyme oil nanoemulsions was investigated. Nanoemulsions prepared from pure thyme oil were highly unstable due to Ostwald ripening, but they could be stabilized by adding a ripening inhibitor (corn oil) to the oil phase prior to homogenisation. The loading capacity and antimicrobial efficacy of thyme oil nanoemulsions were significantly increased by adding LAE. In the absence of LAE, at least 60 wt% corn oil had to be added to the lipid phase to inhibit Ostwald ripening; but in the presence of 0.1 wt% LAE, only 30 wt% corn oil was needed. LAE addition substantially increased the antimicrobial efficacy of the thyme oil nanoemulsions: 200 μg/ml thyme oil was needed to inhibit growth of a spoilage yeast (Zygosaccharomyces bailii) if LAE was added, whereas ⩾ 400 μg/ml was needed in the absence of LAE.

  5. Influence of temperature on corrosion inhibition for carbon steel by rice straw extract in HCl solution: Synergistic effect of cationic surfactant

    NASA Astrophysics Data System (ADS)

    Zulkafli, Rabiahtul; Othman, Norinsan Kamil; Jalar, Azman

    2013-11-01

    The corrosion inhibitive effects of rice straw extract (RSE) for carbon steel in 1 M HCl solution was investigated. Weight loss method and potentiodynamic polarization was used to study the inhibition efficiency of cationic surfactant, benzalkonium chloride (BKC) additives into rice straw extract corrosion inhibitor. Inhibition efficiency was determined by comparing the inhibition efficiency in the absence and presence of additives. The corrosion inhibition efficiency was found to increase with surfactant concentration and decreased with increasing temperature which is due to the fact that, the rate of carbon steel corrosion was higher than the rate of adsorption of inhibitor molecules. The inhibiting action of the rice straw extract was considerably enhanced by the addition of cationic surfactant. The results obtained from weight loss analysis are in direct agreement with tafel polarization studies. Tafel polarization data indicated that a combination of RSE and BKC acts as a mixed - type inhibitor.

  6. Study of the combined effects of a peracetic acid-based disinfectant and surfactants contained in hospital effluents on Daphnia magna.

    PubMed

    Panouillères, Muriel; Boillot, Clotilde; Perrodin, Yves

    2007-04-01

    Hospital effluents cause environmental problems since they are 5-15 more toxic than urban effluents and they are not subjected to any pre-treatment before being discharged into urban sewage networks. The hypothesis used to explain this toxicity is the presence of disinfectants and detergents. This study is aimed at highlighting the ecotoxicity of a peracetic acid-based disinfectant to Daphnia magna, as well as the combined effects of this disinfectant in binary mixtures with three types of detergent. The detergents used here are: cetyltrimethylammonium bromide (CTAB, cationic), sodium dodecylsulfate (SDS, anionic) and Triton X-100 (TX, non-ionic). The toxicity of the mixtures is studied as a function of five predefined ratios. At the end of the study, we conclude that peracetic acid seems to be slightly toxic to Daphnia magna. Indeed, the efficient concentration inhibiting the mobility of 50% of the population of Daphnia at 24 h (EC50) is 116.6 mg/l. Globally, additive effects are observed for all the binary peracetic acid-detergent mixtures. However, for the peracetic acid-TX mixture, its effects have antagonistic tendencies whereas the peracetic acid-CTAB mixture has slight synergic tendencies. The mixture containing peracetic acid and SDS is slightly antagonistic for ratios containing more than 50% peracetic acid.

  7. Synthesis and characterization of ZnO microstructures via a cationic surfactant-assisted hydrothermal microemulsion process

    SciTech Connect

    Liu Yumin Lv Hua; Li Shuangqing; Xi Guoxi; Xing Xinyan

    2011-05-15

    Hexagonal cylinder-like ZnO with a regular twinning microstructure was successfully synthesized via a cationic surfactant-assisted hydrothermal microemulsion route. X-ray diffraction, scanning electron microscopy and Ultraviolet and Visible absorption spectroscopy were employed to characterize the structure, morphologies and properties of the as-prepared samples. The results showed that the reaction temperature, reaction time and molar ratio (w) between water and CTAB exhibited obvious influences on the morphologies and sizes of the products. The Ultraviolet and Visible absorption spectra revealed a strong and broad absorption band from ultraviolet to visible region and the maximum absorption peak appeared at 376 nm. Moreover, the possible growth mechanism for the ZnO microstructures was also discussed in this study. - Research Highlights: {yields} Hexagonal cylinder-like ZnO with twinning microstructure was prepared. {yields} Water/surfactant ratio exhibits obvious influence on the morphology and size of ZnO. {yields} An aggregation mechanism of the ZnO microstructures has been proposed.

  8. Uptake and release of anionic surfactant into and from cationic core-shell microgel particles.

    PubMed

    Bradley, Melanie; Vincent, Brian; Burnett, Gary

    2007-08-28

    Core-shell microgel particles, in the colloidal size range, have been prepared and characterized, where the core and the shell are both copolymers, based on N-isopropylacrylamide, but where the core and shell contain different pH-responsive groups having widely separated acid dissociation constants (pKa). The core contains vinylpyridine (VP), which has a pKa value of 4.92, and the shell contains 2-(dimethylamino)ethyl methacrylate (DMAEM), which has a pKa value of 8.4. The dispersion properties, and the uptake and release of an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), have been studied for both the core and the core-shell microgel particles as a function of pH changes. Both the core and the core-shell particles have been shown to swell as the pH decreases over the range from 7 to 3. However, despite the large differences in the pKa values of the VP and DMEAM groups, no distinct steps in the swelling ratio-pH curve for the core-shell particles were observed, and it is postulated that the boundary between the core and shell regions may be somewhat extended, rather than sharp. The uptake of the anionic surfactant SDBS has been shown to depend on two distinct attractive interactions between the surfactant molecules and the microgel particles: electrostatic and hydrophobic. A reasonable correlation between the minimum in the particle diameter, for both the core and the core-shell particles, and the point of charge neutralization, in the presence of SDBS, has been established.

  9. Photophysical and antibacterial properties of complex systems based on smectite, a cationic surfactant and methylene blue.

    PubMed

    Donauerová, Alena; Bujdák, Juraj; Smolinská, Miroslava; Bujdáková, Helena

    2015-10-01

    Solid or colloidal materials with embedded photosensitizers are promising agents from the medical or environmental perspective, where the direct use of photoactive solutions appears to be problematic. Colloids based on layered silicates of the saponite (Sap) and montmorillonite (Mon) type, including those modified with dodecylammonium cations (C12) and photosensitizer--methylene blue (MB) were studied. Two representatives of bacteria, namely Enterobacter cloacae and Escherichia coli, were selected for this work. A spectral study showed that MB solutions and also colloids with Sap including C12 exhibited the highest photoactivities. The antimicrobial properties of the smectite colloids were not directly linked to the photoactivity of the adsorbed MB cations. They were also influenced by other parameters, such as light vs. dark conditions, the spectrum, power and duration of the light used for the irradiation; growth phases, and the pre-treatment of microorganisms. Both the photoactivity and antimicrobial properties of the colloids were improved upon pre-modification with C12. Significantly higher antimicrobial properties were observed for the colloids based on Mon with MB in the form of molecular aggregates without significant photoactivities. The MB/Mon colloids, both modified and non-modified with C12 cations, exhibited higher antimicrobial effects than pure MB solution. Besides the direct effect of photosensitization, the surface properties of the silicate particles likely played a crucial role in the interactions with microorganisms.

  10. Interaction of cationic hydrophobic surfactants at negatively charged surfaces investigated by atomic force microscopy.

    PubMed

    McNamee, Cathy E; Butt, Hans-Jürgen; Higashitani, Ko; Vakarelski, Ivan U; Kappl, Michael

    2009-10-06

    Atomic force microscopy was used to study the adsorption of the surfactant octadecyl trimethyl ammonium chloride (C18TAC) at a low concentration (0.03 mM) to negatively charged surfaces in water. Atomic force microscopy tips were functionalized with dimethyloctadecyl(3-tripropyl)ammonium chloride (C18TAC-si) or N-trimethoxysilylpropyl-N,N,N-trimethylammomium chloride (hydrophilpos-si) to facilitate imaging of the adsorbed surfactant without artifacts. Tapping mode images and force measurements revealed C18TAC patches, identified as partial surfactant bilayers or hemimicelles. The forces controlling the adsorption process of the C18TAC to a negatively charged surface were investigated by measuring the forces between a C18TAC-si or a hydrophilpos-si tip and a silica surface in the presence of varying concentrations of either NaCl or NaNO3. Screening of forces with an increasing NaCl concentration was observed for the C18TAC-si and hydrophilpos-si tips, proving an electrostatic contribution. Screening was also observed for the hydrophilpos-si tip in NaNO3, whereas a long-range attraction was observed for the C18TAC-si tip for all NaNO3 concentrations. These results indicate that screening of the forces for the C18TAC-si tip depended on the type and/or size of the anion, possibly due to a different probability of the anions to enter the silane layers. The interaction of C18TAC patches with C18TAC-si tips in the presence of NaCl and the interaction of the patches with hydrophilpos-si tips in either NaCl or NaNO3 were repulsive and independent of the number of force curves measured, indicating a stable, positively charged C18TAC patch. However, the forces measured between the patches and a C18TAC-si tip in NaNO3 depended on the number of force curves measured, indicating a change in patch structure induced by the first interaction.

  11. A light-responsive organofluid based on reverse worm-like micelles formed from an equi-charged, mixed, anionic gemini surfactant with an azobenzene spacer and a cationic conventional surfactant.

    PubMed

    Yang, Duoping; Zhao, Jianxi

    2016-05-07

    An equally-charged mixture of an anionic gemini surfactant, O,O'-bis(sodium 2-tetradecylcarboxylate)-p-azodiphendiol (G14-azo), and a cationic surfactant, cetyltrimethylammonium bromide (CTAB), was dissolved in cyclohexane to form reverse worm-like micelles. Samples with different surfactant concentrations and amounts of added water were studied using rheological measurements. The amount of water, represented as the molar ratio of water to total surfactants W0, was c. 13 (at its minimum) in these equally charged systems of G14-azo (200 mmol L(-1))/CTAB. The low shear viscosity ηL of this system reached 4370 Pa s at W0 = 13 and the dynamic rheological result showed typical surfactant gel behaviour. Under UV-light irradiation, the transparent sample (G14-azo (300 mmol L(-1))/CTAB (600 mmol L(-1))) at W0 = 40 became turbid, during which ηL was rapidly reduced from the original 285 Pa s to 0.3 Pa s, indicating a transition of aggregate morphology from reverse worms into simple reverse micelles. Then the sample was returned to its original homogeneous state with c. 290 Pa s viscosity under visible light irradiation. However, this transition cannot be well achieved at low W0 due to the interior cores being too small. This limit has been attributed to both the Gemini type of surfactant molecule and to the inverted structure of aggregates.

  12. Solvation dynamics and rotational relaxation of coumarin 153 in mixed micelles of Triton X-100 and cationic gemini surfactants: effect of composition and spacer chain length of gemini surfactants.

    PubMed

    Sonu; Kumari, Sunita; Saha, Subit K

    2016-01-21

    Solvation dynamics and rotational relaxation of coumarin 153 (C-153) in mixed micelles of non-ionic surfactant, Triton X-100 and a series of cationic gemini surfactants, 12-s-12, 2Br with varying polymethylene spacer chain length (s = 3, 6, 8, 12) at different bulk mole fractions of a surfactant were studied. Studies were carried out by means of UV-Vis absorption, steady-state fluorescence and fluorescence anisotropy, time-resolved fluorescence and fluorescence anisotropy, and dynamic light scattering measurements. While micropolarity of the environment around C-153 in mixed micelles increased, the microviscosity decreased with increasing amount of a gemini surfactant. This is because the thickness of the Stern layer of micelles increases as a result of greater extent of penetration of water molecules. Solvation dynamics and rotational relaxation of C-153 become faster with increasing mole fraction of a gemini surfactant in the mixed micelles. Increasing the thickness of the Stern layer leads to an increase in the number of water molecules hydrogen bonded among themselves, resulting in an increase in polarity and microfluidity of the environment. At a given bulk mole fraction of a surfactant, the microviscosity of micelles decreases with increasing the spacer chain length of the gemini surfactant resulting in an increase in the rate of the rotational relaxation process. However, at a given bulk mole fraction of a surfactant, solvation dynamics becomes slower with increasing spacer chain length from s = 3 to 8 because of the increasing degree of counter ion dissociation. The slow rotational relaxation process is mainly due to the lateral diffusion of C-153 along the surface of the micelles. Rotationalmotion of the micelle as a whole is much slower than the lateral diffusion of C-153.

  13. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

    NASA Astrophysics Data System (ADS)

    Syverud, K.; Xhanari, K.; Chinga-Carrasco, G.; Yu, Y.; Stenius, P.

    2011-02-01

    Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

  14. Adsorption behavior of light green anionic dye using cationic surfactant-modified wheat straw in batch and column mode.

    PubMed

    Su, Yinyin; Zhao, Binglu; Xiao, Wei; Han, Runping

    2013-08-01

    An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01 ± 3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose-response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution.

  15. Synthesis of environmentally friendly highly dispersed magnetite nanoparticles based on rosin cationic surfactants as thin film coatings of steel.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Al-Hussain, Sami A

    2014-04-22

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement.

  16. Synthesis of Environmentally Friendly Highly Dispersed Magnetite Nanoparticles Based on Rosin Cationic Surfactants as Thin Film Coatings of Steel

    PubMed Central

    Atta, Ayman M.; El-Mahdy, Gamal A.; Al-Lohedan, Hamad A.; Al-Hussain, Sami A.

    2014-01-01

    This work presents a new method to prepare monodisperse magnetite nanoparticles capping with new cationic surfactants based on rosin. Core/shell type magnetite nanoparticles were synthesized using bis-N-(3-levopimaric maleic acid adduct-2-hydroxy) propyl-triethyl ammonium chloride (LPMQA) as capping agent. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanoparticles chemical structure. Transmittance electron microscopies (TEM) and X-ray powder diffraction (XRD) were used to examine the morphology of the modified magnetite nanoparticles. The magnetite dispersed aqueous acid solution was evaluated as an effective anticorrosion behavior of a hydrophobic surface on steel. The inhibition effect of magnetite nanoparticles on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results obtained from both potentiodynamic polarisation and EIS measurements reveal that the magnetite nanoparticle is an effective inhibitor for the corrosion of steel in 1.0 M HCl solution. Polarization data show that magnetite nanoparticles behave as a mixed type inhibitor. The inhibition efficiencies obtained from potentiodynamic polarization and EIS methods are in good agreement. PMID:24758936

  17. A solid phase extraction-ion chromatography with conductivity detection procedure for determining cationic surfactants in surface water samples.

    PubMed

    Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek

    2013-11-15

    A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry).

  18. Field study of methidathion in soil amended with biosolid and a cationic surfactant under different irrigation regimes. Solute transport modeling.

    PubMed

    Sánchez, L; Romero, E; Castillo, A; Peña, A

    2006-04-01

    Four experimental plots located in Granada (Spain) were used to investigate the potential movement of the insecticide methidathion during three treatments in a period of three years. To increase pesticide soil retention a municipal biosolid and the cationic surfactant, tetradecyl trimethyl ammonium bromide (TDTMA), were used as soil amendments. The presence of the insecticide was monitored in soil and water samples at different depths up to one meter. Soil solution was sampled by ceramic suction cups installed at three depths (25, 75 and 100 cm). No effect of the amendments on pesticide mobility was observed. Experimental results showed that pesticide leaching occurred in the upper soil layer. Although some sporadic high water soil concentrations were found, these were attributed to preferential flow processes. This was confirmed by the absence of high pesticide concentration in soil samples at similar depths. Pesticide mobility was mainly affected by the irrigation employed. Experimental results were compared with theoretical data simulated with the mathematical model FocusPelmo. The resemblance between theoretical and experimental soil data seems to confirm the preferential flow processes. Otherwise, the lack of fit between the soil water data were attributed to the ceramic devices employed, that could suffer an "ageing process" which would cause bias in the determinations.

  19. Acute toxicity of the cationic surfactant C12-benzalkonium in different bioassays: how test design affects bioavailability and effect concentrations.

    PubMed

    Chen, Yi; Geurts, Marc; Sjollema, Sascha B; Kramer, Nynke I; Hermens, Joop L M; Droge, Steven T J

    2014-03-01

    Using an ion-exchange-based solid-phase microextraction (SPME) method, the freely dissolved concentrations of C12-benzalkonium were measured in different toxicity assays, including 1) immobilization of Daphnia magna in the presence or absence of dissolved humic acid; 2) mortality of Lumbriculus variegatus in the presence or absence of a suspension of Organisation for Economic Co-Operation and Development (OECD) sediment; 3) photosystem II inhibition of green algae Chlorella vulgaris; and 4) viability of in vitro rainbow trout gill cell line (RTgill-W1) in the presence or absence of serum proteins. Furthermore, the loss from chemical adsorption to the different test vessels used in these tests was also determined. The C12-benzalkonium sorption isotherms to the different sorbent phases were established as well. Our results show that the freely dissolved concentration is a better indicator of the actual exposure concentration than the nominal or total concentration in most test assays. Daphnia was the most sensitive species to C12-benzalkonium. The acute Daphnia and Lumbriculus tests both showed no enhanced toxicity from possible ingestion of sorbed C12-benzalkonium in comparison with water-only exposure, which is in accordance with the equilibrium partitioning theory. Moreover, the present study demonstrates that commonly used sorbent phases can strongly affect bioavailability and observed effect concentrations for C12-benzalkonium. Even stronger effects of decreased actual exposure concentrations resulting from sorption to test vessels, cells, and sorbent phases can be expected for more hydrophobic cationic surfactants.

  20. Fabrication of tin-cobalt/carbon composite electrodes by electrodeposition using cationic surfactant for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Cho-Long; Nam, Do-Hwan; Eom, Ji-Yong; Kwon, Hyuk-Sang

    2016-09-01

    Sn-Co alloy and Sn-Co/C composite are fabricated on the nodule-type Cu substrate by co-electrodeposition process using the pulse current in the pyrophosphate bath, and then their cycling performances are examined. To modify the surface property of carbon (acetylene black) particles and improve the dispersion of agglomerated carbon particles, CTAB (Cetrimonium bromide (C16H33)N(CH3)3Br) as a cationic surfactant is added into the electrodeposition bath.10.1007/s13391-016-6077-2 By addition of the CTAB, the amount of the carbon content in the Sn-Co/C composite is increased, and also the carbon particles are uniformly distributed in the Sn-Co electrodeposit. The Sn0.6Co0.4 alloy and (Sn0.6Co0.4)0.71/C0.29 composite are obtained after annealing as the final products. The (Sn0.6Co0.4)0.71/C0.29 composite anode exhibits better the capacity retention than the Sn0.6Co0.4 alloy anode due primarily to the role of the well-dispersed carbon particles as the second buffer phase and electrical conductive path in the Sn-Co/C composite during cycling.

  1. Enhancement of soil retention for phenanthrene in binary cationic gemini and nonionic surfactant mixtures: characterizing two-step adsorption and partition processes through experimental and modeling approaches.

    PubMed

    Zhao, Shan; Huang, Gordon; An, Chunjiang; Wei, Jia; Yao, Yao

    2015-04-09

    The enhancement of soil retention for phenanthrene (PHE) through the addition of a binary mixture of cationic gemini (12-2-12) and nonionic surfactants (C12E10) was investigated. The maximum apparent sorption coefficient Kd(*) reached 4247.8 mL/g through the addition of mixed 12-2-12 gemini and C12E10 surfactants, which was markedly higher than the summed individual results in the presence of individual 12-2-12 gemini (1148.6 mL/g) or C12E10 (210.0 mL/g) surfactant. However, the sorption of 12-2-12 gemini was inhibited by the increasing C12E10 dose; and a higher initial 12-2-12 gemini dose showed a higher "desorption" rate. The present study also addressed the sorption behavior of the single 12-2-12 gemini surfactant at the soil/aqueous interface. The sorption isotherm was divided into two steps to elucidate the sorption process; and the sorption schematics were proposed to elaborate the growth of surfactant aggregates corresponding to the various steps of the sorption isotherm. Finally, a two-step adsorption and partition model (TAPM) was developed to simulate the sorption process. Analysis of the equilibrium data indicated that the sorption isotherms of 12-2-12 gemini fitted the TAPM model better. Thermodynamic calculations confirmed that the 12-2-12 gemini sorption at the soil/aqueous interface was spontaneous and exothermic from 288 to 308K.

  2. Multivariate analysis of anionic, cationic and nonionic textile surfactant degradation with the H(2)O(2)/UV-C process by using the capabilities of response surface methodology.

    PubMed

    Olmez-Hanci, Tugba; Arslan-Alaton, Idil; Basar, Gulcan

    2011-01-15

    Anionic, cationic and nonionic surfactants being frequently employed in the textile preparation process were subjected to H(2)O(2)/UV-C treatment. As a consequence of the considerable number of parameters affecting the H(2)O(2)/UV-C process, an experimental design methodology was used to mathematically describe and optimize the single and combined influences of the critical process variables treatment time, initial H(2)O(2)concentration and chemical oxygen demand (COD) on parent pollutant (surfactant) as well as organic carbon (COD and total organic carbon (TOC)) removal efficiencies. Multivariate analysis was based on two different photochemical treatment targets; (i) full oxidation/complete treatment of the surfactants or, alternatively, (ii) partial oxidation/pretreatment of the surfactants to comply with the legislative discharge requirements. According to the established polynomial regression models, the process independent variables "treatment time" (exerting a positive effect) and "initial COD content" (exerting a negative effect) played more significant roles in surfactant photodegradation than the process variable "initial H(2)O(2) concentration" under the studied experimental conditions.

  3. Cationic gemini pyrrolidinium surfactants based sweeping-micellar electrokinetic chromatography for simultaneous detection of nine organic pollutants in environmental water.

    PubMed

    Tian, Yu; Wei, Ran; Cai, Bo; Dong, Jinfeng; Deng, Bin; Xiao, Yuxiu

    2016-12-02

    A series of novel cationic gemini surfactants with pyrrolidinium head groups, 1,1'-(butane-1,s-alkyl) bis (1-alkylpyrrolidinium) (Cn-4-CnPB, n=12, 14, 16), were employed as carriers in sweeping-micellar electrokinetic chromatography (sweeping-MEKC) for simultaneous detection of nine organic water pollutants, including polycyclic aromatic hydrocarbons, sulfonamides and steroids. The sweeping and separation conditions were optimized. Cn-4-CnPB (n=12, 14, 16) were compared with cetyltrimethylammonium bromide (CTAB) in terms of their abilities to preconcentrate and separate the nine analytes. Under the optimized conditions, the sensitivity enhancement factors based on the peak height (SEFsHeight) were ca. 310-580 of C16-4-C16PB, which were higher than those of C14-4-C14PB (120-290) and C12-4-C12PB (110-160). Meanwhile, the SEFsHeight of C16-4-C16PB were higher than those of 30% (v/v) methanol-modified CTAB (140-320). The C16-4-C16PB based sweeping-MEKC, coupled with offline solid phase extraction and UV detection (228nm), was used to analyze spiked environmental water samples. The nine analytes were successfully separated and detected. The limit of detection (S/N=3) was in range of 2.79-3.76ng/mL, and the recovery ranged from 70.8% to 95.5% with the RSDs less than 9.89%. This study confirms that the C16-4-C16PB based sweeping-MEKC has significant advantages over the CTAB based sweeping-MEKC and it is a promising method for sensitive and simultaneous detection of polycyclic aromatic hydrocarbons, sulfonamides and steroids in environmental water samples.

  4. Interaction between cationic surfactant of 1-methyl-3-tetradecylimidazolium bromide and anionic polymer of sodium polystyrene sulfonate

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Kang, Wenpei; Sun, Dezhi; Liu, Jie; Wei, Xilian

    2013-08-01

    The interaction between long-chain imidazolium ionic liquid (C14mimBr) and anionic polyelectrolyte of sodium polystyrene sulfonate (NaPSS) has been studied using surface tension, isothermal titration microcalorimetry (ITC), dynamic light scatting (DLS) and conductance methods. The result shows that the surface tension plots have a pronounced hump in the surface tension at surfactant concentrations below the critical micelle concentration (cmc) of the surfactant. The cooperative adsorption of surfactant and polymer on the surface (PSS) and the formation of polymer/surfactant aggregate in bulk solution (PSM) provide a rational explanation about it. The formation of surfactant/polymer complexes is affected by the concentration of the surfactant or NaPSS, which is also ascertained by ITC and DLS measurements. Further, the thermodynamic parameters are derived from calorimetric titration and conductance curves, and the effects of polymer concentration and temperature on the parameters are evaluated in detail.

  5. The 12-3-12 cationic gemini surfactant as a novel gastrointestinal bioadhesive material for improving the oral bioavailability of coenzyme Q10 naked nanocrystals.

    PubMed

    Song, Yanzhi; Han, Jie; Feng, Rui; Wang, Mengjing; Tian, Qingjing; Zhang, Ting; Liu, Xinrong; Cheng, Xiaobo; Deng, Yihui

    2016-12-01

    To improve the oral bioavailability of nanocrystalline drug preparations, the cationic 12-3-12 quaternary ammonium surfactant gemini was introduced into nanocrystals as a novel gastrointestinal bioadhesive material. Coenzyme Q10 (CoQ10), a typical Biopharmaceutics Classification System (BCS) class II drug, was used as a model drug. The 12-3-12 gemini surfactant was added to the preparation at a low concentration and imbued the particles with abundant positive charges. In vitro and in vivo gastrointestinal adhesion tests confirmed that the gemini-modified nanocrystals were prone to adhere to the upper gastrointestinal tract (GIT), thereby prolonging retention time in the GIT and enhancing absorption. In the distribution study in rats, the use of nanocrystals modified with gemini led to greater drug distribution to the heart and the liver than that achieved with the naked nanocrystals. A pharmacokinetic study in beagle dogs showed that the gemini-modified CoQ10 nanocrystals improved the oral bioavailability of CoQ10 in a dose-dependent manner, and the smaller size produced a much better effect with the same gemini modification. These results demonstrate that the cationic surfactant gemini is a promising oral bioadhesive material with applications in nanoscale drug delivery systems.

  6. Behavior of cationic surfactants and short chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability. I. Adsorption at water-air interface.

    PubMed

    Zdziennicka, Anna; Jańczuk, Bronisław

    2010-09-01

    Measurements of the surface tension of aqueous solutions were carried out at 293K for mixtures of cetyltrimethylammonium bromide (CTAB) with short chain alcohols such as methanol and ethanol, as well as for 1-hexadecylpyridinium bromide (CPyB) with the same alcohols. The concentration of CTAB and CPyB in aqueous solutions was in the range from 10(-5) to 10(-3) M, and methanol and ethanol was in the range from 0 to 21.1M and from 0 to 11.97M, respectively. Moreover, the surface tension of aqueous solution mixtures of cationic surfactants with propanol in the concentration range from 0 to 6.67M was also taken into consideration. The obtained isotherms of the surface tension were compared to those calculated from the Szyszkowski and Connors equations. The constants in these equations were determined by the least squares method. It appeared that they depended on the type of surfactant and alcohol. From comparison of the experimental and theoretical isotherms of the surface tension it is possible, at first approximation, to describe the relationship between the surface tension of aqueous solutions of cationic surfactants with short chain alcohol mixtures as a function of alcohol molar fraction in the bulk phase by the Szyszkowski and Connors equations. Furthermore, changes of the surface tension of aqueous solutions of CTAB and CPyB with alcohol mixtures at each constant concentration of cationic surfactant can be predicted by the Fainerman and Miller equation, if it is possible to determine the molar area of cationic surfactant and alcohol in the mixed monolayer. Based on the surface tension isotherms the Gibbs surface excess concentration of cationic surfactants and alcohols at water-air interface was determined, and in the case of alcohol, this concentration excess was recalculated for that of Guggenheim-Adam. The Guggenheim-Adam surface excess concentration was applied for determination of the real concentration of alcohol in the mixed surface monolayer. The real

  7. How the cation 1-butyl-3-methylimidazolium impacts the interaction between the entrapped water and the reverse micelle interface created with an ionic liquid-like surfactant.

    PubMed

    Lépori, Cristian M O; Correa, N Mariano; Silber, Juana J; Falcone, R Darío

    2016-01-21

    The behavior of the interfacial water entrapped in reverse micelles (RMs) formed by the ionic liquid-like surfactant 1-butyl-3-methylimidazolium 1,4-bis-2-ethylhexylsulfosuccinate (bmim-AOT) dissolved in benzene (or chlorobenzene) was investigated using noninvasive techniques such as dynamic light scattering (DLS), static light scattering (SLS), FT-IR and (1)H NMR. The DLS and SLS results reveal the formation of discrete spherical and non-interacting water droplets stabilized by the bmim-AOT surfactant. Moreover, since the droplet size increases as the W0 (W0 = [water]/[surfactant]) value increases, water interacts with the RM interface. From FT-IR and (1)H NMR data, a weaker water-surfactant interaction in bmim-AOT RMs in comparison with the RMs created by sodium 1,4-bis-2-ethylhexylsulfosuccinate (Na-AOT) is detected. Consequently, there are less water molecules interacting with the interface in bmim-AOT RMs, and their hydrogen bond network is not completely disrupted as they are in Na-AOT RMs. The results show how the nature of the new cation impacts the interaction between the entrapped water and the RM interface, modifying the interfacial water structure in comparison with the results known for Na-AOT.

  8. Ion-exclusion/cation-exchange chromatographic determination of common inorganic ions in human saliva by using an eluent containing zwitterionic surfactant.

    PubMed

    Mori, Masanobu; Iwata, Tomotaka; Satori, Tatsuya; Ohira, Shin-Ichi; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2008-12-12

    Ion-exclusion/cation-exchange chromatography with an eluent containing the bile salt-type zwitterionic surfactant CHAPS was performed in order to evaluate variations in anion (SO(4)(2-), NO(3)(-), and SCN(-)) and cation (Na(+), K(+), NH(4)(+), Mg(2+), and Ca(2+)) concentrations in human saliva. CHAPS prevents the adsorption of proteins to the stationary phase, i.e., weakly acidic cation-exchange resin, since it aggregates proteins without denaturing them. Addition of 1mM CHAPS to the eluent comprising 6mM tartaric acid and 7 mM 18-crown-6 yielded reproducible separations of anions and cations in protein-containing saliva. The resolutions of anions and cations were not significantly affected by the addition of CHAPS to the eluent. The concentrations of Na(+) and K(+) varied before and after meals; or that of SCN(-), upon smoking. The relative standard deviations of peak areas ranged from 0.3 to 5.1% in 1 day (n=20) and from 1.4 to 5.8% over 6 days (n=6).

  9. Reactivity and acid-base behavior of ring-methoxylated arylalkanoic acid radical cations and radical zwitterions in aqueous solution. Influence of structural effects and pH on the benzylic C-H deprotonation pathway.

    PubMed

    Bietti, Massimo; Capone, Alberto

    2006-07-07

    A product and time-resolved kinetic study of the one-electron oxidation of ring-methoxylated phenylpropanoic and phenylbutanoic acids (Ar(CH2)nCO2H, n = 2, 3) has been carried out at different pH values. Oxidation leads to the formation of aromatic radical cations (Ar.+(CH2)nCO2H) or radical zwitterions (Ar.+(CH2)nCO2-) depending on pH, and pKa values for the corresponding acid-base equilibria have been measured. In the radical cation, the acidity of the carboxylic proton decreases by increasing the number of methoxy ring substituents and by increasing the distance between the carboxylic group and the aromatic ring. At pH 1.7 or 6.7, the radical cations or radical zwitterions undergo benzylic C-H deprotonation as the exclusive side-chain fragmentation pathway, as clearly shown by product analysis results. At pH 1.7, the first-order deprotonation rate constants measured for the ring-methoxylated arylalkanoic acid radical cations are similar to those measured previously in acidic aqueous solution for the alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations. In basic solution, the second-order rate constants for reaction of the radical zwitterions with (-)OH (k-OH)) have been obtained. These values are similar to those obtained previously for the (-)OH-induced alpha-C-H deprotonation of structurally related ring-methoxylated alkylaromatic radical cations, indicating that under these conditions the radical zwitterions undergo benzylic C-H deprotonation. Very interestingly, with 3,4-dimethoxyphenylethanoic acid radical zwitterion, that was previously observed to undergo exclusive decarboxylation up to pH 10, competition between decarboxylation and benzylic C-H deprotonation is observed above pH 11.

  10. Lecithin based nanoemulsions: A comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation.

    PubMed

    Hoeller, Sonja; Sperger, Andrea; Valenta, Claudia

    2009-03-31

    Charged drug delivery systems are interesting candidates for the delivery of drugs through skin. In the present study, it was possible to create negatively and positively charged oil/water nanoemulsions by using sucrose laureate and polysorbate 80 as non-ionic surfactants. The positively charged nanoemulsions were generated by adding cationic phytosphingosine (PS). The relationship between the physicochemical properties of the nanoemulsions was shown by particle size and zeta potential measurements. These properties were dependent on the type of non-ionic surfactant and the concentration of PS. Furthermore the cationic PS had a positive impact on the skin permeation rates (flux) of the incorporated model drugs fludrocortisone acetate and flumethasone pivalate. An enhancement factor between 1.1 and 1.5 was obtained in relation to the control. The interaction of pre-impregnated porcine skin with positively and negatively charged nanoemulsions was confirmed by DSC analysis. The generated DSC-curves showed a slight difference in the phase transition temperature assigned to the characteristic lipid transition. However, it was not possible to assign the effect to one of the ingredients in the multicomponent system.

  11. Fractionation of protein, RNA, and plasmid DNA in centrifugal precipitation chromatography using cationic surfactant CTAB containing inorganic salts NaCl and NH(4)Cl.

    PubMed

    Tomanee, Panarat; Hsu, James T; Ito, Yoichiro

    2004-10-05

    Centrifugal precipitation chromatography (CPC) is a separation system that mainly employs a moving concentration gradient of precipitating agent along a channel and solutes of interest undergo repetitive precipitation-dissolution, fractionate at different locations, and elute out from the channel according to their solubility in the precipitating agent solution. We report here for the first time the use of a CPC system for fractionation of protein, RNA, and plasmid DNA in clarified lysate produced from bacterial culture. The cationic surfactant cetyltrimethylammonium bromide (CTAB) was initially used as a precipitating agent; however, all biomolecules showed no differential solubility in the moving concentration gradient of this surfactant and, as a result, no separation of protein, RNA, and plasmid DNA occurred. To overcome this problem, inorganic salts such as NaCl and NH(4)Cl were introduced into solution of CTAB. The protein and RNA were found to have higher solubility with the addition of these salts and separated from the plasmid DNA. Decreasing surface charge density of CTAB upon addition of NaCl and NH(4)Cl was believed to lead to lower surfactant complexation, and therefore caused differential solubility and fractionation of these biomolecules. Addition of CaCl(2) did not improve solubility and separation of RNA from plasmid DNA.

  12. Interaction of a cationic gemini surfactant with DNA and with sodium poly(styrene sulphonate) at the air/water interface: a neutron reflectometry study.

    PubMed

    Vongsetskul, T; Taylor, D J F; Zhang, J; Li, P X; Thomas, R K; Penfold, J

    2009-04-07

    The interactions between a dicationic gemini surfactant with a six-hydrocarbon spacer (1,2-bis(dodecyldimethyl-ammonio)hexane dibromide, C12C6C12Br2) and anionic polyelectrolyte DNA or sodium (polystyrene sulfonate) (NaPSS) at the air/solution interface have been studied and compared using neutron reflectometry together with surface tension. In the presence of the dichained cationic gemini surfactant, DNA and NaPSS display very different adsorption behaviors. The DNA/gemini mixtures show adsorption behavior very similar to that of DNA/C12TAB mixtures, with enhanced surfactant adsorption at low concentrations and thick structured layers at higher concentrations. However, for the NaPSS/gemini mixtures the amount of gemini at the surface is reduced relative to that in the absence of NaPSS at concentrations below the cmc. These differences in adsorption behavior are attributed to differences in the molecular structure and flexibility of the two polyanions. NaPSS is relatively hydrophobic and flexible enough to form bulk-phase polymer-micelle complexes with the gemini surfactant at low surfactant concentrations, whereas the adsorption of surface complexes is much less favorable because the dications on the gemini would require adjacent bulky pendant charges on the NaPSS to be oriented toward the surface. This would force the NaPSS to bend significantly whereas it is more favorable for the NaPSS to adopt an extended conformation at the surface. Thus, surfactant is actually removed from the surface to form bulk-phase complexes. In contrast with NaPSS, DNA has a far more rigid structure, and the charges on the backbone are at fixed intervals, factors that make the formation of surface DNA-monomer complexes much more favorable than bulk-phase DNA-micelle complexes. Finally, a short-chain sample of NaPSS consisting of only five to six segments adsorbs very strongly at the surface with the gemini to form more extensive layered structures than have previously been observed

  13. Separation of cationic analytes by nonionic micellar electrokinetic chromatography using polyoxyethylene lauryl ether surfactants with different polyoxyethylene length.

    PubMed

    Quirino, Joselito P; Kato, Masaru

    2014-09-01

    Although nonionic micellar electrokinetic chromatography is used for the separation of charged compounds that are not easily separated by capillary zone electrophoresis, the effect of the hydrophilic moiety of the nonionic surfactant has not been studied well. In this study, the separation of ultraviolet-absorbing amino acids was studied in electrokinetic chromatography using neutral polyoxyethylene lauryl ether surfactants (Adekatol) in the separation solution. The effect of the polyethylene moiety (the number of repeating units was from 6.5 to 50) of the hydrophobic test amino acids (methionine, tryptophan, and tysorine) was studied using a 10 cm effective length capillary. The separation mechanism was based on hydrophobic as well as hydrogen bonding interactions at the micellar surface, which was made of the polyoxyethylene moiety. The length of the polyoxyethylene moiety of the surfactants was not important in nonionic micellar electrokinetic chromatography mode.

  14. Modification of an Iranian clinoptilolite nano-particles by hexadecyltrimethyl ammonium cationic surfactant and dithizone for removal of Pb(II) from aqueous solution.

    PubMed

    Anari-Anaraki, Mostafa; Nezamzadeh-Ejhieh, Alireza

    2015-02-15

    Natural clinoptilolite tuff was mechanically converted to micro (MCP) and nano (NCP) particles. The MCP and NCP powders were respectively modified with hexadecyltrimethyl ammonium bromide (HDTMA) and dithizone (DTZ). The raw and modified samples were characterized by X-ray diffraction (XRD), Fourier transformation infra red (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM) and thermogravimetry (TG) and used for the removal of Pb(II) from aqueous solution. The results confirm that both ion exchange and complexation processes are responsible for removal of Pb(II) cations in the modified samples, while Pb(II) cations were only removed via an ion exchange process by the raw clinoptilolite. In this sorbent, the anionic removal property of surfactant modified zeolites (SMZs) changed to cationic removal property by an additional modification step. The best removal efficiency was observed by NCP-HDTMA-DTZ at the following experimental conditions: C(Pb(II)): 800 mg L(-1), HDTMA dosage: 0.2 mol L(-1), DTZ dosage: 5 mmol L(-1), contact time of DTZ with NCP-HDTMA: 1800 min and contact time of the sorbent with Pb(II): 360 min. The NCP-HDTMA-DTZ sorbent showed good efficiency for the removal of lead in the presence of different multivalent cations. Adsorption isotherms of Pb(II) ions obey the Langmuir equation that indicate the monolayer sorption of Pb(II). The adsorption kinetics based on the pseudo-second-order rate equation indicates that the rate limiting step involving a chemical reaction. The negative ΔH and ΔG indicate an exothermic and spontaneous process.

  15. Unusual Fe(CN)₆³⁻/⁴⁻ capture induced by synergic effect of electropolymeric cationic surfactant and graphene: characterization and biosensing application.

    PubMed

    Deng, Sheng-Yuan; Zhang, Tao; Shan, Dan; Wu, Xiao-Yan; Dou, Yan-Zhi; Cosnier, Serge; Zhang, Xue-Ji

    2014-12-10

    Herein, a special microheterogeneous system for Fe(CN)6(3-/4-) capture was constructed based on graphene (GN) and the electropolymeric cationic surfactant, an amphiphilic pyrrole derivative, (11-pyrrolyl-1-yl-undecyl) triethylammonium tetrafluoroborate (A2). The morphology of the system was characterized by scanning electron microscope. The redox properties of the entrapped Fe(CN)6(3-/4-) were investigated by cyclic voltammetry and UV-visible spectrometry. The entrapped Fe(CN)6(3-/4-) exhibited highly electroactive with stable and symmetrical cyclic voltammetric signal. A dramatic negative shift in the half wave potential can be obtained due to the unusual Fe(CN)6(3-/4-) partitioning in in this microheterogeneous system based on poly(A2+GN). Finally, the entrapped Fe(CN)6(3-/4-) was applied in the construction of the enhanced biosensors to hydrogen peroxide and sulfide.

  16. Thermodynamic and Spectroscopic Investigation of Interactions between Reactive Red 223 and Reactive Orange 122 Anionic Dyes and Cetyltrimethyl Ammonium Bromide (CTAB) Cationic Surfactant in Aqueous Solution

    PubMed Central

    Irfan, Muhammad; Usman, Muhammad; Mansha, Asim; Rasool, Nasir; Ibrahim, Muhammad; Rana, Usman Ali; Siddiq, Mohammad; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z. E.; Khan, Salah Ud-Din

    2014-01-01

    The present study describes the conductometric and spectroscopic study of the interaction of reactive anionic dyes, namely, reactive red 223 and reactive orange 122 with the cationic surfactant cetyltrimethyl ammonium bromide (CTAB). In a systematic investigation, the electrical conductivity data was used to calculate various thermodynamic parameters such as free energy (ΔG), enthalpy (ΔH), and the entropy (ΔS) of solubilization. The trend of change in these thermodynamic quantities indicates toward the entropy driven solubilization process. Moreover, the results from spectroscopic data reveal high degree of solubilization, with strong interactions observed in the cases of both dyes and the CTAB. The spontaneous nature of solubilization and binding was evident from the observed negative values of free energies (ΔGp and ΔGb). PMID:25243216

  17. Role of anionic and cationic surfactants on the structural and dielectric properties of ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh

    2017-01-01

    In the present paper, we report the synthesis of Cetyltrimethylammonium Bromide (CTAB) and Sodium dodecyl sulfate (SDS) assisted Zirconia (ZrO2) nanoparticles by co-precipitation method. The effect of surfactant concentration on the structural and dielectric properties has been extensively studied. X-ray diffraction studies reveal the formation of tetragonal phase in the ZrO2 nanoparticles prepared by lower CTAB concentration. However, for higher concentration of CTAB some traces of monoclinic phase appeared along with tetragonal phase. SDS assisted nanoparticles shows crystalline tetragonal phase with lower concentration of SDS and amorphous nature with higher concentrations of SDS. FTIR results show the presence of Zr-O symmetrical stretching vibrations at tetrahedral site. The dielectric properties of all samples have been studied from 10 Hz to 1 MHz, revealing the low value of dielectric constant with CTAB and very high value with SDS as compared to bare ZrO2 nanoparticles. The dielectric behaviour of the bare and surfactant assisted nanoparticles has been correlated with the phase transition, size of nanoparticles and the nature of surfactants.

  18. Cationic gemini surfactant as a dual linker for a cholic acid-modified polysaccharide in aqueous solution: thermodynamics of interaction and phase behavior.

    PubMed

    Bai, Guangyue; Wu, Hui; Lou, Pengxiao; Wang, Yujie; Nichifor, Marieta; Zhuo, Kelei; Wang, Jianji; Bastos, Margarida

    2017-01-04

    Understanding the thermodynamics of formation of biocompatible aggregates is a key factor in the bottom up approach to the development of novel types of drug carriers and their structural tuning using small amphiphilic molecules. We chose an anionic amphiphilic and biocompatible polymer that consists of a dextran and grafted cholic acid pendants, randomly distributed along the dextran backbone, with a degree of substitution (DS) of 15 mol% (designated Dex-15CACOONa). The thermodynamics of interaction and phase behavior of mixtures of this polyelectrolyte and a cationic gemini surfactant hexanediyl-α,ω-bis(dodecyldimethylammonium bromide) (C12C6C12Br2) or its monomer surfactant dodecyltrimethylammonium bromide (DTAB) in aqueous solution were characterized by isothermal titration calorimetry (ITC) and turbidity, together with cryogenic transmission electron microscopy (Cryo-TEM). The various critical concentrations and the enthalpy changes of the corresponding phase transitions for the oppositely charged system were obtained from the plots of the observed enthalpy change (ΔHobs) and turbidity measurements as a function of gemini concentration. The morphologies of the aggregates in various phases were observed by Cryo-TEM. Altogether these results suggest the critical role of gemini as a dual linker. At the concentrations where the crosslink between the pendant aggregates happens, the free gemini concentration is proximately zero and the aggregate retains its negative charge. The analysis of various factors involved in the interaction allowed a rationalization of the driving forces for mixed aggregate formation, which will contribute to a subsequent rational design of drug delivery systems based on this polymer/surfactant system.

  19. Fluorescence of aminofluoresceins as an indicative process allowing one to distinguish between micelles of cationic surfactants and micelle-like aggregates

    NASA Astrophysics Data System (ADS)

    Mchedlov-Petrossyan, Nikolay O.; Cheipesh, Tatiana A.; Roshal, Alexander D.; Doroshenko, Andrey O.; Vodolazkaya, Natalya A.

    2016-09-01

    Among the vast set of fluorescein derivatives, the double charged R2- anions of aminofluoresceins are known to exhibit only low quantum yields of fluorescence, \\varphi . The \\varphi value becomes as high as that of the fluorescein dianion when the lone electron pair of the amino group is involved in a covalent bond. According to Munkholm et al (1990 J. Am. Chem. Soc. 112 2608-12), a much smaller increase in the emission intensity can be observed in the presence of surfactant micelles. However, all these observations refer to aqueous or alcoholic solvents. In this paper, we show that in the non-hydrogen bond donor (or ‘aprotic’) solvents DMSO and acetone, the quantum yields, φ, of the 4‧- (or 5‧)-aminofluorescein R2- species amount to 61-67% and approach that of fluorescein (φ  =  87%), whereas in water φ is only 0.6-0.8%. In glycerol, a solvent with an extremely high viscosity, the φ value is only 6-10%. We report on the enhancement of the fluorescence of the aminofluorescein dianions as an indicative process, which allows us to distinguish between the micelle-like aggregates of cationic dendrimers of low generation, common spherical surfactant micelles, and surfactant bilayers. Some of these colloidal aggregates partly restore the fluorescence of aminofluoresceins in aqueous media. By contrast, other positively charged micellar-like aggregates do not enhance the quantum yield of aminofluorescein R2- species. Results for several related systems, such as CTAB-coated SiO2 particles and reverse microemulsions, are briefly described, and the possible reasons for the observed phenomena are discussed.

  20. Interaction of bovine (BSA), rabbit (RSA), and porcine (PSA) serum albumins with cationic single-chain/gemini surfactants: a comparative study.

    PubMed

    Gull, Nuzhat; Sen, Priyankar; Khan, Rizwan Hasan; Kabir-ud-Din

    2009-10-06

    The interactions among bovine, rabbit, and porcine serum albumins and single-chain cationic surfactant cetyltrimethylammonium bromide (CTAB) versus its gemini counterpart (designated as G4) have been studied. The studies were carried out in an aqueous medium at pH 7.0 using UV, intrinsic and extrinsic fluorescence spectroscopy, and far-UV circular dichroism techniques. The results indicate that compared to CTAB, G4 interacts strongly with the serum albumins, resulting in a significantly larger unfolding or decrease in alpha-helical content as reflected by the significantly larger decrease in ellipticity in the far-UV range. Unlike CTAB, a remarkable increase in the alpha-helical content of BSA at 625 microM G4 and at 250 microM G4 for RSA and PSA is observed. The appearance of conformational changes and saturation points in the proteins occurs at considerably lower [G4] compared to [CTAB]. The results obtained from the multi-technique approach are ascribed to the stronger forces in G4 owing to the presence of two charged headgroups and two hydrocarbon tails. Keeping the results in view, it is suggested that the gemini surfactants may be effectively used in the renaturation of proteins produced in genetically engineered cells via the artificial chaperone protocol and may also prove useful in drug delivery as solubilizing agents to recover proteins from insoluble inclusion bodies.

  1. Effect of alkali cations on two-dimensional networks of two new quaternary thioarsenates (III) prepared by a facile surfactant-thermal method

    NASA Astrophysics Data System (ADS)

    Yan, Dongming; Hou, Peipei; Liu, Chang; Chai, Wenxiang; Zheng, Xuerong; Zhang, Luodong; Zhi, Mingjia; Zhou, Chunmei; Liu, Yi

    2016-09-01

    Two new quaternary thioarsenates(III) NaAg2AsS3·H2O (1) and KAg2AsS3 (2) with high yields have been successfully prepared through a facile surfactant-thermal method. It is interesting that 2 can only be obtained with the aid of ethanediamine (en), which indicates that weak basicity of solvent is beneficial to the growth of 2 compared with 1. Both 1 and 2 feature the similar two-dimensional (2D) layer structures. However, the distortion of the primary honeycomb-like nets in 2 is more severe than that of 1, which demonstrates that Na+ and K+ cations have different structure directing effects on these two thioarsenates(III). Both experimental and theoretical studies confirm 1 and 2 are semiconductors with band gaps in the visible region. Our success in preparing these two quaternary thioarsenates(III) proves that surfactant-thermal technique is a powerful yet facile synthetic method to explore new complex chalcogenides.

  2. Radiolytic synthesis and spectroscopic investigations of cadmium selenide quantum dots grown in cationic surfactant based quaternary water-in-oil microemulsions.

    PubMed

    Singh, S; Guleria, A; Singh, A K; Rath, M C; Adhikari, S; Sarkar, S K

    2013-05-15

    Cadmium selenide (CdSe) quantum dots (QDs) were grown in cationic surfactant cetyltrimethylammonium bromide (CTAB) based water-in-oil microemulsions using high-energy electron beam irradiation. The sizes of the primary QDs were determined from the absorption spectra as well as from high-resolution transmission electron microscope images and were found to be within 3 nm. Effects of experimental parameters, such as w0 (molar ratio of water to surfactant in a microemulsion) values and precursor concentrations on the optical properties of these QDs were investigated in detail. The QDs exhibited broad photoluminescence (PL) in the wavelength region extending from 450 to 750 nm at room temperature. The time-resolved PL showed multiexponential decay and the average lifetime was estimated to be 4.1 ns and the PL decay curve analysis indicated the presence of predominating trap state emission from the as obtained CdSe QDs. The quantum yield exhibited by as-grown QDs was determined to be 2.4%, without involving any postprocessing techniques. However, these QDs possessing ultra small size (≤5 nm) were found to exhibit CIE (Commission Internationale d'Eclairage) chromaticity x, y co-ordinates close to (0.36,0.36), which confirms their potential as white light emitters. Besides, their light emitting color tunability can be conveniently achieved just by varying the experimental parameters. Therefore, the present method employing electron beam irradiation, accompanied by various advantages of CTAB based water-in-oil microemulsion as the host matrix, offers a simple and one step method to obtain CdSe QDs possessing potential applications in white light emitting devices.

  3. Influence of organic matter, cations and surfactants on the antimicrobial activity of Melaleuca alternifolia (tea tree) oil in vitro.

    PubMed

    Hammer, K A; Carson, C F; Riley, T V

    1999-03-01

    The effect of some potentially interfering substances and conditions on the antimicrobial activity of Melaleuca alternifolia (tea tree) oil was investigated. Agar and broth dilution methods were used to determine minimum inhibitory and cidal concentrations of tea tree oil in the presence and absence of each potentially interfering substance. Activity was determined against Gram-positive and -negative bacteria, and Candida albicans. Minimum inhibitory or cidal concentrations differed from controls by two or more dilutions, for one or more organisms, where Tween-20, Tween-80, skim-milk powder and bovine serum albumin were assessed. These differences were not seen when assays were performed in anaerobic conditions, or in the presence of calcium and magnesium ions. The effect of organic matter on the antimicrobial activity of tea tree oil was also investigated by an organic soil neutralization test. Organisms were exposed to lethal concentrations of tea tree oil ranging from 1-10% (v/v), in the presence of 1-30% (w/v) dry bakers' yeast. After 10 min contact time, viability was determined. At > or = 1%, organic matter compromised the activity of each concentration of tea tree oil against Staphylococcus aureus and C. albicans. At 10% or more, organic matter compromised the activity of each tea tree oil concentration against Pseudomonas aeruginosa. Organic matter affected 1 and 2% tea tree oil, but not 4 and 8%, against Escherichia coli. In conclusion, organic matter and surfactants compromise the antimicrobial activity of tea tree oil, although these effects vary between organisms.

  4. Preparations of organobentonite using nonionic surfactants.

    PubMed

    Shen, Y H

    2001-08-01

    Due to hydrophilic environment at its surface, natural bentonite is an ineffective sorbent for nonpolar nonionic organic compounds in water even though it has high surface area. The surface properties of natural bentonite can be greatly modified by simple ion-exchange reactions with large organic cations (cationic surfactants) and this organobentonite is highly effective in removing nonionic organic compounds from water. Cationic surfactant derived organobentonites have been investigated extensively for a wide variety of environmental applications. In this study, the preparation of organobentonite using nonionic surfactants has been investigated for the first time. Results indicate that nonionic surfactants intercalates into the interlamellar space of bentonite and may demonstrate higher sorption capacity than cationic surfactant. It is possible to create large interlayer spacing and high organic carbon content organobentonite by use of nonionic surfactants with suitable balance between the hydrocarbon and ethylene oxide chain lengths. In addition, nonionic surfactant derived organobentonites are more chemically stable than cationic surfactant derived organobentonites.

  5. Effects of long-chain surfactants, short-chain alcohols and hydrolizable cations on the hydrophobic and hydration forces

    NASA Astrophysics Data System (ADS)

    Subramanian, Vivek

    Various experiments conducted in recent years showed that DLVO theory is applicable only to those particles whose advancing water contact angles (thetaa) are in the range of 15--60°. For example, direct surface force measurements conducted between silica substrates, whose theta a values are less than 15°, exhibited the existence of repulsive hydration forces at relatively short separation distances. On the other hand, substrates, for which thetaa is greater than 60°, exhibit long-range attractive hydrophobic forces not considered in the DLVO theory. It is the objective of the present study to measure the hydrophobic and hydration forces under different conditions. The measurements were conducted using both the Surface Forces Apparatus (SFA) and the Atomic Force Microscope (AFM). Mica and Silica were used as substrates, and the effects of dioctylammonium- hydrochloride (DOAHCl), octanol, methanol, ethanol, trifluoroethanol (TTE), pyridine, CaCl2, MgCl2 and sodium oleate were studied. A Mark IV SFA was used to conduct force measurements between mica surfaces in aqueous solutions of DOAHCl. At 7 x 10-6M DOAHCl, the mica surfaces were rendered electrically neutral, and net attractive hydrophobic forces were observed. The measured forces can be represented by a double-exponential function with the larger decay length (D2) of 5.1 nm. The measured hydrophobic forces are substantially stronger than those reported in literature between self-assembled monolayers of soluble single-chain surfactants. Force measurements were also conducted using the AFM between a silica plate and a glass sphere in aqueous solutions of methanol, ethanol, TFE and pyridine to study their effect on the hydration force. In Nanopure water, silica surfaces exhibit a strong shortrange hydration repulsion, which can be represented by a double-exponential function with its longer decay length (D2) of 2.4 nm. In solutions containing 15% methanol, however, the hydration force disappears completely

  6. Chemical germination of native and cation-exchanged bacterial spores with trifluoperazine.

    PubMed Central

    Sacks, L E

    1990-01-01

    The calmodulin antagonist trifluoperazine and its analog chlorpromazine, both amphipaths, induced chemical germination of spores of various species, as do many surfactants. Cation load can greatly influence this response. Calmodulin antagonism does not seem to be involved. A new fluorometric assay for dipicolinic acid based on the fluorescence of the dipicolinic acid chelate of Tb3+ was found to be simple and sensitive. PMID:2111114

  7. Adsorption of a cationic dye, methylene blue, on to chitosan hydrogel beads generated by anionic surfactant gelation.

    PubMed

    Chatterjee, Sudipta; Chatterjee, Tania; Lim, Seong-Rin; Woo, Seung H

    2011-10-01

    Chitosan hydrogel beads (CSB) formed by sodium dodecyl sulphate (SDS) gelation were used for the removal of a cationic dye, methylene blue (MB), from aqueous solutions. The adsorption capacity of chitosan beads (CB) formed by alkali gelation was low because of charge repulsions between the chitosan (CS) and the MB. The adsorption capacity of CSB (4 g/L SDS gelation) for MB (100 mg/L) was 129.44 mg/g, and it decreased significantly with increasing SDS concentration during gelation. This decrease was a result of increased density of the CSB membrane materials. The CSB membrane materials formed with the 4 g/L SDS gelation showed the highest volumetric adsorption capacity. The MB adsorption on to CB and CSB increased with increasing values for the initial pH of solution. Data from both CB and CSB showed good fit to Sips isotherm models, and the maximum adsorption capacity of CSB (226.24 mg/g) was higher than that of CB (99.01 mg/g).

  8. Hexafluoroisopropanol-induced coacervation in aqueous mixed systems of cationic and anionic surfactants for the extraction of sulfonamides in water samples.

    PubMed

    Chen, Dan; Zhang, Pei; Li, Yunfang; Mei, Zhinan; Xiao, Yuxiu

    2014-09-01

    Hexafluoroisopropanol (HFIP)-induced coacervation in aqueous mixed systems of catanionic surfactants of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS) was described in detail, and its application in the extraction of strongly polar sulfonamides (SAs) was investigated. With 10 % (v/v) HFIP inclusion, coacervation formation and two-phase separation occur in a wide range of SDS/DTAB mole ratios (88:12∼0:100 mol/mol) and total surfactant concentrations (10∼200 mmol/L). The interactions between HFIP and DTAB play an important role in coacervation formation. The HFIP-induced SDS-DTAB coacervation extraction proves to be an efficient method for the extraction and preconcentration of SAs. Both hydrophobic interaction and polar interactions (hydrogen-bond, electrostatic, and π-cation) contribute to the distribution of SAs into coacervate phase. The proposed HFIP-induced SDS-DTAB coacervation extraction combined with HPLC-UV was employed for the extraction and quantitative determination of SAs in environmental water samples. Limits of detection were 1.4∼2.5 ng mL(-1). Excellent linearity with correlation coefficients from 0.9990 to 0.9995 was obtained in the concentration of 0.01∼10 μg mL(-1). Relative recoveries were in the range of 93.4∼105.9 % for analysis of the lake, underground, and tap water samples spiked with SAs at 0.01, 1.0, and 10 μg/mL, respectively. Relative standard deviations were 0.7∼3.2 % for intraday precision and 1.3∼4.6 % for interday precision (n = 3). Concentration factors were 17∼49 for three water samples spiked with 0.01 μg/mL SAs. The results demonstrate that the proposed extraction method is feasible for the preconcentration and determination of trace SAs in real water samples.

  9. The impact of dietary cation anion difference (DCAD) on the acid-base balance and calcium metabolism of non-lactating, non-pregnant dairy cows fed equal amounts of different anionic salts.

    PubMed

    Gelfert, Carl-Christian; Leonie Loeffler, S; Frömer, Sven; Engel, Maike; Hartmann, Helmut; Männer, Klaus; Baumgartner, Walter; Staufenbiel, Rudolf

    2007-08-01

    We evaluated the impact of the dietary cation-anion difference (DCAD) on the influence of anionic salts (AS) on the metabolism of dairy cows using a study-design that included control of feed intake. Ten mature, non-lactating, non-pregnant, Holstein-Friesian-crossbreed cows received 2000 mEq of either one of the seven anionic salts tested, two combinations of the anionic salts or water as control via a rumen cannula. Salts and controls were assigned in a 10x10 Latin square design. Whole blood, serum and urine samples were taken during treatment (TP) and washout period. Samples of whole blood were tested for pH, base-excess and bicarbonate concentrations. In urine, pH and net acid-base excretion (NABE) were analysed. Calcium was measured in serum and urine. According to the different batches of hay, five groups of DCAD were created regarding cluster analysis. Changes in urine and blood parameters were statistically analysed for each DCAD group separately. The different DCAD had an impact on the amount of change in acid-base balance (ABB) and calcium metabolism and for how long these changes lasted. In the DCAD group receiving the highest amount of AS (239 mEq/kg dry matter with AS), changes of ABB were only noticeable in urine and these changes only differed from day zero in the first week of TP (P<0.05). In the other four groups changes of ABB were also visible in blood parameters, but only on a few days of TP did the deviations differ significantly (P<0.05) from day zero. Changes of ABB parameters in urine samples were more pronounced than those in blood and differed clearly from day zero (P<0.05). Parallel to the changes of ABB, calcium concentrations in these samples were significantly increased (P<0.001) in all DCAD groups. Except for the highest DCAD group, ionized calcium concentrations changed over time (P<0.020). However, the differences were very small and only differed from day zero on a few TP days. We conclude that the DCAD of a dairy cow's diet has an

  10. Secondary structural changes in guanidinium hydrochloride denatured mammalian serum albumins and protective effect of small amounts of cationic gemini surfactant pentanediyl-α,ω-bis(cetyldimethylammonium bromide) and methyl-β-cyclodextrin: A spectroscopic study.

    PubMed

    Gull, Nuzhat; Khan, Javed Masood; Ishtikhar, Mohd; Qadeer, Atiyatul; Khan, Rehan Ajmal; Gul, Mudasir; Khan, Rizwan Hasan

    2015-02-01

    In the present study the cationic gemini surfactant assisted refolding of guanidinium hydrochloride (GdCl) denatured mammalian serum albumins viz. sheep serum albumin (SSA), rat serum albumin (RSA) and porcine serum albumin (PSA) using a combination of cationic gemini surfactants, pentanediyl-α,ω-bis(cetyldimethylammonium bromide) (C16H33(CH3)2N(+)-(CH2)5-N(+)(CH3)2C16H33)⋅2Br(-) designated as G5 and methyl-β-cyclodextrin in the artificial chaperone assisted two step method, is attempted. The studies were carried out in an aqueous medium (pH 7.4) using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. A perusal of DLS data indicates that against the native hydrodynamic radius (Rh) of 4.3nm in SSA, 3.9nm in PSA and 3.5nm in RSA, the Rh of the said proteins, when refolding is attempted by simple dilution, increases to 21.7nm, 36.6nm and 37.2nm, respectively. Hydrodynamic radii very near to the native protein, i.e., 4.0nm, 4.1nm and 4.4nm for RSA, PSA and SSA respectively, is obtained on the sequential addition of G5 and methyl-β-cyclodextrin to the denatured protein. Circular dichroism studies corroborate with the DLS data. The results obtained from the multi-technique approach are ascribed to the presence of two charged head-groups and two hydrocarbon tails in the gemini surfactants resulting in a very strong electrostatic and hydrophobic interactions. Based on the present study it is suggested that the gemini surfactants may be utilized in the protein refolding studies and thus may address one of the most pressing demand of biotechnology industry for the development of efficient and inexpensive folding aides.

  11. Anionic, Cationic, and Nonionic Surfactants in Atmospheric Aerosols from the Baltic Coast at Askö, Sweden: Implications for Cloud Droplet Activation.

    PubMed

    Gérard, Violaine; Nozière, Barbara; Baduel, Christine; Fine, Ludovic; Frossard, Amanda A; Cohen, Ronald C

    2016-03-15

    Recent analyses of atmospheric aerosols from different regions have demonstrated the ubiquitous presence of strong surfactants and evidenced surface tension values, σ, below 40 mN m(-1), suspected to enhance the cloud-forming potential of these aerosols. In this work, this approach was further improved and combined with absolute concentration measurements of aerosol surfactants by colorimetric titration. This analysis was applied to PM2.5 aerosols collected at the Baltic station of Askö, Sweden, from July to October 2010. Strong surfactants were found in all the sampled aerosols, with σ = (32-40) ± 1 mN m(-1) and concentrations of at least 27 ± 6 mM or 104 ± 21 pmol m(-3). The absolute surface tension curves and critical micelle concentrations (CMC) determined for these aerosol surfactants show that (1) surfactants are concentrated enough in atmospheric particles to strongly depress the surface tension until activation, and (2) the surface tension does not follow the Szyszkowski equation during activation but is nearly constant and minimal, which provides new insights on cloud droplet activation. In addition, both the CMCs determined and the correlation (R(2) ∼ 0.7) between aerosol surfactant concentrations and chlorophyll-a seawater concentrations suggest a marine and biological origin for these compounds.

  12. Surfactant recovery from water using foam fractionation

    SciTech Connect

    Tharapiwattananon, N.; Osuwan, S.; Scamehorn, J.F.

    1996-05-01

    The purpose of this study was to investigate the use of foam fractionation to recover surfactant from water. A simple continuous mode foam fractionation was used and three surfactants were studied (two anionic and one cationic). The effects of air flow rate, foam height, liquid height, liquid feed surfactant concentration, and sparger porosity were studied. This technique was shown to be effective in either surfactant recovery or the reduction of surfactant concentration in water to acceptable levels. As an example of the effectiveness of this technique, the cetylpyridinium chloride concentration in water can be reduced by 90% in one stage with a liquid residence time of 375 minutes. The surfactant concentration in the collapsed foam is 21.5 times the feed concentration. This cationic surfactant was easier to remove from water by foam fractionation than the anionic surfactants studied.

  13. Acid-base equilibria involved in secondary reactions following the 4-carboxybenzophenone sensitized photooxidation of methionylglycine in aqueous solution. Spectral and time resolution of the decaying (S...N){sup +} radical cation

    SciTech Connect

    Hug, G.L.; Marciniak, B. |; Bobrowski, K. ||

    1996-09-05

    A radical cation with an intramolecular sulfur-nitrogen bond was formed in the photoinitiated transfer of an electron from the sulfur atom of the dipeptide Met-Gly to 4-carboxybenzophenone in its triplet state. The sulfur-nitrogen coupling involved two-center, three-electron bonds. The kinetics of the reactions of these radical cations, which were initiated by a laser flash, were followed over time. The principal method of implementing the spectral resolutions was accomplished through a multiple linear regression technique. This spectral analysis was repeated for numerous time windows during the lifetime of the transients` decays. The resulting concentrations of the transients were consistent with an independent factor analysis. It was found that the decay of the radical cations was multiexponential and that the decay varied with pH. A simplified reaction scheme was proposed whereby the absorbing radical cations can alternatively decay by an irreversible channel or react reversibly with OH{sup -}. Rate constants for the three elementary reactions of this scheme were determined from an analysis of the decay of the concentration of the radical cations. In addition, the equilibrium constant for the reversible reaction was determined by two separate procedures. 35 refs., 7 figs., 2 tabs.

  14. Effect of light on self-assembly of aqueous mixtures of sodium dodecyl sulfate and a cationic, bolaform surfactant containing azobenzene.

    PubMed

    Hubbard, F Pierce; Abbott, Nicholas L

    2007-04-24

    We report light and small-angle neutron scattering measurements that characterize microstructures formed in aqueous surfactant solutions (up to 1.0 wt % surfactant) containing mixtures of sodium dodecyl sulfate (SDS) and the light-sensitive bolaform surfactant, bis(trimethylammoniumhexyloxy)azobenzene dibromide (BTHA) as a function of composition, equilibration time, and photostationary state (i.e., solutions rich in cis-BTHA or trans-BTHA). We observed formation of vesicles in both SDS-rich and trans-BTHA-rich regions of the microstructure diagram, with vesicles present over a particularly broad range of compositions for trans-BTHA-rich solutions. Illumination of mixtures of BTHA and SDS with a broadband UV light source leads to formation of photostationary states where the fraction of BTHA present as cis isomer (75-80% cis-BTHA) is largely independent of the mixing ratio of SDS and BTHA. For a relatively limited set of mixing ratios of SDS and BTHA, we observed UV illumination of SDS-rich vesicles to result in the reversible transformation of the vesicles to micellar aggregates and UV illumination of BTHA-rich vesicles to result in irreversible precipitation. Surprisingly, however, for many mixtures of trans-BTHA and SDS that formed solutions containing vesicles, illumination with UV light (which was confirmed to lead to photoisomerization of BTHA) resulted in only a small decrease in the number of vesicles in solution, relatively little change in the sizes of the remaining vesicles, and coexistance of the vesicles with micelles. These observations are consistent with a physical model in which the trans and cis isomers of BTHA present at the photostationary state tend to segregate between the different microstructures coexisting in solution (e.g., vesicles rich in trans-BTHA and SDS coexist with micelles rich in cis-BTHA and SDS). The results presented in this paper provide guidance for the design of light-tunable surfactants systems.

  15. Ionic liquids as surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, N. A.; Safonova, E. A.

    2010-10-01

    Problems of self-assembling in systems containing ionic liquids (ILs) are discussed. Main attention is paid to micellization in aqueous solutions of dialkylimidazolium ILs and their mixtures with classical surfactants. Literature data are reviewed, the results obtained by the authors and co-workers are presented. Thermodynamic aspects of the studies and problems of molecular-thermodynamic modeling receive special emphasis. It is shown that the aggregation behavior of dialkylimidazolium ILs is close to that of alkyltrimethylammonium salts (cationic surfactants) though ILs have a higher ability to self-organize, especially as it concerns long-range ordering. Some aspects of ILs applications are outlined where their common features with classical surfactants and definite specificity are of value.

  16. A novel cloud point extraction approach using cationic surfactant for the separation and pre-concentration of chromium species in natural water prior to ICP-DRC-MS determination.

    PubMed

    Meeravali, Noorbasha N; Jiang, Shiuh-Jen

    2009-11-15

    A novel cloud point phase separation of cationic surfactant, Aliquat-336 and capabilities of its reactive solubilizing sites for selective extraction of chromium species at ultra trace levels was examined in natural water. The phase separation behavior of Aliquat-336 is studied with various additives. The nonionic surfactant, Triton X-114 was found to induce the cloud point phase separation of Aliquat-336. The separation of anionic Cr(VI) was enabled by the formation of ion associate with quaternary ammonium head group of Aliquat-336 at pH 2, and the recovery of Cr(VI) and Cr(III) were 101.4+/-1.4% and 2.2+/-0.4%, respectively at 0.5-1 ng mL(-1), Total Cr was pre-concentrated as Cr-APDC species using the hydrophobic tail group at pH 6.5. The Cr(III) concentration was obtained by subtracting Cr(VI) from total Cr. The recovery of total Cr was 99.5+/-1.2%. Parameters affecting extraction were assessed. The procedure was applied to NIST 1643c and NIST 1643d waters, and the sum of individual species obtained was compared with the certified chromium values. The method was also applied to various natural waters with limits of detection and pre-concentration factor of 0.010 and 0.025 ng mL(-1); 10 and 10, respectively, for Cr(VI) and Cr(III)-APDC using ICP-MS operated in DRC mode.

  17. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    PubMed

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  18. Application of Ultrasound-Assisted Surfactant-Enhanced Emulsification Microextraction Based on Solidification of Floating Organic Droplets and High Performance Liquid Chromatography for Preconcentration and Determination of Alprazolam and Chlordiazepoxide in Human Serum Samples.

    PubMed

    Goudarzi, Nasser; Amirnavaee, Monavar; Arab Chamjangali, Mansour; Farsimadan, Sahar

    2017-03-03

    An improved microextraction method is proposed on the basis of ultrasound-assisted surfactant-enhanced emulsification and solidification of a floating organic droplet procedure combined with high performance liquid chromatography for the preconcentration and quantification of alprazolam (ALP) and chlordiazepoxide (CHL) present in a number of human serum samples. Several parameters affecting the extraction efficiency were investigated by the Plackett -Burman factorial design as the screening design. Then the response surface methodology based on the Box-Behnken design was used to optimize the effective parameters in the proposed procedure. The limits of detection for the proposed method were found to be 3.0 and 3.1 ng mL-1 for CHL and ALP, respectively. The calibration curves obtained for the method were linear in the ranges of 10.0-3,500.0 and 10.0-3,000.0 ng mL-1 for CHL and ALP, respectively, with a good determination coefficient. The recoveries of the drugs in the spiked human serum samples were above 93.0%. The developed method was successfully applied to the analysis of these studied drugs in human serum samples. The pre-treatment of the serum samples was performed using acetonitrile to remove the proteins. The proposed procedure was an accurate and reliable one for the determination and preconcentration of these drugs in blood samples.

  19. Lung surfactant.

    PubMed Central

    Rooney, S A

    1984-01-01

    Aspects of pulmonary surfactant are reviewed from a biochemical perspective. The major emphasis is on the lipid components of surfactant. Topics reviewed include surfactant composition, cellular and subcellular sites as well as pathways of biosynthesis of phosphatidylcholine, disaturated phosphatidylcholine and phosphatidylglycerol. The surfactant system in the developing fetus and neonate is considered in terms of phospholipid content and composition, rates of precursor incorporation, activities of individual enzymes of phospholipid synthesis and glycogen content and metabolism. The influence of the following hormones and other factors on lung maturation and surfactant production is discussed: glucocorticoids, thyroid hormone, estrogen, prolactin, cyclic AMP, beta-adrenergic and cholinergic agonists, prostaglandins and growth factors. The influence of maternal diabetes, fetal sex, stress and labor are also considered. Nonphysiologic and toxic agents which influence surfactant in the fetus, newborn and adult are reviewed. PMID:6145585

  20. Studies on the electrocapillary curves of anionic surfactants in presence of non-ionic surfactants.

    PubMed

    Bembi, R; Goyal, R N; Malik, W U

    1976-09-01

    Polyoxyethylated non-ionic surfactants such as Tween 20, Tween 40, Nonidet P40 and Nonex 501 have been supposed to be associated with cationic characteristics. Studies on the effect of these surfactants on the electrocapillary curves of the anionic surfactants Aerosol IB, Manaxol OT and sodium lauryl sulphate (SLS), show that the electrocapillary maxima shift towards positive potentials. The order of adsorption of the anionic surfactants is SLS > Manaxol OT > Aerosol IB while the shift in maxima is in the order Aerosol IB ~ Manaxol OT > SLS which confirms association of cationic characteristics with the micelles of these non-ionic surfactants. The magnitude of the shift in electrocapillary maxima is Nonex 501 > Nonidet P40 > Tween 20 > Tween 40 which may be the order of magnitude of the positive charge carried by these non-ionic surfactants.

  1. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  2. Interactions of organic contaminants with mineral-adsorbed surfactants.

    PubMed

    Zhu, Lizhong; Chen, Baoliang; Tao, Shu; Chiou, Cary T

    2003-09-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insightto interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  3. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  4. Surfactant-enhanced low-pH alkaline flooding

    SciTech Connect

    Peru, D.A. and Co., Columbia, MD . Research Div.); Lorenz, P.B. )

    1990-08-01

    This paper reports sodium bicarbonate investigated as a potential alkaline agent in surfactant-enhanced alkaline flooding because it has very little tendency to dissolve silicate minerals. In experiments performed with Wilmington, CA, crude oil and three types of surfactants, the bicarbonate/surfactant combination caused a marked lowering of interfacial tension (IFT). Bicarbonate protected the surfactant against divalent cations and reduced adsorption of surfactant and polymer on various minerals. Coreflood test confirm that sodium bicarbonate plus surfactant can be an effective alternative to the high-pH flooding process.

  5. Gemini surfactants from natural amino acids.

    PubMed

    Pérez, Lourdes; Pinazo, Aurora; Pons, Ramon; Infante, Mrosa

    2014-03-01

    In this review, we report the most important contributions in the structure, synthesis, physicochemical (surface adsorption, aggregation and phase behaviour) and biological properties (toxicity, antimicrobial activity and biodegradation) of Gemini natural amino acid-based surfactants, and some potential applications, with an emphasis on the use of these surfactants as non-viral delivery system agents. Gemini surfactants derived from basic (Arg, Lys), neutral (Ser, Ala, Sar), acid (Asp) and sulphur containing amino acids (Cys) as polar head groups, and Geminis with amino acids/peptides in the spacer chain are reviewed.

  6. Amino acid–based surfactants: New antimicrobial agents.

    PubMed

    Pinazo, A; Manresa, M A; Marques, A M; Bustelo, M; Espuny, M J; Pérez, L

    2016-02-01

    The rapid increase of drug resistant bacteria makes necessary the development of new antimicrobial agents. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds given that they can be prepared from renewable raw materials. In this review, we discuss the structural features that promote antimicrobial activity of amino acid-based surfactants. Monocatenary, dicatenary and gemini surfactants that contain different amino acids on the polar head and show activity against bacteria are revised. The synthesis and basic physico-chemical properties have also been included.

  7. Cationic liposomes as vaccine adjuvants.

    PubMed

    Christensen, Dennis; Korsholm, Karen Smith; Andersen, Peter; Agger, Else Marie

    2011-04-01

    The application of cationic liposomes as vaccine delivery systems and adjuvants has been investigated extensively over the last few decades. However, cationic liposomes are, in general, not sufficiently immunostimulatory, which is why the combination of liposomes with immunostimulating ligands has arisen as a strategy in the development of novel adjuvant systems. Within the last 5 years, two novel adjuvant systems based on cationic liposomes incorporating Toll-like receptor or non-Toll-like receptor immunostimulating ligands have progressed from preclinical testing in smaller animal species to clinical testing in humans. The immune responses that these clinical candidates induce are primarily of the Th1 type for which there is a profound unmet need. Furthermore, a number of new cationic liposome-forming surfactants with notable immunostimulatory properties have been discovered. In this article we review the recent progress on the application of cationic liposomes as vaccine delivery systems/adjuvants.

  8. Structural study of surfactant-dependent interaction with protein

    SciTech Connect

    Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim

    2015-06-24

    Small-angle neutron scattering (SANS) has been used to study the complex structure of anionic BSA protein with three different (cationic DTAB, anionic SDS and non-ionic C12E10) surfactants. These systems form very different surfactant-dependent complexes. We show that the structure of protein-surfactant complex is initiated by the site-specific electrostatic interaction between the components, followed by the hydrophobic interaction at high surfactant concentrations. It is also found that hydrophobic interaction is preferred over the electrostatic interaction in deciding the resultant structure of protein-surfactant complexes.

  9. Inhibition of Aflatoxin Production by Surfactants

    PubMed Central

    Rodriguez, Susan B.; Mahoney, Noreen E.

    1994-01-01

    The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants. Images PMID:16349144

  10. Enhancement of enzymatic hydrolysis of cellulose by surfactant

    SciTech Connect

    Ooshima, H.; Sakata, M.; Harano, Y.

    1986-01-01

    Effects of surfactants on enzymatic saccharification of cellulose have been studied. Nonionic, amphoteric, and cationic surfactants enhanced the saccharification, while anionic surfactant did not. Cationic and anionic surfactants denatured cellulase in their relatively low concentrations, namely, more than 0.008 and 0.001%, respectively. Using nonionic surfactant Tween 20, which is most effective to the enhancement (e.g., the fractional conversion attained by 72 h saccharification of 5 wt % Avicel in the presence of 0.05 wt % Tween 20 is increased by 35%), actions of surfactant have been examined. As the results, it was suggested that Tween 20 plays an important role in the hydrolysis of crystalline cellulose and that Tween 20 disturbs the adsorption of endoglucanase on cellulose, i.e., varies the adsorption balance of endo- and exoglucanase, resulting in enhancing the reaction. The influence of Tween 20 to the saccharification was found to remain in simultaneous saccharification and fermentation of Avicel.

  11. Gemini imidazolium surfactants: synthesis and their biophysiochemical study.

    PubMed

    Kamboj, Raman; Singh, Sukhprit; Bhadani, Avinash; Kataria, Hardeep; Kaur, Gurcharan

    2012-08-21

    New gemini imidazolium surfactants 9-13 have been synthesized by a regioselective epoxy ring-opening reaction under solvent-free conditions. The surface properties of these new gemini surfactants were evaluated by surface tension and conductivity measurements. These surfactants have been found to have low critical micelle concentration (cmc) values as compared to other categories of gemini cationic surfactants and also showed the tendency to form premicellar aggregates in solution at sufficiently low concentration below their cmc values. The thermal degradation of these surfactants was determined by thermograviometry analysis (TGA). These new cationic surfactants have a good DNA binding capability as determined by agarose gel electrophoresis and ethidium bromide exclusion experiments. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  12. Bipolar Membranes for Acid Base Flow Batteries

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Roddecha, Supacharee; Jorne, Jacob; Coughlan, Anna

    2011-03-01

    Rechargeable batteries can provide grid-scale electricity storage to match power generation with consumption and promote renewable energy sources. Flow batteries offer modular and flexible design, low cost per kWh and high efficiencies. A novel flow battery concept will be presented based on acid-base neutralization where protons (H+) and hydroxyl (OH-) ions react electrochemically to produce water. The large free energy of this highly reversible reaction can be stored chemically, and, upon discharge, can be harvested as usable electricity. The acid-base flow battery concept avoids the use of a sluggish oxygen electrode and utilizes the highly reversible hydrogen electrode, thus eliminating the need for expensive noble metal catalysts. The proposed flow battery is a hybrid of a battery and a fuel cell---hydrogen gas storing chemical energy is produced at one electrode and is immediately consumed at the other electrode. The two electrodes are exposed to low and high pH solutions, and these solutions are separated by a hybrid membrane containing a hybrid cation and anion exchange membrane (CEM/AEM). Membrane design will be discussed, along with ion-transport data for synthesized membranes.

  13. Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs.

    PubMed

    Gerakis, A M; Koupparis, M A; Efstathiou, C E

    1993-01-01

    The effect of various surfactants [the cationics cetyl trimethyl ammonium bromide (CTAB) and cetyl pyridinium chloride (CPC), the anionic sodium dodecyl sulphate (SDS), and the nonionic polysorbate 80 (Tween 80)] on the solubility and ionization constant of some sparingly soluble weak acids of pharmaceutical interest was studied. Benzoic acid (and its 3-methyl-, 3-nitro-, and 4-tert-butyl-derivatives), acetylsalicylic acid, naproxen and iopanoic acid were chosen as model examples. Precise and accurate acid-base titrations in micellar systems were made feasible using a microcomputer-controlled titrator. The response curve, response time and potential drift of the glass electrode in the micellar systems were examined. The cationics CTAB and CPC were found to increase considerably the ionization constant of the weak acids (delta pKa ranged from -0.21 to -3.57), while the anionic SDS showed negligible effect and the nonionic Tween 80 generally decreased the ionization constants. The solubility of the acids in aqueous micellar and acidified micellar solutions was studied spectrophotometrically and it was found increased in all cases. Acetylsalicylic acid, naproxen, benzoic acid and iopanoic acid could be easily determined in raw material and some of them in pharmaceutical preparations by direct titration in CTAB-micellar system instead of using the traditional non-aqueous or back titrimetry. Precisions of 0.3-4.3% RSD and good correlation with the official tedious methods were obtained. The interference study of some excipients showed that a preliminary test should be carried out before the assay of formulations.

  14. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.

    PubMed

    Hu, Zhen; Ballinger, Sarah; Pelton, Robert; Cranston, Emily D

    2015-02-01

    The effect of surfactants on the properties of Pickering emulsions stabilized by cellulose nanocrystals (CNCs) was investigated. Electrophoretic mobility, interfacial tension, confocal microscopy and three-phase contact angle measurements were used to elucidate the interactions between anionic CNCs and cationic alkyl ammonium surfactants didecyldimethylammonium bromide (DMAB) and cetyltrimethylammonium bromide (CTAB). Both surfactants were found to adsorb onto CNCs with concentration-dependent morphology. At low concentrations, individual surfactant molecules adsorbed with alkyl tails pointing outward leading to hydrophobic CNCs. At higher concentrations, above the surfactant's apparent critical micelle concentration, surfactant aggregate morphologies on CNCs were inferred and the hydrophobicity of CNCs decreased. DMAB, which has two alkyl tails, rendered the CNCs more hydrophobic than CTAB which has only a single alkyl tail, at all surfactant concentrations. The change in CNC wettability from surfactant adsorption was directly linked to emulsion properties; adding surfactant increased the emulsion stability, decreased the droplet size, and controlled the internal phase of CNC Pickering emulsions. More specifically, a double transitional phase inversion, from oil-in-water to water-in-oil and back to oil-in-water, was observed for emulsions with CNCs and increasing amounts of DMAB (the more hydrophobic surfactant). With CNCs and CTAB, no phase inversion was induced. This work represents the first report of CNC Pickering emulsions with surfactants as well as the first CNC Pickering emulsions that can be phase inverted. The ability to surface modify CNCs in situ and tailor emulsions by adding surfactants may extend the potential of CNCs to new liquid formulations and extruded/spray-dried materials.

  15. Surfactant compositions

    SciTech Connect

    Novakovic, M.; Abend, P.G.

    1987-09-29

    A surfactant composition is described for subsequent addition to a soap slurring comprising an acyloxy alkane sulfonate salt. The sulfonate salt is present in an amount by weight of about 44 percent of about 56 percent. The polyol is present in an amount by weight of about 2 percent to about 6 percent, and water is present in an amount by weight of 26 to 36 percent. The composition constituting a solid reversible solution at ambient temperature and having a solids content of about 58 to 72 percent, whereby subsequent addition of the surfactant composition to a soap slurry results in formation of a soap/detergent bar having a smooth texture, uniform wear properties and a lack of grittiness.

  16. Surfactants in runoff water at different locations in Bandar Baru Bangi, Selangor, Malaysia.

    PubMed

    Azmi, W N F W; Latif, M T; Wahid, N B A; Razak, I S; Suratman, S

    2014-03-01

    A study has been conducted to determine the composition of surfactants in runoff water in the semi-urban area of Bandar Baru Bangi, Selangor, Malaysia. Runoff samples were collected from five different locations with contrasting functional activities and the colorimetric method was used to analyze the concentrations of surfactants as methylene blue active substances (MBAS) for anionic surfactants and as disulphine blue active substances (DBAS) for cationic surfactants. The results showed that the highest surfactant concentrations of MBAS and DBAS in runoff water were recorded in the samples collected at the residential area, with the concentrations of 3.192 ± 0.727 and 0.170 ± 0.028 μmol/L, respectively. Anionic surfactants as MBAS were found to dominate the concentration of surfactants in both runoff and rainwater. The concentrations of both anionic and cationic surfactants in runoff water were recorded as being higher than in rainwater.

  17. Removal of 226Ra and 228Ra from TENORM sludge waste using surfactants solutions.

    PubMed

    Attallah, M F; Hamed, Mostafa M; El Afifi, E M; Aly, H F

    2015-01-01

    The feasibility of using surfactants as extracting agent for the removal of radium species from TENORM sludge produced from petroleum industry is evaluated. In this investigation cationic and nonionic surfactants were used as extracting agents for the removal of radium radionuclides from the sludge waste. Two surfactants namely cetyltrimethylammonium bromide (CTAB) and Triton X-100 (TX100) were investigated as the extracting agents. Different parameters affecting the removal of both (226)Ra and (228)Ra by the two surfactants as well as their admixture were studied by the batch technique. These parameters include effect of shaking time, surfactants concentration and temperature as well as the effect of surfactants admixture. It was found that, higher solution temperature improves the removal efficiency of radium species. Combined extraction of nonionic and cationic surfactants produces synergistic effect in removal both (226)Ra and (228)Ra, where the removals reached 84% and 80% for (226)Ra and (228)Ra, respectively, were obtained using surfactants admixture.

  18. The Influence of Surfactants on the Zeta Potential of Coals

    SciTech Connect

    Marsalek, R.

    2009-07-01

    The surface of three different kinds of coal was modified by three surfactants (cationic, anionic, and non-ionic). Changes on coal surface were examined by the zeta potential technique. The influence of the dispersion of pH, concentration of surfactants, and contact time were investigated. The most significant change in zeta potential resulting from adding surfactants was observed in activated coal (hydrophobic surface, largest BET surface area). Adding the cationic surfactant led to an increase of the zeta potential, contrary to measuring done in water. The anionic surfactant decreased the value of the zeta potential; however, this change was not too remarkable. The results proved that even a very low concentration of the cationic surfactant (0.01 mmol/L) causes a remarkable change of the zeta potential. On the other hand, a similar effect was observed until the concentration of the anionic surfactant reached about 10 mmol/L. The mechanism of binding surfactants is not simple, but preferential hydrophobic interactions were discovered.

  19. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  20. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  1. Self-motion of a camphanic acid disk on water with different types of surfactants.

    PubMed

    Nakata, Satoshi; Kirisaka, Junko; Arima, Yoshie; Ishii, Toshio

    2006-10-26

    Control of the self-motion of a camphanic acid disk on water was investigated upon the addition of different kinds of surfactants (Triton X-100 and Brij58 as neutral surfactants, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and sodium dodecyl sulfate (SDS) as an anionic surfactant) to the water phase. With an increase in the concentration of surfactant, continuous motion changed to no motion via intermittent motion (repetition between motion and rest), and the concentration regions of these motions were different among these surfactants. Although the concentration regions of these motions were determined by the surface tension for neutral surfactants, they were different than those for CTAB and SDS. These characteristics of self-motion are discussed in relation to the surface tension, depending on the concentration of individual surfactants, and the hydrophilic effect of the surfactants.

  2. Estimation hydrophilic-lipophilic balance number of surfactants

    SciTech Connect

    Pawignya, Harsa; Prasetyaningrum, Aji Kusworo, Tutuk D.; Pramudono, Bambang; Dyartanti, Endah R.

    2016-02-08

    Any type of surfactant has a hydrophilic-lipophilic balance number (HLB number) of different. There are several methods for determining the HLB number, with ohysical properties of surfactant (solubility cloud point and interfacial tension), CMC methods and by thermodynamics properties (Free energy Gibbs). This paper proposes to determined HLB numbers from interfelation methods. The result of study indicated that the CMC method described by Hair and Moulik espesially for nonionic surfactant. The application of exess Gibbs free energy and by implication activity coefficient provides the ability to predict the behavior of surfactants in multi component mixtures of different concentration. Determination of HLB number by solubility and cloud point parameter is spesific for anionic and nonionic surfactant but this methods not available for cationic surfactants.

  3. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants.

    PubMed

    Goldsipe, Arthur; Blankschtein, Daniel

    2007-05-22

    In article 1 of this series, we developed a molecular-thermodynamic (MT) theory to model the micellization of mixtures containing an arbitrary number of conventional (pH-insensitive) surfactants. In this article, we extend the MT theory to model mixtures containing a pH-sensitive surfactant. The MT theory was validated by examining mixtures containing both a pH-sensitive surfactant and a conventional surfactant, which effectively behave like ternary surfactant mixtures. We first compared the predicted micellar titration data to experimental micellar titration data that we obtained for varying compositions of mixed micelles containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) mixed with either a cationic surfactant (dodecyltrimethylammonium bromide, C12TAB), a nonionic surfactant (dodecyl octa(ethylene oxide), C12E8), or an anionic surfactant (sodium dodecyl sulfate, SDS) surfactant. The MT theory accurately modeled the titration behavior of C12DAO mixed with C12E8. However, C12DAO was observed to interact more favorably with SDS and with C12TAB than was predicted by the MT theory. We also compared predictions to data from the literature for mixtures of C12DAO and SDS. Although the pH values of solutions with no added acid were modeled with only qualitative accuracy, the MT theory resulted in quantitatively accurate predictions of solution pH for mixtures containing added acid. In addition, the predicted degree of counterion binding yielded a lower bound to the experimentally measured value. Finally, we predicted the critical micelle concentration (cmc) of solutions of two pH-sensitive surfactants, tetradecyldimethylamine oxide (C14DAO) and hexadecyldimethyl betaine (C16Bet), at varying solution pH and surfactant composition. However, at the pH values considered, the pH sensitivity of C16Bet could be neglected, and it was equivalently modeled as a zwitterionic surfactant. The cmc's predicted using the MT theory agreed well with the experimental

  4. Analysis of supercooling activities of surfactants.

    PubMed

    Kuwabara, Chikako; Terauchi, Ryuji; Tochigi, Hiroshi; Takaoka, Hisao; Arakawa, Keita; Fujikawa, Seizo

    2014-08-01

    Supercooling-promoting activities (SCAs) of 25 kinds of surfactants including non-ionic, anionic, cationic and amphoteric types were examined in solutions (buffered Milli-Q water, BMQW) containing the ice nucleation bacterium (INB) Erwinia ananas, silver iodide (AgI) or BMQW alone, which unintentionally contained unidentified ice nucleators, by a droplet freezing assay. Most of the surfactants exhibited SCA in solutions containing AgI but not in solutions containing the INB E. ananas or BMQW alone. SCAs of many surfactants in solutions containing AgI were very high compared with those of previously reported supercooling-promoting substances. Cationic surfactants, hexadecyltrimethylammonium bromide (C16TAB) and hexadecyltrimethylammonium chloride (C16TAC), at concentrations of 0.01% (w/v) exhibited SCA of 11.8 °C, which is the highest SCA so far reported. These surfactants also showed high SCAs at very low concentrations in solutions containing AgI. C16TAB exhibited SCA of 5.7 °C at a concentration of 0.0005% (w/v).

  5. Distribution of surfactants along the estuarine area of Selangor River, Malaysia.

    PubMed

    Alsalahi, Murad Ali; Latif, Mohd Talib; Ali, Masni Mohd; Magam, Sami Muhsen; Wahid, Nurul Bahiyah Abd; Khan, Md Firoz; Suratman, Suhaimi

    2014-03-15

    This study aims to determine the levels of methylene blue active substances (MBAS) and ethyl violet active substances (EVAS) as anionic surfactants and of disulphine blue active substances (DBAS) as cationic surfactants in the surface microlayer (SML) around an estuarine area using colorimetric methods. The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS and EVAS) with average concentrations of 0.39 and 0.51 μmol L⁻¹, respectively. There were significant between-station differences in surfactant concentrations (p<0.05) with higher concentrations found at the stations near the sea. The concentration of surfactants was higher during the rainy season than the dry season due to the influence of runoff water. Further investigation using total organic carbon (TOC) and total organic nitrogen (TON) shows that there is a significant correlation (p<0.05) between both anionic and cationic surfactants and the TON concentration.

  6. Impact of surfactant type for ionic liquid pretreatment on enhancing delignification of rice straw.

    PubMed

    Chang, Ken-Lin; Chen, Xi-Mei; Wang, Xiao-Qin; Han, Ye-Ju; Potprommanee, Laddawan; Liu, Jing-Yong; Liao, Yu-Ling; Ning, Xun-An; Sun, Shui-Yu; Huang, Qing

    2017-03-01

    This work describes an environmentally friendly method for pretreating rice straw by using 1-Allyl-3-methylimidazolium chloride ([AMIM]Cl) as an ionic liquid (IL) assisted by surfactants. The impacts of surfactant type (including nonionic-, anionic-, cationic- and bio-surfactant) on the ionic liquid pretreatment were investigated. The bio-surfactant+IL-pretreated rice straw showed significant lignin removal (26.14%) and exhibited higher cellulose conversion (36.21%) than the untreated (16.16%) rice straw. The cellulose conversion of the rice straw pretreated with bio-surfactant+IL was the highest and the lowest was observed for pretreated with cationic-surfactant+IL. Untreated and pretreated rice straw was thoroughly characterized through SEM and AFM. In conclusion, the results provided an effective and environmental method for pretreating lignocellulosic substrates by using green solvent (ionic liquid) and biodegradable bio-surfactant.

  7. Influence of surfactants in forced dynamic dewetting.

    PubMed

    Henrich, Franziska; Fell, Daniela; Truszkowska, Dorota; Weirich, Marcel; Anyfantakis, Manos; Nguyen, Thi-Huong; Wagner, Manfred; Auernhammer, Günter K; Butt, Hans-Jürgen

    2016-09-20

    In this work we show that the forced dynamic dewetting of surfactant solutions depends sensitively on the surfactant concentration. To measure this effect, a hydrophobic rotating cylinder was horizontally half immersed in aqueous surfactant solutions. Dynamic contact angles were measured optically by extrapolating the contour of the meniscus to the contact line. Anionic (sodium 1-decanesulfonate, S-1DeS), cationic (cetyl trimethylammonium bromide, CTAB) and nonionic surfactants (C4E1, C8E3 and C12E5) with critical micelle concentrations (CMCs) spanning four orders of magnitude were used. The receding contact angle in water decreased with increasing velocity. This decrease was strongly enhanced when adding surfactant, even at surfactant concentrations of 10% of the critical micelle concentration. Plots of the receding contact angle-versus-velocity almost superimpose when being plotted at the same relative concentration (concentration/CMC). Thus the rescaled concentration is the dominating property for dynamic dewetting. The charge of the surfactants did not play a role, thus excluding electrostatic effects. The change in contact angle can be interpreted by local surface tension gradients, i.e. Marangoni stresses, close to the three-phase contact line. The decrease of dynamic contact angles with velocity follows two regimes. Despite the existence of Marangoni stresses close to the contact line, for a dewetting velocity above 1-10 mm s(-1) the hydrodynamic theory is able to describe the experimental results for all surfactant concentrations. At slower velocities an additional steep decrease of the contact angle with velocity was observed. Particle tracking velocimetry showed that the flow profiles do not differ with and without surfactant on a scales >100 μm.

  8. FT-IR and 1H NMR studies of the state of solubilized water in water-in-oil microemulsions stabilized by mixtures of single- and double-tailed cationic surfactants.

    PubMed

    Bumajdad, Ali; Madkour, Metwally; Shaaban, Ehab; El Seoud, Omar A

    2013-03-01

    The structure of solubilized water in water-in-n-heptane aggregates stabilized by mixtures of single- and double-tail quaternary ammonium surfactants, namely didodecyldimethylammonium chloride/dodecyltrimethylammonium chloride (DDAC/DTAC) or didodecyldimethylammonium bromide/dodecyltrimethylammonium bromide (DDAB/DTAB) was studied by two noninvasive techniques, (1)H NMR and FT-IR. In the former, the chemical shift data, δ(obs), were used to calculate the so-called deuterium/protium fractionation factor, φ(M), of the aggregate-solubilized water and were found to be unity. In the FT-IR study, upon increasing water/surfactant molar ratio, W, the frequency, ν(OD), of the HOD species decreases, while its full width at half height and its area increase. The results obtained from both techniques indicate that the water appears to be present as a single nano-phase and the structure varies continuously as a result of increasing W. In addition, the effect of changing the counter-ion (Br(-) or Cl(-)) on (1)H NMR and FT-IR results was investigated. In spite of the known difference in the dissociation of these counter-ions from micellar aggregates, this was found not to affect the state of solubilized water. This report gives further insight into the contradictory scientific debates on the structure of water in the polar nano-cores of microemulsions.

  9. Ternary water-in-oil microemulsions made of cationic surfactants, water, and aromatic solvents. 3. Self-diffusion studies in relation to exchange of material between droplets and percolation

    SciTech Connect

    Zana, R.; Lang, J. ); Canet, D. )

    1991-04-18

    Ternary water-in-oil microemulsions using alkylbenzyldimethylammonium chloride (alkyl = dodecyl (N12), tetradecyl (N14), and hexadecyl (N16)) surfactants and benzene or chlorobenzene as oils have been investigated by means of electrical conductivity and NMR self-diffusion. The variations of the water self-diffusion coefficient with the (water)/(surfactant) molar concentration ratio {omega} and with the volume fraction of benzene in the oil mixture in water/(benzene + chlorobenzene)/N16 microemulsions are well correlated with the changes of electrical conductivity, as expected from a model of microemulsions where the water cores of the droplets become increasingly connected above the percolation threshold. These connections, however, have a strongly dynamic character. This model permits the authors to explain the widely differing magnitudes of the changes of electrical conductivity, water self-diffusion coefficient, and rate of exchange reactants between droplets upon increasing {omega}. The self-diffusion coefficient of the oil has been found to be about half that of the bulk oil, as in studies reported by others.

  10. Mechanisms of Particle Charging by Surfactants in Nonpolar Dispersions.

    PubMed

    Lee, Joohyung; Zhou, Zhang-Lin; Alas, Guillermo; Behrens, Sven Holger

    2015-11-10

    Electric charging of colloidal particles in nonpolar solvents plays a crucial role for many industrial applications and products, including rubbers, engine oils, toners, or electronic displays. Although disfavored by the low solvent permittivity, particle charging can be induced by added surfactants, even nonionic ones, but the underlying mechanism is poorly understood, and neither the magnitude nor the sign of charge can generally be predicted from the particle and surfactant properties. The conclusiveness of scientific studies has been limited partly by a traditional focus on few surfactant types with many differences in their chemical structure and often poorly defined composition. Here we investigate the surface charging of poly(methyl methacrylate) particles dispersed in hexane-based solutions of three purified polyisobutylene succinimide polyamine surfactants with "subtle" structural variations. We precisely vary the surfactant chemistry by replacing only a single electronegative atom located at a fixed position within the polar headgroup. Electrophoresis reveals that these small differences between the surfactants lead to qualitatively different particle charging. In the respective particle-free surfactant solutions we also find potentially telling differences in the size of the surfactant aggregates (inverse micelles), the residual water content, and the electric solution conductivity as well as indications for a significant size difference between oppositely charged inverse micelles of the most hygroscopic surfactant. An analysis that accounts for the acid/base properties of all constituents suggests that the observed particle charging is better described by asymmetric adsorption of charged inverse micelles from the liquid bulk than by charge creation at the particle surface. Intramicellar acid-base interaction and intermicellar surfactant exchange help rationalize the formation of micellar ions pairs with size asymmetry.

  11. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2005-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Imbibition in an originally oil-wet 2D capillary is the fastest in the case of Alf-38 and slowest in the case of DTAB (among the surfactants studied). Force of adhesion studies and contact angle measurements show that greater wettability alteration is possible with these anionic surfactants than the cationic surfactant studied. The water imbibition rate does not increase monotonically with an increase in the surfactant concentration. A numerical model has been developed that fits the rate of imbibition. Plans for the next quarter include conducting simulation and imbibition studies.

  12. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-01-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Anionic surfactants (SS-6656, Alfoterra 35, 38, 63,65,68) have been identified which can change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil in the presence of Na{sub 2}CO{sub 3}. All the carbonate surfaces (Lithographic Limestone, Marble, Dolomite and Calcite) show similar behavior with respect to wettability alteration with surfactant 4-22. Anionic surfactants (5-166, Alfoterra-33 and Alfoterra-38 and Alfoterra-68), which lower the interfacial tension with a West Texas crude oil to very low values (<10{sup -2} nM/m), have also been identified. Plans for the next quarter include conducting wettability, mobilization, and imbibition studies.

  13. Influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays.

    PubMed

    Sánchez-Martín, M J; Dorado, M C; del Hoyo, C; Rodríguez-Cruz, M S

    2008-01-15

    Adsorption of three surfactants of different nature, Triton X-100 (TX100) (non-ionic), sodium dodecylsulphate (SDS) (anionic) and octadecyltrimethylammonium bromide (ODTMA) (cationic) by four layered (montmorillonite, illite, muscovite and kaolinite) and two non-layered (sepiolite and palygorskite) clay minerals was studied. The objective was to improve the understanding of surfactant behaviour in soils for the possible use of these compounds in remediation technologies of contaminated soils by toxic organic compounds. Adsorption isotherms were obtained using surfactant concentrations higher and lower than the critical micelle concentration (cmc). These isotherms showed different adsorption stages of the surfactants by the clay minerals, and were classified in different subgroups of the L-, S- or H-types. An increase in the adsorption of SDS and ODTMA by all clay minerals is observed up to the cmc of the surfactant in the equilibrium solution is reached. However, there was further TX100 adsorption when the equilibrium concentration was well above the cmc. Adsorption constants from Langmuir and Freundlich equations (TX100 and ODTMA) or Freundlich equation (SDS) were used to compare adsorption of different surfactants by clay minerals studied. These constants indicated the surfactant adsorption by clay minerals followed this order ODTMA>TX100>SDS. The adsorption of TX100 and ODTMA was higher by montmorillonite and illite, and the adsorption of SDS was found to be higher by kaolinite and sepiolite. Results obtained show the influence of clay mineral structure and surfactant nature on the adsorption capacity of surfactants by clays, and they indicate the interest to consider the soil mineralogical composition when one surfactant have to be selected in order to establish more efficient strategies for the remediation of soils and water contaminated by toxic organic pollutants.

  14. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  15. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  16. Thermally cleavable surfactants

    DOEpatents

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  17. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels.

    PubMed

    Kaygusuz, Hakan; Evingür, Gülşen Akın; Pekcan, Önder; von Klitzing, Regine; Erim, F Bedia

    2016-11-01

    This paper addresses the controlled variation of the mechanical properties of alginate gel beads by changing the alginate concentration or by adding different surfactants or cross-linking cations. Alginate beads containing nonionic Brij 35 or anionic sodium dodecyl sulfate (SDS) surfactants were prepared with two different types of cations (Ca(2+), Ba(2+)) as crosslinkers. Compression measurements were performed to investigate the effect of the surfactant and cation types and their concentrations on the Young's modulus of alginate beads. The Young's modulus was determined by using Hertz theory. For all types of alginate gel beads the Young's modulus showed an increasing value for increasing alginate contents. Addition of the anionic surfactant SDS increases the Young's modulus of the alginate beads while the addition of non-ionic surfactant Brij 35 leads to a decrease in Young's modulus. This opposite behavior is related to the contrary effect of both surfactants on the charge of the alginate beads. When Ba(2+) ions were used as crosslinker cation, the Young's modulus of the beads with the surfactant SDS was found to be approximately two times higher than the modulus of beads with the surfactant Brij 35. An ion specific effect was found for the crosslinking ability of divalent cations.

  18. Surfactant modified/mediated thin-layer chromatographic systems for the analysis of amino acids.

    PubMed

    Bhawani, Showkat A; Albishri, Hassan M; Khan, Ziya Ahmad; Mohamad Ibrahim, Mohamad N; Mohammad, A

    2013-01-01

    This review incorporates a large number of chromatographic systems modified by the surfactants. A large number of solvent systems and stationary phases are summarized in this paper. Three different kinds of surfactants (anionic, cationic, and nonionic) are used as modifiers for stationary phases as well as solvent systems. Surfactants are used at all the three different concentration levels (below, above, and at critical micelle concentration) where surfactants behave differently. Modifications of both stationary phases and solvent systems by surfactants produced a new generation of chromatographic systems. Microemulsion solvent systems are also incorporated in this paper. Microemulsion thin-layer chromatography is a new approach in the field of chromatography.

  19. Surfactant Modified/Mediated Thin-Layer Chromatographic Systems for the Analysis of Amino Acids

    PubMed Central

    Bhawani, Showkat A.; Albishri, Hassan M.; Mohamad Ibrahim, Mohamad N.; Mohammad, A.

    2013-01-01

    This review incorporates a large number of chromatographic systems modified by the surfactants. A large number of solvent systems and stationary phases are summarized in this paper. Three different kinds of surfactants (anionic, cationic, and nonionic) are used as modifiers for stationary phases as well as solvent systems. Surfactants are used at all the three different concentration levels (below, above, and at critical micelle concentration) where surfactants behave differently. Modifications of both stationary phases and solvent systems by surfactants produced a new generation of chromatographic systems. Microemulsion solvent systems are also incorporated in this paper. Microemulsion thin-layer chromatography is a new approach in the field of chromatography. PMID:24455427

  20. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies

  1. Gemini surfactants affect the structure, stability, and activity of ribonuclease Sa.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; Laurents, Douglas V

    2014-09-11

    Gemini surfactants have important advantages, e.g., low micromolar CMCs and slow millisecond monomer ↔ micelle kinetics, for membrane mimetics and for delivering nucleic acids for gene therapy or RNA silencing. However, as a prerequisite, it is important to characterize interactions occurring between Gemini surfactants and proteins. Here NMR and CD spectroscopies are employed to investigate the interactions of cationic Gemini surfactants with RNase Sa, a negatively charged ribonuclease. We find that RNase Sa binds Gemini surfactant monomers and micelles at pH values above 4 to form aggregates. Below pH 4, where the protein is positively charged, these aggregates dissolve and interactions are undetectable. Thermal denaturation experiments show that surfactant lowers RNase Sa's conformational stability, suggesting that surfactant binds the protein's denatured state preferentially. Finally, Gemini surfactants were found to bind RNA, leading to the formation of large complexes. Interestingly, Gemini surfactant binding did not prevent RNase Sa from cleaving RNA.

  2. Gemini ester quat surfactants and their biological activity.

    PubMed

    Łuczyński, Jacek; Frąckowiak, Renata; Włoch, Aleksandra; Kleszczyńska, Halina; Witek, Stanisław

    2013-03-01

    Cationic gemini surfactants are an important class of surface-active compounds that exhibit much higher surface activity than their monomeric counterparts. This type of compound architecture lends itself to the compound being easily adsorbed at interfaces and interacting with the cellular membranes of microorganisms. Conventional cationic surfactants have high chemical stability but poor chemical and biological degradability. One of the main approaches to the design of readily biodegradable and environmentally friendly surfactants involves inserting a bond with limited stability into the surfactant molecule to give a cleavable surfactant. The best-known example of such a compound is the family of ester quats, which are cationic surfactants with a labile ester bond inserted into the molecule. As part of this study, a series of gemini ester quat surfactants were synthesized and assayed for their biological activity. Their hemolytic activity and changes in the fluidity and packing order of the lipid polar heads were used as the measures of their biological activity. A clear correlation between the hemolytic activity of the tested compounds and their alkyl chain length was established. It was found that the compounds with a long hydrocarbon chain showed higher activity. Moreover, the compounds with greater spacing between their alkyl chains were more active. This proves that they incorporate more easily into the lipid bilayer of the erythrocyte membrane and affect its properties to a greater extent. A better understanding of the process of cell lysis by surfactants and of their biological activity may assist in developing surfactants with enhanced selectivity and in widening their range of application.

  3. [Sorption and mechanism of surfactants on bentonite in combined pollution].

    PubMed

    Sun, Xiao-Hui; Lu, Ying-Ying; Chen, Shu-Guang; Li, Ling-Jian; Shen, Xue-You

    2007-04-01

    Sorption of cationic surfactant cetyl pyridinium chloride (CPC), anionic surfactant sodium dodecylbenzene sulfonate (SDBS) and nonionic surfactant Triton X-100 (TX-100) on bentonite was studied. The influences of cation-exchange capacity (CEC), temperature and salinity on the sorption of CPC were also discussed. The results indicate that the sorption of CPC on Na-bentonite is greater than that of TX-100 and SDBS, and SDBS hardly shows any sorption. CPC is adsorbed to Na-bentonite through a combination of hydrophobic bonding and cation-exchange. While TX-100 is adsorbed to Na-bentonite via the formation of an adsorption layer of twain surfactant molecule and hydrogenolysis of silicon-oxygen surface of bentonite and TX-100. The amount of SDBS adsorbed on Ca-bentonite increases with increasing surfactant concentration, reaching a maximum at 1.5 critical micelle concentration (CMC), and then decreases with increasing surfactant loading. The mechanism of the retention appears to be formation of a sparingly soluble Ca-SDBS species, and dissolution in the micelle. The amount of CPC adsorbed on bentonite decreases with increasing temperature, and increases with increasing CEC. NaCl can enhance the sorption of CPC on bentonite.

  4. Solution properties and electrospinning of phosphonium gemini surfactants.

    PubMed

    Hemp, Sean T; Hudson, Amanda G; Allen, Michael H; Pole, Sandeep S; Moore, Robert B; Long, Timothy E

    2014-06-14

    Bis(diphenylphosphino)alkanes quantitatively react with excess 1-bromododecane to prepare novel phosphonium gemini surfactants with spacer lengths ranging from 2 to 4 methylenes (12-2/3/4-12P). Dodecyltriphenylphosphonium bromide (DTPP), a monomeric surfactant analog, was readily water soluble, however, in sharp contrast, phosphonium gemini surfactants were poorly soluble in water due to two hydrophobic tails and relatively hydrophobic cationic head groups containing phenyl substituents. Isothermal titration calorimetry did not reveal a measurable critical micelle concentration for the 12-2-12P phosphonium gemini surfactant in water at 25 °C. Subsequent studies in 50/50 v/v water-methanol at 25 °C showed a CMC of 1.0 mM for 12-2-12P. All phosphonium gemini surfactants effectively complexed nucleic acids, but failed to deliver nucleic acids in vitro to HeLa cells. The solution behavior of phosphonium gemini surfactants was investigated in chloroform, which is an organic solvent where reverse micellar structures are favored. Solution rheology in chloroform explored the solution behavior of the phosphonium gemini surfactants compared to DTPP. The 12-2-12P and 12-3-12P gemini surfactants were successfully electrospun from chloroform to generate uniform fibers while 12-4-12P gemini surfactant and DTPP only electrosprayed to form droplets.

  5. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  6. Peroxyoxalate chemiluminescence enhanced by oligophenylenevinylene fluorophores in the presence of various surfactants.

    PubMed

    Motoyoshiya, Jiro; Takigawa, Setsuko

    2014-11-01

    The effect of several surfactants on peroxyoxalate chemiluminescence (PO-CL) using oligophenylenevinylene fluorophores was investigated. Among several oligophenylenevinylenes consisting of stilbene units, linearly conjugated ones, such as distyrylbenzene and distyrylstilbene, effectively enhanced PO-CL efficiency. Various effects of anionic, cationic, amphoteric and non-ionic surfactants on the CL efficiency of PO-CL were determined using three oxalates and the distyrylbenzene fluorophore. Anionic and non-ionic surfactants effectively enhanced CL efficiency, in contrast to the negative effect of cationic and amphoteric surfactants. Non-ionic surfactants were also effective in CL reactions of oxalates bearing dodecyl ester groups by the hydrophobic interaction between their alkyl chains. Considering these results, the surfactants not only increase the concentrations of water-insoluble interacting species in the hydrophobic micelle cores, but also control rapid degradation of the oxalates by alkaline hydrolysis.

  7. Surfactants in atmospheric aerosols and rainwater around lake ecosystem.

    PubMed

    Razak, Intan Suraya; Latif, Mohd Talib; Jaafar, Shoffian Amin; Khan, Md Firoz; Mushrifah, Idris

    2015-04-01

    This study was conducted to determine the composition of surfactants in atmospheric aerosols and rainwater in the vicinity of Lake Chini, Malaysia. Samples of atmospheric aerosol and rainwater were collected between March and September 2011 using a high volume air sampler (HVAS) and glass bottles equipped with funnel. Colorimetric analysis was undertaken to determine the concentration of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as disulphine blue active substances (DBAS). The water-soluble ionic compositions were determined using inductively coupled plasma mass spectrometry for cations (Na, K, Mg and Ca) and ion chromatography equipped with a conductivity detector for anions (F(-), Cl(-), NO3(-), and SO4(2-)) and the Nessler Method was used to obtain the NH4(+) concentrations. The source apportionment of MBAS and DBAS in atmospheric aerosols was identified using a combination of principal component analysis (PCA) and multiple linear regression (MLR). The results revealed that the concentrations of surfactants in atmospheric aerosols and rainwater were dominated by anionic surfactants as MBAS. The concentration of surfactants as MBAS and DBAS was dominated in fine mode compared to coarse mode aerosols. Using PCA/MLR analysis, two major sources of atmospheric surfactants to Lake Chini were identified as soil dust (75 to 93%) and biomass burning (2 to 22%).

  8. Friction Control of a Gel by Electric Field in Ionic Surfactant Solution

    NASA Astrophysics Data System (ADS)

    Masakazu Takata,; Tetsuo Yamaguchi,; Masao Doi,

    2010-06-01

    We observed that the frictional force between acrylamide gel and silicon dioxide substrate is reduced upon application of electric voltage if the gel is swollen with anionic surfactant (sodium dodecyl sulfate). The effect was not seen in cationic surfactant. We conjecture that the reduction is due to formation of a lubrication layer by electric field at the gel/solid interface.

  9. DILUTE SURFACTANT METHODS FOR CARBONATE FORMATIONS

    SciTech Connect

    Kishore K. Mohanty

    2004-10-01

    There are many carbonate reservoirs in US (and the world) with light oil and fracture pressure below its minimum miscibility pressure (or reservoir may be naturally fractured). Many carbonate reservoirs are naturally fractured. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). Thermal and miscible tertiary recovery techniques are not effective in these reservoirs. Surfactant flooding (or huff-n-puff) is the only hope, yet it was developed for sandstone reservoirs in the past. The goal of this research is to evaluate dilute (hence relatively inexpensive) surfactant methods for carbonate formations and identify conditions under which they can be effective. Simulation studies indicate that both wettability alteration and gravity-driven flow play significant role in oil recovery from fractured carbonates. Anionic surfactants (Alfoterra 35, 38) recover about 55% of the oil in about 150 days by imbibition driven by wettability alteration and low tension in the core-scale. Anionic surfactant, Alfoterra-68, recovers about 40% of the oil by lower tension aided gravity-driven imbibition in the core-scale. Cationic surfactant, DTAB recovers about 35% of the oil. Plans for the next quarter include conducting simulation and imbibition studies.

  10. Probing dynamics and mechanism of exchange process of quaternary ammonium dimeric surfactants, 14-s-14, in the presence of conventional surfactants.

    PubMed

    Liu, Jun; Jiang, Yan; Chen, Hong; Mao, Shi Zhen; Du, You Ru; Liu, Mai Li

    2012-12-27

    In this Article, we investigated effects of different types of conventional surfactants on exchange dynamics of quaternary ammonium dimeric surfactants, with chemical formula C(14)H(29)N(+)(CH(3))(2)- (CH(2))(s)-N(+)(CH(3))(2)C(14)H(29)·2Br(-), or 14-s-14 for short. Two nonionic surfactants, TritonX-100 (TX-100) and polyethylene glycol (23) laurylether (Brij-35), and one cationic surfactant, n-tetradecyltrimethyl ammonium bromide (TTAB), and one ionic surfactant, sodium dodecyl sulfate (SDS) were chosen as typical conventional surfactants. Exchange rates of 14-s-14 (s = 2, 3, and 4) between the micelle form and monomer in solution were detected by two NMR methods: one-dimensional (1D) line shape analysis and two-dimensional (2D) exchange spectroscopy (EXSY). Results show that the nonionic surfactants (TX-100 and Brij-35), the cationic surfactant (TTAB), and the ionic surfactant (SDS) respectively accelerated, barely influenced, and slowed the exchange rate of 14-s-14. The effect mechanism was investigated by the self-diffusion experiment, relaxation time measurements (T(2)/T(1)), the fluorescence experiment (I(1)/I(3)) and observed chemical shift variations. Results reveal that, nonionic conventional surfactants (TX-100 and Brij-35) loosened the molecule arrangement and decreased hydrophobic interactions in the micelle, and thus accelerated the exchange rate of 14-s-14. The cationic conventional surfactant (TTAB) barely changed the molecule arrangement and thus barely influenced the exchange rate of 14-s-14. The ionic conventional surfactant (SDS) introduced the electrostatic attraction effect, tightened the molecule arrangement, and increased hydrophobic interactions in the micelle, and thus slowed down the exchange rate of 14-s-14. Additionally, the two-step exchange mechanism of 14-s-14 in the mixed solution was revealed through interesting variation tendencies of exchange rates of 14-s-14.

  11. Alkali-cation affinities of polyoxyethylene dodecylethers and helical conformations of their cationized molecules studied by electrospray mass spectrometry.

    PubMed

    Yokoyama, Yukio; Hirajima, Rui; Morigaki, Ken; Yamaguchi, Yoshitaka; Ueda, Kazuyoshi

    2007-11-01

    Relative alkali-cation affinity of polyoxyethylene (POE) dodecylethers in gas phase was studied by electrospray ionization (ESI) mass spectrometry using dodecylether-poly-ethoxylate (C(12)EO:n, "n" denotes ethyleneoxide unit number) nonionic surfactants, and possible helical conformations of the cationized molecules were demonstrated. The alkali-cation affinity highly depended on the cation diameters. The mass spectra of C(12)EO:8 cationized by alkali-metal ions were dominated by potassiated molecules. The results indicated that the POE moiety could have specific affinity to K(+) ions based on a host-guest interaction between POE helix and potassium ions. This is very similar to the relationships between 18-crown-6 and K(+). The ESI mass spectra exhibited the multiply cationized C(12)EO:n in addition to the singly cationized molecules. The critical EO unit numbers necessary for producing the multiply-charged cationized molecules also depended on the cation diameters. In addition, the POE surfactants highly preferred alkali cations to proton. The results were strongly supported by molecular mechanics/dynamics calculations. A helical conformation of the POE moiety of C(12)EO:15 including two K(+) ions gave a potential minimum, while a lowest energy structure of the protonated molecule took irregular conformations due to the formation of local hydrogen bonds.

  12. Surfactant effect on functionalized carbon nanotube coated snowman-like particles and their electro-responsive characteristics

    SciTech Connect

    Zhang, Ke; Liu, Ying Dan; Choi, Hyoung Jin

    2012-10-15

    The core–shell structured snowman-like (SL) microparticles coated by functionalized multi-walled carbon nanotube (MWNT) were prepared in the presence of different surfactants including cationic surfactant-cetyl trimethylammonium bromide (CTAB) and anionic surfactant-sodium lauryl sulfate (SDS). The effect of surfactants on adsorption onto SL particles was characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and conductivity. The cationic surfactant is found to be more effective than anionic surfactant for helping nanotube adsorbed onto microparticle due to the presence of electrostatic interaction between the functionalized MWNT and the surfactant. Furthermore, the MWNT/SL particles dispersed in silicone oil exhibited a typical fibril structure of the electrorheological characteristics under an applied electric field observed by an optical microscope (OM), in which the state of nanotubes wrapped on the particles strongly affects their electro-responsive characteristics.

  13. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  14. The Kidney and Acid-Base Regulation

    ERIC Educational Resources Information Center

    Koeppen, Bruce M.

    2009-01-01

    Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…

  15. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  16. Interaction between cationic agents and small interfering RNA and DNA molecules

    NASA Astrophysics Data System (ADS)

    Unksov, I. N.; Slita, A. V.; Petrova, A. V.; Pereviazko, I.; Bakulev, V. M.; Rolich, V. I.; Bondarenko, A. B.; Kasyanenko, N. A.

    2016-11-01

    Azobenzene containing surfactant AzoTAB was used for investigation of binding in cationic- agent + nucleic acid in NaCl salt aqueous solutions. Two nucleic acids, macromolecular DNA and small interfering RNA, were examined upon the interaction with the surfactant. For DNA the interaction was studied using spectral methods and the methods of viscometry and flow birefringence measurement. For siRNA the possibility of surfactant-based delivery was checked in vitro.

  17. Synergistic effect of low-frequency ultrasound and surfactants on skin permeability.

    PubMed

    Tezel, Ahmet; Sens, Ashley; Tuchscherer, Joe; Mitragotri, Samir

    2002-01-01

    Low-frequency ultrasound (20 kHz) and surfactants have been individually shown to enhance transdermal drug transport. In this study, we investigated the synergistic effect of ultrasound and surfactants on transdermal drug delivery. Surfactants with different head group chemistries including anionic, cationic, and nonionic with varying tail lengths (8-16-carbon atoms) were studied. We found that surfactants possessing anionic and cationic head groups were more potent than those possessing nonionic head groups in increasing skin conductivity in the presence of ultrasound. Furthermore, for surfactants possessing the same head group, those with a 14-carbon tail length were found to be most effective in enhancing skin permeability. The data presented in this report show that ultrasound and surfactants synergistically enhance skin permeability. Two mechanisms are shown to play a role in this synergistic effect. First, ultrasound enhances surfactant delivery (enhanced delivery) into the skin and, second, ultrasound disperses surfactant (enhanced dispersion) within the skin. In general, surfactants that are potent enhancers by themselves are potent enhancers in the presence of ultrasound as well. We performed imaging experiments to assess the effect of ultrasound on delivery of a model permeant, sulforhodamine B, into the skin. These experiments show that ultrasound enhances surfactant delivery and dispersion in the skin.

  18. Surfactant Enhanced DNAPL Removal

    DTIC Science & Technology

    2001-08-01

    or the permeability contrast (i.e., degree of heterogeneity) that is present in the DNAPL zone. To solubilize DNAPL with surfactants, a sufficient...with respect to the effects of permeability and heterogeneity upon the costs of SEAR: as permeability decreases and/or the degree of heterogeneity...not be an issue for surfactant recovery at all sites. The degree to which MEUF will concentrate the calcium is a function of the surfactant itself

  19. A Function of Lung Surfactant Protein SP-B

    NASA Astrophysics Data System (ADS)

    Longo, M. L.; Bisagno, A. M.; Zasadzinski, J. A. N.; Bruni, R.; Waring, A. J.

    1993-07-01

    The primary function of lung surfactant is to form monolayers at the alveolar interface capable of lowering the normal surface tension to near zero. To accomplish this process, the surfactant must be capable of maintaining a coherent, tightly packed monolayer that avoids collapse during expiration. The positively charged amino-terminal peptide SP-B1-25 of lung surfactant-specific protein SP-B increases the collapse pressure of an important component of lung surfactant, palmitic acid (PA), to nearly 70 millinewtons per meter. This alteration of the PA isotherms removes the driving force for "squeeze-out" of the fatty acids from the primarily dipalmitoylphosphatidylcholine monolayers of lung surfactant. An uncharged mutant of SP-B1-25 induced little change in the isotherms, suggesting that a specific charge interaction between the cationic peptide and the anionic lipid is responsible for the stabilization. The effect of SP-B1-25 on fatty acid isotherms is remarkably similar to that of simple poly-cations, suggesting that such polymers might be useful as components of replacement surfactants for the treatment of respiratory distress syndrome.

  20. [Acute toxicity of different type pesticide surfactants to Daphnia magna].

    PubMed

    Li, Xiu-huan; Li, Hua; Chen, Cheng-yu; Li, Jian-tao; Liu, Feng

    2013-08-01

    By using the standard test methods in Experimental Guideline for Environmental Safety Evaluation of Chemical Pesticide to aquatic organisms, a comparative study was conducted on the acute toxicity of 39 nonionic, 6 anionic, and 3 cationic surfactants to Daphnia magna. The acute toxicity of three cationic surfactants 1427, 1227 and C8-10 to D. magna belonged to virulent level, and the toxicity of 1427 was the highest, with the EC50 value being 0.97 x 10(-2) mg x L(-1). The acute toxicity of nonionic surfactants polyoxyethylene ether castor oil EL, Tween, and Span emulsifiers belonged to low level, but the toxicity of alkylphenol polyoxyethylene ether and fatty alcohol polyoxyethylene ether surfactants was relatively high, of which, AEO-7 and AEO-5 displayed high toxicity, with the EC50 value being 0.82 and 0.97 mg x L(-1), respectively. In these surfactants, the more liposolubility, the higher the toxicity was. Most of the anionic surfactants were medium in toxicity, but the acute toxicity of NNO belonged to high toxicity, with the EC50 value being 0.17 mg x L(-1).

  1. Towards unravelling surfactant transport

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Panda, Satyananda

    2015-11-01

    Surfactant transport arises in many natural or industrial settings. Examples include lipid tear layers in the eye, pulmonary surfactant replacement therapy, or industrial coating flows. Flows driven by the surface tension gradient which arises as a consequence of surfactant concentration inhomogeneity, also known as Marangoni-driven flows, have attracted the attention of fluid dynamists for several decades and has led to the development of sophisticated models and the undeniable advancement of the understanding of such flows. Yet, experimental confirmation of these models has been hampered by the difficulty in reliably and accurately measuring the surfactant concentration and its temporal evolution. In this contribution, we propose a methodology which may help shed some light on surfactant transport at the surface of thin liquid films. The surface stress induced by surfactant concentration induces a flow at the free surface which is visible and measurable. In the context of thin film flows for which the lubrication approximation hold, we demonstrate how the knowledge of this free surface flow field provides sufficient information to reconstruct the surfactant tension field. From the surface tension and an assumed equation of state, the local surfactant concentration can also be calculated and other transport parameters such as the surfactant surface diffusivity indirectly inferred. In this contribution, the proposed methodology is tested with synthetic data generated by the forward solution of the governing partial differential equations in order to illustrate the feasibility of the algorithm and highlight numerical challenges.

  2. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  3. Effect of surfactants on preformed fibrils of human serum albumin.

    PubMed

    Pandey, Nitin Kumar; Ghosh, Sudeshna; Dasgupta, Swagata

    2013-08-01

    The central reason behind pathogenesis of various neurological disorders is usually attributed to the accumulation of aggregated proteins particularly in fibrillar morphology in vivo. One of the plausible remedial treatments for such disorders may be to identify molecules which are capable of either preventing formation of fibrils or disintegrating formed fibrils. The effect of cationic surfactants cetyl trimethylammonium bromide (CTAB), dodecyl trimethylammonium bromide (DTAB) and the anionic surfactant sodium dodecyl sulfate (SDS) in vitro toward mature HSA fibrils has been investigated. The process has been monitored using ThT fluorescence, FTIR, circular dichroism, fluorescence microscopy and HRTEM. It was observed that the micelles of cationic surfactants were able to effectively disrupt the HSA fibrils, among which CTAB was found to be the most potent.

  4. Partitioning of hydrophobic pesticides within a soil-water-anionic surfactant system.

    PubMed

    Wang, Peng; Keller, Arturo A

    2009-02-01

    Surfactants can be added to pesticide-contaminated soils to enhance the treatment efficiency of soil washing. Our results showed that pesticide (atrazine and diuron) partitioning and desorbability within a soil-water-anionic surfactant system is soil particle-size dependent and is significantly influenced by the presence of anionic surfactant. Anionic surfactant (linear alkylbenzene sulphonate, LAS) sorption was influenced by its complexation with both the soluble and exchangeable divalent cations in soils (e.g. Ca2+, Mg2+). In this study, we propose a new concept: soil system hardness which defines the total amount of soluble and exchangeable divalent cations associated with a soil. Our results showed that anionic surfactant works better with soils having lower soil system hardness. It was also found that the hydrophobic organic compounds (HOCs) sorbed onto the LAS-divalent cation precipitate, resulting in a significant decrease in the aqueous concentration of HOC. Our results showed that the effect of exchangeable cations and sorption of HOC onto the surfactant precipitates needs to be considered to accurately predict HOC behavior within soil-water-anionic surfactant systems.

  5. Dilute Surfactant Methods for Carbonate Formations

    SciTech Connect

    Kishore K. Mohanty

    2006-02-01

    There are many fractured carbonate reservoirs in US (and the world) with light oil. Waterflooding is effective in fractured reservoirs, if the formation is water-wet. Many fractured carbonate reservoirs, however, are mixed-wet and recoveries with conventional methods are low (less than 10%). The process of using dilute anionic surfactants in alkaline solutions has been investigated in this work for oil recovery from fractured oil-wet carbonate reservoirs both experimentally and numerically. This process is a surfactant-aided gravity drainage where surfactant diffuses into the matrix, lowers IFT and contact angle, which decrease capillary pressure and increase oil relative permeability enabling gravity to drain the oil up. Anionic surfactants have been identified which at dilute concentration of 0.05 wt% and optimal salinity can lower the interfacial tension and change the wettability of the calcite surface to intermediate/water-wet condition as well or better than the cationic surfactant DTAB with a West Texas crude oil. The force of adhesion in AFM of oil-wet regions changes after anionic surfactant treatment to values similar to those of water-wet regions. The AFM topography images showed that the oil-wetting material was removed from the surface by the anionic surfactant treatment. Adsorption studies indicate that the extent of adsorption for anionic surfactants on calcite minerals decreases with increase in pH and with decrease in salinity. Surfactant adsorption can be minimized in the presence of Na{sub 2}CO{sub 3}. Laboratory-scale surfactant brine imbibition experiments give high oil recovery (20-42% OOIP in 50 days; up to 60% in 200 days) for initially oil-wet cores through wettability alteration and IFT reduction. Small (<10%) initial gas saturation does not affect significantly the rate of oil recovery in the imbibition process, but larger gas saturation decreases the oil recovery rate. As the core permeability decreases, the rate of oil recovery reduces

  6. Ultrafiltration of surfactant and aromatic/surfactant solutions using ceramic membranes

    SciTech Connect

    Gadelle, F.; Koros, W.J.; Schechter, R.S.

    1996-10-01

    Rejection and permeate flux taken together establish the efficiency of an ultrafiltration separation. The controllable factors that may influence the efficiency are systematically studied. These factors include transmembrane pressure, recirculation rate, membrane pore size, and solute and surfactant structure and concentration. Experiments carried out using both cationic and nonionic surfactants show that rejection decreases and permeate flux increases with membranes of increasing pore sizes. However, for the large pore size membrane (200 {angstrom}), it is also observed that rejection increases and permeate flux decreases as the filtration proceeds. These unexpected results suggest that micelles penetrate and accumulate into the larger pores, thereby reducing the effective membrane pore size. Depending on the molecular structure and concentration of the surfactant, rejection as high as 99.9% is achieved with a ceramic membrane having 65 {angstrom} pores. Permeate fluxes between 30 and 70% of pure water are observed. The addition of a solute tends to improve surfactant rejection and to decrease the permeate flux. Solute rejection increases with surfactant concentration and hydrophobicity. Solubilization isotherms determined here by ultrafiltration are shown to be in agreement with isotherms obtained with head space gas chromatography.

  7. SURFACTANTS IN LUBRICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are one of the most widely applied materials by consumers and industry. The application areas for surfactants span from everyday mundane tasks such as cleaning, to highly complex processes involving the formulation of pharmaceuticals, foods, pesticides, lubricants, etc. Even though sur...

  8. SURFACTANTS AND SUBSURFACE REMEDIATION

    EPA Science Inventory

    Because of the limitations of pump-and-trat technology, attention is now focused on the feasibility of surfactant use to increase its efficiency. Surfactants have been studied for use in soil washing and enhanced oil recovery. Although similarities exist between the application...

  9. Photosensitive surfactants: Micellization and interaction with DNA

    NASA Astrophysics Data System (ADS)

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-01

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  10. Photosensitive surfactants: micellization and interaction with DNA.

    PubMed

    Zakrevskyy, Yuriy; Roxlau, Julian; Brezesinski, Gerald; Lomadze, Nino; Santer, Svetlana

    2014-01-28

    Recently, photosensitive surfactants have re-attracted considerable attention. It has been shown that their association with oppositely charged biologically important polyelectrolytes, such as DNA or microgels, can be efficiently manipulated simply by light exposure. In this article, we investigate the self-assembly of photosensitive surfactants as well as their interactions with DNA by calorimetric and spectroscopic methods. Critical micelle concentration (CMC), standard micellization enthalpy, entropy, and Gibbs energy were determined in different conditions (ionic strengths and temperatures) for a series of cationic surfactants with an azobenzene group in their tail. It is shown, that aggregation forces of photosensitive units play an important role in the micellization giving the major contribution to the micellization enthalpy. The onset of the aggregation can be traced from shift of the absorption peak position in the UV-visible spectrum. Titration UV-visible spectroscopy is used as an alternative, simple, and sensitive approach to estimate CMC. The titration UV-visible spectroscopy was also employed to investigate interactions (CAC: critical aggregation concentration, precipitation, and colloidal stabilization) in the DNA-surfactant complex.

  11. Characterization and Control of Surfactant-Mediated Norovirus Interactions

    PubMed Central

    Mertens, Brittany S.; Velev, Orlin D.

    2015-01-01

    Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles. Increasing the concentration of these surfactants beyond their critical micelle concentration leads to virus capsid disassembly and breakdown of aggregates. Non-ionic surfactants, however, had little effect on virus interactions and likely stabilized them additionally in suspension. The data were interpreted on the basis of simple models for surfactant binding and re-charging of the virus capsid. We used zeta potential data to characterize virus surface charge and interpret the mechanisms behind these demonstrated surfactant-virus interactions. The fundamental understanding and control of these interactions will aid in practical formulations for virus inactivation and removal from contaminated surfaces. PMID:26378627

  12. Treatment of the Thylakoid Membrane with Surfactants 1

    PubMed Central

    Markwell, John P.; Thornber, J. Philip

    1982-01-01

    Treatment of higher plant (Nicotiana tabacum L. var. Samsun) chloroplast thylakoid membranes with surfactants results in a shift of the chlorophyll a absorption maximum in the red spectral region from its in vivo value of 678.5 nanometers to shorter wavelengths. The magnitude of this shift is correlated with membrane disruption, and is not necessarily due to the release of pigment from pigment-protein complexes present in the membrane. Membrane disruption has been measured by the amount of pigment in the supernatant fraction after centrifugation of surfactant treated membranes. For an equivalent amount of disruption, the extent of the blue-shift is influenced by the ionic nature of the surfactant: anionic surfactants cause small shifts, cationic surfactants cause the largest (∼10 nanometers) shifts, and nonionic surfactants produce intermediate shifts. The wavelength of maximum absorbance of chlorophyll a in the red region is a convenient criterion for assessing the potential utility of different surfactants for studies on the structure, composition and function of higher plant thylakoid membranes. PMID:16662547

  13. Rheology of cellulose nanofibrils in the presence of surfactants.

    PubMed

    Quennouz, Nawal; Hashmi, Sara M; Choi, Hong Sung; Kim, Jin Woong; Osuji, Chinedum O

    2016-01-07

    Cellulose nanofibrils (CNFs) present unique opportunities for rheology modification in complex fluids. Here we systematically consider the effect of ionic and non-ionic surfactants on the rheology of dilute CNF suspensions. Neat suspensions are transparent yield-stress fluids which display strong shear thinning and power-law dependence of modulus on concentration, G' ∼ c(2.1). Surfactant addition below a critical mass concentration cc produces an increase in the gel modulus with retention of optical clarity. Larger than critical concentrations induce significant fibril aggregation leading to the loss of suspension stability and optical clarity, and to aggregate sedimentation. The critical concentration was the lowest for a cationic surfactant (DTAB), cc ≈ 0.08%, while suspension stability was retained for non-ionic surfactants (Pluronic F68, TX100) at concentrations up to 8%. The anionic surfactant SDS led to a loss of stability at cc ≈ 1.6% whereas suspension stability was not compromised by anionic SLES up to 8%. Dynamic light scattering data are consistent with a scenario in which gel formation is driven by micelle-nanofibril bridging mediated by associative interactions of ethoxylated surfactant headgroups with the cellulose fibrils. This may explain the strong difference between the properties of SDS and SLES-modified suspensions. These results have implications for the use of CNFs as a rheology modifier in surfactant-containing systems.

  14. The interfacial interactions of Tb-doped silica nanoparticles with surfactants and phospholipids revealed through the fluorescent response.

    PubMed

    Bochkova, Olga D; Mustafina, Asiya R; Mukhametshina, Alsu R; Burilov, Vladimir A; Skripacheva, Viktoriya V; Zakharova, Lucia Ya; Fedorenko, Svetlana V; Konovalov, Alexander I; Soloveva, Svetlana E; Antipin, Igor S

    2012-04-01

    The quenching effect of dyes (phenol red and bromothymol blue) on Tb(III)-centered luminescence enables to sense the aggregation of cationic and anionic surfactants near the silica surface of Tb-doped silica nanoparticles (SN) in aqueous solutions. The Tb-centered luminescence of non-decorated SNs is diminished by the inner filter effect of both dyes. The decoration of the silica surface by cationic surfactants induces the quenching through the energy transfer between silica coated Tb(III) complexes and dye anions inserted into surfactant aggregates. Thus the distribution of surfactants aggregates at the silica/water interface and in the bulk of solution greatly affects dynamic quenching efficiency. The displacement of dye anions from the interfacial surfactant adlayer by anionic surfactants and phospholipids is accompanied by the "off-on" switching of Tb(III)-centered luminescence.

  15. Absorption, fluorescence, and acid-base equilibria of rhodamines in micellar media of sodium dodecyl sulfate

    NASA Astrophysics Data System (ADS)

    Obukhova, Elena N.; Mchedlov-Petrossyan, Nikolay O.; Vodolazkaya, Natalya A.; Patsenker, Leonid D.; Doroshenko, Andrey O.; Marynin, Andriy I.; Krasovitskii, Boris M.

    2017-01-01

    Rhodamine dyes are widely used as molecular probes in different fields of science. The aim of this paper was to ascertain to what extent the structural peculiarities of the compounds influence their absorption, emission, and acid-base properties under unified conditions. The acid-base dissociation (HR+ ⇄ R + H+) of a series of rhodamine dyes was studied in sodium n-dodecylsulfate micellar solutions. In this media, the form R exists as a zwitterion R±. The indices of apparent ionization constants of fifteen rhodamine cations HR+ with different substituents in the xanthene moiety vary within the range of pKaapp = 5.04 to 5.53. The distinct dependence of emission of rhodamines bound to micelles on pH of bulk water opens the possibility of using them as fluorescent interfacial acid-base indicators.

  16. Coacervation with surfactants: From single-chain surfactants to gemini surfactants.

    PubMed

    Zhao, Weiwei; Wang, Yilin

    2017-01-01

    Coacervation is a spontaneous process during which a colloidal dispersion separates into two immiscible liquid phases: a colloid-rich liquid phase in equilibrium with a diluted phase. Coacervation is usually divided into simple coacervation and complex coacervation according to the number of components. Surfactant-based coacervation normally contains traditional single-chain surfactants. With the development of surfactants, gemini surfactants with two amphiphilic moieties have been applied to form coacervation. This review summarizes the development of simple coacervation and complex coacervation in the systems of single-chain surfactants and gemini surfactants. Simple coacervation in surfactant solutions with additives or at elevated temperature and complex coacervation in surfactant/polymer mixtures by changing charge densities, molecular weight, ionic strength, pH, or temperature are reviewed. The comparison between gemini surfactants and corresponding monomeric single-chain surfactants reveals that the unique structures of gemini surfactants endow them with higher propensity to generate coacervation.

  17. Surfactants in the environment.

    PubMed

    Ivanković, Tomislav; Hrenović, Jasna

    2010-03-01

    Surfactants are a diverse group of chemicals that are best known for their wide use in detergents and other cleaning products. After use, residual surfactants are discharged into sewage systems or directly into surface waters, and most of them end up dispersed in different environmental compartments such as soil, water or sediment. The toxic effects of surfactants on various aquatic organisms are well known. In general, surfactants are present in the environment at levels below toxicity and in Croatia below the national limit. Most surfactants are readily biodegradable and their amount is greatly reduced with secondary treatment in wastewater treatment plants. The highest concern is the release of untreated wastewater or wastewater that has undergone primary treatment alone. The discharge of wastewater polluted with massive quantities of surfactants could have serious effects on the ecosystem. Future studies of surfactant toxicities and biodegradation are necessary to withdraw highly toxic and non-biodegradable compounds from commercial use and replace them with more environmentally friendly ones.

  18. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  19. pH-Sensitive surfactants from lysine: assessment of their cytotoxicity and environmental behavior.

    PubMed

    Colomer, Aurora; Pinazo, Aurora; García, Maria Teresa; Mitjans, Montserrat; Vinardell, M Pilar; Infante, Maria Rosa; Martínez, Verónica; Pérez, Lourdes

    2012-04-10

    The toxicity and environmental behavior of new pH-sensitive surfactants from lysine are presented. Three different chemical structures are studied: surfactants with one amino acid and one alkyl chain, surfactants with two amino acids on the polar head and one alkyl chain, and gemini surfactants. The pH sensitivity of these compounds can be tuned by modifying their chemical structures. Cytotoxicity has been evaluated using erythrocytes and fibroblast cells. The toxic effects against these cells depend on the hydrophobicity of the molecules as well as their cationic charge density. The effect of hydrophobicity and cationic charge density on toxicity is different for each type of cells. For erythrocytes, the toxicity increases as hydrophobicity and charge density increases. Nevertheless, for fibroblasts cationic charge density affects cytotoxicity in the opposite way: the higher charge density, the lower the toxicity. The effect of the pH on hemolysis has been evaluated in detail. The aquatic toxicity was established using Daphnia magna . All surfactants yielded EC(50) values considerably higher than that reported for cationic surfactants based on quaternary ammonium groups. Finally, their biodegradability was evaluated using the CO(2) headspace test (ISO 14593). These lysine derivatives showed high levels of biodegradation under aerobic conditions and can be classified as "readily biodegradable compounds".

  20. The role of acid-base effects on particle charging in apolar media.

    PubMed

    Gacek, Matthew Michael; Berg, John C

    2015-06-01

    The creation and stabilization of electric charge in apolar environments (dielectric constant≈2) have been an area of interest dating back to when an explanation was sought for the occurrence of what are now known as electrokinetic explosions during the pumping of fuels. More recently attention has focused on the charging of suspended particles in such media, underlying such applications as electrophoretic displays (e.g., the Amazon Kindle® reader) and new printing devices (e.g., the HP Indigo® Digital Press). The endeavor has been challenging owing to the complexity of the systems involved and the large number of factors that appear to be important. A number of different, and sometimes conflicting, theories for particle surface charging have been advanced, but most observations obtained in the authors' laboratory, as well as others, appear to be explainable in terms of an acid-base mechanism. Adducts formed between chemical functional groups on the particle surface and monomers of reverse micelle-forming surfactants dissociate, leaving charged groups on the surface, while the counter-charges formed are sequestered in the reverse micelles. For a series of mineral oxides in a given medium with a given surfactant, surface charging (as quantified by the maximum electrophoretic mobility or zeta potential obtained as surfactant concentration is varied) was found to scale linearly with the aqueous PZC (or IEP) values of the oxides. Different surfactants, with the same oxide series, yielded similar behavior, but with different PZC crossover points between negative and positive particle charging, and different slopes of charge vs. PZC. Thus the oxide series could be used as a yardstick to characterize the acid-base properties of the surfactants. This has led directly to the study of other materials, including surface-modified oxides, carbon blacks, pigments (charge transfer complexes), and polymer latices. This review focuses on the acid-base mechanism of particle

  1. Influence of nonionic surfactants on the potentiometric response of hydrogen ion-selective polymeric membrane electrodes.

    PubMed

    Espadas-Torre, C; Bakker, E; Barker, S; Meyerhoff, M E

    1996-05-01

    The influence of poly(ethylene oxide)-based nonionic surfactants (i.e., Triton X-100 and Brij 35) in the sample phase on the response properties of hydrogen ion-selective polymeric membrane electrodes containing mobile (lipophilic amines) or covalently bound (aminated-poly-(vinyl chloride)) hydrogen ion carriers is reported. In the presence of these nonionic surfactants, membrane electrode response toward interfering cation activity (e.g., Na+) in the sample phase is increased substantially and the pH measuring range shortened. The degree of cation interference for pH measurements is shown to correlate with the basicity of the hydrogen ion carrier doped within the membrane phase. The observed deterioration in selectivity arises from the partitioning of the surfactant into the membrane and concomitant extraction of metal cations by the surfactants in the organic phase. The effect of nonionic surfactants on pH electrodes prepared with aminated-PVC membranes is shown to be more complex, with additional large shifts in EMF values apparently arising from multidentate interactions between the surfactant molecules and the polymeric amine in the membrane, leading to a change in the apparent pKa values for the amine sites. The effects induced by nonionic surfactants on the EMF response function of hydrogen ion-selective polymeric membrane electrodes are modeled, and experimental results are shown to correlate well with theoretical predictions.

  2. Beneficial effects of synthetic KL₄ surfactant in experimental lung transplantation.

    PubMed

    Sáenz, A; Alvarez, L; Santos, M; López-Sánchez, A; Castillo-Olivares, J L; Varela, A; Segal, R; Casals, C

    2011-04-01

    The aim of this study was to investigate whether intratracheal administration of a new synthetic surfactant that includes the cationic, hydrophobic 21-residue peptide KLLLLKLLLLKLLLLKLLLLK (KL₄), might be effective in reducing ischaemia-reperfusion injury after lung transplantation. Single left lung transplantation was performed in Landrace pigs 22 h post-harvest. KL₄ surfactant at a dose of 25 mg total phospholipid·kg body weight⁻¹ (2.5 mL·kg body weight⁻¹) was instilled at 37°C to the donor left lung (n = 8) prior to explantation. Saline (2.5 mL·kg body weight⁻¹; 37°C) was instilled into the donor left lung of the untreated group (n = 6). Lung function in recipients was measured during 2 h of reperfusion. Recipient left lung bronchoalveolar lavage (BAL) provided native cytometric, inflammatory marker and surfactant data. KL(4) surfactant treatment recovered oxygen levels in the recipient blood (mean ± sd arterial oxygen tension/inspiratory oxygen fraction 424 ± 60 versus 263 ± 101 mmHg in untreated group; p=0.01) and normalised alveolar-arterial oxygen tension difference. Surfactant biophysical function was also recovered in KL₄ surfactant-treated lungs. This was associated with decreased C-reactive protein levels in BAL, and recovery of surfactant protein A content, normalised protein/phospholipid ratios, and lower levels of both lipid peroxides and protein carbonyls in large surfactant aggregates. These findings suggest an important protective role for KL₄ surfactant treatment in lung transplantation.

  3. Phosphine oxide surfactants revisited.

    PubMed

    Stubenrauch, Cosima; Preisig, Natalie; Laughlin, Robert G

    2016-04-01

    This review summarizes everything we currently know about the nonionic surfactants alkyl dimethyl (C(n)DMPO) and alkyl diethyl (C(n)DEPO) phosphine oxide (PO surfactants). The review starts with the synthesis and the general properties (Section 2) of these compounds and continues with their interfacial properties (Section 3) such as surface tension, surface rheology, interfacial tension and adsorption at solid surfaces. We discuss studies on thin liquid films and foams stabilized by PO surfactants (Section 4) as well as studies on their self-assembly into lyotropic liquid crystals and microemulsions, respectively (Section 5). We aim at encouraging colleagues from both academia and industry to take on board PO surfactants whenever possible and feasible because of their broad variety of excellent properties.

  4. Influence of magnetic treatment of surfactant solutions on the properties of foams and on foam formation

    SciTech Connect

    Zal'tsman, M.D.; Dyusebaev, M.K.; Sulyaeva, N.G.

    1986-09-10

    One of the fields of application of surfactants is dust suppression by the foam method. Its effectiveness may be raised both by selection of suitable surfactants and by electrophysical methods of treatment of the surfactant solutions and of foam. The purpose of the present work was to study the influence of preliminary magnetic treatment of solutions of anionic and nonionic surfactants on the formation and properties of foam. The chosen surfactants were: the technical foaming agent PO-1 (disodium salts of alkyl-aromatic sulfonic acids based on kerosine), foaming agent PO-12, specially formulated for dust suppression (mixture of sodium primary alkylsulfates and alkylsulfonate with additions of glycerol and sodium hexametaphosphate), wetting agent OP-10 (monoalkylphenyl ether of polyethylene glycol based on polymer distillate), all made in the USSR, and Ditalon OTS (mixture of aliphatic alkyl sulfates), produced in East Germany.

  5. Jigsaw Cooperative Learning: Acid-Base Theories

    ERIC Educational Resources Information Center

    Tarhan, Leman; Sesen, Burcin Acar

    2012-01-01

    This study focused on investigating the effectiveness of jigsaw cooperative learning instruction on first-year undergraduates' understanding of acid-base theories. Undergraduates' opinions about jigsaw cooperative learning instruction were also investigated. The participants of this study were 38 first-year undergraduates in chemistry education…

  6. Separation of Acids, Bases, and Neutral Compounds

    NASA Astrophysics Data System (ADS)

    Fujita, Megumi; Mah, Helen M.; Sgarbi, Paulo W. M.; Lall, Manjinder S.; Ly, Tai Wei; Browne, Lois M.

    2003-01-01

    Separation of Acids, Bases, and Neutral Compounds requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime plug-in, version compatible with your OS and browser (available from MDL); and Flash player, version 5 or higher (available from Macromedia).

  7. Fate and transport of polycyclic aromatic hydrocarbons in soil under the influence of surfactants

    SciTech Connect

    Sun, X.Y.; Goc, B.; Rueppel, M.L.; Puri, R.

    1995-12-31

    This paper presents a study to evaluate the mobility and sorption of polycyclic aromatic hydrocarbons (PAHs) in soils under the influence of surfactants at different concentrations. Three surfactants were examined: anionic, nonionic, and cationic. The experiment was designed to correlate the aqueous PAH concentrations with surfactant concentrations. Measurements were made of apparent critical micelle concentrations (CMCs) from the water-soil/aqueous-surfactant system by using the surface tension method. Solutions were made from each of the three surfactants with concentrations lower and higher than their apparent CMC. After centrifugation, the supernatants were treated, subjected to solvent extraction, and analyzed. For surfactant concentrations above the CMC value, the concentrations of the PAHs were also increased. However, concentrations below CMC values showed no effect except for the nonionic surfactant. All PAHs tested, including those with high molecular weight, showed significant mobility in the aqueous phase under the influence of surfactants. The sigmoid curves showed a plateau at higher concentrations of surfactants, beyond which further increase in surfactants did not affect the PAH mobility.

  8. Monsoon influences distribution of surfactants at different coastal areas into atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Shaharom, Suhana; Latif, Mohd Talib; Khan, Md Firoz

    2016-11-01

    Global climate change can be influenced by surfactants because of its characteristics due to reduce surface tension. The aim of this study was to determine the composition of surfactants in atmospheric aerosol. Fine aerosol sample diameter size (<1.5 µM) were collected using High Volume Air Sampler (HVAS) for 24 hrs with flow rate of 1.13m3min-1 at different coastal areas. Colorimetric method was undertaken to determine the concentrations of anionic surfactants as methylene blue active substances (MBAS) and cationic surfactants as dimethyl blue active substances (DBAS) using a UV spectrometer. The results indicated that the concentration of anionic surfactants was higher than concentration of cationic surfactants. Therefore, the concentrations of surfactants in Port Dickson was 103.97 pmolm-3 for MBAS and 62.57 pmolm-3 for DBAS and was higher than Bachok during southwest monsoon and meanwhile concentrations of surfactants was higher in Bachok 102.74 pmolm-3 for MBAS and DBAS 68.56 pmolm-3 during northeast monsoon.

  9. Desorption of two organophosphorous pesticides from soil with wastewater and surfactant solutions.

    PubMed

    Hernández-Soriano, M C; Mingorance, M D; Peña, A

    2012-03-01

    A batch test was used to evaluate the extent of desorption of diazinon and dimethoate, preadsorbed on a calcareous agricultural soil, representative of the Mediterranean area. Urban wastewater from a secondary treatment and seven surfactant solutions, at concentrations ranging from 0.75 mg L(-1) to 10 gL(-1), were used. The surfactants assayed were cationic (hexadecyl trimethyl ammonium bromide (HD)), anionic (sodium dodecyl sulfate (SDS), Aerosol 22 (A22) and Biopower (BP)), and nonionic (Tween 80 (TW), Triton X 100 (TX) and Glucopon 600 (G600)). Desorption of dimethoate was either not affected or only slightly by the nonionic and anionic surfactants tested, while desorption of diazinon from the soil was only enhanced by A22, BP and TW. This desorption increase correlated significantly with the surfactant concentration of the solution used for desorption and with the concurrent increase in the supernatant of the dissolved organic carbon, in particular that originating from the surfactant. This parameter did not vary with the use of SDS, G600 and TX. The cationic surfactant HD was retained on the soil surface, as confirmed by an increase in soil organic carbon, resulting in a fall in desorption rate for both pesticides. Comparing treatment by wastewater with control water, there was no difference in desorption rate for either pesticide. Mixed TW/anionic surfactant solutions either did not modify or slightly increased desorption of both pesticides in comparison with individual surfactant solutions.

  10. Highly stable surfactant assisted polyaniline nanostructures with enhanced electroactivity

    NASA Astrophysics Data System (ADS)

    Jamdegni, Monika; Kaur, Amarjeet

    2016-05-01

    Different nanostructures of Polyaniline(PANI) i.e. nanospheres, nanorods, nanofibers and layered structures have been successfully synthesized using varied concentration of anionic sodium dodecyl sulphate(SDS) and cationic Hexamethyltriammonium bromide (HTAB) by electrochemical method. Surfactant assisted morphology has been studied using FESEM. Incorporation of surfactants to the polymer matrix has been confirmed using FTIR spectroscopy. Electro activity and stability towards reversible redox activity was studied using cyclic voltammatry and chronoamperometry.The anionic surfactant severely enhances electroactivity and areal capacitance (3 Fcm-2) which was found to be two order higher than PANI film prepared without surfactant (0.039 Fcm-2), attributable to its additional doping effect. Immobilization of large surfactant molecule to polymer matrix inhibits its degradation due to nuleophilic attack ascribed to hydrophobic effect of surfactant. For PANI-SDS redox behavior remained almost same after 1000 reverse redox cycles while for PANI-HTAB we got only marginal changes.Our PANI-SDS samples are promising candidates for electro chromic applications.

  11. In Vitro Surfactant Structure-Toxicity Relationships: Implications for Surfactant Use in Sexually Transmitted Infection Prophylaxis and Contraception

    PubMed Central

    Inácio, Ângela S.; Ramalho-Santos, João; Vaz, Winchil L. C.; Vieira, Otília V.

    2011-01-01

    Background The need for woman-controlled, cheap, safe, effective, easy-to-use and easy-to-store topical applications for prophylaxis against sexually transmitted infections (STIs) makes surfactant-containing formulations an interesting option that requires a more fundamental knowledge concerning surfactant toxicology and structure-activity relationships. Methodology/Principal Findings We report in vitro effects of surfactant concentration, exposure time and structure on the viability of mammalian cell types typically encountered in the vagina, namely, fully polarized and confluent epithelial cells, confluent but non-polarized epithelial-like cells, dendritic cells, and human sperm. Representatives of the different families of commercially available surfactants – nonionic (Triton X-100 and monolaurin), zwitterionic (DDPS), anionic (SDS), and cationic (CnTAB (n = 10 to 16), C12PB, and C12BZK) – were examined. Triton X-100, monolaurin, DDPS and SDS were toxic to all cell types at concentrations around their critical micelle concentration (CMC) suggesting a non-selective mode of action involving cell membrane destabilization and/or destruction. All cationic surfactants were toxic at concentrations far below their CMC and showed significant differences in their toxicity toward polarized as compared with non-polarized cells. Their toxicity was also dependent on the chemical nature of the polar head group. Our results suggest an intracellular locus of action for cationic surfactants and show that their structure-activity relationships could be profitably exploited for STI prophylaxis in vaginal gel formulations. The therapeutic indices comparing polarized epithelial cell toxicity to sperm toxicity for all surfactants examined, except C12PB and C12BZK, does not justify their use as contraceptive agents. C12PB and C12BZK are shown to have a narrow therapeutic index recommending caution in their use in contraceptive formulations. Conclusions/Significance Our results

  12. Adsorption of micelle-forming surfactants from aqueous solutions on disperse titanium boride

    SciTech Connect

    Grodskii, A.S.; Komleva, E.A.; Frolov, Yu.G.

    1988-08-10

    Adsorption studies showed that nonionogenic and cationic surfactants are adsorbed on the surface of disperse titanium boride. Anionic surfactants are virtually not adsorbed due to the negative charge of the particles. It was found that in the region of low concentrations of surfactants in the solution, adsorption of Sintanols takes place in lyophobic regions and the surface of the particles becomes hydrophilic. The Sintamid molecules are adsorbed on the entire interface, including both hydrophobic and hydrophilic sections, with subsequent formation of bimolecular layers by adsorption on hydrophobic sections. Catamine-AB is adsorbed on hydrophilic sections of the surface also with the formation of bimolecular layers. Developed polymolecular layers up to 10-15 nm thick are formed on titanium boride particles from micellar solutions of nonionigenic and cationic surfactants.

  13. Effect of surfactants and temperature on the hyperfiltration performance of poly(ether/urea) membranes

    NASA Technical Reports Server (NTRS)

    Leban, M. I.; Wydeven, T. J.

    1984-01-01

    The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.

  14. Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice

    SciTech Connect

    Daoudi, El Mehdi; Boughaleb, Yahia; El Gaini, Layla; Meghea, Irina; Bakasse, Mina

    2013-05-15

    Highlights: ► The modification of montmorillonites by three surfactants increases the basal spacing. ► The model proposed show a bilayer conformation for the surfactant ODTMA. ► The DODMA and TOMA surfactants adopt a paraffin type arrangement. ► Behavior of surfactants in interlayer space was confirmed by TGA and ATR analysis. - Abstract: The objective of this work was to study the conformation of the quaternary ammonium cations viz., octadecyl trimethyl ammonium (ODTMA), dioctadecyl dimethyl ammonium (DMDOA) and trioctadecyl methyl ammonium (TOMA) intercalated within montmorillonite. The modified montmorillonite was characterized by X-ray diffraction in small angle (SAXS), thermal analysis (TGA) and infrared spectroscopy of attenuated total reflection (ATR). The modification of organophilic montmorillonites by the three surfactants ODTMA, DMDOA and TOMA increases the basal spacing from their respective intercalated distances of 1.9 nm, 2.6 nm and 3.4 nm respectively. The increase in the spacing due to the basic organic modification was confirmed by the results of thermal analysis (TGA) and infrared spectroscopy (ATR), and also supported by theoretical calculations of longitudinal and transversal chain sizes of these alkyl quaternary ammonium cations.

  15. Nanostructured chitosan-surfactant matrices as polyphenols nanocapsules template with zero order release kinetics.

    PubMed

    Gârlea, Ana; Melnig, V; Popa, M I

    2010-04-01

    Nanostructured membranes and films of cationic surfactant-chitosan with tannic acid as polyphenol model were obtained by phase inversion method. The membranes were investigated by Attenuated Total Reflectance Fourier Transform InfraRred, X-Ray Diffraction, Scanning Electron Microscopy and Thermogravimetry, and the films topography was analysed by Atomic Force Microscopy. The analysis reveals that the interactions at the molecular level between cationic CTAB surfactant and cationic chitosan polymer strive to weaken membrane stability, whereas, the tannic acid is favoured to cluster with CTAB and diminish the membrane thermodynamic instability. The nanocapsules formed, with dimensions in the range of 16.35-27.68 nm, are congregating in clusters having dimensions in the domain of 50-300 nm. The layers resulted from these nanostructures arrangement constitute a surfactant-chitosan matrix with tannic acid suitable for drug controlled release with zero order kinetics.

  16. Dissipation of insecticides in a Mediterranean soil in the presence of wastewater and surfactant solutions. A kinetic model approach.

    PubMed

    Hernández-Soriano, Ma Carmen; Mingorance, Ma Dolores; Peña, Aranzazu

    2009-05-01

    The simultaneous disappearance of four organophosphorous insecticides in a Mediterranean calcareous soil was evaluated in the presence of surfactant solutions and municipal wastewater. A cationic, an anionic and a non-ionic surfactant were used at a low (0.75 mg L(-1)) and at a high (twice the critical micelle concentration) concentration level. The cationic surfactant was also studied at a higher concentration. Dissipation in control soil was rapid for malathion (half-life 4 days), intermediate for dimethoate and methidathion (ca. 6 days) and slow for diazinon (29 days). Wastewater did either not modify (diazinon, dimethoate and methidathion) or slightly enhance (malathion) insecticide decay. The increase in concentration of the non-ionic surfactant Tween 80 resulted in enhanced dissipation rates for all the pesticides except diazinon. The addition of the anionic surfactant did not show a clear trend. At the highest cationic surfactant concentration a reduction of pesticide disappearance occurred linked with a reduced availability, since the insecticides were retained on the surfactant-modified soil (final residual concentration of 85% for diazinon and approximately 55% for methidathion and dimethoate). Soil microbial activity, estimated by measuring dehydrogenase activity, was low in wastewater- and surfactant-treated soil at the high levels. Fitting of the experimental data to commonly used mathematical models was poor and alternatives were looked for.

  17. Mixed surfactants-directed the mesoporous silica materials with various morphologies and structures

    SciTech Connect

    Lin Huiming; Qu Fengyu; Wu Xiang; Xue Ming; Zhu Guangshan; Qiu Shilun

    2011-06-15

    A new mixed surfactants system using alkyl carboxylic acids and quaternized poly[bis(2-chloroethyl)ether-alt-1,3-bis[3-(dimethylamino)propyl] urea] (PEPU) as the co-template was used to synthesize mesoporous silica materials with various morphologies and structures, including flakes, regular spheres, nanoparticles, and tube-spheres. The cationic polymer connected the anionic surfactant micelle to the anionic polysilicate species to induce the synthesis of the mesoporous silica materials. The structure and property of the surfactant and the cationic polymer determined the formation of mesoporous silica, and also had a signification influence on the morphology and structure of the final materials. To further explore the possible formation mechanism of these mesoporous materials, zeta potential was utilized to evaluate the interaction between the anionic surfactant and the cationic co-template. In addition, the structure, morphology, and porosity of these materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and N{sub 2} adsorption-desorption measurements. - Graphical abstract: A new mixed surfactants system using alkyl carboxylic acids and PEPU as the co-template was used to synthesize mesoporous silica materials with various morphologies and structures. Highlights: {yields}A new mixed surfactants system induced the mesoporous silica materials with various morphologies and structure. > It is a development of the type S{sup -}N{sup +}I{sup -} route of the mesoporous formation. > Zeta potential was utilized to evaluate the interaction between the anionic surfactant and the cationic co-template. > The property and amount of surfactant and polymer determined the formation of the mesoporous materials.

  18. Deciphering the role of charge, hydration, and hydrophobicity for cytotoxic activities and membrane interactions of bile acid based facial amphiphiles.

    PubMed

    Singh, Manish; Singh, Ashima; Kundu, Somanath; Bansal, Sandhya; Bajaj, Avinash

    2013-08-01

    We synthesized four cationic bile acid based facial amphiphiles featuring trimethyl ammonium head groups. We evaluated the role of these amphiphiles for cytotoxic activities against colon cancer cells and their membrane interactions by varying charge, hydration and hydrophobicity. The singly charged cationic Lithocholic acid based amphiphile (LCA-TMA1) is most cytotoxic, whereas the triply charged cationic Cholic acid based amphiphile (CA-TMA3) is least cytotoxic. Light microscopy and Annexin-FITC assay revealed that these facial amphiphiles caused late apoptosis. In addition, we studied the interactions of these amphiphiles with model membrane systems by Prodan-based hydration, DPH-based anisotropy, and differential scanning calorimetry. LCA-TMA1 is most hydrophobic with a hard charge causing efficient dehydration and maximum perturbations of membranes thereby facilitating translocation and high cytotoxicity against colon cancer cells. In contrast, the highly hydrated and multiple charged CA-TMA3 caused least membrane perturbations leading to low translocation and less cytotoxicity. As expected, Chenodeoxycholic acid and Deoxycholic acid based amphiphiles (CDCA-TMA2, DCA-TMA2) featuring two charged head groups showed intermediate behavior. Thus, we deciphered that charge, hydration, and hydrophobicity of these amphiphiles govern membrane interactions, translocation, and resulting cytoxicity against colon cancer cells.

  19. Determination of methylene blue biosorption by Rhizopus arrhizus in the presence of surfactants with different chemical structures.

    PubMed

    Karatay, Sevgi Ertuğrul; Gül, Ulküye Dudu; Dönmez, Gönül

    2014-10-03

    Methylene blue (MB) biosorption properties of Rhizopus arrhizus were investigated in the presence of surfactants. The effects of cationic and anionic surfactants on MB removal by dead biomass (1 g L(-1)) were determined. MB removal was tested as a function of initial pH (2-12), contact time (5-1440 min), and dye (37.4-944.7 mg L(-1)) and surfactant (0-10 mM) concentrations. The opposite charged anionic surfactant dodecylbenzenesulfonic acid sodium salt (DBS) enhanced sorption of cationic MB by biomass dramatically. Maximum biosorption capacity was 471.5 mg g(-1) at pH 8 with 0.5 mM DBS at 944.7 mg L(-1) MB concentration. The surfactant-stimulated fungal decolorization method may provide a highly efficient, inexpensive, and time-saving procedure in biological wastewater treatment technologies.

  20. Atrazine and Diuron partitioning within a soil-water-surfactant system

    NASA Astrophysics Data System (ADS)

    Wang, P.; Keller, A.

    2006-12-01

    The interaction between pesticide and soil and water is even more complex in the presence of surfactants. In this study, batch equilibrium was employed to study the sorption of surfactants and the partitioning behaviors of Atrazine and Diuron within a soil-water-surfactant system. Five soils and four surfactants (nonionic Triton- 100, cationic Benzalkonium Chloride (BC), anionic Linear Alkylbenzenesulfonate (LAS), and anionic Sodium Dodecyl Sulfate (SDS)) were used. All surfactant sorption isotherms exhibited an initial linear increase at low surfactant concentrations but reached an asymptotic value as the surfactant concentrations increased. Among the surfactants, BC had the highest sorption onto all soils, followed by Triton-100 and then by LAS and SDS, implying that the nature of the charge significantly influences surfactant sorption. Sorption of either Triton-100 or BC was highly correlated with soil Cation Exchange Capacity (CEC) while that of LAS and SDS was complicated by the presence of Ca2+ and Mg2+ in the aqueous phase and the CEC sites. Both LAS and SDS formed complexes with Ca2+ and Mg2+, resulting in a significant decrease in the detergency of the surfactants. At high surfactant concentrations and with micelles present in the aqueous phase, the micelles formed a more competitive partitioning site for the pesticides, resulting in less pesticide sorbed to the soil. At low Triton-100 and BC concentration, the sorption of the surfactants first resulted in less Atrazine sorption but more Diuron sorption, implying competition between the surfactants and Atrazine, which serves as an indirect evidence that there is a different sorption mechanism for Atrazine. Atrazine is a weak base and it protonates and becomes positively charged near particle surfaces where the pH is much lower than in the bulk solution. The protonated Atrazine may then be held on the CEC sites via electrostatic attraction. Triton-100, LAS and SDS sorbed on the soil showed similar

  1. Whole body acid-base modeling revisited.

    PubMed

    Ring, Troels; Nielsen, Søren

    2017-04-01

    The textbook account of whole body acid-base balance in terms of endogenous acid production, renal net acid excretion, and gastrointestinal alkali absorption, which is the only comprehensive model around, has never been applied in clinical practice or been formally validated. To improve understanding of acid-base modeling, we managed to write up this conventional model as an expression solely on urine chemistry. Renal net acid excretion and endogenous acid production were already formulated in terms of urine chemistry, and we could from the literature also see gastrointestinal alkali absorption in terms of urine excretions. With a few assumptions it was possible to see that this expression of net acid balance was arithmetically identical to minus urine charge, whereby under the development of acidosis, urine was predicted to acquire a net negative charge. The literature already mentions unexplained negative urine charges so we scrutinized a series of seminal papers and confirmed empirically the theoretical prediction that observed urine charge did acquire negative charge as acidosis developed. Hence, we can conclude that the conventional model is problematic since it predicts what is physiologically impossible. Therefore, we need a new model for whole body acid-base balance, which does not have impossible implications. Furthermore, new experimental studies are needed to account for charge imbalance in urine under development of acidosis.

  2. Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media.

    PubMed

    Fontes, Nuno; Partridge, Johann; Halling, Peter J; Barreiros, Susana

    2002-02-05

    Zeolite molecular sieves very commonly are used as in situ drying agents in reaction mixtures of enzymes in nonaqueous media. They often affect enzyme behavior, and this has been interpreted in terms of altered hydration. Here, we show that zeolites can also have dramatic acid-base effects on enzymes in low water media, resulting from their cation-exchange ability. Initial rates of transesterification catalyzed by cross-linked crystals of subtilisin were compared in supercritical ethane, hexane, and acetonitrile with water activity fixed by pre-equilibration. Addition of zeolite NaA (4 A powder) still caused remarkable rate enhancements (up to 20-fold), despite the separate control of hydration. In the presence of excess of an alternative solid-state acid-base buffer, however, zeolite addition had no effect. The more commonly used Merck molecular sieves (type 3 A beads) had similar but somewhat smaller effects. All zeolites have ion-exchange ability and can exchange H+ for cations such as Na+ and K+. These exchanges will tend to affect the protonation state of acidic groups in the protein and, hence, enzymatic activity. Zeolites pre-equilibrated in aqueous suspensions of varying pH-pNa gave very different enzyme activities. Their differing basicities were demonstrated directly by equilibration with an indicator dissolved in toluene. The potential of zeolites as acid-base buffers for low-water media is discussed, and their ability to overcome pH memory is demonstrated.

  3. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  4. Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface

    PubMed Central

    Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.

    2009-01-01

    Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599

  5. Boundary condition and soil attribute impacts on anionic surfactant mobility in unsaturated soil

    SciTech Connect

    Allred, B.; Brown, G.O.

    1996-11-01

    Surfactant mobility in unsaturated soil will impact the effectiveness and efficiency of using these compounds for in situ environmental remediation above the water table. For this reason, transient unsaturated column tests were used to study the influence of boundary conditions and soil attributes on anionic surfactant transport. In these tests, aqueous surfactant solutions were injected into the inlet of horizontally mounted soil columns. Two commercial anionic surfactants were used, an alkyl ether sulfate (AES) and a linear alkylbenzene sulfonate (LAS). The overall study was divided into two parts. First, boundary condition effects including injected surfactant solution concentration, initial moisture content, and surfactant application rate were investigated. Increasing the injection solution concentration increased anionic surfactant mobility in the column while changes in the initial soil moisture content and surfactant application rate had no significant impact. Second, the impacts of soil attributes such as texture, dominant exchangeable cation, and resident organic matter were measured. With respect to texture, mobility was found to be greater in a sandy soil as compared with two loamy soils. Both surfactants, especially LAS, were found to be more mobile in a Na{sup +} dominated soil rather than one dominated by Ca{sup +2}. The absence of soil organic matter increased LAS mobility.

  6. Comparative insight into surfactants mediated amyloidogenesis of lysozyme.

    PubMed

    Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H

    2016-02-01

    Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation.

  7. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  8. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography

    PubMed Central

    He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.

    2012-01-01

    By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448

  9. Rheological characterization of polysaccharide-surfactant matrices for cosmetic O/W emulsions.

    PubMed

    Bais, D; Trevisan, A; Lapasin, R; Partal, P; Gallegos, C

    2005-10-15

    Rheometrical techniques can be profitably used for polysaccharide matrices in order to evaluate their suitability for the preparation of stable cosmetic O/W emulsions. In particular, the rheological properties of aqueous scleroglucan systems were investigated under continuous and oscillatory shear conditions in a polymer concentration range (0.2-1.2% w/w) embracing the sol/gel transition. The effects due to the addition of two different surfactants (up to 10% w/w) were examined at constant polymer concentration (0.4% w/w). The selected additives are a nonionic polymeric siliconic surfactant (dimethicone copolyol) and a cationic surfactant (tetradecyltrimethylammonium bromide), respectively. Polysaccharide-surfactant interactions leading to complex formation were detected also through rheology. The combined action of both nonionic and cationic surfactants in the polymer solution was examined at two different surfactant concentration levels (5 and 10% w/w), demonstrating the beneficial effects produced on the mechanical properties of the polymer matrix by the coexistence of both surfactants. Such beneficial effects are confirmed by the stability and rheology shown by the emulsions prepared. In this way, the results point out the good agreement between the rheology of the continuous phase and the final characteristics of the emulsion obtained.

  10. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-Insensitive) surfactants: a regular solution theory modeling approach.

    PubMed

    Goldsipe, Arthur; Blankschtein, Daniel

    2006-11-21

    by other means. One notable exception is the surfactant tetradecyldimethylamine oxide (C14DAO), which appears to have concentration-dependent interactions due to extensive growth of cylindrical micelles. Micellar titrations were also conducted on binary surfactant mixtures containing the pH-sensitive surfactant dodecyldimethylamine oxide (C12DAO) and either the cationic surfactant dodecyltrimethylammonium bromide (C12TAB) or the nonionic surfactant dodecyl octa(ethylene oxide) (C12E8). The theory provides a reasonable description of the experimental titration data at all surfactant mixing ratios, although a larger discrepancy is found in the C12DAO/C12E8 system, in which C12E8 interacts preferentially with the protonated, cationic form of C12DAO. Interestingly, C12TAB was also observed to interact preferentially with the protonated, cationic form of C12DAO, although the preference is much weaker than that in the C12DAO/C12E8 system.

  11. Utilizing surfactants to control the sorption, desorption, and biodegradation of phenanthrene in soil-water system.

    PubMed

    Jin, Haiwei; Zhou, Wenjun; Zhu, Lizhong

    2013-07-01

    An integrative technology including the surfactant enhanced sorption and subsequent desorption and biodegradation of phenanthrene in the soil-water system was introduced and tested. For slightly contaminated agricultural soils, cationic-nonionic mixed surfactant-enhanced sorption of organic contaminants onto soils could reduce their transfer to plants, therefore safe-guarding agricultural production. After planting, residual surfactants combined with added nonionic surfactant could also promote the desorption and biodegradation of residual phenanthrene, thus providing a cost-effective pollution remediation technology. Our results showed that the cationic-nonionic mixed surfactants dodecylpyridinium bromide (DDPB) and Triton X-100 (TX100) significantly enhanced soil retention of phenanthrene. The maximum sorption coefficient Kd of phenanthrene for contaminated soils treated by mixed surfactants was about 24.5 times that of soils without surfactant (Kd) and higher than the combined effects of DDPB and TX100 individually, which was about 16.7 and 1.5 times Kd, respectively. On the other hand, TX100 could effectively remove phenanthrene from contaminated soils treated by mixed surfactants, improving the bioavailability of organic pollutants. The desorption rates of phenanthrene from these treated soils were greater than 85% with TX100 concentration above 2000 mg/L and approached 100% with increasing TX100 concentration. The biodegradation rates of phenanthrene in the presence of surfactants reached over 95% in 30 days. The mixed surfactants promoted the biodegradation of phenanthrene to some extent in 10-22 days, and had no obvious impact on phenanthrene biodegradation at the end of the experiment. Results obtained from this study provide some insight for the production of safe agricultural products and a remediation scheme for soils slightly contaminated with organic pollutants.

  12. Effect of surfactant hydrophile-lipophile balance (HLB) value on mineral oxide charging in apolar media.

    PubMed

    Gacek, Matthew Michael; Berg, John C

    2015-07-01

    The current work examines the role of surfactant hydrophile-lipophile balance (HLB) on the ability for surfactant reverse micelles to impart charge to particles dispersed in an apolar medium, a study motivated by a number of applications that seek to maximize particle charge in such systems. Previous investigations have shown that relative acid-base properties of the particles and surfactants, as well as surfactant concentration and trace water content, all play a major role in the particle charge obtained. However, the ability of a surfactant to stabilize charge in reverse micelles is also an important aspect of creating charge on a particle surface. It has been previously shown that surfactant HLB value is an important parameter in assessing the size of the polar core of the reverse micelles, thereby impacting the total charge that is generated in the bulk solution as determined by conductivity. In the current study, this theory is extended to investigate the impact on particle charging. To accomplish this, the electrophoretic mobility is determined for a series of mineral oxides dispersed in Isopar-L with either Span 20, Span 80, or Span 85. These three surfactants all have the same head group chemistry, but their HLB value ranges from 1.8 to 8.6. It is found that the maximum observed particle electrophoretic mobility does scale directly with the HLB of the accompanying surfactant. This indicates that there is a direct correlation between a surfactant's ability to stabilize charge and its ability to impart charge to a particle. However, the largest HLB surfactant, Span 20, also exhibited a large amount of charge screening or neutralization at larger surfactant concentrations. This highlights the competition between particle charging and micelle-micelle charging that remains one of the largest obstacles to maximizing particle charge in apolar systems.

  13. Surfactant-enhanced bioremediation

    SciTech Connect

    Churchill, P.F.; Dudley, R.J.; Churchill, S.A.

    1995-12-31

    This study was undertaken to examine the effect of three structurally related, non-ionic surfactants, Triton X-45, Triton X-100 and Triton X-165, as well as the oleophilic fertilizer, Inipol EAP 22, on the rate of biodegradation of phenanthrene by pure bacterial cultures. Each surfactant dramatically increased the apparent aqueous solubility of phenanthrene. Model studies were conducted to investigate the ability of these surfactants to enhance the rate of transport and uptake of polycyclic aromatic hydrocarbons into bacterial cells, and to assess the impact that increasing the aqueous solubility of hydrocarbons has on their rate of biodegradation. The results indicate that increasing the apparent aqueous solubility of hydrocarbons can lead to enhanced biodegradation rates by two Pseudomonas saccharophila strains. However, the experiments also suggest that some surfactants can inhibit aromatic hydrocarbon biodegradation by certain bacteria. The data also support the hypothesis that surface-active components present in the oleophilic fertilizer formulation, Inipol EAP 22, may have significantly contributed to the positive results reported in tests of remedial agent impact on bioremediation, which was used as a supplemental clean-up technology on Exxon Valdez crude oil-contaminated Alaskan beaches.

  14. Mathematical modeling of acid-base physiology

    PubMed Central

    Occhipinti, Rossana; Boron, Walter F.

    2015-01-01

    pH is one of the most important parameters in life, influencing virtually every biological process at the cellular, tissue, and whole-body level. Thus, for cells, it is critical to regulate intracellular pH (pHi) and, for multicellular organisms, to regulate extracellular pH (pHo). pHi regulation depends on the opposing actions of plasma-membrane transporters that tend to increase pHi, and others that tend to decrease pHi. In addition, passive fluxes of uncharged species (e.g., CO2, NH3) and charged species (e.g., HCO3− , NH4+) perturb pHi. These movements not only influence one another, but also perturb the equilibria of a multitude of intracellular and extracellular buffers. Thus, even at the level of a single cell, perturbations in acid-base reactions, diffusion, and transport are so complex that it is impossible to understand them without a quantitative model. Here we summarize some mathematical models developed to shed light onto the complex interconnected events triggered by acids-base movements. We then describe a mathematical model of a spherical cell–which to our knowledge is the first one capable of handling a multitude of buffer reaction–that our team has recently developed to simulate changes in pHi and pHo caused by movements of acid-base equivalents across the plasma membrane of a Xenopus oocyte. Finally, we extend our work to a consideration of the effects of simultaneous CO2 and HCO3− influx into a cell, and envision how future models might extend to other cell types (e.g., erythrocytes) or tissues (e.g., renal proximal-tubule epithelium) important for whole-body pH homeostasis. PMID:25617697

  15. Diseases of Pulmonary Surfactant Homeostasis

    PubMed Central

    Whitsett, Jeffrey A.; Wert, Susan E.; Weaver, Timothy E.

    2015-01-01

    Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis. PMID:25621661

  16. Binding of 12-s-12 dimeric surfactants to calf thymus DNA: Evaluation of the spacer length influence.

    PubMed

    Sarrión, Beatriz; Bernal, Eva; Martín, Victoria Isabel; López-López, Manuel; López-Cornejo, Pilar; García-Calderón, Margarita; Moyá, María Luisa

    2016-08-01

    Several cationic dimeric surfactants have shown high affinity towards DNA. Bis-quaternary ammonium salts (m-s-m) have been the most common type of dimeric surfactants investigated and it is generally admitted that those that posses a short spacer (s≤3) show better efficiency to bind or compact DNA. However, experimental results in this work show that 12-s-12 surfactants with long spacers make the surfactant/ctDNA complexation more favorable than those with short spacers. A larger contribution of the hydrophobic interactions, which control the binding Gibbs energy, as well as a higher average charge of the surfactant molecules bound to the nucleic acid, which favors the electrostatic attractions, could explain the experimental observations. Dimeric surfactants with intermediate spacer length seem to be the less efficient for DNA binding.

  17. Acid-base properties of humic and fulvic acids formed during composting.

    PubMed

    Plaza, César; Senesi, Nicola; Polo, Alfredo; Brunetti, Gennaro

    2005-09-15

    The soil acid-base buffering capacity and the biological availability, mobilization, and transport of macro- and micronutrients, toxic metal ions, and xenobiotic organic cations in soil are strongly influenced by the acid-base properties of humic substances, of which humic and fulvic acids are the major fractions. For these reasons, the proton binding behavior of the humic acid-like (HA) and fulvic acid-like (FA) fractions contained in a compost are believed to be instrumental in its successful performance in soil. In this work, the acid-base properties of the HAs and FAs isolated from a mixture of the sludge residue obtained from olive oil mill wastewater (OMW) evaporated in an open-air pond and tree cuttings (TC) at different stages of composting were investigated by a current potentiometric titration method and the nonideal competitive adsorption (NICA)-Donnan model. The NICA-Donnan model provided an excellent description of the acid-base titration data, and pointed out substantial differences in site density and proton-binding affinity between the HAs and FAs examined. With respect to FAs, HAs were characterized by a smaller content of carboxylic- and phenolic-type groups and their larger affinities for proton binding. Further, HAs featured a greater heterogeneity in carboxylic-type groups than FAs. The composting process increased the content and decreased the proton affinity of carboxylic- and phenolic-type groups of HAs and FAs, and increased the heterogeneity of phenolic-type groups of HAs. As a whole, these effects indicated that the composting process could produce HA and FA fractions with greater cation binding capacities. These results suggest that composting of organic materials improves their agronomic and environmental value by increasing their potential to retain and exchange macro- and micronutrients, and to reduce the bioavailability of organic and inorganic pollutants.

  18. Teaching Acid/Base Physiology in the Laboratory

    ERIC Educational Resources Information Center

    Friis, Ulla G.; Plovsing, Ronni; Hansen, Klaus; Laursen, Bent G.; Wallstedt, Birgitta

    2010-01-01

    Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide…

  19. A clinical approach to acid-base conundrums.

    PubMed

    Garrubba, Carl; Truscott, Judy

    2016-04-01

    Acid-base disorders can provide essential clues to underlying patient conditions. This article provides a simple, practical approach to identifying simple acid-base disorders and their compensatory mechanisms. Using this stepwise approach, clinicians can quickly identify and appropriately treat acid-base disorders.

  20. Using Willie's Acid-Base Box for Blood Gas Analysis

    ERIC Educational Resources Information Center

    Dietz, John R.

    2011-01-01

    In this article, the author describes a method developed by Dr. William T. Lipscomb for teaching blood gas analysis of acid-base status and provides three examples using Willie's acid-base box. Willie's acid-base box is constructed using three of the parameters of standard arterial blood gas analysis: (1) pH; (2) bicarbonate; and (3) CO[subscript…

  1. Investigating Students' Reasoning about Acid-Base Reactions

    ERIC Educational Resources Information Center

    Cooper, Melanie M.; Kouyoumdjian, Hovig; Underwood, Sonia M.

    2016-01-01

    Acid-base chemistry is central to a wide range of reactions. If students are able to understand how and why acid-base reactions occur, it should provide a basis for reasoning about a host of other reactions. Here, we report the development of a method to characterize student reasoning about acid-base reactions based on their description of…

  2. Surfactant treatments alter endogenous surfactant metabolism in rabbit lungs

    SciTech Connect

    Oetomo, S.B.; Lewis, J.; Ikegami, M.; Jobe, A.H. )

    1990-04-01

    The effect of exogenous surfactant on endogenous surfactant metabolism was evaluated using a single-lobe treatment strategy to compare effects of treated with untreated lung within the same rabbit. Natural rabbit surfactant, Survanta, or 0.45% NaCl was injected into the left main stem bronchus by use of a Swan-Ganz catheter. Radiolabeled palmitic acid was then given by intravascular injection at two times after surfactant treatment, and the ratios of label incorporation and secretion in the left lower lobe to label incorporation and secretion in the right lung were compared. The treatment procedure resulted in a reasonably uniform surfactant distribution and did not disrupt lobar pulmonary blood flow. Natural rabbit surfactant increased incorporation of palmitate into saturated phosphatidylcholine (Sat PC) approximately 2-fold (P less than 0.01), and secretion of labeled Sat PC increased approximately 2.5-fold in the surfactant-treated left lower lobe relative to the right lung (P less than 0.01). Although Survanta did not alter incorporation, it did increase secretion but not to the same extent as rabbit surfactant (P less than 0.01). Alteration of endogenous surfactant Sat PC metabolism in vivo by surfactant treatments was different from that which would have been predicted by previous in vitro studies.

  3. Acid-base and distribution equilibria of 5,7-dichloro-2-methyl-8-hydroxyquinoline in Brij-35 micellar media solutions.

    PubMed

    Beltrán, J L; Codony, R; Granados, M; Izquierdo, A; Prat, M D

    1993-02-01

    The acid-base equilibria of 5,7-dichloro-2-methyl-8-hydroxyquinoline (HQ) have been examined spectrophotometrically in aqueous micellar solution of the non-ionic surfactant Brij-35. The differences between apparent pK(a) values at different surfactant concentrations can be quantitatively explained in terms of the extraction constants of the neutral species HQ and the ion-pair Na(+)Q(-). Calculations have been performed by means of SPDIS program, developed in this work to handle multiwavelength spectrophotometric data in micellar systems.

  4. Essentials in the diagnosis of acid-base disorders and their high altitude application.

    PubMed

    Paulev, P E; Zubieta-Calleja, G R

    2005-09-01

    This report describes the historical development in the clinical application of chemical variables for the interpretation of acid-base disturbances. The pH concept was already introduced in 1909. Following World War II, disagreements concerning the definition of acids and bases occurred, and since then two strategies have been competing. Danish scientists in 1923 defined an acid as a substance able to give off a proton at a given pH, and a base as a substance that could bind a proton, whereas the North American Singer-Hasting school in 1948 defined acids as strong non-buffer anions and bases as non-buffer cations. As a consequence of this last definition, electrolyte disturbances were mixed up with real acid-base disorders and the variable, strong ion difference (SID), was introduced as a measure of non-respiratory acid-base disturbances. However, the SID concept is only an empirical approximation. In contrast, the Astrup/Siggaard-Andersen school of scientists, using computer strategies and the Acid-base Chart, has made diagnosis of acid-base disorders possible at a glance on the Chart, when the data are considered in context with the clinical development. Siggaard-Andersen introduced Base Excess (BE) or Standard Base Excess (SBE) in the extracellular fluid volume (ECF), extended to include the red cell volume (eECF), as a measure of metabolic acid-base disturbances and recently replaced it by the term Concentration of Titratable Hydrogen Ion (ctH). These two concepts (SBE and ctH) represent the same concentration difference, but with opposite signs. Three charts modified from the Siggaard-Andersen Acid-Base Chart are presented for use at low, medium and high altitudes of 2500 m, 3500 m, and 4000 m, respectively. In this context, the authors suggest the use of Titratable Hydrogen Ion concentration Difference (THID) in the extended extracellular fluid volume, finding it efficient and better than any other determination of the metabolic component in acid-base

  5. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOEpatents

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  6. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOEpatents

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  7. Tubular cationized pullulan hydrogels as local reservoirs for plasmid DNA.

    PubMed

    San Juan, Aurélie; Ducrocq, Grégory; Hlawaty, Hanna; Bataille, Isabelle; Guénin, Erwann; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    In the present study, we measured the ability of various cationized pullulan tubular hydrogels to retain plasmid DNA, and tested the ability of retained plasmid DNA to transfect vascular smooth muscle cells (VSMCs). Cationized pullulans were obtained by grafting at different charge densities ethylamine (EA) or diethylaminoethylamine (DEAE) on the pullulan backbone. Polymers were characterized by elemental analysis, acid-base titration, size exclusion chromatography, Fourier-transform infrared spectroscopy, and proton nuclear magnetic resonance. The complexation of cationized pullulans in solution with plasmid DNA was evidenced by fluorescence quenching with PicoGreen. Cationized pullulans were then chemically crosslinked with phosphorus oxychloride to obtain tubular cationized pullulan hydrogels. Native pullulan tubes did not retain loaded plasmid DNA. In contrast, the ability of cationized pullulan tubes to retain plasmid DNA was dependent on both the amine content and the type of amine. The functional integrity of plasmid DNA in cationized pullulan tubes was demonstrated by in vitro transfection of VSMCs. Hence, cationized pullulan hydrogels can be designed as tubular structures with high affinity for plasmid DNA, which may provide new biomaterials to enhance the efficiency of local arterial gene transfer strategies.

  8. The cubyl cation rearrangements.

    PubMed

    Jalife, Said; Mondal, Sukanta; Cabellos, Jose Luis; Martinez-Guajardo, Gerardo; Fernandez-Herrera, Maria A; Merino, Gabriel

    2016-02-25

    Born-Oppenheimer molecular dynamics simulations and high-level ab initio computations predict that the cage-opening rearrangement of the cubyl cation to the 7H(+)-pentalenyl cation is feasible in the gas phase. The rate-determining step is the formation of the cuneyl cation with an activation barrier of 25.3 kcal mol(-1) at the CCSD(T)/def2-TZVP//MP2/def2-TZVP level. Thus, the cubyl cation is kinetically stable enough to be formed and trapped at moderate temperatures, but it may be rearranged at higher temperatures.

  9. Mixed surfactant systems for enhanced oil recovery

    SciTech Connect

    Llave, F.M.; Gall, B.L.; Noll, L.A.

    1990-12-01

    The results of an evaluation of mixed surfactant systems for enhanced oil recovery are described. Several surfactant combinations have been studied. These include alkyl aryl sulfonates as primary surfactants and carboxymethylated ethoxylated (CME) surfactants and ethoxylated sulfonates (ES) as secondary surfactants. The ethoxylated surfactants increase the salinity tolerance of the primary surfactants and, in theory, allow tailoring of the surfactant system to match selected reservoir conditions. The experiments conducted included interfacial tension (IFT) measurements, phase behavior measurements, adsorption and/or chromatographic separation of mixed surfactant systems, measurements of solution properties such as the critical micelle concentration (CMC) of surfactant mixtures, and crude oil displacement experiments. The effects of temperature, surfactant concentration, salinity, presence of divalent ions, hydrocarbon type, and component proportions in the mixed surfactant combinations, and injection strategies on the performance potential of the targeted surfactant/hydrocarbon systems were studied. 40 refs., 37 figs., 8 tabs.

  10. Cation-Coupled Bicarbonate Transporters

    PubMed Central

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2016-01-01

    Cation-coupled HCO3− transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3− and associated with Na+ and Cl− movement. The first Na+-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na+-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na+-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3− transporters of the SLC4-family. PMID:25428855

  11. Cation-coupled bicarbonate transporters.

    PubMed

    Aalkjaer, Christian; Boedtkjer, Ebbe; Choi, Inyeong; Lee, Soojung

    2014-10-01

    Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.

  12. Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles

    SciTech Connect

    Kim, Mariya D.; Dergunov, Sergey; Richter, Andrew; Durbin, Jeffrey; Shmakov, Sergey; Jia, Ying; Kenbeilova, Saltanat; Orazbekuly, Yerbolat; Kengpeiil, Aigerim; Lindner, Erno; Pingali, Sai Venkatesh; Urban, Volker S; Weigand, Steven; Pinkhassik, Eugene

    2014-01-01

    Surfactant vesicles containing monomers in the interior of the bilayer were used to template hollow polymer nanocapsules. This study investigated the formation of surfactant/monomer assemblies by two loading methods, concurrent loading and diffusion loading. The assembly process and the resulting aggregates were investigated with dynamic light scattering, small angle neutron scattering, and small-angle X-ray scattering. Acrylic monomers formed vesicles with a mixture of cationic and anionic surfactants in a broad range of surfactant ratios. Regions with predominant formation of vesicles were broader for compositions containing acrylic monomers compared with blank surfactants. This observation supports the stabilization of the vesicular structure by acrylic monomers. Diffusion loading produced monomer-loaded vesicles unless vesicles were composed from surfactants at the ratios close to the boundary of a vesicular phase region on a phase diagram. Both concurrent-loaded and diffusion-loaded surfactant/monomer vesicles produced hollow polymer nanocapsules upon the polymerization of monomers in the bilayer followed by removal of surfactant scaffolds.

  13. Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2014-03-01

    Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.

  14. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    PubMed

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  15. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties.

    PubMed

    Stephansen, Karen; García-Díaz, María; Jessen, Flemming; Chronakis, Ioannis S; Nielsen, Hanne M

    2016-03-07

    Intermolecular interaction phenomena occurring between endogenous compounds, such as proteins and bile salts, and electrospun compounds are so far unreported, despite the exposure of fibers to such biorelevant compounds when applied for biomedical purposes, e.g., tissue engineering, wound healing, and drug delivery. In the present study, we present a systematic investigation of how surfactants and proteins, as physiologically relevant components, interact with insulin-loaded fish sarcoplasmic protein (FSP) electrospun fibers (FSP-Ins fibers) in solution and thereby affect fiber properties such as accessible surface hydrophilicity, physical stability, and release characteristics of an encapsulated drug. Interactions between insulin-loaded protein fibers and five anionic surfactants (sodium taurocholate, sodium taurodeoxycholate, sodium glycocholate, sodium glycodeoxycholate, and sodium dodecyl sulfate), a cationic surfactant (benzalkonium chloride), and a neutral surfactant (Triton X-100) were studied. The anionic surfactants increased the insulin release in a concentration-dependent manner, whereas the neutral surfactant had no significant effect on the release. Interestingly, only minute amounts of insulin were released from the fibers when benzalkonium chloride was present. The FSP-Ins fibers appeared dense after incubation with this cationic surfactant, whereas high fiber porosity was observed after incubation with anionic or neutral surfactants. Contact angle measurements and staining with the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid indicated that the FSP-Ins fibers were hydrophobic, and showed that the fiber surface properties were affected differently by the surfactants. Bovine serum albumin also affected insulin release in vitro, indicating that also proteins may affect the fiber performance in an in vivo setting.

  16. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    SciTech Connect

    Gao, Junkuo; Ye, Kaiqi; He, Mi; Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi; Wang, Yue; Wu, Tom; Huo, Fengwei; Liu, Xiaogang; Zhang, Qichun

    2013-10-15

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal–organic frameworks

  17. Amino acid-based ionic liquids: using XPS to probe the electronic environment via binding energies.

    PubMed

    Hurisso, Bitu Birru; Lovelock, Kevin R J; Licence, Peter

    2011-10-21

    Here we report the synthesis and characterisation by X-ray photoelectron spectroscopy (XPS) of eight high purity amino acid-based ionic liquids (AAILs), each containing the 1-octyl-3-methylimidazolium, [C(8)C(1)Im](+), as a standard reference cation. All expected elements were observed and the electronic environments of these elements identified. A fitting model for the carbon 1s region of the AAILs is reported; the C aliphatic component of the cation was used as an internal reference to obtain a series of accurate and reproducible binding energies. Comparisons are made between XP spectra of the eight AAILs and selected non-functionalised ionic liquids. 1-octyl-3-methylimidazolium acetate was also studied as a model of the carboxyl containing amino acid anion. The influence of anionic substituent groups on the measured binding energies of all elements is presented, and communication between anion and cation is investigated. This data is interpreted in terms of hard and soft anions and compared to the Kamlet-Taft hydrogen bond acceptor ability, β, for the ionic liquids. A linear correlation is presented which suggests that the functional side chain, or R group, of the amino acid has little impact upon the electronic environment of the charge-bearing moieties within the anions and cations studied.

  18. Retention of organophosphorous insecticides on a calcareous soil modified by organic amendments and a surfactant.

    PubMed

    Hernández-Soriano, M Carmen; Peña, Aránzazu; Mingorance, M Dolores

    2007-05-25

    Pesticides may affect soil quality since they are applied either directly to the soil or transported from the treated crops. Although the soil is able to partially retain environmental contaminants, the use of organic amendments, such as sewage sludge, peat or surfactants, may increase the retention in the upper soil layers, where the contaminants can be degraded and thus diminish their environmental fate. The effect of adding sewage sludge, peat and humic acids, together with a cationic surfactant to the soil, on the adsorption and desorption of organophosphorous insecticides has been studied. The results indicate that humic acids induce an adsorption increment of the pesticides, while peat and sewage sludge do not significantly affect pesticide adsorption at the dosage applied. The use of a cationic surfactant considerably enhances the insecticide retention. The increase was highest for the combined application of the surfactant and the humic acids. Desorption isotherms are inversely related to the adsorption behaviour, being higher for only soil, lower for soil added with carbon-rich amendments, and drastically reduced when the cationic surfactant is present. Concerning the insecticides, adsorption and desorption are related to their physicochemical properties.

  19. Surfactants at the Design Limit.

    PubMed

    Czajka, Adam; Hazell, Gavin; Eastoe, Julian

    2015-08-04

    This article analyzes how the individual structural elements of surfactant molecules affect surface properties, in particular, the point of reference defined by the limiting surface tension at the aqueous cmc, γcmc. Particular emphasis is given to how the chemical nature and structure of the hydrophobic tails influence γcmc. By comparing the three different classes of surfactants, fluorocarbon, silicone, and hydrocarbon, a generalized surface packing index is introduced which is independent of the chemical nature of the surfactants. This parameter ϕcmc represents the volume fraction of surfactant chain fragments in a surface film at the aqueous cmc. It is shown that ϕcmc is a useful index for understanding the limiting surface tension of surfactants and can be useful for designing new superefficient surfactants.

  20. Use of statistical modeling to predict the effect of formulation composition on coacervation, silicone deposition, and conditioning sensory performance of cationic cassia polymers.

    PubMed

    Lepilleur, Carole; Mullay, John; Kyer, Carol; McCalister, Pam; Clifford, Ted

    2011-01-01

    Formulation composition has a dramatic influence on coacervate formation in conditioning shampoo. The purpose of this study is to correlate the amount of coacervate formation of novel cationic cassia polymers to the corresponding conditioning profiles on European brown hair using silicone deposition, cationic polymer deposition and sensory evaluation. A design of experiments was conducted by varying the levels of three surfactants (sodium lauryl ether sulfate, sodium lauryl sulfate, and cocamidopropyl betaine) in formulations containing cationic cassia polymers of different cationic charge density (1.7 and 3.0m Eq/g). The results show formulation composition dramatically affects physical properties, coacervation, silicone deposition, cationic polymer deposition and hair sensory attributes. Particularly, three parameters are of importance in determining silicone deposition: polymer charge, surfactant (micelle) charge and total amount of surfactant (micelle aspect ratio). Both sensory panel testing and silicone deposition results can be predicted with a high confidence level using statistical models that incorporate these parameters.

  1. Interactions of gemini surfactants with two model proteins: NMR, CD, and fluorescence spectroscopies.

    PubMed

    Amiri, Razieh; Bordbar, Abdol-Khalegh; García-Mayoral, Ma Flor; Khosropour, Ahmad Reza; Mohammadpoor-Baltork, Iraj; Menéndez, Margarita; Laurents, Douglas V

    2012-03-01

    Gemini surfactants have two polar head groups and two hydrocarbon tails. Compared with conventional surfactants, geminis have much lower (μM vs. mM) critical micelle concentrations and possess slower (ms vs. μs) monomer <-- / --> micelle kinetics. The structure of the gemini surfactants studied is [HOCH(2)CH(2)-, CH(3)-, CH(3)(CH(2))(15)-N(+)-(CH(2))(s)-N(+)-(CH(2))(15)CH(3),-CH(3),-CH(2)CH(2)OH]·2Br(-) where s=4, 5, or 6. Our objective is to reveal the effect of these cationic gemini surfactants on the structure and stability of two model proteins: Ribonuclease A (RNase A) and Hen Egg White Lysozyme (HEWL). 2D (1)H NMR and Circular Dichroism (CD) spectroscopies show that the conformation of RNase A and HEWL is unaffected at low to neutral pH where these proteins are positively charged, although hydrogen exchange shows that RNase A's conformational stability is slightly lowered. At alkaline pH, where these proteins lose their net positive charge, fluorescence and CD spectroscopies and ITC experiments show that they do interact with gemini surfactants, and multiple protein•gemini complexes are observed. Based on the results, we conclude that these cationic gemini surfactants neither interact strongly with nor severely destabilize these well folded proteins in physiological conditions, and we advance that they can serve as useful membrane mimetics for studying the interactions between membrane components and positively charged proteins.

  2. Ecotoxicities of polyquaterniums and their associated polyelectrolyte-surfactant aggregates (PSA) to Gambusia holbrooki.

    PubMed

    Cumming, Janet L; Hawker, Darryl W; Nugent, Kerry W; Chapman, Heather F

    2008-02-01

    The toxicity of 11 polyquaterniums used in cosmetic applications, and polydimethyldiallylammonium chloride (poly(DADMAC)) were studied for toxicity of the polyquaternium alone, and of a polyquaternium/anionic surfactant complex as occurs in some cosmetic formulations. The surfactant used in the study was sodium dodecyl sulfate (SDS), which is used in cosmetic formulations under its International Nomenclature of Cosmetic Ingredients (INCI) name Sodium Laurel Sulfate. In fish immobilization studies with Gambusia holbrooki, the EC(50) of the polyquaternium/surfactant complex was found to be the same as or similar to the EC(50) for the polyquaternium alone. The toxicity of the polyquaterniums investigated was similar to the published values for other cationic polyelectrolytes and cationic surfactants, in the range from < 1.0 to 10 mg/L, with the exception of low charge density cellulosic polyquaterniums. The anionic surfactant alone was not toxic to fish in the concentration range tested. Results thus showed the toxicity of the polyquaternium was not mitigated by the presence of the anionic surfactant.

  3. Flow injection spectrophotometric determination of anionic surfactants using methyl orange as chromogenic reagent.

    PubMed

    He, Q; Chen, H

    2000-06-01

    A flow injection(FI) spectrophotometric method for the determination of anionic surfactants was developed on the basis of the competition for the cationic surfactant cetyl pyridine (CP+) chloride between the acidic dye methyl orange (MO) and anionic surfactants. In a pH 5.0 medium the cation of cetyl pyridine (CP+) reacts with dissociated methyl orange (MO-) to form an ion-associate complex, causing a blue shift of lambda(max) from 465 nm for MO- to 358 nm for the CP+ x MO- associate. The MO- in the ion-associate complex can be quantitatively substituted by such anionic surfactants as sodium dodecyl benzene sulfonate (DBS) or sodium lauryl sulfate (LS), leading to an increase in the absorbance measured at 465 nm. This increased absorbance value is proportional to the concentration of anionic surfactants. Various chemical and physical parameters for the FI spectrophotometric method were optimized, and interference-free levels were examined. At the optimized conditions, Beer's law was obeyed in the range 1.4 approximately 25 mg/L sodium DBS for an injected sample volume of 180 microL, and a detection limit of 0.22 mg/L for sodium DBS was achieved at a sampling rate of 90 h(-1). Eleven determinations of a 16 mg/L sodium DBS solution gave a RSD of 0.4%. The proposed method has successfully been applied to the determination of anionic surfactant concentration in waste water and in detergents.

  4. Surfactant-enhanced solubility and mobility of polycyclic aromatic hydrocarbons in soil

    SciTech Connect

    Sun, X.; Puri, R.K.

    1997-12-31

    The role of some selected nonionic, anionic and cationic surfactants was investigated in solubilizing and mobilizing polycyclic aromatic hydrocarbons (PAHs) from soil. The data from the batch experiment showed that Brij 30 (a nonionic surfactant) started transporting the PAHs from soil to water at concentrations well below its apparent critical micelle concentration (ACMC). At its high concentrations, however, Brij 30 transported more PAHs to the aqueous phase. Thus, it showed a great potential in remediation of PAH-contaminated soils. The tested anionic and cationic surfactants did not show the solubilization effect until the concentrations reached their ACMCs. The experiment showed that the decomposition of the surfactants was more significant than tat of the PAHs with the passage of time. A considerable portion of the solubilized PAHs was either re-adsorbed by the soil particles or was hanging in the mobile phase after 170 days, depending on the nature and concentration of the individual surfactants. The data showed that the solubilized portion of the PAHs became more persistent in the soil-water system, and its transport is proportional to the concentration and nature of the surfactants studied.

  5. Structural features of the nonionic surfactants stabilizing long-lived bubble nuclei

    NASA Technical Reports Server (NTRS)

    Darrigo, J. S.

    1980-01-01

    A study of the effects of various electrolytes and one organic compound on bubble production in agarose gels is presented. Several preparations of ultrapure agarose were compared for 42 electrolytes and phenol to identify trends in bubble formation. The anion and cation sequences of bubble suppression are similar to processes for salting out of nonionic surfactants. The reduction of bubble number by polyvalent ions and 1% phenol suggests that the polar portions of these nonionic surfactants represent amide groups. The evidence for amide groups is consistent with the relative positions of Mg(2+) in all cation sequences; this result makes it unlikely that either linkages contribute to the hydrophilicity of the nonionic surfactants stabilizing bubble nuclei in the different aqueous gels tested.

  6. Dependence of carbon nanotubes dispersion kinetics on surfactants

    NASA Astrophysics Data System (ADS)

    Ramos, Erika; Pardo, Wilmer A.; Mir, Mònica; Samitier, Josep

    2017-03-01

    Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV–vis–NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

  7. Dependence of carbon nanotubes dispersion kinetics on surfactants.

    PubMed

    Ramos, Erika; Pardo, Wilmer A; Mir, Mònica; Samitier, Josep

    2017-03-01

    Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

  8. Comparative quantitative acid-base analysis in coronary artery bypass, severe sepsis, and diabetic ketoacidosis.

    PubMed

    Omron, Edward M

    2005-01-01

    The main objective of this study was to assess the relationship of standard base excess (SBE) to delta strong ion difference effective (DeltaSIDe) in critical illness. Critical illness is characterized by variable plasma nonvolatile weak acid components (DeltaA(-)), and SBE becomes discordant with DeltaSIDe. The author hypothesized that both acid-base models are equivalent when SBE and DeltaSIDe are corrected for DeltaA(-). A retrospective chart review was performed to assess this hypothesis by looking at changes in SBE, DeltaSIDe, and DeltaA(-) in 30 coronary artery bypass graft surgery patients, 30 severe sepsis patients, and 15 diabetic ketoacidosis patients. SBE equals the sum of the DeltaSIDe and DeltaA(-). The SBE quantifies the magnitude of the metabolic acid-base derangement, the DeltaSIDe quantifies the plasma strong cation/anion imbalance, and the DeltaA(-) quantifies the magnitude of the hypoalbuminemic alkalosis. The partitioning of SBE into physicochemical components can facilitate analyses of complex acid-base disorders in critical illness.

  9. Synthesis and bio-physicochemical properties of amide-functionalized N-methylpiperazinium surfactants.

    PubMed

    Chauhan, Vinay; Singh, Sukhprit; Mishra, Rachana; Kaur, Gurcharan

    2014-12-15

    Four new amide functionalized N-methylpiperazinium amphiphiles having tetradecyl, hexadecyl alkyl chain lengths and counterions; chloride or bromide have been synthesized and characterized by various spectroscopic techniques. These new surfactants have been investigated in detail for their self-assembling behavior by surface tension, conductivity and fluorescence measurements. The thermodynamic parameters of these surfactants indicate that micellization is exothermic and entropy-driven. The dynamic light scattering (DLS) and transmission electron microscopy (TEM) experiments have been performed to insight the aggregate size of these cationics. Thermal degradation of these new surfactants has also been evaluated by thermal gravimetric analysis (TGA). These new surfactants form stable complexes with DNA as acknowledged by agarose gel electrophoresis, ethidium bromide exclusion and zeta potential measurements. They have also been found to have low cytotoxicity by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on the C6 glioma cell line.

  10. Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

    NASA Astrophysics Data System (ADS)

    Scheibe, Blazej; Rümmeli, Mark; Borowiak-Palen, Ewa; Kalenczuk, Ryszard

    2011-04-01

    This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

  11. Surfactant adsorption kinetics in microfluidics

    PubMed Central

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore–surfactant interactions. PMID:27688765

  12. Surfactant-assisted coal liquefaction

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1977-01-01

    Improved process of coal liquefaction utilizing nonaqueous surfactant has increased oil yield from 50 to about 80%. Asphaltene molecule formation of colloid particles is prevented by surfactant. Separated molecules present more surface area for hydrogenation reaction. Lower requirements for temperature, pressure, and hydrogen lead to reduction in capital and operation costs.

  13. Surfactant monitoring by foam generation

    DOEpatents

    Mullen, Ken I.

    1997-01-01

    A device for monitoring the presence or absence of active surfactant or other surface active agents in a solution or flowing stream based on the formation of foam or bubbles is presented. The device detects the formation of foam with a light beam or conductivity measurement. The height or density of the foam can be correlated to the concentration of the active surfactant present.

  14. ADSORPTION OF SURFACTANT ON CLAYS

    EPA Science Inventory

    Surfactants used to enhance remediation of soils by soil washing are often lost in the process. Neither the amount nor the cause of this loss is known. It is assumed that clays present in the soil are responsible for the loss of the surfactant. In this papere, adsorption prope...

  15. Surfactant adsorption kinetics in microfluidics

    NASA Astrophysics Data System (ADS)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  16. Phase behavior and shear alignment in SWNT-surfactant dispersions.

    PubMed

    Nativ-Roth, Einat; Yerushalmi-Rozen, Rachel; Regev, Oren

    2008-09-01

    The effect of single-walled carbon nanotubes (SWNT) on the phase behavior of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions is investigated at room temperature. Small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) are used for characterization of bulk dispersions and nanometrically thin films. Additional carbonaceous additives (fullerenes, multi-walled carbon nanotubes, and carbon black) serve as reference systems. It is found that dispersions of carbonaceous additive (excluding fullerenes) at intermediate surfactant concentrations (below the liquid-crystalline region of the native surfactant) induce demixing and macroscopic phase separation in otherwise homogeneous solutions of CTAB. Two coexisting liquid phases of similar CTAB concentrations are observed, with the carbonaceous species residing within the lower phase. At high CTAB concentrations (liquid-crystal region) the SWNTs are found to incorporate into the ordered lyotropic liquid-crystalline phase while preserving the native d-spacing. Investigation of nanometrically thin films at intermediate surfactant concentrations under external shear reveals shear-induced structure (SIS) in the presence of minute amounts of SWNTs. The effect is found to be exclusive to SWNT and does not occur in dispersions of other carbonaceous additives.

  17. On-line surfactant monitoring

    SciTech Connect

    Mullen, K.I.; Neal, E.E.; Soran, P.D.; Smith, B.

    1995-04-01

    This group has developed a process to extract metal ions from dilute aqueous solutions. The process uses water soluble polymers to complex metal ions. The metal/polymer complex is concentrated by ultrafiltration and the metals are recovered by a pH adjustment that frees the metal ions. The metal ions pass through the ultrafiltration membrane and are recovered in a concentrated form suitable for reuse. Surfactants are present in one of the target waste streams. Surfactants foul the costly ultrafiltration membranes. It was necessary to remove the surfactants before processing the waste stream. This paper discusses an on-line device the authors fabricated to monitor the process stream to assure that all the surfactant had been removed. The device is inexpensive and sensitive to very low levels of surfactants.

  18. Microstructure of Mixed Surfactant Solutions by Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Naranjo, Edward

    1995-01-01

    Surfactant mixtures add a new dimension to the design of complex fluid microstructure. By combining different surfactants it is not only possible to modify aggregate morphology and control the macrascopic properties of colloidal dispersions but also to produce a variety of novel synergistic phases. Mixed systems produce new microstructures by altering the intermolecular and interaggregate forces in ways impossible for single component systems. In this dissertation, we report on the phase behavior and microstructure of several synthetic and biological surfactant mixtures as elucidated by freeze-fracture and cryo-transmission electron microscopy. We have discovered that stable, spontaneous unilamellar vesicles can be prepared from aqueous mixtures of commercially available single-tailed cationic and anionic surfactants. Vesicle stability is determined by the length and volume of the hydrocarbon chains of the "catanionic" pairs. Mixtures containing bulky or branched surfactant pairs (C _{16}/C_{12 -14}) in water produce defect-free fairly monodisperse equilibrium vesicles at high dilution. In contrast, mixtures of catanionic surfactants with highly asymmetric tails (C_{16}/C_8 ) form phases of porous vesicles, dilute lamellar L_{alpha}, and anomalous isotropic L_3 phases. Images of the microstructure by freeze-fracture microscopy show that the L_3 phase consists of multiconnected self-avoiding bilayers with saddle shaped curvature. The forces between bilayers of vesicle-forming cationic and anionic surfactant mixtures were also measured using the Surface Force Apparatus (SFA). We find that the vesicles are stabilized by a long range electrostatic repulsion at large separations (>20 A) and an additional salt-independent repulsive force below 20 A. The measured forces correlate very well with the ternary phase diagram and the vesicle microstructures observed by electron microscopy. In addition to studying ionic surfactants, we have also done original work with

  19. Enhanced oil recovery by surfactant-enhanced volumetric sweep efficiency: First annual report for the period September 30, 1985-September 30, 1986. [Sandpacks

    SciTech Connect

    Harwell, J H; Scamehorn, J F

    1987-05-01

    Surfactant-enhanced volumetric sweep efficiency is a novel EOR method which utilizes precipitation/coacervation of surfactants to plug the most permeable regions of the reservoir, improving the efficiency of a waterflooding operation. This technique does not rely on reduction of interfacial tension between aqueous and oleic phases to enhance oil recovery. Therefore, even though surfactants are involved, this new technique is not a substitute or improvement on classical surfactant flooding; however, it has the potantial to compete with polymer flooding as an alternative sweep efficiency improvement method. In surfactant-enhanced volumetric sweep efficiency, a slug containing one kind of surfactant is injected into the reservoir, followed by a brine spacer. This is followed by injection of a second kind of surfactant which has lower adsorption than the first surfactant used. Anionic and cationic surfactants are one possible combination for this application. These may form either a precipitate or a coacervate upon mixing. Phase boundaries for some specific systems of this type have been determined over a wide range of conditions and a model developed to describe this behavior. Another possibility is the use of nonionic surfactants, which may form coacervate under proper conditions. The adsorption behavior of mixtures of anionic and nonionic surfactants was measured to aid in modeling the chromatographic effects with these surfactants in the reservoir. Studies with sandpacks of different permeabilities in parallel configuration using mixtures of anionic and cationic surfactants have demonstrated the capability of this method to reduce flow rates through a more permeable sandpack more than that through a less permeable sandpack. 4 refs., 23 figs., 8 tabs.

  20. Role of spacer length in interaction between novel gemini imidazolium surfactants and Rhizopus oryzae lipase.

    PubMed

    Adak, Sunita; Datta, Sougata; Bhattacharya, Santanu; Banerjee, Rintu

    2015-11-01

    An insight into the effects of new ionic liquid-type gemini imidazolium cationic surfactants on the structure and function of the lipases is of prime importance for their potential application. Changes in the activity, stability and structure of Rhizopus oryzae lipase in the presence of novel gemini surfactants, [C16-3-C16im]Br2 and [C16-12-C16im]Br2 were probed in the present study. Surfactant with shorter spacer length, [C16-3-C16im]Br2 was found to be better in improving the hydrolytic activity and thermal stability of the lipase. For both the surfactants, activation was concentration dependent. CD spectroscopy results showed a decrease in α-helix and an increase in β-sheet content in the presence of these surfactants. A higher structural change observed in presence of [C16-12-C16im]Br2 correlated with lower enzyme activity. Isothermal titration calorimetric studies showed the binding to be spontaneous in nature based on sequential two site binding model. The forces involved in binding were found to differ for the two surfactants proving that the spacer length is an important factor which governs the interaction. These surfactants could be used as promising components both in enzyme modification and media engineering for attaining the desired goals in biocatalytic reactions.

  1. Surfactant development for enhanced oil recovery. First quarterly report, [October 1993--January 1994

    SciTech Connect

    Iwunze, M.O.

    1994-02-25

    This report covers the period from October, 1993 to January, 1994. It summarizes the activities on the grant to develop novel surfactants for enhanced oil recovery, and represents the first quarterly report for the project. During the period covered by this report, considerable effort was spent in arrangements for procuring equipment, chemicals and in educating students about the substance of the project. Unfortunately, the major equipment order to fully implement the project have not yet been delivered. A few surfactants, however have either been synthesized in the Morgan State laboratories or purchased from commercial manufacturers. South Carolina State continued to plan and set its laboratories during the period, and significant project administrative and management support was provided by the Institute for College Research Development and Support. As a starting point in the education, training and eventual proficiency in surfactant synthesis, the following cationic surfactants have been successfully synthesized: cetyltriethylammonium bromide, cetyltripropylammonium bromide and cetyltributylammonium bromide. NMR analysis of these surfactants was also carried out. In the absence of the major equipment, the critical micelle concentrations (CMCs) of the surfactants to be synthesized, were determined using the conductometric method. The CMC determination was necessary because there is a correlation between surface tension reduction and critical micelle concentration of surfactants. Results are listed.

  2. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    NASA Astrophysics Data System (ADS)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛsurfactant concentration is therefore attributed to the considerable cross links among micelles and polymers (transient network). In addition to substantial alteration of the transport properties, this weak interaction also influences the onset point of thermodynamic instability associated with polymer-surfactant solutions. The examples include the decrease of critical aggregation concentration for ionic surfactant and clouding point for nonionic surfactant due to PEG addition.

  3. Surfactant loss control in chemical flooding spectroscopic and calorimetric study of adsorption and precipitation on reservoir minerals. Annual report, September 30, 1993--September 30, 1994

    SciTech Connect

    Somasundaran, P.

    1995-06-01

    The aim of this project is to elucidate the mechanisms underlying adsorption and surface precipitation of flooding surfactants on reservoir minerals. Effect of surfactant structure, surfactant combinations, other inorganic and polymeric species is being studied. A multi-pronged approach consisting of micro and nano spectroscopy, microcalorimetry, electrokinetics, surface tension and wettability is used to achieve the goals. The results of this study should help in controlling surfactant loss in chemical flooding and also in developing optimum structures and conditions for efficient chemical flooding processes. During the second year of this three year contract, adsorption/desorption of single surfactants and select surfactant mixtures on alumina and silica was studied. Surfactants studied include the anionic sodium dodecyl sulfate (SDS), cationic tetradecyl trimethyl ammonium chloride (TTAC), nonionic pentadecylethoxylated nonyl phenol (NP-15) and the nonionic octaethylene glycol n-dodecyl ether (C{sub 12}EO{sub 8}) of varying hydrocarbon chain length. The microstructure of the adsorbed layer in terms of micropolarity and aggregation numbers was probed using fluorescence spectroscopy. Changes of microstructure upon dilution (desorption) were also studied. Presence of the nonionic surfactant in the mixed aggregate led to shielding of the charge of the ionic surfactant which in-turn promoted aggregation but reduced electrostatic attraction between the charged surfactant and the mineral surface. Strong consequences of surfactant interactions in solution upon adsorption as well as correlations between monomer concentrations in mixtures and adsorption were revealed.

  4. Adsorption of zwitterionic surfactant on limestone measured with high-performance liquid chromatography: micelle-vesicle influence.

    PubMed

    Nieto-Alvarez, David Aaron; Zamudio-Rivera, Luis S; Luna-Rojero, Erick E; Rodríguez-Otamendi, Dinora I; Marín-León, Adlaí; Hernández-Altamirano, Raúl; Mena-Cervantes, Violeta Y; Chávez-Miyauchi, Tomás Eduardo

    2014-10-21

    Herein is presented a new methodology to determine the static adsorption of a zwitterionic surfactant on limestone in three different aqueous media [high-performance liquid chromatography (HPLC) water, seawater, and connate water] with the use of HPLC at room temperature and 70 °C. The results showed that, in both HPLC water and seawater, the surfactant adsorption followed a monolayer Langmuir tendency. In contrast, for connate water, the surfactant presented a new adsorption profile, characterized by two regions: (i) At surfactant concentrations below 1500 mg L(-1), an increase of adsorption is observed as the amount of divalent cations increases in the aqueous media. (ii) At surfactant concentrations above 1500 mg L(-1), the adsorption decreases because the equilibrium, monomer ⇆ micelle ⇆ vesicle, is shifted to the formation of vesicles, giving as a result a decrease in the concentration of monomers, thus reducing the interaction between the surfactant and the rock, and therefore, lower adsorption values were obtained. The behavior of the surfactant adsorption under different concentrations of divalent cations was well-described by the use of a new modified Langmuir model: (dΓ/dt)ads = k(ads)c(Γ∞ - Γ) - k(cmc)(c - c(cmc))(n)ΓH(c - c(cmc)). It was also observed that, as the temperature increases, the adsorption is reduced because of the exothermic nature of the adsorption processes.

  5. What is the Ultimate Goal in Acid-Base Regulation?

    ERIC Educational Resources Information Center

    Balakrishnan, Selvakumar; Gopalakrishnan, Maya; Alagesan, Murali; Prakash, E. Sankaranarayanan

    2007-01-01

    It is common to see chapters on acid-base physiology state that the goal of acid-base regulatory mechanisms is to maintain the pH of arterial plasma and not arterial PCO [subscript 2] (Pa[subscript CO[subscript 2

  6. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  7. A Closer Look at Acid-Base Olfactory Titrations

    ERIC Educational Resources Information Center

    Neppel, Kerry; Oliver-Hoyo, Maria T.; Queen, Connie; Reed, Nicole

    2005-01-01

    Olfactory titrations using raw onions and eugenol as acid-base indicators are reported. An in-depth investigation on olfactory titrations is presented to include requirements for potential olfactory indicators and protocols for using garlic, onions, and vanillin as acid-base olfactory indicators are tested.

  8. Factors Affecting the Design of Slow Release Formulations of Herbicides Based on Clay-Surfactant Systems. A Methodological Approach

    PubMed Central

    Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  9. Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems. A methodological approach.

    PubMed

    Galán-Jiménez, María Del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and

  10. Surfactant damping of water waves

    NASA Astrophysics Data System (ADS)

    Lapham, Gary S.; Dowling, David R.; Schultz, William W.

    1997-11-01

    The most well known and perhaps most important distinguishing characteristic of a water surface laden with surfactant is the profound increase in small-wave damping with the addition of even small amounts of surfactant material. It would seem to follow that damping increases with increasing surfactant concentration. This is undoubtedly true for some surfactants, however our experiments with a soluble surfactant show that it is possible to increase surfactant concentration and measure a decrease in damping. While the increased concentration is accompanied by a dramatic decrease in measured static surface tension, some of the capillary-wave frequency regime is less damped. Experimental measurements of the real and imaginary parts of the wave speed are compared with existing theory where at least one other physical quantity besides surface tension is needed to properly model the interface. Our on-going work with insoluble surfactants may also provide an example of this type of behavior for materials that do not readily transfer to and from the bulk water. [Supported by the Office of Naval Research

  11. Assessment of acid-base balance. Stewart's approach.

    PubMed

    Fores-Novales, B; Diez-Fores, P; Aguilera-Celorrio, L J

    2016-04-01

    The study of acid-base equilibrium, its regulation and its interpretation have been a source of debate since the beginning of 20th century. Most accepted and commonly used analyses are based on pH, a notion first introduced by Sorensen in 1909, and on the Henderson-Hasselbalch equation (1916). Since then new concepts have been development in order to complete and make easier the understanding of acid-base disorders. In the early 1980's Peter Stewart brought the traditional interpretation of acid-base disturbances into question and proposed a new method. This innovative approach seems more suitable for studying acid-base abnormalities in critically ill patients. The aim of this paper is to update acid-base concepts, methods, limitations and applications.

  12. Electrokinetic investigation of surfactant adsorption.

    PubMed

    Bellmann, C; Synytska, A; Caspari, A; Drechsler, A; Grundke, K

    2007-05-15

    Fuerstenau [D.W. Fuerstenau, in: M.L. Hair (Ed.), Dekker, New York, 1971, p. 143] has already discussed the role of hydrocarbon chain of surfactants, the effect of alkyl chain length, chain structure and the pH of the solution on the adsorption process of surfactants. Later Kosmulski [M. Kosmulski, Chemical Properties of Material Surfaces, Surfactant Science Series, vol. 102, Dekker, New York, Basel, 2001] included the effect of surfactant concentration, equilibration time, temperature and electrolyte in his approaches. Certainly, the character of the head groups of the surfactant and the properties of the adsorbent surface are the basis for the adsorption process. Different surfactants and adsorbents cause different adsorption mechanisms described firstly by Rosen [M.J. Rosen, Surfactants and Interfacial Phenomena, second ed., Wiley, New York, 1989]. These adsorption mechanisms and their influencing factors were studied by electrokinetic investigations. Here only changes of the charges at the surfaces could be detected. To control the results of electrokinetic investigations they were compared with results from ellipsometric measurements. In the case of surfactant adsorption the chain length was vitally important. It could be shown by the adsorption of alkyl trimethyl ammonium bromides onto polymer films spin coated at wafer surfaces. The influence of the chain length depending on surface properties of the polymer film was studied. Streaming potential measurements were applied for these investigations. The obtained results enabled us to calculate the molar cohesive free energy per mol of CH2-group in the alkaline chain of the surfactant if all other specific adsorption effects were neglected.

  13. Structural Studies of Protein-Surfactant Complexes

    SciTech Connect

    Chodankar, S. N.; Aswal, V. K.; Wagh, A. G.

    2008-03-17

    The structure of protein-surfactant complexes of two proteins bovine serum albumin (BSA) and lysozyme in presence of anionic surfactant sodium dodecyl sulfate (SDS) has been studied using small-angle neutron scattering (SANS). It is observed that these two proteins form different complex structures with the surfactant. While BSA protein undergoes unfolding on addition of surfactant, lysozyme does not show any unfolding even up to very high surfactant concentrations. The unfolding of BSA protein is caused by micelle-like aggregation of surfactant molecules in the complex. On the other hand, for lysozyme protein there is only binding of individual surfactant molecules to protein. Lysozyme in presence of higher surfactant concentrations has protein-surfactant complex structure coexisting with pure surfactant micelles.

  14. Pulmonary surfactant for neonatal respiratory disorders.

    PubMed

    Merrill, Jeffrey D; Ballard, Roberta A

    2003-04-01

    Surfactant therapy has revolutionized neonatal care and is used routinely for preterm infants with respiratory distress syndrome. Recent investigation has further elucidated the function of surfactant-associated proteins and their contribution toward surfactant and lung immune defense functions. As the field of neonatology moves away from intubation and mechanical ventilation of preterm infants at birth toward more aggressive use of nasal continuous positive airway pressure, the optimal timing of exogenous surfactant therapy remains unclear. Evidence suggests that preterm neonates with bronchopulmonary dysplasia and prolonged mechanical ventilation also experience surfactant dysfunction; however, exogenous surfactant therapy beyond the first week of life has not been well studied. Surfactant replacement therapy has been studied for use in other respiratory disorders, including meconium aspiration syndrome and pneumonia. Commercial surfactant preparations currently available are not optimal, given the variability of surfactant protein content and their susceptibility to inhibition. Further progress in the treatment of neonatal respiratory disorders may include the development of "designer" surfactant preparations.

  15. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite.

    PubMed

    Choung, Sungwook; Kim, Minkyung; Yang, Jung-Seok; Kim, Min-Gyu; Um, Wooyong

    2014-08-19

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  16. Effects of Radiation and Temperature on Iodide Sorption by Surfactant-Modified Bentonite

    SciTech Connect

    Choung, Sungwook; Kim, Min Kyung; Yang, Jungseok; Kim, Min-Gyu; Um, Wooyong

    2014-08-04

    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation (60Co) resulted in significantly (~2–10 times) lower iodide Kd values for the SMB. The results of Fourier transform infrared spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  17. Amplification of the index of refraction of aqueous immersion fluids by ionic surfactants

    NASA Astrophysics Data System (ADS)

    Lee, Kwangjoo; Kunjappu, Joy; Jockusch, Steffen; Turro, Nicholas J.; Widerschpan, Tatjana; Zhou, Jianming; Smith, Bruce W.; Zimmerman, Paul; Conley, Will

    2005-05-01

    In order to find new immersion liquids to improve the resolution of 193 nm immersion photolithography, we have attempted to discover aqueous system possessing an index of refraction greater than that of water using aqueous surfactant systems. The index of refraction (RI) of both cationic and anionic surfactant systems were examined in the presence of wide range of inorganic salts, and parameters such as size of surfactants, concentrations, and temperature were varied. The refractive index (RI) was found to be increased in the presence of both anionic and cationic surfactants compared to those of water and also increased as a function of surfactant concentration. However the refractive index tends to increase much more strongly as a function of salt concentration. In our study, a maximum RI enhancement was observed from 6.5 M CdCl2 in 8.2 mM aqueous SDS solution. The effect of micellar properties such as the critical micelle concentration (cmc) and degree of ionization were systematically studied for aqueous SDS system in the presence of CdCl2. The correlation on index of refraction between empirical data and theoretical prediction were performed using the concept of molar refraction. Wavelength dependence of RI from theoretical prediction based on empirical equation was examined for various concentration of CdCl2 system and the results are reported in the paper.

  18. Surfactant assisted growth of nanostructured tin oxide films for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Khun, Kamalpreet Khun; Mahajan, Aman; Bedi, R. K.

    2011-12-01

    Porous nanostructured SnO2 films have been prepared using an ultrasonic spray pyrolysis technique in conjunction with cationic, anionic and non ionic surfactants namely CTAB (Cetyl trimethyl ammonium bromide), SDS (sodium dodecyl sulphate) and PEG (polyethylene glycol) respectively. The effect of surfactants on the structural, electrical, optical and gas sensing properties of SnO2 films were investigated by using different techniques such as X-ray diffraction (XRD), Field emission scanning electroscope microscopy (FESEM), two probe technique and Photoluminiscence (PL) studies. The results reveal that the addition of surfactants in the precursor solutions leads to reduction in crystallite size with significant changes in porosity of SnO2 films. PL studies of the films show emissions in the visible region which exhibit changes in the intensities upon variation of surfactants in the precursor solutions. The prepared films were tested for their sensing behaviour towards chlorine and the results reveal that the films prepared in conjunction with cationic surfactant CTAB exhibits a sensing response of 53.5% towards 20 ppm chlorine at a low operating temperature of 150°C.

  19. Minimally invasive approaches for surfactant administration.

    PubMed

    Trevisanuto, D; Marchetto, L

    2013-01-01

    Respiratory distress syndrome (RDS) is the most common respiratory morbidity in preterm infants. In addition to respiratory support, the current clinical treatment includes endotracheal intubation and rapid instillation of exogenous surfactant. However, this approach needs skilled operators and has been associated with complications such as hemodynamic instability and electroencephalogram abnormalities. New, less invasive methods for surfactant administration are needed. In this article, we reviewed the available noninvasive procedures for surfactant administration. In particular, we focused on aerosolized surfactant and surfactant administration through LMA.

  20. Mesomorphic structures of protonated surfactant-encapsulated polyoxometalate complexes.

    PubMed

    Yin, Shengyan; Li, Wen; Wang, Jinfeng; Wu, Lixin

    2008-04-03

    Keggin-type heteropolyanions, H(3)PW(12)O(40) (HPW), Na(3)PW(12)O(40) (NaPW), H(4)SiW(12)O(40) (HSiW) and K(4)SiW(12)O(40) (KSiW), were encapsulated by a cationic surfactant, di[12-(4'-octyloxy-4-azophenyl)dodecyloxy]dimethylam monium bromide (L), through the replacement of counterions. The resulting surfactant-encapsulated polyoxometalate complexes were characterized by UV-vis, Raman, and NMR spectra in detail. The measurement results indicated that some azobenzene groups of the surfactant were protonated in the complexes HL/HPW (HL is the abbreviation of the protonated surfactant), HL/NaPW, and HL/HSiW during the process of encapsulation, whereas the protonation was not observed in L/KSiW. The thermotropic liquid crystal properties of these complexes were investigated by differential scanning calorimetry, polarized optical microscopy and variable-temperature X-ray diffraction. Interestingly, different smectic mesophases were observed between the protonated HL/HSiW and the non-protonated L/KSiW, which suggests that the protonation of azobenzene groups in HL/HSiW plays a key role in the liquid crystalline organization. However, protonated HL/HPW and HL/NaPW exhibit a similar smectic B phase to that of the de-protonated one, L/HPW. A competitive balance between the phase separation and the volume minimization of surfactants was proposed to explain the self-organized liquid crystal structures of these protonated and non-protonated complexes. To the best of our knowledge, the present investigation provides a specific example for protonated hybrid materials with stable liquid crystal properties.

  1. The interaction of photo-responsive surfactants with biological macromolecules

    NASA Astrophysics Data System (ADS)

    Mazwi, Khiza L.

    The interaction of photo-responsive surfactants with proteins has been considered as a means to exert reversible control over a number of aspects of protein structure and function. The azobenzene trimethylammonium bromide (azoTAB) family of cationic surfactants undergo a photo-reversible cis to trans isomerization upon exposure to light of the appropriate wavelength. The trans form of the molecule has a lower dipole moment across its azo linkage, and is more hydrophobic than the cis isomer. This results in a higher binding affinity with proteins for the trans isomer, inducing a greater degree of unfolding of tertiary and secondary structures. The surfactant has been applied to the study of the amyloid fibrillation pathway in insulin, in which the protein self-associates into long, insoluble, rod-like structures. The fibrillation rate in insulin is enhanced in the presence of the trans- isomer while the formation of fibrils is largely inhibited in the presence of the cis- isomer, where amorphous aggregates are observed instead. Additionally early fibrillar species formed in the trans-azoTAB assays exhibit a greater tendency to lateral aggregation than do structures in the pure protein, resulting in a more truncated, bundled final aggregate morphology. Use of the surfactants as a means to control protein quaternary solution structure has also been explored in the subunit dissociation of tetrameric catalase. In the presence of azoTAB surfactants, catalase dissociates first into a super-active dimer, then at higher concentrations into an aggregation prone monomer. Finally, the structural changes associated with azoTAB-induced unfolding of the two domain protein papain are tracked. The denaturation pathway involves a progressive loss in secondary structure with increasing azoTAB concentration, along with a relaxation of the compact tertiary structure, and a spatial separation of the two domains. A number of complementary experimental techniques are combined to determine

  2. Surfactant composition containing alkylated biphenylyl phenyl ether sulfonates

    SciTech Connect

    Hinkamp, P. E.

    1984-09-04

    The title compounds are of the formula (R)Y, (((R)X,(M(+)(-)O35-)A-Phenyl)-), (((R)Z, (M (+)(-)O35-)C-Phenyl)-O-)Benzene R is an alkyl radical of at least 6 carbon atoms and each R can be the same or different; M(+) is hydrogen, alkali metal ion, alkaline earth metal ion or ammonium ion radical and each M(+) can be the same or different; a, b and c are individually integers of 0 or 1 with the proviso that the ..sigma..(a+b+c) is equal to 2 or 3; and x, y and z are individually integers of 0-2 with the proviso that ..sigma..(x+y+z)greater than or equal to1. These compounds demonstrate good tolerance to multivalent cations, such as the cations of calcium and magnesium, good resistance to hydrolysis and are useful surfactants in enhanced oil recovery processes.

  3. Interactions between polymers and surfactants

    SciTech Connect

    de Gennes, P.G. )

    1990-11-01

    A surfactant film (at the water/air interface, or in a bilayer) is exposed to a solution of a neutral, flexible, polymer. Depending on the interactions, and on the Langmuir pressure II of the pure surfactant film, the authors expected to find three types of behavior: (I) the polymer does not absorb; (II) the polymer absorbs and mixes with the surfactant; (III) the polymer absorbs but segregates from the surfactant. Their interest here is in case II. They predict that (a) bilayers become rigid; (b) bilayers, exposed to polymer on one side only, tend to bend strongly; (c) the surface viscosity of monolayers or bilayers is considerably increased; soap films or foams, which usually drain by turbulent (two-dimensional) flows, may be stabilized in case II.

  4. Genetics Home Reference: surfactant dysfunction

    MedlinePlus

    ... easy. Without normal surfactant, the tissue surrounding the air sacs in the lungs (the alveoli ) sticks together (because of a force called surface tension) after exhalation, causing the alveoli ...

  5. Influence of surfactant on dynamics of photoinduced motions in a dye-doped deoxyribonucleic acid

    NASA Astrophysics Data System (ADS)

    Mysliwiec, Jaroslaw; Parafiniuk, Kacper; Miniewicz, Andrzej; Rau, Ileana; Kajzar, Francois; Niziol, Jacek; Hebda, Edyta; Pielichowski, Jan; Sahraoui, Bouchta

    2012-10-01

    Pure deoxyribonucleic acid (DNA) is known to be soluble in water only and exhibits poor temperature stability. In contrary, it is well known that the complex of DNA - with cetyltrimethyl ammonium (CTMA) is soluble in alcohols and can be processed into very good optical quality thin films by solution casting and spin deposition. Despite the success of DNA-CTMA, there is still need for new cationic surfactants which would extend the range of available solvents for DNA complex. We test and present experimental results of influence of new surfactants based on benzalkonium chloride (BA), and didecyldimethylammonium chloride (DDCA) for applications in all optical switching.

  6. Surfactants as Microbicides and Contraceptive Agents: A Systematic In Vitro Study

    PubMed Central

    Vieira, Otilia V.; Oberdoerfer, Daniel; Baptista, Marta; Santos, Manuel A. S.; Almeida, Luis; Ramalho-Santos, João; Vaz, Winchil L. C.

    2008-01-01

    Background The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants. Methodology/Principal Findings Toxicity was evaluated in mammalian columnar epithelial (MDCK) cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (CnTAB), with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC), all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the CnTAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells. Conclusions/Significance The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies. PMID:18682796

  7. Soap opera : polymer-surfactant interactions on thin film surfaces /

    SciTech Connect

    Ozer, B. H.; Johal, M. S.; Wang, H. L.; Robinson, J. M.

    2001-01-01

    Surfactants are macromolecules with unique properties. They commonly contain a polar head group with a nonpolar hydrocarbon chain. These properties allow surfactants to solubilize greases and other nonpolar molecules. One particular way that this is accomplished is through the formation of micelles. Micelles are formed at the critical micelle concentration (cmc), which varies depending upon the nature of the surfactant and also the media in which the surfactant resides. These micelles can take a variety of shapes, but are generally characterized by surrounding the grease with the nonpolar hydrocarbon chains, exposing only the polarized head groups to the media, usually water. This property of easy solubilization has made surfactants a very attractive industrial agent, They are used most conventionally as industrial cleaning agents and detergents. However, they also have lesser-known applications in conjunction with polymers and other macromolecular mixtures, often creating a system with novel properties, such as increased solubilization and smoother mixture consistency. A recently developed field has investigated the self-assembly of polymers and polyelectrolytes onto thin film surfaces. There are many reasons for studying this process, such as for second harmonic generation purposes and bioassays. In this study, the interaction between the anionic polyelectrolyte poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and two surfactants of opposite charge, Sodium Dodecyl Sulfate (SDS) and Dodecyl Trimethyl Ammonium Bromide (DTAB), in their assembly onto thin film surfaces was investigated. The kinetics of adsorbance onto the thin films was examined, followed by construction of 10-bilayer films using an alternating layer of the cationic polyelectrolyte poly(ethylenimine) (PEI) to provide the electrostatic means for the PAZO/surfactant combination to assemble onto the thin film. The kinetics of adsorption is being

  8. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study

    PubMed Central

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain). PMID:26641889

  9. Gemini Surfactants Based on Bis-Imidazolium Alkoxy Derivatives as Effective Agents for Delivery of Nucleic Acids: A Structural and Spectroscopic Study.

    PubMed

    Pietralik, Zuzanna; Kołodziejska, Żaneta; Weiss, Marek; Kozak, Maciej

    2015-01-01

    The success rate of gene therapy depends on the efficient transfection of genetic material into cells. The golden mean between harmlessness and high effectiveness can be provided by synthetic lipid-like molecules that are similar to the components of biological membranes. Cationic gemini surfactants are one such moiety and because of their favourable physicochemical properties (double positive electric charge, reduced toxicity, low values of critical micelle concentration), they show great potential as delivery system components for genetic material in gene therapy. The aim of this study was to investigate the process of the complexation of cationic gemini surfactants with nucleic acids: double-stranded DNA of different sizes (21 bp, ~185 bp, ~20 kbp) and siRNA (21 bp). The tested series of dicationic surfactants consists of bis-imidazolium quaternary salts with varying lengths of hydrophobic side chains (m = 5, 6, 7, 8, 9, 11, 12, 14, 16). On the basis of the data obtained by circular dichroism spectroscopy and electrophoresis, we concluded that the studied gemini surfactants with long side chains effectively bind nucleic acids at low concentrations, which leads to the formation of stable lipoplexes. Images obtained by atomic force microscopy also confirmed the formation of vesicular structures, i.e., complexes between DNA and surfactants. The cytotoxicity of selected surfactants was also tested on HeLa cells. The surfactant toxicity significantly depends on surfactant geometry (the length of hydrophobic chain).

  10. Influence of surfactants on the morphology of SnO{sub 2} nanocrystals prepared via a hydrothermal method

    SciTech Connect

    Wang Mi; Gao Yanfeng; Dai Lei; Cao Chuanxiang; Guo Xuhong

    2012-05-15

    Nanoscaled SnO{sub 2} with different morphologies has been synthesized via a simple hydrothermal process at 180 Degree-Sign C using polyvinylpyrrolidone (PVP), sodium dodecyl sulfonate (SDS), cetyl trimethyl ammonium bromide (CTAB) or tetrapropyl ammonium bromide (TPAB) as surfactant. All the prepared SnO{sub 2} are of a tetragonal crystal structure. Nanocubes, nanorods, nanosheets, nanobelts and nanoparticles were prepared when changing the type and dosage of organic surfactants. It is shown that anionic surfactant (SDS) and cationic surfactant (CTAB or TPAB) at their suitable addition amounts can largely influence the morphologies of SnO{sub 2} nanocrystals. The effect is significantly dependent on the solvent types: water or ethanol. The non-ionic surfactant (PVP) can also change the morphologies like SDS but the impacts are less obvious. The effect of surfactants on the shape and size of SnO{sub 2} nanoparticles was discussed in detail. The particle growth mechanism is described based on the electrostatic interactions and Van der Waals' forces. - Graphical abstract: SnO{sub 2} nanocrystals with controllable morphologies were prepared via a hydrothermal method with surfactants. Highlights: Black-Right-Pointing-Pointer SnO{sub 2} nanocrystals were prepared via a hydrothermal method with surfactants. Black-Right-Pointing-Pointer SnO{sub 2} morphologies changed with the type and the dosage of surfactants. Black-Right-Pointing-Pointer The effect of surfactants on the growth of crystal planes was studied. Black-Right-Pointing-Pointer The controlling mechanisms of surfactants on SnO{sub 2} morphologies were discussed.

  11. Gas-Phase Hydration Thermochemistry of Sodiated and Potassiated Nucleic Acid Bases

    NASA Astrophysics Data System (ADS)

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH o n , ΔS o n , and ΔG o n , for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  12. Gas-phase hydration thermochemistry of sodiated and potassiated nucleic acid bases.

    PubMed

    Wincel, Henryk

    2012-09-01

    Hydration reactions of sodiated and potassiated nucleic acid bases (uracil, thymine, cytosine, and adenine) produced by electrospray have been studied in a gas phase using the pulsed ion-beam high-pressure mass spectrometer. The thermochemical properties, ΔH(o)(n), ΔS(o)(n), and ΔG(o)(n), for the hydrated systems were obtained from hydration equilibrium measurement. The structural aspects of the hydrated complexes are discussed in conjunction with available literature data. The correlation between water binding energies in the hydrated complexes and the corresponding metal ion affinities of nucleobases suggests that a significant (if not dominant) amount of the canonical structure of cytosine undergoes tautomerization during electrospray ionization, and the thermochemical values for cationized cytosine probably correspond to a mixture of tautomeric complexes.

  13. Biomimicry of surfactant protein C.

    PubMed

    Brown, Nathan J; Johansson, Jan; Barron, Annelise E

    2008-10-01

    Since the widespread use of exogenous lung surfactant to treat neonatal respiratory distress syndrome, premature infant survival and respiratory morbidity have dramatically improved. Despite the effectiveness of the animal-derived surfactant preparations, there still remain some concerns and difficulties associated with their use. This has prompted investigation into the creation of synthetic surfactant preparations. However, to date, no clinically used synthetic formulation is as effective as the natural material. This is largely because the previous synthetic formulations lacked analogues of the hydrophobic proteins of the lung surfactant system, SP-B and SP-C, which are critical functional constituents. As a result, recent investigation has turned toward the development of a new generation of synthetic, biomimetic surfactants that contain synthetic phospholipids along with a mimic of the hydrophobic protein portion of lung surfactant. In this Account, we detail our efforts in creating accurate mimics of SP-C for use in a synthetic surfactant replacement therapy. Despite SP-C's seemingly simple structure, the predominantly helical protein is extraordinarily challenging to work with given its extreme hydrophobicity and structural instability, which greatly complicates the creation of an effective SP-C analogue. Drawing inspiration from Nature, two promising biomimetic approaches have led to the creation of rationally designed biopolymers that recapitulate many of SP-C's molecular features. The first approach utilizes detailed SP-C structure-activity relationships and amino acid folding propensities to create a peptide-based analogue, SP-C33. In SP-C33, the problematic and metastable polyvaline helix is replaced with a structurally stable polyleucine helix and includes a well-placed positive charge to prevent aggregation. SP-C33 is structurally stable and eliminates the association propensity of the native protein. The second approach follows the same design

  14. Emulsion electrospinning of polycaprolactone: influence of surfactant type towards the scaffold properties.

    PubMed

    Hu, Jue; Prabhakaran, Molamma P; Ding, Xin; Ramakrishna, Seeram

    2015-01-01

    Producing uniform nanofibers in high quality by electrospinning remains a huge challenge, especially using low concentrated polymer solutions. However, emulsion electrospinning assists to produce nanofibers from less concentrated polymer solutions compared to the traditional electrospinning process. The influence of individual surfactants towards the morphology of the emulsion electrospun poly (ɛ-caprolactone)/bovine serum albumin (PCL/BSA) nanofibers were investigated by using (i) non-ionic surfactant sorbitane monooleate (Span80); (ii) anionic sodium dodecyl sulfate (SDS); and (iii) cationic benzyltriethylammonium chloride, and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer Pluronic F108 of different concentrations. The morphology, along with the chemical and mechanical properties of the fibers, was evaluated by field emission scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, water contact angle, and tensile tester. With the addition of surfactants, the electrospinnability of dilute PCL solution was enhanced, with either branched or uniform fibers were obtained. Electrospinning of an emulsion containing 0.4% (w/v) SDS produced the smallest and the most uniform nanofibers (167 ± 39 nm), which was attributed to the high conductivity of the solution. Analysis revealed that the emulsion electrospun nanofibers containing different surfactants and surfactant concentrations differ in fiber morphology and mechanical properties. Results suggest that surfactants have the ability to modulate the fiber morphology via electrostatic and hydrogen bonding, depending on their chemical structure.

  15. Exploring the Effects of Different Types of Surfactants on Zebrafish Embryos and Larvae

    PubMed Central

    Wang, Yanan; Zhang, Yuan; Li, Xu; Sun, Mingzhu; Wei, Zhuo; Wang, Yu; Gao, Aiai; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2015-01-01

    Currently, surfactants are widely distributed in the environment. As organic pollutants, their toxicities have drawn extensive attention. In this study, the effects of anionic [sodium dodecyl sulphate (SDS) ], cationic [dodecyl dimethyl benzyl ammonium chloride (1227)] and non-ionic [fatty alcohol polyoxyethylene ether (AEO) ] surfactants on zebrafish larval behaviour were evaluated. Five behavioural parameters were recorded using a larval rest/wake assay, including rest total, number of rest bouts, rest bouts length, total activity and waking activity. The results revealed that 1227 and AEO at 1 μg/mL were toxic to larval locomotor activity and that SDS had no significant effects. Moreover, we tested the toxicities of the three surfactants in developing zebrafish embryos. AEO exposure resulted in smaller head size, smaller eye size and shorter body length relative to SDS and 1227. All three surfactants incurred concentration-dependent responses. Furthermore, in situ hybridisation indicated that smaller head size may be associated with a decreased expression of krox20. The altered expression of ntl demonstrated that the developmental retardation stemmed from inhibited cell migration and growth. These findings provide references for ecotoxicological assessments of different types of surfactants, and play a warning role in the application of surfactants. PMID:26053337

  16. Adsorption behavior of hydrophobin and hydrophobin/surfactant mixtures at the solid-solution interface.

    PubMed

    Zhang, Xiaoli L; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Bent, Julian; Cox, Andrew

    2011-09-06

    The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.

  17. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  18. An Olfactory Indicator for Acid-Base Titrations.

    ERIC Educational Resources Information Center

    Flair, Mark N.; Setzer, William N.

    1990-01-01

    The use of an olfactory acid-base indicator in titrations for visually impaired students is discussed. Potential olfactory indicators include eugenol, thymol, vanillin, and thiophenol. Titrations performed with each indicator with eugenol proved to be successful. (KR)

  19. Acid-base homeostasis in the human system

    NASA Technical Reports Server (NTRS)

    White, R. J.

    1974-01-01

    Acid-base regulation is a cooperative phenomena in vivo with body fluids, extracellular and intracellular buffers, lungs, and kidneys all playing important roles. The present account is much too brief to be considered a review of present knowledge of these regulatory systems, and should be viewed, instead, as a guide to the elements necessary to construct a simple model of the mutual interactions of the acid-base regulatory systems of the body.

  20. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite

    NASA Astrophysics Data System (ADS)

    Anizelli, Pedro R.; Baú, João Paulo T.; Gomes, Frederico P.; da Costa, Antonio Carlos S.; Carneiro, Cristine E. A.; Zaia, Cássia Thaïs B. V.; Zaia, Dimas A. M.

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  1. A Prebiotic Chemistry Experiment on the Adsorption of Nucleic Acids Bases onto a Natural Zeolite.

    PubMed

    Anizelli, Pedro R; Baú, João Paulo T; Gomes, Frederico P; da Costa, Antonio Carlos S; Carneiro, Cristine E A; Zaia, Cássia Thaïs B V; Zaia, Dimas A M

    2015-09-01

    There are currently few mechanisms that can explain how nucleic acid bases were synthesized, concentrated from dilute solutions, and/or protected against degradation by UV radiation or hydrolysis on the prebiotic Earth. A natural zeolite exhibited the potential to adsorb adenine, cytosine, thymine, and uracil over a range of pH, with greater adsorption of adenine and cytosine at acidic pH. Adsorption of all nucleic acid bases was decreased in artificial seawater compared to water, likely due to cation complexation. Furthermore, adsorption of adenine appeared to protect natural zeolite from thermal degradation. The C=O groups from thymine, cytosine and uracil appeared to assist the dissolution of the mineral while the NH2 group from adenine had no effect. As shown by FT-IR spectroscopy, adenine interacted with a natural zeolite through the NH2 group, and cytosine through the C=O group. A pseudo-second-order model best described the kinetics of adenine adsorption, which occurred faster in artificial seawaters.

  2. Spectral studies of safranin-O in different surfactant solutions

    NASA Astrophysics Data System (ADS)

    Göktürk, Sinem; Tunçay, Melda

    2003-06-01

    The interaction of Safranin-O (SO), a cationic dye, with various surfactants viz., anionics; Sodiumdodecylsulfate (SDS) and Sodiumdodecylsulfonate (SDSo), nonionics; polyoxyethylenesorbitanmonolaurate (Tween 20) and polyoxyethylenedodecylether (Brij 35), cationic; Dodecyltrimethylammoniumbromide (DTAB) and zwitterionic; Laurylsulfobetaine (LSB) was studied spectrophotometrically as a function of surfactant concentration ranging from premicellar to postmicellar region in aqueous media in the absence and presence of cosolvents. The binding constants (Kb) and fraction of bound SO to micelles (f), were calculated by means of Benesi-Hildebrand Equation. The binding tendency of SO to micelles followed the order as; Tween 20>Brij 35>SDS>SDSo>LSB. The presence of cosolvents, such as Methanol, Dimethylformamide (DMFA) and 1,4 Dioxan (DX) at various volume percentages, increased the CMC of both SDS and Tween 20 and at a certain concentration totally inhibited the micellization. The binding of SO to micelles decreased as the concentration of the cosolvents increased. This inhibitory effect of cosolvents on binding of SO to micelles followed the order as; Methanol>DMFA>DX.

  3. Temperature Triggered Structural Transitions in Surfactant organized Self Assemblies

    NASA Astrophysics Data System (ADS)

    Rose, J. Linet; Balamurugan, S.; Sajeevan, Ajin C.; Sreejith, Lisa

    2011-10-01

    Preparation & characterization of tunable fluids is an emerging area with potential application in many fields. Surfactants self assemble in aqueous solution to give a rich variety of phase structures, the size and shape of which can be tuned by additives like salts, alcohols, amines, aromatics etc or external stimuli such as light, temperature etc. The addition of long chain aliphatic alcohol has significant influence on the surfactant aggregation, as it promotes morphological growth of micelles. The cationic surfactant, Cetyl Trimethyl Ammonium Bromide (CTAB) with nonanol in presence of potassium bromide (KBr) shows thermo tunable viscosity behaviour and optical switching behaviour. The solution is visually observed to transform from a turbid and less viscous phase at low temperature to clear and considerably viscous phase at high temperature. Temperature induced changes in turbidity and viscosity are consistent with the transition from vesicle to worm like micelle. It is also worth emphasizing that the transition is thermo reversible, so that vesicles that are disrupted into micelles upon heating can be reformed upon cooling. The thermo tunable transition from turbid to transparent state and the concomitant changes in viscosity are promising for the use in smart windows, monitoring of tumor growth or in other stimuli based application.

  4. Micellization Behavior of Long-Chain Substituted Alkylguanidinium Surfactants

    PubMed Central

    Bouchal, Roza; Hamel, Abdellah; Hesemann, Peter; In, Martin; Prelot, Bénédicte; Zajac, Jerzy

    2016-01-01

    Surface activity and micelle formation of alkylguanidinium chlorides containing 10, 12, 14 and 16 carbon atoms in the hydrophobic tail were studied by combining conductivity and surface tension measurements with isothermal titration calorimetry. The purity of the resulting surfactants, their temperatures of Cr→LC and LC→I transitions, as well as their propensity of forming birefringent phases, were assessed based on the results of 1H and 13C NMR, differential scanning calorimetry (DSC), and polarizing microscopy studies. Whenever possible, the resulting values of Krafft temperature (TK), critical micelle concentration (CMC), minimum surface tension above the CMC, chloride counter-ion binding to the micelle, and the standard enthalpy of micelle formation per mole of surfactant (ΔmicH°) were compared to those characterizing alkyltrimethylammonium chlorides or bromides with the same tail lengths. The value of TK ranged between 292 and 314 K and increased strongly with the increase in the chain length of the hydrophobic tail. Micellization was described as both entropy and enthalpy-driven. Based on the direct calorimetry measurements, the general trends in the CMC with the temperature, hydrophobic tail length, and NaCl addition were found to be similar to those of other types of cationic surfactants. The particularly exothermic character of micellization was ascribed to the hydrogen-binding capacity of the guanidinium head-group. PMID:26861309

  5. Synthesis, surface-active properties, and antimicrobial activities of new double-chain gemini surfactants.

    PubMed

    Murguía, Marcelo C; Vaillard, Victoria A; Sánchez, Victoria G; Conza, José Di; Grau, Ricardo J

    2008-01-01

    A novel series of neutral and cationic dimeric surfactants were prepared involving ketalization reaction, Williamson etherification, and regioselective oxirane ring opening with primary and tertiary alkyl amines. The critical micelle concentration (CMC), effectiveness of surface tension reduction (gamma(CMC)), surface excess concentration (Gamma), and area per molecule at the interface (A) were determined and values indicate that the cationic series is characterized by good surface-active and self-aggregation properties. For the first time, we reported the antimicrobial activities against representative bacteria and fungi for dimeric compounds. The antimicrobial activity was found to be dependent on the target microorganism (Gram-positive bacteria > fungi > Gram-negative bacteria), as well as both the neutral or ionic nature (cationic > neutral) and alkyl chain length (di-C(12) > di-C(18) > di-C(8)) of the compounds. The cationic di-C(12) derivative was found to have equipotent activity to that of benzalkonium chloride (BAC) used as standard.

  6. Lack of association between a cationic protein and a cationic fluorosurfactant.

    PubMed

    Macakova, Lubica; Nordstierna, Lars; Karlsson, Göran; Blomberg, Eva; Furó, István

    2007-01-16

    Surface tension, 19F and 1H NMR spectroscopy, and cryotransmission electron microscopy are used to characterize the state of association in aqueous solutions of a fluorosurfactant CF3(CF2)nSO2NH(CH2)3-4N(CH3)3+ I- (n = 8, 6) with and without lysozyme added. In the absence of lysozyme, we find monomers, small aggregates, and large vesicles to coexist, with the individual fluorosurfactant molecules exchanging slowly (>1 ms) among those states. When both lysozyme and fluorosurfactant are present in the solution, they have no measurable influence on the physical state of the other. In contrast, a hydrogenated cationic surfactant with the same headgroup, hexadecyltrimethylammonium bromide, is shown to associate to lysozyme.

  7. Surfactant therapy and spontaneous diuresis.

    PubMed

    Bhat, R; John, E; Diaz-Blanco, J; Ortega, R; Fornell, L; Vidyasagar, D

    1989-03-01

    The effect of artificial surfactant therapy on renal function and the onset of spontaneous diuresis was prospectively evaluated in 19 infants with hyaline membrane disease in a double-blind, controlled study. Twelve infants were in the surfactant group; seven infants received placebo (0.9% saline solution). There was no difference in the time of onset of spontaneous diuresis (as defined by output greater than or equal to 80% of intake). The glomerular filtration rate, determined by endogenous creatinine clearance, was also similar in the surfactant- and placebo-treated infants during the first 3 days of life. The fractional excretion of sodium was significantly higher in the placebo group at 24 hours and 36 hours. Infants in the placebo group had a higher negative sodium balance than those in the surfactant group. Ventilatory status improved significantly soon after surfactant treatment, as evidenced by improvement in the alveolar/arterial oxygen pressure ratio and by a lower mean airway pressure. These data suggest that ventilatory status can be improved without diuresis; the factors that regulate diuresis are multiple and not fully understood.

  8. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    PubMed

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  9. Ionic association with anions of alizarin red S in aqueous solutions with surfactants

    NASA Astrophysics Data System (ADS)

    Shapovalov, S. A.

    2011-08-01

    The formation of associates of single (H2An-) or doubly charged anions (HAn2-) of alizarin red S with cations (Ct+) of cyanine dye pinacyanol in aqueous solution is considered. Thermodynamic values of equilibrium association constants were determined according to spectrophotometric data. Values of enthalpy of formation for the associates of the composition Ct+ · H2An- and (Ct+)2 · HAn2- were calculated with the help of semi-empirical methods. It was determined that the addition of cationic or anionic surfactant results in the destruction of associates.

  10. High-performance cation-exchange chromatofocusing of proteins.

    PubMed

    Kang, Xuezhen; Frey, Douglas D

    2003-03-28

    Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.

  11. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    SciTech Connect

    Bowman, R.S.; Sullivan, E.J.

    1995-10-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost ({approximately}$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs{sup +} or Ca{sup 2+}), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb{sup 2+}) via ion exchange and surface complexation, and inorganic anions (CrO{sub 4}{sup 2-}, SeO{sub 4}{sup 2-}, SO{sub 4}{sup 2-}) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants.

  12. Model Lung Surfactant Films: Why Composition Matters

    SciTech Connect

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf; DeWolf, Christine E.

    2016-10-18

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

  13. Structural diversity, physicochemical properties and application of imidazolium surfactants: Recent advances.

    PubMed

    Bhadani, Avinash; Misono, Takeshi; Singh, Sukhprit; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2016-05-01

    The current review covers recent advances on development and investigation of cationic surfactants containing imidazolium headgroup, which are being extensively investigated for their self-aggregation properties and are currently being utilized in various conventional and non-conventional application areas. These surfactants are being used as: soft template for synthesis of mesoporous/microporous materials, drug and gene delivery agent, stabilizing agent for nanoparticles, dispersants for single/multi walled carbon nanotubes, antimicrobial and antifungal agent, viscosity modifiers, preparing nanocomposite materials, stabilizing microemulsions, corrosion inhibitors and catalyst for organic reactions. Recently several structural derivatives of these surfactants have been developed having many interesting physicochemical properties and they have demonstrated enormous potential in the area of nanotechnology, material science and biomedical science.

  14. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant.

    PubMed

    Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru

    2016-06-23

    A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo₈) isomer, and possessed alternate stacking of Mo₈ monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo₈ isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo₈ anion by N-H···O hydrogen bonds, which presumably induced the formation of the δ-Mo₈ anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10(-6) S·cm(-1) at 443 K by alternating current (AC) impedance spectroscopy.

  15. Influence of various surfactants on magnetic property of cobalt ferrite prepared by Co-precipitation technique

    NASA Astrophysics Data System (ADS)

    Solanki, Neha; Khatri, Hemal; Jotania, R. B.

    2016-05-01

    Cobalt Ferrite (CoFe2O4) particles were synthesised using a Co-precipitation method. Influence of three different surfactants i.e. (1) Cationic - CTAB (Cetyl Tri-Methyl Ammonium Bromide), (2) Anionic - SDBS (Sodium Dodecyl Benzene Sulphonate) and (3) Nonionic - Triton X-100, on magnetic property of Cobalt Ferrite were investigated. Magnetic property of Cobalt ferrite powder was studied at room temperature using Vibrating Sample Measurements (VSM) technique under an applied magnetic field of 15kOe. The results show maximum value of saturation magnetization - Ms (81.87 emu/g) for the sample synthesised without surfactant and Coercivity value found maximum (2086 kOe) for the sample synthesized in presence of surfactant SDBS.

  16. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    PubMed Central

    Otobe, Saki; Fujioka, Natsumi; Hirano, Takuro; Ishikawa, Eri; Naruke, Haruo; Fujio, Katsuhiko; Ito, Takeru

    2015-01-01

    Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda) and dodecylpyridinium (C12py) surfactants. The decatungstate (W10) anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10), the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10) had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions. PMID:25894221

  17. Selection and evaluation of adsorbents for the removal of anionic surfactants from laundry rinsing water.

    PubMed

    Schouten, Natasja; van der Ham, Louis G J; Euverink, Gert-Jan W; de Haan, André B

    2007-10-01

    Low-cost adsorbents were tested to remove anionic surfactants from laundry rinsing water to allow re-use of water. Adsorbents were selected corresponding to the different surfactant adsorption mechanisms. Equilibrium adsorption studies of linear alkyl benzene sulfonate (LAS) show that ionic interaction results in a high maximum adsorption capacity on positively charged adsorbents of 0.6-1.7 gLAS/g. Non-ionic interactions, such as hydrophobic interactions of LAS with non-ionic resins or activated carbons, result in a lower adsorption capacity of 0.02-0.6 gLAS/g. Negatively charged materials, such as cation exchange resins or bentonite clay, have negligible adsorption capacities for LAS. Similar results are obtained for alpha olefin sulfonate (AOS). Cost comparison of different adsorbents shows that an inorganic anion exchange material (layered double hydroxide) and activated carbons are the most cost-effective materials in terms of the amount of surfactant adsorbed per dollar worth of adsorbent.

  18. Controlled Clustering in Binary Charged Colloids by Adsorption of Ionic Surfactants.

    PubMed

    Nakamura, Yuki; Okachi, Manami; Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2015-12-15

    We report on the controlled clustering of oppositely charged colloidal particles by the adsorption of ionic surfactants, which tunes charge numbers Z of particles. In particular, we studied the heteroclustering of submicron-sized polystyrene (PS) and silica particles, both of which are negatively charged, in the presence of cetylpyridinium chloride (CPC), a cationic surfactant. The surfactant concentration Csurf was selected below the critical micelle concentration. As CPC molecules were adsorbed, Z values of the PS and silica particles decreased, inverting to positive when Csurf exceeded the isoelectric point Ciep. Hydrophobic PS particles exhibited much lower Ciep than hydrophilic silica particles. At Csurf valuess between their Ciep values, the particles were oppositely charged, and clustering was enabled. To explain the clustering behavior, we investigated adsorption isotherms of the CPC and screened-Coulomb-type pair potential. Expected applications of the present findings are the control of colloidal associations and construction of various particle types into heterogeneous colloidal clusters.

  19. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    PubMed Central

    Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru

    2016-01-01

    A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926

  20. Synthesis of carbohydrate-based surfactants

    DOEpatents

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  1. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles.

    PubMed

    Kwak, Dong-Heui; Kim, Mi-Sug

    2015-01-01

    The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.

  2. MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSOPTION FOR IMPROVED OIL RECOVERY

    SciTech Connect

    P. Somasundaran

    2004-04-30

    The aim of the project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on the solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems will be conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this reporting period, the minerals used have been characterized, for particle size distribution and surface area. Also a series of novel cationic Gemini surfactants: butane-1,4-bis(quaternary ammonium chloride), has been synthesized. The solution and adsorption behavior of individual surfactants, the highly surface-active Gemini surfactant C{sub 12}-C{sub 4}-C{sub 12}, the sugar-based nonionic surfactant n-dodecyl-{beta}-D-maltoside (DM) and their mixture has been studied. DM alone shows low adsorption on silica because of the lack of any electrostatic attraction between the surfactant and the silica particle. On the other hand, the cationic Gemini adsorbs markedly on the oppositely charged silica surface. Marked synergism has been observed in the case of DM/C{sub 12}-C{sub 4}-C{sub 12} mixture adsorption on silica. Adsorption of DM from the mixtures increases dramatically in both the rising part and the plateau regions. Adsorption of the cationic Gemini C{sub 12}-C{sub 4}-C{sub 12} from the mixture on the other hand increases in the rising part, but decreases in the plateau regions due to the

  3. Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids.

    PubMed

    Parviainen, Arno; King, Alistair W T; Mutikainen, Ilpo; Hummel, Michael; Selg, Christoph; Hauru, Lauri K J; Sixta, Herbert; Kilpeläinen, Ilkka

    2013-11-01

    Different acid-base conjugates were made by combining a range of bases and superbases with acetic and propionic acid. Only the combinations that contained superbases were capable of dissolving cellulose. Proton affinities were calculated for the bases. A range, within which cellulose dissolution occurred, when combined with acetic or propionic acid, was defined for further use. This was above a proton affinity value of about 240 kcal mol(-1) at the MP2/6-311+G(d,p)//MP2/ 6-311+G(d,p) ab initio level. Understanding dissolution allowed us to determine that cation acidity contributed considerably to the ability of ionic liquids to dissolve cellulose and not just the basicity of the anion. By XRD analyses of suitable crystals, hydrogen bonding interactions between anion and cation were found to be the dominant interactions in the crystalline state. From determination of viscosities of these conjugates over a temperature range, certain structures were found to have as low a viscosity as 1-ethyl-3-methylimidazolium acetate, which was reflected in their high rate of cellulose dissolution but not necessarily the quantitative solubility of cellulose in those ionic liquids. 1,5-Diazabicyclo[4.3.0]non-5-enium propionate, which is one of the best structures for cellulose dissolution, was then distilled using laboratory equipment to demonstrate its recyclability.

  4. Biofoams and natural protein surfactants

    PubMed Central

    Cooper, Alan; Kennedy, Malcolm W.

    2010-01-01

    Naturally occurring foam constituent and surfactant proteins with intriguing structures and functions are now being identified from a variety of biological sources. The ranaspumins from tropical frog foam nests comprise a range of proteins with a mixture of surfactant, carbohydrate binding and antimicrobial activities that together provide a stable, biocompatible, protective foam environment for developing eggs and embryos. Ranasmurfin, a blue protein from a different species of frog, displays a novel structure with a unique chromophoric crosslink. Latherin, primarily from horse sweat, but with similarities to salivary, oral and upper respiratory tract proteins, illustrates several potential roles for surfactant proteins in mammalian systems. These proteins, together with the previously discovered hydrophobins of fungi, throw new light on biomolecular processes at air–water and other interfaces. This review provides a perspective on these recent findings, focussing on structure and biophysical properties. PMID:20615601

  5. Fiber coating with surfactant solutions

    NASA Astrophysics Data System (ADS)

    Shen, Amy Q.; Gleason, Blake; McKinley, Gareth H.; Stone, Howard A.

    2002-11-01

    When a fiber is withdrawn at low speeds from a pure fluid, the variation in the thickness of the entrained film with imposed fiber velocity is well-predicted by the Landau-Levich-Derjaguin (LLD) equation. However, surfactant additives are known to alter this response. We study the film thickening properties of the protein BSA (bovine serum albumin), the nonionic surfactant Triton X-100, and the anionic surfactant SDS (sodium dodecyl sulfate). For each of these additives, the film thickening factor alpha (the ratio of the measured thickness to the LLD prediction) for a fixed fiber radius varies as a function of the ratio of the surfactant concentration c to the critical micelle concentration (CMC). In the case of BSA, which does not form micelles, the reference value is the concentration at which multilayers form. As a result of Marangoni effects, alpha reaches a maximum as c approaches the CMC from below. However, when the surfactant concentration c exceeds the CMC, the behavior of alpha varies as a consequence of the dynamic surface properties, owing for example to different sorption kinetics of these additives, or possibly surface or bulk rheological effects. For SDS, alpha begins to decrease when c exceeds the CMC and causes the surface to become partially or completely remobilized, which is consistent with the experimental and theoretical results published for studies of slug flows of bubbles and surfactant solutions in a capillary tube and the rise of bubbles in surfactant solutions. However, when the SDS or Triton X-100 surfactant concentration is well above the CMC, we observe that the film thickening parameter alpha increases once again. In the case of SDS we observe a second maximum in the film thickening factor. For all the experiments, transport of monomers to the interface is limited by diffusion and the second maximum in the film thickening factor may be explained as a result of a nonmonotonic change in the stability characteristics of suspended SDS

  6. Ammonia Transporters and Their Role in Acid-Base Balance.

    PubMed

    Weiner, I David; Verlander, Jill W

    2017-04-01

    Acid-base homeostasis is critical to maintenance of normal health. Renal ammonia excretion is the quantitatively predominant component of renal net acid excretion, both under basal conditions and in response to acid-base disturbances. Although titratable acid excretion also contributes to renal net acid excretion, the quantitative contribution of titratable acid excretion is less than that of ammonia under basal conditions and is only a minor component of the adaptive response to acid-base disturbances. In contrast to other urinary solutes, ammonia is produced in the kidney and then is selectively transported either into the urine or the renal vein. The proportion of ammonia that the kidney produces that is excreted in the urine varies dramatically in response to physiological stimuli, and only urinary ammonia excretion contributes to acid-base homeostasis. As a result, selective and regulated renal ammonia transport by renal epithelial cells is central to acid-base homeostasis. Both molecular forms of ammonia, NH3 and NH4(+), are transported by specific proteins, and regulation of these transport processes determines the eventual fate of the ammonia produced. In this review, we discuss these issues, and then discuss in detail the specific proteins involved in renal epithelial cell ammonia transport.

  7. Renal acidification responses to respiratory acid-base disorders.

    PubMed

    Madias, Nicolaos E

    2010-01-01

    Respiratory acid-base disorders are those abnormalities in acid-base equilibrium that are expressed as primary changes in the arterial carbon dioxide tension (PaCO2). An increase in PaCO2 (hypercapnia) acidifies body fluids and initiates the acid-base disturbance known as respiratory acidosis. By contrast, a decrease in PaCO2 (hypocapnia) alkalinizes body fluids and initiates the acid-base disturbance known as respiratory alkalosis. The impact on systemic acidity of these primary changes in PaCO2 is ameliorated by secondary, directional changes in plasma [HCO3¯] that occur in 2 stages. Acutely, hypercapnia or hypocapnia yields relatively small changes in plasma [HCO3¯] that originate virtually exclusively from titration of the body's nonbicarbonate buffers. During sustained hypercapnia or hypocapnia, much larger changes in plasma [HCO3¯] occur that reflect adjustments in renal acidification mechanisms. Consequently, the deviation of systemic acidity from normal is smaller in the chronic forms of these disorders. Here we provide an overview of the renal acidification responses to respiratory acid-base disorders. We also identify gaps in knowledge that require further research.

  8. Effect of inorganic additives on solutions of nonionic surfactants VI: Further cloud point relations.

    PubMed

    Schott, H; Royce, A E

    1984-06-01

    Disperse dosage forms stabilized with nonionic surfactants frequently contain electrolytes as active ingredients or adjuvants. Salting out of the surfactants by these electrolytes may cause breakdown of the dosage forms. The cloud point of an aqueous solution of octoxynol 9 was used to measure the salt effects. Electrolytes which salt octoxynol 9 out lower its cloud point, while salting-in electrolytes raise it. The observed cloud point effects are discussed according to the mechanisms involved. Salting out by dehydration in competition with octoxynol 9 for the available water was observed with sulfate and phosphate anions, sodium, potassium, and ammonium tribasications, and the nonelectrolyte sorbitol. The extensive self-association of water by hydrogen bonds at and below room temperature weakens its solvent power. Ions which reduce this self-association, breaking the structure of water, increased the cloud point of octoxynol 9. Among them were the iodide, thiocyanate, and nitroprusside anions. Ions which tighten the structure of water and enhance its self-association salted the surfactant out, lowering its cloud point. Among these were the fluoride and hydroxide anions. Complex formation between the ether linkages of octoxynol 9 and the following cations increased its cloud point: hydrogen (from strong acids), silver, magnesium, and zinc. Including published data, the only cations which do not form complexes with polyoxyethylated surfactants (and are, therefore, unable to salt them in) were the alkali metal ions sodium, potassium, and cesium and the ammonium ion.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Inhibition of lipase-catalyzed hydrolysis of emulsified triglyceride oils by low-molecular weight surfactants under simulated gastrointestinal conditions.

    PubMed

    Li, Yan; McClements, David Julian

    2011-10-01

    The effect of low-molecular weight surfactants on the digestibility of lipids in protein-stabilized corn oil-in-water emulsions was studied using an in vitro digestion model. The impact of non-ionic (Tween 20, Tween 80, Brij35), anionic (SDS), and cationic (DTAB) surfactants on the rate and extent of lipid digestion was studied. All surfactants were found to inhibit lipid digestion at sufficiently high concentrations, with half-maximal inhibitory concentrations (IC50) of 1.2% for Tween 20, 0.7% for Tween 80, 2.8% for Brij35, 1.1% for SDS, and 1.4% for DTAB. The effectiveness of the surfactants at inhibiting lipid digestion was therefore not strongly correlated to the electrical characteristics of the surfactant head group, since the IC50 increased in the following order: Tween 80>SDS>Tween 20>DTAB>Brij35. The ability of these low-molecular weight surfactants to inhibit lipid digestion was attributed to a number of potential mechanisms: (i) prevention of lipase/co-lipase adsorption to the oil-water interface; (ii) formation of interfacial complexes; (iii) direct interaction and inactivation of lipase/co-lipase. Interestingly, DTAB increased the rate and extent of lipid digestion when present at relatively low concentrations. This may have been because this cationic surfactant facilitated the adsorption of lipase to the droplet surfaces through electrostatic attraction, or it bound directly to the lipase molecule thereby changing its structure and activity. A number of the surfactants themselves were found to be susceptible to enzyme digestion by pancreatic enzymes in the absence of lipids: Tween 20, Tween 80, Brij35, and DTAB. This work has important implications for the development of emulsion-based delivery systems for food and pharmaceutical applications.

  10. SURFACTANT ENHANCED AQUIFER REMEDIATION WITH SURFACTANT REGENERATION/REUSE

    EPA Science Inventory

    A demonstration of surfactant-enhanced aquifer remediation was conducted during the spring of 1999 at Marine Corps Base, Camp LeJeune, NC. A PCE-DNAPL zone was identified and delineated by extensive soil sampling in 1997, and was further characteized by a partitioning interwell t...

  11. Anionic linear aliphatic surfactants activate TRPV1: a possible endpoint for estimation of detergent induced eye nociception?

    PubMed

    Lindegren, H; Mogren, H; El Andaloussi-Lilja, J; Lundqvist, J; Forsby, A

    2009-12-01

    The transient receptor potential vanilloid type 1 (TRPV1) has been reported as one of the key components in the pain pathway. Activation of the receptor causes a Ca(2+) influx in sensory C-fibres with secondary effects leading to neurogenic inflammation in the surrounding tissue. We have earlier reported specific activation of TRPV1 by surfactant-containing hygiene products. We have continued this project by investigating activation of the TRPV1 by shampoo and soap ingredients in low concentrations measured as intracellular Ca(2+) influxes in stably TRPV1-expressing neuroblastoma SH-SY5Y cells. As a TRPV1 specific control, the TRPV1 antagonist capsazepine was used. The response was quantified as the product induced Ca(2+) influx during 2 min in relation to the maximum response induced by the TRPV1 agonist capsaicin. The results show that anionic alkyl linear surfactant ingredients such as sodium lauryl sulphate, sodium laureth sulphate, ammonium lauryl sulphate, sodium C12-15 pareth sulphate and N-lauroylsarcosine concentration-dependently induced Ca(2+) influx that could be addressed to TRPV1. The cationic surfactants benzalkonium chloride and cetylpyridinium chloride induced a Ca(2+) influx that was not TRPV1 mediated as well as the zwitterionic surfactant cocamidopropyl betaine, the non-linear anionic surfactant sodium deoxycholate and the non-ionic surfactant Triton-X. These results reveal a new mechanistic pathway for surfactant-induced nociception.

  12. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients?

    PubMed

    Masevicius, Fabio D; Dubin, Arnaldo

    2015-02-04

    The Stewart approach-the application of basic physical-chemical principles of aqueous solutions to blood-is an appealing method for analyzing acid-base disorders. These principles mainly dictate that pH is determined by three independent variables, which change primarily and independently of one other. In blood plasma in vivo these variables are: (1) the PCO2; (2) the strong ion difference (SID)-the difference between the sums of all the strong (i.e., fully dissociated, chemically nonreacting) cations and all the strong anions; and (3) the nonvolatile weak acids (Atot). Accordingly, the pH and the bicarbonate levels (dependent variables) are only altered when one or more of the independent variables change. Moreover, the source of H(+) is the dissociation of water to maintain electroneutrality when the independent variables are modified. The basic principles of the Stewart approach in blood, however, have been challenged in different ways. First, the presumed independent variables are actually interdependent as occurs in situations such as: (1) the Hamburger effect (a chloride shift when CO2 is added to venous blood from the tissues); (2) the loss of Donnan equilibrium (a chloride shift from the interstitium to the intravascular compartment to balance the decrease of Atot secondary to capillary leak; and (3) the compensatory response to a primary disturbance in either independent variable. Second, the concept of water dissociation in response to changes in SID is controversial and lacks experimental evidence. In addition, the Stewart approach is not better than the conventional method for understanding acid-base disorders such as hyperchloremic metabolic acidosis secondary to a chloride-rich-fluid load. Finally, several attempts were performed to demonstrate the clinical superiority of the Stewart approach. These studies, however, have severe methodological drawbacks. In contrast, the largest study on this issue indicated the interchangeability of the Stewart and

  13. Imidazolium-based ionic liquid-type surfactant as pseudostationary phase in micellar electrokinetic chromatography of highly hydrophilic urinary nucleosides.

    PubMed

    Rageh, Azza H; Pyell, Ute

    2013-11-05

    Ionic liquid (IL)-type surfactants have been shown to interact more strongly with polar compounds than traditionally used quaternary ammonium cationic surfactants. The aim of this study is to provide an alternative micellar electrokinetic chromatographic method (MEKC) for the analysis of urinary nucleosides in their ionic form at low surfactant concentration. This approach could overcome the use of high surfactant concentrations typically associated with the analysis of these highly hydrophilic metabolites as neutral species, which is frequently accompanied by high electric current, Joule heating and long analysis time. The investigated IL-type surfactant; 1-tetradecyl-3-methylimidazolium bromide (C14MImBr) is similar to the commonly employed cationic surfactant; tetradecyltrimethylammonium bromide (TTAB) but it provides a different separation selectivity. We employed C14MImBr micelles for the MEKC analysis of seven urinary nucleosides. The studied analytes possess a negative charge at pH 9.38 (exceptions are adenosine and cytidine which are neutral at this pH value). Borate imparts an additional negative charge to these compounds after complexation with the cis-diol functionality of the ribose unit, which in turn enables them to interact with the oppositely charged C14MImBr micelles via electrostatic (Coulomb) forces. The effect of the concentration of borate (the complexing, competing and buffering ion) on the effective electrophoretic mobilities and on the retention factors was investigated. The effective electrophoretic mobility data show that complexation between these nucleosides and borate occurs with high degree of complexation even at very low borate concentration (2.5 mmol L(-1) disodium tetraborate). In addition, we found that the retention factors are strongly dependent on the borate concentration being the highest when using the lowest borate concentration and they can be regulated by variation of either tetraborate concentration or the pH of the

  14. Surfactant behavior of "ellipsoidal" dicarbollide anions: a molecular dynamics study.

    PubMed

    Chevrot, G; Schurhammer, R; Wipff, G

    2006-05-18

    We report a molecular dynamics study of cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)X(3))(2)Co](-) (XCD(-)) commonly used in liquid-liquid extraction (X = H, Me, Cl, or Br), showing that these anions, although lacking the amphiphilic topology, behave as anionic surfactants. In pure water, they display "hydrophobic attractions", leading to the formation of aggregates of different sizes and shapes depending on the counterions. When simulated at a water/"oil" interface, the different anions (HCD(-), MeCD(-), CCD(-), and BrCD(-)) are found to be surface active. As a result, the simulated M(n+) counterions (M(n+) = Na(+), K(+), Cs(+), H(3)O(+), UO(2)(2+), Eu(3+)) concentrate on the aqueous side of the interface, forming a "double layer" whose characteristics are modulated by the hydrophobic character of the anion and by M(n+). The highly hydrophilic Eu(3+) or UO(2)(2+) cations that are generally "repelled" by aqueous interfaces are attracted by dicarbollides near the interface, which is crucial as far as the mechanism of assisted cation extraction to the oil phase is concerned. These cations interact with interfacial XCD(-) in their fully hydrated Eu(H(2)O)(9)(3+) and UO(2)(H(2)O)(5)(2+) forms, whereas the less hydrophilic monocharged cations display intimate contacts via their X substituents. The results obtained with the TIP3P and OPLS models for the solvents are confirmed with other water models (TIP5P or a polarizable 4P-Pol water) and with more polar "oil" models. The importance of interfacial phenomena is further demonstrated by simulations with a high oil-water ratio, leading to the formation of a micelle covered with CCD's. We suggest that the interfacial activity of dicarbollides and related hydrophobic anions is an important feature of synergism in liquid-liquid extraction of hard cations (e.g., for nuclear waste partitioning).

  15. Structural roles of monovalent cations in the HDV ribozyme.

    PubMed

    Ke, Ailong; Ding, Fang; Batchelor, Joseph D; Doudna, Jennifer A

    2007-03-01

    The hepatitis delta virus (HDV) ribozyme catalyzes viral RNA self-cleavage through general acid-base chemistry in which an active-site cytidine and at least one metal ion are involved. Monovalent metal ions support slow catalysis and were proposed to substitute for structural, but not catalytic, divalent metal ions in the RNA. To investigate the role of monovalent cations in ribozyme structure and function, we determined the crystal structure of the precursor HDV ribozyme in the presence of thallium ions (Tl(+)). Two Tl(+) ions can occupy a previously observed divalent metal ion hexahydrate-binding site located near the scissile phosphate, but are easily competed away by cobalt hexammine, a magnesium hexahydrate mimic and potent reaction inhibitor. Intriguingly, a third Tl(+) ion forms direct inner-sphere contacts with the ribose 2'-OH nucleophile and the pro-S(p) scissile phosphate oxygen. We discuss possible structural and catalytic implications of monovalent cation binding for the HDV ribozyme mechanism.

  16. Cation diffusion in titanomagnetites

    NASA Astrophysics Data System (ADS)

    Aragon, R.; McCallister, R. H.; Harrison, H. R.

    1984-02-01

    Interdiffusion couple experiments were performed with titanomagnetite single crystals at 1,000°C, 1,100° C and 1,200° C in various buffered atmospheres. The dependence of the interdiffusion coefficient on oxygen fugacity, composition and temperature was interpreted in terms of point defect structure. Estimates of the cation tracer diffusivities indicate that Fe migrates via a point defect mechanism, involving mixed tetrahedral-octahedral site jumps, with an activation energy of 33 Kcal/mole; whereas Ti migration is one to two orders of magnitude slower, is restricted to octahedral sites and has an activation energy of 60 Kcal/mole.

  17. Chemical behavior of organic compounds in the interface of water/dual-cation organobentonite.

    PubMed

    Chen, Bao-liang; Zhu, Li-zhong

    2002-01-01

    The sorption behavior of polar or ionizable organic compounds, such as p-nitrophenol, phenol and aniline, in the water/organobentonite systems is investigated. Both adsorption and partition occur to the sorption of organic compounds to dual-cation organobentonites. The separate contributions of adsorption and partition to the total sorption of organic compounds to dual-cation organobentonites are analyzed mathematically in the first time. The factors to the contributions are also discussed. The results indicated that the contribution of adsorption and partition is related to the composition and ratio of dual-cation surfactants exchanging onto the bentonite. The sorption of organic compounds to dual-cation organobentonite is dominated by adsorption at low concentrations and by partition at high concentrations, making the organobentonites powerful sorbents for organic contaminants over wide range of concentrations.

  18. Acid Base Titrations in Nonaqueous Solvents and Solvent Mixtures

    NASA Astrophysics Data System (ADS)

    Barcza, Lajos; Buvári-Barcza, Ágnes

    2003-07-01

    The acid base determination of different substances by nonaqueous titrations is highly preferred in pharmaceutical analyses since the method is quantitative, exact, and reproducible. The modern interpretation of the reactions in nonaqueous solvents started in the last century, but several inconsistencies and unsolved problems can be found in the literature. The acid base theories of Brønsted Lowry and Lewis as well as the so-called solvent theory are outlined first, then the promoting (and leveling) and the differentiating effects are discussed on the basis of the hydrogen-bond concept. Emphasis is put on the properties of formic acid and acetic anhydride since their importance is increasing.

  19. Acid-base properties of adhesive dental polymers.

    PubMed

    Morra, M

    1993-11-01

    The surface energetics of three resins (polymethylmethacrylate, polyhydroxyethylmethacrylate, and Bis-GMA/triethyleneglycoldimethacrylate) commonly used in adhesive interactions with tooth hard tissues were evaluated according to the Fowkes acid-base theory of interfacial interactions. From the measurement of the contact angle of test acidic and basic liquids on the sample surfaces, the acid-base contribution to the work of adhesion was evaluated. Results show that polyhydroxyethylmethacrylate is a comparatively strong Lewis base, a finding that can explain the important role played by this material in the formulation of dentin adhesive.

  20. An Acid-Base Chemistry Example: Conversion of Nicotine

    NASA Astrophysics Data System (ADS)

    Summerfield, John H.

    1999-10-01

    The current government interest in nicotine conversion by cigarette companies provides an example of acid-base chemistry that can be explained to students in the second semester of general chemistry. In particular, the conversion by ammonia of the +1 form of nicotine to the easier-to-assimilate free-base form illustrates the effect of pH on acid-base equilibrium. The part played by ammonia in tobacco smoke is analogous to what takes place when cocaine is "free-based".

  1. Acid-base bifunctional catalytic surfaces for nucleophilic addition reactions.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-09-01

    This article illustrates the modification of oxide surfaces with organic amine functional groups to create acid-base bifunctional catalysts, summarizing our previous reports and also presenting new data. Immobilization of organic amines as bases on inorganic solid-acid surfaces afforded highly active acid-base bifunctional catalysts, which enabled various organic transformations including C--C coupling reactions, though these reactions did not proceed with either the homogeneous amine precursors or the acidic supports alone. Spectroscopic characterization, such as by solid-state MAS NMR and FTIR, revealed not only the interactions between acidic and basic sites but also bifunctional catalytic reaction mechanisms.

  2. Dissecting the cation-cation interaction between two uranyl units.

    PubMed

    Tecmer, Paweł; Hong, Sung W; Boguslawski, Katharina

    2016-07-21

    We present a state-of-the-art computational study of the uranyl(vi) and uranyl(v) cation-cation interactions (dications) in aqueous solution. Reliable electronic structures of two interacting uranyl(vi) and uranyl(v) subunits as well as those of the uranyl(vi) and uranyl(v) clusters are presented for the first time. Our theoretical study elucidates the impact of cation-cation interactions on changes in the molecular structure as well as changes in vibrational and UV-Vis spectra of the bare uranyl(vi) and uranyl(v) moieties for different total spin-states and total charges of the dications.

  3. 1H NMR relaxation of water: a probe for surfactant adsorption on kaolin.

    PubMed

    Totland, Christian; Lewis, Rhiannon T; Nerdal, Willy

    2011-11-01

    In this study, (1)H NMR is used to investigate properties of sodium dodecyl sulfate (SDS), tetradecyl trimethyl ammonium bromide (TTAB), and dodecyl trimethyl ammonium bromide (DTAB) adsorbed on kaolin by NMR T(1) and T(2) measurements of the water proton resonance. The results show that adsorbed surfactants form a barrier between sample water and the paramagnetic species present on the clay surface, thus significantly increasing the proton T(1) values of water. This effect is attributed to the amount of adsorbed surfactants and the arrangement of the surfactant aggregates. The total surface area covered by the cationic (DTAB and TTAB) and anionic (SDS) surfactants could be estimated from the water T(1) data and found to correspond to the fractions of negatively and positively charged surface area, respectively. For selected samples, the amount of paramagnetic species on the clay surface was reduced by treatment with hydrofluoric (HF) acid. For these samples, T(1) and T(2) measurements were taken in the temperature range 278-338 K, revealing detailed information on molecular mobility and nuclear exchange for the sample water that is related to surfactant behavior both on the surface and in the aqueous phase.

  4. Nanostructured fluids from degradable nonionic surfactants for the cleaning of works of art from polymer contaminants.

    PubMed

    Baglioni, M; Raudino, M; Berti, D; Keiderling, U; Bordes, R; Holmberg, K; Baglioni, P

    2014-09-21

    Nanostructured fluids containing anionic surfactants are among the best performing systems for the cleaning of works of art. Though efficient, their application may result in the formation of a precipitate, due to the combination with divalent cations that might leach out from the artifact. We propose here two new aqueous formulations based on nonionic surfactants, which are non-toxic, readily biodegradable and insensitive to the presence of divalent ions. The cleaning properties of water-nonionic surfactant-2-butanone (MEK) were assessed both on model surfaces and on a XIII century fresco that could not be cleaned using conventional methods. Structural information on nanofluids has been gathered by means of small-angle neutron scattering, dynamic light scattering and nuclear magnetic resonance with diffusion monitoring. Beside the above-mentioned advantages, these formulations turned out to be considerably more efficient in the removal of polymer coatings than those based on anionic surfactants. Our results indicate that the cleaning process most likely consists of two steps: initially, the polymer film is swollen by the MEK dissolved in the continuous domain of the nanofluid; in the second stage, surfactant aggregates come into play by promoting the removal of the polymer film with a detergency-like mechanism. The efficiency can be tuned by the composition and nature of amphiphiles and is promoted by working as close as possible to the cloud point of the formulation, where the second step proceeds at maximum rate.

  5. Effect of surfactants on Fenton's reagent-mediated degradation of Kraft black liquor.

    PubMed

    Escalante, Maybeth; Rodríguez-Malaver, Antonio J; Araujo, Elisa; González, Aura M; Rojas, Orlando J; Peñaloza, Nancy; Bullón, Johnny; Lara, Mayra A; Dmitrieva, Natalia; Pérez-Pérez, Elizabeth

    2005-10-01

    One of the limitations of the biodegradation of hydrophobic chemical compounds, like lignins, is their low solubility in the aqueous solution where this process takes place. To resolve this problem, surfactants have been used to improve the solubility of these hydrophobic compounds. In this investigation, we studied the effect of surfactants (anionic, cationic, and non-ionic) on the treatment of Kraft black liquor with Fenton's reagent. In the Fenton reaction, H2O2 (two different concentrations, 10 mM and 20 mM), FeCl2 (1 mM) and surfactant solution (10%) were used. Black liquor degradation was determined by UV/Visible spectrophotometry and by measuring phenolic groups. In the presence of Fenton's reagent, the optimum conditions for the oxidative degradation of black liquor were 10 mM H2O2, 1 microL of 10% solution of anionic surfactant (SDS). The importance of the use of surfactants for preparing black liquor for subsequent Fenton's reagent-mediated degradation was discussed.

  6. Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical composition

    PubMed Central

    Deese, Rachel D.; LeBlanc, Madeline R.

    2016-01-01

    Surfactants can be extremely toxic to aquatic species and are introduced to the environment in a variety of ways. It is thus important to understand how other environmental constituents, in this case humic acids (HAs), may alter the toxicity of anthropogenic surfactants. Hatching and mortality assays of Artemia Franciscana were performed for three different toxic surfactants: Triton X-100 (Tx-100, non-ionic), cetylpyridinium chloride (CPC, cationic), and sodium dodecyl sulfate (SDS, anionic). Humic acids of varying composition and concentrations were added to the assays to determine the toxicity mitigating ability of the HAs. Tx-100 had a significant toxic effect on Artemia mortality rates and HAs from terrestrial sources were able to mitigate the toxicity, but an aquatic HA did not. CPC and SDS limited hatching success of the Artemia and, as HAs were added, the hatching percentages increased for all HA sources, indicating toxicity mitigation. In order to determine which functional groups within HAs were responsible for the interaction with the surfactants, the HAs were chemically modified by: (i) bleaching to reduce aromatics, (ii) Soxhlet extraction to reduce lipids, and (iii) acid hydrolysis to reduce O- and N-alkyl groups. Although most of the modified HAs had some toxicity mitigating ability for each of the surfactants, there were two notable differences: 1) the lipid-extracted HA did not reduce the toxicity of Tx-100 and 2) the bleached HA had a lower toxicity mitigating ability for CPC than the other modified HAs. PMID:27453688

  7. Transport of TiO2 nanoparticles in soil in the presence of surfactants.

    PubMed

    Sun, Peide; Zhang, Keke; Fang, Jing; Lin, Daohui; Wang, Minhao; Han, Jingyi

    2015-09-15

    This paper aimed to investigate the influences of surfactants on the nanoparticle transport behavior in soil. The transport behaviors of TiO2 nanoparticles (nTiO2) in soil with three different surfactants, including Triton X-100 (TX-100), sodium dodecylbenzene sulfonate (SDBS) and cationic cetyl trimethylammonium bromide (CTAB) were studied. Results showed that all the three surfactants decreased the mobility of nTiO2 in soil column, which were mainly caused by the strong adsorption of surfactants on soil and nTiO2. The inhibition order was as follows: CTAB>SDBS>TX-100. Combined effect experiments showed that when solution ionic strength (IS) increased, TX-100 or CTAB inhibited the mobility of nTiO2 in soil. However, the effect of SDBS on nTiO2 transport shifted from inhibition to facilitation when IS increased from 0.1 to 5mM. This was mainly attributed to the decreasing adsorption of SDBS on soil with increased IS, whereas the adsorption of TX-100 and CTAB was independent of IS. This innovative information motivates further insight into the role of surfactants on nanoparticle transport behavior in soil.

  8. Effect of spacer length on the interfacial behavior of N,N'-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide gemini surfactants in the absence and presence of ZnO nanoparticles.

    PubMed

    Fereidooni Moghadam, Tahereh; Azizian, Saeid; Wettig, Shawn

    2017-01-15

    In this paper the interfacial behavior of aqueous solutions of cationic gemini surfactants of the, N,N'-bis(dimethylalkyl)-α,ω-alkanediammoniumdibromide type (known as the 12-s-12 series), in the absence and presence of ZnO nanoparticles was studied. Equilibrium and dynamic interfacial tension between n-decane and aqueous surfactant solutions were investigated. It was concluded that the synergistic effect between surfactants and nanoparticles increases the surfactant efficiency with respect to reducing the interfacial tension. Moreover, the magnitude of the effect of ZnO nanoparticles on the interfacial tension decreases with increasing length of the spacer group in the gemini surfactant structure. Dynamic studies illustrate that the migration mechanism of gemini surfactants (regardless of the presence of ZnO) from the bulk to the interface was controlled by both diffusion and adsorption. The effect of spacer length on the contact angle and emulsion stability both with and without nanoparticles was also studied.

  9. Inactivation of surfactant in rat lungs.

    PubMed

    Bruni, R; Fan, B R; David-Cu, R; Taeusch, H W; Walther, F J

    1996-02-01

    Although surfactant replacement therapy has dramatically improved the outcome of premature infants with respiratory distress syndrome, approximately 30% of treated infants show a transient or no response. Nonresponse to surfactant replacement therapy may be due to extreme lung immaturity and possibly surfactant inactivation. Surfactant inactivation involves aspecific biophysical events, such as interference with the formation or activity of an alveolar monolayer, and specific interactions with serum proteins, including antibodies, leaking into the alveolar space. As formulations containing surfactant proteins appear to better tolerate serum inactivation, we used an excised rat lung model to compare the susceptibility to serum inactivation of a mixture of synthetic phospholipids selected from surfactant lipid constituents, Exosurf (a protein-free synthetic surfactant), Survanta [containing surfactant proteins B and C (SP-B and -C)], and a porcine surfactant (containing SP-A, -B, and -C). For each of these preparations, we used pressure/volume determinations as an in situ measure of surfactant activity and retested the same preparations after mixing with human serum, a nonspecific surfactant inactivator. Human serum inactivated porcine surfactant to a lesser extent than Survanta, Exosurf, or synthetic phospholipids. Temperature exerted a significant effect on deflation stability, as shown by a greater lung compliance in untreated, normal lungs and a larger improvement in compliance after treating lavaged lungs with synthetic phospholipids at 37 degrees C than at 22 degrees C. We conclude that surfactant containing SP-A, -B, and -C is only moderately susceptible to inactivation with whole serum and may therefore exert a greater clinical response than protein-free surfactants or those containing only SP-B and -C.

  10. A fundamental investigation of the surfactant-stabilized single-walled carbon nanotube/epoxy resin suspensions by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; O’Haver, John H.

    2017-01-01

    The surfactant-assisted stabilization of single-walled carbon nanotubes (SWCNTs) in SWCNT/epoxy resin suspensions were investigated for different surfactant types, concentrations, and temperatures using molecular dynamics simulation. One cationic surfactant, i.e. cetyltrimethylammonium bromide (CTAB), and three anionic surfactants, i.e. sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (NaDDBS), and sodium cholate (SC), as well as a 1:1 mixture of CTAB and SDS were used. Potentials of mean force (PMFs) were generated between two fixed-size (6,6) SWCNTs for all neat (no surfactant) and surfactant-loaded SWCNT/epoxy resin systems at three different surfactant concentrations (0.25, 0.50, and 1.00 wt%) at room (298 K) and elevated temperature (398 K, only for low-surfactant-concentration systems). Overall, two distinct mechanisms of SWCNT stabilization by the surfactants were identified: (1) an increase in the SWCNT aggregation energy barrier due to the wrapping of the SWCNTs by the surfactant molecules, and (2) a constantly positive free energy (repulsion) for all SWCNT separation distances due to the encapsulation of the two approaching SWCNTs. With the second mechanism, there is a delay for the epoxy molecules to be pushed out from the space between the two SWCNTs. With an increase in the surfactant concentration, the first mechanism becomes more prevalent. With an increase in temperature to 398 K, all surfactants migrate to the suspending medium, thereby the second mechanism of SWCNT stabilization dominates. A drop in the SWCNT-surfactant binding energy is observed around 360–370 K, signifying the surfactant migration to the suspending medium. More or less, all surfactants stabilize the SWCNTs in an epoxy resin at one or more surfactant concentrations. However, NaDDBS exhibits a higher SWCNT aggregation barrier at high concentrations and both temperatures (298 K and 398 K), thereby providing a better SWCNT stabilization in the epoxy resin

  11. Surfactant-facilitated remediation of metal-contaminated soils: efficacy and toxicological consequences to earthworms.

    PubMed

    Slizovskiy, Ilya B; Kelsey, Jason W; Hatzinger, Paul B

    2011-01-01

    The effectiveness of surfactant formulations to remove aged metals from a field soil and their influence on soil toxicity was investigated. Batch studies were conducted to evaluate the efficacy of cationic (1-dodecylpyridinium chloride; DPC), nonionic (oleyl dimethyl benzyl ammonium chloride; trade name Ammonyx KP), and anionic (rhamnolipid biosurfactant blend; trade name JBR-425) surfactants for extracting Zn, Cu, Pb, and Cd from a soil subjected to more than 80 years of metal deposition. All three surfactants enhanced removal of the target metals. The anionic biosurfactant JBR-425 was most effective, reducing Zn, Cu, Pb, and Cd in the soil by 39, 56, 68, and 43%, respectively, compared with less than 6% removal by water alone. Progressive acidification of the surfactants with citric acid buffer or addition of ethylenediaminetetra-acetic acid (EDTA) further improved extraction efficiency, with more than 95% extraction of all four metals by surfactants acidified to pH 3.6 and generally greater than 90% removal of all metals with addition of 0.1 M EDTA. In two species of earthworm, Eisenia fetida and Lumbricus terrestris, metal bioaccumulation was reduced by approximately 30 to 80%, total biomass was enhanced by approximately threefold to sixfold, and survival was increased to greater than 75% in surfactant-remediated soil compared with untreated soil. The data indicate that surfactant washing may be a feasible approach to treat surface soils contaminated with a variety of metals, even if those metals have been present for nearly a century, and that the toxicity and potential for metal accumulation in biota from the treated soils may be significantly reduced.

  12. Physical Properties and Biological Activity of Poly(butyl acrylate–styrene) Nanoparticle Emulsions Prepared with Conventional and Polymerizable Surfactants

    PubMed Central

    Garay-Jimenez, Julio C.; Gergeres, Danielle; Young, Ashley; Dickey, Sonja; Lim, Daniel V.; Turos, Edward

    2009-01-01

    Recent efforts in our laboratory have explored the use of polyacrylate nanoparticles in aqueous media as stable emulsions for potential applications in treating drug-resistant bacterial infections. These emulsions are made by emulsion polymerization of acrylated antibiotic compounds in a mixture of butyl acrylate and styrene (7:3 w:w) using sodium dodecyl sulfate (SDS) as a surfactant. Prior work in our group established that the emulsions required purification to remove toxicity associated with extraneous surfactant present in the media. This paper summarizes our investigations of poly(butyl acrylate-styrene) emulsions made using anionic, cationic, zwitterionic, and non-charged (amphiphilic) surfactants, as well as attachable surfactant monomers (surfmers), comparing the cytotoxicity and microbiological activity levels of the emulsion both before and after purification. Our results show that the attachment of a polymerizable surfmer onto the matrix of the nanoparticle neither improves nor diminishes cytotoxic or antibacterial effects of the emulsion, regardless of whether the emulsions are purified or not, and that the optimal properties are associated with the use of the non-ionic surfactants versus those carrying anionic, cationic, or zwitterionic charge. Incorporation of an N-thiolated β-lactam antibacterial agent onto the nanoparticle matrix via covalent attachment endows the emulsion with antibiotic properties against pathogenic bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), without changing the physical properties of the nanoparticles or their emulsions. PMID:19523413

  13. Rosin Surfactant QRMAE Can Be Utilized as an Amorphous Aggregate Inducer: A Case Study of Mammalian Serum Albumin

    PubMed Central

    Ishtikhar, Mohd; Chandel, Tajjali Ilm; Ahmad, Aamir; Ali, Mohd Sajid; Al-lohadan, Hamad A.; Atta, Ayman M.; Khan, Rizwan Hasan

    2015-01-01

    Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications. PMID:26418451

  14. Evolution of Acid-Base Concept (1917-1984).

    ERIC Educational Resources Information Center

    Gamble, James L., Jr.

    1984-01-01

    Evaluates the accuracy and usefulness of a simpler rationale for teaching acid-base physiology as compared to more complex approaches frequently taught in physiology courses. Also reviews problems of terminology, giving emphasis to the significant effects that the choice of words can have on students' concepts. (JN)

  15. Soil Studies: Applying Acid-Base Chemistry to Environmental Analysis.

    ERIC Educational Resources Information Center

    West, Donna M.; Sterling, Donna R.

    2001-01-01

    Laboratory activities for chemistry students focus attention on the use of acid-base chemistry to examine environmental conditions. After using standard laboratory procedures to analyze soil and rainwater samples, students use web-based resources to interpret their findings. Uses CBL probes and graphing calculators to gather and analyze data and…

  16. Using Spreadsheets to Produce Acid-Base Titration Curves.

    ERIC Educational Resources Information Center

    Cawley, Martin James; Parkinson, John

    1995-01-01

    Describes two spreadsheets for producing acid-base titration curves, one uses relatively simple cell formulae that can be written into the spreadsheet by inexperienced students and the second uses more complex formulae that are best written by the teacher. (JRH)

  17. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity βV is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  18. Acid-Base Disorders--A Computer Simulation.

    ERIC Educational Resources Information Center

    Maude, David L.

    1985-01-01

    Describes and lists a program for Apple Pascal Version 1.1 which investigates the behavior of the bicarbonate-carbon dioxide buffer system in acid-base disorders. Designed specifically for the preclinical medical student, the program has proven easy to use and enables students to use blood gas parameters to arrive at diagnoses. (DH)

  19. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  20. Effect of exogenous surfactant on the development of surfactant synthesis in premature rabbit lung.

    PubMed

    Amato, Maurizio; Petit, Kevin; Fiore, Humberto H; Doyle, Cynthia A; Frantz, Ivan D; Nielsen, Heber C

    2003-04-01

    Surfactant replacement is an effective therapy for neonatal respiratory distress syndrome. Full recovery from respiratory distress syndrome requires development of endogenous surfactant synthesis and metabolism. The influence of exogenous surfactant on the development of surfactant synthesis in premature lungs is not known. We hypothesized that different exogenous surfactants have different effects on the development of endogenous surfactant production in the premature lung. We treated organ cultures of d 25 fetal rabbit lung for 3 d with 100 mg/kg body weight of natural rabbit surfactant, Survanta, and Exosurf and measured their effects on the development of surfactant synthesis. Additional experiments tested how these surfactants and Curosurf affected surfactant protein (SP) SP-A, SP-B, and SP-C mRNA expression. Surfactant synthesis was measured as the incorporation of 3H-choline and 14C-glycerol into disaturated phosphatidylcholine recovered from lamellar bodies. Randomized-block ANOVA showed significant differences among treatments for incorporation of both labels (p < 0.01), with natural rabbit surfactant less than control, Survanta greater than control, and Exosurf unchanged. Additional experiments with natural rabbit surfactant alone showed no significant effects in doses up to 1000 mg/kg. Survanta stimulated disaturated phosphatidylcholine synthesis (173 +/- 41% of control; p = 0.01), increased total lamellar body disaturated phosphatidylcholine by 22% (p < 0.05), and increased 14C-disat-PC specific activity by 35% (p < 0.05). The response to Survanta was dose-dependent up to 1000 mg/kg. Survanta did not affect surfactant release. No surfactant altered the expression of mRNA for SP-A, SP-B, or SP-C. We conclude that surfactant replacement therapy can enhance the maturation of surfactant synthesis, but this potential benefit differs with different surfactant preparations.

  1. Surfactants in the management of rhinopathologies

    PubMed Central

    Rosen, Philip L.; Palmer, James N.; O'Malley, Bert W.

    2013-01-01

    Background: Surfactants are a class of amphiphilic surface active compounds that show several unique physical properties at liquid–liquid or liquid–solid surface interfaces including the ability to increase the solubility of substances, lower the surface tension of a liquid, and decrease friction between two mediums. Because of these unique physical properties several in vitro, ex vivo, and human trials have examined the role of surfactants as stand-alone or adjunct therapy in recalcitrant chronic rhinosinusitis (CRS). Methods: A review of the literature was performed. Results: The data from three different surfactants have been examined in this review: citric acid zwitterionic surfactant (CAZS; Medtronic ENT, Jacksonville FL), Johnson's Baby Shampoo (Johnson & Johnson, New Brunswick NJ), and SinuSurf (NeilMed Pharmaceuticals, Santa Rosa, CA). Dilute surfactant therapy shows in vitro antimicrobial effects with modest inhibition of bacterial biofilm formation. In patients with CRS, surfactants may improve symptoms, most likely through its mucolytic effects. In addition, surfactants have several distinct potential benefits including their ability to improve an irrigant's penetration of the nonoperated sinus and their synergistic effects with antibiotics. However, surfactants potential for nasal irritation and possible transient ciliotoxicity may limit their use. Conclusion: Recent data suggest a possible therapeutic role of surfactants in treating rhinopathologies associated with mucostasis. Further investigation, including a standardization of surfactant formulations, is warranted to further elucidate the potential benefits and drawbacks of this therapy. PMID:23710951

  2. A study of the distribution of polymer/surfactant coacervate between solution and foam in archetypal shampoo systems.

    PubMed

    Wilgus, Leigh Ann; Davis, Kathleen; Labeaud, Lauren; Gandolfi, Lisa; Lochhead, Robert Y

    2011-01-01

    The research reported here attempted to answer the question, "is the foam important in delivering coacervates from shampoos." In order to answer this question, we have measured the amount of polymer in the foam and in the liquid phases of several cationic polymer/anionic surfactant systems by gravimetry and by FTIR techniques. In all cases studied, we discovered that the concentration of solids and, especially the polymer, in the liquid phase and in the foam phase were essentially the same. We conclude that the foam is unlikely to be an important factor in the topical delivery of polymer/surfactant coacervates.

  3. [The effect of spermine on acid-base equilibrium in DNA molecule].

    PubMed

    Slonitskiĭ, S V; Kuptsov, V Iu

    1990-01-01

    The influence of spermine (Sp) on the acid-induced predenaturational and denaturational transitions in the DNA molecule structure has been studied by means of circular dichroism, spectrophotometric and viscometric titration at supporting electrolyte concentration 10 mM NaCl. The data available indicate that at [N]/[P] less than or equal to 0.60 (here [N] and [P] are molar concentrations of Sp nitrogen and DNA phosphours, respectively) the cooperative structural B----B(+)----S transitions are accompanied by the DNA double-helice winding. No competition for proton acceptor sites in the DNA molecule between H+ and Sp4+ cations has been observed when binding to neutral macromolecule. At 0.60 less than or equal to [N]/[P] less than or equal to 0.75 the displacement of the B----B(+)----S transitions midpoints to acidic pH region has been established. This is accompanied by DNA condensation and the appearance of differential scattering of circularly polarized light. The calculations carried out in the framework of the two-variable Manning theory have shown that the acid-induced reduction of the effective polyion charge density facilitates the Sp-induced DNA condensation. It has been shown that the acid-base equilibrium in the DNA molecule is determined by local [H+] in the 2-3 A hydrated monolayer of the macromolecule. An adequate estimation of [H+] can be obtained on the basis of the Poisson-Boltzman approach. The data obtained are consistent with recently proposed hypothesis of polyelectrolyte invariance of the acid-base equilibrium in the DNA molecule.

  4. Internal charge transfer based ratiometric interaction of anionic surfactant with calf thymus DNA bound cationic surfactant: Study I

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhijit; Chaudhuri, Tandrima; Moulik, Satya Priya; Banerjee, Manas

    2016-01-01

    Cetyl trimethyl ammonium bromide (CTAB) binds calf thymus (ct-) DNA like anionic biopolymers electrostatically and established equilibrium both in the ground as well as in excited state in aqueous medium at pH 7. Anionic sodium dodecyl sulfate (SDS) does not show even hydrophobic interaction with ct-DNA at low concentration. On contrary, SDS can establish well defined equilibrium with DNA bound CTAB in ground state where the same CTAB-DNA isosbestic point reappears. First report of internal charge transfer (ICT) based binding of CTAB with ct-DNA as well as ICT based interaction of anionic SDS with DNA bound CTAB that shows dynamic quenching contribution also. The reappearance of anodic peak and slight increase in cathodic peak current with increasing concentration (at lower range) of anionic SDS, possibly reflect the release of CTAB from DNA bound CTAB by SDS.

  5. The clouding behaviour of PEO-PPO based triblock copolymers in aqueous ionic surfactant solutions: a new approach for cloud point measurements.

    PubMed

    Patel, Tejas; Bahadur, Pratap; Mata, Jitendra

    2010-05-15

    The cloud points (CP) of 1 g/dl solutions of polyethylene oxide-polypropylene oxide (PEO-PPO) based triblock copolymers (Pluronics® P84, L64, L44 and Reverse Pluronics® 10R5, 25R4, 17R4) were measured as a function of their molecular weight and added ionic surfactant. For identical PEO/PPO ratios, copolymers with lower molecular weight show a larger increase in the cloud point in the presence of surfactants than polymers with higher molecular weight. The opposite trend has been observed for reverse Pluronics. The cloud points of polymers with different PEO/PPO ratios have also been reported. An increase in the size of the middle PEO block in reverse Pluronics has a more significant effect on cloud points than molecular weight increment. Ionic surfactants produced marked increases in the cloud points of copolymer solutions. The effect was much larger for surfactants with higher hydrophobicity. Cationic surfactants with different chain lengths were used to examine the surfactant-polymer interaction. A novel approach for normalising the cloud points to their relative values has been carried out to see the clear effect of ionic surfactants. Tri component systems, comprising polymers, cetyltrimethylammonium bromide (C(16)TABr) surfactant and salt (NaBr), have also been studied to see the effect of salt on the phase separation behaviour of solutions within the framework of our new cloud point approach.

  6. Protolytic Equilibria of Sartans in Micellar Solutions of Differently Charged Surfactants.

    PubMed

    Grujić, Maja; Popović, Marija; Popović, Gordana; Nikolic, Katarina; Agbaba, Danica

    2016-08-01

    Protolytic equilibria of irbesartan, losartan, and valsartan have been investigated in the presence and absence of differently charged anionic (sodium dodecyl sulfate), cationic (cetyltrimethylammonium bromide), and nonionic (4-octylphenol polyethoxylate and polyoxyethylene (23) lauryl ether) surfactants. Ionization constants were determined by potentiometric titration at a constant ionic strength (0.1 M NaCl) and temperature 25°C. The effect of surfactants was estimated, based on a shift in apparent ionization constants (pKa(app)) determined in micellar solutions against the pKa(w) values in water. The anionic surfactant caused an increase in the pKa(app) values of sartans (up to 1.72 pK units), while the cationic surfactant had an opposite effect and caused a reduction in pKa(app) values (up to -1.44 pK units). These results point out to the fact that the ionizable groups of sartans are involved in electrostatic interactions with the charged surface of the ionic micelles. Shift in the pKa(app) values in the presence of nonionic surfactants (from -0.86 to +1.30) is a consequence of the interactions of drugs with the hydrophilic palisade layer. Significant changes in the distribution profiles of the equilibrium forms (from -44% to +80%) are observed at the biopharmaceutically important pH 4.5 value and can be considered in terms of the potential influence on intestinal absorption and bioavailability.

  7. Surfactant transport on viscous bilayers

    NASA Astrophysics Data System (ADS)

    Matar, Omar; Craster, Richard; Warner, Mark

    2001-11-01

    We model the external delivery of surfactant to pulmonary airways, an integral part of Surfactant Replacement Therapy (SRT), a method of treatment of Respiratory Distress Syndrome in neonates. We examine the spreading dynamics of insoluble surfactant by Marangoni stresses along the mucus-perciliary liquid bilayers that line the inside of airways. The bilayer is modelled as a thin highly viscous mucus surface film (mucus) overlying a much less viscous perciliary liquid layer (PCL); this is appropriate for small airways. By exploiting this large viscosity constrast, a variant of standard lubrication theory is adopted wherein terms, which would have otherwise been neglected in the lubrication approximation, are promoted in order to model correctly the presence of the mucus. Inclusion of van der Waals forces in the model permit the study of the effect of this mucus 'skin' on the possibility of bilayer rupture, a potential cause of failure of SRT. We find that increasing the viscosity contrast and initial mucus layer thickness delays the onset of rupture, while increasing the relative significance of Marangoni stresses leads to more marked thinning and rapid bilayer rupture [1]. [1] O. K. Matar, R. V. Craster and M. R. Warner, submitted to J. Fluid Mech. (2001).

  8. Branching, Superdiffusion and Stress Relaxation in Surfactant Micelles

    NASA Astrophysics Data System (ADS)

    Sureshkumar, R.; Dhakal, S.; Syracuse University Team

    2016-11-01

    We investigate the mechanism of branch formation and its effects on the dynamics and rheology of a model cationic micellar fluid using molecular dynamics (MD) simulations. Branched structures are formed upon increasing counter ion density. A sharp decrease in the solution viscosity with increasing salinity has long been attributed to the sliding motion of micellar branches along the main chain. Simulations not only provide firm evidence of branch sliding in real time, but also show enhanced diffusion of surfactants by virtue of such motion. Insights into the mechanism of stress relaxation associated with branch sliding will be discussed. Specifically, an externally imposed stress damps out more quickly in a branched system compared to that in an unbranched one. NSF Grants 1049489, 1049454.

  9. Surfactant assisted surface studies of zinc sulfide nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahi, Ashutosh K.; Pandey, B. K.; Swarnkar, R. K.; Gopal, R.

    2011-09-01

    We report a simple soft chemical method for the synthesis of ZnS nanoparticles using varying concentration of cationic surfactant CTAB and examine its surface properties. Powder X-ray diffraction, UV-vis spectroscopy, photoluminescence spectroscopy, selective area electron diffraction, and transmission electron microscopy are used to characterize the as prepared ZnS nanoparticles. XRD and TEM measurements show the size of polydispersed ZnS nanoparticles is in the range of 2-5 nm with cubic phase structure. The photoluminescence spectrum of ZnS nanoparticles exhibits four fluorescence emission peaks centered at 387 nm, 412 nm, 489 nm and 528 nm showing the application potential for the optical devices. In Raman spectra of ZnS nanoparticles, the modes around 320, 615 and 700 cm-1 are observed.

  10. Solution behavior of surfactants. Vol. 1

    SciTech Connect

    Mittal, K.L.; Fendler, E.J.

    1983-01-01

    This three-volume set constitutes the proceedings of the 4th International Symposium on Surfactants in Solution held in Sweden in 1982. Volume 1 considers phase behavior and phase equilibria in surfactant solutions (e.g., thermodynamics of partially miscible micelles and liquid crystals; multi-method characterization of micelles; the surfactant-block model of micelle structure). Volume 2 considers thermodynamic and kinetic aspects of micellization (computation of the micelle-size distribution; salt-induced sphere-rod transition of ionic micelles; micellar effects on kinetics and equilibria of electron transfer reactions). Volume 3 considers reverse micelles, microemulsions and reactions in microemulsions. Topics covered include solubilization, surfactants in analytical chemistry, the adsorption and binding of surfactants, the polymerization of organized surfactant assemblies, light scattering by liquid surfaces, and vesicles.

  11. Strategic design and refinement of Lewis acid-base catalysis by rare-earth-metal-containing polyoxometalates.

    PubMed

    Suzuki, Kosuke; Sugawa, Midori; Kikukawa, Yuji; Kamata, Keigo; Yamaguchi, Kazuya; Mizuno, Noritaka

    2012-06-18

    Efficient polyoxometalate (POM)-based Lewis acid-base catalysts of the rare-earth-metal-containing POMs (TBA(6)RE-POM, RE = Y(3+), Nd(3+), Eu(3+), Gd(3+), Tb(3+), or Dy(3+)) were designed and synthesized by reactions of TBA(4)H(4)[γ-SiW(10)O(36)] (TBA = tetra-n-butylammonium) with RE(acac)(3) (acac = acetylacetonato). TBA(6)RE-POM consisted of two silicotungstate units pillared by two rare-earth-metal cations. Nucleophilic oxygen-enriched surfaces of negatively charged POMs and the incorporated rare-earth-metal cations could work as Lewis bases and Lewis acids, respectively. Consequently, cyanosilylation of carbonyl compounds with trimethylsilyl cyanide ((TMS)CN) was efficiently promoted in the presence of the rare-earth-metal-containing POMs via the simultaneous activation of coupling partners on the same POM molecules. POMs with larger metal cations showed higher catalytic activities for cyanosilylation because of the higher activation ability of C═O bonds (higher Lewis acidities) and sterically less hindered Lewis acid sites. Among the POM catalysts examined, the neodymium-containing POM showed remarkable catalytic performance for cyanosilylation of various kinds of structurally diverse ketones and aldehydes, giving the corresponding cyanohydrin trimethylsilyl ethers in high yields (13 substrates, 94-99%). In particular, the turnover frequency (714,000 h(-1)) and the turnover number (23,800) for the cyanosilylation of n-hexanal were of the highest level among those of previously reported catalysts.

  12. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans

    PubMed Central

    Adeva-Andany, María M.; Carneiro-Freire, Natalia; Donapetry-García, Cristóbal; Rañal-Muíño, Eva; López-Pereiro, Yosua

    2014-01-01

    Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis). By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations. PMID:24877130

  13. Combined Hydrous Ferric Oxide and Quaternary Ammonium Surfactant Tailoring of Granular Activated Carbon for Concurrent Arsenate and Perchlorate Removal

    SciTech Connect

    Jang, M.; Cannon, F; Parette, R; Yoon, S; Chen, W

    2009-01-01

    Activated carbon was tailored with both iron and quaternary ammonium surfactants so as to concurrently remove both arsenate and perchlorate from groundwater. The iron (hydr)oxide preferentially removed the arsenate oxyanion but not perchlorate; while the quaternary ammonium preferentially removed the perchlorate oxyanion, but not the arsenate. The co-sorption of two anionic oxyanions via distinct mechanisms has yielded intriguing phenomena. Rapid small-scale column tests (RSSCTs) with these dually prepared media employed synthetic waters that were concurrently spiked with arsenate and perchlorate; and these trial results showed that the quaternary ammonium surfactants enhanced arsenate removal bed life by 25-50% when compared to activated carbon media that had been preloaded merely with iron (hydr)oxide; and the surfactant also enhanced the diffusion rate of arsenate per the Donnan effect. The authors also employed natural groundwater from Rutland, MA which contained 60 microg/L As and traces of silica, and sulfate; and the authors spiked this with 40 microg/L perchlorate. When processing this water, activated carbon that had been tailored with iron and cationic surfactant could treat 12,500 bed volumes before 10 microg/L arsenic breakthrough, and 4500 bed volumes before 6 microg/L perchlorate breakthrough. Although the quaternary ammonium surfactants exhibited only a slight capacity for removing arsenate, these surfactants did facilitate a more favorably positively charged avenue for the arsenate to diffuse through the media to the iron sorption site (i.e. via the Donnan effect).

  14. Concentrations of surfactants and sterols in the surface microlayer of the estuarine areas of Selangor River, Malaysia

    NASA Astrophysics Data System (ADS)

    Alsalahi, Murad Ali; Talib Latif, Mohd; Mohd Ali, Masni; Dominick, Doreena; Firoz Khan, Md; Bahiyah Abd Wahid, Nurul; Ili Hamizah Mustaffa, Nur

    2016-04-01

    This study determined the concentration of surfactant and sterols as biomarkers in the surface microlayer (SML) in estuarine areas of the Selangor River, Malaysia. SML samples were collected during different seasons using a rotation drum method. The compositions of surfactants in SML were determined as methylene blue active substances (MBAS) and disulphine blue active substances (DBAS) as anionic and cationic surfactants respectively. The concentration of sterols was determined using a gas chromatography equipped with a flame ionisation detector (GC-FID). The results show that the concentrations of surfactants around the estuarine area were dominated by anionic surfactants (MBAS) with average concentrations of 0.39 μmol L-1. The concentrations of total sterols in the SML ranged from 107.06 to 505.55 ng L-1. The surfactants and total sterol concentrations were found to be higher in the wet season. Cholesterol was found to be the most abundant sterols component in the SML of the Selangor River. The diagnostic ratios of sterols show the influence of natural sources and waste on the contribution of sterols in the SML. Further analysis, using principal component analysis (PCA), showed distinct inputs of sterols derived from human activity (40.58%), terrigenous and plant inputs (22.59%) as well as phytoplankton and marine inputs (17.35%).

  15. Particle-size dependent sorption and desorption of pesticides within a water-soil-nonionic surfactant system.

    PubMed

    Wang, Peng; Keller, Arturo A

    2008-05-01

    Although nonionic surfactants have been considered in surfactant-aided soil washing systems, there is little information on the particle-size dependence of these processes, and this may have significant implications for the design of these systems. In this study, Triton-100 (TX) was selected to study its effect on the sorption and desorption of two pesticides (Atrazine and Diuron) from different primary soil size fractions (clay, silt, and sand fractions) under equilibrium sorption and sequential desorption. Soil properties, TX sorption, and pesticide sorption and desorption all exhibited significant particle-size dependence. The cation exchange capacity (CEC) of the bulk soils and the soil fractions determined TX sorption capacity, which in turn determined the desorption efficiency. Desorption of pesticide out of the clay raction is the limiting factor in a surfactant-aided washing system. The solubilization efficiency of the individual surfactant micelles decreased as the amount of surfactant added to the systems increased. Thus, instead of attempting to wash the bulk soil, a better strategy might be to either (1) use only the amount of surfactant that is sufficient to clean the coarse fraction, then separate the fine fraction, and dispose or treat it separately, or (2) to separate the coarse fractions mechanically and then treatthe coarse and fine fractions separately. These results may be applicable to many other hydrophobic organic compounds such as polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) strongly sorbed onto soils and sediments.

  16. Acid-base properties of bentonite rocks with different origins.

    PubMed

    Nagy, Noémi M; Kónya, József

    2006-03-01

    Five bentonite samples (35-47% montmorillonite) from a Sarmatian sediment series with bentonite sites around Sajóbábony (Hungary) is studied. Some of these samples were tuffogenic bentonite (sedimentary), the others were bentonitized tuff with volcano sedimentary origin. The acid-base properties of the edge sites were studied by potentiometric titrations and surface complexation modeling. It was found that the number and the ratio of silanol and aluminol sites as well as the intrinsic stability constants are different for the sedimentary bentonite and bentonitized tuff. The characteristic properties of the edges sites depend on the origins. The acid-base properties are compared to other commercial and standard bentonites.

  17. Structure and function studies of cationic lipid non-viral gene delivery systems

    NASA Astrophysics Data System (ADS)

    Slack, Nelle Lynn

    Gene and drug delivery systems incorporating lipids mimic the biological environment and thus offer many advantages. In order to design successful gene or drug delivery vehicles based on lipid molecules an understanding of the affects of biopolymers on lipid membranes is necessary. We have examined the structures and interactions involved in two systems based on model biomembrane/biopolymer mixtures that are relevant for gene and drug delivery research. Liposomes incorporating PEG-lipids have shown great promise as drug carriers since they have proven to increase blood circulation times by evading the immune system. Previously, it was found that the addition of single-end-anchored (SEA)-PEG-surfactants to fluid lamellar membrane systems induces a novel hydrogel. As an extension of this work, we examine the affects of adding double-end-anchored (DEA)-PEG-surfactants to fluid membrane systems. The DEA-PEG-surfactants can adopt either a looping or bridging configuration which could deeply alter the microstructure of lamellar phases. We show that the DEA-PEG-surfactants induce gelation of fluid Lalpha phases in a way similar to that previously reported for SEA-PEG-surfactants. We also show, via x-ray diffraction, two striking differences between the SEA-and DEA-PEG-surfactant systems which demonstrate the existence of a large concentration of bridging polymers in the DEA system. The use of cationic liposomes (formed by mixtures of cationic and neutral lipids) as carriers of DNA for delivery in cells is a promising alternative to viral carriers for gene therapy. Using x-ray diffraction and biological assays, we show key parameters for optimizing gene transfer with these systems that are mediated by properties of the lipid. We have found cationic liposomes complexed with supercoiled plasmid DNA in solution self-assemble into a lamellar or an inverted hexagonal structure depending on lipid composition. Transfection efficiencies, determined by X-Gal and Luciferase assays

  18. Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers.

    PubMed

    Zadaka, Dikla; Radian, Adi; Mishael, Yael G

    2010-12-01

    A systematic study was carried out to characterize the adsorption of organic cations as monomers, micelles, or polymers on montmorillonite by monitoring zeta potential (ξ) as a function of cation loading on the clay. In general, the clay's ξ became less negative as cation loading increased. A fairly good linear correlation between adsorption of organic cations on the clay, up to the cation exchange capacity (CEC) of the clay, and ξ potential of the composites was fitted. However, when the adsorption of the larger cation exceeded the CEC, a nonlinear increase in ξ was measured. The degree of this increase corresponds to the cation size and affinity to the clay (in the order surfactantcations, ξ reached zero at polycation loadings that were significantly lower than the CEC. The zeta-adsorption plot of the polycations reached a well-defined plateau which correlates to the zeta potential of the polycations. The effect of electrolytes on ξ of the crude clay was monitored, and as expected, the extent of the effect increased with valency (Na(+)cation radius (Na(+)

  19. Low temperature synthesis of transition metal oxides containing surfactant ions

    NASA Astrophysics Data System (ADS)

    Janauer, Gerald Gilbert

    1998-11-01

    Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium transition metallates with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTAsb4\\ Hsb2Vsb{10}Osb{28}. 8Hsb2O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P1-, cell parameters a=9.8945(3)A, b=11.5962(1)A, c=21.9238(2)A, alpha=95.153(2)sp°,\\ beta=93.778(1)sp°, and gamma=101.360(1)sp°. Additionally, a novel tungsten, a molybdenum and a dichromate phase will be discussed. Both the tungsten and the dichromate materials were indexed from their powder diffraction patterns yielding monoclinic unit cells. The tungsten material was found to have a=50.56(4)A, b=54.41(4)A, c=13.12(1)A, and beta=99.21sp°. The dichromate compound was determined to have a=26.757(5)A, b=10.458(2)A, c=14.829(3)A and beta=98.01(1)sp°. Interlayer spacings for the lamellar dichromate and molybdenum phases were d001 = 28.7 A, and d001 = 22.9 A. The synthesis, characterization, composition, and structure of these transition metal oxide-surfactant materials will be discussed.

  20. Biocatalytic synthesis, antimicrobial properties and toxicity studies of arginine derivative surfactants.

    PubMed

    Fait, M Elisa; Garrote, Graciela L; Clapés, Pere; Tanco, Sebastian; Lorenzo, Julia; Morcelle, Susana R

    2015-07-01

    Two novel arginine-based cationic surfactants were synthesized using as biocatalyst papain, an endopeptidase from Carica papaya latex, adsorbed onto polyamide. The classical substrate N (α)-benzoyl-arginine ethyl ester hydrochloride for the determination of cysteine and serine proteases activity was used as the arginine donor, whereas decyl- and dodecylamine were used as nucleophiles for the condensation reaction. Yields higher than 90 and 80 % were achieved for the synthesis of N (α)-benzoyl-arginine decyl amide (Bz-Arg-NHC10) and N (α)-benzoyl-arginine dodecyl amide (Bz-Arg-NHC12), respectively. The purification process was developed in order to make it more sustainable, by using water and ethanol as the main separation solvents in a single cationic exchange chromatographic separation step. Bz-Arg-NHC10 and Bz-Arg-NHC12 proved antimicrobial activity against both Gram-positive and Gram-negative bacteria, revealing their potential use as effective disinfectants as they reduced 99 % the initial bacterial population after only 1 h of contact. The cytotoxic effect towards different cell types of both arginine derivatives was also measured. Bz-Arg-NHCn demonstrated lower haemolytic activity and were less eye-irritating than the commercial cationic surfactant cetrimide. A similar trend could also be observed when cytotoxicity was tested on hepatocytes and fibroblast cell lines: both arginine derivatives were less toxic than cetrimide. All these properties would make the two novel arginine compounds a promising alternative to commercial cationic surfactants, especially for their use as additives in topical formulations.

  1. Receptor-mediated toxicity of pahutoxin, a marine trunkfish surfactant.

    PubMed

    Kalmanzon, Eliahu; Rahamim, Yocheved; Barenholz, Yechezkel; Carmeli, Shmuel; Zlotkin, Eliahu

    2003-07-01

    Pahutoxin (PHN, choline chloride ester of 3-acetoxypalmitic acid) is a natural fish-killing (ichthyotoxic) agent derived from the defensive secretions of trunkfish. In spite of its obvious structural resemblance to synthetic cationic long-chain quaternary ammonium detergents, we show that PHN's action does not rely on its surfactant properties and is in fact, receptor-mediated. The above conclusion is supported by the following data: 1. Ichthyotoxicity is not related to its detergency or surfactivity, as indicated by the fact that the lethal concentration is about 1.5 orders of magnitude below its critical micelle concentration value (69 microM) and its liposomal/seawater partition coefficient is low (62-85); 2. The trunkfish is tolerant to its own pahutoxin; 3. Ichthyotoxicity occurs only upon application to the surrounding water, suggesting the existence of externally located receptors; 4. The receptor hypothesis was supported by the aid of equilibrium saturation binding assays revealing the presence of specific binding sites to PHN on the fish gill membranes; 5. The PHN tolerant trunkfish was shown to be devoid of PHN-binding sites. Some chemo-ecological, and environmental implications are discussed.

  2. Crystalline fibrillar gel formation in aqueous surfactant-antioxidant system.

    PubMed

    Joseph, Linet Rose; Tata, B V R; Sreejith, Lisa

    2015-08-01

    Cetyltrimethylammonium bromide (CTAB) is a well-known cationic surfactant capable to micellize into diverse morphologies in aqueous medium. We observed the formation of an opaque gel state from aqueous CTAB solution in the presence of the aromatic additive, para-coumaric acid (PCA). Optical microscopic images revealed the presence of large fibrils in the system at room temperature. Gel nature of the fibrils was confirmed by rheological measurements. Presence of interstitial water in the fibrils was recognized with Raman spectroscopy. On heating the sample above 30 (°) C, the fibrillar gel state changes to a transparent liquid state with Newtonian flow properties. Dynamic light scattering study hinted the presence of small micelles in the solution above 30 (°) C. Thus the system showed a temperature-dependent structural transition from opaque water-swollen gel to transparent micellar liquid. The formation of water-swollen fibrillar network is attributed to surfactant-additive intermolecular interactions in aqueous medium. Transition to micelle phase above 30 (°) C is related to Kraft transition which is observed at significantly lower temperature for CTAB in the absence of PCA. The structural features of PCA play a key role in promoting fibrillar network formation and elevating the Kraft transition in aqueous solution of CTAB.

  3. Destabilization of Surfactant-Dispersed Carbon Nanotubes by Anions

    NASA Astrophysics Data System (ADS)

    Hirano, Atsushi; Gao, Weilu; He, Xiaowei; Kono, Junichiro

    2017-01-01

    The colloidal stability of surfactant-dispersed single-wall carbon nanotubes (SWCNTs) is determined by microscopic physicochemical processes, such as association, partitioning, and adsorption propensities. These processes can be controlled by the addition of solutes. While the effects of cations on the colloidal stability of SWCNTs are relatively well understood, little is known about the effects of anions. In this study, we examined the effects of anions on the stability of SWCNTs dispersed by sodium dodecyl sulfate (SDS) using sodium salts, such as NaCl and NaSCN. We observed that the intensity of the radial breathing mode Raman peaks rapidly decreased as the salts were added, even at concentrations less than 25 mM, indicating the association of SWCNTs. The effect was stronger with NaSCN than NaCl. We propose that the association of SWCNTs was caused by thermodynamic destabilization of SDS assemblies on SWCNT surfaces by these salts, which was confirmed through SWCNT separation experiments using aqueous two-phase extraction and gel chromatography. These results demonstrate that neutral salts can be used to control the colloidal stability of surfactant-dispersed SWCNTs.

  4. Electrokinetic remediation using surfactant-coated ceramic casings

    SciTech Connect

    Mattson, E.D.; Bowman, R.S.; Lindgren, E.R.

    2000-06-01

    Electrokinetic remediation is an emerging technique that can be used to remove metals from saturated or unsaturated soils. In unsaturated soils, control of the medium's water content is essential. Previously used electrode designs have caused detrimental soil wetting due to excess electroosmotic flow out of ceramic-encased anodes. The authors tested a method to reverse the electroosmotic flow at the anode by treating the ceramic casing with the cationic surfactant hexadecyltrimethylammonium (HDTMA). Laboratory tests showed the untreated ceramic had an electroosmotic permeability of 2.4 x 10{sup {minus}5} cm{sup 2} V{sup {minus}1} s{sup {minus}1}. Ceramic treated with HDTMA had an electroosmotic permeability of {minus}1.3 x 10{sup {minus}5} cm{sup 2} V{sup {minus}1} s{sup {minus}1}. Under an applied electric potential, electroosmotic flow was reversed in the HDTMA-treated ceramic, indicating a reversed zeta potential due to formation of an HDTMA bilayer on the ceramic surface. Field tests conducted over a 6-month period showed negligible water loss from HDTMA-treated ceramic compared to untreated ceramics. The results indicated that a surfactant treatment to the anod