Science.gov

Sample records for acid-based doubly cross-linked

  1. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks

    PubMed Central

    Jha, Amit K.; Hule, Rohan A.; Jiao, Tong; Teller, Sean S.; Clifton, Rodney J.; Duncan, Randall L.; Pochan, Darrin J.; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1−10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  2. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium.

    PubMed

    Roy, Saswati Ghosh; Haldar, Ujjal; De, Priyadarsi

    2014-03-26

    This work reports design and synthesis of side chain amino acid based cross-linked polymeric gels, able to switch over from organogel to hydrogel by a simple deprotection reaction and showing superabsorbancy in water. Amino acid based methacrylate monomers, tert-butoxycarbonyl (Boc)-l/d-alanine methacryloyloxyethyl ester (Boc-l/d-Ala-HEMA), have been polymerized in the presence of a cross-linker via conventional free radical polymerization (FRP) and the reversible addition-fragmentation chain transfer (RAFT) technique for the synthesis of cross-linked polymer gels. The swelling behaviors of these organogels are investigated in organic solvents, and they behave as superabsorbent materials for organic solvents such as dichloromethane, acetone, tetrahydrofuran, etc. Swollen cross-linked polymer gels release the absorbed organic solvent rapidly. After Boc group deprotection from the pendant alanine moiety, the organogels transform to the hydrogels due to the formation of side chain ammonium (-NH3(+)) groups, and these hydrogels showed a significantly high swelling ratio (∼560 times than their dry volumes) in water. The morphology of organogels and hydrogels is studied by field emission scanning electron microscopy (FE-SEM). Amino acid based cross-linked gels could find applications as absorbents for oil spilled on water as well as superabsorbent hydrogels.

  3. Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes.

    PubMed

    Lim, Sanghyun; Chu, Hodong; Lee, Kukjoo; Yim, Taeeun; Kim, Young-Jun; Mun, Junyoung; Kim, Tae-Hyun

    2015-10-28

    Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode. Here, a physically cross-linked polymer binder induced by reversible acid-base interaction is reported for high performance silicon-anodes. Chemical cross-linking of polymer binders, mainly based on acidic polymers including poly(acrylic acid) (PAA), have been suggested as effective ways to accommodate the volume expansion of Si-based electrodes. Unlike the common chemical cross-linking, which causes a gradual and nonreversible fracturing of the cross-linked network, a physically cross-linked binder based on PAA-PBI (poly(benzimidazole)) efficiently holds the Si particles even after the large volume changes due to its ability to reversibly reconstruct ionic bonds. The PBI-containing binder, PAA-PBI-2, exhibited large capacity (1376.7 mAh g(-1)), high Coulombic efficiency (99.1%) and excellent cyclability (751.0 mAh g(-1) after 100 cycles). This simple yet efficient method is promising to solve the failures relating with pulverization and isolation from the severe volume changes of the Si electrode, and advance the realization of high-capacity LIBs.

  4. Biodegradable and injectable in situ cross-linking chitosan-hyaluronic acid based hydrogels for postoperative adhesion prevention.

    PubMed

    Li, Ling; Wang, Ning; Jin, Xun; Deng, Rui; Nie, Shihong; Sun, Lu; Wu, Qinjie; Wei, Yuquan; Gong, Changyang

    2014-04-01

    Postsurgical peritoneal adhesions are very common and serious complication after surgery. Biodegradable and injectable hydrogels derived from natural polysaccharides are ideal biomaterials for prevention of postoperative adhesion. In this work, we report a class of injectable, biodegradable, and non-toxic hydrogel derived from N, O-carboxymethyl chitosan (NOCC) and aldehyde hyaluronic acid (A-HA), without requirement of any chemical linkers or radiant light sources. NOCC was prepared by introducing carboxymethyl groups to the N-position and the O-position of chitosan, and A-HA was prepared using periodate oxidation method. The gelation is attributed to the Schiff base between the amino groups of NOCC and aldehyde groups in A-HA, and the hydrogel precursors cross-linked to form a flexible hydrogel. NOCC, A-HA, and NOCC/A-HA hydrogel extract exhibited very low cytotoxicity and hemolysis, and the acute toxicity tests showed that the hydrogel was non-toxic. Besides, the highly porous three-dimensional hydrogel can supported the growth and proliferation of the cells encapsulated in the hydrogels, but was not favorable for the attachment of fibroblasts to the surface, suggesting that the NOCC/A-HA hydrogel can be developed for adhesion prevention. The hydrogel was susceptible to the lysozyme and can be degraded within 2 weeks in vivo. Furthermore, we employed a rat model of sidewall defect-cecum abrasion to investigate the efficacy of NOCC/A-HA hydrogel in preventing post-operative peritoneal adhesions. A significant reduction of peritoneal adhesion formation was found in the NOCC/A-HA-treated group, compared with commercial hyaluronic acid (HA) hydrogel group and normal saline group. In addition, the potential anti-adhesion mechanism of NOCC/A-HA hydrogel was discussed, which may attribute to the combination of barrier function and bioactivity of NOCC and A-HA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.

    PubMed

    Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

    2014-03-10

    In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

  6. Preliminary study of highly cross-linked hyaluronic acid-based combination therapy for management of knee osteoarthritis-related pain

    PubMed Central

    Palmieri, Beniamino; Rottigni, Valentina; Iannitti, Tommaso

    2013-01-01

    Background Hyaluronic acid has been extensively used for treatment of knee osteoarthritis due to its anti-inflammatory properties and its ability to act as a synovial lubricant. Furthermore, it has found application in combination with other drugs in the dermatological field and in pre-clinical studies in animal models of osteoarthritis. Experimental evidence suggests that a combination of this macromolecule with other drugs may act as a slow-release depot. However, to date, to the best of our knowledge, no one has tested local intra-articular delivery of highly cross-linked hyaluronic acid combined with bisphosphonate or nonsteroidal anti-inflammatory drugs for management of knee osteoarthritis pain in the clinical setting. The aim of the present randomized double-blind study was to investigate, for the first time, the effect of a highly cross-linked hyaluronic acid, Variofill®, alone or in combination with diclofenac sodium or sodium clodronate, for management of bilateral knee osteoarthritis-related pain. Methods Sixty-two patients with symptomatic bilateral medial tibiofemoral knee osteoarthritis (Kellgren–Lawrence grade II and III) and pain in both knees corresponding to a daily visual analog scale (VAS) score ≥ 30 in the month before the beginning of the study were included in this investigation. Patients were divided into three groups: group 1, treated with an injection of hyaluronic acid alone (66 mg) into each knee; group 2, treated with an injection of hyaluronic acid (49.5 mg) plus diclofenac sodium (5 mg) into each knee; group 3, treated with an injection of hyaluronic acid (49.5 mg) plus sodium clodronate (5 mg) into each knee. Patients also underwent blood tests for measurement of erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) immediately before and at 6-month follow-up. Results Hyaluronic acid alone and in combination with sodium clodronate or diclofenac sodium produced a significant improvement in mean VAS pain score at 3 and

  7. Low temperature cross linking polyimides

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1982-01-01

    A polyimide is formed by cross linking a prepolymer formed by reacting a polyfunctional ester, a polyfunctional amine, and an end-capping unit. By providing an end-capping unit, the prepolymer is curable at a relatively low temperature of about 175 to 245 C.

  8. Electrospinning formaldehyde cross-linked zein solutions

    USDA-ARS?s Scientific Manuscript database

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  9. Electrospun cross linked rosin fibers

    NASA Astrophysics Data System (ADS)

    Baek, Woo-il; Nirmala, R.; Barakat, Nasser A. M.; El-Newehy, Mohamed H.; Al-Deyab, Salem S.; Kim, Hak Yong

    2011-12-01

    In this study, we describe the first reported preparation of rosin in fiber form through use of an electrospinning technique utilizing various solvent systems. The polymer concentration of the formed fiber was studied by using various solvents such as chloroform, ethanol, N-N dimethylformamide (DMF), tetrahydrofuran (THF), acetone, and methylene chloride (MC). An electrospray of the solution resulted in the beaded form of the rosin. By varying the polymer concentration with MC, we were then able to obtain uniform fibers. However, the fibers exhibited large diameter. We believe that it is possible to reduce the diameter of the rosin fibers through appropriate selection of electrospinning parameters. In addition, the morphological transitions from beads, to beaded fiber, to fiber were studied at different polymer concentrations. We propose a possible physical cross linking mechanism for the formation of rosin fibers during the electrospinning process. Our results demonstrate the feasibility of producing fiber nanostructures of rosin by using an electrospinning technique.

  10. Corneal Collagen Cross-Linking

    PubMed Central

    Jankov II, Mirko R.; Jovanovic, Vesna; Nikolic, Ljubisa; Lake, Jonathan C.; Kymionis, Georgos; Coskunseven, Efekan

    2010-01-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) is a new technique of corneal tissue strengthening by using riboflavin as a photosensitizer and UVA to increase the formation of intra and interfibrillar covalent bonds by photosensitized oxidation. Keratocyte apoptosis in the anterior segment of the corneal stroma all the way down to a depth of about 300 microns has been described and a demarcation line between the treated and untreated cornea has been clearly shown. It is important to ensure that the cytotoxic threshold for the endothelium has not been exceeded by strictly respecting the minimal corneal thickness. Confocal microscopy studies show that repopulation of keratocytes is already visible 1 month after the treatment, reaching its pre-operative quantity and quality in terms of functional morphology within 6 months after the treatment. The major indication for the use of CXL is to inhibit the progression of corneal ectasias, such as keratoconus and pellucid marginal degeneration. CXL may also be effective in the treatment and prophylaxis of iatrogenic keratectasia, resulting from excessively aggressive photoablation. This treatment has also been used to treat infectious corneal ulcers with apparent favorable results. Combination with other treatments, such as intracorneal ring segment implantation, limited topography-guided photoablation and conductive keratoplasty have been used with different levels of success. PMID:20543933

  11. Protein cross-linking in food.

    PubMed

    Gerrard, J A; Meade, S J; Miller, A G; Brown, P K; Yasir, S B M; Sutton, K H; Newberry, M P

    2005-06-01

    The aims of this paper are (1) to probe the relationship between molecular structure and protein cross-linking ability for a range of small molecules; (2) to establish whether this relationship holds within a food matrix; and (3) to test the impact of Maillard cross-linking on food functionality, particularly texture, in wheat- and soy-based food systems. A variety of molecules were obtained, either commercially or via organic synthesis. Cross-linking ability was tested using our standard model system, employing ribonuclease A and analyzing the results by SDS-PAGE. Molecules of varying reactivity were tested in wheat- and soy-based products, and the changes in functionality were correlated with changes in protein cross-linking. No simple relationship was found between molecular structure and ability to cross-link ribonuclease. Only the most reactive reagents were able to cross-link within the food matrix. Nevertheless, a low degree of cross-linking was shown to have significant consequences on the properties of wheat- and soy-based foods, suggesting that the Maillard reaction may represent a means to control food texture.

  12. Porous Cross-Linked Polyimide Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)

    2015-01-01

    Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.

  13. The effect of cross-link distributions in axially-ordered, cross-linked networks

    NASA Astrophysics Data System (ADS)

    Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

    2013-07-01

    Cross-linking between the constituent chains of biopolymers has a marked effect on their materials’ properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered, cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen.

  14. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  15. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  16. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena

    NASA Astrophysics Data System (ADS)

    Vink, Richard L. C.; Heussinger, Claus

    2012-01-01

    We consider a biopolymer bundle consisting of filaments that are cross-linked together. The cross-links are reversible: they can dynamically bind and unbind adjacent filament pairs as controlled by a binding enthalpy. The bundle is subjected to a bending deformation and the corresponding distribution of cross-links is measured. For a bundle consisting of two filaments, upon increasing the bending amplitude, a first-order transition is observed. The transition is from a state where the filaments are tightly coupled by many bound cross-links, to a state of nearly independent filaments with only a few bound cross-links. For a bundle consisting of more than two filaments, a series of first-order transitions is observed. The transitions are connected with the formation of an interface between regions of low and high cross-link densities. Combining umbrella sampling Monte Carlo simulations with analytical calculations, we present a detailed picture of how the competition between cross-link shearing and filament stretching drives the transitions. We also find that, when the cross-links become soft, collective behavior is not observed: the cross-links then unbind one after the other leading to a smooth decrease of the average cross-link density.

  17. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  18. DNA interstrand cross-linking by epichlorohydrin.

    PubMed

    Romano, Keith P; Newman, Adam G; Zahran, Rami W; Millard, Julie T

    2007-05-01

    Epichlorohydrin (ECH), an important industrial chemical, is a bifunctional alkylating agent with the potential to form DNA cross-links. Occupational exposure to this suspect carcinogen leads to chromosomal aberrations, and ECH has been shown previously to undergo reaction with DNA in vivo and in vitro. We used denaturing polyacrylamide gel electrophoresis to monitor the possible formation of interstrand cross-links within DNA oligomers by ECH and the related compound, epibromohydrin (EBH). Although both compounds did indeed form cross-links between deoxyguanosine residues, EBH was a more efficient cross-linker than ECH. The optimal pH for cross-linking also varied, with ECH more efficient at pH 5.0 and EBH more efficient at pH 7.0. Both agents were relatively flexible in the sequences targeted, with comparable efficiencies for 5'-GGC and 5'GC sites. Furthermore, interstrand cross-linking by the two optical isomers of ECH correlated with their relative cytotoxicities, with R-ECH about twice as potent as S-ECH.

  19. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-03

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed.

  20. Sterile infiltrates after cross-linking.

    PubMed

    García de Oteyza, G; Álvarez de Toledo, J

    2017-09-01

    A 20 year-old woman presented with an asymmetric bilateral keratoconus. Cross-linking of the right eye was performed due of its topographic and pachymetric conditions. Three days after the procedure, the patient presented with some corneal infiltrates that where classified as sterile. Cross-linking is known for its efficacy and safety. Nevertheless, there can be complications. Sterile infiltrates have already been described, although their aetiology is still not clear. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Cross-linked structure of network evolution

    SciTech Connect

    Bassett, Danielle S.; Wymbs, Nicholas F.; Grafton, Scott T.; Porter, Mason A.; Mucha, Peter J.

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  2. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  3. Cross-linked structure of network evolution

    NASA Astrophysics Data System (ADS)

    Bassett, Danielle S.; Wymbs, Nicholas F.; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2014-03-01

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  4. In vivo protein cross-linking.

    PubMed

    Agou, Fabrice; Ye, Fei; Véron, Michel

    2004-01-01

    In the cell, homo- and heteroassociations of polypeptide chains evolve and take place within subcellular compartments that are crowded with many other cellular macromolecules. In vivo chemical cross-linking of proteins is a powerful method to examine changes in protein oligomerization and protein-protein interactions upon cellular events such as signal transduction. This chapter is intended to provide a guide to the selection of the cell-membrane-permeable cross-linkers, the optimization of in vivo cross-linking conditions, and the identification of specific cross-links in a cellular context where the frequency of random collisions is high. By combining the chemoselectivity of the homo-bifunctional cross-linker and the length of its spacer arm with knowledge on the protein structure, we show that selective cross-links can be introduced specifically on either the dimer or the hexamer form of the same polypeptide in vitro as well as in vivo, using the human type B nucleoside diphosphate kinase as a protein model.

  5. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  6. Cross-Linking Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Tetragonal chicken egg white crystals consist of 4(sub 3) helices running in alternating directions, the helix rows having a two fold symmetry with each other. The unit cell consists of one complete tetrameric turn from each of two adjacent helices (an octamer). PBC analysis indicates that the helix intermolecular bonds are the strongest in the crystal, therefore likely formed first. AFM analysis of the (110) surface shows only complete helices, no half steps or bisected helices being found, while AFM line scans to measure the growth step increments show that they are multiples of the 4(sub 3) helix tetramer dimensions. This supports our thesis that the growth units are in fact multiples of the four molecule 4(sub 3) helix unit, the "average" growth unit size for the (110) face being an octamer (two turns about the helix) and the (101) growth unit averaging about the size of a hexamer. In an effort to better understand the species involved in the crystal nucleation and growth process, we have initiated an experimental program to study the species formed in solution compared to what is found in the crystal through covalent cross-linking studies. These experiments use the heterobifunctional cross-linking agent aminoethyl-4-azidonitroanaline (AEANA). An aliphatic amine at one end is covalently attached to the protein by a carbodiimide-mediated reaction, and a photo reactive group at the other can be used to initiate crosslinking. Modifications to the parent structure can be used to alter the distance between the two reactive groups and thus the cross-linking agents "reach". In practice, the cross-linking agent is first coupled to the asp101 side chain through the amine group. Asp101 lies within the active site cleft, and previous work with fluorescent probes had shown that derivatives at this site still crystallize in the tetragonal space group. This was also found to be the case with the AEANA derivative, which gave red tetragonal crystals. The protein now has a

  7. DNA Gel with dynamic cross-links

    NASA Astrophysics Data System (ADS)

    Park, Chang-Young; Fygenson, Deborah; Saleh, Omar

    2014-03-01

    The mechanical properties of a living cell are strongly related to the cytoskeletal network, which is comprised of diverse protein filaments connected by cross-linking proteins, some of which are dynamic. Gels comprised of dynamic cross-linkers exhibit unique mechanical properties not seen in those using permanent cross-linkers. To investigate the effect of a dynamic cross-linker on mechanical properties of a material, we have synthesized biopolymer gels with a well-known semi-flexible biopolymer, DNA, and probed the mechanics of the system using microrheological techniques. We discuss these results in comparison to cytoskeletal systems, and seek to establish universal principles of dynamic cross-link based gels. This work was supported by the NSF-funded UCSB MRSEC program, Award No. DMR-0520415.

  8. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  9. Cross-linked carbon nanotube heat spreader

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2014-09-01

    Isolated individual carbon nanotubes (CNTs) have shown exceptional thermal conductivity along their axis, but have poor thermal transfer between adjacent CNTs. Thick bundles of aligned CNTs have been used as heat pipes, but the thermal input and output areas are the same, providing no heat spreading effect. Energetic argon ion beams are used to join, or cross-link overlapping CNTs in a thick film to form an interpenetrating network with an isotropic thermal conductivity of 2150 W/m-K. Such thick films may be used as heat spreaders to enlarge the thermal footprint of various electronic and semiconductor devices, laser diodes and CPU chips, for example, to enhance cooling.

  10. Corneal collagen cross-linking: A review

    PubMed Central

    O’Brart, David P.S.

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

  11. Chicken corneocyte cross-linked proteome.

    PubMed

    Rice, Robert H; Winters, Brett R; Durbin-Johnson, Blythe P; Rocke, David M

    2013-02-01

    Shotgun proteomic analysis was performed of epidermal scale, feather, beak and claw from the domestic chicken. To this end, the samples were separated first into solubilized and particulate fractions, the latter enriched in isopeptide cross-linking, by exhaustive extraction in sodium dodecyl sulfate under reducing conditions. Among the 205 proteins identified were 17 keratins (types α and β), 51 involved in protein synthesis, 8 junctional, 8 histone, 5 heat shock, and 5 14-3-3 proteins. Considerable overlap among the beak, claw, feather, and scale samples was observed in protein profiles, but those from beak and claw were the most similar. Scale and feather profiles were the most distinctive, each exhibiting specific proteins. Less than 20% of the proteins were found only in the detergent-solubilized fraction, while 34-57% were found only in the particulate fraction, depending on the source, and the rest in both fractions. The results provide the first comprehensive analysis of the content of these cornified structures, reveal the efficient use of available proteins in conferring mechanical and chemical stability to them, and emphasize the importance of isopeptide cross-linking in avian epithelial cornification.

  12. Corneal collagen cross-linking: a review.

    PubMed

    O'Brart, David P S

    2014-01-01

    The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4-6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  13. Corneal Collagen Cross-Linking Outcomes: Review

    PubMed Central

    Jankov II, Mirko R; Jovanovic, Vesna; Delevic, Sladjana; Coskunseven, Efekan

    2011-01-01

    Keratoconus is a condition characterized by biomechanical instability of the cornea, presenting in a progressive, asymmetric and bilateral way. Corneal collagen cross-linking with riboflavin and UVA (CXL) is a new technique of corneal tissue strengthening that combines the use of riboflavin as a photo sensitizer and UVA irradiation. The studies showed that CXL was effective in halting the progression of keratoconus over a period of up to four years. The published studies also revealed a reduction of max K readings by more than 2 D, while the postoperative SEQ was reduced by an average of more than 1 D, and refractive cylinder decreased by about 1 D. No eyes lost any line of BCDVA. Moreover, there was no significant decrease in endothelial cell density. It was also found that CXL treatment was effective with reducing corneal and total wavefront aberrations. Corneal cross-linking has also led to an arrest and/or even a partial reversal of keratectasia in the treatment of iatrogenic ectasia after excimer laser ablation. A primary intervention such as CXL should be considered to potentially increase the biomechanical stability of the corneal tissue and postpone the need of lamellar or penetrating keratoplasty. PMID:21448301

  14. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  15. Glycosylation and Cross-linking in Bone Type I Collagen*

    PubMed Central

    Terajima, Masahiko; Perdivara, Irina; Sricholpech, Marnisa; Deguchi, Yoshizumi; Pleshko, Nancy; Tomer, Kenneth B.; Yamauchi, Mitsuo

    2014-01-01

    Fibrillar type I collagen is the major organic component in bone, providing a stable template for mineralization. During collagen biosynthesis, specific hydroxylysine residues become glycosylated in the form of galactosyl- and glucosylgalactosyl-hydroxylysine. Furthermore, key glycosylated hydroxylysine residues, α1/2-87, are involved in covalent intermolecular cross-linking. Although cross-linking is crucial for the stability and mineralization of collagen, the biological function of glycosylation in cross-linking is not well understood. In this study, we quantitatively characterized glycosylation of non-cross-linked and cross-linked peptides by biochemical and nanoscale liquid chromatography-high resolution tandem mass spectrometric analyses. The results showed that glycosylation of non-cross-linked hydroxylysine is different from that involved in cross-linking. Among the cross-linked species involving α1/2-87, divalent cross-links were glycosylated with both mono- and disaccharides, whereas the mature, trivalent cross-links were primarily monoglycosylated. Markedly diminished diglycosylation in trivalent cross-links at this locus was also confirmed in type II collagen. The data, together with our recent report (Sricholpech, M., Perdivara, I., Yokoyama, M., Nagaoka, H., Terajima, M., Tomer, K. B., and Yamauchi, M. (2012) Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287, 22998–23009), indicate that the extent and pattern of glycosylation may regulate cross-link maturation in fibrillar collagen. PMID:24958722

  16. Corneal cross-linking treatment of keratoconus

    PubMed Central

    Farjadnia, Mahgol; Naderan, Mohammad

    2015-01-01

    Keratoconus as the most common cause of ectasia is one of the leading cause of corneal transplants worldwide. The current available therapies do not modify the underlying pathogenesis of the disease, and none of the available approaches but corneal transplant hinder the ongoing ectasia. Several studies document Crosslink defect between collagen fibrils in the pathogenesis of keratoconus. Collagen cross link is a relatively new approach that with the application of the riboflavin and ultraviolet A, new covalent bands reform. Subjective and objective results following this method seem to be promising. Endothelial damage besides other deep structural injury, which is the major concern of this technique have not yet been reported, when applying the standard method. PMID:26622134

  17. Kojak: Efficient analysis of chemically cross-linked protein complexes

    PubMed Central

    Hoopmann, Michael R.; Zelter, Alex; Johnson, Richard S.; Riffle, Michael; MacCoss, Michael J.; Davis, Trisha N.; Moritz, Robert L.

    2015-01-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods. PMID:25812159

  18. Microtubule Actin Cross-Linking Factor (Macf)

    PubMed Central

    Leung, Conrad L.; Sun, Dongming; Zheng, Min; Knowles, David R.; Liem, Ronald K.H.

    1999-01-01

    We cloned and characterized a full-length cDNA of mouse actin cross-linking family 7 (mACF7) by sequential rapid amplification of cDNA ends–PCR. The completed mACF7 cDNA is 17 kb and codes for a 608-kD protein. The closest relative of mACF7 is the Drosophila protein Kakapo, which shares similar architecture with mACF7. mACF7 contains a putative actin-binding domain and a plakin-like domain that are highly homologous to dystonin (BPAG1-n) at its NH2 terminus. However, unlike dystonin, mACF7 does not contain a coiled–coil rod domain; instead, the rod domain of mACF7 is made up of 23 dystrophin-like spectrin repeats. At its COOH terminus, mACF7 contains two putative EF-hand calcium-binding motifs and a segment homologous to the growth arrest–specific protein, Gas2. In this paper, we demonstrate that the NH2-terminal actin-binding domain of mACF7 is functional both in vivo and in vitro. More importantly, we found that the COOH-terminal domain of mACF7 interacts with and stabilizes microtubules. In transfected cells full-length mACF7 can associate not only with actin but also with microtubules. Hence, we suggest a modified name: MACF (microtubule actin cross-linking factor). The properties of MACF are consistent with the observation that mutations in kakapo cause disorganization of microtubules in epidermal muscle attachment cells and some sensory neurons. PMID:10601340

  19. Cross-Link Guided Molecular Modeling with ROSETTA

    PubMed Central

    Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  20. Riboflavin for corneal cross-linking.

    PubMed

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  1. Sealing effects of cross-linked gelatin.

    PubMed

    Suzuki, S; Ikada, Y

    2013-03-01

    Surgical sealants form gel when applied to tissues. Currently, fibrin sealant has been successfully used in many surgical fields, but it has several disadvantages, including possible virus transmission, low adhesive strength, and high cost. In this study, gelatin and glutaraldehyde (GA) solutions were chosen to demonstrate the effectiveness of cross-linked gelatin gel as sealant and barrier, both of which have long been used in medical applications. It was found that the gelatin gel prepared from 26 wt% gelatin and 1 wt% GA solutions exhibited bonding strength almost three times higher than that of fibrin glue. The bonding strength increased with the increasing gelatin and GA concentrations. When a needle hole on PTFE vascular grafts was sealed with the gelatin gel, the water-resistant pressure significantly increased upon rubbing and was twice higher than that of fibrin glue. The cytotoxicity of gelatin gel was found to be much lower than that of albumin glue prepared at the same composition as commercially available BioGlue®. The gelatin gel was found to be also effective as barrier to prevent adhesion in a rat cecum abrasion model.

  2. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-09

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents.

  3. Corneal collagen cross-linking: ectasia and beyond.

    PubMed

    Suri, Kunal; Hammersmith, Kristin M; Nagra, Parveen K

    2012-07-01

    Corneal collagen cross-linking has recently emerged as a novel approach for management of ectasia. This article reviews the literature published in the past 3 years about the expanding spectrum of cross-linking as a therapeutic modality and its complications. Recent studies have confirmed the beneficial effects of cross-linking in stabilization and to a lesser extent, regression of keratoconus and postrefractive surgery ectasia. Other applications include cross-linking as a combined procedure with intracorneal ring segments, and photorefractive keratectomy for ectasia, corneal edema, and infectious keratitis. Animal studies of chemical cross-linking of sclera as a potential treatment for progressive myopia have also been performed. Various modifications of the technique to increase the safety profile of cross-linking have been reported, including the use of hypoosmolar riboflavin, transepithelial cross-linking, customized epithelial debridement, and higher fluence shorter duration ultraviolet A light exposure. Reported complications include keratitis, corneal haze, endothelial cell loss and failure of treatment. Cross-linking has been shown to be an effective modality for corneal ectasia, the regression being less in patients with postrefractive ectasia than keratoconus. In a few studies, it has been found to be effective in symptomatic improvement of bullous keratopathy, and infectious keratitis but further studies are required. Cross-linking with epithelial debridement is found to be most effective but various modifications are being investigated for an improved, and better safety outcome.

  4. Protein Interactions Captured by Chemical Cross-linking: Simple Cross-linking Screen Using Sulfo-MBS.

    PubMed

    Nadeau, Owen W; Carlson, Gerald M

    2007-04-01

    INTRODUCTIONThis protocol describes a method for chemical cross-linking of proteins using sulfo-MBS (m-maleimidobenzoyl-N-hydroxysulfo-succinimide ester). Optimal conditions for cross-linking can be determined rapidly for a fixed concentration of a protein complex by varying the time of cross-linking, pH of the reaction, and concentration of sulfo-MBS. Typically, these screens require only small amounts of target proteins and can be carried out in less than a day.

  5. Cross-linked sulfonated aromatic ionomers via SO2 bridges: Conductivity properties

    NASA Astrophysics Data System (ADS)

    Di Vona, M. L.; Pasquini, L.; Narducci, R.; Pelzer, K.; Donnadio, A.; Casciola, M.; Knauth, P.

    2013-12-01

    The proton conductivity of SPEEK membranes in situ cross-linked by thermal treatment at 180 °C for various times was investigated by impedance spectroscopy. The conductivity measurements were made on fully humidified membranes between 25 and 65 °C and on membranes exposed to different relative humidity between 80 and 140 °C. The Ionic Exchange Capacity (IEC) was determined by acid-base titration and the water uptake by gravimetry. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. A curve of proton conductivity vs. hydration number allows predicting that in order to reach a value of 0.1 S/cm at 100 °C a hydration number above 20 is necessary. The measured conductivity at this temperature is 0.16 S/cm for a hydration number of 60.

  6. X-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application

    NASA Astrophysics Data System (ADS)

    Julkapli, Nurhidayatullaili Muhd; Ahmad, Zulkifli; Akil, Hazizan Md

    2010-01-01

    Chitosan is a polysaccharide derived from N-deacetylation of chitin and receiving increased attention as metal ion absorbent in wastewater treatment application. To improve the performance of chitosan as an absorbent, the cross linking approach was applied. Introduction of cross-linking agent would break the crystal zone in chitosan system, making it less crystal and consequently enhanced the absorption area. Therefore, in this study, cross-linked chitosan were prepared using different of cross-linking agents. The chitosan powder was weighed, dissolved in acetic acid (0.1 M), and dropped slowly into absolute N-methyl pyyrolidone solvent containing cross-linking agent. The cross linking reaction was carried out in N2 environment at 150° C for 6 hours. X-ray diffraction (XRD) analysis was applied to characterize the crystallinity of native and cross linked chitosan. Generally, the XRD patterns of all types of chitosan show two crystalline peaks approximately at 10° and 20° (2θ). However, the cross linked chitosan with longer length of cross linking agents show lower and broader crystalline peaks as compare to those with shorter length. Similarly, the calculated crystalline index (Cr I) also showed this decreasing tendency.

  7. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  8. Multi-Scale Modeling of Cross-Linked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2005-01-01

    The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

  9. Hydrogels Prepared from Cross-Linked Nanofibrillated Cellulose

    Treesearch

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    Nanocomposite hydrogels were developed by cross-linking nanofibrillated cellulose with poly(methyl vinyl ether-co-maleic acid) and polyethylene glycol. The cross-linked hydrogels showed enhanced water absorption and gel content with the addition of nanocellulose. In addition, the thermal stability, mechanical strength, and modulus increased with an increase in the...

  10. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  11. Cross-linked polyvinyl alcohol and method of making same

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (Inventor)

    1981-01-01

    A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

  12. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  13. Fabrication of cross-linked polyethyleneimine microfibers by reactive electrospinning with in situ photo-cross-linking by UV radiation.

    PubMed

    Xu, Xiaoming; Zhang, Jian-Feng; Fan, Yuwei

    2010-09-13

    The objective of this work is to demonstrate the feasibility of fabrication of cross-linked polyethyleneimine microfibers by a reactive photo-electrospinning technology. Linear polyethyleneimine (L-PEI) has been grafted with cross-linkable methacrylate moiety by reaction with glycidyl methacrylate (GMA), enabling the polymer to cross-link upon UV exposure. The photo-cross-linking reaction was characterized by a photo-rheometer. Neat L-PEI or methacrylated L-PEI tends to aggregate rendering it very difficult to electrospin into microfibers. A high molecular weight polyvinylpyrrolidone (PVP) is an efficient chain entanglement enhancer for both L-PEI and methacrylated L-PEI and helpful to maintain fibrous structure. An optimized composition consisted of 10% methacrylated L-PEI (less than 14.8% methacrylation of total L-PEI) combined with 2% PVP and 1% photoinitiator in ethanol was successfully electrospun into smooth cross-linked microfibers using the reactive electrospinning device. Diameters of cross-linked fibers can be controlled from 419 nm to 2 μm depending on methacrylation degree and UV irradiation intensity. The resultant cross-linked L-PEI microfibers have demonstrated significantly improved solvent resistance, thermal stability, and mechanical properties. The distinguished characteristics of this novel reactive electrospinning technology are the high cross-linking efficiency and minimal toxic chemical residues in the products. The stability of the fibers can be readily modified and controlled by the cross-linking degree, which is of great importance for biomedical applications.

  14. Acid–base bifunctional shell cross-linked micelle nanoreactor for one-pot tandem reaction

    DOE PAGES

    Lee, Li -Chen; Lu, Jie; Weck, Marcus; ...

    2015-12-29

    In shell cross-linked micelles (SCMs) containing acid sites in the shell and base sites in the core are prepared from amphiphilic poly(2-oxazoline) triblock copolymers. These materials are utilized as two-chamber nanoreactors for a prototypical acid-base bifunctional tandem deacetalization-nitroaldol reaction. Furthermore, the acid and base sites are localized in different regions of the micelle, allowing the two steps in the reaction sequence to largely proceed in separate compartments, akin to the compartmentalization that occurs in biological systems.

  15. Elasticity of cross-linked semiflexible biopolymers under tension.

    PubMed

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  16. Molecular Structures of Isolevuglandin-Protein Cross-Links.

    PubMed

    Bi, Wenzhao; Jang, Geeng-Fu; Zhang, Lei; Crabb, John W; Laird, James; Linetsky, Mikhail; Salomon, Robert G

    2016-10-17

    Isolevuglandins (isoLGs) are stereo and structurally isomeric γ-ketoaldehydes produced through free radical-induced oxidation of arachidonates. Some isoLG isomers are also generated through enzymatic cyclooxygenation. Post-translational modification of proteins by isoLGs is associated with loss-of-function, cross-linking and aggregation. We now report that a low level of modification by one or two molecules of isoLG has a profound effect on the activity of a multi subunit protease, calpain-1. Modification of one or two key lysyl residues apparently suffices to abolish catalytic activity. Covalent modification of calpain-1 led to intersubunit cross-linking. Hetero- and homo-oligomers of the catalytic and regulatory subunits of calpain-1 were detected by SDS-PAGE with Western blotting. N-Acetyl-glycyl-lysine methyl ester and β-amyloid(11-17) peptide EVHHQKL were used as models for characterizing the cross-linking of protein lysyl residues resulting from adduction of iso[4]LGE2. Aminal, bispyrrole, and trispyrrole cross-links of these two peptides were identified and fully characterized by mass spectrometry. Aminal and bispyrrole dimers were both detected. Furthermore, a complex mixture of derivatives of the bispyrrole cross-link containing one or more additional atoms of oxygen was found. Interesting differences are evident in the predominant cross-link type generated in the reaction of iso[4]LGE2 with these peptides. More aminal cross-links versus bispyrrole are formed during the reaction of the dipeptide with iso[4]LGE2. In contrast, more bispyrrole versus aminal cross-links are formed during the reaction of EVHHQKL with iso[4]LGE2. It is tempting to speculate that the EVHHQKL peptide-pyrrole modification forms noncovalent aggregates that favor the production of covalent bispyrrole cross-links because β-amyloid(11-17) tends to spontaneously oligomerize.

  17. Thermomechanical behavior of collagen-cross-linked porcine cornea.

    PubMed

    Spoerl, Eberhard; Wollensak, Gregor; Dittert, Dag-Daniel; Seiler, Theo

    2004-01-01

    Collagen cross-linking using combined riboflavin/UVA treatment has been shown to increase the biomechanical rigidity of the cornea and has been used successfully for the treatment of progressive keratoconus. From morphological and biochemical investigations, a different degree of cross-linking for the anterior and posterior stroma by the treatment is suggested. The present study was undertaken to better evaluate this effect by testing the thermomechanical behavior. Ten 10 x 5 mm corneal strips from porcine cadaver eyes enucleated within 5 h post mortem were cross-linked using the photosensitizer riboflavin and UVA irradiation (370 nm, irradiance = 3 mW/cm(2)) for 30 min and compared to ten untreated corneal strips and ten corneal strips cross-linked with 0.1% glutaraldehyde. The temperature in a water bath was raised from 60 to 95 degrees C with temperature increments of 1 degrees C per minute. The hydrothermal shrinkage of the corneal strips was measured in 2.5 degrees C steps using a micrometer. In addition, six 10-mm whole corneal buttons were cross-linked with riboflavin/UVA and immersed into water at 70 or 75 degrees C. The maximal hydrothermal shrinkage for the untreated control specimens and the posterior portion of the riboflavin/UVA-treated corneas was at 70 degrees C, for the anterior portion of the cornea cross-linked by riboflavin/UVA at 75 degrees C and for glutaraldehyde-cross-linked cornea at 90 degrees C. In the cross-linked corneal buttons, a typical mushroom-like shape was observed at 70 degrees C and a cylinder shape at 75 degrees C. The different degree of collagen cross-linking in the corneal stroma after riboflavin/UVA treatment is reflected by the differences in the maximal shrinkage temperature of the anterior and posterior portion. Therefore, in the corneas cross-linked with riboflavin/UVA a higher shrinkage temperature was observed for the anterior portion of the cornea (75 degrees C) compared to the posterior stroma (70 degrees C) due to

  18. Gelation threshold of cross-linked polymer brushes.

    PubMed

    Hoffmann, Max; Lang, Michael; Sommer, Jens-Uwe

    2011-02-01

    The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near the gelation threshold.

  19. Photoreactivities and thermal properties of psoralen cross-links

    SciTech Connect

    Yeung, A.T.; Jones, B.K.; Chu, C.T.

    1988-05-03

    The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link.

  20. Xwalk: computing and visualizing distances in cross-linking experiments.

    PubMed

    Kahraman, Abdullah; Malmström, Lars; Aebersold, Ruedi

    2011-08-01

    Chemical cross-linking of proteins or protein complexes and the mass spectrometry-based localization of the cross-linked amino acids in peptide sequences is a powerful method for generating distance restraints on the substrate's topology. Here, we introduce the algorithm Xwalk for predicting and validating these cross-links on existing protein structures. Xwalk calculates and displays non-linear distances between chemically cross-linked amino acids on protein surfaces, while mimicking the flexibility and non-linearity of cross-linker molecules. It returns a 'solvent accessible surface distance', which corresponds to the length of the shortest path between two amino acids, where the path leads through solvent occupied space without penetrating the protein surface. Xwalk is freely available as a web server or stand-alone JAVA application at http://www.xwalk.org.

  1. A New Cross-Link for an Old Cross-Linking Drug: The Nitrogen Mustard Anticancer Agent Mechlorethamine Generates Cross-Links Derived from Abasic Sites in Addition to the Expected Drug-Bridged Cross-Links.

    PubMed

    Nejad, Maryam Imani; Johnson, Kevin M; Price, Nathan E; Gates, Kent S

    2016-12-20

    Nitrogen mustard anticancer drugs generate highly reactive aziridinium ions that alkylate DNA. Monoadducts arising from reaction with position N7 of guanine residues are the major DNA adducts generated by these agents. Interstrand cross-links in which the drug bridges position N7 of two guanine residues are formed in low yields relative to those of the monoadducts but are generally thought to be central to medicinal activity. The N7-alkylguanine residues generated by nitrogen mustards are depurinated to yield abasic (Ap) sites in duplex DNA. Here, we show that Ap sites generated by the nitrogen mustard mechlorethamine lead to interstrand cross-links of a type not previously associated with this drug. Gel electrophoretic data were consistent with early evolution of the expected drug-bridged cross-links, followed by the appearance of Ap-derived cross-links. The evidence is further consistent with a reaction pathway involving alkylation of a guanine residue in a 5'-GT sequence, followed by depurination to generate the Ap site, and cross-link formation via reaction of the Ap aldehyde residue with the opposing adenine residue at this site [Price, N. E., Johnson, K. M., Wang, J., Fekry, M. I., Wang, Y., and Gates, K. S. (2014) J. Am. Chem. Soc. 136, 3483-3490]. The monofunctional DNA-alkylating agents 2-chloro-N,N-diethylethanamine 5, (2-chloroethyl)ethylsulfide 6, and natural product leinamycin similarly were found to induce the formation of Ap-derived cross-links in duplex DNA. This work provides the first characterization of Ap-derived cross-links at sequences in which a cytosine residue is located directly opposing the Ap site. Cross-linking processes of this type could be relevant in medicine and biology because Ap sites with directly opposing cytosine residues occur frequently in genomic DNA via spontaneous or enzymatic depurination of guanine and N7-alkylguanine residues.

  2. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives

    PubMed Central

    Zybailov, Boris L.; Glazko, Galina V.; Jaiswal, Mihir; Raney, Kevin D.

    2014-01-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to

  3. Complementary Benzophenone Cross-Linking/Mass Spectrometry Photochemistry.

    PubMed

    Belsom, Adam; Mudd, Gemma; Giese, Sven; Auer, Manfred; Rappsilber, Juri

    2017-05-16

    Use of a heterobifunctional photoactivatable cross-linker, sulfo-SDA (diazirine), has yielded high-density data that facilitated structure modeling of individual proteins. We expand the photoactivatable chemistry toolbox here with a second reagent, sulfo-SBP (benzophenone). This further increases the density of photo-cross-linking to a factor of 20× over conventional cross-linking. Importantly, the two different photoactivatable groups display orthogonal directionality, enabling access to different protein regions, unreachable with a single cross-linker.

  4. Diepoxybutane cross-links DNA at 5'-GNC sequences.

    PubMed

    Millard, J T; White, M M

    1993-03-02

    Epoxides are cancer-causing agents chemically analogous to the nitrogen mustards, a family of powerful antitumor drugs. We found that the DNA interstrand cross-linking sequence preference of diepoxybutane is the same as that of the mustard mechlorethamine: 5'-GNC. Therefore, the genomic site of cross-linking alone cannot explain why some interstrand cross-linkers act as antitumor agents whereas others are deadly toxins.

  5. Neohemoglobins and Cross-Linked Hemoglobins as Blood Substitute.

    DTIC Science & Technology

    1982-12-01

    normal SFH. For bovine hemoglobi, cross-linking of the oxy and carboxy derivatives increased substantially the oxygen affinity and eliminated the oxygen...hemoglobins were prepared by the filtration method. The respective heme-free proteins (apohemoglobins) were prepared by extraction with methyl ...protein. Recombined neohemoglogins and cross-linked hemoglobins were purified by chromatography on CM cellulose using a linear gradient formed by equal

  6. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  7. Functional synergy of actin filament cross-linking proteins.

    PubMed

    Tseng, Yiider; Schafer, Benjamin W; Almo, Steven C; Wirtz, Denis

    2002-07-12

    The organization of filamentous actin (F-actin) in resilient networks is coordinated by various F-actin cross-linking proteins. The relative tolerance of cells to null mutations of genes that code for a single actin cross-linking protein suggests that the functions of those proteins are highly redundant. This apparent functional redundancy may, however, reflect the limited resolution of available assays in assessing the mechanical role of F-actin cross-linking/bundling proteins. Using reconstituted F-actin networks and rheological methods, we demonstrate how alpha-actinin and fascin, two F-actin cross-linking/bundling proteins that co-localize along stress fibers and in lamellipodia, could synergistically enhance the resilience of F-actin networks in vitro. These two proteins can generate microfilament arrays that "yield" at a strain amplitude that is much larger than each one of the proteins separately. F-actin/alpha-actinin/fascin networks display strain-induced hardening, whereby the network "stiffens" under shear deformations, a phenomenon that is non-existent in F-actin/fascin networks and much weaker in F-actin/alpha-actinin networks. Strain-hardening is further enhanced at high rates of deformation and high concentrations of actin cross-linking proteins. A simplified model suggests that the optimum results of the competition between the increased stiffness of bundles and their decreased density of cross-links. Our studies support a re-evaluation of the notion of functional redundancy among cytoskeletal regulatory proteins.

  8. Cross-linked polyelectrolyte multilayers for marine antifouling applications.

    PubMed

    Zhu, Xiaoying; Jańczewski, Dominik; Lee, Serina Siew Chen; Teo, Serena Lay-Ming; Vancso, G Julius

    2013-07-10

    A polyionic multilayer film was fabricated by layer-by-layer (LbL) sequential deposition followed by cross-linking under mild conditions on a substrate surface to inhibit marine fouling. A novel polyanion, featuring methyl ester groups for an easy cross-linking was used as a generic solution for stabilization of LbL films in a harsh environment. Covalent cross-linking was confirmed by FTIR and XPS spectroscopy. AFM was used to observe film morphology and its variation because of cross-linking, as well as to measure the thickness of the LbL films. Cross-linking improved the stability of the LbL film when it was immersed in artificial seawater, natural seawater, and in a polar organic solvent (DMSO). No changes in the thickness and topography of the film were observed in these media. The LbL films prevented settlement of Amphibalanus amphitrite barnacle cyprids and reduced adhesion of the benthic diatom Amphora coffeaeformis. Assay results indicated that the cross-linking process did not weaken the antifouling effect of LbL films. The high stability and low degree of fouling make these coatings potentially promising candidates in marine applications.

  9. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  10. Influence of cross-linking degree of a biodegradable genipin-cross-linked gelatin guide on peripheral nerve regeneration.

    PubMed

    Lu, Ming-Chin; Hsiang, Shih-Wei; Lai, Tung-Yuan; Yao, Chun-Hsu; Lin, Li-Yu; Chen, Yueh-Sheng

    2007-01-01

    We evaluated peripheral nerve regeneration using biodegradable genipin-cross-linked gelatin nerve conduits (GGCs) with three different cross-linking degrees, 24, 36 and 51%. Biocompatibility and biodegradability of the GGC and its efficiency as a guidance channel were examined based on the repair process of a 10-mm gap in the rat sciatic nerve. From this pilot study we concluded that GGCs with a mean cross-linking degree of 36% can ensure nerve regeneration with a more mature structure, as demonstrated by better developed epineural and perineural organisation and axonal development, as well as better-recovered electrophysiology with a relatively positive sciatic functional index and a shorter latency of the muscle action potential curve. Regenerated nerves in the GGCs with mean cross-linking degrees of 24 and 51% were less favourable, due to irritation caused by degradation material and compression by the remaining tube walls, respectively.

  11. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  12. Synthesis and enzymatic degradation of epichlorohydrin cross-linked pectins.

    PubMed

    Semdé, Rasmané; Moës, André J; Devleeschouwer, Michel J; Amighi, Karim

    2003-02-01

    The water solubility of pectin was successfully decreased by cross-linking with increasing amounts of epichlorohydrin in the reaction media. The initial molar ratios of epichlorohydrin/ galacturonic acid monomer in the reaction mixtures were 0, 0.37, 0.56, 0.74, 1.00, 1.47, and 2.44. The resulting epichlorohydrin cross-linked pectins were thus referred to as C-LP0, C-LP37, C-LP56, C-LP75, C-LP100, C-LP150, and C-LP250, respectively. Methoxylation degrees ranged from 60.5 +/- 0.9% to 68.0 +/- 0.6%, and the effective cross-linking degrees, determined by quantification of the hydroxyl anions consumed during the reaction, were 0, 17.8, 26.0, 38.3, 46.5, 53.5, and 58.7%. respectively. After incubating the different cross-linked pectins (0.5% w/v) in 25 mL of 0.05 M acetate-phosphate buffer (pH 4.5), containing 50 microL of Pectinex Ultra SP-L (pectinolytic enzymes), between 60 and 80% of the pectin osidic bounds were broken in less than 1 hr. Moreover, increasing the cross-linking degree only resulted in a weak slowing on the enzymatic degradation velocity.

  13. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  14. Mapping of psoralen cross-linked nucleotides in RNA.

    PubMed Central

    Garrett-Wheeler, E; Lockard, R E; Kumar, A

    1984-01-01

    A method is described for using the cross-linking reagent 4'-(hydroxy-methyl)-4,5',8-trimethylpsoralen (HMT) to map base paired regions and higher-order structure within RNA molecules. Applying this method to yeast tRNAPhe, we have specifically identified cross-links within the acceptor stem between U6 X U68, in the D-stem between C11 X C25, and in the T psi-stem between U50 X C63 and U52 X C63. We have also identified a unique cross-link between U8 X C48 which are trans pyrimidines in the core region due to tertiary interactions between U8:A14 and C48:G15. The precise point of cross-linking was deduced in every case by using purine-specific U2 ribonuclease along with cytidine-specific CL3 ribonuclease which will anomalously cleave after photoreversed pyrimidines. The ability to map the precise point of cross-linking should prove invaluable in identifying nucleotides in close proximity within the tertiary structure of other RNA molecules. Images PMID:6425802

  15. Slow down of actin depolymerization by cross-linking molecules.

    PubMed

    Schmoller, Kurt M; Semmrich, Christine; Bausch, Andreas R

    2011-02-01

    The ability to control the assembly and disassembly dynamics of actin filaments is an essential property of the cellular cytoskeleton. While many different proteins are known which accelerate the polymerization of monomers into filaments or promote their disintegration, much less is known on mechanisms which guarantee the kinetic stability of the cytoskeletal filaments. Previous studies indicate that cross-linking molecules might fulfill these stabilizing tasks, which in addition facilitates their ability to regulate the organization of cytoskeletal structures in vivo. The effect of depolymerization factors on such structures or the mechanism which leads finally to their disintegration remain unknown. Here, we use multiple depolymerization methods in order to directly demonstrate that cross-linking and bundling proteins effectively suppress the actin depolymerization in a concentration dependent manner. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a fast disintegration of highly cross-linked actin networks unless molecular motors are used simultaneously. The drastic modification of actin kinetics by cross-linking molecules can be expected to have wide-ranging implications for our understanding of the cytoskeleton, where cross-linking molecules are omnipresent and essential.

  16. Functional polymer laminates from hyperthermal hydrogen induced cross-linking.

    PubMed

    Thompson, David B; Trebicky, Tomas; Crewdson, Patrick; McEachran, Matthew J; Stojcevic, Goran; Arsenault, Gilles; Lau, Woon M; Gillies, Elizabeth R

    2011-12-20

    The use of a hyperthermal hydrogen induced cross-linking process to prepare laminates comprising polypropylene, poly(isobutylene-co-isoprene), and poly(vinyl acetate) is described. In this new, milder alternative to conventional plasma techniques, neutral molecular hydrogen projectiles were used to create carbon radicals on impacted surfaces by collision-induced dissociation of C-H bonds, and this process was used to cross-link polymers on a polypropylene surface. It was demonstrated that multiple layers of cross-linked materials could be added, creating polymer laminates with each layer introducing new functionalities and properties. In particular, the present work shows that the process is largely nondestructive toward ester functionalities. First, the esters were grafted to become nonleachable. Then, the esters were subsequently hydrolyzed to convert the surface from hydrophobic to hydrophilic. Afterward, the esters could be recovered by simple esterification demonstrating that further chemical transformations were possible.

  17. Formaldehyde cross-linking and structural proteomics: Bridging the gap.

    PubMed

    Srinivasa, Savita; Ding, Xuan; Kast, Juergen

    2015-11-01

    Proteins are dynamic entities constantly moving and altering their structures based on their functions and interactions inside and outside the cell. Formaldehyde cross-linking combined with mass spectrometry can accurately capture interactions of these rapidly changing biomolecules while maintaining their physiological surroundings. Even with its numerous established uses in biology and compatibility with mass spectrometry, formaldehyde has not yet been applied in structural proteomics. However, formaldehyde cross-linking is moving toward analyzing tertiary structure, which conventional cross-linkers have already accomplished. The purpose of this review is to describe the potential of formaldehyde cross-linking in structural proteomics by highlighting its applications, characteristics and current status in the field. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Extreme dryness and DNA-protein cross-links

    NASA Astrophysics Data System (ADS)

    Bieger-Dose, A.; Dose, K.; Meffert, R.; Mehler, M.; Risi, S.

    Exposure of fungal conidia (Aspergillus ochraceus) or spores of Bacillus subtilis to extreme dryness or vacuum induces DNA lesions, including strand breaks and the formation of DNA-protein cross-links. In wet cells only a small amount of protein is bound to DNA, but exposure to conditions of lowered water activity results in an increasing number of cross-links between DNA and proteins. In fungal conidia these cross-links are detected after selective iodination (125J) of the DNA-bound proteins followed by gel electrophoresis and subsequent autoradiography. Another approach is the labelling of DNA with 32p by means of nick translation and the detection of differences in the electrophoretic mobility of DNA before and after digestion with proteinase K of proteins bound to DNA.

  19. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    NASA Astrophysics Data System (ADS)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  20. Positronium yields in amorphous, cross-linked and conductive polystyrene

    NASA Astrophysics Data System (ADS)

    Procházka, Ivan; Čížek, Jakub; Motyčka, Václav

    2007-02-01

    Variations in positronium yields due to positron irradiation of specimens during experiment were investigated on the three commercially available modifications of polystyrene (Goodfellow): amorphous, cross-linked and conductive. Positron lifetime technique was employed. The variations of the positronium yields were expressed as changes of the ortho-positronium intensity as functions of the irradiation time. It was found that the positronium yield curves obtained for the amorphous and cross-linked polystyrene cannot be represented as a simple single-exponential relaxation towards a steady state and at least one additional component or a modified shape of the relaxation curve should be considered.

  1. Complementary Benzophenone Cross-Linking/Mass Spectrometry Photochemistry

    PubMed Central

    2017-01-01

    Use of a heterobifunctional photoactivatable cross-linker, sulfo-SDA (diazirine), has yielded high-density data that facilitated structure modeling of individual proteins. We expand the photoactivatable chemistry toolbox here with a second reagent, sulfo-SBP (benzophenone). This further increases the density of photo-cross-linking to a factor of 20× over conventional cross-linking. Importantly, the two different photoactivatable groups display orthogonal directionality, enabling access to different protein regions, unreachable with a single cross-linker. PMID:28430416

  2. Cross Linked Metal Particles for Low Noise Bolometer Materials

    DTIC Science & Technology

    2016-12-12

    CLMPs) for Low-noise Bolometer Materials " funded by the US Army Research Office under Contract # W911NF-15-1-0117. We have successfully carried out the...2016 Final Report: Cross-linked Metal Particles for Low-noise Bolometer Materials The views, opinions and/or findings contained in this report are... Materials Report Title This final report summarizes WSU’s progress from 4/2/2015 to 09/30/2016 on the project, "Cross-linked Metal Particles (CLMPs

  3. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  4. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.

    2013-02-01

    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  5. Clinical fracture of cross-linked UHMWPE acetabular liners.

    PubMed

    Furmanski, Jevan; Anderson, Martin; Bal, Sonny; Greenwald, A Seth; Halley, David; Penenberg, Brad; Ries, Michael; Pruitt, Lisa

    2009-10-01

    Highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is increasingly used as a bearing material in total hip replacements. Cross-linking of UHMWPE has been shown to increase wear resistance but decrease its fracture resistance. We analyzed the clinical fracture failure of four cross-linked UHMWPE total hip replacement components of four different designs via microscopic observation of the fracture surfaces, and found that in all cases fractures initiated at stress concentrations in an unsupported region of the component (termed the elevated rim). Finite element analyses (FEA) of each individual implant design were then conducted. Results from this analysis demonstrated that the predicted magnitude and orientation of maximum principal stress due to mechanical loading of the elevated rim was sufficient to propagate initiated fatigue cracks in each case. FEA also predicted that cracks may arrest after some amount of growth due to a steep stress gradient near the initiation site. Further, while anatomical positioning of the implant and material properties affect the risk of fracture, we examined whether these failures are strongly related to the notched elevated rim design feature that is common to the four failed cases presented here. We believe that cross-linked UHMWPE remains an excellent bearing material for total hip replacements but that designs employing this material should mitigate stress concentrations or other design features that increase the risk of fracture.

  6. Cross-linking of dithiols by mitomycin C.

    PubMed

    Paz, Manuel M

    2010-08-16

    Upon reduction, the antitumor drug mitomycin C undergoes a cascade of reactions to give a bis-electrophile that alkylates cellular nucleophiles. We recently reported that dithiols activate mitomycin C by reduction, and we report here that dithiols, after executing the reductive activation of mitomycin C, are bis-alkylated by the activated drug to form S,S'-cross-links as the predominant end products. The diastereomeric pair of adducts formed by 1,3-propanedithiol has been fully characterized by UV, HRMS, CD, and NMR experiments. Racemic dithiol (+/-)-dithiothreitol gave four diastereomeric cross-links, and (+/-)-dihydrolipoic acid gave eight cross-links (two regioisomers with four diastereomers each) that were partially characterized by UV and MS. The observed dependence of cross-link formation on dithiol concentration indicated the requirement of a second reduction step by dithiol, prior to the alkylation of the second arm of the dithiol. The existence of unidentified reaction pathways was manifested by the formation of unexpected intermediates during the course of the reaction of mitomycin C with dithiols and by the formation of unsoluble mitosene derivatives in the reaction between equimolar amounts of dithiol and mitomycin C. Mechanistic details of the reaction are addressed in light of these results. Finally, we discuss the potential relevance of our findings for the interaction of mitomycin C with dithiol-containing proteins.

  7. Cross-Linked Protein Crystals for Vaccine Delivery

    NASA Astrophysics Data System (ADS)

    St. Clair, Nancy; Shenoy, Bhami; Jacob, Lawrence D.; Margolin, Alexey L.

    1999-08-01

    The progress toward subunit vaccines has been limited by their poor immunogenicity and limited stability. To enhance the immune response, subunit vaccines universally require improved adjuvants and delivery vehicles. In the present paper, we propose the use of cross-linked protein crystals (CLPCs) as antigens. We compare the immunogenicity of CLPCs of human serum albumin with that of soluble protein and conclude that there are marked differences in the immune response to the different forms of human serum albumin. Relative to the soluble protein, crystalline forms induce and sustain over almost a 6-month study a 6- to 10-fold increase in antibody titer for highly cross-linked crystals and an approximately 30-fold increase for lightly cross-linked crystals. We hypothesize that the depot effect, the particulate structure of CLPCs, and highly repetitive nature of protein crystals may play roles in the enhanced production of circulating antibodies. Several features of CLPCs, such as their remarkable stability, purity, biodegradability, and ease of manufacturing, make them highly attractive for vaccine formulations. This work paves the way for a systematic study of protein crystallinity and cross-linking on enhancement of humoral and T cell responses.

  8. Porous Cross-Linked Polyimide-Urea Networks

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)

    2015-01-01

    Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.

  9. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin.

    PubMed

    Bikbova, Guzel; Bikbov, Mukharram

    2014-02-01

    To evaluate the effectiveness of transepithelial cornea impregnation with riboflavin 0.1% by iontophoresis for collagen cross-linking. Transepithelial collagen cross-linking by iontophoresis of riboflavin was performed in a series of 22 eyes of 19 patients with progressive keratoconus I-II of Amsler classification. The riboflavin solution was administered by iontophoresis for 10 min in total, after which standard surface UVA irradiation (370 nm, 3 mW/cm(2) ) was performed at a 5-cm distance for 30 min. The riboflavin/UVA treatment resulted in a decrease in the average keratometry level from 46.47 ± 1.03 to 44.12 ± 1.12 D 1 year after the procedure. Corneal astigmatism decreased from 3.44 ± 0.48 to 2.95 ± 0.23 D. Uncorrected distance visual acuity improved from 0.61 ± 0.44 up to 0.48 ± 0.41 (LogMAR). Preoperative and postoperative endothelial cell density remained unchanged at 2765 ± 21.15 cells/mm(2) . Transepithelial collagen cross-linking by iontophoresis might become an effective method for riboflavin impregnation of the corneal stroma reducing the duration of the procedure and being more comfortable for the patients. Further long-term studies are necessary to complete the evaluation of the efficacy and risk spectrum of the modified cross-linking technique. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  10. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  11. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  12. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No...-propanediyl di-2-propenoate and sodium 2-propenoate (CAS Reg. No. 76774-25-9). (b) Adjuvants. The copolymers...

  13. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  14. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as 2-propenoic acid, polymers with N,N-di-2-propenyl-2-propen-1-amine and hydrolyzed polyvinyl acetate, sodium salts, graft (CAS Reg. No. 166164-74-5); or (2) 2-propenoic acid, polymer with 2-ethyl-2-(((1-oxo...

  15. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B. (Inventor)

    2016-01-01

    A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.

  16. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  17. Practical application of thermoreversibly Cross-linked rubber products

    NASA Astrophysics Data System (ADS)

    Polgar, L. M.; Picchioni, F.; de Ruiter, E.; van Duin, M.

    2017-07-01

    Currently, rubber products cannot simply be reprocessed after their product life, due to the irreversible cross-linking methods traditionally applied. The purpose of this work is to investigate how thermoreversible cross-linking of rubbers via Diels Alder chemistry can be used for the development of recyclable rubber products. Unfortunately, the applicability of the thermoreversible EPM-g-furan/BM system appears to be limited to room temperature applications, because of the rapid deterioration of the compression set at elevated temperatures compared to irreversibly cross-linked EPM. However, the use of EPM rubber modified with thiophene or cyclopentadiene moieties may extend the temperature application range and results in rubber products with acceptable properties. Finally, rubber products generally comprise fillers such as silica, carbon black or fibers. In this context, the reinforcing effect of short cut aramid fibers on the material properties of the newly developed thermoreversibly cross-linked EPM rubbers was also studied. The material properties of the resulting products were found to be comparable to those of a fiber reinforced, peroxide cured reference sample.

  18. Citric-acid-derived photo-cross-linked biodegradable elastomers.

    PubMed

    Gyawali, Dipendra; Tran, Richard T; Guleserian, Kristine J; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. Pre-POMC is a low-molecular-mass pre-polymer with an average molecular mass between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation-at-break between 38 and 382%. FT-IR-ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague-Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications.

  19. Potential Effects of Corneal Cross-Linking upon the Limbus

    PubMed Central

    2016-01-01

    Corneal cross-linking is nowadays the most used strategy for the treatment of keratoconus and recently it has been exploited for an increasing number of different corneal pathologies, from other ectatic disorders to keratitis. The safety of this technique has been widely assessed, but clinical complications still occur. The potential effects of cross-linking treatment upon the limbus are incompletely understood; it is important therefore to investigate the effect of UV exposure upon the limbal niche, particularly as UV is known to be mutagenic to cellular DNA and the limbus is where ocular surface tumors can develop. The risk of early induction of ocular surface cancer is undoubtedly rare and has to date not been published other than in one case after cross-linking. Nevertheless it is important to further assess, understand, and reduce where possible any potential risk. The aim of this review is to summarize all the reported cases of a pathological consequence for the limbal cells, possibly induced by cross-linking UV exposure, the studies done in vitro or ex vivo, the theoretical bases for the risks due to UV exposure, and which aspects of the clinical treatment may produce higher risk, along with what possible mechanisms could be utilized to protect the limbus and the delicate stem cells present within it. PMID:27689081

  20. Cross-Linked Antioxidant Nanozymes for Improved Delivery to CNS

    PubMed Central

    Klyachko, Natalia L.; Manickam, Devika S.; Brynskikh, Anna M.; Uglanova, Svetlana V.; Li, Shu; Higginbotham, Sheila M.; Bronich, Tatiana K.; Batrakova, Elena V.; Kabanov, Alexander V.

    2011-01-01

    Formulations of antioxidant enzymes, superoxide dismutase 1 (SOD1, also known as Cu/Zn SOD) and catalase were prepared by electrostatic coupling of enzymes with cationic block copolymers, polyethyleneimine-poly(ethylene glycol) or poly(L-lysine)-poly(ethylene glycol), followed by covalent cross-linking to stabilize nanoparticles. Different cross-linking strategies (using glutaraldehyde, bis-(sulfosuccinimidyl)suberate sodium salt or 1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride with N-hydroxysulfosuccinimide) and reaction conditions (pH and polycation/protein charge ratio) were investigated that allowed immobilizing active enzymes in cross-linked nanoparticles, termed “nanozymes”. Bi-enzyme nanoparticles, containing both SOD1 and catalase were also formulated. Formation of complexes was confirmed using denaturing gel electrophoresis and western blotting and physicochemical characterization was conducted using dynamic light scattering and atomic force microscopy. In vivo studies of 125I-labeled SOD1-containing nanozymes in mice demonstrated its increased stability in both blood and brain and increased accumulation in brain tissues, compared to non-cross-linked complexes and native SOD1. Future studies will evaluate potential of these formulations for delivery of antioxidant enzymes to central nervous system to attenuate oxidative stress associated with neurological diseases. PMID:21703990

  1. Viscoelastic Nanomechanics of Ionically Cross-linked Polyelectrolyte Networks

    NASA Astrophysics Data System (ADS)

    Han, Biao; Lee, Daeyeon; Han, Lin

    2015-03-01

    Understanding the mechanics of ionic polyelectrolyte networks is critical for applications where nm-to-um mechanics is the key to success. This study aims to reveal the roles of ionic cross-links and fixed charges in the viscoelasticity of layer-by-layer poly(allylamine hydrochloride)/poly(acrylic acid) microfilms, PAH/PAA, a complex held by pH-sensitive amine-carboxyl links. AFM-nanoindentation and force relaxation (tip R =12.5um) was performed at ionic strength(IS) =0.01-1.0M, pH =5.5-2.0 (pKa of PAA =2.3). When pH changes from 5.5 to 2.0, the films swell for 4x from densely linked, net neutral state to loosely linked, positively charged one. A >100x reduction in indentation modulus was observed at all IS, suggesting the dominance of decrease in cross-link density. In most states, more than 90% force relaxation was observed, where cross-link breaking/reformation likely dominates viscoelasticity. However, at pH =2.5 and IS =0.01M, when electrical double layer repulsion is important (Debye length =3nm), relaxation was about 60%, highlighting the contribution of fixed charges. In summary, this study revealed unique viscoelastic behaviors of PAH/PAA due to the pH- and IS-dependent cross-link and charge densities.

  2. Advanced Corneal Cross-Linking System with Fluorescence Dosimetry

    PubMed Central

    Friedman, Marc D.; Pertaub, Radha; Usher, David; Sherr, Evan; Kamaev, Pavel; Muller, David

    2012-01-01

    Purpose. This paper describes an advanced system that combines corneal cross-linking with riboflavin with fluorescence dosimetry, the ability to measure riboflavin diffusion within the cornea both before and during UVA treatment. Methods and Results. A corneal cross-linking system utilizing a digital micromirror device (DMD) was assembled and used to measure diffusion coefficients of 0.1% riboflavin in 20% dextran in porcine eyes. A value of (3.3 ± 0.2) × 10−7 cm2/s was obtained for the stroma. Diffusion coefficients for the transepithelial formulation of 0.1% riboflavin in 0.44% saline and 0.02% BAK were also measured to be 4.7 ± 0.3 × 10−8 cm2/s for epithelium only and (4.6 ± 0.4) × 10−7 cm2/s for stroma only. Riboflavin consumption during a UVA treatment was also demonstrated. Conclusion. A new advanced corneal cross-linking system with fluorescence dosimetry of riboflavin has been demonstrated. It is hoped that this method may play a significant role in determining the underlying mechanisms of corneal cross-linking and assist with the development of additional riboflavin formulations. Moreover, dosimetry may prove valuable in providing a method to account for the biological differences between individuals, potentially informing cornea-specific UVA treatment doses in real time. PMID:22792444

  3. Advanced corneal cross-linking system with fluorescence dosimetry.

    PubMed

    Friedman, Marc D; Pertaub, Radha; Usher, David; Sherr, Evan; Kamaev, Pavel; Muller, David

    2012-01-01

    Purpose. This paper describes an advanced system that combines corneal cross-linking with riboflavin with fluorescence dosimetry, the ability to measure riboflavin diffusion within the cornea both before and during UVA treatment. Methods and Results. A corneal cross-linking system utilizing a digital micromirror device (DMD) was assembled and used to measure diffusion coefficients of 0.1% riboflavin in 20% dextran in porcine eyes. A value of (3.3 ± 0.2) × 10(-7) cm(2)/s was obtained for the stroma. Diffusion coefficients for the transepithelial formulation of 0.1% riboflavin in 0.44% saline and 0.02% BAK were also measured to be 4.7 ± 0.3 × 10(-8) cm(2)/s for epithelium only and (4.6 ± 0.4) × 10(-7) cm(2)/s for stroma only. Riboflavin consumption during a UVA treatment was also demonstrated. Conclusion. A new advanced corneal cross-linking system with fluorescence dosimetry of riboflavin has been demonstrated. It is hoped that this method may play a significant role in determining the underlying mechanisms of corneal cross-linking and assist with the development of additional riboflavin formulations. Moreover, dosimetry may prove valuable in providing a method to account for the biological differences between individuals, potentially informing cornea-specific UVA treatment doses in real time.

  4. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite.

    PubMed

    Mathesan, Santhosh; Rath, Amrita; Ghosh, Pijush

    2016-02-01

    The self-folding behavior in response to external stimuli observed in hydrogels is potentially used in biomedical applications. However, the use of hydrogels is limited because of its reduced mechanical properties. These properties are enhanced when the hydrogels are cross-linked and reinforced with nanoparticles. In this work, molecular dynamics (MD) simulation is applied to perform uniaxial tension and pull out tests to understand the mechanism contributing towards the enhanced mechanical properties. Also, nanomechanical characterization is performed using quasi static nanoindentation experiments to determine the Young's modulus of hydrogels in the presence of nanoparticles. The stress-strain responses for chitosan (CS), chitosan reinforced with hydroxyapatite (HAP) and cross-linked chitosan are obtained from uniaxial tension test. It is observed that the Young's modulus and maximum stress increase as the HAP content increases and also with cross-linking process. Load displacement plot from pullout test is compared for uncross-linked and cross-linked chitosan chains on hydroxyapatite surface. MD simulation reveals that the variation in the dihedral conformation of chitosan chains and the evolution of internal structural variables are associated with mechanical properties. Additional results reveal that the formation of hydrogen bonds and electrostatic interactions is responsible for the above variations in different systems.

  5. Cross-linked protein crystals for vaccine delivery

    PubMed Central

    St. Clair, Nancy; Shenoy, Bhami; Jacob, Lawrence D.; Margolin, Alexey L.

    1999-01-01

    The progress toward subunit vaccines has been limited by their poor immunogenicity and limited stability. To enhance the immune response, subunit vaccines universally require improved adjuvants and delivery vehicles. In the present paper, we propose the use of cross-linked protein crystals (CLPCs) as antigens. We compare the immunogenicity of CLPCs of human serum albumin with that of soluble protein and conclude that there are marked differences in the immune response to the different forms of human serum albumin. Relative to the soluble protein, crystalline forms induce and sustain over almost a 6-month study a 6- to 10-fold increase in antibody titer for highly cross-linked crystals and an approximately 30-fold increase for lightly cross-linked crystals. We hypothesize that the depot effect, the particulate structure of CLPCs, and highly repetitive nature of protein crystals may play roles in the enhanced production of circulating antibodies. Several features of CLPCs, such as their remarkable stability, purity, biodegradability, and ease of manufacturing, make them highly attractive for vaccine formulations. This work paves the way for a systematic study of protein crystallinity and cross-linking on enhancement of humoral and T cell responses. PMID:10449716

  6. Cross-linking reveals laminin coiled-coil architecture

    PubMed Central

    Armony, Gad; Jacob, Etai; Moran, Toot; Levin, Yishai; Mehlman, Tevie; Levy, Yaakov; Fass, Deborah

    2016-01-01

    Laminin, an ∼800-kDa heterotrimeric protein, is a major functional component of the extracellular matrix, contributing to tissue development and maintenance. The unique architecture of laminin is not currently amenable to determination at high resolution, as its flexible and narrow segments complicate both crystallization and single-particle reconstruction by electron microscopy. Therefore, we used cross-linking and MS, evaluated using computational methods, to address key questions regarding laminin quaternary structure. This approach was particularly well suited to the ∼750-Å coiled coil that mediates trimer assembly, and our results support revision of the subunit order typically presented in laminin schematics. Furthermore, information on the subunit register in the coiled coil and cross-links to downstream domains provide insights into the self-assembly required for interaction with other extracellular matrix and cell surface proteins. PMID:27815530

  7. Transparent Humidity Sensor Using Cross-Linked Polyelectrolyte Membrane

    SciTech Connect

    Zhang, Q.; Smith, James R.; Saraf, Laxmikant V.; Hua, Feng

    2009-07-02

    This paper describes the fabrication of a porous cross-linked polyelectrolyte membrane and the characterization of its humidity sensitivity performance. Electrostatic self-assembly, combined with acid treatment, and post-deposition annealing produced the membrane. The fabrication process offers the ability to control the thickness of the membrane, as well as enabling the engineering of the humidity sensitivity properties. A transparent humidity sensor was fabricated by integrating the membrane between two parallel electrodes. In order to improve the moisture absorption and diffusion, both the polyelectrolyte layer and the electrode were made porous. The membrane was cross-linked to enhance the durability in high humid environments. Such a polyelectrolyte membrane showed high sensitivity to relative humidity variation over a range of 25%–99%. The see-through property of the structure adds extra features and benefits to the sensor.

  8. Model selection for athermal cross-linked fiber networks.

    PubMed

    Shahsavari, A; Picu, R C

    2012-07-01

    Athermal random fiber networks are usually modeled by representing each fiber as a truss, a Euler-Bernoulli or a Timoshenko beam, and, in the case of cross-linked networks, each cross-link as a pinned, rotating, or welded joint. In this work we study the effect of these various modeling options on the dependence of the overall network stiffness on system parameters. We conclude that Timoshenko beams can be used for the entire range of density and beam stiffness parameters, while the Euler-Bernoulli model can be used only at relatively low network densities. In the high density-high bending stiffness range, strain energy is stored predominantly in the axial and shear deformation modes, while in the other extreme range of parameters, the energy is stored in the bending mode. The effect of the model size on the network stiffness is also discussed.

  9. Highly cross-linked polyethylene in total hip arthroplasty.

    PubMed

    Gordon, Alexander C; D'Lima, Darryl D; Colwell, Clifford W

    2006-09-01

    Although total hip arthroplasty is a common and highly successful procedure, its long-term durability has been undermined by the cellular response to polyethylene wear debris and the subsequent effects on periprosthetic bone. Research elucidating the effects of sterilization on polyethylene wear has facilitated the development of a more wear-resistant material-highly cross-linked polyethylene. Laboratory testing has demonstrated that highly cross-linked polyethylene has markedly improved wear resistance compared with conventional polyethylene under a variety of conditions. Early clinical data have supported these results. To make informed decisions about this already widely available and frequently used product, the practicing orthopaedic surgeon should have a basic understanding of the production process as well as knowledge of the most current laboratory and clinical data.

  10. Doubly Distributed Transactions

    SciTech Connect

    Jai Dayal, Gerald Lofstead

    2014-08-25

    Doubly Distributed Transactions (D2T) offers a technique for managing operations from a set of parallel clients with a collection of distributed services. It detects and manages faults. Example code with a test harness is also provided

  11. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  12. Reversible PH Lability of Cross-Linked Vault Nanocapsules

    SciTech Connect

    Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

    2009-05-28

    Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

  13. Magnetic Characterization of Iron Oxide Cross Linked Hydro gels

    NASA Astrophysics Data System (ADS)

    Senaratne, U.; Powell, N.; Kroll, E.; Tsoi, G.; Naik, R.; Naik, V.; Vaishnava, P. P.; Wenger, L. E.

    2004-03-01

    Magnetic hydro gels have potential applications in drug delivery, cells sorting, sensors, and actuating technologies. Iron oxide alginate nanocomposites were synthesized following the method of Kroll et al^1 by cross linking sodium alginate with Fe^2+ and Fe^3+ in methanol: water. The ion-cross linked alginate hydro gels are oxidized in an alkaline solution. The resulting hydro gel consists of iron oxide cross linked alginate. The alginate hydro gels are inert to the reaction conditions and therefore the reaction sequence can be repeated. The multiple loadings result in an increase in the amount of iron oxide and the size of the iron oxide nanoparticles in the cross linked hydro gels. The third and sixth loaded iron oxide alginate hydro gels were dried and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and Superconducting Quantum Interference Device (SQUID) magnetometry. The XRD patterns have characteristic features of γ- Fe_2O3 or Fe_3O4 phases. The average particle size, calculated from the XRD peaks, for third loaded iron oxide alginate was 2 nm. The zero-field-cooled and field-cooled SQUID measurements show the iron oxide nanoparticles are superparamagnetic with blocking temperature (T_B) of approximately 35 K. Above the blocking temperature, the inverse susceptibility versus temperature relationship does not follow the Curie-Weiss law, indicating strong inter-particle interactions. The M vs. H data above the blocking temperature was fitted with a modified Langevin function to obtain additional information about the iron oxide particle size. Details of the relationship between coercive field and temperature as well as the particle size distribution obtained from XRD and TEM measurements will be presented. *Research supported by NSF grant # DGE ˜980720 **Supported by NSF REU grant # EEC-0097736 ^1E. Kroll, F.M. Winnik, and R.F. Ziolo, Chem. Mater, 8, 1594 (1996).

  14. Estimating the Degree of Cross-Linking in Rubber

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1983-01-01

    Degree of cross-linking or network chain concentration of rubber estimated with aid of new method. Quantity is needed in studies of mechanical behavior of rubber. New method is based on finding rubber follows different stress/ strain relationships in extension and retraction. When rubber specimen is stretched to given extension ration and released. Stress-vs-strain curve follows two paths: one for extension and other for retraction.

  15. Induced Collagen Cross-Links Enhance Cartilage Integration

    PubMed Central

    Athens, Aristos A.; Makris, Eleftherios A.; Hu, Jerry C.

    2013-01-01

    Articular cartilage does not integrate due primarily to a scarcity of cross-links and viable cells at the interface. The objective of this study was to test the hypothesis that lysyl-oxidase, a metalloenzyme that forms collagen cross-links, would be effective in improving integration between native-to-native, as well as tissue engineered-to-native cartilage surfaces. To examine these hypotheses, engineered cartilage constructs, synthesized via the self-assembling process, as well as native cartilage, were implanted into native cartilage rings and treated with lysyl-oxidase for varying amounts of time. For both groups, lysyl-oxidase application resulted in greater apparent stiffness across the cartilage interface 2–2.2 times greater than control. The construct-to-native lysyl-oxidase group also exhibited a statistically significant increase in the apparent strength, here defined as the highest observed peak stress during tensile testing. Histology indicated a narrowing gap at the cartilage interface in lysyl-oxidase treated groups, though this alone is not sufficient to indicate annealing. However, when the morphological and mechanical data are taken together, the longer the duration of lysyl-oxidase treatment, the more integrated the interface appeared. Though further data are needed to confirm the mechanism of action, the enhancement of integration may be due to lysyl-oxidase-induced pyridinoline cross-links. This study demonstrates that lysyl-oxidase is a potent agent for enhancing integration between both native-to-native and native-to-engineered cartilages. The fact that interfacial strength increased manifold suggests that cross-linking agents should play a significant role in solving the difficult problem of cartilage integration. Future studies must examine dose, dosing regimen, and cellular responses to lysyl-oxidase to optimize its application. PMID:23593295

  16. Physicochemical properties of collagen solutions cross-linked by glutaraldehyde.

    PubMed

    Tian, Zhenhua; Li, Conghu; Duan, Lian; Li, Guoying

    2014-06-01

    The physicochemical properties of collagen solutions (5 mg/ml) cross-linked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w) = 0-0.5] under acidic condition (pH 4.00) were examined. Based on the results of the determination of residual amino group content, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, dynamic rheological measurements, differential scanning calorimetry and atomic force microscopy (AFM), it was proved that the collagen solutions possessed strikingly different physicochemical properties depending on the amount of GTA. At low GTA amounts [GTA/collagen (w/w) ≤ 0.1], the residual amino group contents of the cross-linked collagens decreased largely from 100% to 32.76%, accompanied by an increase in the molecular weight. Additionally, increases of the fiber diameter and the values of G', G″ and η* were measured, while the thermal denaturation temperature (Td) did not change visibly and the fluidity of collagen samples was still retained with increasing the GTA amount. When the ratio of GTA to collagen exceeded 0.1, although the residual amino group content only decreased by ~8.2%, the cross-linked collagen solution [GTA/collagen (w/w) = 0.3] displayed a clear loss of flow and a sudden rise (~2.0 °C) of the Td value compared to the uncross-linked collagen solution, probably illustrating that the collagen solution was converted into a gel with mature network structure-containing nuclei observed in AFM image. It was conjectured that the physicochemical properties of the collagen solutions might be in connection with the cross-linking between collagen molecules from the same aggregate or different aggregates.

  17. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides

    PubMed Central

    2016-01-01

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  18. Doubly fed induction machine

    DOEpatents

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  19. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  20. Supersaturated lysozyme solution structure studied by chemical cross-linking.

    PubMed

    Hall, Clayton L; Clemens, John R; Brown, Amanda M; Wilson, Lori J

    2005-06-01

    Glutaraldehyde cross-linking followed by separation has been used to detect aggregates of chicken egg-white lysozyme (CEWL) in supersaturated solutions. In solutions of varying NaCl content, the number of aggregates was found to be related to the ionic strength of the solution. Separation by SDS-PAGE showed that percentage of dimer in solution ranged from 25.3% for no NaCl to 27.1% at 15% NaCl, and the aggregates larger than dimer increased from 1.9% for no NaCl to 36.8% at 15% NaCl. Conversely, the percentage of monomers decreased from 72.8% without NaCl to 36.1% at 15% NaCl. Molecular weights by capillary electrophoresis (SDS-CE) were found to be multiples of the monomer molecular weights, with the exception of trimer, which indicates a very compact structure. Native separation was accomplished using size-exclusion chromatography (SEC) and gave a lower monomer concentration and higher aggregate concentration than SDS-CE, which is a denaturing separation method. Most noticeably, trimers were absent in the SEC separation. The number of aggregates did not change with increased time between addition of NaCl and addition of cross-linking agent when separated by gel electrophoresis (SDS-PAGE). The results suggest that high ionic strength CEWL solutions are highly aggregated and that denaturing separation methods disrupt cross-linked products.

  1. Magnetic macromolecular cross linked enzyme aggregates (CLEAs) of glucoamylase.

    PubMed

    Nadar, Shamraja S; Rathod, Virendra K

    2016-02-01

    This work illustrates the preparation of magnetic macromolecular glucoamylase CLEAs using dialdehydic pectin, as a cross linker instead of traditional glutaraldehyde. The effect of precipitators type and amount, cross linker concentration, cross linking time and amount of amino functionalized magnetic nanoparticles (AFMNs) on glucoamylase activity was studied. Glucoamylase magnetic macromolecular CLEAs prepared by precipitation in presence of AFMNs by ammonium sulfate were subsequently cross linked by dialdehydic pectin. After cross-linked by pectin, 95.4% activity recovery was achieved in magnetic macromolecular CLEAs, whereas in case of glutaraldehyde cross linker, 85.3% activity recovery was achieved. Magnetic macromolecular CLEAs showed 2.91 and 1.27 folds higher thermal stability as compared to free and magnetic glutaraldehyde CLEAs. In kinetics study, magnetic macromolecular CLEAs retained same Km values, whereas magnetic glutaraldehyde CLEAs showed higher Km value than free enzyme. The porous structure of magnetic macromolecular CLEAs was not only enhanced mass transfer toward macromolecular substrates, but also showed compression resistance for 5 consecutive cycles which was checked in terms of effectiveness factor. At the end, in reusability study; magnetic macromolecular CLEAs were retained 84% activity after 10(th) cycle without leaching of enzyme which is 22% higher than traditional magnetic CLEAs.

  2. Homogeneous UVA system for corneal cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Ayres Pereira, Fernando R.; Stefani, Mario A.; Otoboni, José A.; Richter, Eduardo H.; Ventura, Liliane

    2010-02-01

    The treatment of keratoconus and corneal ulcers by collagen cross-linking using ultraviolet type A irradiation, combined with photo-sensitizer Riboflavin (vitamin B2), is a promising technique. The standard protocol suggests instilling Riboflavin in the pre-scratched cornea every 5min for 30min, during the UVA irradiation of the cornea at 3mW/cm2 for 30 min. This process leads to an increase of the biomechanical strength of the cornea, stopping the progression, or sometimes, even reversing Keratoconus. The collagen cross-linking can be achieved by many methods, but the utilization of UVA light, for this purpose, is ideal because of its possibility of a homogeneous treatment leading to an equal result along the treated area. We have developed a system, to be clinically used for treatment of unhealthy corneas using the cross-linking technique, which consists of an UVA emitting delivery device controlled by a closed loop system with high homogeneity. The system is tunable and delivers 3-5 mW/cm2, at 365nm, for three spots (6mm, 8mm and 10mm in diameter). The electronics close loop presents 1% of precision, leading to an overall error, after the calibration, of less than 10% and approximately 96% of homogeneity.

  3. Fiber optic immunosensor for cross-linked fibrin concentration

    NASA Astrophysics Data System (ADS)

    Moskowitz, Samuel E.

    2000-08-01

    Working with calcium ions in the blood, platelets produce thromboplastin which transforms prothrombin into thrombin. Removing peptides, thrombin changes fibrinogen into fibrin. Cross-linked insoluble fibrin polymers are solubilized by enzyme plasmin found in blood plasma. Resulting D-dimers are elevated in patients with intravascular coagulation, deep venous thrombosis, pulmonary embolism, myocardial infarction, multiple trauma, cancer, impaired renal and liver functions, and sepsis. Consisting principally of a NIR 780 nm GaAlAs laser diode and a 800 nm avalanche photodiode (APD), the fiber-optic immunosensor can determined D-dimer concentration to levels <0.1 ng/ml. A capture monoclonal antibody to the antigen soluble cross-linked fibrin is employed. Immobilized at the tip of an optical fiber by avidin-biotin, the captured antigen is detected by a second antibody which is labeled with NN 382 fluorescent dye. An evanescent wave traveling on an excitation optical fiber excites the antibody-antigen fluorophore complex. Concentration of cross-linked fibrin is directly proportional to the APD measured intensity of fluorescence. NIR fluorescence has advantages of low background interference, short fluorescence lifetime, and large difference between excitation and emission peaks. Competitive ELISA test for D-dimer concentration requires trained personnel performing a time consuming operation.

  4. Electrochemical Characterization of Ultrathin Cross-Linked Metal Nanoparticle Films.

    PubMed

    Han, Chu; Percival, Stephen J; Zhang, Bo

    2016-09-06

    Here we report the preparation, characterization, and electrochemical study of conductive, ultrathin films of cross-linked metal nanoparticles (NPs). Nanoporous films ranging from 40 to 200 nm in thickness composed of gold and platinum NPs of ∼5 nm were fabricated via a powerful layer-by-layer spin coating process. This process allows preparation of uniform NP films as large as 2 × 2 cm(2) with precise control over thickness, structure, and electrochemical and electrocatalytic properties. Gold, platinum, and bimetallic NP films were fabricated and characterized using cyclic voltammetry, scanning electron microscopy, and conductance measurements. Their electrocatalytic activity toward the oxygen reduction reaction (ORR) was investigated. Our results show that the electrochemical activity of such NP films is initially hindered by the presence of dense thiolate cross-linking ligands. Both electrochemical cycling and oxygen plasma cleaning are effective means in restoring their electrochemical activity. Gold NP films have higher electric conductivity than platinum possibly due to more uniform film structure and closer particle-particle distance. The electrochemical and electrocatalytic performance of platinum NP films can be greatly enhanced by the incorporation of gold NPs. This work focuses on electrochemical characterization of cross-linked NP films and demonstrates several unique properties. These include quick and easy preparation, ultrathin and uniform film thickness, tunable structure and composition, and transferability to many other substrates.

  5. Early confocal microscopy findings after cross-linking treatment.

    PubMed

    Ramírez, M; Hernández-Quintela, E; Naranjo-Tackman, R

    2013-05-01

    To determine the effects of in vivo cross-linking treatment of the cornea. Eighteen eyes of eighteen keratoconus patients underwent cross-linking treatment using a 0.1% riboflavin solution and ultraviolet A radiation at 370 nm at 3 mW/cm² for 30 minutes. In vivo confocal microscopy was performed before, and at 1 week and 1 month after treatment. At 1 week after treatment, keratocyte activation and collagen fiber organization showed as hyper-reflective structures and were observed from the first sub-epithelial image to a corneal stromal depth of 275.1 ± 85.9 μm. At 1 month after treatment, activated keratocytes and fiber organization were also observed from the first sub-epithelial image to a corneal stromal depth of 324.9 ± 66.0 μm. The deepest hyper-reflective structures at 1 month showed as thick, linear-shaped hyper-reflective structures. In vivo confocal microscopy in humans showed corneal stromal changes at 1 week and 1 month after cross-linking treatment, in some cases at depths in excess of 300 μm. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier España, S.L. All rights reserved.

  6. Cross linking molecular systems to form ultrathin dielectric layers

    NASA Astrophysics Data System (ADS)

    Feng, Danqin

    Dehydrogenation leads to cross linking of polymer or polymer like formation in very different systems: self-assembled monolayers and in closo -carboranes leading to the formation of semiconducting and dielectric boron carbide. We find evidence of intermolecular interactions for a self-assembled monolayer (SAM) formed from a large molecular adsorbate, [1,1';4',1"-terphenyl]-4,4"-dimethanethiol, from the dispersion of the molecular orbitals with changing the wave vector k and from the changes with temperature. With the formation self assembled molecular (SAM) layer, the molecular orbitals hybridize to electronic bands, with indications of significant band dispersion of the unoccupied molecular orbitals. Although organic adsorbates and thin films are generally regarded as "soft" materials, the effective Debye temperature, indicative of the dynamic motion of the lattice normal to the surface, can be very high, e.g. in the multilayer film formed from [1,1'-biphenyl]-4,4'-dimethanethiol (BPDMT). Depending on molecular orientation, the effective Debye temperature can be comparable to that of graphite due to the 'stiffness' of the benzene rings, but follows the expected Debye-Waller behavior for the core level photoemission intensities with temperature. This is not always the case. We find that a monomolecular film formed from [1,1';4',1"-terphenyl]-4,4"-dimethanethiol deviates from Debye-Waller temperature behavior and is likely caused by temperature dependent changes in molecular orientation. We also find evidence for the increase in dielectric character with polymerization (cross-linking) in spite of the decrease in the HOMO-LUMO gap upon irradiation of TPDMT. The changes in the HOMO-LUMO gap, with cross-linking, are roughly consistent with the band dispersion. The decomposition and cross-linking processes are also accompanied by changes in molecular orientation. The energetics of the three isomeric carborane cage compounds [ closo-1,2-orthocarborane, closo-1

  7. Physicochemical, antimicrobial, and cytotoxic characteristics of a chitosan film cross-linked by a naturally occurring cross-linking agent, aglycone geniposidic acid.

    PubMed

    Mi, Fwu-Long; Huang, Chin-Tsung; Liang, Hsiang-Fa; Chen, Mei-Chin; Chiu, Ya-Ling; Chen, Chun-Hung; Sung, Hsing-Wen

    2006-05-03

    The purpose of this study was to evaluate the characteristics of a chitosan film cross-linked by a naturally occurring compound, aglycone geniposidic acid (aGSA). This newly developed aGSA-cross-linked chitosan film may be used as an edible film. The chitosan film without cross-linking (fresh) and the glutaraldehyde-cross-linked chitosan film were used as controls. The characteristics of test chitosan films evaluated were their degree of cross-linking, swelling ratio, mechanical properties, water vapor permeability, antimicrobial capability, cytotoxicity, and enzymatic degradability. It was found that cross-linking of chitosan films by aGSA (at a concentration up to 0.8 mM) significantly increased its ultimate tensile strength but reduced its strain at fracture and swelling ratio. There was no significant difference in the antimicrobial capability between the cross-linked chitosan films and their fresh counterpart. However, the aGSA-cross-linked chitosan film had a lower cytotoxicity, a slower degradation rate, and a relatively lower water vapor permeability as compared to the glutaraldehyde-cross-linked film. These results suggested that the aGSA-cross-linked chitosan film may be a promising material as an edible film.

  8. Macrophage response to cross-linked and conventional UHMWPE.

    PubMed

    Sethi, Rajiv K; Neavyn, Mark J; Rubash, Harry E; Shanbhag, Arun S

    2003-07-01

    To prevent wear debris-induced osteolysis and aseptic loosening, cross-linked ultra-high molecular weight polyethylene's (UHMWPE) with improved wear resistance have been developed. Hip simulator studies have demonstrated very low wear rates with these new materials leading to their widespread clinical use. However, the biocompatibility of this material is not known. We studied the macrophage response to cross-linked UHMWPE (XLPE) and compared it to conventional UHMWPE (CPE) as well as other clinically used orthopaedic materials such as titanium-alloy (TiAlV) and cobalt-chrome alloy (CoCr). Human peripheral blood monocytes and murine macrophages, as surrogates for cells mediating peri-implant inflammation, were cultured onto custom designed lipped disks fabricated from the test materials to isolate cells. Culture supernatants were collected at 24 and 48h and analyzed for cytokines such as IL-1alpha, IL-1beta, TNF-alpha and IL-6. Total RNA was extracted from adherent cells and gene expression was analyzed using qualitative RT-PCR. In both in vitro models, macrophages cultured on cross-linked and conventional polyethylene released similar levels of cytokines, which were also similar to levels on control tissue culture dishes. Macrophages cultured on TiAlV and CoCr-alloy released significantly higher levels of cytokines. Human monocytes from all donors varied in the magnitude of cytokines released when cultured on identical surfaces. The variability in individual donor responses to TiAlV and CoCr surfaces may reflect how individuals respond differently to similar stimuli and perhaps reveal a predisposed sensitivity to particular materials.

  9. Autoclavable highly cross-linked polyurethane networks in ophthalmology.

    PubMed

    Bruin, P; Meeuwsen, E A; van Andel, M V; Worst, J G; Pennings, A J

    1993-11-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for use in ophthalmic applications such as intraocular lenses and keratoprostheses. The properties of these glassy polyurethanes, obtained from the reaction of the low molecular weight polyols triisopropanolamine (TIPA) or tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) and HDI in stoichiometric proportions, have been investigated in more detail. The glassy Quadrol/HDI-based polyurethane exhibits a reduction in ultimate glass transition temperature from 85 to 48 degrees C by uptake of 1% of water, and good ultimate mechanical properties (tensile strength 80-85 MPa, elongation at break ca 15%, modulus ca 1.5 GPa). IR spectra of these hydrophobic polyurethane networks revealed the absence of an isocyanate absorption, indicating that all isocyanates, apparently, had reacted during the cross-linking reaction. The biocompatibility could be increased by grafting tethered polyacrylamide chains onto the surface during network formation. These transparent cross-linked polyurethanes did not transmit UV light up to 400 nm, by incorporation of a small amount of the UV absorbing chromophore Coumarin 102, and could be sterilized simply by autoclaving. They were implanted in rabbit eyes, either in the form of small circular disks or in the form of a keratoprosthesis (artificial cornea). It was shown that the material was well tolerated by the rabbit eyes. Serious opacification of the cornea, a direct result of an adverse reaction to the implant, was never seen. Even 1 yr after implantation of a polyurethane keratoprosthesis the eye was still 'quiet'.

  10. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    NASA Technical Reports Server (NTRS)

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  11. Novel magnetic cross-linked lipase aggregates for improving the resolution of (R, S)-2-octanol.

    PubMed

    Liu, Ying; Guo, Chen; Liu, Chun-Zhao

    2015-03-01

    Novel magnetic cross-linked lipase aggregates were fabricated by immobilizing the cross-linked lipase aggregates onto magnetic particles with a high number of -NH2 terminal groups using p-benzoquinone as the cross-linking agent. At the optimal fabrication conditions, 100% of immobilization efficiency and 139% of activity recovery of the magnetic cross-linked lipase aggregates were achieved. The magnetic cross-linked lipase aggregates were able to efficiently resolve (R, S)-2-octanol, and retained 100% activity and 100% enantioselectivity after 10 cycles of reuse, whereas the cross-linked lipase aggregates only retained about 50% activity and 70% enantioselectivity due to insufficient cross-linking. These results provide a great potential for industrial applications of the magnetic cross-linked lipase aggregates.

  12. Optimization model for UV-Riboflavin corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  13. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  14. Phosphate uptake studies of cross-linked chitosan bead materials.

    PubMed

    Mahaninia, Mohammad H; Wilson, Lee D

    2017-01-01

    A systematic experimental study is reported that provides a molecular based understanding of cross-linked chitosan beads and their adsorption properties in aqueous solution containing phosphate dianion (HPO4(2-)) species. Synthetically modified chitosan using epichlorohydrin and glutaraldehyde cross-linkers result in surface modified beads with variable hydrophile-lipophile character and tunable HPO4(2-) uptake properties. The kinetic and thermodynamic adsorption properties of cross-linked chitosan beads with HPO4(2-) species were studied in aqueous solution. Complementary structure and physicochemical characterization of chitosan beads via potentiometry, Raman spectroscopy, DSC, and dye adsorption measurements was carried out to establish structure-property relationships. The maximum uptake (Qm) of bead systems with HPO4(2-) at equilibrium was 52.1mgg(-1); whereas, kinetic uptake results for chitosan bead/phosphate systems are relatively rapid (0.111-0.113min(-1)) with an intraparticle diffusion rate-limiting step. The adsorption process follows a multi-step pathway involving inner- and outer-sphere complexes with significant changes in hydration. Phosphate uptake strongly depends on the composition and type of cross-linker used for preparation of chitosan beads. The adsorption isotherms and structural characterization of bead systems illustrate the role of surface charge, hydrophile-lipophile balance, adsorption site accessibility, and hydration properties of the chitosan bead surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins

    PubMed Central

    Georgiades, Pantelis; Pudney, Paul D. A.; Rogers, Sarah; Thornton, David J.; Waigh, Thomas A.

    2014-01-01

    Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

  16. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment.

    PubMed

    González-Estrada, Ramsés; Calderón-Santoyo, Montserrat; Carvajal-Millan, Elizabeth; Ascencio Valle, Felipe de Jesús; Ragazzo-Sánchez, Juan Arturo; Brown-Bojorquez, Francisco; Rascón-Chu, Agustín

    2015-06-19

    In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film.

  17. Damage and fatigue in cross-linked rubbers

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexei

    Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

  18. Preparation and characterization of cross-linked composite polymer electrolytes

    SciTech Connect

    Hou, J.; Baker, G.L.

    1998-11-01

    Cross-linkable composite electrolytes were prepared from poly(ethylene glycol) dimethyl ether (PEGDME)-500, LiClO{sub 4}, fumed silica, and 10 wt % methyl, butyl, or octyl methacrylate. The silicas used were chemically modified by attaching methacrylate groups to the silica surface through C{sub 8} and C{sub 3} tethers. Before cross-linking, the electrolytes were thixotropic and had ionic conductivities of >2 {times} 10{sup {minus}4} S/cm. After ultraviolet (UV)-induced cross-linking, the electrolytes were rubbery and dimensionally stable, and the conductivities were unchanged. Conductivity, extraction, and thermal analysis data all support a model where the added methacrylate monomer and growing polymer chains phase separate from the electrolyte phase during photopolymerization to yield a methacrylate-rich silica/polymer phase and little or no polymer in the PEGDME-500 phase. Thus, the mechanical properties of the composite electrolyte and its ionic conductivity are decoupled and can be optimized independently.

  19. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Styrene-divinylbenzene resins, cross-linked. 177... resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles... conditions: (a) The resins are produced by the copolymerization of styrene with divinylbenzene. (b) The...

  20. Cross-linked hyaluronic acid in pressure ulcer prevention.

    PubMed

    Beniamino, P; Vadalà, M; Laurino, C

    2016-07-02

    Long-term bedridden patients are at high risk of acquring pressure ulcers (PUs). In this group of patients, prevention is necessary to cut the health costs, improve quality of life and reduce the mortality. Here, we evaluated the effectiveness of a cross-linked hyaluronic acid (HA) as plastic bulking-agent filling and remodelling the deep dermis and subcutaneous space of the skin areas exposed to the risk of necrosis. Our work hypothesis has been to inflate a sub-dermal elastic cushion, filled with a natural ECM component, with the aim to induce a stronger tissue background resistant to the ulcerative process. All the patients had an increased risk of PUs, at the sacral, ileum or heel skin. Patients were being nursed accordingly to the standard orthopaedic ward management with a pressure relieveing air mattress. The standard protocol consisted in body mobilisation every 3 hours, 24 hours a day and accurate cleaning of the skin with liquid soap and water without any towel friction and without adding any cream or lotion for the skin protection. Our filling protocol enclosed: accurate disinfection of the skin to be injected with povidone-iodine solution, followed by a local anaesthesia with 28G 13 mm needle, injecting 1.5 ml of 1% xylocaine. Then slow, deep, subcutaneous injection of cross-linked HA was performed with a 18G long needle, in order to deliver a homogeneous, soft gel layer underneath and around the whitish erythematous skin edges at risk of ulceration. Patients' tolerability of the compound and adverse events were also recorded. There were 15 patients (78-94 years old) who participated in the study. All tolerated the procedure very well and no serious side effects were declared. No skin pressure ulceration was detected in the four weeks follow-up Conclusion: We have demonstrated the safety and tolerability of a cross-linked HA subdermal injection in PUs prevention. The compound stratifies in a soft, elastic, interstitial bulk into the deep dermis, thus

  1. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    NASA Astrophysics Data System (ADS)

    Hatamie, Shadie; Dhole, S. D.; Ding, J.; Kale, S. N.

    2009-07-01

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  2. Conventional Versus Cross-Linked Polyethylene for Total Hip Arthroplasty.

    PubMed

    Surace, Michele F; Monestier, Luca; Vulcano, Ettore; Harwin, Steven F; Cherubino, Paolo

    2015-09-01

    The clinical and radiographic outcomes of 88 patients who underwent primary total hip arthroplasty with either conventional polyethylene or cross-linked polyethylene (XLPE) from the same manufacturer were compared. There were no significant differences between the 2 subpopulations regarding average age, gender, side affected, or prosthetic stem and cup size. The average follow-up was 104 months (range, 55 to 131 months). To the authors' knowledge, this is the longest follow-up for this particular insert. Clinical and radiographic evaluations were performed at 1, 3, 6, and 12 months and then annually. Results showed that XLPE has a significantly greater wear reduction than that of standard polyethylene in primary total hip arthroplasty. At the longest available follow-up for these specific inserts, XLPE proved to be effective in reducing wear.

  3. Liquid behavior of cross-linked actin bundles

    PubMed Central

    Weirich, Kimberly L.; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A.; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L.

    2017-01-01

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid–solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton. PMID:28202730

  4. Studies on N-vinylformamide cross-linked copolymers

    NASA Astrophysics Data System (ADS)

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  5. Photoinduced Plasticity in Cross-Linked Liquid Crystalline Networks.

    PubMed

    McBride, Matthew K; Hendrikx, Matthew; Liu, Danqing; Worrell, Brady T; Broer, Dirk J; Bowman, Christopher N

    2017-02-24

    Photoactivated reversible addition fragmentation chain transfer (RAFT)-based dynamic covalent chemistry is incorporated into liquid crystalline networks (LCNs) to facilitate spatiotemporal control of alignment, domain structure, and birefringence. The RAFT-based bond exchange process, which leads to stress relaxation, is used in a variety of conditions, to enable the LCN to achieve a near-equilibrium structure and orientation upon irradiation. Once formed, and in the absence of subsequent triggering of the RAFT process, the (dis)order in the LCN and its associated birefringence are evidenced at all temperatures. Using this approach, the birefringence, including the formation of spatially patterned birefringent elements and surface-active topographical features, is selectively tuned by adjusting the light dose, temperature, and cross-linking density.

  6. Adding chemical cross-links to a physical hydrogel.

    PubMed

    Paradossi, Gaio; Finelli, Ivana; Cerroni, Barbara; Chiessi, Ester

    2009-09-17

    Synergistic hydrogels are often encountered in polysaccharide mixtures widely used in food and biopharma products. The xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. Recently we showed that the junction zones stabilizing the 3D structure of this gel are present as macromolecular complexes in solution formed by the partially depolymerised polysaccharidic chains. The non-covalent interactions stabilizing the structure of the polysaccharidic complex cause the melting of the ordered structure of the complex in the solution and of the hydrogels. Introduction of chemical cross-links in the 3D structure of the synergistic hydrogel removes this behaviour, adding new features to the swelling and to the viscoelastic properties of the cured hydrogel. The use of epichlorohydrin as low molecular weight cross-linker does not impact unfavourably on the viability of NIH 3T3 fibroblasts.

  7. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  8. Grass Cell Walls: A Story of Cross-Linking

    PubMed Central

    Hatfield, Ronald D.; Rancour, David M.; Marita, Jane M.

    2017-01-01

    Cell wall matrices are complex composites mainly of polysaccharides, phenolics (monomers and polymers), and protein. We are beginning to understand the synthesis of these major wall components individually, but still have a poor understanding of how cell walls are assembled into complex matrices. Valuable insight has been gained by examining intact components to understand the individual elements that make up plant cell walls. Grasses are a prominent group within the plant kingdom, not only for their important roles in global agriculture, but also for the complexity of their cell walls. Ferulate incorporation into grass cell wall matrices (C3 and C4 types) leads to a cross-linked matrix that plays a prominent role in the structure and utilization of grass biomass compared to dicot species. Incorporation of p-coumarates as part of the lignin structure also adds to the complexity of grass cell walls. Feruoylation results in a wall with individual hemicellulosic polysaccharides (arabinoxylans) covalently linked to each other and to lignin. Evidence strongly suggests that ferulates not only cross-link arabinoxylans, but may be important factors in lignification of the cell wall. Therefore, the distribution of ferulates on arabinoxylans could provide a means of structuring regions of the matrix with the incorporation of lignin and have a significant impact upon localized cell wall organization. The role of other phenolics in cell wall formation such as p-coumarates (which can have concentrations higher than ferulates) remains unknown. It is possible that p-coumarates assist in the formation of lignin, especially syringyl rich lignin. The uniqueness of the grass cell wall compared to dicot sepcies may not be so much in the gross composition of the wall, but how the distinctive individual components are organized into a functional wall matrix. These features are discussed and working models are provided to illustrate how changing the organization of feruoylation and p

  9. Peptidoglycan cross-linking in glycopeptide-resistant Actinomycetales.

    PubMed

    Hugonnet, Jean-Emmanuel; Haddache, Nabila; Veckerlé, Carole; Dubost, Lionel; Marie, Arul; Shikura, Noriyasu; Mainardi, Jean-Luc; Rice, Louis B; Arthur, Michel

    2014-01-01

    Synthesis of peptidoglycan precursors ending in D-lactate (D-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by L,D-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in D-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of D-Lac into cytoplasmic precursors. This was due to a D,D-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of D-Lac for D-Ala and Gly. The contribution of L,D-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-D,D-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal D-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by D,D-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of L,D-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-D,D-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that L,D-transpeptidases merely act as a tolerance mechanism in this bacterium.

  10. The wear of cross-linked polyethylene against itself.

    PubMed

    Joyce, T J; Ash, H E; Unsworth, A

    1996-01-01

    Cross-linked polyethylene (XLPE) may have an application as a material for an all-plastic surface replacement finger joint. It is inexpensive, biocompatible and can be injection-moulded into the complex shapes that are found on the ends of the finger bones. Further, the cross-linking of polyethylene has significantly improved its mechanical properties. Therefore, the opportunity exists for an all-XLPE joint, and so the wear characteristics of XLPE sliding against itself have been investigated. Wear tests were carried out on both reciprocating pin-on-plate machines and a finger function simulator. The reciprocating pin-on-plate machines had pins loaded at 10 N and 40 N. All pin-on-plate tests show wear factors from the plates very much greater than those of the pins. After 349 km of sliding, a mean wear factor of 0.46 x 10(-6) mm3/N m was found for the plates compared with 0.021 x 10(-6) mm3/N m for the pins. A fatigue mechanism may be causing this phenomenon of greater plate wear. Tests using the finger function simulator give an average wear rate of 0.22 x 10(-6) mm3/N m after 368 km. This sliding distance is equivalent to 12.5 years of use in vivo. The wear factors found were comparable with those of ultra-high molecular weight polyethylene (UHMWPE) against a metallic counterface and, therefore, as the loads across the finger joint are much less than those across the knee or the hip, it is probable that an all-XLPE finger joint will be viable from a wear point of view.

  11. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  12. Anisotropic Thermal Conductivity Measurements on Cross-Linked Polybutadienes in Uniaxial Elongation

    NASA Astrophysics Data System (ADS)

    Venerus, David C.; Kolev, Dimitre

    2008-07-01

    Cross-linked elastomers have numerous applications including automobiles, sporting goods, and biomedical devices. During both their processing and application, these materials experience large mechanical stresses and thermal gradients. In this study, we investigate the mechanical and thermal transport behavior of cross-linked polybutadienes. These materials have been prepared by cross linking well-entangled polybutadienes using an organic peroxide cross-linking agent at low concentration. Samples obtained after nearly complete conversion of the cross-linking agent, which can be characterized as lightly cross-linked (i.e., more than 10 entanglements per cross-link), were subjected to a series of large strain, uniaxial deformations. Measurements of the tensile stress and two components of the thermal conductivity tensor will be reported as a function of elongation. These data are also used to examine the stress-thermal rule in which the stress and thermal conductivity tensors are linearly related.

  13. Fracture toughness of cross-linked and non-cross-linked temporary crown and fixed partial denture materials.

    PubMed

    Balkenhol, Markus; Köhler, Heiko; Orbach, Katharina; Wöstmann, Bernd

    2009-07-01

    Temporary crowns and fixed partial dentures are exposed to considerable functional loading, which places severe demands on the biomaterials used for their fabrication (= temporary crown & bridge materials, t-c&b). As the longevity of biopolymers is influenced by the ability to withstand a crack propagation, the aim of this study was to investigate the fracture toughness of cross-linked and non-cross-linked t-c&bs. Four different t-c&bs (Luxatemp AM Plus, Protemp 3 Garant, Structur Premium, Trim) were used to fabricate bar shaped specimens (2mmx5mmx25mm, ISO 13586). A notch (depth 2.47mm) was placed in the center of the specimen using a diamond cutting disc and a sharp pre-crack was added using a razor blade. 60 specimens per material were subjected to different storage conditions (dry and water 37 degrees C: 30min, 60min, 4h, 24h, 168h; thermocycling 5-55 degrees C: 168h) prior to fracture (3-point bending setup). The fracture sites were inspected using SEM analysis. Data was subjected to parametric statistics (p=0.05). The K(IC) values varied between 0.4 and 1.3MPam(0.5) depending on the material and storage time. Highest K(IC) were observed for Protemp 3 Garant. Fracture toughness was significantly affected by thermocycling for all dimethacrylates (p<0.05) except for Structur Premium. All dimethacrylates showed a linear-elastic fracture mechanism, whereas the monomethacrylate showed an elasto-plastic fracture mechanism. Dimethacrylates exhibit a low resistance against crack propagation immediately after curing. In contrast, monomethacrylates may compensate for crack propagation due to plastic deformation. However, K(IC) is compromised with increasing storage time.

  14. Doubly robust survival trees.

    PubMed

    Steingrimsson, Jon Arni; Diao, Liqun; Molinaro, Annette M; Strawderman, Robert L

    2016-09-10

    Estimating a patient's mortality risk is important in making treatment decisions. Survival trees are a useful tool and employ recursive partitioning to separate patients into different risk groups. Existing 'loss based' recursive partitioning procedures that would be used in the absence of censoring have previously been extended to the setting of right censored outcomes using inverse probability censoring weighted estimators of loss functions. In this paper, we propose new 'doubly robust' extensions of these loss estimators motivated by semiparametric efficiency theory for missing data that better utilize available data. Simulations and a data analysis demonstrate strong performance of the doubly robust survival trees compared with previously used methods. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Biomechanical Analysis of a Pedicle Screw-Rod System with a Novel Cross-Link Configuration

    PubMed Central

    Hara, Masahito; Umebayashi, Daisuke; Haimoto, Shoichi; Yamamoto, Yu; Nishimura, Yusuke; Wakabayashi, Toshihiko

    2016-01-01

    Study Design The strength effects of a pedicle screw-rod system supplemented with a novel cross-link configuration were biomechanically evaluated in porcine spines. Purpose To assess the biomechanical differences between a conventional cross-link pedicle screw-rod system versus a novel cross-link instrumentation, and to determine the effect of the cross-links. Overview of Literature Transverse cross-link systems affect torsional rigidity, but are thought to have little impact on the sagittal motion of spinal constructs. We tested the strength effects in pullout and flexion-compression tests of novel cross-link pedicle screw constructs using porcine thoracic and lumbar vertebrae. Methods Five matched thoracic and lumbar vertebral segments from 15 porcine spines were instrumented with 5.0-mm pedicle screws, which were then connected with 6.0-mm rods after partial corpectomy in the middle vertebral body. The forces required for construct failure in pullout and flexion-compression tests were examined in a randomized manner for three different cross-link configurations: un-cross-link control, conventional cross-link, and cross-link passing through the base of the spinous process. Statistical comparisons of strength data were analyzed using Student's t-tests. Results The spinous process group required a significantly greater pullout force for construct failure than the control group (p=0.036). No difference was found between the control and cross-link groups, or the cross-link and spinous process groups in pullout testing. In flexion-compression testing, the spinous processes group required significantly greater forces for construct failure than the control and cross-link groups (p<0.001 and p=0.003, respectively). However, there was no difference between the control and cross-link groups. Conclusions A novel cross-link configuration that features cross-link devices passing through the base of the spinous processes increased the mechanical resistance in pullout and

  16. Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive.

    PubMed

    Yuan, Liu; Wu, Yu; Fang, Jun; Wei, Xiaojuan; Gu, Qisheng; El-Hamshary, Hany; Al-Deyab, Salem S; Morsi, Yosry; Mo, Xiumei

    2017-02-01

    Soft tissue adhesives made from natural hydrogel are attractive in clinical applications due to their excellent properties, such as high water content, good biocompatibility, low immune, good biodegradability. Hydrogels derived from natural polysaccharides and proteins are ideal components for soft tissue adhesive since they resemble the extracellular matrices of the tissue composed of various sugar and amino acids-based macromolecules. In this paper, a series of novel tissue adhesives mixed by aldehyde sodium alginate (ASA) with amino gelatin (AG) were developed and characterized. The effect of aldehyde content in ASA and amino group content in AG on the properties of ASA/AG cross-linked hydrogel was measured. The results showed the gelling time, swelling behavior and the bonding strength of the hydrogel can be tuned by varying the content of aldehyde groups in ASA and the content of amino groups in AG. The gelation time could be controlled within 4-18 min. When the aldehyde content of ASA is 75.24% and the amino content of AG is 0.61 mmol/g, the hydrogel almost has the adhesive strength equal to the commercially available adhesive fibrin glue. So, this tunable ASA/AG hydrogels in this study could be a promising candidate as soft tissue adhesive and have a wide range of biomedical applications.

  17. Cross-linking of polytetrafluoroethylene during room-temperature irradiation

    SciTech Connect

    Pugmire, David L; Wetteland, Chris J; Duncan, Wanda S; Lakis, Rollin E; Schwartz, Daniel S

    2008-01-01

    Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

  18. Photosensitive cross-linked block copolymers with controllable release.

    PubMed

    Yu, Lili; Lv, Cong; Wu, LiZhu; Tung, ChenHo; Lv, WanLiang; Li, ZhongJin; Tang, XinJing

    2011-01-01

    We intend to form photosensitive block copolymer micelles for controllable release of encapsulated substances. Here, we designed and synthesized a new photocleavable cross-linker (2-nitrophenyl ethylene glycol dimethacrylate) for methyl methacrylate (MMA) atom transfer radical polymerization. Four different ratios (0:1, 1:26, 1:16, 1:8.8) of the photocleavable cross-linker to MMA monomer were used and four block copolymers (P0, P1, P2, P3) were synthesized with PEO-Br as the macroinitiator. Gel permeation chromatography and (1) H NMR studies showed that linear polymer molecules could be cross-linked by the photocleavable linker. The fluorescence studies of the encapsulated Nile Red (NR) showed that there were lower critical micelle concentrations for the polymer P1, P2 and P3 than polymer P0. And dynamic light scattering and SEM confirmed the formation of polymer micelles. Photolysis experiments demonstrated that NR encapsulated in the polymer micelles could be released upon UV irradiation (365 nm, 11 mW cm(-2)) due to the breakage of the photocleavable linker and the generation of more hydrophilic acid moieties, which destabilized polymer micelles. Our study shows a new strategy for the possibility of photocontrollable drug release for hydrophobic drugs.

  19. Uniform cross-linked cellulase aggregates prepared in millifluidic reactors.

    PubMed

    Nguyen, Le Truc; Yang, Kun-Lin

    2014-08-15

    Uniform cross-linked cellulase aggregate (XCA) can be prepared by using a millifluidic reactor which consists of two inlets and a Y-junction, because mixing pattern and spatial distribution of reactants can be controlled precisely. Aqueous cellulase solution is mixed with acetonitrile (as a precipitant) and 20 mM of glutaraldehyde (as a cross-linker) at the Y-junction. XCA is collected from the outlet of the reactor. Uniform XCA, with an average size between 200 nm and 400 nm, can be formed inside the reactor. Unlike free cellulase, XCA is insoluble such that it can be filtered out from the solution. It can be used alone or absorb on silica gel (XCA-Si) as a catalyst for hydrolyzing carboxymethyl cellulose (CMC). Interestingly, XCA-Si shows highest activity at pH 4.8 and 50°C, which is similar to the optimal condition of free cellulase. Moreover, XCA-Si is more stable than free cellulase at high temperature (>60°C). It precipitates naturally and can be recycled at least 5 times after the hydrolysis of CMC. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    SciTech Connect

    Zhang, Xiaoqing; Wu, Liming; Sessler, Gerhard M.

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  1. Automated determination of cross-linked fibrin derivatives in plasma.

    PubMed

    Elms, M J; Bundesen, P G; Rowbury, D; Goodall, S; Wakeham, N; Rowell, J A; Hillyard, C J; Rylatt, D B

    1993-02-01

    Automated assays for the measurement of cross-linked fibrin derivatives in plasma (XL-FbDP) have been developed utilizing latex beads coated with anti-D dimer monoclonal antibody (DD-3B6/22) for both the Cobas Fara Chemistry Centrifugal and the Cobas Mira analysers (Roche, Basle, Switzerland). The analysers were programmed to mix plasma and latex reagent simultaneously and analyse absorbance changes over a 10-15 min period. Results were interpolated by the analyser from a standard curve derived from a polymer of D-dimer. Both assays had high precision (< 5% CV) for values between 100 and 1000 ng/ml and provided clear discrimination between normal samples and samples from patients suffering from the thrombotic diseases, DVT/PE and DIC. The results obtained for XL-FbDP determination with both methods compared well with established methods: a high correlation was obtained with a semi-quantitative manual latex method for both the Fara (r = 0.92) and Mira (r = 0.83) and correlations (r) of 0.81 (Fara) and 0.84 (Mira) were obtained with an enzyme immunoassay (EIA). Correlation between the two automated procedures was high (r = 0.96). The automated method will enable laboratories to provide a rapid and accurate quantitation of XL-FbDP.

  2. Electroluminescent devices based on cross-linked polymer blends

    NASA Astrophysics Data System (ADS)

    Bozano, Luisa D.; Carter, Kenneth R.; Lee, Victor Y.; Miller, Robert D.; DiPietro, Richard; Scott, J. Campbell

    2003-09-01

    We report the electrical and optical properties of two-component blends of electron and hole transporting materials in single and bilayer structures for organic light emitting diode (OLED) applications. The materials considered were a blue-emitting bipolar transporting polyfluorene, poly(9,9-di-n-hexylfluorene) (DHF), and a hole-transporting material, poly-[4-nhexyltriphenylamine] (HTPA). We compare the steady state OLED performance, transport, and optical properties of devices and describe morphology studies of the polymer films based on cross-linkable (x) blends with the analogous non-cross-linkable blends. The cross-linkable blends exhibit highest efficiency at low concentrations of the hole transporting material. At these concentrations the single layer OLEDs reach efficiencies greater than 0.1%, and are higher than for single layer x-DHF or the binary non-cross-linkable blend by more than an order of magnitude. Bilayer structures with homogeneous x-HTPA as hole transport layer show efficiencies between 0.08% and 0.96%, depending on the blend concentration in the emitting layer and on the top contact. We interpret these results in terms of the relative degree of phase segregation in the cross-linked networks versus the non-cross-linkable blends.

  3. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    NASA Technical Reports Server (NTRS)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  4. Zinc cross-linked hydroxamated alginates for pulsed drug release

    PubMed Central

    Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

    2013-01-01

    Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

  5. Cross-linked actin networks (CLANs) in glaucoma.

    PubMed

    Bermudez, Jaclyn Y; Montecchi-Palmer, Michela; Mao, Weiming; Clark, Abbot F

    2017-06-01

    One of the major causes of decreased vision, irreversible vision loss and blindness worldwide is glaucoma. Increased intraocular pressure (IOP) is a major risk factor associated with glaucoma and its molecular mechanisms are not fully understood. The trabecular meshwork (TM) is the primary site of injury in glaucoma, and its dysfunction results in elevated IOP. The glaucomatous TM has increased extracellular matrix deposition as well as cytoskeletal rearrangements referred to as cross-linked actin networks (CLANs) that consist of dome like structures consisting of hubs and spokes. CLANs are thought to play a role in increased aqueous humor outflow resistance and increased IOP by creating stiffer TM cells and tissue. CLANs are inducible by glucocorticoids (GCs) and TGFβ2 in confluent TM cells and TM tissues. The signaling pathways of these induction agents give insight into the possible mechanisms of CLAN formation, but to date, the mechanism of CLANs regulation by these pathways has yet to be determined. Understanding the role CLANs play in IOP elevation and their mechanisms of induction and regulation may lead to novel treatment options to help prevent or intervene in glaucomatous damage to the trabecular meshwork. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Immobilized Thylakoids in a Cross-Linked Albumin Matrix

    PubMed Central

    Thomasset, Brigitte; Thomasset, Thierry; Vejux, Alain; Jeanfils, Joseph; Barbotin, Jean-Noël; Thomas, Daniel

    1982-01-01

    Immobilization of lettuce (Lactuca sativa) thylakoids has been performed by using glutaraldehyde and bovine serum albumin. Confirming previous reports, a stabilization of the O2 evolution activity of the photosystem II (PSII) under storage and functional conditions has been observed. The present work is devoted to the role played by mono-and divalent cations, during the immobilization process itself, on the O2 production. Four types of measurements have been employed: kinetic measurements, low temperature (77 K) fluorescence emission, photoacoustic (PA) spectroscopy, and electron microscopy observations. We show that the effect of glutaraldehyde is complex because it acts as an inhibitor, a stabilizing agent, and a cross-linking reactive. In the present studies, the thylakoids are immobilized within a polymeric insoluble albumin matrix. The highest activity yield and the best storage conditions are obtained when 0.15 mm Na+ (or K+), 1 mm Mg2+, and 0.1 mm Mn2+ are present in the resuspending media before the immobilization. Due to modifications of the ionic content during such a process, structural differences are observed on the stacking degree of thylakoids. No modification of the fluorescence and PA spectra after the immobilization are found. Furthermore, a correlation between activities and spectral changes have been shown: when the activities increase, the F735 to F695 ratio increases and the PA676 to PA440 ratio decreases. Images Fig. 2 Fig. 5 PMID:16662563

  7. Pyridinium cross-links in heritable disorders of collagen

    SciTech Connect

    Pasquali, M.; Still, M.J.; Dembure, P.P.

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  8. An Open Data Format for Visualization and Analysis of Cross-Linked Mass Spectrometry Results.

    PubMed

    Hoopmann, Michael R; Mendoza, Luis; Deutsch, Eric W; Shteynberg, David; Moritz, Robert L

    2016-11-01

    Protein-protein interactions are an important element in the understanding of protein function, and chemical cross-linking shotgun mass spectrometry is rapidly becoming a routine approach to identify these specific interfaces and topographical interactions. Protein cross-link data analysis is aided by dozens of algorithm choices, but hindered by a lack of a common format for representing results. Consequently, interoperability between algorithms and pipelines utilizing chemical cross-linking remains a challenge. pepXML is an open, widely-used format for representing spectral search algorithm results that has facilitated information exchange and pipeline development for typical shotgun mass spectrometry analyses. We describe an extension of this format to incorporate cross-linking spectral search results. We demonstrate application of the extension by representing results of multiple cross-linking search algorithms. In addition, we demonstrate adapting existing pepXML-supporting software pipelines to analyze protein cross-linking results formatted in pepXML. Graphical Abstract ᅟ.

  9. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.

    PubMed

    Bruchet, Marion; Melman, Artem

    2015-10-20

    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.

  10. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks

    NASA Astrophysics Data System (ADS)

    Åström, Jan A.; Kumar, P. B. Sunil; Vattulainen, Ilpo; Karttunen, Mikko

    2008-05-01

    Actin filament networks enable the cytoskeleton to adjust to internal and external forcing. These dynamic networks can adapt to changes by dynamically adjusting their cross-links. Here, we model actin filaments as cross-linked elastic fibers of finite dimensions, with the cross-links being approximately 1μm apart, and employ a full three-dimensional model to study their elastic properties by computer simulations. The results show compelling evidence that dense actin networks are characterized by (a) strain hardening without entropic elasticity, (b) avalanches of cross-link slippage leading to strain softening in the case of breakable cross-links, and (c) spontaneous formation of stress fibers in the case of dynamic cross-link formation and destruction.

  11. Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal

    PubMed Central

    2015-01-01

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA–protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement. PMID:24801980

  12. Flanking sequences modulate diepoxide and mustard cross-linking efficiencies at the 5'-GNC site.

    PubMed

    Sawyer, Gregory A; Frederick, Elizabeth D; Millard, Julie T

    2004-08-01

    Diepoxybutane, diepoxyoctane, and mechlorethamine are cytotoxic agents that induce interstrand cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the DNA duplex preferentially at 5'-GNC sequences. We have systematically varied the identity of either the base 5' to the cross-linked deoxyguanosine residues or the intervening base pair to determine flanking sequence effects on cross-linking efficiency. We used synthetic DNA oligomers containing four 5'-N(1)GN(2)C sites that varied either N(1) or N(2). Interstrand cross-links were purified through denaturing polyacrylamide gel electrophoresis and then subjected to piperidine cleavage. The amount of cleavage at each deoxyguanosine residue, representative of cross-linking efficiency at that site, was determined by sequencing gel analysis. Our data suggest that cross-linking efficiency varies with the identity of N(1) similarly (purines > pyrimidines) for diepoxybutane, diepoxyoctane, and mechlorethamine but that the effects of N(2) differ for the three compounds.

  13. Effect of glucose content on thermally cross-linked fibrous gelatin scaffolds for tissue engineering.

    PubMed

    Siimon, Kaido; Reemann, Paula; Põder, Annika; Pook, Martin; Kangur, Triin; Kingo, Külli; Jaks, Viljar; Mäeorg, Uno; Järvekülg, Martin

    2014-09-01

    Thermally cross-linked glucose-containing electrospun gelatin meshes were studied as possible cell substrate materials. FTIR analysis was used to study the effect of glucose on cross-linking reactions. It was found that the presence of glucose increases the extent of cross-linking of fibrous gelatin scaffolds, which in return determines scaffold properties and their usability in tissue engineering applications. Easy to handle fabric-like scaffolds were obtained from blends containing up to 15% glucose. Maximum extent of cross-linking was reached at nearly 20% glucose content. Cross-linking effectively resulted in decreased solubility and increased resistance to enzymatic degradation. Preliminary short-term cell culture experiments indicate that such thermally cross-linked gelatin-glucose scaffolds are suitable for tissue engineering applications.

  14. Characterization of the deoxyguanosine-lysine cross-link of methylglyoxal.

    PubMed

    Petrova, Katya V; Millsap, Amy D; Stec, Donald F; Rizzo, Carmelo J

    2014-06-16

    Methylglyoxal is a mutagenic bis-electrophile that is produced endogenously from carbohydrate precursors. Methylglyoxal has been reported to induce DNA-protein cross-links (DPCs) in vitro and in cultured cells. Previous work suggests that these cross-links are formed between guanine and either lysine or cysteine side chains. However, the chemical nature of the methylglyoxal induced DPC have not been determined. We have examined the reaction of methylglyoxal, deoxyguanosine (dGuo), and Nα-acetyllysine (AcLys) and determined the structure of the cross-link to be the N2-ethyl-1-carboxamide with the lysine side chain amino group (1). The cross-link was identified by mass spectrometry and the structure confirmed by comparison to a synthetic sample. Further, the cross-link between methylglyoxal, dGuo, and a peptide (AcAVAGKAGAR) was also characterized. The mechanism of cross-link formation is likely to involve an Amadori rearrangement.

  15. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    PubMed

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Study on the preparation process of cross-linked porous cassava starch

    NASA Astrophysics Data System (ADS)

    Yin, Xiulian; You, Qinghong; Wan, Miaomiao; Zhang, Xuejuan; Dai, Chunhua

    2017-04-01

    Using cassava starch as raw material, preparation process of porous cross-linked cassava starch was studied. Using TSTP as cross-linking agents, Orthogonal design was applied for the optimization of cross-linked porous starch preparation process. The results showed that the opitmal conditions of cross-linked porous cassava starch were as follows: reaction temperature 45°C, reaction time 20 h, 1% of the amount of the enzyme, the enzyme ratio of 1:5, pH 5.50, substrate concentration of 40%.

  17. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  18. Xilmass: A New Approach toward the Identification of Cross-Linked Peptides.

    PubMed

    Yılmaz, Şule; Drepper, Friedel; Hulstaert, Niels; Černič, Maša; Gevaert, Kris; Economou, Anastassios; Warscheid, Bettina; Martens, Lennart; Vandermarliere, Elien

    2016-10-18

    Chemical cross-linking coupled with mass spectrometry plays an important role in unravelling protein interactions, especially weak and transient ones. Moreover, cross-linking complements several structural determination approaches such as cryo-EM. Although several computational approaches are available for the annotation of spectra obtained from cross-linked peptides, there remains room for improvement. Here, we present Xilmass, a novel algorithm to identify cross-linked peptides that introduces two new concepts: (i) the cross-linked peptides are represented in the search database such that the cross-linking sites are explicitly encoded, and (ii) the scoring function derived from the Andromeda algorithm was adapted to score against a theoretical tandem mass spectrometry (MS/MS) spectrum that contains the peaks from all possible fragment ions of a cross-linked peptide pair. The performance of Xilmass was evaluated against the recently published Kojak and the popular pLink algorithms on a calmodulin-plectin complex data set, as well as three additional, published data sets. The results show that Xilmass typically had the highest number of identified distinct cross-linked sites and also the highest number of predicted cross-linked sites.

  19. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine.

    PubMed

    Solivio, Morwena J; Nemera, Dessalegn B; Sallans, Larry; Merino, Edward J

    2012-02-20

    Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein.

  20. Effect of cross-linking and enzymatic hydrolysis composite modification on the properties of rice starches.

    PubMed

    Xiao, Huaxi; Lin, Qinlu; Liu, Gao-Qiang

    2012-07-06

    Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI) with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis), affording cross-linked rice starches with the three different levels of cross-linking that were named R₁, R₂, and R₃, respectively. The cross-linked rice starches were hydrolyzed by α-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches.

  1. Methylglyoxal-induced DNA-protein cross-links and cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Brambilla, G; Sciabà, L; Faggin, P; Finollo, R; Bassi, A M; Ferro, M; Marinari, U M

    1985-05-01

    The technique of alkaline elution was applied to study the capacity of methylglyoxal to induce DNA damage and repair in Chinese hamster ovary cells. DNA cross-linking was observed after a 90-min exposure to a subtoxic dose (1.5 mM), and the cross-links were fully repaired by 24 h. The cross-linking appeared to be DNA-protein in nature, since proteinase treatment removed the effect. When the same cells were exposed to methylglyoxal in the presence of a rat liver metabolic system, both cytotoxicity and cross-linking frequency were significantly reduced.

  2. Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in-situ delivery

    PubMed Central

    Phelps, Edward A.; Enemchukwu, Nduka O.; Fiore, Vincent F.; Sy, Jay C.; Murthy, Niren; Sulchek, Todd A.; Barker, Thomas H.

    2012-01-01

    Engineered polyethylene glycol-maleimide matrices for regenerative medicine exhibit improved reaction efficiency and wider range of Young’s moduli by utilizing maleimide cross-linking chemistry. This hydrogel chemistry is advantageous for cell delivery due to the mild reaction that occurs rapidly enough for in situ delivery, while easily lending itself to “plug-and-play” design variations such as incorporation of enzyme-cleavable cross-links and cell-adhesion peptides. PMID:22174081

  3. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  4. Encoding Hydrogel Mechanics via Network Cross-Linking Structure

    PubMed Central

    2015-01-01

    The effects of mechanical cues on cell behaviors in 3D remain difficult to characterize as the ability to tune hydrogel mechanics often requires changes in the polymer density, potentially altering the material’s biochemical and physical characteristics. Additionally, with most PEG diacrylate (PEGDA) hydrogels, forming materials with compressive moduli less than ∼10 kPa has been virtually impossible. Here, we present a new method of controlling the mechanical properties of PEGDA hydrogels independent of polymer chain density through the incorporation of additional vinyl group moieties that interfere with the cross-linking of the network. This modification can tune hydrogel mechanics in a concentration dependent manner from <1 to 17 kPa, a more physiologically relevant range than previously possible with PEG-based hydrogels, without altering the hydrogel’s degradation and permeability. Across this range of mechanical properties, endothelial cells (ECs) encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive peptides revealed increased cell spreading as hydrogel stiffness decreased in contrast to behavior typically observed for cells on 2D surfaces. EC-pericyte cocultures exhibited vessel-like networks within 3 days in highly compliant hydrogels as compared to a week in stiffer hydrogels. These vessel networks persisted for at least 4 weeks and deposited laminin and collagen IV perivascularly. These results indicate that EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore, controlling hydrogel compliance independent of density allows for the attainment of highly compliant mechanical regimes in materials that can act as customizable cell microenvironments. PMID:26082943

  5. Transglutaminases: widespread cross-linking enzymes in plants.

    PubMed

    Serafini-Fracassini, Donatella; Del Duca, Stefano

    2008-08-01

    Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still incompletely defined physiological roles. At present, it is not possible to classify this enzyme family in plants owing to

  6. [Corneal scar development after cross-linking in keratoconus].

    PubMed

    Raiskup, F; Kissner, A; Hoyer, A; Spörl, E; Pillunat, L E

    2010-09-01

    Corneal scar development after riboflavin-UVA-induced corneal collagen cross-linking (CXL) was retrospectively evaluated. A total of 163 CXL-treated eyes in 127 patients with stage 1-3 keratoconus according to Krumeich's classification were included in this retrospective analysis. The follow-up period was 1 year. At the first and at all follow-up examinations uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), biomicroscopic findings, corneal topography and corneal thickness were recorded. At 1 year following CXL, 149 eyes (91.4%) of 114 patients had a clear cornea without corneal scar (control group), while 14 eyes (8.6%) of 13 patients developed clinically significant corneal scar (scar group). Preoperatively, the mean K value of the apex was 62.1 ± 13.8 D in the control group and 71.1 ± 13.2 D in the scar group (P=.02). The mean value of corneal thickness before the procedure was 478.1 ± 52.4 μm in the control group and 420.0 ± 33.9 μm in the scar group (P=.001). The UCVA and BCVA, which were preoperatively similar between groups (P=.59, P=.75 respectively), were postoperatively improved in the control group (P=.023, P=.001 respectively), but reduced in the scar group (P=.012, P=.004 respectively). K-values and corneal thickness could be considered as predictive factors for the possible development of corneal scarring after riboflavin-UVA-induced CXL. Advanced keratoconus appears to be associated with a higher risk of corneal scar development due to lower corneal thickness, greater curvature and intrinsic tissue characteristics.

  7. Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment

    NASA Technical Reports Server (NTRS)

    Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

    1995-01-01

    An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

  8. Corneal cross-linking in 9 horses with ulcerative keratitis.

    PubMed

    Hellander-Edman, Anna; Makdoumi, Karim; Mortensen, Jes; Ekesten, Björn

    2013-06-26

    Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4-26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species.

  9. Corneal cross-linking in 9 horses with ulcerative keratitis

    PubMed Central

    2013-01-01

    Background Corneal ulcers are one of the most common eye problems in the horse and can cause varying degrees of visual impairment. Secondary infection and protease activity causing melting of the corneal stroma are always concerns in patients with corneal ulcers. Corneal collagen cross-linking (CXL), induced by illumination of the corneal stroma with ultraviolet light (UVA) after instillation of riboflavin (vitamin B2) eye drops, introduces crosslinks which stabilize melting corneas, and has been used to successfully treat infectious ulcerative keratitis in human patients. Therefore we decided to study if CXL can be performed in sedated, standing horses with ulcerative keratitis with or without stromal melting. Results Nine horses, aged 1 month to 16 years (median 5 years) were treated with a combination of CXL and medical therapy. Two horses were diagnosed with mycotic, 5 with bacterial and 2 with aseptic ulcerative keratitis. A modified Dresden-protocol for CXL could readily be performed in all 9 horses after sedation. Stromal melting, diagnosed in 4 horses, stopped within 24 h. Eight of nine eyes became fluorescein negative in 13.5 days (median time; range 4–26 days) days after CXL. One horse developed a bacterial conjunctivitis the day after CXL, which was successfully treated with topical antibiotics. One horse with fungal ulcerative keratitis and severe uveitis was enucleated 4 days after treatment due to panophthalmitis. Conclusions CXL can be performed in standing, sedated horses. We did not observe any deleterious effects attributed to riboflavin or UVA irradiation per se during the follow-up, neither in horses with infectious nor aseptic ulcerative keratitis. These data support that CXL can be performed in the standing horse, but further studies are required to compare CXL to conventional medical treatment in equine keratitis and to optimize the CXL protocol in this species. PMID:23803176

  10. Order-Disorder Transitions in Cross-Linked Block Copolymer Solids

    SciTech Connect

    Das, J.

    2005-01-12

    With a view toward creating solid block copolymers wherein the order-disorder transition can be accessed many times they investigated the nature of order-disorder transitions in cross-linked diblock copolymer melts using synergistic theory and experiment. A mean-field theory based on a coarse grained free-energy and the Random Phase Approximation (RPA) is developed for the system of interest. The quenched distribution of cross-links is averaged using the replica method. The phase behavior of a particular A-B block copolymer melt with a randomly cross-linked B-Block is determined as a function of the Florry-Huggins interaction parameter ({chi}) and the average number of cross-links per chain N{sub c}. They find for a cross-link density greater than N*{sub c} the B monomers are localized within a region of size {zeta} {approx} (N{sub c} - N*{sub c}){sup -1/2}. The cross-links strongly oppose ordering in the system as {zeta} becomes comparable to the radius of gyration of the block copolymer chain. As such the order-disorder transition temperature T{sub ODT} decreases precipitously when N{sub c} > N*{sub c}. When N{sub c} < N*{sub c}, T{sub ODT} increases weakly with N{sub c}. Experiments were conducted on cross-linked polystyrene-block-polyisoprene copolymer samples wherein the polyisoprene block was selectively cross-linked at a temperature well above the order-disorder transition temperature of the pure block copolymer. Small angle X-ray scattering (SAXS) and birefringence measurements on the cross-linked samples are consistent with the theoretical prediction. T{sub ODT} decreases rapidly when the cross-linking density exceeds the critical cross-linking density.

  11. Feruloylated arabinoxylans are oxidatively cross-linked by extracellular maize peroxidase but not by horseradish peroxidase.

    PubMed

    Burr, Sally J; Fry, Stephen C

    2009-09-01

    Covalent cross-linking of soluble extracellular arabinoxylans in living maize cultures, which models the cross-linking of wall-bound arabinoxylans, is due to oxidation of feruloyl esters to oligoferuloyl esters and ethers. The oxidizing system responsible could be H2O2/peroxidase, O2/laccase, or reactive oxygen species acting non-enzymically. To distinguish these possibilities, we studied arabinoxylan cross-linking in vivo and in vitro. In living cultures, exogenous, soluble, extracellular, feruloylated [pentosyl-3H]arabinoxylans underwent cross-linking, beginning abruptly 8 d after sub-culture. Cross-linking was suppressed by iodide, an H2O2 scavenger, indicating dependence on endogenous H2O2. However, exogenous H2O2 did not cause precocious cross-linking, despite the constant presence of endogenous peroxidases, suggesting that younger cultures contained natural cross-linking inhibitors. Dialysed culture-filtrates cross-linked [3H]arabinoxylans in vitro only if H2O2 was also added, indicating a peroxidase requirement. This cross-linking was highly ionic-strength-dependent. The peroxidases responsible were heat-labile, although relatively heat-stable peroxidases (assayed on o-dianisidine) were also present. Surprisingly, added horseradish peroxidase, even after heat-denaturation, blocked the arabinoxylan-cross-linking action of maize peroxidases, suggesting that the horseradish protein was a competing substrate for [3H]arabinoxylan coupling. In conclusion, we show for the first time that cross-linking of extracellular arabinoxylan in living maize cultures is an action of apoplastic peroxidases, some of whose unusual properties we report.

  12. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates.

    PubMed

    Fuguet, Elisabet; van Platerink, Chris; Janssen, Hans-Gerd

    2007-11-26

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine epsilon-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present.

  13. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.

    PubMed

    Gomoll, A; Wanich, T; Bellare, A

    2002-11-01

    Radiation and chemical cross-linking of medical grade ultrahigh molecular weight polyethylene (UHMWPE) has recently been utilized in an effort to improve wear performance of total joint replacement components. However, reductions in mechanical properties with cross-linking are cause for concern regarding the use of cross-linked UHMWPE for high-stress applications such as in total knee replacement prostheses. In this study, the fracture behavior of radiation cross-linked UHMWPE was compared to that of uncross-linked UHMWPE. The Rice and Sorensen model that utilizes mechanical parameters obtained from uniaxial tensile and compact tension tests was used to calculate the steady state J-integral fracture toughness, Jss, for radiation cross-linked UHMWPE. Jss decreased monotonically with increase in radiation dose. UHMWPE exhibited tough, ductile tearing behavior with stable crack growth when it was cross-linked using a gamma radiation dose of 0-50 kGy. However, in cross-linked UHMWPE irradiated to a dose of 100 and 200 kGy, unstable fracture occurred spontaneously upon attaining the initial crack driving force, J1c. This indicates that a high degree of cross-linking is less desirable for high-stress applications in orthopaedic implants. However, a substantial increase in J1c, even at a low degree of cross-linking, suggests that a low degree of cross-linking may be beneficial for resistance to delamination and catastrophic failure, both of which require an initiation step for the fracture to propagate in the material. This mechanical test should, however, be considered along with fatigue tests and joint simulator testing before determination of an appropriate amount of cross-linking for total joint replacement prostheses that experience high stresses.

  14. Probing structural elements in RNA using engineered disulfide cross-links.

    PubMed Central

    Maglott, E J; Glick, G D

    1998-01-01

    Three analogs of unmodified yeast tRNAPhe, each possessing a single disulfide cross-link, have been designed and synthesized. One cross-link is between G1 and C72 in the amino acid acceptor stem, a second cross-link is in the central D region of yeast tRNAPhe between C11 and C25 and the third cross-link bridges U16 and C60 at the D loop/T loop interface. Air oxidation to form the cross-links is quantitative and analysis of the cross-linked products by native and denaturing PAGE, RNase T1 mapping, Pb(II) cleavage, UV cross-linking and thermal denaturation demonstrates that the disulfide bridges do not alter folding of the modified tRNAs relative to the parent sequence. The finding that cross-link formation between thiol-derivatized residues correlates with the position of these groups in the crystal structure of native yeast tRNAPhe and that the modifications do not significantly perturb native structure suggests that this methodology should be applicable to the study of RNA structure, conformational dynamics and folding pathways. PMID:9469841

  15. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels

    Treesearch

    Tobias Köhnke; Thomas Elder; Hans Theliander; Arthur J. Ragauskas

    2014-01-01

    Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with...

  16. Chemistry and Physical Properties of Melt Processed- and Solution- Cross Linked Corn Zein

    USDA-ARS?s Scientific Manuscript database

    Corn zein was cross linked with the glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to enhance the mechanical properties of poured films and to compare them with compression molded tensile bars from melt processed zein. Chemistry of the cross linking reaction w...

  17. Durability and mechanical properties of silane cross-linked wood thermoplastic composites

    Treesearch

    Magnus Bengtsson; Nicole M. Stark; Kristiina Oksman

    2007-01-01

    In this study, silane cross-linked wood–polyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked wood– polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60%...

  18. Cell protein cross-linking by erbstatin and related compounds | Center for Cancer Research

    Cancer.gov

    The scheme depicts a possible mechanism of cross-linking by erbstatin and related analogues. A mechanism of action is proposed which involves initial oxidation to reactive quinone intermediates that subsequently cross-link protein nucleophiles via multiple 1,4-Michael-type additions. Similar alkylation of protein by protein-tyrosine kinase inhibitors, such as herbimycin A, has been invoked.

  19. Preparation of size tunable giant vesicles from cross-linked dextran(ethylene glycol) hydrogels.

    PubMed

    López Mora, Néstor; Hansen, Jesper S; Gao, Yue; Ronald, Andrew A; Kieltyka, Roxanne; Malmstadt, Noah; Kros, Alexander

    2014-02-25

    We present a novel chemically cross-linked dextran-poly(ethylene glycol) hydrogel substrate for the preparation of dense vesicle suspensions under physiological ionic strength conditions. These vesicles can be easily diluted for individual study. Modulating the degree of cross-linking within the hydrogel network results in tuning of the vesicle size distribution.

  20. Lamb and cow performance when fed corn silage that has reduced ferulate cross linking

    USDA-ARS?s Scientific Manuscript database

    Ferulate-mediated lignin/hemicellulose cross linking in grasses reduces in vitro NDF digestibility (IVNDFD). Impact of ferulate cross linking on animal performance was examined in lamb digestibility and dairy cow performance trials using the seedling ferulate ester (sfe) corn mutant that reduces cro...

  1. Lamb and Cow Performance when Fed Corn Silage that has Reduced Ferulate Cross Linking

    USDA-ARS?s Scientific Manuscript database

    Ferulate-mediated lignin/hemicellulose cross linking in grasses reduces in vitro NDF digestibility (IVNDFD). Impact of ferulate cross linking on animal performance was examined in lamb digestibility and dairy cow performance trials using the seedling ferulate ester (sfe) corn mutant that reduces cro...

  2. Electrospun zein fibers using glutaraldehyde as the cross-linking reagent

    USDA-ARS?s Scientific Manuscript database

    Glutaraldehyde was used as a cross-linking reagent for zein (corn protein) to provide fibers with improved physical properties and solvent resistance. Glutaraldehyde was used at levels between 2 - 8%. The cross-linking reaction was carried out in acetic acid for twenty hours at room temperature. ...

  3. Cross-Linking Furan-Modified Kisspeptin-10 to the KISS Receptor.

    PubMed

    Vannecke, Willem; Ampe, Christophe; Van Troys, Marleen; Beltramo, Massimiliano; Madder, Annemieke

    2017-08-18

    Chemical cross-linking is well-established for investigating protein-protein interactions. Traditionally, photo cross-linking is used but is associated with problems of selectivity and UV toxicity in a biological context. We here describe, with live cells and under normal growth conditions, selective cross-linking of a furan-modified peptide ligand to its membrane-presented receptor with zero toxicity, high efficiency, and spatio-specificity. Furan-modified kisspeptin-10 is covalently coupled to its glycosylated membrane receptor, GPR54(KISS1R). This newly expands the applicability of furan-mediated cross-linking not only to protein-protein cross-linking but also to cross-linking in situ. Moreover, in our earlier reports on nucleic acid interstrand cross-linking, furan activation required external triggers of oxidation (via addition of N-bromo succinimide or singlet oxygen). In contrast, we here show, for multiple cell lines, the spontaneous endogenous oxidation of the furan moiety with concurrent selective cross-link formation. We propose that reactive oxygen species produced by NADPH oxidase (NOX) enzymes form the cellular source establishing furan oxidation.

  4. Self-assembly made durable: water-repellent materials formed by cross-linking fullerene derivatives.

    PubMed

    Wang, Jiaobing; Shen, Yanfei; Kessel, Stefanie; Fernandes, Paulo; Yoshida, Kaname; Yagai, Shiki; Kurth, Dirk G; Möhwald, Helmuth; Nakanishi, Takashi

    2009-01-01

    Fullerene flakes: A diacetylene-functionalized fullerene derivative self-organizes into flakelike microparticles (see picture). Both the diacetylene and C(60) moieties can be effectively cross-linked, which leads to supramolecular materials with remarkable resistivity to solvent, heat, and mechanical stress. Moreover, the surface of the cross-linked flakelike objects is highly durable and water-repellent.

  5. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  6. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  7. Infrared microspectroscopic determination of collagen cross-links in articular cartilage

    NASA Astrophysics Data System (ADS)

    Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo

    2017-03-01

    Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.

  8. Electrospun zein fibers using glyoxal or formaldehyde as the cross-linking reagent

    USDA-ARS?s Scientific Manuscript database

    Glyoxal or formaldehyde was used as a cross-linking reagent for zein (corn protein) to provide electrospun fibers with improved physical properties and solvent resistance. These reagents were used between 2 and 6%. The cross-linking reaction was carried out in acetic acid for various lengths of ti...

  9. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... for Use Only as Components of Articles Intended for Repeated Use § 177.2710 Styrene-divinylbenzene resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as...

  10. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... for Use Only as Components of Articles Intended for Repeated Use § 177.2710 Styrene-divinylbenzene resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as...

  11. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  12. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  13. Phenol red-silk tyrosine cross-linked hydrogels.

    PubMed

    Sundarakrishnan, Aswin; Herrero Acero, Enrique; Coburn, Jeannine; Chwalek, Karolina; Partlow, Benjamin; Kaplan, David L

    2016-09-15

    Phenol red is a cytocompatible pH sensing dye that is commonly added to cell culture media, but removed from some media formulations due to its structural mimicry of estrogen. Phenol red free media is also used during live cell imaging, to avoid absorbance and fluorescence quenching of fluorophores. To overcome these complications, we developed cytocompatible and degradable phenol red-silk tyrosine cross-linked hydrogels using horseradish peroxidase (HRP) enzyme and hydrogen peroxide (H2O2). Phenol red added to silk during tyrosine crosslinking accelerated di-tyrosine formation in a concentration-dependent reaction. Phenol red diffusion studies and UV-Vis spectra of phenol red-silk tyrosine hydrogels at different pHs showed altered absorption bands, confirming entrapment of dye within the hydrogel network. LC-MS of HRP-reacted phenol red and N-acetyl-l-tyrosine reaction products confirmed covalent bonds between the phenolic hydroxyl group of phenol red and tyrosine on the silk. At lower phenol red concentrations, leak-proof hydrogels which did not release phenol red were fabricated and found to be cytocompatible based on live-dead staining and alamar blue assessments of encapsulated fibroblasts. Due to the spectral overlap between phenol red absorbance at 415nm and di-tyrosine fluorescence at 417nm, phenol red-silk hydrogels provide both absorbance and fluorescence-based pH sensing. With an average pKa of 6.8 and good cytocompatibiltiy, phenol red-silk hydrogels are useful for pH sensing in phenol red free systems, cellular microenvironments and bioreactors. Phenol red entrapped within hydrogels facilitates pH sensing in phenol red free environments. Leak-proof phenol red based pH sensors require covalent binding techniques, but are complicated due to the lack of amino or carboxyl groups on phenol red. Currently, there is no simple, reliable technique to covalently link phenol red to hydrogel matrices, for real-time pH sensing in cell culture environments. Herein

  14. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  15. Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure.

    PubMed

    Virtanen, O L J; Mourran, A; Pinard, P T; Richtering, W

    2016-05-07

    Cross-linking density and distribution are decisive for the mechanical and other properties of stimuli-sensitive poly(N-isopropylacrylamide) microgels. Here we investigate the structure of ultra-low cross-linked microgels by static light scattering and scanning force microscopy, and show that they have an inverted cross-linking structure with respect to conventional microgels, contrary to what has been assumed previously. The conventional microgels have the largest polymer volume fraction in the core from where the particle density decays radially outwards, whereas ultra-low cross-linked particles have the highest polymer volume fraction close to the surface. On a solid substrate these particles form buckled shapes at high surface coverage, as shown by scanning force micrographs. The special structure of ultra-low cross-linked microgels is attributed to cross-linking of the particle surface, which is exposed to hydrogen abstraction by radicals generated from persulfate initiators during and after polymerization. The particle core, which is less accessible to the diffusion of radicals, has consequently a lower polymer volume fraction in the swollen state. By systematic variation of the cross-linker concentration it is shown that the cross-linking contribution from peroxide under typical synthesis conditions is weaker than that from the use of 1 mol% N,N'-methylenebisacrylamide. Soft deformable hydrogel particles are of interest because they emulate biological tissues, and understanding the underlying synthesis principle enables tailoring the microgel structure for biomimetic applications. Deformability of microgels is usually controlled by the amount of added cross-linker; here we however highlight an alternative approach through structural softness.

  16. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  17. Assessment of protein function following cross-linking by alpha-dicarbonyls.

    PubMed

    Miller, Antonia G; Gerrard, Juliet A

    2005-06-01

    Protein cross-linking via the Maillard reaction with alpha-dicarbonyl compounds has been the subject of intense scrutiny in the literature. We report here a study of the impact of this cross-linking on enzyme function. Protein function following glycation was examined by treating ribonuclease A with methylglyoxal, glyoxal, and diacetyl, which cross-linked the enzyme and impaired its activity. The effects of two reported Maillard reaction inhibitors, aminoguanidine and 3,5-dimethylpyrazole-1-carboxamidine, on the cross-linking reaction were assessed, with a parallel measurement of the effect on enzyme activity. The results demonstrate that preventing protein cross-linking does not necessarily preserve enzyme activity. These results cast doubt on the likely efficacy of some purported antiaging compounds in vivo.

  18. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    PubMed Central

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. PMID:27382283

  19. Cross-Linking the Surface of Cured Polydimethylsiloxane via Hyperthemal Hydrogen Projectile Bombardment.

    PubMed

    Bao, Chao; Xu, Ke-Qin; Tang, Chang-Yu; Lau, Woon-ming; Yin, Cong-Bin; Zhu, Yan; Mei, Jun; Lee, Jonathan; Hui, David; Nie, Heng-Yong; Liu, Yu

    2015-04-29

    Cross-linking of polydimethylsiloxane (PDMS) is increasingly important with recent focus on its top surface stiffness. In this paper, we demonstrate that hyperthermal hydrogen projectile bombardment, a surface sensitive cross-linking technology, is superior in enhancing the mechanical properties of a cured PDMS surface without significantly degrading its hydrophobicity. Both water contact angle measurements and time-of-flight secondary ion mass spectrometry are used to investigate the variations in surface chemistry and structure upon cross-linking. Using nanoindentation and atomic force microscopy, we confirm that the thickness of the cross-linked PDMS is controllable by the bombardment time, which opens opportunities for tuning cross-linking degree in compliance with arising requirements from the practice.

  20. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  1. Robust Gold Nanoparticle Sheets by Ligand Cross-Linking at the Air-Water Interface.

    PubMed

    Kosif, Irem; Kratz, Katrina; You, Siheng Sean; Bera, Mrinal K; Kim, Kyungil; Leahy, Brian; Emrick, Todd; Lee, Ka Yee C; Lin, Binhua

    2017-02-28

    We report the results of cross-linking of two-dimensional gold nanoparticle (Au-NP) assemblies at the air-water interface in situ. We introduce an aqueous soluble ruthenium benzylidene catalyst into the water subphase to generate a robust, elastic two-dimensional network of nanoparticles containing cyclic olefins in their ligand framework. The most striking feature of the cross-linked Au-NP assemblies is that the extended connectivity of the nanoparticles enables the film to preserve much of its integrity under compression and expansion, features that are absent in its non-cross-linked counterparts. The cross-linking process appears to "stitch" the nanoparticle crystalline domains together, allowing the cross-linked monolayers to behave like a piece of fabric under lateral compression.

  2. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility.

    PubMed

    Kim, Min Hee; Park, Won Ho

    2016-01-01

    In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel's properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed.

  3. Carbodiimide cross-linking of amniotic membranes in the presence of amino acid bridges.

    PubMed

    Lai, Jui-Yang

    2015-06-01

    The purpose of this study was to investigate the carbodiimide cross-linking of amniotic membrane (AM) in the presence of amino acid bridges. The biological tissues were treated with glycine, lysine, or glutamic acid and chemically cross-linked to examine the role of amino acid types in collagenous biomaterial processing. Results of zeta potential measurements showed that the use of uncharged, positively and negatively charged amino acids dictates the charge state of membrane surface. Tensile strength and water content measurements demonstrated that the addition of lysine molecules to the cross-linking system can increase the cross-linking efficiency and dehydration degree while the introduction of glutamic acid in the AM samples decreases the number of cross-links per unit mass of chemically modified tissue collagen. The differences in the cross-linking density further determined the thermal and biological stability by differential scanning calorimetry and in vitro degradation tests. As demonstrated in matrix permeability studies, the improved formation of covalent cross-linkages imposed by lysine facilitated construction of stronger cross-linking structures. In contrast, the added glycine molecules were insufficient to enhance the resistances of the proteinaceous matrices to thermal denaturation and enzymatic degradation. The cytocompatibility of these biological tissue membranes was evaluated by using human corneal epithelial cell cultures. Results of cell viability, metabolic activity, and pro-inflammatory gene expression level showed that the AM materials cross-linked with carbodiimide in the presence of different types of amino acids are well tolerated without evidence of detrimental effect on cell growth. In addition, the amino acid treated and carbodiimide cross-linked AM implants had good biocompatibility in the anterior chamber of the rabbit eye model. Our findings suggest that amino acid type is a very important engineering parameter to mediate

  4. Identification of glucose-derived cross-linking sites in ribonuclease A.

    PubMed

    Dai, Zhenyu; Wang, Benlian; Sun, Gang; Fan, Xingjun; Anderson, Vernon E; Monnier, Vincent M

    2008-07-01

    The accumulation of glycation derived cross-links has been widely implicated in extracellular matrix damage in aging and diabetes, yet little information is available on the cross-linking sites in proteins and the intra- versus intermolecular character of cross-linking. Recently, glucosepane, a 7-membered heterocycle formed between lysine and arginine residues, has been found to be the single major cross-link known so far to accumulate during aging. As an approach toward identification of glucose derived cross-linking sites, we have preglycated ribonuclease A first for for 14 days with 500 mM glucose, followed by a 4-week incubation in absence of glucose. MALDI-TOF analysis of tryptic digests revealed the presence of Amadori products (Delta m/ z = 162) at K1, K7, K37 and K41, in accordance with previous studies. In addition, K66, K98 and K104 were also modified by Amadori products. Intramolecular glucosepane cross-links were observed at K41-R39 and K98-R85. Surprisingly, the only intermolecular cross-link observed was the 3-deoxyglucosone-derived DODIC at K1-R39. The identity of cross-linked peptides was confirmed by sequencing with tandem mass spectrometry. Recombinant ribonuclease A mutants R39A, R85A, and K91A were produced, purified, and glycated to further confirm the importance of these sites on protein cross-linking. These data provide the first documentation that both intramolecular and intermolecular cross-links form in glucose-incubated proteins.

  5. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    SciTech Connect

    Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. )

    1990-11-01

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

  6. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides.

    PubMed

    Giese, Sven H; Fischer, Lutz; Rappsilber, Juri

    2016-03-01

    Cross-linking/mass spectrometry resolves protein-protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers.

  7. Determination of protein conformation by isotopically labelled cross-linking and dedicated software

    NASA Astrophysics Data System (ADS)

    Nielsen, Tina; Thaysen-Andersen, Morten; Larsen, Nanna; Jørgensen, Flemming S.; Houen, Gunnar; Højrup, Peter

    2007-12-01

    Chemical cross-linking in conjunction with mass spectrometry (MS) can be used for sensitive and rapid investigation of the three-dimensional structure of proteins at low resolution. However, the resulting data are very complex, and on the bioinformatic side, there still exists an urgent need for improving computer software for (semi-) automated cross-linking data analysis. In this study, we have developed dedicated software for rapid and confident identification and validation of cross-linked species using an isotopic labelled cross-linker approach in combination with MS. Deuterated (+4 Da) and non-deuterated (+0 Da) bis(sulfosuccinimidyl)suberate, BS3, was used as homobifunctional cross-linker to tag the cross-linked regions. Peptides generated from proteolysis were separated using high performance liquid chromatography, and peptide mass fingerprinting was obtained for the individual fractions using matrix-assisted laser-desorption ionisation time-of-flight (MALDI TOF) MS. The resulting peptide mass lists were combined and transferred to the program, ProteinXXX, which generated the theoretical mass values of all combinations of cross-linked peptides and dead-end cross-links and compared this to the obtained mass lists. In addition, screening for 4 Da-separated signals aided the identification of potential cross-linked species. Sequence information of these candidates was then obtained using MALDI TOF TOF. The cross-linked peptides could then be validated based on the match of the fragmentation pattern and the theoretical values produced by ProteinXXX. This semi-automated interpretation provided a high analysis speed of cross-linking data, with efficient and confident identification of cross-linked species. Four experiments using different conditions showed a high degree of reproducibility as only 1 and 2 cross-links out of 36 identified was not observed in two experiments. The method was tested using human placenta calreticulin (CRT). Based on the identified cross-links

  8. Doubly Rotated Cut SAW Devices.

    DTIC Science & Technology

    1981-04-01

    AD-AO 545 MOTOROLA INC SCOTTSDALE AZ GOVERNMENT ELECTRONICS DIV F/O 20/2 DOUBLY ROTATED CUT SAW DEVICES.( U) APR 81 0 F WILLIAMS, F Y CHO DAAK2O 79...f we Ma. he0 _TL ft . *VM or seu3f? 6 090100 cove mis interim Report.~arch 198 ’ Doubly Rotated Cut SAW Devices .r etme 9 9. SInFY T ON 6MNY mUUUUf L...exploratory development of doubly rotated cuts of quartz possessing superior Surface Acoustic Wave (SAW) properties for applications involving

  9. Doubly Rotated Cut SAW Devices.

    DTIC Science & Technology

    1981-08-01

    A0-AI03 -728 MOTOROLA INC SCOTTSDALE AZ GOVERNMENT ELECTRONICS DIV FIG 20/2 DOUBLY ROTATED CUT SAW DEVICES. U P AUG 81 0 F WILLIAMS, F Y CHO OAAK20...79-C-0275 UNCLASSIFIED DELET-TR-79-0275-3 ML wIIIIIIIIIIIIIIIIIIIIIII illlllllllllr: K8 MMR UNCLASSIFIED / JZ R-79-0273 Doubly Rotated Cut SAW Devices...towme. e *#* tooeeeimp md fallp p, uh9lbme The objective of this program is the exploratory development of doubly rotated cuts of quartz possessing

  10. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    NASA Astrophysics Data System (ADS)

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-11-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.

  11. Synthesis and Characterization of Cross-linked Polymer Electrolyte Membranes for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Rosi, Memoria; Ekaputra, Muhamad Prama; Abdullah, Mikrajuddin; Khairurrijal

    2010-10-01

    Cross-linked polyvinyl alcohol (PVA) electrolyte membranes have been synthesized by using a solution casting method. In this study, PVA was blended with oxidative cross-linked agent (zinc acetate) and nano-sized silica as filler to stabilize PVA matrix and enhance conductivity. The cross-linked membranes were immersed into lithium hydroxide (LiOH) aqueous solution to increase their ionic conductivity. Two techniques were used to characterize the resulted membranes including Fourier transform infra red (FTIR) and AC impedance spectroscopies. The results showed that absorption peaks of C-O-C group and Si-O-Si are presence in the FTIR spectra attributed to the cross-linking process. Impedance spectra indicated that the contribution of ionic dopant (LiOH) to enhance conductivity is insignificant. The highest conductivity of the studied cross-linked PVA membrane is 1.34×10-3 S cm-1 corresponding to 5% LiOH dopant concentration of cross-linked PVA-zinc acetate-nano silica membrane. The present study also suggested that the solution casting is appropriate for cross-linked membrane synthesis.

  12. Composition of cross-linked 125I-follitropin-receptor complexes

    SciTech Connect

    Shin, J.; Ji, T.H.

    1985-10-15

    Both of the alpha and beta subunits of intact human follitropin (FSH) were radioiodinated with SVI-sodium iodide and chloramine-T and could be resolved on sodium dodecyl sulfate-polyacrylamide gels. Radioiodinated FSH was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to its membrane receptor on the porcine granulosa cell surface as well as to a Triton X-100-solubilized form of the receptor. Cross-linked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65, 83, and 117 kDa, in addition to the hormone bands. The hormone alpha beta dimer band corresponded to 43 kDa. Formation of the three bands requires the SVI-hormone to bind specifically to the receptor with subsequent cross-linking. Binding was prevented by an excess of the native hormone but not by other hormones. A monofunctional analog of the cross-linking reagent failed to produce the three bands. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of cross-linked complexes were treated to cleave covalent cross-links and then electrophoresed in a second dimension, 18-, 22-, and 34-kDa components were released, in addition to the alpha and beta subunits of the hormone.

  13. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma

    PubMed Central

    Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850

  14. Chemistry and physical properties of melt-processed and solution-cross-linked corn zein.

    PubMed

    Sessa, David J; Mohamed, Abdellatif; Byars, Jeffrey A

    2008-08-27

    Corn zein was cross-linked with glutaraldehyde (GDA) using glacial acetic acid (HAc) as catalyst. The objectives are to evaluate the swelling characteristics of GDA cross-linked zein gels in water, ethanol, and their combinations. Similar formulations, upon solvent evaporation, form films. The mechanical properties of the films are compared to compression molded tensile bars from GDA melt-processed zein as a second objective. Chemistry of the cross-linking reaction was based on the aldehyde binding characteristics defined by use of fluorescence spectroscopy; sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to demonstrate the cross-linking reaction; FTIR to observe absorption differences of the cross-linked product; differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis to assess thermal properties; and the use of Instron Universal Testing Machine to evaluate mechanical properties. A reaction mechanism for acid catalyzed GDA cross-linking of zein is proposed. Thermal and mechanical properties of tensile bars cut from either film or formed by compression molding were similar, where both showed increased tensile strengths, ductility and stiffness when compared with unmodified controls. Samples that were reacted with 8% GDA by weight based on weight of zein from either process retained their integrity when tensile bars from each were subjected to boiling water for 10 min or soaking in either water or HAc for 24 h. The melt-processed, cross-linked zein is a more environmentally friendly method that would eliminate the need for HAc recovery.

  15. The 5'-GNC site for DNA interstrand cross-linking is conserved for diepoxybutane stereoisomers.

    PubMed

    Millard, Julie T; Hanly, Trevor C; Murphy, Kris; Tretyakova, Natalia

    2006-01-01

    The bifunctional alkylating agent 1,2,3,4-diepoxybutane forms interstrand DNA-DNA cross-links between the N7 positions of deoxyguanosine residues on opposite strands of the duplex. For racemic diepoxybutane, these cross-links predominate within 5'-GNC/3'CNG sequences, where N is any nucleotide. We used denaturing polyacrylamide gel electrophoresis (dPAGE) to examine the role of stereochemistry in the cross-linking reaction, subjecting a restriction fragment to cross-linking with S,S-DEB, R,R-DEB, or meso-DEB. DNA cross-links generated by each isomer were isolated by dPAGE, and the sites of cross-linking were identified by sequencing gel analysis of DNA fragments generated by hot piperidine cleavage. We found that the 5'-GNC consensus sequence of racemic DEB is conserved, but the efficiencies of cross-linking vary, with S,S- > R,R- > meso-DEB. These results help explain the observed differences between the biological activities of DEB stereoisomers.

  16. The use of highly cross-linked polyethylene in total knee arthroplasty.

    PubMed

    Lachiewicz, Paul F; Geyer, Mark R

    2011-03-01

    Polyethylene wear, with resultant particle-induced osteolysis, is a cause of late failure of total knee arthroplasty. The causes of both wear and osteolysis are multifactorial; still, improvements in the polyethylene liner have been investigated. Available highly cross-linked polyethylene tibial liners and patellar prostheses differ greatly in the amount and method of irradiation, thermal treatments, and sterilization techniques they undergo. Several varieties of highly cross-linked polyethylene reduce the gravimetric and volumetric wear of tibial liners in knee simulator studies. However, reduced fracture toughness and the generation of smaller and possibly more reactive particles also have been reported with some varieties of polyethylene. Clinical studies of the use of highly cross-linked polyethylene in total knee arthroplasty are limited. Two nonrandomized trials of highly cross-linked polyethylene in total knee arthroplasty have reported a nonsignificant decrease in radiolucent lines at 2 and 5 years, respectively. The risks of using highly cross-linked polyethylene include fracture of the liner or of a posterior-stabilized tibial post, liner dislodgement or locking mechanism disruption, and possibly more osteolysis. Highly cross-linked polyethylene tibial liners may be considered for younger, more active patients. However, until additional clinical results are available, a cautious approach is warranted to the widespread use of highly cross-linked polyethylene in total knee arthroplasty.

  17. Probing structures of large protein complexes using zero-length cross-linking.

    PubMed

    Rivera-Santiago, Roland F; Sriswasdi, Sira; Harper, Sandra L; Speicher, David W

    2015-11-01

    Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein-protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of "zero-length" cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC-MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed.

  18. Understanding chemical reactivity for homo- and heterobifunctional protein cross-linking agents.

    PubMed

    Chen, Fan; Nielsen, Simone; Zenobi, Renato

    2013-07-01

    Chemical cross-linking, combined with mass spectrometry, has been applied to map three-dimensional protein structures and protein-protein interactions. Proper choice of the cross-linking agent, including its reactive groups and spacer arm length, is of great importance. However, studies to understand the details of reactivity of the chemical cross-linkers with proteins are quite sparse. In this study, we investigated chemical cross-linking from the aspects of the protein structures and the cross-linking reagents involved, by using two structurally well-known proteins, glyceraldehyde 3-phosohate dehydrogenase and ribonuclease S. Chemical cross-linking reactivity was compared using a series of homo- and hetero-bifunctional cross-linkers, including bis(sulfosuccinimidyl) suberate, dissuccinimidyl suberate, bis(succinimidyl) penta (ethylene glycol), bis(succinimidyl) nona (ethylene glycol), m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester, 2-pyridyldithiol-tetraoxaoctatriacontane-N-hydrosuccinimide and succinimidyl-[(N-maleimidopropionamido)-tetracosaethyleneglycol]ester. The protein structure itself, especially the distances between target amino acid residues, was found to be a determining factor for the cross-linking efficiency. Moreover, the reactive groups of the chemical cross-linker also play an important role; a higher cross-linking reaction efficiency was found for maleimides compared to 2-pyrimidyldithiols. The reaction between maleimides and sulfhydryl groups is more favorable than that between N-hydroxysuccinimide esters and amine groups, although cysteine residues are less abundant in proteins compared to lysine residues.

  19. The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams

    PubMed Central

    Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing

    2016-01-01

    Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307

  20. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry.

    PubMed

    Liu, Fan; Rijkers, Dirk T S; Post, Harm; Heck, Albert J R

    2015-12-01

    We describe an integrated workflow that robustly identifies cross-links from endogenous protein complexes in human cellular lysates. Our approach is based on the application of mass spectrometry (MS)-cleavable cross-linkers, sequential collision-induced dissociation (CID)-tandem MS (MS/MS) and electron-transfer dissociation (ETD)-MS/MS acquisitions, and a dedicated search engine, XlinkX, which allows rapid cross-link identification against a complete human proteome database. This approach allowed us to detect 2,179 unique cross-links (1,665 intraprotein cross-links at a 5% false discovery rate (FDR) and 514 interprotein cross-links at 1% FDR) in HeLa cell lysates. We validated the confidence of our cross-linking results by using a target-decoy strategy and mapping the observed cross-link distances onto existing high-resolution structures. Our data provided new structural information about many protein assemblies and captured dynamic interactions of the ribosome in contact with different elongation factors.

  1. Phased psoralen cross-links do not bend the DNA double helix

    SciTech Connect

    Haran, T.E.; Crothers, D.M.

    1988-09-06

    Although the chemical reaction of psoralens with nucleic acids is well understood, the structure of psoralen-DNA cross-linked products is still not clear. Model building studies based on the crystal structure of the psoralen-thymine monoadduct suggest that each cross-link bends the DNA double helix by 46.5/sup 0/. Here the authors use gel electrophoresis to test the validity of the current models. They have synthesized a series of DNA fragments (21-24 base pairs in length), each containing one unique T-A site for 4'-(hydroxymethyl)-4,5'8-trimethylpsoralen (HMT) cross-linking. Because of an estimated 28/sup 0/ unwinding of the helix by HMT, one expects that the 22-bp cross-linked fragment will be repeated nearly in phase with the average helical screw when multimerized. In that sequence ligation will maximally amplify any deformation to the double helix. They find that the ligated multimers of cross-linked DNA migrate close to the multimers of non-cross-linked DNA on polyacrylamide gels. These observations place an upper limit of 10/sup 0/ on DNA bending induced by psoralen cross-linking and indicate unwinding by about 1 bp, as well as stiffening of the double helix. These properties are not unexpected for classical intercalators.

  2. Cross-linking of chitosan and chitosan/poly(ethylene oxide) beads: a theoretical treatment.

    PubMed

    Martinez, Leticia; Agnely, Florence; Leclerc, Bernard; Siepmann, Juergen; Cotte, Marine; Geiger, Sandrine; Couarraze, Guy

    2007-09-01

    The major aim of this study was to get deeper insight into the process of polymer cross-linking and the resulting structure of beads based on chitosan (CS) or chitosan/poly(ethylene oxide) (CS/PEO) semi-interpenetrating networks (semi-IPNs) as new carrier materials for oral drug delivery. Spherical hydrogels were prepared by a dropping method. The uptake kinetics of the cross-linking agent glyoxal into the beads were monitored and quantitatively described using Fick's second law of diffusion. High-resolution synchrotron infrared microspectroscopy (SIRM) was used to characterize the inner structures of the beads. Importantly, the diffusion of glyoxal through the hydrogels was found to be much slower than the cross-linking reaction and the mesh size of the created networks to be much larger than the hydrodynamic diameter of glyoxal. The presence of PEO chains slightly decreased the diffusivity of glyoxal due to obstruction effects. However, the cross-linking reaction was not affected. Interestingly, the polymers were homogeneously cross-linked throughout the beads, except for a thin outer shell showing an elevated cross-linking density. Thus, the obtained cross-linked hydrogel-based beads exhibit well-defined polymeric structures and offer an interesting potential as novel oral drug delivery systems.

  3. Shell and core cross-linked poly(L-lysine)/poly(acrylic acid) complex micelles.

    PubMed

    Hsieh, Yi-Hsuan; Hsiao, Yung-Tse; Jan, Jeng-Shiung

    2014-12-21

    We report the versatility of polyion complex (PIC) micelles for the preparation of shell and core cross-linked (SCL and CCL) micelles with their surface properties determined by the constituent polymer composition and cross-linking agent. The negatively and positively charged PIC micelles with their molecular structure and properties depending on the mixing weight percentage and polymer molecular weight were first prepared by mixing the negatively and positively charged polyions, poly(acrylic acid) (PAA) and poly(L-lysine) (PLL). The feasibility of preparing SCL micelles was demonstrated by cross-linking the shell of the negatively and positively charged micelles using cystamine and genipin, respectively. The core of the micelles can be cross-linked by silica deposition to stabilize the assemblies. The shell and/or core cross-linked micelles exhibited excellent colloid stability upon changing solution pH. The drug release from the drug-loaded SCL micelles revealed that the controllable permeability of the SCL micelles can be achieved by tuning the cross-linking degree and the SCL micelles exhibited noticeable pH-responsive behavior with accelerated release under acidic conditions. With the versatility of cross-linking strategies, it is possible to prepare a variety of SCL and CCL micelles from PIC micelles.

  4. Novel antimicrobial superporous cross-linked chitosan/pyromellitimide benzoyl thiourea hydrogels.

    PubMed

    Mohamed, Nadia A; Abd El-Ghany, Nahed A; Fahmy, Mona M

    2016-01-01

    In this work, chitosan (CS) was cross-linked with different amounts of pyromellitimide benzoyl thiourea moieties. The structure of the cross-linked CS was confirmed by elemental analyses, FTIR and (1)H- NMR spectroscopy. The cross-linking process proceeds via reacting of the amino groups of CS with the isothiocyanate groups of the N,N'-bis [4-(isothiocyanate carbonyl)phenyl] pyromellitimide cross-linker. The amount of the cross-linker was varied with respect to CS to produce four new pyromellitimide benzoyl thiourea cross-linked CS (PIBTU-CS) hydrogels designated as PIBTU-CS-1, PIBTU-CS-2, PIBTU-CS-3, and PIBTU-CS-4 of increasing cross-linking degree percent of 11, 22, 44 and 88%, respectively. The scanning electron microscopy observation indicates the extremely porous structure of the hydrogels. XRD results showed that the crystallinity of CS was decreased upon cross-linking. The four hydrogels exhibit a higher antibacterial activity on Bacillus subtilis and Streptococcus pneumoniae as Gram positive bacteria and against Escherichia coli as Gram negative bacteria and higher antifungal activity on Aspergillus fumigatus, Syncephalastrum racemosum and Geotricum candidum than that of the parent CS as shown from their higher inhibition zone diameters and their lower MIC values. The swell ability of the hydrogel as well as their antimicrobial activity increased with increasing cross-linking density.

  5. DNA cross-linking by intermediates in the mitomycin activation cascade

    SciTech Connect

    Cera, C.; Egbertson, M.; Teng, S.P.; Crothers, D.M.; Danishefsky, S.J. )

    1989-06-27

    The authors have assayed the cross-linking of oligonucleotides containing repeated mitomycin-reactive CpG sites in order to assess the factors that enhance activation of the carbamoyl function at C{sub 10}, yielding efficient mitomycin cross-linking. Drugs studied include mitomycin C (MC), N-methylmitomycin A (NMA), and the aziridinomitosene of NMA (MS). Drugs were reduced both by catalytic hydrogenation and by dithionite. They find that cross-linking by fully reduced NMA can be increased severalfold by addition of either excess dithionite reductant or the oxidant FeCl{sub 3}. Enhancement by FeCl{sub 3} is not seen with MC or MS, but excess dithionite increases cross-linking by all three compounds. They explain the action of Fe{sup 3+} by postulating production of the semiquinone of the monoadduct of mitomycin reacted at the C{sub 1}-position; according to this mechanism, departure of the carbamate from C{sub 10} is more efficient for the semiquinone than for the hydroquinone. However, the results imply that the hydroquinone can also function as a cross-linking agent. Excess dithionite beyond that required for stoichiometric reduction, activates the carbamate 2-3-fold for cross-linking. They find that the fully reduced leucoaziridinomitosene is highly unstable in solution, yet it produces efficient cross-linking. Hence, this compound is highly reactive in DNA alkylation and a good candidate for the role of primary alkylating agent.

  6. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads.

    PubMed

    Gotoh, Takeshi; Matsushima, Keiei; Kikuchi, Ken-Ichi

    2004-04-01

    The covalently cross-linked alginate gel beads were prepared by the reactions of Ca(2+)-doped alginate gel beads, which were formed by spraying a viscous alginate solution into a calcium chloride solution, with cyanogen bromide and following 1,6-diaminohexane. The cross-linking of alginate matrix decreased the mean bead diameter by about 30% and made the beads durable in some extent under alkaline conditions. The adsorption of metal ions on the covalently cross-linked alginate gel beads was rapid and reached at equilibrium within 30 min at 25 degrees C. Adsorption isotherms of Cu(II), Mn(II), and Ca2+ on the beads possessed a stepwise shape, which was firstly determined by Rorrer et al. [Ind. Eng. Chem. Res. 32 (1993) 2170] for cross-linked chitosan gel beads and explained by a pore-blockage mechanism. Higher selectivity was determined against Cu(II) over Mn(II) and Ca2+, especially at a low concentration region. These metal adsorption profiles for the covalently cross-linked alginate gel beads was almost the same as those for the un-cross-linked beads, indicating that the cross-linking reactions were performed without interfering the adsorption characteristics of alginate gel beads.

  7. Cross-linking of microtubules by microtubule-associated proteins (MAPs) from the brine shrimp, Artemia.

    PubMed

    Campbell, E J; MacKinlay, S A; MacRae, T H

    1989-05-01

    Microtubules induced with taxol to assemble in cell-free extracts of the brine shrimp, Artemia, are cross-linked by microtubule-associated proteins (MAPs). When the MAPs, extracted from taxol-stabilized microtubules with 1 M-NaCl are co-assembled with purified Artemia or mammalian neural tubulin, reconstitution of cross-linking between microtubules occurs. The most prominent non-tubulin protein associated with reconstituted cross-linked microtubules has a molecular weight of 49,000 but we cannot yet exclude the possibility that other proteins may be responsible for the cross-linking. Cross-linkers are separated by varying distances while cross-linked microtubules, prepared under different conditions, are 6.9-7.7 nm apart. Cross-linking of microtubules by MAPs occurs whether MAPs are added to assembling tubulin or to microtubules, and it is not disrupted by ATP. The MAPs are heat-sensitive and do not stabilize microtubules to cold. Immunological characterization of Artemia MAPs on Western blots indicates that Artemia lack MAP 1, MAP 2 and tau. Our results clearly demonstrate that Artemia contain novel MAPs with the ability to cross-link microtubules from phylogenetically disparate organisms in an ATP-independent manner.

  8. Probing structures of large protein complexes using zero-length cross-linking

    PubMed Central

    Rivera-Santiago, Roland F.; Sriswasdi, Sira; Harper, Sandra L.; Speicher, David W.

    2015-01-01

    Structural mass spectrometry (MS) is a field with growing applicability for addressing complex biophysical questions regarding proteins and protein complexes. One of the major structural MS approaches involves the use of chemical cross-linking coupled with MS analysis (CX-MS) to identify proximal sites within macromolecules. Identified cross-linked sites can be used to probe novel protein–protein interactions or the derived distance constraints can be used to verify and refine molecular models. This review focuses on recent advances of “zero-length” cross-linking. Zero-length cross-linking reagents do not add any atoms to the cross-linked species due to the lack of a spacer arm. This provides a major advantage in the form of providing more precise distance constraints as the cross-linkable groups must be within salt bridge distances in order to react. However, identification of cross-linked peptides using these reagents presents unique challenges. We discuss recent efforts by our group to minimize these challenges by using multiple cycles of LC–MS/MS analysis and software specifically developed and optimized for identification of zero-length cross-linked peptides. Representative data utilizing our current protocol are presented and discussed. PMID:25937394

  9. Electrospun gelatin nanofibers: a facile cross-linking approach using oxidized sucrose.

    PubMed

    Jalaja, K; James, Nirmala R

    2015-02-01

    Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability.

  10. Novel chitosan-based films cross-linked by genipin with improved physical properties.

    PubMed

    Jin, J; Song, M; Hourston, D J

    2004-01-01

    Novel cross-linked chitosan-based films were prepared using the solution casting technique. A naturally occurring and nontoxic cross-linking agent, genipin, was used to form the chitosan and chitosan/poly(ethylene oxide) (PEO) blend networks, where two types of PEO were used, one with a molecular weight of 20 000 g/mol (HPEO) and the other of 600 g/mol (LPEO). Genipin is used in traditional Chinese medicine and extracted from gardenia fruit. Importantly, it overcomes the problem of physiological toxicity inherent in the use of some common synthetic chemicals as cross-linking agents. The mechanical properties and the stability in water of cross-linked and un-crosslinked chitosan and chitosan/PEO blend films were investigated. It was shown that, compared to the transparent yellow, un-cross-linked chitosan/PEO blend films, the genipin-cross-linked chitosan-based film, blue in color, was more elastic, was more stable, and had better mechanical properties. Genipin-cross-linking produced chitosan networks that were insoluble in acidic and alkaline solutions but were able to swell in these aqueous media. The swelling characteristics of the films exhibit sensitivity to the environmental pH and temperature. The surface properties of the films were also examined by contact angle measurements using water and mixtures of water/ethanol. The results showed that, with the one exception of cross-linked pure chitosan in 100% water, the cross-linked chitosan and chitosan/PEO blends were more hydrophobic than un-crosslinked ones.

  11. Maturation of Collagen Ketoimine Cross-links by an Alternative Mechanism to Pyridinoline Formation in Cartilage*

    PubMed Central

    Eyre, David R.; Weis, Mary Ann; Wu, Jiann-Jiu

    2010-01-01

    The tensile strength of fibrillar collagens depends on stable intermolecular cross-links formed through the lysyl oxidase mechanism. Such cross-links based on hydroxylysine aldehydes are particularly important in cartilage, bone, and other skeletal tissues. In adult cartilages, the mature cross-linking structures are trivalent pyridinolines, which form spontaneously from the initial divalent ketoimines. We examined whether this was the complete story or whether other ketoimine maturation products also form, as the latter are known to disappear almost completely from mature tissues. Denatured, insoluble, bovine articular cartilage collagen was digested with trypsin, and cross-linked peptides were isolated by copper chelation chromatography, which selects for their histidine-containing sequence motifs. The results showed that in addition to the naturally fluorescent pyridinoline peptides, a second set of cross-linked peptides was recoverable at a high yield from mature articular cartilage. Sequencing and mass spectral analysis identified their origin from the same molecular sites as the initial ketoimine cross-links, but the latter peptides did not fluoresce and were nonreducible with NaBH4. On the basis of their mass spectra, they were identical to their precursor ketoimine cross-linked peptides, but the cross-linking residue had an M+188 adduct. Considering the properties of an analogous adduct of identical added mass on a glycated lysine-containing peptide from type II collagen, we predicted that similar dihydroxyimidazolidine structures would form from their ketoimine groups by spontaneous oxidation and free arginine addition. We proposed the trivial name arginoline for the ketoimine cross-link derivative. Mature bovine articular cartilage contains about equimolar amounts of arginoline and hydroxylysyl pyridinoline based on peptide yields. PMID:20363745

  12. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation.

    PubMed

    Lai, Jui-Yang

    2014-12-01

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation.

  13. Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma

    PubMed Central

    Hayes, Sally; Boote, Craig; Kamma-Lorger, Christina S.; Rajan, Madhavan S.; Harris, Jonathan; Dooley, Erin; Hawksworth, Nicholas; Hiller, Jennifer; Terill, Nick J.; Hafezi, Farhad; Brahma, Arun K.; Quantock, Andrew J.; Meek, Keith M.

    2011-01-01

    Purpose To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. Methods Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen) and four below (unswollen)) and two post-transplant keratoconus corneal buttons (one swollen; one unswollen), before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin). Results Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001); an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001). Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001); these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. Conclusion The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking. PMID:21850225

  14. Corneal Cross-Linking for Pediatric Keratoconus: Long-Term Results.

    PubMed

    Godefrooij, Daniel A; Soeters, Nienke; Imhof, Saskia M; Wisse, Robert P L

    2016-07-01

    To assess the efficacy and safety of cross-linking in pediatric patients with keratoconus and to provide a systematic literature overview regarding this subject. In this prospective cohort, 54 eyes of 36 pediatric patients with keratoconus underwent standard epithelium-off cross-linking. Follow-up measurements taken up to 5 years after treatment were compared with baseline values. Logistic regression was used to identify the underlying cause in case of progression despite treatment. Finally, a systematic search was performed in PubMed and Embase, and data were extracted and summarized. At all follow-up visits up to 5 years, maximum keratometry values improved significantly (mean change at 5 years -2.06 diopters (D), P = 0.01); moreover, average keratometry, uncorrected distance visual acuity, and corrected distance visual acuity improved at all follow-up times, though not always to the level of statistical significance. In 12 eyes (22%), keratoconus had progressed by ≥1.0 D by the last follow-up visit, despite corneal cross-linking. Cones that were more decentralized were identified as the underlying cause of disease progression. The systematic search yielded 17 unique articles: 10 articles on epithelium-off cross-linking, 2 on accelerated cross-linking, 2 on transepithelial cross-linking, 1 on both epithelium-off and transepithelial cross-linking, and 2 on transepithelial cross-linking with iontophoresis. Our long-term follow-up reveals that epithelium-off cross-linking is both apparently safe and effective when used to prevent keratoconus progression in pediatric patients. However, disease progression occurred in 22% of the treated eyes; this progression was attributed to a more decentralized cone location.

  15. Tracer diffusion through F-actin: effect of filament length and cross-linking.

    PubMed Central

    Jones, J D; Luby-Phelps, K

    1996-01-01

    We have determined diffusion coefficients for small (50- to 70-nm diameter) fluorescein-thiocarbamoyl-labeled Ficoll tracers through F-actin as a function of filament length and cross-linking. fx45 was used to regulate filament length and avidin/biotinylated actin or ABP-280 was used to prepare cross-linked actin gels. We found that tracer diffusion was generally independent of filament length in agreement with theoretical predictions for diffusion through solutions of rods. However, in some experiments diffusion was slower through short (< or = 1.0 micron) filaments, although this result was not consistently reproducible. Measured diffusion coefficients through unregulated F-actin and filaments of lengths > 1.0 micron were more rapid than predicted by theory for tracer diffusion through rigid, random networks, which was consistent with some degree of actin bundling. Avidin-induced cross-linking of biotinylated F-actin did not affect diffusion through unregulated F-actin, but in cases where diffusion was slower through short filaments this cross-linking method resulted in enhanced tracer diffusion rates indistinguishable from unregulated F-actin. This finding, in conjunction with increased turbidity of 1.0-micron filaments upon avidin cross-linking, indicated that this cross-linking method induces F-actin bundling. By contrast, ABP-280 cross-linking retarded diffusion through unregulated F-actin and decreased turbidity. Tracer diffusion under these conditions was well approximated by the diffusion theory. Both cross-linking procedures resulted in gel formation as determined by falling ball viscometry. These results demonstrate that network microscopic geometry is dependent on the cross-linking method, although both methods markedly increase F-actin macroscopic viscosity. PMID:8913611

  16. Chemistry of collagen cross-links: glucose-mediated covalent cross-linking of type-IV collagen in lens capsules.

    PubMed Central

    Bailey, A J; Sims, T J; Avery, N C; Miles, C A

    1993-01-01

    The incubation of lens capsules with glucose in vitro resulted in changes in the mechanical and thermal properties of type-IV collagen consistent with increased cross-linking. Differential scanning calorimetry (d.s.c.) of fresh lens capsules showed two major peaks at melting temperatures Tm 1 and Tm 2 at approx. 54 degrees C and 90 degrees C, which can be attributed to the denaturation of the triple helix and 7S domains respectively. Glycosylation of lens capsules in vitro for 24 weeks caused an increase in Tm 1 from 54 degrees C to 61 degrees C, while non-glycosylated, control incubated capsules increased to a Tm 1 of 57 degrees C. The higher temperature required to denature the type-IV collagen after incubation in vitro suggested increased intermolecular cross-linking. Glycosylated lens capsules were more brittle than fresh samples, breaking at a maximum strain of 36.8 +/- 1.8% compared with 75.6 +/- 6.3% for the fresh samples. The stress at maximum strain (or 'strength') was dramatically reduced from 12.0 to 4.7 N.mm.mg-1 after glycosylation in vitro. The increased constraints within the system leading to loss of strength and increased brittleness suggested not only the presence of more cross-links but a difference in the location of these cross-links compared with the natural lysyl-aldehyde-derived cross-links. The chemical nature of the fluorescent glucose-derived cross-link following glycosylation was determined as pentosidine, at a concentration of 1 pentosidine molecule per 600 collagen molecules after 24 weeks incubation. Pentosidine was also determined in the lens capsules obtained from uncontrolled diabetics at a level of about 1 per 100 collagen molecules. The concentration of these pentosidine cross-links is far too small to account for the observed changes in the thermal and mechanical properties following incubation in vitro, clearly indicating that another as yet undefined, but apparently more important cross-linking mechanism mediated by glucose is

  17. Cross-linking mechanisms of calcium and zinc in production of alginate microspheres.

    PubMed

    Chan, L; Jin, Y; Heng, P

    2002-08-21

    Calcium chloride and zinc sulphate were used to cross-link alginate microspheres prepared by an emulsification method. The microspheres cross-linked by a combination of these two salts showed different morphology and slower drug release compared with those cross-linked by the calcium salt alone. From viscosity study, it was found that zinc cations interacted with the alginate molecules to a greater extent than calcium cations. The varying effects of the salts on the properties of the microspheres were largely attributed to their ability to interact with the alginate molecules.

  18. Effect of cross-linking with calcium ions on the physical properties of alginate films.

    PubMed

    Russo, R; Malinconico, M; Santagata, G

    2007-10-01

    Three films of sodium alginate, with different amounts of guluronic fraction, were investigated with different techniques. On increasing the fraction of guluronic units the chain-to-chain interaction was promoted. The three samples were ionically cross-linked with calcium ions by soaking the films in a solution of calcium chloride. The introduction of the cross-linking points caused an appreciable change in the physical properties, and the results were discussed in terms of different composition of the materials and in terms of the increased free volume during the cross-linking process.

  19. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    PubMed Central

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory. PMID:19050735

  20. Kinetically controlled patterning of highly cross-linked phosphonium photopolymers using simple anion exchange.

    PubMed

    Guterman, Ryan; Gillies, Elizabeth R; Ragogna, Paul J

    2015-05-12

    A phosphonium salt possessing three methacrylate groups has been incorporated into a photopolymeric system to generate highly cross-linked polyelectrolyte networks. Emergent chemical and physical properties in the polymers were observed and attributed to the tandem increase in cross-link density and ion-content upon incorporation of the self-cross-linking cation. Anion-exchange with bis(trifluoromethylsulfonyl)imide or dodecylbenzenesulfonate resulted in significant differences in wettability and ion-exchange behavior. The passivating effects of dodecylbenzenesulfonate were utilized to selectively pattern fluorescein dye into the polymer network, highlighting a new patterning procedure using ionic-bond forming reactions.

  1. Enzymatically cross-linked hyperbranched polyglycerol hydrogels as scaffolds for living cells.

    PubMed

    Wu, Changzhu; Strehmel, Christine; Achazi, Katharina; Chiappisi, Leonardo; Dernedde, Jens; Lensen, Marga C; Gradzielski, Michael; Ansorge-Schumacher, Marion B; Haag, Rainer

    2014-11-10

    Although several strategies are now available to enzymatically cross-link linear polymers to hydrogels for biomedical use, little progress has been reported on the use of dendritic polymers for the same purpose. Herein, we demonstrate that horseradish peroxidase (HRP) successfully catalyzes the oxidative cross-linking of a hyperbranched polyglycerol (hPG) functionalized with phenol groups to hydrogels. The tunable cross-linking results in adjustable hydrogel properties. Because the obtained materials are cytocompatible, they have great potential for encapsulating living cells for regenerative therapy. The gel formation can be triggered by glucose and controlled well under various environmental conditions.

  2. Chances and pitfalls of chemical cross-linking with amine-reactive N-hydroxysuccinimide esters.

    PubMed

    Kalkhof, Stefan; Sinz, Andrea

    2008-09-01

    In this report we summarize our experiences with the reaction products of N-hydroxysuccinimide (NHS) esters, which are widely used for chemical cross-linking of lysine residues in proteins. We describe the products, which should be scrutinized during data analysis using customized software when NHS esters are employed for chemical cross-linking. Reaction products of NHS esters were observed not only with lysines, but also with serines, tyrosines, and threonines. This report is intended to be a practical guide for those working in the field of chemical cross-linking and mass spectrometry.

  3. Double-helical nucleic acids with cross-linked strands: synthesis and applications in molecular biology

    NASA Astrophysics Data System (ADS)

    Antsypovitch, Sergei I.; Oretskaya, Tat'yana S.

    1998-03-01

    Data on the methods employed for cross-linking of DNA strands and for the synthesis of oligonucleotide duplexes with cross-links between strands are summarised. Existing methods are systematised; their advantages and drawbacks are discussed. The examples of applications of DNA duplexes with covalently cross-linked chains for the study of protein-nucleic acid recognition and mechanisms of action of nucleic acid-binding proteins for gaining information about the spatial structure of nucleic acids, and for the solution of other problems of molecular biology are given. The bibliography includes 131 references.

  4. Theoretical study on the formation process of Cross-Linked β-Cyclodextrin molecular tubes

    NASA Astrophysics Data System (ADS)

    Reis, Vitória S.; Santos, Eliziane S.; Bonsolhos, Daniela N. F.; Guimarães, Luciana; De Almeida, Wagner B.; Nascimento, Clebio S.

    2017-06-01

    This paper reports a theoretical investigation using semiempirical and DFT calculations in order to evaluate structural and energetic properties related to the formation process of Cross-Linked β-Cyclodextrin molecular tubes. As result, TT spatial orientation was found to be the most favorable among the dimeric tubes. The overall stability order, TT > HH > HT, does not change with the number of cross-linking groups. Besides, we have shown that tubes with 3 cross-linking in their structures are the most stable ones due to steric and repulsion factors which is in perfect agreement with experimental data.

  5. Unexpected doubly-magic nucleus.

    SciTech Connect

    Janssens, R. V. F.; Physics

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope {sup 24}O has been found to be one such nucleus - yet it lies just at the limit of stability.

  6. Corneal collagen cross-linking for treating keratoconus.

    PubMed

    Sykakis, Evripidis; Karim, Rushmia; Evans, Jennifer R; Bunce, Catey; Amissah-Arthur, Kwesi N; Patwary, Showrob; McDonnell, Peter J; Hamada, Samer

    2015-03-24

    Keratoconus is a condition of the eye that affects approximately 1 in 2000 people. The disease leads to a gradual increase in corneal curvature and decrease in visual acuity with consequent impact on quality of life. Collagen cross-linking (CXL) with ultraviolet A (UVA) light and riboflavin (vitamin B2) is a relatively new treatment that has been reported to slow or halt the progression of the disease in its early stages. The objective of this review was to assess whether there is evidence that CXL is an effective and safe treatment for halting the progression of keratoconus compared to no treatment. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014, Issue 7), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to August 2014), EMBASE (January 1980 to August 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (1982 to August 2014), Cumulative Index to Nursing and Allied Health Literature (CINAHL) (1982 to August 2014), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organisation International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We used no date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 28 August 2014. We included randomised controlled trials (RCTs) where CXL with UVA light and riboflavin was used to treat people with keratoconus and was compared to no treatment. Two review authors independently screened the search results, assessed trial quality, and extracted data using standard methodological procedures expected by Cochrane. Our primary outcomes were two indicators of progression at 12 months: increase in maximum keratometry of 1.5 dioptres (D) or more and

  7. Understanding Acid Base Disorders.

    PubMed

    Gomez, Hernando; Kellum, John A

    2015-10-01

    The concentration of hydrogen ions is regulated in biologic solutions. There are currently 3 recognized approaches to assess changes in acid base status. First is the traditional Henderson-Hasselbalch approach, also called the physiologic approach, which uses the relationship between HCO3(-) and Pco2; the second is the standard base excess approach based on the Van Slyke equation. The third approach is the quantitative or Stewart approach, which uses the strong ion difference and the total weak acids. This article explores the origins of the current concepts framing the existing methods to analyze acid base balance. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of the exchange capacity and cross-linking degree on the hydration states of anions in quantitative loading onto strongly basic anion-exchange resins.

    PubMed

    Yuchi, Akio; Kuroda, Shigeo; Takagi, Mayuu; Watanabe, Yuuya; Nakao, Satoshi

    2010-10-15

    The water content was determined for five strongly basic anion-exchange resins (trimethyammonium type having different exchange capacities and cross-linking degrees by divinylbenzene) in definite anionic forms (ten singly, three doubly, one triply, and one quadruply charged) dried at 25 °C and at a relative humidity of 50%. Incorporation of the results of the previous research on the conventional resins by X-ray absorption fine structure and diffraction methods indicated that the present method gave the number of intrinsic water molecules strongly interacting with an anion. The hydration numbers of weakly hydrating anions (Cl⁻, Br⁻, and ClO₄⁻) and a small anion (F⁻) were independent of the exchange capacity and slightly decreased with an increase in cross-linking, especially at 8%. The small and strongly hydrating ion F⁻ kept the in-water hydration structure to form a water-separated ion pair in the resins, while the other weakly hydrating ions were appreciably dehydrated to form a contact ion pair. The hydration number of a strongly hydrating ion, H₂PO₄⁻, appreciably decreased with increases in both the exchange capacity and cross-linking degree accompanied by intermolecular hydrogen bonding between the anions. This may be related to other characteristics of the H₂PO₄⁻ form resin, such as a higher concentration required for quantitative exchange, a systematic change in infrared spectra on the degree of exchange, and facile thermal dehydration, giving H₂P₂O₇²⁻. In contrast, multivalent anions were exchanged without dehydration, due to the larger space allowed for in the resins and the stronger interaction with water compared to those of monovalent anions.

  9. HcRed, a Genetically Encoded Fluorescent Binary Cross-Linking Agent for Cross-Linking of Mitochondrial ATP Synthase in Saccharomyces cerevisiae

    PubMed Central

    Gong, Lan; Ramm, Georg; Devenish, Rodney J.; Prescott, Mark

    2012-01-01

    Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase. PMID:22496895

  10. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes.more » By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.« less

  11. Tailoring single chain polymer nanoparticle thermo-mechanical behavior by cross-link density.

    PubMed

    Bae, Suwon; Galant, Or; Diesendruck, Charles E; Silberstein, Meredith N

    2017-04-12

    Single chain polymer nanoparticles (SCPNs) are formed from intrachain cross-linking of a single polymer chain, making SCPN distinct from other polymer nanoparticles for which the shape is predefined before polymerization. The degree of cross-linking in large part determines the internal architecture of the SCPNs and therefore their mechanical and thermomechanical properties. Here, we use molecular dynamics (MD) simulations to study thermomechanical behavior of individual SCPNs with different underlying structures by varying the ratio of cross-linking and the degree of polymerization. We characterize the particles in terms of shape, structure, glass transition temperature, mobility, and stress response to compressive loading. The results indicate that the constituent monomers of SCPNs become less mobile as the degree of cross-linking is increased corresponding to lower diffusivity and higher stress at a given temperature.

  12. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    DOE PAGES

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; ...

    2015-10-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilationmore » lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.« less

  13. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer

    PubMed Central

    Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

    2014-01-01

    We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

  14. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, N.M.; Chen, J.

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme. No Drawings

  15. New insights into the pros and cons of cross-linking decellularized bioartificial organs.

    PubMed

    Hussein, Kamal H; Park, Kyung-Mee; Lee, Yun-Suk; Woo, Jae-Seok; Kang, Byung-Jae; Choi, Ki-Young; Kang, Kyung-Sun; Woo, Heung-Myong

    2017-01-25

    ABSTRACTDecellularization is an attractive method for scaffold designing in regenerative medicine. The resulting extracellular matrix (ECM) consists of structural proteins such as collagen and elastin, growth factors, and glycosaminoglycans, which can direct site-appropriate remodeling after in vivo implantation. Mainly, collagen and elastin of ECM are exposed to the enzymatic biodegradation in the host. To control the biodegradation process, treatment of decellularized tissue by a cross-linking agent is required. Cross-linking also reduces antigenicity and increases the storage properties. Cross-linkers should be nontoxic, with the ability to preserve the ECM components, especially glycosaminoglycans and associated growth factors for retention of scaffold bioactivity. In this review, we describe the different cross-linking agents and methods of evaluation of cross-linking efficiency.

  16. Effect of cross-link density on carbon dioxide separation in polydimethylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J. Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De -en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-01-01

    The development of high performance materials for CO2 separation and capture will significantly contribute to a solution for climate change. In this work, (bicycloheptenyl) ethyl terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ~ 6800 Barrer and CO2/N2 selectivity ~ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in-situ cross-linking method of the difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy and gas solubility measurements, we have elucidated the key parameters necessary for achieving their excellent performance.

  17. Plasticizer migration from cross-linked flexible PVC. 1. Effects on tribology

    NASA Astrophysics Data System (ADS)

    Pannico, M.; Persico, P.; Ambrogi, V.; Carfagna, C.

    2010-06-01

    Utilization of soft PVC is restricted by plasticizer migration that can affect material properties, as well as its toxicity. Modifying the chemical structure of PVC is one of the most effective tool to reduce the diffusion of plasticizer. In this work, a soft cross-linked PVC was obtained using a difunctional amine, namely isophoron diamine (IPDA) as the cross-linking agent. The gel content (wt %) was evaluated by weighting the insoluble portion obtained through solvent extraction technique. Thermogravimetric analysis (TGA) revealed that cross-linking reactions promote thermal degradation phenomena in the polymer matrix. Tribological properties of soft uncross-linked, cross-linked and rigid PVC were determined. Soft formulations were held in contact for 32 days with rigid PVC sheets. Plasticizer migration towards the interface causes an increase of dynamic friction compared to that of the reference rigid PVC.

  18. A Review of Collagen Cross-Linking in Cornea and Sclera

    PubMed Central

    Zhang, Xiao; Tao, Xiang-chen; Zhang, Jian; Li, Zhi-wei; Xu, Yan-yun; Wang, Yu-meng; Zhang, Chun-xiao; Mu, Guo-ying

    2015-01-01

    Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders. PMID:25922758

  19. Collagen type IX from human cartilage: a structural profile of intermolecular cross-linking sites.

    PubMed Central

    Diab, M; Wu, J J; Eyre, D R

    1996-01-01

    Type IX collagen, a quantitatively minor collagenous component of cartilage, is known to be associated with and covalently cross-linked to type II collagen fibrils in chick and bovine cartilage. Type IX collagen molecules have also been shown to form covalent cross-links with each other in bovine cartilage. In the present study we demonstrate by structural analysis and location of cross-linking sites that, in human cartilage, type IX collagen is covalently cross-linked to type II collagen and to other molecules of type IX collagen. We also present evidence that, if the proteoglycan form of type IX collagen is present in human cartilage, it can only be a minor component of the matrix, similar to findings with bovine cartilage. PMID:8660302

  20. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes.

  1. Evaluation of Recycling Technology of Insulation of Cross-linked Polyethylene Insulated Cable using Supercritical Alcohol

    NASA Astrophysics Data System (ADS)

    Goto, Toshiharu; Ashihara, Shingo; Yamazaki, Takanori; Watanabe, Kiyoshi

    The material recycling of the insulation of cross-linked polyethylene cable was studied. We successfully obtained thermoplastic recycled polyethylene from silane cross-linked polyethylene by using chemical reaction in supercritical alcohol. Here, the continuous process for the recycling of silane cross-linked PE using supercritical alcohol was constructed. The mechanical and electrical properties of recycled polyethylene satisfied the requirement of the cable insulation. These results indicate that the cable to cable and wire to wire recycling of silane cross-linked polyethylene will possibly be accomplished by supercritical technology using extruder. Moreover the environmental effect of this technology was evaluated by the amount of the carbon dioxide generated from the continuous process. These results indicate that recycling method using supercritical alcohol was useful for the reduction of the environmental pollution.

  2. Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals

    DOEpatents

    Kostic, Nenad M.; Chen, Jian

    1991-03-05

    Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

  3. Effect of cross-link density on carbon dioxide separation in polydimtheylsiloxane-norbornene membranes

    SciTech Connect

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin R.; Cheng, Shiwang; Fan, Fei; Johnson, Joseph C.; Hong, Eunice K.; Mahurin, Shannon Mark; Jiang, De-en; Long, Brian K.; Mays, Jimmy; Sokolov, Alexei P.; Saito, Tomonori

    2015-10-01

    Here, the development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethylterminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability ≈ 6800 Barrer; CO2/N2 selectivity ≈ 14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  4. Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel

    PubMed Central

    Vorvolakos, Katherine; Isayeva, Irada S; Luu, Hoan-My Do; Patwardhan, Dinesh V; Pollack, Steven K

    2011-01-01

    Hyaluronic acid (HA), in linear or cross-linked form, is a common component of cosmetics, personal care products, combination medical products, and medical devices. In all cases, the ability of the HA solution or gel to wet surfaces and/or disrupt and lubricate interfaces is a limiting feature of its mechanism of action. We synthesized ferric ion–cross-linked networks of HA based on an adhesion barrier, varied the degree of cross-linking, and performed wetting goniometry, viscometry, and dynamic mechanical analysis. As cross-linking increases, so do contact angle, viscosity, storage modulus, and loss modulus; thus, wetting and lubrication are compromised. These findings have implications in medical device materials, such as adhesion barriers and mucosal drug delivery vehicles. PMID:22915924

  5. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.

    PubMed

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De-en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-11-01

    The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated.

  6. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  7. Acid-Base Homeostasis.

    PubMed

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-07

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. Copyright © 2015 by the American Society of Nephrology.

  8. Intra-molecular cross-linking of acidic residues for protein structure studies.

    SciTech Connect

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr; Schoeniger, Joseph S.

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of the lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information

  9. DNA-protein cross-links produced by various chemicals in cultured human lymphoma cells.

    PubMed

    Costa, M; Zhitkovich, A; Harris, M; Paustenbach, D; Gargas, M

    1997-04-11

    Chemicals such as cis-platinum, formaldehyde, chromate, copper, and certain arsenic compounds have been shown to produce DNA-protein cross-links in human in vitro cell systems at high doses, such as those in the cytotoxic range. Thus far there have only been a limited number of other chemicals evaluated for their ability to produce cross-links. The purpose of the work described here was to evaluate whether select industrial chemicals can form DNA-protein cross-links in human cells in vitro. We evaluated acetaldehyde, acrolein, diepoxybutane, paraformaldehyde, 2-furaldehyde, propionaldehyde, chloroacetaldehyde, sodium arsenite, and a deodorant tablet [Mega Blue; hazardous component listed as tris(hydroxymethyl)nitromethane]. Short- and long-term cytotoxicity was evaluated and used to select appropriate doses for in vitro testing. DNA-protein cross-linking was evaluated at no fewer than three doses and two cell lysate washing temperatures (45 and 65 degrees C) in Epstein-Barr virus (EBV) human Burkitt's lymphoma cells. The two washing temperatures were used to assess the heat stability of the DNA-protein cross-link, 2-Furaldehyde, acetaldehyde, and propionaldehyde produced statistically significant increases in DNA-protein cross-links at washing temperatures of 45 degrees C, but not 65 degrees C, and at or above concentrations of 5, 17.5, and 75 mM, respectively. Acrolein, diepoxybutane, paraformaldehyde, and Mega Blue produced statistically significant increases in DNA-protein cross-links washed at 45 and 65 degrees C at or above concentrations of 0.15 mM, 12.5 mM, 0.003%, and 0.1%, respectively. Sodium arsenite and chloroacetaldehyde did not produce significantly increased DNA-protein cross-links at either temperature nor at any dose tested. Excluding paraformaldehyde and 2-furaldehyde treatments, significant increases in DNA-protein cross-links were observed only at doses that resulted in complete cell death within 4 d following dosing. This work demonstrates that

  10. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology

    SciTech Connect

    Lacevic, N; Gee, R; Saab, A; Maxwell, R

    2008-04-24

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  11. 2-(2-methoxyethoxy)ethyl methacrylate hydrogels with gradient of cross-link density

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Slawomir; Matusiak, Malgorzata; Adamus, Agnieszka; Olejniczak, Magdalena N.; Kozanecki, Marcin

    2016-01-01

    Electron beam irradiation of 2-(2-methoxyethoxy)ethyl methacrylate and ethylene glycol dimethacrylate mixtures leads to the formation of cross-linked structures that exhibit a gradient of cross-link density, as demonstrated by gel fraction, swelling and Differential Scanning Calorimetry analysis. The reason for observed phase separation is formation of the high molecular weight clusters and its precipitation before gelation dose. This effect can be controlled/influenced by absorbed dose and cross-linker concentration.

  12. Collagen and elastin cross-linking is altered during aberrant late lung development associated with hyperoxia.

    PubMed

    Mižíková, Ivana; Ruiz-Camp, Jordi; Steenbock, Heiko; Madurga, Alicia; Vadász, István; Herold, Susanne; Mayer, Konstantin; Seeger, Werner; Brinckmann, Jürgen; Morty, Rory E

    2015-06-01

    Maturation of the lung extracellular matrix (ECM) plays an important role in the formation of alveolar gas exchange units. A key step in ECM maturation is cross-linking of collagen and elastin, which imparts stability and functionality to the ECM. During aberrant late lung development in bronchopulmonary dysplasia (BPD) patients and animal models of BPD, alveolarization is blocked, and the function of ECM cross-linking enzymes is deregulated, suggesting that perturbed ECM cross-linking may impact alveolarization. In a hyperoxia (85% O2)-based mouse model of BPD, blunted alveolarization was accompanied by alterations to lung collagen and elastin levels and cross-linking. Total collagen levels were increased (by 63%). The abundance of dihydroxylysinonorleucine collagen cross-links and the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio were increased by 11 and 18%, respectively, suggestive of a profibrotic state. In contrast, insoluble elastin levels and the abundance of the elastin cross-links desmosine and isodesmosine in insoluble elastin were decreased by 35, 30, and 21%, respectively. The lung collagen-to-elastin ratio was threefold increased. Treatment of hyperoxia-exposed newborn mice with the lysyl oxidase inhibitor β-aminopropionitrile partially restored normal collagen levels, normalized the dihydroxylysinonorleucine-to-hydroxylysinonorleucine ratio, partially normalized desmosine and isodesmosine cross-links in insoluble elastin, and partially restored elastin foci structure in the developing septa. However, β-aminopropionitrile administration concomitant with hyperoxia exposure did not improve alveolarization, evident from unchanged alveolar surface area and alveoli number, and worsened septal thickening (increased by 12%). These data demonstrate that collagen and elastin cross-linking are perturbed during the arrested alveolarization of developing mouse lungs exposed to hyperoxia.

  13. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues.

    PubMed

    Sacks, Michael S; Zhang, Will; Wognum, Silvia

    2016-02-06

    Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials.

  14. Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology.

    PubMed

    Lacevic, Naida; Gee, Richard H; Saab, Andrew; Maxwell, Robert

    2008-09-28

    Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octafunctional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a netlike distribution that spans the network. Such a distribution may form a structural network "holding" the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

  15. Sorption of substituted indoles on highly cross-linked polystyrene from water-acetonitrile solutions

    NASA Astrophysics Data System (ADS)

    Shafigulin, R. V.; Myakishev, A. A.; Il'Ina, E. A.; Il'in, M. M.; Davankov, V. A.; Bulanova, A. V.

    2011-07-01

    The sorption of first synthesized indole derivatives by highly cross-linked polystyrenes from water-acetonitrile solutions was studied by high-performance liquid chromatography. The retention factors and differences in the Gibbs energy of adsorption from infinite diluted solutions were calculated, and the applicability of the Snyder-Soczewinski and Scott-Kucera models for describing the chromatographic retention of sorbates on a polymer network of highly cross-linked polystyrene was shown.

  16. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues

    PubMed Central

    Sacks, Michael S.; Wognum, Silvia

    2016-01-01

    Exogenous cross-linking of soft collagenous tissues is a common method for biomaterial development and medical therapies. To enable improved applications through computational methods, physically realistic constitutive models are required. Yet, despite decades of research, development and clinical use, no such model exists. In this study, we develop the first rigorous full structural model (i.e. explicitly incorporating various features of the collagen fibre architecture) for exogenously cross-linked soft tissues. This was made possible, in-part, with the use of native to cross-linked matched experimental datasets and an extension to the collagenous structural constitutive model so that the uncross-linked collagen fibre responses could be mapped to the cross-linked configuration. This allowed us to separate the effects of cross-linking from kinematic changes induced in the cross-linking process, which in turn allowed the non-fibrous tissue matrix component and the interaction effects to be identified. It was determined that the matrix could be modelled as an isotropic material using a modified Yeoh model. The most novel findings of this study were that: (i) the effective collagen fibre modulus was unaffected by cross-linking and (ii) fibre-ensemble interactions played a large role in stress development, often dominating the total tissue response (depending on the stress component and loading path considered). An important utility of the present model is its ability to separate the effects of exogenous cross-linking on the fibres from changes due to the matrix. Applications of this approach include the utilization in the design of novel chemical treatments to produce specific mechanical responses and the study of fatigue damage in bioprosthetic heart valve biomaterials. PMID:26855761

  17. Regulated proteolysis of a cross-link-specific peptidoglycan hydrolase contributes to bacterial morphogenesis.

    PubMed

    Singh, Santosh Kumar; Parveen, Sadiya; SaiSree, L; Reddy, Manjula

    2015-09-01

    Bacterial growth and morphogenesis are intimately coupled to expansion of peptidoglycan (PG), an extensively cross-linked macromolecule that forms a protective mesh-like sacculus around the cytoplasmic membrane. Growth of the PG sacculus is a dynamic event requiring the concerted action of hydrolases that cleave the cross-links for insertion of new material and synthases that catalyze cross-link formation; however, the factors that regulate PG expansion during bacterial growth are poorly understood. Here, we show that the PG hydrolase MepS (formerly Spr), which is specific to cleavage of cross-links during PG expansion in Escherichia coli, is modulated by proteolysis. Using combined genetic, molecular, and biochemical approaches, we demonstrate that MepS is rapidly degraded by a proteolytic system comprising an outer membrane lipoprotein of unknown function, NlpI, and a periplasmic protease, Prc (or Tsp). In summary, our results indicate that the NlpI-Prc system contributes to growth and enlargement of the PG sacculus by modulating the cellular levels of the cross-link-cleaving hydrolase MepS. Overall, this study signifies the importance of PG cross-link cleavage and its regulation in bacterial cell wall biogenesis.

  18. Current status of corneal collagen cross-linking for keratoconus: a review.

    PubMed

    Chan, Elsie; Snibson, Grant R

    2013-03-01

    Over the past decade, corneal collagen cross-linking has become commonplace as a treatment option for individuals with progressive keratoconus. This is based on laboratory data suggesting that cross-linking using riboflavin and ultraviolet-A irradiation increases collagen diameter and the biomechanical strength of the treated cornea. Case series and limited randomised controlled trials support these findings with data demonstrating that cross-linking slows and possibly halts the progression of keratoconus. In some patients cross-linking results in an improvement in maximum corneal curvature, visual acuity, spherical equivalent and higher-order aberrations. The number of reported complications is small. More recently, variations in the treatment protocol have been described, although they have not yet been subject to comparative studies. While the published data indicate cross-linking is effective in modifying the natural history of keratoconus, the long-term impact of this treatment is still unknown. This paper reviews the theoretical basis, pre-clinical research and clinical results of corneal collagen cross-linking in keratoconus. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  19. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    PubMed

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment.

  20. Cross-linking of DNA through HMGA1 suggests a DNA scaffold

    PubMed Central

    Vogel, Benjamin; Löschberger, Anna; Sauer, Markus; Hock, Robert

    2011-01-01

    Binding of proteins to DNA is usually considered 1D with one protein bound to one DNA molecule. In principle, proteins with multiple DNA binding domains could also bind to and thereby cross-link different DNA molecules. We have investigated this possibility using high-mobility group A1 (HMGA1) proteins, which are architectural elements of chromatin and are involved in the regulation of multiple DNA-dependent processes. Using direct stochastic optical reconstruction microscopy (dSTORM), we could show that overexpression of HMGA1a-eGFP in Cos-7 cells leads to chromatin aggregation. To investigate if HMGA1a is directly responsible for this chromatin compaction we developed a DNA cross-linking assay. We were able to show for the first time that HMGA1a can cross-link DNA directly. Detailed analysis using point mutated proteins revealed a novel DNA cross-linking domain. Electron microscopy indicates that HMGA1 proteins are able to create DNA loops and supercoils in linearized DNA confirming the cross-linking ability of HMGA1a. This capacity has profound implications for the spatial organization of DNA in the cell nucleus and suggests cross-linking activities for additional nuclear proteins. PMID:21596776

  1. Dynamic OCT measurements of corneal biomechanical properties after UV cross-linking in the rabbit

    NASA Astrophysics Data System (ADS)

    Twa, Michael D.; Li, Jiasong; Manapuram, Ravi K.; Menodiado, Floredes M.; Singh, Manmohan; Aglyamov, Salavat; Emelianov, Stanislav; Larin, Kirill V.

    2013-03-01

    Structural properties of the cornea determine the shape and optical quality of the eye. Keratoconus, a structural degeneration of the cornea, is often treated with UV-induced collagen cross-linking to increase tissue resistance to further deformation and degeneration. Optimal treatments would be customized to the individual and consider preexisting structural properties as well as the effects induced by treatment and this requires the capability to noninvasively measure tissue properties. The purpose of this study is to use novel methods of optical elastography to study the effects of UV-induced corneal collagen cross-linking in the rabbit eye. Low-amplitude (<1μm) elastic flexural waves were generated using focused air-pulse stimulation. Elastic wave propagation was measured over a 10x10mm area using Phase Stabilized Swept Source Optical Coherence Elastography (PhS-SSOCE) with a sensitivity of ~ 10 nm. Wave amplitude and velocity were computed and compared in tissues before and after UV cross-linking. Wave amplitude was decreased by the cross-linking treatment, while wave velocity was greater in cross-linked tissue than it was in the untreated cornea. Decreased wave amplitude and increased wave velocity after cross-linking is consistent with increased tissue stiffness. This was confirmed by conventional mechanical tension testing. These results demonstrate that the combination of the PhS-SSOCE and focused air pulse stimulation is capable of measuring low amplitude tissue motion and quantifying corneal stiffness.

  2. Cross-linking of a polyomavirus attachment protein to its mouse kidney cell receptor

    SciTech Connect

    Griffith, G.R.; Consigli, R.A.

    1986-06-01

    The authors used photoaffinity cross-linking with the heterobifunctional cross-linker N-hydroxysuccinimidyl 4-azidobenzoate (HSAB) to covalently link polyomavirus to a mouse kidney cell surface component. The virus-HSAB combination was adsorbed to the cells and then cross-linked and isolated in monopinocytotic vesicles from the cells after endocytosis. The cross-linked product was identified on sodium dodecyl sulfate-polyacrylamide gels by the presence of a new band carrying /sup 125/I-labeled virion protein with a higher molecular mass than the normal virion protein bands. A single new band, with an apparent molecular mass of 120 kilodaltons (120 kDa), was identified by this procedure. This band was formed only in the presence of the HSAB cross-linker when virions were bound to the cells. The band also copurified with cross-linked virions when virion-containing vesicles were treated with detergent to remove the cell membrane. Antibody treatments that blocked up to 100% of virus binding and internalization also blocked cross-linking, as measured by the formation of the 120-kDa band. The 120-kDa band was characterized by preparation of antibody against the excised band from the gel. These data have demonstrated that molecules of possible biological significance in the binding of polyomavirus to mouse kidney cells have been cross-linked and that cell surface molecules have been identified that may be characterized further for possible receptor function in polyomavirus attachment.

  3. Cross-linking proteins by laccase-catalyzed oxidation: importance relative to other modifications.

    PubMed

    Steffensen, Charlotte L; Andersen, Mogens L; Degn, Peter E; Nielsen, Jacob H

    2008-12-24

    Laccase-catalyzed oxidation was able to induce intermolecular cross-links in beta-lactoglobulin, and ferulic acid-mediated laccase-catalyzed oxidation was able to induce intermolecular cross-links in alpha-casein, whereas transglutaminase cross-linked only alpha-casein. In addition, different patterns of laccase-induced oxidative modifications were detected, including dityrosine formation, formation of fluorescent tryptophan oxidation products, and carbonyls derived from histidine, tryptophan, and methionine. Laccase-catalyzed oxidation as well as transglutaminase induced only minor changes in surface tension of the proteins, and the changes could not be correlated to protein cross-linking. The presence of ferulic acid was found to influence the effect of laccase, allowing laccase to form irreducible intermolecular cross-links in beta-lactoglobulin and resulting in proteins exercising higher surface tensions due to cross-linking as well as other oxidative modifications. The outcome of using ferulic acid-mediated laccase-catalyzed oxidation to modify the functional properties of proteinaceous food components or other biosystems is expected to be highly dependent on the protein composition, resulting in different changes of the functional properties.

  4. Ara h 2 cross-linking catalyzed by MTGase decreases its allergenicity.

    PubMed

    Wu, Zhihua; Lian, Jun; Zhao, Ruifang; Li, Kun; Li, Xin; Yang, Anshu; Tong, Ping; Chen, Hongbing

    2017-03-22

    Peanuts, whose major allergen is Ara h 2, are included among the eight major food allergens. After reduction using dithiothreitol (DTT), cross-linking of Ara h 2 could be catalyzed by microbial transglutaminase (MTGase), a widely used enzyme in the food industry. In this study, Ara h 2 cross-linking was catalyzed by MTGase after it was reduced by DTT. Using mass spectrometry and PLINK software, five cross-linkers were identified, and five linear allergen epitopes were found to be involved in the reactions. The IgE binding capacity of cross-linked Ara h 2 was found to be significantly lower compared to that of native and reduced Ara h 2. After simulated gastric fluid (SGF) digestion, the digested products of the cross-linked Ara h 2, again, had a significantly lower IgE binding capacity compared to untreated and reduced Ara h 2. Furthermore, reduced and cross-linked Ara h 2 (RC-Ara h 2) induced lower sensitization in mice, indicating its lower allergenicity. Reduction and MTGase-catalyzed cross-linking are effective methods to decrease the allergenicity of Ara h 2. The reactions involved linear allergen epitopes destroying the material basis of the allergenicity, and this might develop a new direction for protein desensitization processes.

  5. Exogenous collagen cross-linking recovers tendon functional integrity in an experimental model of partial tear.

    PubMed

    Fessel, Gion; Wernli, Jeremy; Li, Yufei; Gerber, Christian; Snedeker, Jess G

    2012-06-01

    We investigated the hypothesis that exogenous collagen cross-linking can augment intact regions of tendon to mitigate mechanical propagation of partial tears. We first screened the low toxicity collagen cross-linkers genipin, methylglyoxal and ultra-violet (UV) light for their ability to augment tendon stiffness and failure load in rat tail tendon fascicles (RTTF). We then investigated cross-linking effects in load bearing equine superficial digital flexor tendons (SDFT). Data indicated that all three cross-linking agents augmented RTTF mechanical properties but reduced native viscoelasticity. In contrast to effects observed in fascicles, methylglyoxal treatment of SDFT detrimentally affected tendon mechanical integrity, and in the case of UV did not alter tendon mechanics. As in the RTTF experiments, genipin cross-linking of SDFT resulted in increased stiffness, higher failure loads and reduced viscoelasticity. Based on this result we assessed the efficacy of genipin in arresting tendon tear propagation in cyclic loading to failure. Genipin cross-linking secondary to a mid-substance biopsy-punch significantly reduced tissue strains, increased elastic modulus and increased resistance to fatigue failure. We conclude that genipin cross-linking of injured tendons holds potential for arresting tendon tear progression, and that implications of the treatment on matrix remodeling in living tendons should now be investigated.

  6. Corneal collagen cross-linking. A review of its clinical applications.

    PubMed

    Balparda, K; Maldonado, M J

    2017-04-01

    To perform a literature review of the current clinical applications of corneal collagen cross-linking. An exhaustive literature search was made, including the main biomedical databases, and encompassing all years since the introduction of cross-linking in ophthalmology practice. Corneal collagen cross-linking using UVA irradiation and riboflavin is a surgical technique that is currently being optimised, and is supported by a good amount of pre-clinical and clinical studies. These papers found show the beneficial effect of the surgery on preventing the progression of corneal ectasia, especially keratoconus, but also on pellucid marginal degeneration and keratectasia after refractive surgery. The effect of cross-linking on avoiding the occurrence of iatrogenic keratectasia when combined with a photo-ablative procedure is less clear to date. Additionally, it appears that cross-linking may have a considerable beneficial effect on controlling corneal infection caused by fungi, bacteria and amoebae. However, its effect on viral keratitis can be detrimental. The benefit on bullous keratopathy seems to be rather transient. Corneal collagen cross-linking may be used with relative safety and efficacy in patients with progressive keratoconus. Its use could also be considered in patients with other corneal ectasias or with corneal infections of non-viral origin. Currently, there is still a need for more studies as regards its effect on preventing iatrogenic keratectasia. Copyright © 2016 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Smooth muscle cell phenotype modulation and contraction on native and cross-linked polyelectrolyte multilayers.

    PubMed

    Moussallem, Maroun D; Olenych, Scott G; Scott, Shannon L; Keller, Thomas C S; Schlenoff, Joseph B

    2009-11-09

    Smooth muscle cells convert between a motile, proliferative "synthetic" phenotype and a sessile, "contractile" phenotype. The ability to manipulate the phenotype of aortic smooth muscle cells with thin biocompatible polyelectrolyte multilayers (PEMUs) with common surface chemical characteristics but varying stiffness was investigated. The stiffness of (PAH/PAA) PEMUs was varied by heating to form covalent amide bond cross-links between the layers. Atomic force microscopy (AFM) showed that cross-linked PEMUs were thinner than those that were not cross-linked. AFM nanoindentation demonstrated that the Young's modulus ranged from 6 MPa for hydrated native PEMUs to more than 8 GPa for maximally cross-linked PEMUs. Rat aortic A7r5 smooth muscle cells cultured on native PEMUs exhibited morphology and motility of synthetic cells and expression of the synthetic phenotype markers vimentin, tropomyosin 4, and nonmuscle myosin heavy chain IIB (nmMHCIIB). In comparison, cells cultured on maximally cross-linked PEMUs exhibited the phenotype markers calponin, smooth muscle myosin heavy chain (smMHC), myocardin, transgelin, and smooth muscle alpha-actin (smActin) that are characteristic of the smooth muscle "contractile" phenotype. Consistent with those cells being "contractile", A7r5 cells grown on cross-linked PEMUs produced contractile force when stimulated with a Ca(2+) ionophore.

  8. xComb: a cross-linked peptide database approach to protein-protein interaction analysis.

    PubMed

    Panchaud, Alexandre; Singh, Pragya; Shaffer, Scott A; Goodlett, David R

    2010-05-07

    We developed an informatic method to identify tandem mass spectra composed of chemically cross-linked peptides from those of linear peptides and to assign sequence to each of the two unique peptide sequences. For a given set of proteins the key software tool, xComb, combs through all theoretically feasible cross-linked peptides to create a database consisting of a subset of all combinations represented as peptide FASTA files. The xComb library of select theoretical cross-linked peptides may then be used as a database that is examined by a standard proteomic search engine to match tandem mass spectral data sets to identify cross-linked peptides. The database search may be conducted against as many as 50 proteins with a number of common proteomic search engines, e.g. Phenyx, Sequest, OMSSA, Mascot and X!Tandem. By searching against a peptide library of linearized, cross-linked peptides, rather than a linearized protein library, search times are decreased and the process is decoupled from any specific search engine. A further benefit of decoupling from the search engine is that protein cross-linking studies may be conducted with readily available informatics tools for which scoring routines already exist within the proteomic community.

  9. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    PubMed

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs.

  10. Formulation development and evaluation of lamivudine controlled release tablets using cross-linked sago starch.

    PubMed

    Singh, Akhilesh Vikram; Nath, Lila Kanta

    2013-02-01

    Modified starches based polymeric substances find utmost applicability in pharmaceutical formulation development. Cross-linked starches showed very promising results in drug delivery application. The present investigation concerns with the development of controlled release tablets of lamivudine using cross-linked sago starch. The cross-linked derivative was synthesized with phosphorous oxychloride and native sago starch in basic pH medium. The cross-linked sago starch was tested for acute toxicity and drug-excipient compatibility study. The formulated tablets were evaluated for various physical characteristics, in vitro dissolution release study and in vivo pharmacokinetic study in rabbit model. In vitro release study showed that the optimized formulation exhibited highest correlation (R) in case of zero order kinetic model and the release mechanism followed a combination of diffusion and erosion process. There was a significant difference in the pharmacokinetic parameters (T(max), C(max), AUC, V(d), T(1/2), and MDT) of the optimized formulation as compared to the marketed conventional tablet Lamivir®. The cross-linked starch showed promising results in terms of controlling the release behavior of the active drug from the matrix. The hydrophilic matrix synthesized by cross-linking could be used with a variety of active pharmaceutical ingredients for making their controlled/sustained release formulations.

  11. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase.

    PubMed

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W

    2016-04-08

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a specific collagen matrix phenotype. We mapped the fibromodulin-collagen interaction sites using the collagen II and III Toolkit peptide libraries. Fibromodulin interacted with the peptides containing the known collagen cross-linking sites and the MMP-1 cleavage site in collagens I and II. Interestingly, the interaction sites are closely aligned within the quarter-staggered collagen fibril, suggesting a multivalent interaction between fibromodulin and several collagen helices. Furthermore, we detected an interaction between fibromodulin and lysyl oxidase (a major collagen cross-linking enzyme) and mapped the interaction site to 12 N-terminal amino acids on fibromodulin. This interaction also increases the activity of lysyl oxidase. Together, the data suggest a fibromodulin-modulated collagen cross-linking mechanism where fibromodulin binds to a specific part of the collagen domain and also forms a complex with lysyl oxidase, targeting the enzyme toward specific cross-linking sites.

  12. Short-term wear of Japanese highly cross-linked polyethylene in cementless THA.

    PubMed

    Miyanishi, Keita; Hara, Toshihiko; Kaminomachi, Shigekazu; Maekawa, Masayuki; Iwamoto, Mikio; Torisu, Takehiko

    2008-09-01

    Production of polyethylene wear from acetabular liners is thought, in part, to mediate the periprosthetic osteolysis. This study examined the in vivo wear performance of Japanese highly cross-linked polyethylene (Aeonian) in cementless total hip arthroplasty. Ninety-five hips received a highly cross-linked polyethylene liner, while 20 hips were implanted with conventional polyethylene. Two-dimensional linear wear was measured on radiographs and volumetric wear was then calculated. Both linear and volumetric wear rates were examined for the 1-year postoperative period as well as for the time frame beginning after 1 year ending with the final follow-up. The amount of linear wear was significantly lower in the cross-linked group at 3 and 5 years postoperatively (P < 0.01 and < 0.001, respectively). Linear and volumetric wear rates after 1 year postoperatively for hips with the cross-linked polyethylene were significantly reduced by 57 and 59%, respectively, when compared to rates for those who received conventional polyethylene (P < 0.01). A multiple logistic regression analysis revealed that cross-linking was a significant factor influencing linear wear rate after 1 year postoperatively with an odds ratio, exp(ss) = 10.033 (P < 0.001). These results suggest that the highly cross-linked polyethylene reduces penetration of the femoral head and may be an optimal bearing surface for patients receiving total hip arthroplasty.

  13. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue

    PubMed Central

    Bjork, Jason W.; Johnson, Sandra L.; Tranquillo, Robert T.

    2012-01-01

    Most cross-linking methods utilize chemistry or physical processes that are detrimental to cells and tissue development. Those that are not as harmful often do not provide a level of strength that ultimately meets the required application. The purpose of this work was to investigate the use of a ruthenium-sodium persulfate cross-linking system to form dityrosine in fibrin-based engineered tissue. By utilizing the tyrosine residues inherent to fibrin and cell-deposited proteins, at least 3-fold mechanical strength increases and 10-fold stiffness increases were achieved after cross-linking. This strengthening and stiffening effect was found to increase with culture duration prior to cross-linking such that physiologically relevant properties were obtained. Fibrin was not required for this effect as demonstrated by testing with collagen-based engineered tissue. Cross-linked tissues were implanted subcutaneously and shown to have minimal inflammation after 30 days, similar to non-cross-linked controls. Overall, the method employed is rapid, non-toxic, minimally inflammatory, and is capable of increasing strength and stiffness of engineered tissues to physiological levels. PMID:21196047

  14. Polka-dotted vesicles: lipid bilayer dynamics and cross-linking effects.

    PubMed

    Kessler, Michael S; Samuel, Robin L; Gillmor, Susan D

    2013-03-05

    We have investigated the effects of cross-linking perturbations on lipid phase-domain coalescence. Our model system explores cross-linking in the fluid-disordered phase of two-phase vesicles. Here, we quantify the vesicle population shift from the expected predominance of two-domain, two-phase configuration to a multidomain vesicle majority. We have found that the increase in multidomain vesicles is a distinct outcome from the cross-linking of biotinylated lipids and avidin. Analysis of our cross-linking data suggests that avidin forms clusters on the surface of the fluid-disordered domains, resulting in a large immobile fraction and restricted diffusion. In cellular membranes, receptor concentrations are similar to our experimental model, and we expect similar cluster formations, leading to nonideal mixing and lateral heterogeneity. We have induced and quantified a global response by cross-linking only a small percentage of lipids in our system, similar to receptor-ligand interactions on the cell membrane. Common activities, such as ligand-receptor coupling, contribute to lateral heterogeneity and membrane protein clustering, adding to cell membrane complexity. Fundamental studies into subtle shifts such as cross-linking events, which induce global cellular response, are pertinent to understanding membrane activities and effects of external stimuli.

  15. Nano and micro mechanical properties of uncross-linked and cross-linked chitosan films

    PubMed Central

    Aryaei, Ashkan; Jayatissa, Ahalapitiya H.; Jayasuriya, A. Champa

    2016-01-01

    The aim of this study is to determine the nano and micro mechanical properties for uncross-linked and cross-linked chitosan films. Specifically, we looked at nanoindentation hardness, microhardness, and elastic modulus. It is important to study the nano and microscale mechanical properties of chitosan since chitosan has been widely used for biomedical applications. Using the solvent-cast method, the chitosan films were prepared at room temperature on the cleaned glass plates. The chitosan solution was prepared by dissolving chitosan in acetic acid 1% (v/v). Tripolyphosphate (TPP) was used to create the cross-links between amine groups in chitosan and phosphate groups in TPP. In this study, atomic force microscopy was used to measure the nanoindentation hardness and surface topography of the uncross-linked and cross-linked chitosan films. Elastic modulus was then calculated from the nanoindentation results. The effective elastic modulus was determined by microhardness with some modifications to previous theories. The microhardness of the chitosan films were measured using Vicker’s hardness meter under three different loads. Our results show that the microhardness and elastic modulus for cross-linked chitosan films are higher than the uncross-linked films. However, the cross-linked chitosan films show increased brittleness when compared to uncross-linked films. By increasing the load magnitude, the microhardness increases for both uncross-linked and cross-linked chitosan films. PMID:22100082

  16. Melting of cross-linked DNA. III. Calculation of differential melting curves.

    PubMed

    Lando, D Y; Fridman, A S; Krot, V I; Akhrem, A A

    1998-08-01

    In our previous papers I and II (D. Y. Lando et al, J. Biomol. Struct. Dynam. (1997) v. 15, N1, p. 129-140, p. 141-150), two methods were developed for calculation of melting curves of cross-linked DNA. One of them is based on Poland's and another on the Fixman-Freire approach. In the present communication, III, a new theoretical method is developed for computation of differential melting curves of DNAs cross-linked by anticancer drugs and their inactive analogs. As Poland's approach, the method allows study of the influence of the loop entropy factor, delta(n), on melting behavior (n is the length of a loop in base pairs). However the method is much faster and requires computer time that inherent for the most rapid Fixman-Freire calculation approach. In contrast to the computation procedures described before in communications I and II, the method is suitable for computation of differential melting curves in the case of long DNA chains, arbitrary loop entropy factors of melted regions and arbitrary degree of cross-linking including very low values that occur in vivo after administration of antitumor drugs. The method is also appropriate for DNAs without cross-links. The results of calculation demonstrate that even very low degree of cross-linking alters the DNA differential melting curve. Cross-linking also markedly strengthens the influence of particular function delta(n) upon melting behavior.

  17. Sensitizing potential of enzymatically cross-linked peanut proteins in a mouse model of peanut allergy.

    PubMed

    Radosavljevic, Jelena; Nordlund, Emilia; Mihajlovic, Luka; Krstic, Maja; Bohn, Torsten; Buchert, Johanna; Velickovic, Tanja Cirkovic; Smit, Joost

    2014-03-01

    The cross-linking of proteins by enzymes to form high-molecular-weight protein, aggregates can be used to tailor the technological or physiological functionality of food products. Aggregation of dietary proteins by food processing may promote allergic sensitization, but the effects of enzymatic cross-linking of dietary proteins on the allergenic potential of food are not known. In this study, the bioavailability and the sensitizing or tolerizing potential of peanut proteins (PE) cross-linked with microbial tyrosinase from Trichoderma reesei and mushroom tyrosinase from Agaricus bisporus, were investigated. The impact of cross-linking of PE on the in vitro bioavailability of fluorescein isothiocyanate-labeled peanut proteins was tested in a Caco-2 cell monolayer and by competitive ELISA. The in vivo allergenicity or capacity to induce oral tolerance in mice were measured by serum levels of PE-specific antibodies and T cell cytokine production after exposure to PE and cross-linked PE. Enzymatic processing of peanut proteins by the two tyrosinases increased the bioavailability of major peanut allergen Ara h 2, but did not significantly change the allergenic or tolerizing properties of peanut. Enzymatic treatment of peanut proteins yielded cross-linked proteins with preserved molecular and immunological features of peanut allergens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thickness-dependent glass transition temperature and charge mobility in cross-linked polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Qin, Hui; Zhang, Jinghui; Wang, Tao

    2016-11-01

    We report thickness-dependent glass transition temperature (Tg) and charge mobility in cross-linked thin films made of conjugated polymer poly(9,9-dioctylfluorene-co-N -(4-butylphenyl)diphenylamine) (TFB). Monotonic Tg depressions with reducing film thickness in thermally and UV cross-linked TFB thin films supported on Si-SiOx substrates are observed through ellipsometry measurements, suggesting that a surface mobile layer with enhanced chain dynamics still exists in cross-linked TFB thin films, even with a high cross-linking percentage. Data fitting using a three-layer model shows that the Tg in the interface, bulk and surface layer both increases with increasing cross-linking, while the thickness of the interface and surface layer increases and reduces, respectively. Cross-linking of TFB thin film generates traps that hinder charge transport and consequently reduce charge mobility. The charge mobility converges in thick (>140 nm) and thin (<40 nm) TFB films but shows strong thickness dependence in between, reducing from 4.0 ×10-4c m2/V s in a 180-nm film to 0.1 ×10-4c m2/V s in a 20-nm thin film.

  19. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition.

    PubMed

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong

    2016-05-01

    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films.

  20. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement.

    PubMed

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya H; Jayasuriya, A Champa

    2015-09-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. The chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples was slightly improved. Based on the presented results, cross-linking does not have a significant effect on porosity. As expected, by increasing the P/L ratio of a sample, ductility and injectability were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can improve the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications.

  1. Bifunctional Electrophiles Cross-Link Thioredoxins with Redox Relay Partners in Cells

    PubMed Central

    Naticchia, Matthew R.; Brown, Haley A.; Garcia, Francisco J.; Lamade, Andrew M.; Justice, Samantha L.; Herrin, Rachelle P.; Morano, Kevin A.; West, James D.

    2013-01-01

    Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners. PMID:23414292

  2. Cross-linked survey analysis is an approach for separating cause and effect in survey research.

    PubMed

    Redelmeier, Donald A; Thiruchelvam, Deva; Lustig, Andrew J

    2015-01-01

    We developed a new research approach, called cross-linked survey analysis, to explore how an acute exposure might lead to changes in survey responses. The goal was to identify associations between exposures and outcomes while reducing some ambiguities related to interpreting cause and effect in survey responses from a population-based community questionnaire. Cross-linked survey analysis differs from a cross-sectional, longitudinal, and panel survey analysis by individualizing the timeline to the unique history of each respondent. Cross-linked survey analysis, unlike a repeated-measures self-matching design, does not track changes in a repeated survey question given to the same respondent at multiple time points. Pilot data from three analyses (n = 1,177 respondents) illustrate how a cross-linked survey analysis can control for population shifts, temporal trends, and reverse causality. Accompanying graphs provide an intuitive display to readers, summarize results, and show differences in response distributions. Population-based individual-level linkages also reduce selection bias and increase statistical power compared with a single-center cross-sectional survey. Cross-linked survey analysis has limitations related to unmeasured confounding, pragmatics, survivor bias, statistical models, and the underlying artifacts in survey responses. We suggest that a cross-linked survey analysis may help in epidemiology science using survey data. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Immunofluorescence of rabbit corneas after collagen cross-linking treatment with riboflavin and ultraviolet A.

    PubMed

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Haydee E P

    2010-04-01

    To assess ultrastructural modifications in keratocytes and inflammatory cell response in rabbit corneas after riboflavin and ultraviolet A exposure using immunofluorescence microscopy. Twenty adult New Zealand albino rabbits weighing 2.0–3.0 kg were used in this study. Two rabbits served as controls.The animals had their epithelia removed and were cross-linked with riboflavin 0.1% solution (10 mg riboflavin-5-phosphate in 10 mL of 20% dextran-T-500) applied every 3 minutes for 30 minutes, and exposed to ultraviolet A (360 nm, 3 mW/cm2) for 30 minutes. Four rabbits were humanely euthanized at each time point of 1, 3, and 11 days and at 3 and 5 weeks after the procedure. Immunohistochemistry studies of thin sections of each cornea were performed using terminal deoxynucleotyl transferase–mediated uridine triphosphate biotin nick-end labeling staining, alpha smooth muscle actin (a-SMA),CD-3, myeloperoxidase antibodies, and 4',6-diamidino-2-phenylindole(DAPI) counterstaining. In another experiment, 6 additional rabbits were treated as above, and after 10 days of cross-linking, 5 mL of lipopolysaccharide endotoxin (1 mg/mL) was injected in the midstroma. Cross-linked corneas showed early stromal edema. By 5 weeks, complete resolution of the edema and a pronounced highly-organized anterior 200-mm fluorescent zone was observed. Terminal deoxynucleotyl transferase mediated uridine triphosphate biotin nick-end labeling staining showed keratocyte death by both necrosis and apoptosis between days 1 and 3 after cross-linking. At day 1,the limbal area close to the cross-linking zone showed some inflammatory cells and a-SMA–positive cells, indicative of the presence of myofibroblasts. By day 3, some myofibroblasts had migrated to the area beneath the cross-linked stroma. Between days 3 and 5 weeks, there was an increase in a-SMA staining in the area surrounding the cross-linked stroma. The area of cross-linking remained acellular up to 5 weeks. Collagen cross-linking

  4. Chemical cross-linking of bovine retinal transducin and cGMP phosphodiesterase.

    PubMed

    Hingorani, V N; Tobias, D T; Henderson, J T; Ho, Y K

    1988-05-15

    The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high

  5. Quantitative cross-linking/mass spectrometry using isotope-labelled cross-linkers☆

    PubMed Central

    Fischer, Lutz; Chen, Zhuo Angel; Rappsilber, Juri

    2013-01-01

    Dynamic proteins and multi-protein complexes govern most biological processes. Cross-linking/mass spectrometry (CLMS) is increasingly successful in providing residue-resolution data on static proteinaceous structures. Here we investigate the technical feasibility of recording dynamic processes using isotope-labelling for quantitation. We cross-linked human serum albumin (HSA) with the readily available cross-linker BS3-d0/4 in different heavy/light ratios. We found two limitations. First, isotope labelling reduced the number of identified cross-links. This is in line with similar findings when identifying proteins. Second, standard quantitative proteomics software was not suitable for work with cross-linking. To ameliorate this we wrote a basic open source application, XiQ. Using XiQ we could establish that quantitative CLMS was technically feasible. Biological significance Cross-linking/mass spectrometry (CLMS) has become a powerful tool for providing residue-resolution data on static proteinaceous structures. Adding quantitation to CLMS will extend its ability of recording dynamic processes. Here we introduce a cross-linking specific quantitation strategy by using isotope labelled cross-linkers. Using a model system, we demonstrate the principle and feasibility of quantifying cross-linking data and discuss challenges one may encounter while doing so. We then provide a basic open source application, XiQ, to carry out automated quantitation of CLMS data. Our work lays the foundations of studying the molecular details of biological processes at greater ease than this could be done so far. This article is part of a Special Issue entitled: New Horizons and Applications for Proteomics [EuPA 2012]. PMID:23541715

  6. Specific cross-linking of the proline isomerase cyclophilin to a non-proline-containing peptide.

    PubMed Central

    McNew, J A; Sykes, K; Goodman, J M

    1993-01-01

    A peptide corresponding to an efficient peroxisomal targeting sequence, the carboxy terminal 12 amino acids of PMP20 from Candida boidinii, was employed as an affinity ligand to search for a peroxisomal targeting receptor. Two proteins from yeast extracts with apparent molecular masses of 20 and 80 kDa were detected by chemical cross-linking to radioiodinated peptide. Both proteins were present in cytosolic supernatants. The 20-kDa species did not cross-link to a control peptide with reversed sequence, whereas the 80-kDa protein cross-linked to both peptides. The cross-linking assay was used to purify the 20-kDa protein from Saccharomyces cerevisiae. Partial protein sequencing identified this protein as cyclophilin, the product of the CYP1 gene. This protein, a peptidyl-prolyl cis-trans isomerase, is the yeast homologue of the protein that mediates the immunosuppressant effects of the drug cyclosporin A (CsA). Cross-linking of peptide to cyclophilin was inhibited by CsA. The cross-linking of cyclophilin to the PMP20-derived peptide was unanticipated because the peptide contains no prolines. The CYP1-encoded protein was not required to target proteins to peroxisomes because this organelle appeared to be assembled normally in a CYP1-disrupted strain. Furthermore, the final three amino acids of the peptide, which are critical for peroxisomal sorting, were not required for cross-linking to cyclophilin. We conclude that either cyclophilin is playing a nonessential facilitating role in peroxisomal targeting or that the interaction of the targeting peptide to cyclophilin is mimicking an interaction with an unidentified substrate or effector of cyclophilin. Images PMID:8443418

  7. Specific cross-linking of the proline isomerase cyclophilin to a non-proline-containing peptide.

    PubMed

    McNew, J A; Sykes, K; Goodman, J M

    1993-02-01

    A peptide corresponding to an efficient peroxisomal targeting sequence, the carboxy terminal 12 amino acids of PMP20 from Candida boidinii, was employed as an affinity ligand to search for a peroxisomal targeting receptor. Two proteins from yeast extracts with apparent molecular masses of 20 and 80 kDa were detected by chemical cross-linking to radioiodinated peptide. Both proteins were present in cytosolic supernatants. The 20-kDa species did not cross-link to a control peptide with reversed sequence, whereas the 80-kDa protein cross-linked to both peptides. The cross-linking assay was used to purify the 20-kDa protein from Saccharomyces cerevisiae. Partial protein sequencing identified this protein as cyclophilin, the product of the CYP1 gene. This protein, a peptidyl-prolyl cis-trans isomerase, is the yeast homologue of the protein that mediates the immunosuppressant effects of the drug cyclosporin A (CsA). Cross-linking of peptide to cyclophilin was inhibited by CsA. The cross-linking of cyclophilin to the PMP20-derived peptide was unanticipated because the peptide contains no prolines. The CYP1-encoded protein was not required to target proteins to peroxisomes because this organelle appeared to be assembled normally in a CYP1-disrupted strain. Furthermore, the final three amino acids of the peptide, which are critical for peroxisomal sorting, were not required for cross-linking to cyclophilin. We conclude that either cyclophilin is playing a nonessential facilitating role in peroxisomal targeting or that the interaction of the targeting peptide to cyclophilin is mimicking an interaction with an unidentified substrate or effector of cyclophilin.

  8. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives.

    PubMed

    Hu, Jianqing; Peng, Kaimei; Guo, Jinshan; Shan, Dingying; Kim, Gloria B; Li, Qiyao; Gerhard, Ethan; Zhu, Liang; Tu, Weiping; Lv, Weizhong; Hickner, Michael A; Yang, Jian

    2016-07-13

    Waterborne polymers, including waterborne polyurethanes (WPU), polyester dispersions (PED), and polyacrylate emulsions (PAE), are employed as environmentally friendly water-based coatings and adhesives. An efficient, fast, stable, and safe cross-linking strategy is always desirable to impart waterborne polymers with improved mechanical properties and water/solvent/thermal and abrasion resistance. For the first time, click chemistry was introduced into waterborne polymer systems as a cross-linking strategy. Click cross-linking rendered waterborne polymer films with significantly improved tensile strength, hardness, adhesion strength, and water/solvent resistance compared to traditional waterborne polymer films. For example, click cross-linked WPU (WPU-click) has dramatically improved the mechanical strength (tensile strength increased from 0.43 to 6.47 MPa, and Young's modulus increased from 3 to 40 MPa), hardness (increased from 59 to 73.1 MPa), and water resistance (water absorption percentage dropped from 200% to less than 20%); click cross-linked PED (PED-click) film also possessed more than 3 times higher tensile strength (∼28 MPa) than that of normal PED (∼8 MPa). The adhesion strength of click cross-linked PAE (PAE-click) to polypropylene (PP) was also improved (from 3 to 5.5 MPa). In addition, extra click groups can be preserved after click cross-linking for further functionalization of the waterborne polymeric coatings/adhesives. In this work, we have demonstrated that click modification could serve as a convenient and powerful approach to significantly improve the performance of a variety of traditional coatings and adhesives.

  9. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat.

    PubMed

    Rothamel, Daniel; Schwarz, Frank; Sager, Martin; Herten, Monika; Sculean, Anton; Becker, Jürgen

    2005-06-01

    The aim of the present study was to compare the biodegradation of differently cross-linked collagen membranes in rats. Five commercially available and three experimental membranes (VN) were included: (1) BioGide (BG) (non-cross-linked porcine type I and III collagens), (2) BioMend (BM), (3) BioMendExtend (BME) (glutaraldehyde cross-linked bovine type I collagen), (4) Ossix (OS) (enzymatic-cross-linked bovine type I collagen), (5) TutoDent (TD) (non-cross-linked bovine type I collagen, and (6-8) VN(1-3) (chemical cross-linked porcine type I and III collagens). Specimens were randomly allocated in unconnected subcutaneous pouches separated surgically on the back of 40 wistar rats, which were divided into five groups (2, 4, 8, 16, and 24 weeks), including eight animals each. After 2, 4, 8, 16, and 24 weeks of healing, the rats were sacrificed and explanted specimens were prepared for histologic and histometric analysis. The following parameters were evaluated: biodegradation over time, vascularization, tissue integration, and foreign body reaction. Highest vascularization and tissue integration was noted for BG followed by BM, BME, and VN(1); TD, VN(2), and VN(3) showed prolongated, while OS exhibited no vascularization. Subsequently, biodegradation of BG, BM, BME and VN(1) was faster than TD, VN(2), and VN(3). OS showed only a minute amount of superficial biodegradation 24 weeks following implantation. Biodegradation of TD, BM, BME, VN(2), and VN(3) was associated with the presence of inflammatory cells. Within the limits of the present study, it was concluded that cross-linking of bovine and porcine-derived collagen types I and III was associated with (i) prolonged biodegradation, (ii) decreased tissue integration and vascularization, and (iii) in case of TD, BM, BME, VN(2), and VN(3) foreign body reactions.

  10. Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin.

    PubMed

    Wang, Taoran; Ma, Xiaoyu; Lei, Yu; Luo, Yangchao

    2016-12-01

    Solid lipid nanoparticles (SLNs) are regarded as promising carriers to improve the safety and effectiveness of delivery for drugs and nutrients, however, the clinic applications for oral administration are limited by their poor stability in gastrointestinal conditions. In this study, surface modification was explored to confer new physicochemical properties to SLNs and thus achieve enhanced functionalities. Novel SLNs with biopolymeric double layer (DL) coating using two natural biopolymers, i.e. caseinate (NaCas) and pectin, were prepared to encapsulate and deliver curcumin, a lipophilic bioactive compound studied as a model drug/nutrient. The DL coating was chemically cross-linked by creating covalent bonds between NaCas and pectin, using two different cross-linkers, i.e. glutaraldehyde (GA) and 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-Hydroxysuccinimide (EDC/NHS). Prior to cross-linking, the mean particle size, polydispersity index and zeta potential of DL-SLNs were 300-330nm, 0.25-0.30, -45-40mV, respectively. It was found that cross-linking with GA had a more prominent effect on particle size and polydispersity index than EDC/NHS. The cross-linking process significantly improved physicochemical properties of DL-SLNs, resulting in higher encapsulation efficiency and loading capacity, better stability and slower release profile in simulated gastrointestinal conditions. Particularly, an optimal zero-order release kinetic was observed for EDC/NHS crosslinked DL-SLNs. The electron microscopy revealed that both cross-linked DL-SLNs exhibited spherical shape with homogeneous size and smooth surface. Encapsulation of curcumin in SLNs dramatically enhanced its antioxidant activity in aqueous condition. The cross-linking process further helped spray drying of SLNs by forming homogenous powder particles. These results indicated that coating with cross-linked polymers could significantly improve the physicochemical properties of SLNs and expand their potentials as

  11. Conformational Transitions of the Cross-linking Domains of Elastin during Self-assembly*

    PubMed Central

    Reichheld, Sean E.; Muiznieks, Lisa D.; Stahl, Richard; Simonetti, Karen; Sharpe, Simon; Keeley, Fred W.

    2014-01-01

    Elastin is the intrinsically disordered polymeric protein imparting the exceptional properties of extension and elastic recoil to the extracellular matrix of most vertebrates. The monomeric precursor of elastin, tropoelastin, as well as polypeptides containing smaller subsets of the tropoelastin sequence, can self-assemble through a colloidal phase separation process called coacervation. Present understanding suggests that self-assembly is promoted by association of hydrophobic domains contained within the tropoelastin sequence, whereas polymerization is achieved by covalent joining of lysine side chains within distinct alanine-rich, α-helical cross-linking domains. In this study, model elastin polypeptides were used to determine the structure of cross-linking domains during the assembly process and the effect of sequence alterations in these domains on assembly and structure. CD temperature melts indicated that partial α-helical structure in cross-linking domains at lower temperatures was absent at physiological temperature. Solid-state NMR demonstrated that β-strand structure of the cross-linking domains dominated in the coacervate state, although α-helix was predominant after subsequent cross-linking of lysine side chains with genipin. Mutation of lysine residues to hydrophobic amino acids, tyrosine or alanine, leads to increased propensity for β-structure and the formation of amyloid-like fibrils, characterized by thioflavin-T binding and transmission electron microscopy. These findings indicate that cross-linking domains are structurally labile during assembly, adapting to changes in their environment and aggregated state. Furthermore, the sequence of cross-linking domains has a dramatic effect on self-assembly properties of elastin-like polypeptides, and the presence of lysine residues in these domains may serve to prevent inappropriate ordered aggregation. PMID:24550393

  12. Cross-linking of wheat gluten proteins during production of hard pretzels.

    PubMed

    Rombouts, Ine; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2012-06-01

    The impact of the hot alkaline dip, prior to pretzel-baking, on the types and levels of cross-links between wheat proteins was studied. Protein extractability of pretzel dough in sodium dodecyl sulfate containing buffer decreased during alkaline dipping [45 s, 1.0% (w/v) NaOH, 90°C], and even more during baking (3 min at 250°C) and drying (10 min at 135°C). Reducing agent increased the extractability partly, indicating that both reducible (disulfide, SS) and non-reducible (non-SS) protein cross-links had been formed. The decrease in cystine levels suggested β-elimination of cystine releasing Cys and dehydroalanine (DHA). Subsequent reaction of DHA with Lys and Cys, induced the unusual and potentially cross-linking amino acids lysinoalanine (LAL) and lanthionine (LAN), respectively, in alkaline dipped dough (7 μmol LAN/g protein) and in the end product (9 μmol LAL and 50 μmol LAN/g protein). The baking/drying step increased sample redness, decreased Lys levels more than expected based on LAL formation (57 μmol/g protein), and induced a loss of reducing sugars (99 μmol/g protein), which suggested the potential contribution of Maillard-derived cross-links to the observed extractability loss. However, levels of Maillard products which possibly cross-link proteins, are small compared to DHA-derived cross-links. Higher dipping temperatures, longer dipping times, and higher NaOH concentrations increased protein extractability losses and redness, as well as LAL and LAN levels in the end product. No indications for Maillard-derived cross-links or LAL in pretzel dough immediately after dipping were found, even when severe dipping conditions were used.

  13. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking.

    PubMed

    Moura, M José; Faneca, H; Lima, M Pedroso; Gil, M Helena; Figueiredo, M Margarida

    2011-09-12

    In situ forming chitosan hydrogels have been prepared via coupled ionic and covalent cross-linking. Thus, different amounts of genipin (0.05, 0.10, 0.15, and 0.20% (w/w)), used as a chemical cross-linker, were added to a solution of chitosan that was previously neutralized with a glycerol-phosphate complex (ionic cross-linker). In this way, it was possible to overcome the pH barrier of the chitosan solution, to preserve its thermosensitive character, and to enhance the extent of cross-linking in the matrix simultaneously. To investigate the contributions of the ionic cross-linking and the chemical cross-linking, separately, we prepared the hydrogels without the addition of either genipin or the glycerol-phosphate complex. The addition of genipin to the neutralized solution disturbs the ionic cross-linking process and the chemical cross-linking becomes the dominant process. Moreover, the genipin concentration was used to modulate the network structure and performance. The more promising formulations were fully characterized, in a hydrated state, with respect to any equilibrium swelling, the development of internal structure, the occurrence of in vitro degradability and cytotoxicity, and the creation of in vivo injectability. Each of the hydrogel systems exhibited a notably high equilibrium water content, arising from the fact that their internal structure (examined by conventional SEM, and environmental SEM) was highly porous with interconnecting pores. The porosity and the pore size distribution were quantified by mercury intrusion porosimetry. Although all gels became degraded in the presence of lysozyme, their degradation rate greatly depended on the genipin load. Through in vitro viability tests, the hydrogel-based formulations were shown to be nontoxic. The in vivo injection of a co-cross-linking formulation revealed that the gel was rapidly formed and localized at the injection site, remaining in position for at least 1 week.

  14. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE.

  15. DNA Interstrand Cross-Linking Activity of (1-Chloroethenyl)oxirane, a Metabolite of β-chloroprene

    PubMed Central

    Wadugu, Brian A.; Ng, Christopher; Bartley, Bethany L.; Rowe, Rebecca J.; Millard, Julie T.

    2010-01-01

    With the goal of elucidating the molecular and cellular mechanisms of chloroprene toxicity, we examined the potential DNA cross-linking of the bifunctional chloroprene metabolite, (1-chloroethenyl)oxirane (CEO). We used denaturing polyacrylamide gel electrophoresis to monitor possible formation of interstrand cross-links by CEO within synthetic DNA duplexes. Our data suggest interstrand cross-linking at deoxyguanosine residues within 5′-GC and 5′-GGC sites, with the rate of cross-linking depending on pH (pH 5.0 > pH 6.0 > pH 7.0). A comparison of the cross-linking efficiencies of CEO and the structurally similar cross-linkers diepoxybutane (DEB) and epichlorohydrin (ECH) revealed that DEB > CEO ≥ ECH. Furthermore, we found that cytotoxicity correlates with cross-linking efficiency, supporting a role for interstrand cross-links in the genotoxicology of chloroprene. PMID:20030381

  16. Cross-linked high amylose starch for controlled release of drugs: recent advances.

    PubMed

    Lenaerts, V; Moussa, I; Dumoulin, Y; Mebsout, F; Chouinard, F; Szabo, P; Mateescu, M A; Cartilier, L; Marchessault, R

    1998-04-30

    Cross-linked high amylose starches have been developed as excipients for the formulation of controlled-release solid dosage forms for the oral delivery of drugs. Advantages of this new class of excipients include cost-effectiveness, readily accessible industrial manufacturing technology, high active ingredient core loading and the possibility of achieving a quasi zero-order release for most drugs. In addition to the latter, other features distinguish cross-linked high amylose starches from other excipients used to prepare hydrophilic matrices. Among these are the absence of erosion, the limited swelling and the fact that increasing cross-linking degrees results in increased water uptake rate, drug release rate and equilibrium swelling. Thus the goal of the present study was to gain some insights into the mechanism of drug release control by matrices of cross-linked high amylose starch. Water transport kinetics and dimensional changes were studied in matrices placed in water at 37 degrees C by an image analysis technique. The results show that in the first 5 min, a gel layer is formed at the surface of the tablet, after which the gel front seems to halt its progression toward the center of the tablet. Water continues to diffuse through the front and to invade the core. As a consequence, this latter swells, with a predominance for radial swelling. Equilibrium swelling is reached over 3 days, when the water concentration in the tablet becomes homogeneous and the whole tablet gelifies. Solid-state 13C-NMR were acquired on cross-linked high amylose starch powders, tablets and hydrated tablets with varying cross-linking degrees. They show a predominance of the V-type single helix arrangement of amylose in the dry state irrespective of the cross-linking degree. Upon hydration, the homologues with a low cross-linking degrees show a transition from the V to the B-type double helix arrangement. It is therefore hypothesized that the capacity of amylose to undergo the V to B

  17. Dissecting the Mechanisms of Tissue Transglutaminase-induced Cross-linking of α-Synuclein

    PubMed Central

    Schmid, Adrien W.; Chiappe, Diego; Pignat, Vérène; Grimminger, Valerie; Hang, Ivan; Moniatte, Marc; Lashuel, Hilal A.

    2009-01-01

    Tissue transglutaminase (tTG) has been implicated in the pathogenesis of Parkinson disease (PD). However, exactly how tTG modulates the structural and functional properties of α-synuclein (α-syn) and contributes to the pathogenesis of PD remains unknown. Using site-directed mutagenesis combined with detailed biophysical and mass spectrometry analyses, we sought to identify the exact residues involved in tTG-catalyzed cross-linking of wild-type α-syn and α-syn mutants associated with PD. To better understand the structural consequences of each cross-linking reaction, we determined the effect of tTG-catalyzed cross-linking on the oligomerization, fibrillization, and membrane binding of α-syn in vitro. Our findings show that tTG-catalyzed cross-linking of monomeric α-syn involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed cross-linked monomeric α-syn composed of either wild-type or Gln → Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping by mass spectrometry. Using this approach, we identified the glutamine and lysine residues involved in tTG-catalyzed intramolecular cross-linking of α-syn. These studies demonstrate for the first time that Gln79 and Gln109 serve as the primary tTG reactive sites. Mutating both residues to asparagine abolishes tTG-catalyzed cross-linking of α-syn and tTG-induced inhibition of α-syn fibrillization in vitro. To further elucidate the sequence and structural basis underlying these effects, we identified the lysine residues that form isopeptide bonds with Gln79 and Gln109. This study provides mechanistic insight into the sequence and structural basis of the inhibitory effects of tTG on α-syn fibrillogenesis in vivo, and it sheds light on the potential role of tTG cross-linking on modulating the physiological and pathogenic properties of α-syn. PMID:19164286

  18. Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels.

    PubMed

    Meador, Mary Ann B; Alemán, Christian R; Hanson, Katrina; Ramirez, Nakaira; Vivod, Stephanie L; Wilmoth, Nathan; McCorkle, Linda

    2015-01-21

    Polyimide aerogels combine high porosity, low thermal conductivity, flexibility, and low density with excellent mechanical properties. However, previously used cross-linkers, such as 1,3,5-triaminophenoxybenzene (TAB), 2,4,6-tris(4-aminophenyl)pyridine (TAPP), or octa(aminophenoxy)silsesquioxane (OAPS), either are not commercially available or are prohibitively expensive. Finding more cost efficient cross-linkers that are commercially available to synthesize these aerogels is crucial for making large scale manufacturing attractive. Herein, we describe an approach to making polyimide aerogels starting with amine capped oligomers that are cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC). BTC is a lower cost, commercially available alternative to TAB, TAPP, or OAPS. Aerogels made in this way have the same or higher modulus and higher surface area compared to those previously reported with either TAB or OAPS cross-links at the same density. While the cross-link structure is an amide, the thermal stability is not compromised most likely because the cross-link is only a small part of the composition of the aerogel. Onset of decomposition depends primarily on the backbone chemistry with 4,4'-oxidianiline (ODA) being more thermally stable than 2,2'-dimethylbenzidine (DMBZ), similar to those previously reported with other cross-links.

  19. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry

    PubMed Central

    Chavez, Juan D.; Eng, Jimmy K.; Schweppe, Devin K.; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E.

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions. PMID:27997545

  20. Effects of alginate hydrogel cross-linking density on mechanical and biological behaviors for tissue engineering.

    PubMed

    Jang, Jinah; Seol, Young-Joon; Kim, Hyeon Ji; Kundu, Joydip; Kim, Sung Won; Cho, Dong-Woo

    2014-09-01

    An effective cross-linking of alginate gel was made through reaction with calcium carbonate (CaCO3). We used human chondrocytes as a model cell to study the effects of cross-linking density. Three different pore size ranges of cross-linked alginate hydrogels were fabricated. The morphological, mechanical, and rheological properties of various alginate hydrogels were characterized and responses of biosynthesis of cells encapsulated in each gel to the variation in cross-linking density were investigated. Desired outer shape of structure was maintained when the alginate solution was cross-linked with the applied method. The properties of alginate hydrogel could be tailored through applying various concentrations of CaCO3. The rate of synthesized GAGs and collagens was significantly higher in human chondrocytes encapsulated in the smaller pore structure than that in the larger pore structure. The expression of chondrogenic markers, including collagen type II and aggrecan, was enhanced in the smaller pore structure. It was found that proper structural morphology is a critical factor to enhance the performance and tissue regeneration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Biodegradable Chitosan-Based Ambroxol Hydrochloride Microspheres: Effect of Cross-Linking Agents

    PubMed Central

    Gangurde, HH; Chavan, NV; Mundada, AS; Derle, DV; Tamizharasi, S

    2011-01-01

    The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83–24.11 μm and 39.73μ80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

  2. Usage of polarization-sensitive optical coherence tomography for investigation of collagen cross-linking

    NASA Astrophysics Data System (ADS)

    Ju, Myeong Jin; Tang, Shuo

    2015-04-01

    To investigate morphological alternation in corneal stroma induced by collagen cross-linking (CXL) treatment, polarization-sensitive optical coherence tomography (PS-OCT) capable of providing scattering, phase retardation, and degree of polarization uniformity (DOPU) images were employed on fresh bovine cornea. Significant corneal thickness reduction was observed after the CXL procedure, and its variation was quantitatively analyzed. From the scattering contrast, a hyperscattering region was observed in the anterior of the cornea immediately after the CXL procedure and its range increased with time. Within the scattering region, a slow increase was observed in the phase retardation image, and a discriminable characteristic was found in the DOPU image. A global threshold value was empirically determined from the averaged DOPU depth profile in order to locate the effective cross-linking depth. In addition to the standard protocol, an accelerated CXL procedure shortening the treatment time with higher intensity of ultraviolet-A (UV-)A power was also performed. From the measurement results after the two different CXL protocols, different cross-linking aspects were found and their difference was discussed in terms of the effectiveness of cross-linking. Based on this study, we believe that PS-OCT could be a promising optical imaging modality to evaluate the progression and effectiveness of the riboflavin/UV-A induced corneal collagen cross-linking.

  3. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links.

    PubMed

    Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2016-01-15

    Researches on protein molecularly imprinted polymers have been challenged by the difficulties in facilitating biomacromolecular transfer, in particular upon the template removal step, and enhancing their recognition performance. Addressing these issues, herein we report synthesis of core–shell structured surface protein-imprinted nanoparticles with reversible physical cross-links formed in the imprinted nanoshells. The imprinted layers over nanoparticle supports are fabricated via aqueous precipitation polymerization (PP) of di(ethylene glycol) methyl ether methacrylate (MEO2MA), a thermo-responsive monomer bearing no strong H-bond donor, and other functional and cross-linking monomers. During polymerization, physical cross-links together with chemical cross-links are in site produced within the imprinted shells based on hydrophobic association among the PMEO2MA, favoring formation of high-quality imprints. While cooled appropriately below the polymerization temperature, these physical cross-links can be dissociated rapidly, thus facilitating removal of the embedded template. For proof of this concept, lysozyme-imprinted nanoparticles were synthesized at 37 °C over the nanoparticles functionalized with carboxylic and vinyl groups. The template removal from the imprinted nanoparticles was readily achieved by washing with a dilute acidic detergent solution at 4 °C. As-prepared imprinted nanoparticles showed greatly higher imprinting factor and specific rebinding than obtained with the same recipe but by solution polymerization (SP). Moreover, such imprinted nanomaterials exhibited satisfactory rebinding selectivity, kinetics and reusability.

  4. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    PubMed Central

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-01-01

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

  5. Tyrosine-Selective Functionalization for Bio-Orthogonal Cross-Linking of Engineered Protein Hydrogels.

    PubMed

    Madl, Christopher M; Heilshorn, Sarah C

    2017-03-15

    Engineered protein hydrogels have shown promise as artificial extracellular matrix materials for the 3D culture of stem cells due to the ability to decouple hydrogel biochemistry and mechanics. The modular design of these proteins allows for incorporation of various bioactive sequences to regulate cellular behavior. However, the chemistry used to cross-link the proteins into hydrogels can limit what bioactive sequences can be incorporated, in order to prevent nonspecific cross-linking within the bioactive region. Bio-orthogonal cross-linking chemistries may allow for the incorporation of any arbitrary bioactive sequence, but site-selective and scalable incorporation of bio-orthogonal reactive groups such as azides that do not rely on commonly used amine-reactive chemistry is often challenging. In response, we have optimized the reaction of an azide-bearing 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with engineered elastin-like proteins (ELPs) to selectively azide-functionalize tyrosine residues within the proteins. The PTAD-azide functionalized ELPs cross-link with bicyclononyne (BCN) functionalized ELPs via the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction to form hydrogels. Human mesenchymal stem cells and murine neural progenitor cells encapsulated within these hydrogels remain highly viable and maintain their phenotypes in culture. Tyrosine-specific modification may expand the number of bioactive sequences that can be designed into protein-engineered materials by permitting incorporation of lysine-containing sequences without concern for nonspecific cross-linking.

  6. Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels.

    PubMed

    Köhnke, Tobias; Elder, Thomas; Theliander, Hans; Ragauskas, Arthur J

    2014-01-16

    Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with CNCs after which the suspension was frozen unidirectionally in order to control the ice crystal formation and by that the pore morphology of the material. Finally the ice crystal templates were removed by freeze-drying. During the freeze-casting process hemiacetal bonds are formed between the aldehyde groups and hydroxyl groups, either on other xylan molecules or on CNCs, which cross-links the system. The proposed cross-linking reaction was confirmed by using cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The pore morphology of the obtained materials was analyzed by scanning electron microscopy (SEM). The materials were also tested for compressive strength properties, both in dry and water swollen state. All together this study describes a novel combined freeze-casting/cross-linking process which enables fabrication of nanoreinforced biopolymer-based hydrogels with controlled porosity and 3-D architecture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Cross-linking connectivity in bone collagen fibrils: the COOH-terminal locus of free aldehyde

    NASA Technical Reports Server (NTRS)

    Otsubo, K.; Katz, E. P.; Mechanic, G. L.; Yamauchi, M.

    1992-01-01

    Quantitative analyses of the chemical state of the 16c residue of the alpha 1 chain of bone collagen were performed on samples from fetal (4-6-month embryo) and mature (2-3 year old) bovine animals. All of this residue could be accounted for in terms of three chemical states, in relative amounts which depended upon the age of the animal. Most of the residue was incorporated into either bifunctional or trifunctional cross-links. Some of it, however, was present as free aldehyde, and the content increased with maturation. This was established by isolating and characterizing the aldehyde-containing peptides generated by tryptic digestion of NaB3H4-reduced mature bone collagen. We have concluded that the connectivity of COOH-terminal cross-linking in bone collagen fibrils changes with maturation in the following way: at first, each 16c residue in each of the two alpha 1 chains of the collagen molecule is incorporated into a sheet-like pattern of intermolecular iminium cross-links, which stabilizes the young, nonmineralized fibril as a whole. In time, some of these labile cross-links maturate into pyridinoline while others dissociate back to their precursor form. The latter is likely due to changes in the molecular packing brought about by the mineralization of the collagen fibrils. The resultant reduction in cross-linking connectivity may provide a mechanism for enhancing certain mechanical characteristics of the skeleton of a mature animal.

  8. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.

    PubMed

    Dash, Rajalaxmi; Foston, Marcus; Ragauskas, Arthur J

    2013-01-16

    This study demonstrates the preparation of a renewable and biocompatible hydrogel with superior mechanical properties consisting of a gelatin matrix cross-linked with oxidized cellulose nanowhiskers. We found an increased degree of chemical cross-linking (0.14-17%) between gelatin and nanowhiskers with the increased amount of aldehyde contents (0.062-0.230mmolg(-1)). (1)H nuclear magnetic resonance (NMR) T(2) relaxation experiments on D(2)O swollen hydrogels demonstrated systems consisting of both gelatin and cellulose nanowhiskers displayed a higher percentage of "ridge" protons, attributed in part to increasing chemical cross-linking junction points between gelatin and nanowhiskers. This increase in hydrogel rigidity not only modified local chain dynamics but also influenced gel swelling, showing relatively reduced water uptake ability than that of the neat gelatin. Rheological measurements confirmed a 150% improvement in storage modulus (G') of the cross-linked hydrogels compared to neat gelatin. Chemical cross-linking also increased the resistance of the gels towards thermal degradation above the melting temperature of gelatin as observed by thermal scanning experiments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Availability of fluorescence spectroscopic in the accompaniment of formation of corneal cross-linking

    NASA Astrophysics Data System (ADS)

    Costa, M. M.; Kurachi, C.; Bagnato, V. S.; Faria e Sousa, S. J.; Ventura, L.

    2010-02-01

    The corneal cross-linking is a method that associates riboflavin and ultraviolet light to induce a larger mechanical resistance at cornea. This method has been used for the treatment of Keratoconus. Since cross-linking is recent as treatment, there is a need to verify the effectiveness of the method. Therefore, the viability of the fluorescence spectroscopy technique to follow the cross-linking formation at cornea was studied. Corneas were divided in two measuring procedures: M1 (cornea + riboflavin), and M2 (cornea + riboflavina + light irradiation, 365nm). For fluorescence measurements, a spectrofluorimeter was used, where several wavelengths were selected (between 320nm and 370nm) for cornea excitation. Several fluorescence spectra were collected, at 10 min-interval, during 60 min. Spectra allowed one to observe two very well defined bands of fluorescence: the first one at 400nm (collagen), and the second one at 520nm (riboflavin). After spectra analyses, a decrease of collagen fluorescence was observed for both groups. For riboflavin, on the other hand, there was a fluorescence increase for M1, and a decrease for M2. Thus, it is possible to conclude that it this technique is sensitive for the detection of tissue structural changes during cross-linking treatment, encouraging subsequent studies on quantification of cross-linking promotion in tissue.

  10. Wear of moderately cross-linked polyethylene in fixed-bearing total knee replacements.

    PubMed

    Brockett, Claire L; Jennings, Louise M; Hardaker, Catherine; Fisher, John

    2012-07-01

    Cross-linked polyethylene has been introduced into total joint replacement to improve wear resistance. Although the performance of highly cross-linked polyethylene is well documented clinically and experimentally for total hip replacements, the reduction in mechanical properties with increasing irradiation is of concern for application to total knee replacement. The aim of this study was to investigate the wear performance of a moderately cross-linked polyethylene material in a fixed-bearing total knee replacement. The study was conducted using two femoral geometries, a conventional cruciate-retaining femoral and a high-flexion femoral geometry. The femoral geometry appeared to have no effect on the wear of the knee replacement under standard gait conditions. A significant reduction in wear volume was measured with the moderately cross-linked polyethylene compared with the conventional polyethylene over a six-million-cycle wear study. This study indicates the use of a moderately cross-linked polyethylene in a fixed-bearing total knee replacement may provide a low wearing option for total knee replacement.

  11. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks

    PubMed Central

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-01-01

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  12. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks.

    PubMed

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-10-05

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified.

  13. Structure and pasting properties of alkaline-treated phosphorylated cross-linked waxy maize starches.

    PubMed

    Shukri, Radhiah; Shi, Yong-Cheng

    2017-01-01

    The objectives of this study were to determine the stability of cross-linked bonds of starch at different pH values and their effects on the pasting property of waxy maize starch cross-linked by 0.05% and 3% sodium trimetaphosphate/sodium tripolyphosphate. The cross-linked waxy maize starch (CLWMS) was slurried (40%, w/w) and subjected to alkali treatments of pH 9, 10, 11, and 12 at 40°C for 4h. The phosphorus in 3% CLWMS decreased with increasing pH and remained unchanged in 0.05% CLWMS for all pH treatments. Decreased settling volumes indicated the reduction of swelling power for the alkali-treated CLWMS at pH 11 and 12. The (31)P NMR spectra of 3% CLWMS at pH 12 showed decreased cyclic monostarch phosphate, monostarch monophosphate, and monostarch diphosphate, but significantly increased distarch monophosphate. Alkali treatments of phosphorylated cross-linked starches offer a way to manipulate the rheological properties of cross-linked starch for desired food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Supercritical CO₂ Foaming of Radiation Cross-Linked Isotactic Polypropylene in the Presence of TAIC.

    PubMed

    Yang, Chen-Guang; Wang, Mou-Hua; Zhang, Ming-Xing; Li, Xiao-Hu; Wang, Hong-Long; Xing, Zhe; Ye, Lin-Feng; Wu, Guo-Zhong

    2016-12-07

    Since the maximum foaming temperature window is only about 4 °C for supercritical CO₂ (scCO₂) foaming of pristine polypropylene, it is important to raise the melt strength of polypropylene in order to more easily achieve scCO₂ foaming. In this work, radiation cross-linked isotactic polypropylene, assisted by the addition of a polyfunctional monomer (triallylisocyanurate, TAIC), was employed in the scCO₂ foaming process in order to understand the benefits of radiation cross-linking. Due to significantly enhanced melt strength and the decreased degree of crystallinity caused by cross-linking, the scCO₂ foaming behavior of polypropylene was dramatically changed. The cell size distribution, cell diameter, cell density, volume expansion ratio, and foaming rate of radiation-cross-linked polypropylene under different foaming conditions were analyzed and compared. It was found that radiation cross-linking favors the foamability and formation of well-defined cell structures. The optimal absorbed dose with the addition of 2 wt % TAIC was 30 kGy. Additionally, the foaming temperature window was expanded to about 8 °C, making the handling of scCO₂ foaming of isotactic polypropylene much easier.

  15. Alkali reversal of psoralen cross-link for the targeted delivery of psoralen monoadduct lesion

    SciTech Connect

    Yeung, A.T.; Dinehart, W.J.; Jones, B.K.

    1988-08-23

    Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. The authors used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90/sup 0/C (BCR). The BCR reaction is more efficient than the photoreversal reaction. They show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine based freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, they have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site.

  16. Site specificity of psoralen-DNA interstrand cross-linking determined by nuclease Bal31 digestion

    SciTech Connect

    Zhen, W.; Buchardt, O.; Nielsen, H.; Nielsen, P.E.

    1986-10-21

    A novel method for determination of psoralen photo-cross-linking sites in double-stranded DNA is described, which is based on a pronounced inhibition of Bal31 exonuclease activity by psoralen-DNA interstrand cross-links. The results using a 51 base pair fragment of plasmid pUC19 and a 346 base pair fragment of pBR322 show that 5'-TA sequences are preferred cross-linking sites compared to 3'-TA sequences. They also indicate that sequences flanking the 5'-TA site influence the cross-linking efficiency at the site. The DNA photo-cross-linking by 4,5',8-trimethylpsoralen and 8-methoxypsoralen was analyzed, and these two psoralens showed identical site specificity. The 5'-TA preference is rationalized on the basis of the local DNA structure in terms of ..pi..-..pi.. electronic interaction between the thymines and the intercalated psoralens, as well as on the base tilt angles of the DNA.

  17. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  18. Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde.

    PubMed

    Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

    2013-05-13

    This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm⁻¹, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug.

  19. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  20. Organization of photosystem I polypeptides examined by chemical cross-linking

    NASA Technical Reports Server (NTRS)

    Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

    1996-01-01

    Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

  1. Mechanical and biocompatible characterization of a cross-linked collagen-hyaluronic acid wound dressing.

    PubMed

    Kirk, James F; Ritter, Gregg; Finger, Isaac; Sankar, Dhyana; Reddy, Joseph D; Talton, James D; Nataraj, Chandra; Narisawa, Sonoko; Millán, José Luis; Cobb, Ronald R

    2013-01-01

    Collagen scaffolds have been widely employed as a dermal equivalent to induce fibroblast infiltrations and dermal regeneration in the treatment of chronic wounds and diabetic foot ulcers. Cross-linking methods have been developed to address the disadvantages of the rapid degradation associated with collagen-based scaffolds. To eliminate the potential drawbacks associated with glutaraldehyde cross-linking, methods using a water soluble carbodiimide have been developed. In the present study, the glycosaminoglycan (GAG) hyaluronic acid (HA), was covalently attached to an equine tendon derived collagen scaffold using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) to create ntSPONGE The HA was shown to be homogeneously distributed throughout the collagen matrix. In vitro analyses of the scaffold indicated that the cross-linking enhanced the biological stability by decreasing the enzymatic degradation and increasing the thermal denaturation temperature. The material was shown to support the attachment and proliferation of mouse L929 fibroblast cells. In addition, the cross-linking decreased the resorption rate of the collagen as measured in an intramuscular implant model in rabbits. The material was also shown to be biocompatible in a variety of in vitro and in vivo assays. These results indicate that this cross-linked collagen-HA scaffold, ntSPONGE has the potential for use in chronic wound healing.

  2. Lignin cross-links with cysteine- and tyrosine-containing peptides under biomimetic conditions.

    PubMed

    Diehl, Brett G; Brown, Nicole R

    2014-10-22

    The work presented here investigates the cross-linking of various nucleophilic amino acids with lignin under aqueous conditions, thus providing insight as to which amino acids might cross-link with lignin in planta. Lignin dehydrogenation polymer (DHP) was prepared in aqueous solutions that contained tripeptides with the general structure XGG, where X represents an amino acid with a nucleophilic side chain. Fourier-transform infrared spectroscopy and energy dispersive X-ray spectroscopy showed that peptides containing cysteine and tyrosine were incorporated into the DHP to form DHP-CGG and DHP-YGG adducts, whereas peptides containing other nucleophilic amino acids were not incorporated. Scanning electron microscopy showed that the physical morphology of DHP was altered by the presence of peptides in the aqueous solution, regardless of peptide incorporation into the DHP. Nuclear magnetic resonance (NMR) spectroscopy showed that cysteine-containing peptide cross-linked with lignin at the lignin α-position, whereas in the case of the lignin-tyrosine adduct the exact cross-linking pathway could not be determined. This is the first study to use NMR to confirm cross-linking between lignin and peptides under biomimetic conditions. The results of this study may indicate the potential for lignin-protein linkage formation in planta, particularly between lignin and cysteine- and/or tyrosine-rich proteins.

  3. Photoaffinity Labeling Reveals Nuclear Proteins that Uniquely Recognize Cisplatin-DNA Interstrand Cross-Links

    PubMed Central

    Zhu, Guangyu; Lippard, Stephen J.

    2009-01-01

    The DNA-binding inorganic compound cisplatin is one of the most successful anticancer drugs. The detailed mechanism by which cells recognize and process of cisplatin-DNA damage is of great interest. Although the family of proteins that bind cisplatin 1,2- and 1,3-intrastrand cross-links has been identified, much less is known about cellular protein interactions with cisplatin interstrand cross-links (ICLs). In order to address this question, a photoreactive analogue of cisplatin, PtBP6, was used to construct a DNA duplex containing a site-specific platinum ICL. This DNA probe was characterized and used in photo-cross-linking experiments to separate and identify nuclear proteins that bind to the ICL by peptide mass fingerprint analysis. Several such proteins were discovered, including PARP-1, hMutSβ, DNA ligase III, XRCC1, and PNK. The photo-cross-linking approach was independently validated by an electrophoretic mobility shift assay demonstrating hMutSβ binding to a cisplatin ICL. Proteins that recognize the platinum ICL were also identified in cisplatin resistant cells, cells halted at various phases of the cell cycle, and in different carcinoma cells. Nuclear proteins that bind to the platinum ICL differ from those binding to intrastrand cross-links, indicating different mechanisms for disruption of cellular functions. PMID:19364127

  4. Orientation birefringence of cross-linked rubber containing low-mass compound

    NASA Astrophysics Data System (ADS)

    Kiyama, Ayumi; Nobukawa, Shogo; Yamauchi, Masayuki

    2015-05-01

    Molecular orientation of low-mass compounds (LMCs) in a cross-linked rubber is studied in order to obtain the basic information on the dynamics of LMC molecules in a polymer beyond the glass transition temperature. A small amount of LMCs such as 4-cyano-4'-pentylbiphenyl (5CB), tricresylphosphate (TCP), and styrene-based tackifier (TF) is added into polybutadiene rubber (BR). After cross-linking reaction, the sheet samples are used to evaluate the orientation birefringence during stretching and stress relaxation. The rectangular films, cut out from the cross-linked sheets, are set in a uniaxial stretching machine equipped with an optical system to measure both birefringence and tensile stress simultaneously. It is confirmed that orientation birefringence is proportional to the stress for not only pure cross-linked BR, but also cross-linked BR containing an LMC in a wide range of strain. Even after stretching, the birefringence does not change as far as the sample is kept at a constant strain. The results suggest that the LMC molecules are forced to orient with polymer chains by the strong intermolecular orientation correlation. Because of the LMC orientation, the stress-optical coefficient CR is enhanced by the addition of 5CB and TCP, but depressed by TF. Therefore, the LMC doping can be used to control the birefringence of a retardation film.

  5. F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling

    PubMed Central

    1995-01-01

    Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

  6. Cross-linking study on skeletal muscle actin: properties of suberimidate-treated actin.

    PubMed

    Ohara, O; Takahashi, S; Ooi, T; Fujiyoshi, Y

    1982-06-01

    Cross-linking experiments were performed on muscle skeletal actin, using imidoesters of various chain lengths. Chemical analyses on all products except one (derived from succinimidate) show evidence of the presence of intramolecular cross-links in the molecule. The detailed properties of suberimidate-treated actin (SA) are as follows: SA contains nearly 1 mol of intramolecular cross-link per mol of actin and less than 15% of intermolecularly cross-linked products. Even at a low salt concentration, SA is polymeric, exchanges slowly its bound nucleotide with free nucleotides in solution, and shows an F-actin-type CD spectrum. Electron micrographs of SA reveal that SA exists actually as fibrous polymers in solutions of low ionic strength, although the fibers seem to be less rigid than those at high salt concentration. The F-form of SA at a high salt concentration is indistinguishable from intact F-actin. SA can bind heavy meromyosin and activate the ATPase of heavy meromyosin as observed for intact F-actin. Tropomyosin binds SA only at a high salt concentration. These results show that SA possesses the properties of F-actin even in media of low salt concentration, which are favorable for depolymerization of F-actin. Thus, we may infer that the conformation of SA is frozen in the F-state of actin by the introduction of intramolecular cross-links in the protein.

  7. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Novel Technique of Transepithelial Corneal Cross-Linking Using Iontophoresis in Progressive Keratoconus

    PubMed Central

    Raffa, Paolo; Rosati, Marianna

    2016-01-01

    In this work, the authors presented the techniques and the preliminary results at 6 months of a randomized controlled trial (NCT02117999) comparing a novel transepithelial corneal cross-linking protocol using iontophoresis with the Dresden protocol for the treatment of progressive keratoconus. At 6 months, there was a significant average improvement with an average flattening of the maximum simulated keratometry reading of 0.72 ± 1.20 D (P = 0.01); in addition, corrected distance visual acuity improved significantly (P = 0.08) and spherical equivalent refraction was significantly less myopic (P = 0.02) 6 months after transepithelial corneal cross-linking with iontophoresis. The novel protocol using iontophoresis showed comparable results with standard corneal cross-linking to halt progression of keratoconus during 6-month follow-up. Investigation of the long-term RCT outcomes are ongoing to verify the efficacy of this transepithelial corneal cross-linking protocol and to determine if it may be comparable with standard corneal cross-linking in the management of progressive keratoconus. PMID:27597895

  9. Tunable porosity and polarity of polar post-cross-linked resins and selective adsorption.

    PubMed

    Wang, Xiaomei; Zhang, Ting; Huo, Jiaqi; Huang, Jianhan; Liu, You-Nian

    2017-02-01

    Herein we synthesized three polar post-cross-linked resins by adjusting the initial cross-linking degree of the precursor copolymers, and found that the porosity and polarity of these resins could be effectively tuned. The polar post-cross-linked resin with the initial cross-linking degree of 10% (abbreviated as PVE_10%_pc) possessed a much greater BET surface area and almost all micro/mesopores, but lower content of ester groups, while that with the initial cross-linking degree of 60% (named as PVE_60%_pc) had a much less BET surface area, less micro/mesopores and considerable macropores, but higher content of ester groups. The different porosity and polarity of these resins endowed them with different selectivity for the adsorption of aromatic compounds. PVE_10%_pc owned the largest equilibrium capacity to phenol whilst PVE_40%_pc was the most efficient for adsorption of benzoic acid, and hydrogen bonding, hydrophobic interaction and π-π stacking were the main driving forces for the adsorption.

  10. Cross-Linked Protein Nanofilter with Antibacterial Properties for Multifunctional Air Filtration.

    PubMed

    Souzandeh, Hamid; Molki, Banafsheh; Zheng, Min; Beyenal, Haluk; Scudiero, Louis; Wang, Yu; Zhong, Wei-Hong

    2017-07-12

    Development of high-performance nanomaterials with not only strong ability to trap the pollutants but also good structure stability under varying environmental conditions is a critical need for air-filtration applications. However, it has been very challenging for a filtering material to simultaneously realize multifunctional air filtration and good environmental stability. Here, based on our previous studies on protein-based nanofilters, we report a cross-linked protein nanofabric to address this challenging issue. It is found that cross-linked protein nanofabrics can significantly improve the structure stability against different moisture levels and temperatures, while maintaining the multifunctional filtration performance. Moreover, it is demonstrated that the cross-linked protein nanomaterials also possess antibacterial properties, such as Shewanella oneidensis bacteria, further improving the environmental stability. The effects of cross-linking with different loadings of cross-linking agent on the structure stability and filtration performance are further investigated at different humidity levels and temperatures. This study provides a cost-effective solution for advanced "green" nanomaterials with excellent performance in both filtration functions and structure stability under varying environment.

  11. Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

    PubMed Central

    Deepa, G; Thulasidasan, Arun Kumar T; Anto, Ruby John; Pillai, J Jisha; Kumar, GS Vinod

    2012-01-01

    Objective: To investigate cross-linked hydrogels prepared via inverse emulsion polymerization to entrap poorly aqueous soluble drugs. Polyethylene glycol cross-linked acrylic polymers were synthesized and the loading and release of curcumin, a model hydrophobic drug, was investigated. Methods: Physicochemical characteristics of hydrogels were studied with 13C nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, and swelling. Polymerization of the acrylic acid with cross-linked polyethylene glycol diacrylate was characterized with 13C nuclear magnetic resonance imaging and Fourier transform infrared spectroscopy. Results: The in vitro release rate of curcumin showed that there was a sustained release from the hydrogel with increased cross-linking; the release rate depended on the pH of the releasing medium. Intracellular and cytotoxicity studies were carried out in human cervical cancer cell lines. Conclusion: The results suggest cross-linked acrylic polymers can be used as efficient vectors for pH-sensitive, controlled delivery of hydrophobic drugs. PMID:22888244

  12. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    PubMed

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties.

  13. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

    PubMed Central

    Sun, Fei; Jiang, Yuan; Xu, Yanfei; Shi, Hongcan; Zhang, Siquan; Liu, Xingchen; Pan, Shu; Ye, Gang; Zhang, Weidong; Zhang, Fangbiao; Zhong, Chonghao

    2016-01-01

    Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response. PMID:27080716

  14. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    NASA Astrophysics Data System (ADS)

    Süske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-01

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  15. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. xiNET: Cross-link Network Maps With Residue Resolution*

    PubMed Central

    Combe, Colin W.; Fischer, Lutz; Rappsilber, Juri

    2015-01-01

    xiNET is a visualization tool for exploring cross-linking/mass spectrometry results. The interactive maps of the cross-link network that it generates are a type of node-link diagram. In these maps xiNET displays: (1) residue resolution positional information including linkage sites and linked peptides; (2) all types of cross-linking reaction product; (3) ambiguous results; and, (4) additional sequence information such as domains. xiNET runs in a browser and exports vector graphics which can be edited in common drawing packages to create publication quality figures. Availability: xiNET is open source, released under the Apache version 2 license. Results can be viewed by uploading data to http://crosslinkviewer.org/ or by downloading the software from http://github.com/colin-combe/crosslink-viewer and running it locally. PMID:25648531

  17. UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids

    NASA Astrophysics Data System (ADS)

    Kim, G. T.; Appetecchi, G. B.; Carewska, M.; Joost, M.; Balducci, A.; Winter, M.; Passerini, S.

    In this manuscript is reported an attempt to prepare high ionic conductivity lithium polymer electrolytes by UV cross-linking the poly(ethyleneoxide) (briefly called PEO) polymer matrix in presence of the plasticizing lithium salt, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and an ionic liquid of the pyrrolidinium family (N-alkyl- N-methylpyrrolidinium TFSI) having a common anion with the lithium salt. It is demonstrated that polymer electrolytes with room temperature ionic conductivities of nearly 10 -3 S cm -1 could be obtained as a result of the reduced crystallinity of the ternary electrolytes. The results clearly indicate that the cross-linked ternary electrolyte shows superior mechanical properties with respect to the non-cross-linked electrolytes and higher conductivities with respect to polymer electrolytes containing none or less ionic liquid.

  18. Synthesis of acrylic and allylic bifunctional cross-linking monomers derived from PET waste

    NASA Astrophysics Data System (ADS)

    Cruz-Aguilar, A.; Herrera-González, A. M.; Vázquez-García, R. A.; Navarro-Rodríguez, D.; Coreño, J.

    2013-06-01

    An acrylic and two novel allylic monomers synthesized from bis (hydroxyethyl) terephthalate, BHET, are reported. This was obtained by glycolysis of post-consumer PET with boiling ethylene glycol. The bifunctional monomer bis(2-(acryloyloxy)ethyl) terephthalate was obtained from acryloyl chloride, while the allylic monomers 2-(((allyloxi)carbonyl)oxy) ethyl (2-hydroxyethyl) terephthalate and bis(2-(((allyloxi)carbonyl)oxy)ethyl) terephthalate, from allyl chloroformate. Cross-linking was studied in bulk polymerization using two different thermal initiators. Monomers were analyzed by means of 1H NMR and the cross-linked polymers by infrared spectroscopy. Gel content higher than 90% was obtained for the acrylic monomer. In the case of the mixture of the allylic monomers, the cross-linked polymer was 80 % using BPO initiator, being this mixture 24 times less reactive than the acrylic monomer.

  19. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    NASA Astrophysics Data System (ADS)

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  20. A genetic anomaly of oriented collagen biosynthesis and cross-linking: Keratoconus.

    PubMed

    Bourges, J L; Robert, A M; Robert, L

    2015-02-01

    Oriented collagen biosynthesis is one of the major mechanisms involved in tissue and organ formation during development. Corneal biogenesis is one example. Defects in this process lead to anomalies in tissue structure and function. The transparency of cornea and its achievement are a good example as well as its pathological modifications. Keratoconus is one example of this type of pathologies, involving also inappropriate cross-linking of collagen fibers. Among the tentatives to correct this anomaly, the riboflavin-potentiated UV-cross-linking (CXL) of keratoconus corneas appears clinically satisfactory, although none of the experiments and clinical results published prove effective cross-linking. The published results are reviewed in this article. Copyright © 2014. Published by Elsevier SAS.

  1. Photochromic cross-link polymer for color changing and sensing surface

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Shi, Jianmin; Forsythe, Eric; Srour, Merric

    2016-12-01

    Photochromic cross-link polymers were developed using patented ultraviolet (UV) photoinitiator and commercial photochromic dyes. The photochromic dyes have been characterized by measuring absorbance before and after UV activation using UV-visible (Vis) spectrometry with varying activation intensities and wavelengths. Photochromic cross-link polymers were characterized by a dynamic xenon and UV light activation and fading system. The curing processes on cloth were established and tested to obtain effective photochromic responses. Both PulseForge photonic curing and PulseForge plus heat surface curing processes had much better photochromic responses (18% to 19%, 16% to 25%, respectively) than the xenon lamp treatment (8%). The newly developed photochromic cross-link polymer showed remarkable coloration contrasts and fast and comparable coloration and fading rates. Those intelligent, controlled color changing and sensing capabilities will be used on flexible and "drapeable" surfaces, which will incorporate ultra-low power sensors, sensor indicators, and identifiers.

  2. Tuning of cross-linking and mechanical properties of laser-deposited poly (methyl methacrylate) films

    SciTech Connect

    Sueske, Erik; Scharf, Thorsten; Krebs, Hans-Ulrich; Panchenko, Elena; Junkers, Thomas; Egorov, Mark; Buback, Michael; Kijewski, Harald

    2005-03-15

    The chemical composition, amount of cross-linking and its influence on the mechanical properties of poly(methyl methacrylate) (PMMA) thin films produced by pulsed laser deposition (PLD) at a wavelength of 248 nm under ultrahigh vacuum were investigated by infrared spectroscopy, scanning electron microscopy, size-exclusion chromatography, thermogravimetric analysis, and nanoindentation experiments. The films consist of two components, one fraction with a molecular weight well below that of the target material and a second fraction, which is cross-linked. Compared to bulk material, the Young's modulus of the film is increased. The amount of cross-linking in the film can be tuned by the applied laser fluence leading to changes of the mechanical properties.

  3. Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels

    NASA Astrophysics Data System (ADS)

    Syverud, Kristin; Kirsebom, Harald; Hajizadeh, Solmaz; Chinga-Carrasco, Gary

    2011-12-01

    Cellulose nanofibrils were produced from P. radiata kraft pulp fibers. The nanofibrillation was facilitated by applying 2,2,6,6-tetramethylpiperidinyl-1-oxyl-mediated oxidation as pretreatment. The oxidized nanofibrils were cross-linked with polyethyleneimine and poly N-isopropylacrylamide- co-allylamine- co-methylenebisacrylamide particles and were frozen to form cryo-structured gels. Samples of the gels were critical-point dried, and the corresponding structures were assessed with scanning electron microscopy. It appears that the aldehyde groups in the oxidized nanofibrils are suitable reaction sites for cross-linking. The cryo-structured materials were spongy, elastic, and thus capable of regaining their shape after a given pressure was released, indicating a successful cross-linking. These novel types of gels are considered potential candidates in biomedical and biotechnological applications.

  4. In vitro progesterone release from γ-irradiated cross-linked polydimethylsiloxane

    NASA Astrophysics Data System (ADS)

    Mashak, Arezou; Taghizadeh, S. Mojtaba

    2006-02-01

    Instead of conventional method such as thermal cross-linking method, γ-irradiation is used to improve the properties of polydimethylsiloxane (PDMS) as a matrix containing progesterone. The thermal cross-linking of PDMS monolithic systems containing drug is deleterious to the drug. Usually, all drugs are unstable both at high vulcanizing temperature and in the presence of peroxide catalysts. This novel method is found to be effective for the stability of the controlled drug delivery systems. The PDMS (three medical grades) matrices were exposed to γ-irradiation in ambient conditions with total doses of 50, 75 and 100 kGy. The mechanical properties confirmed that the samples are cross-linked. It is found that the progesterone release rate is affected by irradiation treatment. It is deduced, however that there is no significant difference in the release profile of progesterone by increasing the irradiation dose from 50 to 100 kGy.

  5. Localization of the dominant non-enzymatic intermolecular cross-linking sites on fibrous collagen.

    PubMed

    Chiue, Hiroko; Yamazoye, Tsutako; Matsumura, Sueo

    2015-06-05

    Previous studies have shown that fibrous collagen undergoes intermolecular cross-linking at multiple sites of the elongated triple-helical regions among adjacent juxtaposed collagen molecules on incubation with a very high concentration of reducing sugar such as 200 mM ribose, and the similarity of the changes in its physicochemical properties to that of senescent collagen aged in vivo has been emphasized. In the present study, however, it was found that when incubated with less than 30 mM ribose, fibrous collagen underwent intermolecular cross-linking primarily between the telopeptide region of a collagen molecule and the triple-helical region of another adjacent collagen molecule, and intermolecular cross-linking between the triple-helical regions of adjacent collagen molecules was very small. Physiological significance of the previous studies thus needs to be reevaluated.

  6. Three-dimensional multimodal microscopy of rabbit cornea after cross-linking treatment

    NASA Astrophysics Data System (ADS)

    Krüger, A.; Hovakimyan, M.; Ramírez, D. F.; Lorbeer, R.-A.; Kröger, M.; Stachs, O.; Wree, A.; Guthoff, R. F.; Lubatschowski, H.; Heisterkamp, A.

    2010-02-01

    Cross-linking of stromal collagen with Riboflavin and UVA radiation is an alternative treatment of keratoconus. After the cross-linking a wound healing process starts with the regeneration of the abraded epithelial layer and the stromal keratocyte-network. To clarify possible side effects by visualization we established an imaging platform for the multimodal three-dimensional imaging of the cornea and looked for differences between normal and cross-linked rabbit corneae. The microscopy system utilizes femtosecond laser light for two photon excitation of autofluorescent metabolic compounds, second harmonic imaging in forward and backward direction for the study of stromal collagen-I structure and confocal detection of the backscattered femtosecond laser light for cell detection. Preliminary results show signatures of treatment 5 weeks after the intervention in all imaging modalities.

  7. Enzymatic cross-linking of purple membranes catalyzed by bacterial transglutaminase.

    PubMed

    Seitz, A; Schneider, F; Pasternack, R; Fuchsbauer, H L; Hampp, N

    2001-01-01

    It was found that bacterial transglutaminase (TGase) facilitates selective cross-linking of bacteriorhodopsin (BR) in purple membrane (PM) form under mild conditions. Fluorescent probes were used to detect that the membrane protein BR may act as a glutamine donor as well as a lysine donor for TGase. The binding sites were determined to be Gln-3 as the reactive glutamine, and Lys-129 is the corresponding lysine residue. Upon incubation of PM with TGase, cross-linking of PM patches can be achieved without an additional spacer molecule. To our knowledge, this is the first time that an intermembrane cross-linking of membrane-bound proteins is reported. Furthermore, this finding may provide the ability to achieve covalent linkage of complete purple membrane patches to synthetic polymers.

  8. Production of Materials with Spatially-Controlled Cross-Link Density via Vat Photopolymerization.

    PubMed

    Peterson, Gregory I; Schwartz, Johanna J; Zhang, Di; Weiss, Benjamin M; Ganter, Mark A; Storti, Duane W; Boydston, Andrew J

    2016-10-11

    We describe an efficient method to produce objects comprising spatially controlled and graded cross-link densities using vat photopolymerization additive manufacturing (AM). Using a commercially available diacrylate-based photoresin, 3D printer, and digital light processing (DLP) projector, we projected grayscale images to print objects in which the varied light intensity was correlated to controlled cross-link densities and associated mechanical properties. Cylinder and bar test specimens were used to establish correlations between light intensities used for printing and cross-link density in the resulting specimens. Mechanical testing of octet truss unit cells in which the properties of the crossbars and vertices were independently modified revealed unique mechanical responses from the different compositions. From the various test geometries, we measured changes in mechanical properties such as increased strain-to-break in inhomogeneous structures in comparison with homogeneous variants.

  9. Mechanism-based protein cross-linking probes to investigate carrier protein-mediated biosynthesis.

    PubMed

    Worthington, Andrew S; Rivera, Heriberto; Torpey, Justin W; Alexander, Matthew D; Burkart, Michael D

    2006-12-20

    Fatty acid, polyketide, and nonribosomal peptide biosynthetic enzymes perform structural modifications upon small molecules that remain tethered to a carrier protein. This manuscript details the design and analysis of cross-linking substrates that are selective for acyl carrier proteins and their cognate condensing enzymes. These inactivators are engineered through a covalent linkage to fatty acid acyl carrier protein via post-translational modification to contain a reactive probe that traps the active site cysteine residue of ketosynthase domains. These proteomic tools are applied to Escherichia coli fatty acid synthase enzymes, where KASI and KASII selectively cross-link ACP-bound epoxide and chloroacrylate moieties. These mechanism-based, protein-protein fusion reagents also demonstrated cross-linking of KASI to type II polyketide ACPs, while nonribosomal peptide carrier proteins showed no reactivity. Similar investigations into protein-protein interactions, proximity effects, and substrate specificities will be required to complete the mechanistic understanding of these pathways.

  10. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    PubMed

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use.

  11. Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules.

    PubMed

    Liang, Yingkai; Kiick, Kristi L

    2016-02-08

    Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.

  12. Cross-linked block copolymer templated assembly of nanoparticle arrays with high density and position selectivity

    NASA Astrophysics Data System (ADS)

    Liu, Zhicheng; Chang, Tongxin; Huang, Haiying; Bai, Lu

    2016-10-01

    Patterning ordered nanoparticle arrays is crucial for the fascinating collective properties of nanoparticles. Block copolymer template provides us a platform for the simple and efficient assembly of nanoparticle arrays. In this work, cylinder-forming poly(styrene-block-2-vinylpyridine) thin film was firstly plasma-etched to expose poly(2-vinylpyridine) cylinders. Then the templates were cross-linked by small molecules so as to access gold nanoparticle arrays with both high density and excellent position selectivity. The cross-linking process significantly restrains the unfavorable surface reconstruction of the thin film. It is demonstrated that the quality of the nanoparticle array was affected by the degree of the cross-linking and the immersion time in nanoparticle solution. The highly ordered gold nanoparticle arrays are promising in several fields such as optics and surface enhanced Raman scattering (SERS).

  13. Abrasive wear and metallosis associated with cross-linked polyethylene in total hip arthroplasty.

    PubMed

    O'Brien, Sean T; Burnell, Colin D; Hedden, David R; Brandt, Jan-M

    2013-01-01

    A 34-year-old female patient received a cobalt-chromium (CoCr) alloy femoral head on cross-linked polyethylene total hip replacement for the revision of her fractured ceramic-on-ceramic total hip replacement. The CoCr alloy femoral head became severely worn due to third-body abrasive wear by ceramic particles that could not be removed by synovectomy or irrigation at revision surgery. Ceramic particles were found embedded in the cross-linked polyethylene liner. The CoCr alloy femoral head exhibited a total mass loss of 14.2 g and the generated wear particles triggered metallosis in the patient. The present case study suggests not revising a fractured ceramic-on-ceramic total hip replacement with a CoCr alloy femoral head and a cross-linked polyethylene liner to avoid metallosis due to third-body abrasive wear.

  14. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  15. Colour stability, opacity and cross-link density of composites submitted to accelerated artificial aging.

    PubMed

    Mundim, Fabrício Mariano; Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Consani, Simonides

    2010-06-01

    The study evaluated the influence of accelerated artificial aging on colour stability, opacity and cross-link density of resin-based composites (RBCs). Seven specimens were obtained of five RBCs (Heliomolar, 4 Seasons, Tetric Evo Ceram, SR Adoro), which were submitted to colour stability and opacity analysis and cross-link density evaluation. All tests were performed before and after aging. After statistical analysis (one-way ANOVA; Tukey; p<0.05), it was observed that QuiXfil and SR Adoro presented colour alteration values above those that are clinically acceptable (deltaE=5.77 and 4.34 respectively) and the variation in opacity was lowest for SR Adoro. There was an increase in the cross-link density of all studied materials after aging.

  16. In vitro calcification and in vivo biocompatibility of the cross-linked polypentapeptide of elastin

    SciTech Connect

    Wood, S.A.; Lemons, J.E.; Prasad, K.U.; Urry, D.W.

    1986-03-01

    The in vitro calcifiability and molecular weight dependence of calcification of the polypentapeptide, (L X Val1-L X Pro2-Gly3-L X Val4-Gly5)n, which had been gamma-irradiation cross-linked have been determined when exposed to dialyzates of normal, nonaugmented fetal bovine serum. The material was found to calcify: calcifiability was found to be highly molecular weight dependent and to be most favored when the highest molecular weight polymers (n approximately equal to 240) had been used for cross-linking. The in vivo biocompatibility, biodegradability, and calcifiability of the gamma-irradiation cross-linked polypentapeptide were examined in rabbits in both soft and hard tissue sites. The material was found to be biocompatible irrespective of its physical form and to be biodegradable but with n of 200 or less it was not shown to calcify or ossify in the rabbit tibial nonunion model.

  17. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis.

    PubMed

    Cui, Caixia; Chen, Haibin; Chen, Biqiang; Tan, Tianwei

    2017-02-01

    In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

  18. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    PubMed

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  19. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  20. Picosecond laser cross, linking histones to DNA in chromatin: implication in studying histone-DNA interactions

    NASA Astrophysics Data System (ADS)

    Angelov, Dimitar A.; Dimitrov, S.; Keskinova, E.; Pashev, I.; Russanova, V.; Stefanovsky, Yu.

    1991-05-01

    A picosecond UV laser radiation was used to cross-link proteins to DNA in nuclei, whole cells and different chromating preparations. All histones as well as high-mobility group 1 proten were identified immunochemically in the covalently linked protein-DNA complexes. Irradiation of the nuclieohistone resulted in cross-linking 20% of bound histones to DNA as a result of two-quantum photoreaction with a maximum quantum yield 3.10 -4 for double stranded DNA. When nuclei, total bromatin Hi-depleted chromatin and core particles were irradiated and then trypsinized or treated with clostripain to cleave respectively the N-, C- and N- terminal histone tails, no histones have been found covalently linked to DNA. However whilst the yield of cross-links was similar in total and H1-depleted chromatin in core particples the efficiencey was 3-4 times lower for H2A, H2B and H4 10-12 times lower for H3. This finding we consider as a direct evidence for interaction of non structured N- tails of core histones with linker DNA. Cross-linking in core particles depends on the ionic strength. All histones were identified in the complex formed up to 0.4 N NaCl, no cross-linking was observed when irradiation was carried out at salt concentration higher than 0.4 M. The cross-linking ability was preserved both upon physiological acetylation of histones knows to be restriced to the N-terminal tails and with chemically acetylated chromatin. This finding is direct evidence that postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA.

  1. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    SciTech Connect

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-04-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes.

  2. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering.

    PubMed

    Mathapati, Santosh; Bishi, Dillip Kumar; Guhathakurta, Soma; Cherian, Kotturathu Mammen; Venugopal, Jayarama Reddy; Ramakrishna, Seeram; Verma, Rama Shanker

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p>0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP-G-CA-ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP-G-CA-ET). DBP-G-CA-ET exhibited a significant (p>0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p<0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    NASA Technical Reports Server (NTRS)

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  4. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase.

    PubMed

    Truong, Van-Den; Clare, Debra A; Catignani, George L; Swaisgood, Harold E

    2004-03-10

    Modification of the functionality of whey proteins using microbial transglutaminase (TGase) has been the subject of recent studies. However, changes in rheological properties of whey proteins as affected by extensive cross-linking with TGase are not well studied. The factors affecting cross-linking of whey protein isolate (WPI) using both soluble and immobilized TGase were examined, and the rheological properties of the modified proteins were characterized. The enzyme was immobilized on aminopropyl glass beads (CPG-3000) by selective adsorption of the biotinylated enzyme on avidin that had been previously immobilized. WPI (4 and 8% w/w) in deionized water, pH 7.5, containing 10 mM dithiothreitol was cross-linked using enzyme/substrate ratios of 0.12-10 units of activity/g WPI. The reaction was carried out in a jacketed bioreactor for 8 h at 40 degrees C with continuous circulation. The gel point temperature of WPI solutions treated with 0.12 unit of immobilized TGase/g was slightly decreased, but the gel strength was unaffected. However, increasing the enzyme/substrate ratio resulted in extensive cross-linking of WPI that was manifested by increases in apparent viscosity and changes in the gelation properties. For example, using 10 units of soluble TGase/g resulted in extensive cross-linking of alpha-lactalbumin and beta-lactoglobulin in WPI, as evidenced by SDS-PAGE and Western blotting results. Interestingly, the gelling point of WPI solutions increased from 68 to 94 degrees C after a 4-h reaction, and the gel strength was drastically decreased (lower storage modulus, G'). Thus, extensive intra- and interchain cross-linking probably caused formation of polymers that were too large for effective network development. These results suggest that a process could be developed to produce heat-stable whey proteins for various food applications.

  5. Cross-link analysis of the C-telopeptide domain from type III collagen.

    PubMed Central

    Henkel, W

    1996-01-01

    Several peptides were isolated from tryptic digests of insoluble calf aorta matrix by chromatography. Reductive pyridylethylation of a tryptic 15 kDa pool released fragments deriving from the C-terminus of type III collagen. A 50-residue peptide Tc(III) was shown by sequence analysis to be the C-terminal peptide from the alpha 1(III)-chain, containing a helical and non-helical region of equal sizes. The peptide was further digested with collagenase to give Colc(III), comprising the complete C-terminal non-helical region of alpha 1(III) including a hydroxylysine in position 16c. The peptide Tc(III) x TN(III) was isolated, demonstrating covalent cross-linking between the C-terminal non-helical region of one type III molecule and the N-terminal helical cross-linking region of another. Its digestion with cyanogen bromide yielded the small fragments alpha 1(III)CB3B* and alpha 1(III)CB3C, confirming TN(III) as an N-terminal helical crosslink site. Sequence analysis of both Tc(III) x TN(III) and its collagenase-derived cross-linked peptide Colc(III) x TN(III) established the 4D-staggered alignment of adjacent collagen III molecules. The cross-link structure of both peptides was mainly dihydroxylysinonorleucine with a small amount of hydroxylysinonorleucine, indicating that the lysine residues involved in formation of the cross-links are both hydroxylated. No pyridinoline or histidinohydroxylysinonorleucine cross-links were found within the non-reduced C-telopeptide region of type III collagen. PMID:8809038

  6. Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy.

    PubMed

    Hu, Dongxin; Kluger, Ronald

    2008-01-07

    Chemically connected protein arrays have significant diverse applications including the production of red cell substitutes, bioconjugate drug delivery, and protein therapies. In order to make materials of defined structure, there is a need for efficient and accessible reagents. While chemical cross-linking with a multi-subunit protein can be achieved in high yield, connecting proteins to one another in a dendritic assembly along with concurrent cross-linking has met with limited success. This has now been overcome through the design and implementation of a readily prepared reagent with added reaction sites that compensate for competing hydrolysis. N,N',N''-Tris[bis(sodium methyl phosphate)isophthalyl]-1,3,5-benzenetricarboxamide (1), a hexakis(methyl phosphate) isophthalyl trimesoyl tris-amide, was designed and synthesized in high yield in three stages from a reactive trimesoyl core. This material has three pairs of coplanar cross-linking reaction sites in a symmetrical array. The presence of three sets of sites greatly increases the probability that at least two sets will produce cross-links within hemoglobin tetramers (in competition with hydrolysis) and thereby connect two cross-linked tetramers at the same time. Reaction of 1 with deoxyhemoglobin at pH 8.5 gives a material that contains two cross-linked hemoglobin tetramers connected to one another and to a constituent alphabeta dimer. Products were characterized by SDS-PAGE, MS, enzyme digestion and HPLC. The isolated dendritic-hemoglobin with 2.5 tetrameric components has the same oxygen affinity as native hemoglobin (P50 = 5.0 torr) and retains cooperativity (n50 = 2.0). Analysis of circular dichroism spectra indicates that the assembly retains proper folding of the globin chains while the hemes are in an altered environment.

  7. A novel 49-kilodalton protein from Artemia cross-links microtubules in vitro.

    PubMed

    Zhang, J; MacRae, T H

    1992-01-01

    A 49 kilodalton (kDa) protein, previously proposed to cross-link microtubules, was purified to apparent homogeneity from cell-free extracts of the brine shrimp Artemia. When incubated with tubulin under assembly conditions, the purified 49-kDa protein cross-linked the resulting microtubules. Preformed microtubules were also cross-linked when incubated with the 49-kDa protein. Upon centrifugation through sucrose cushions the 49-kDa protein cosedimented with microtubules, suggesting a stable association between the cross-linking protein and tubulin. Such microtubules were interconnected by particles which were circular, bilobed, or elongated in shape. Disruption of microtubule cross-linking and dissociation of the 49-kDa protein from microtubules occurred in the presence of ATP and 5'-adenylyl-imidodiphosphate (AMP-PNP), a nonhydrolyzable analogue of ATP. The 49-kDa protein was moderately resistant to heat, it did not stimulate tubulin assembly, and it did not react with antibodies to neural microtubule-associated proteins (MAPs) and kinesin. These observations indicate that the 49-kDa protein is different from many known MAPs, a conclusion strengthened by the inability of antibodies raised to the 49-kDa protein to recognize these proteins. The amino terminal 15 amino acid residues of the 49-kDa protein were determined by Edman digestion and an antibody raised to this peptide reacted with the 49-kDa protein on Western blots. Microtubule cross-linking was unaffected by the synthetic amino-terminal peptide, even when it was present at a fivefold molar excess over the 49-kDa protein. A search of three protein databanks revealed that the amino terminus of the 49-kDa protein is unique among published sequences.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells.

    PubMed

    Ma, David Hui-Kang; Lai, Jui-Yang; Cheng, Hsiao-Yun; Tsai, Chen-Chi; Yeh, Lung-Kun

    2010-09-01

    In ophthalmic tissue engineering, amniotic membrane (AM) is one of the most prevalent natural matrices used for limbal epithelial cell (LEC) cultivation and transplantation. However, the application of AM as a scaffold is limited by its low biomechanical strength and rapid biodegradation. The present study reports the development of 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linked AM as an LEC carrier. The collagenous tissue materials were modified with varying cross-linker concentrations (0-0.25 mmol EDC/mg AM) and were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC), ninhydrin assays, electron microscopy, light transmission measurements, mechanical and in vitro degradation tests, as well as diffusion permeability and cell culture studies. Our results showed that chemical cross-linking approaches saturation at concentrations of 0.05 mmol EDC/mg AM. The formation of cross-links (i.e., amide bonds) in the samples treated with 0.05 mmol EDC/mg AM may cause significant aggregation of tropocollagen molecules and collagen microfibrils without affecting cell morphology of biological tissues. With the optimum concentration of 0.05 mmol EDC/mg AM, chemical cross-linker could significantly enhance the mechanical and thermal stability, optical transparency, and resistance to collagenase digestion. Continuous permeation of albumin through the cross-linked AM would be helpful to cell growth over the matrix surface. In addition, the EDC cross-linked samples were able to support LEC proliferation and preserve epithelial progenitor cells in vitro and in vivo. It is concluded that the AM cross-linked with 0.05 mmol EDC/mg AM may be a potential biomaterial for regenerative medicine.

  9. Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA

    PubMed Central

    Price, Nathan E.; Catalano, Michael J.; Liu, Shuo; Wang, Yinsheng; Gates, Kent S.

    2015-01-01

    A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes. PMID:25779045

  10. Photoinduced intermolecular cross-linking of gas phase triacylglycerol lipid ions.

    PubMed

    Nie, Shuai; Pham, Huong T; Blanksby, Stephen J; Reid, Gavin E

    2015-01-01

    Complex mixtures of plant derived triglycerol (TG) lipids are commonly used as feedstock components for the production of industrial polymers. However, there remains a need for the development of analytical strategies to investigate the intrinsic intermolecular cross-linking reactivity of individual TG molecules within these mixtures as a function of their structures and physicochemical properties, and for the characterization of the resultant products. Here, to address this need, we describe a novel multistage tandem mass spectrometry based method for intermolecular cross-linking and subsequent structural characterization of TG lipid ions in the gas phase. Cross-linking reactions were initiated using 266 nm ultraviolet photodissociation tandem mass spectrometry (UVPD-MS/MS) of saturated or unsaturated TG dimers introduced via electrospray ionization into a linear ion trap mass spectrometer as noncovalent complexes with protonated 3,4-, 2,4- or 3,5- diiodoaniline (diIA). UVPD resulted in the initial formation of an anilinyl biradical via the sequential loss of two iodine radicals, which underwent further reaction to yield multiple cross-linked TG products along with competing noncross-linking processes. These chemistries are proposed to occur via sequential combinations of hydrogen abstraction (H-abstraction), radical addition and radical recombination. Multistage collision induced dissociation tandem mass spectrometry (CID-MS(n)) was used to obtain evidence for the structures and mechanisms of formation for these products, as a function of both the TG lipid and diIA ion structures. The efficiency of the UVPD reaction was shown to be dependent on the number of unsaturation sites present within the TG lipids. However, when unsaturation sites were present, formation of the cross-linked and noncross-linked product ions via H-abstraction and radical addition mechanisms was found to be competitive. Finally, the identity of the anilinyl biradical (e.g., 3,4- versus 2

  11. Size-selective phase-transfer catalysis with interfacially cross-linked reverse micelles.

    PubMed

    Lee, Li-Chen; Zhao, Yan

    2012-02-03

    Cross-linking of the reverse micelles (RMs) of a triallylammonium surfactant afforded organic nanoparticles with introverted cationic groups. The cross-linked reverse micelles catalyzed size-selective biphasic reaction between sodium azide and alkyl bromides. Size selectivity of up to 9:1 was obtained for alkyl bromides with similar structures. The selectivity was influenced strongly by the size of the water pool and proposed to happen as a result of the "sieving" effect of the alkyl corona. © 2012 American Chemical Society

  12. A novel DTPA cross-linking of hyaluronic acid and metal complexation thereof.

    PubMed

    Buffa, Radovan; Běťák, Jiří; Kettou, Sofiane; Hermannová, Martina; Pospíšilová, Lucie; Velebný, Vladimír

    2011-09-27

    Macromolecular conjugates of a natural polysaccharide, hyaluronic acid, with diethylenetriaminepentaacetic acid (DTPA)-metal complexes were synthesized and characterized by FTIR, NMR, SEC-MALLS and ICP analysis. Several parameters of the cross-linking reaction as molecular weight of starting HA, temperature, equivalent of DTPA bis-anhydride, concentration of HA, presence of transacylation catalyst DMAP and reaction time were studied. The mechanism for the reaction was suggested and relationship between the molecular weight assigned by SEC-MALLS, reaction parameters and rheological properties of the final cross-linked products were investigated. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. DNA oligonucleotide duplexes containing intramolecular platinated cross-links: energetics, hydration, sequence, and ionic effects.

    PubMed

    Kankia, Besik I; Soto, Ana Maria; Burns, Nicole; Shikiya, Ronald; Tung, Chang-Shung; Marky, Luis A

    2002-11-05

    The anticancer activity of cisplatin arises from its ability to bind covalently to DNA, forming primarily intrastrand cross-links to adjacent purine residues; the most common adducts involve d(GpG) (65%) and d(ApG) (25%) intrastrand cross-links. The incorporation of these platinum adducts in a B-DNA helix induces local distortions, causing bending and unwinding of the DNA. In this work, we used temperature-dependent UV spectroscopy to investigate the unfolding thermodynamics, and associated ionic effects, of two sets of DNA decamer duplexes containing either cis-[Pt(NH(3))(2)[d(GpG

  14. Bioreducible cross-linked nanoshell enhances gene transfection of polycation/DNA polyplex in vivo.

    PubMed

    Piao, Ji-Gang; Ding, Sheng-Gang; Yang, Lu; Hong, Chun-Yan; You, Ye-Zi

    2014-08-11

    In this study, we have prepared a self-cross-linking PEG-based branched polymer, which easily forms a bioreducible nanoshell around polyplexes of cationic polymer and DNA, simply via heating the polyplex dispersions in the presence of this self-cross-linking branched polymer. This nanoshell can prevent the polyplex from dissociation and aggregation in physiological fluids without inhibiting the electrostatic interactions between the polymer and DNA. Furthermore, glutathione (GSH) can act as a stimulus to open the nanoshell after it has entered the cell. The polyplexes coated with the bioreducible nanoshell show an obvious enhancement in gene transfection in vivo compared with bare polyplexes.

  15. Cellular Uptake of Gold Nanoparticles Directly Cross-linked with Carrier Peptides by Osteosarcoma Cells

    PubMed Central

    Mandal, Deendayal; Maran, Avudaippan; Yaszemski, Michael J.; Bolander, Mark E; Sarkar, Gobinda

    2010-01-01

    Nanoparticles have been extensively used for a variety of biomedical applications and there is a growing need for highly specific and efficient delivery of the nanoparticles into target cells and subcellular location. We attempted to accomplish this goal by modifying gold particles with peptide motif’s that are known to deliver a ‘cargo’ into chosen cellular location specifically, we intended to deliver nanogold particles into cells through chemical cross-linking with different peptides known to carry protein into cells. Our results suggest that specific sequence of such ‘carrier peptides’ can efficiently deliver gold nanoparticles into cells when chemically cross-linked with the metal particles. PMID:18807262

  16. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  17. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    PubMed

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  18. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  19. [Studies of a new adsorbent cross-linked agar beads entrapped attapulgite clay for hemoperfusion].

    PubMed

    Tang, X; Ma, Y; Yang, X

    2001-06-01

    The preparation and properties of a new adsorbent cross-linked agar beads entrapped attapulgite clay (CAA) are reported in detail. Medicinal attapulgite clay made in China was encapsulated with agar, shaped in organic solvent, and cross-linked by epichlorohydrin. The products withstood autoclaving at 121 degrees C for half an hour with no breakage, and had a good selective adsorption ability for some model compounds and medicaments such as methylene blue and phenothiazine drugs. Preliminary investigations and SEM photographs indicate that the CAA as an adsorbent is relatively hemocompatible for hemoperfusion.

  20. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up.

  1. Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes

    PubMed Central

    Leaman, Daniel P.; Lee, Jeong Hyun; Ward, Andrew B.

    2015-01-01

    ABSTRACT HIV-1 envelope glycoprotein (Env) spikes are prime vaccine candidates, at least in principle, but suffer from instability, molecular heterogeneity and a low copy number on virions. We anticipated that chemical cross-linking of HIV-1 would allow purification and molecular characterization of trimeric Env spikes, as well as high copy number immunization. Broadly neutralizing antibodies bound tightly to all major quaternary epitopes on cross-linked spikes. Covalent cross-linking of the trimer also stabilized broadly neutralizing epitopes, although surprisingly some individual epitopes were still somewhat sensitive to heat or reducing agent. Immunodepletion using non-neutralizing antibodies to gp120 and gp41 was an effective method for removing non-native-like Env. Cross-linked spikes, purified via an engineered C-terminal tag, were shown by negative stain EM to have well-ordered, trilobed structure. An immunization was performed comparing a boost with Env spikes on virions to spikes cross-linked and captured onto nanoparticles, each following a gp160 DNA prime. Although differences in neutralization did not reach statistical significance, cross-linked Env spikes elicited a more diverse and sporadically neutralizing antibody response against Tier 1b and 2 isolates when displayed on nanoparticles, despite attenuated binding titers to gp120 and V3 crown peptides. Our study demonstrates display of cross-linked trimeric Env spikes on nanoparticles, while showing a level of control over antigenicity, purity and density of virion-associated Env, which may have relevance for Env based vaccine strategies for HIV-1. IMPORTANCE The envelope spike (Env) is the target of HIV-1 neutralizing antibodies, which a successful vaccine will need to elicit. However, native Env on virions is innately labile, as well as heterogeneously and sparsely displayed. We therefore stabilized Env spikes using a chemical cross-linker and removed non-native Env by immunodepletion with non

  2. Statistics of randomly cross-linked polymer models to interpret chromatin conformation capture data

    NASA Astrophysics Data System (ADS)

    Shukron, O.; Holcman, D.

    2017-07-01

    Polymer models are used to describe chromatin, which can be folded at different spatial scales by binding molecules. By folding, chromatin generates loops of various sizes. We present here a statistical analysis of the randomly cross-linked (RCL) polymer model, where monomer pairs are connected randomly, generating a heterogeneous ensemble of chromatin conformations. We obtain asymptotic formulas for the steady-state variance, encounter probability, the radius of gyration, instantaneous displacement, and the mean first encounter time between any two monomers. The analytical results are confirmed by Brownian simulations. Finally, the present results are used to extract the mean number of cross links in a chromatin region from conformation capture data.

  3. Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis.

    PubMed

    Brodke, D S; Bachus, K N; Mohr, R A; Nguyen, B K

    2001-01-01

    The placement of segmental pedicle screws and cross-links in short segment posterior pedicle screw constructs has been shown to increase the construct stiffness in some planes. To date, no studies have looked at the contributions of segmental pedicle screw and cross-link placement in longer constructs. To evaluate the influence of segmental pedicle screw and/or cross-link placement on flexion/extension, lateral bending and axial torsion stiffness in two- and three-level posterior pedicle screw fixation constructs. An in vitro biomechanical analysis of two- and three-level posterior pedicle screw constructs with and without segmental fixation and/or cross-links was performed using calf lumbar spines. Stiffness of the constructs was compared. Six calf lumbar specimens were used to test stiffness in one-, two- and three-level posterior pedicle screw fixation constructs in 12 configurations. A custom-made, four-axis spine simulator applied pure cyclical (+/-5 Nm) flexion/extension, lateral bending and axial torsion moments at 0.1 Hz under a constant 50-N axial compressive load. The stiffness of each construct was calculated about each axis of rotation. Data were analyzed using nonparametric techniques with statistical significance determined at alpha less than .05. The stiffness of the instrumented spines were significantly greater than the noninstrumented intact spines in all loading conditions for one-, two- and three-level constructs. There were no significant changes in flexion/extension stiffness with the addition of either the cross-links or the segmental pedicle screws. In lateral bending, the addition of segmental pedicle screws significantly increased the stiffness in the two- and three-level constructs. The addition of two cross-links increased lateral bending stiffness in the longer three-level constructs, with little change in the two-level constructs. In axial torsion, the progressive addition of cross-links showed a tendency toward increased stiffness in

  4. Probing the active site of a diels-alderase ribozyme by photoaffinity cross-linking.

    PubMed

    Wombacher, Richard; Jäschke, Andres

    2008-07-09

    The active site of a Diels-Alderase ribozyme is located in solution by photoaffinity cross-linking using a productlike azidobenzyl probe. Two key nucleotides are identified that contact the Diels-Alder product in a conformation-dependent fashion. The design of such probes does not require knowledge of the three-dimensional structure of the ribozyme, and the technique yields both static and dynamic structural information. This work establishes photoaffinity cross-linking as an empirical approach that is applied here for the first time to an artificial ribozyme.

  5. Mutational Analysis of a Conserved Glutamic Acid Required for Self-Catalyzed Cross-Linking of Bacteriophage HK97 Capsids▿

    PubMed Central

    Dierkes, Lindsay E.; Peebles, Craig L.; Firek, Brian A.; Hendrix, Roger W.; Duda, Robert L.

    2009-01-01

    The capsid of bacteriophage HK97 is stabilized by ∼400 covalent cross-links between subunits which form without any action by external enzymes or cofactors. Cross-linking only occurs in fully assembled particles after large-scale structural changes bring together side chains from three subunits at each cross-linking site. Isopeptide cross-links form between asparagine and lysine side chains on two subunits. The carboxylate of glutamic acid 363 (E363) from a third subunit is found ∼2.4 Å from the isopeptide bond in the partly hydrophobic pocket that contains the cross-link. It was previously reported without supporting data that changing E363 to alanine abolishes cross-linking, suggesting that E363 plays a role in cross-linking. This alanine mutant and six additional substitutions for E363 were fully characterized and the proheads produced by the mutants were tested for their ability to cross-link under a variety of conditions. Aspartic acid and histidine substitutions supported cross-linking to a significant extent, while alanine, asparagine, glutamine, and tyrosine did not, suggesting that residue 363 acts as a proton acceptor during cross-linking. These results support a chemical mechanism, not yet fully tested, that incorporates this suggestion, as well as features of the structure at the cross-link site. The chemically identical isopeptide bonds recently documented in bacterial pili have a strikingly similar chemical geometry at their cross-linking sites, suggesting a common chemical mechanism with the phage protein, but the completely different structures and folds of the two proteins argues that the phage capsid and bacterial pilus proteins have achieved shared cross-linking chemistry by convergent evolution. PMID:19091865

  6. [Stewart's acid-base approach].

    PubMed

    Funk, Georg-Christian

    2007-01-01

    In addition to paCO(2), Stewart's acid base model takes into account the influence of albumin, inorganic phosphate, electrolytes and lactate on acid-base equilibrium. It allows a comprehensive and quantitative analysis of acid-base disorders. Particularly simultaneous and mixed metabolic acid-base disorders, which are common in critically ill patients, can be assessed. Stewart's approach is therefore a valuable tool in addition to the customary acid-base approach based on bicarbonate or base excess. However, some chemical aspects of Stewart's approach remain controversial.

  7. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking.

    PubMed

    Chen, Boru; Dang, Leping; Zhang, Xiao; Fang, Wenzhi; Hou, Mengna; Liu, Tiankuo; Wang, Zhanzhong

    2017-03-15

    Kudzu starch was cross-linked with sodium trimetaphosphate (STMP) at different temperatures, time and of STMP concentrations in this work. The cross-linked starches (CLSs) were fractionated further into cross-linked amylose and amylopectin in order to compare the effect of cross-linking on the microstructure. According to scanning electron microscope (SEM), CLSs displayed the resemble appearance of spherical and polygonal shapes like NS. X-ray diffraction (XRD) revealed that amylose of native starch (A), NS and CLS displayed a combination of A-type and B-type structure, while that was not found in amylose of cross-linked starch (CLA). The deconvoluted fourier transform infrared (FT-IR) indicated that crystal structure of kudzu starch was losing with the proceeding of cross-linking reaction. The CLSs exhibited a higher retrogradation and freeze-thaw stability than NS. This was accompanied by a significant decrease in sedimentation, transparency, swelling power and solubility.

  8. Changes in morphology and activity of transglutaminase following cross-linking and immobilization on a polypropylene microporous membrane.

    PubMed

    Shi, Yan-Guo; Qian, Lei; Zhang, Na; Han, Chun-Ran; Liu, Ying; Zhang, Yi-Fang; Ma, Yong-Qiang

    2011-12-05

    Transglutaminase (TGase) was cross-linked with glutaraldehyde, and cross-linked crystalline transglutaminase was immobilized on a polypropylene microporous membrane by UV-induced grafting. Immobilized enzyme activity were calculated to be 0.128 U/cm² polypropylene microporous membrane. The microstructure and enzyme characteristics of free, cross-linked and immobilized transglutaminase were compared. The optimum temperature of free transglutaminase was determined to be approximately 40 °C, while cross-linking and immobilization resulted in an increase to approximately 45 °C and 50 °C. At 60 °C, immobilized, cross-linked and free transglutaminase retained 91.7 ± 1.20%, 63.2 ± 1.05% and 37.9 ± 0.98% maximum activity, respectively. The optimum pH was unaffected by the state of transglutaminase. However, the thermal and pH stabilities of cross-linked and immobilized transglutaminase were shown to increase.

  9. Structure elucidation of DNA interstrand cross-link by a combination of nuclease P1 digestion with mass spectrometry.

    PubMed

    Wang, Yuesong; Wang, Yinsheng

    2003-11-15

    DNA interstrand cross-link reagents are among the most powerful agents for cancer treatment. Here we report a combined nuclease P1 digestion/mass spectrometry method for the structure elucidation of duplex oligodeoxynucleotides (ODNs) containing an interstrand cross-link. Our results demonstrate that nuclease P1 digestion of a double-stranded ODN containing an interstrand cross-link (ICL) of 4,5',8-trimethylpsoralen or mitomycin C gives a tetranucleotide bearing the cross-linked nucleobase moiety. Product ion spectra of the deprotonated ions of the tetranucleotides provide information about the structure of the cross-link. Furthermore, product-ion spectra of tetranucleotides containing two orientation isomers of mitomycin C interstrand cross-link are distinctive. We believe that the method described in this paper can be generally applicable for investigating the structures of other DNA ICLs.

  10. Cross-linked smart poly(dimethylsiloxane) membranes for removal of volatile organic compounds in water

    NASA Astrophysics Data System (ADS)

    Ohshima, Tadahiro; Miyata, Takashi; Uragami, Tadashi; Berghmens, Hugo

    2005-04-01

    This paper focuses on the effects of fluorine cross-linker of the cross-linked poly(dimethylsiloxane) membranes from polydimethylsiloxane dimethylmethacrylate macromonomer (PDMSDMMA) and divinyl perfluoro- n-hexane (DVF) on the pervaporation characteristics of the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05 wt% benzene was permeated through the cross-linked PDMSDMMA (PDMSDMMA-DVF) membranes, they showed a high benzene permselectivity and permeability of these membranes was enhanced with increasing DVF content significantly. The best normalized permeation rate, separation factor for benzene permselectivity, and pervaporation separation index (PSI) of a PDMSDMMA-DVF membrane were 1.72×10 -5 kg m/m 2 h, 4316, and 7423, respectively. The best normalized permeation rate of a PDMSDMMA-DVF membrane was approximately same as the PDMSDMMA membranes cross-linked with other divinyl compounds, but the separation factor and PSI of the former membrane were greater than those of the latter ones. These pervaporation characteristics are discussed from the viewpoint of chemical and physical structure of the cross-linked PDMSDMMA-DVF membranes in detail.

  11. Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications.

    PubMed

    Zhao, Liqing; Wu, Yiguang; Chen, Shu; Xing, Tao

    2015-08-01

    Porous dermal scaffold membrane (PDSM) was successfully prepared by using a so-called sol-gel freeze-drying method. In this method, the carboxymethyl chitin (CMC) hydrosol was first cross-linked by 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), and then lyophilized to form the PDSM. For the first time, this research focused on the cross-linked CMC as the only component for three-dimensional PDSM. The effects of cross-linking conditions on the performance of the PDSM were investigated. And PDSM with optimal performance was obtained through 4-h cross-linking at 4 wt% of CMC concentration in the hydrosol, where the mass ratio of EDC to NHS to CMC was 5:3:10. The porosity of the optimized PDSM was more than 90% and the water swelling rate was above 4000%. The pore size was well distributed and was between 100 μm and 200 μm. And the tensile strength was above 0.09 MPa. The as-made PDSM could be degraded above 80% in 12 days in the presence of a 0.2mg/mL lysozyme solution. Very importantly, the PDSM had no cytotoxicity and good biocompatibility from MTT assays. Our results showed the application possibility of the as-prepared PDSM as dermal scaffold for skin tissue engineering.

  12. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    NASA Astrophysics Data System (ADS)

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern.

  13. Identification of Pyridinoline Trivalent Collagen Cross-Links by Raman Microspectroscopy.

    PubMed

    Gamsjaeger, Sonja; Robins, Simon P; Tatakis, Dimitris N; Klaushofer, Klaus; Paschalis, Eleftherios P

    2017-02-28

    Intermolecular cross-linking of bone collagen is intimately related to the way collagen molecules are arranged in a fibril, imparts certain mechanical properties to the fibril, and may be involved in the initiation of mineralization. Raman microspectroscopy allows the analysis of minimally processed bone blocks and provides simultaneous information on both the mineral and organic matrix (mainly type I collagen) components, with a spatial resolution of ~1 μm. The aim of the present study was to validate Raman spectroscopic parameters describing one of the major mineralizing type I trivalent cross-links, namely pyridinoline (PYD). To achieve this, a series of collagen cross-linked peptides with known PYD content (as determined by HPLC analysis), human bone, porcine skin, predentin and dentin animal model tissues were analyzed by Raman microspectroscopy. The results of the present study confirm that it is feasible to monitor PYD trivalent collagen cross-links by Raman spectroscopic analysis in mineralized tissues, exclusively through a Raman band ~1660 wavenumbers. This allows determination of the relative PYD content in undecalcified bone tissues with a spatial resolution of ~1 μm, thus enabling correlations with histologic and histomorphometric parameters.

  14. Formation and Distribution of Space-Charge in Cross-Linked Polyethylene

    NASA Astrophysics Data System (ADS)

    Zhang, Ye-Wen; Li, Ji-Xiao; Zheng, Fei-Hu; Peng, Zong-Ren; Wu, Chang-Shun; Xia, Zhong-Fu

    2002-08-01

    The formation and distribution of space-charge in a cross-linked polyethylene (XLPE) sample are investigated by means of pressure wave propagation, infrared spectroscopy and electrostatic force microscopy (EFM). The related mechanism of space-charge distribution and the structure of XLPE are discussed. The EFM images show that quite large quantitative space-charges locate at the surface of spherulites.

  15. Protective effect of Withania somnifera (Solanaceae) on collagen glycation and cross-linking.

    PubMed

    Babu, Pon Velayutham Anandh; Gokulakrishnan, Adikesavan; Dhandayuthabani, Rajendra; Ameethkhan, Dowlath; Kumar, Chandrasekara Vimal Pradeep; Ahamed, Md Iqbal Niyas

    2007-06-01

    Modification of collagen such as non-enzymatic glycation and cross-linking plays an important role in diabetic complications and age-related diseases. We evaluate the effect of Withania somnifera on glucose-mediated collagen glycation and cross-linking in vitro. Extent of glycation, viscosity, collagen-linked fluorescence and pepsin solubility were assessed in different experimental procedures to investigate the effect of W. somnifera. Tail tendons obtained from rats (Rattus norvegicus) weighing 250-275 g were incubated with 50 mM glucose and 100 mg of metformin or Withania root powder or ethanolic extract of Withania under physiological conditions of temperature and pH for 30 days. Formation of advanced glycation end products (AGE) was measured by fluorescent method whereas the cross-linking of collagen was assessed by pepsin digestion and viscosity measurements. Tendon collagen incubated with glucose showed an increase in glycation, AGE and cross-linking of collagen. The collagen incubated with W. somnifera and metformin ameliorates these modifications. The ethanolic extract of Withania showed more prominent effect than Withania root powder. The activity of ethanolic extract of Withania is comparable to metformin, a known antiglycating agent. In conclusion, Withania could have therapeutic role in the prevention of glycation induced pathogenesis in diabetes mellitus and aging.

  16. Modification and cross-linking parameters in hyaluronic acid hydrogels--definitions and analytical methods.

    PubMed

    Kenne, Lennart; Gohil, Suresh; Nilsson, Eva M; Karlsson, Anders; Ericsson, David; Helander Kenne, Anne; Nord, Lars I

    2013-01-02

    Definitions and methods for the quantification of degree of modification and cross-linking in cross-linked hyaluronic acid (HA) hydrogels are outlined. A novel method is presented in which the HA hydrogel is degraded by the enzyme chondroitinase AC and the digest product analyzed by size exclusion chromatography combined with electrospray ionization mass spectrometry (SEC-ESI-MS). This method allows for the determination of effective cross-linker ratio (CrR) which together with the degree of modification (MoD), determined by, e.g. (1)H NMR spectroscopy, enables the calculation of the degree of substitution (DS) and degree of cross-linking (CrD). The method, could be applicable to the major cross-linked HA hydrogels currently on the market, and is exemplified here by application to two HA hydrogels. The definitions and methods presented are important contributions in attempts to find relationships between MoD, DS and CrD to mechanical properties as well as to biocompatibility of HA hydrogels.

  17. Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry.

    PubMed

    Schweppe, Devin K; Chavez, Juan D; Lee, Chi Fung; Caudal, Arianne; Kruse, Shane E; Stuppard, Rudy; Marcinek, David J; Shadel, Gerald S; Tian, Rong; Bruce, James E

    2017-02-14

    Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria. In situ interactions were observed in proteins throughout the electron transport chain membrane complexes, ATP synthase, and the mitochondrial contact site and cristae organizing system (MICOS) complex. Cross-linked sites showed excellent agreement with empirical protein structures and delivered complementary constraints for in silico protein docking. These data established direct physical evidence of the assembly of the complex I-III respirasome and enabled prediction of in situ interfacial regions of the complexes. Finally, we established a database and tools to harness the cross-linked interactions we observed as molecular probes, allowing quantification of conformation-dependent protein interfaces and dynamic protein complex assembly.

  18. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.

    PubMed

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-02-13

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.

  19. Effect of Cross-Linking on the Dewetting of an Elastomeric Surface

    PubMed

    Carré; Shanahan

    1997-07-01

    It has been shown over the last few years how the wetting (or dewetting) of a soft, elastomeric substrate can be markedly affected by local deformation of the solid near the triple line, due to the component of liquid surface tension acting perpendicularly to the (undeformed) solid surface, i.e., the "wetting ridge." Since the degree of cross-linking of an elastomer affects its mechanical properties, we have undertaken a study of the influence of cross-linking on (de)wetting behavior. Using a silicone rubber in four states of cross-linking, we have observed that triple-line motion of tricresyl phosphate increases in speed with degree of cross-linking. Two principal factors influence this behavior, both being directly linked to average intercross-link molecular weight, M c . A decrease in M c increases elastic modulus and therefore decreases the importance of the wetting ridge, whilst also lowering the dissipative properties of the polymer. The combined effects lead, in the case studied, to a linear relationship between dewetting speed and elastomeric elastic modulus to the power 10/3.

  20. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    NASA Astrophysics Data System (ADS)

    Šafařík, Ivo; Šafaříková, Mirka

    2001-01-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed.

  1. Reflective confocal laser scanning microscopy and nonlinear microscopy of cross-linked rabbit cornea

    NASA Astrophysics Data System (ADS)

    Krueger, Alexander; Hovakimyan, Marina; Ramirez, Diego F.; Stachs, Oliver; Guthoff, Rudolf F.; Heisterkamp, Alexander

    2009-07-01

    Cross-linking of the cornea with application of Ribovlavin and UV-A light is an evolving clinical treatment of the eye disease keratoconus. Despite the positive clinical track record of corneal cross-linking, the complex wound healing process after the treatment is still under investigation. In this study an animal model was used to clarify the state of wound healing 5 weeks after treatment. Cross-linked rabbit corneae were imaged with reflective confocal laser scanning and nonlinear microscopy, namely second harmonic imaging microscopy (SHIM) and two-photon excited autofluorescence. First results show that the NAD(P) H-autofluorescence of the corneal keratocytes and their scattering signal still show a signature of the treatment five weeks after the cross-linking procedure. The SHIM signals show the structural morphology of the fibrous collagen sheets in the stroma of the cornea. SHIM detected in the forward direction differs substantially from backward SHIM, but no signature of treatment was found in both detection channels of the SHIM signal.

  2. Light-scattering thermal cross-linking material using morphology of nanoparticle free polymer blends

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi

    2015-03-01

    A newly light-scattering thermal cross-linking material based on self-assembly for forming the morphology of nanoparticle free polymer blends was reported. The material design concept to use light-scattering thermal cross-linking material with high uniformity of light on display panel from LED for high quality such as brightness and evenness, mechanical properties, and gas and water barrier properties. The high light scattering rate of 8 % at 350-450 nm of wavelength, fast cure film at 140 ºC and 120 s, and thermal stability at 190 ºC in bake condition for high productivity were indicated in the light-scattering thermal cross-linking material using the nanoparticle free polymers with carboxylic acid functional groups. These novel system using morphology of nanoparticle free polymer blends in light-scattering package material for a LCD using LED was a valuable approach to the design of material formulations for newly light-scattering thermal cross-linking material.

  3. Cross-Linking Reactions for the Conversion of Polyphosphazenes into Useful Materials

    DTIC Science & Technology

    1994-05-18

    dissolve. Such solvent-swelled "gels" are known as hydrogels if the solvent is water, or organogels if an organic olvent is employed. Materials of this...An IPN consists of an organogel in which the monomer of one polymer is dissolved in the cross-linked matrix of the other. Polymerization of the

  4. Can para-aryl-dithiols cross-link two plasmonic noble nanoparticles as monolayer dithiolate spacers

    USDA-ARS?s Scientific Manuscript database

    Para-aryl-dithiols (PADTs, HS-(C6H4)n-SH, n = 1, 2, and 3) have been used extensively in molecular electronics, surface-enhanced Raman spectroscopy (SERS), and quantum electron tunneling between two gold or silver nanoparticles (AuNPs and AgNPs). One popular belief is that these dithiols cross-link ...

  5. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    USDA-ARS?s Scientific Manuscript database

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  6. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  7. A New Approach to Design of Cross-Linked Second-Order Nonlinear Optical Polymers

    DTIC Science & Technology

    1990-09-01

    PERSONI L ,UTH R(S) Skant rpa ty, Braja K. Mandal and Jayant Kumer 1. TYPE OFREPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE...Processing of NLO Materials. VIITIT; I A NEW APPROACH TO DESIGN OF CROSS-LINKED SECOND-ORDER NONLINEAR OPTICAL POLYMERS BRAJA K. MANDAL, JUN Y. LEE

  8. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  9. Endogenous and enhanced oxidative cross-linking in wheat flour mill streams

    USDA-ARS?s Scientific Manuscript database

    The oxidative cross-linking of arabinoxylan and protein polymers is partially responsible for variation in end-use quality of wheat flour; specifically, differences in batter viscosity as well as variation in bread and cookie quality. A better understanding of the variation in oxidative cross-linkin...

  10. CHEMISTRY AND PHYSICAL PROPERTIES OF MELT PROCESSED- AND SOLUTION-CROSS LINKED CORN ZEIN

    USDA-ARS?s Scientific Manuscript database

    Corn zein was cross linked with glutaraldehyde (GDA) and with glacial acetic acid (HAc) as catalyst with the objective to enhance the mechanical properties of poured films which were compared with the physical properties of compression molded tensile bars from melt processed zein with GDA. A reacti...

  11. ChIP bias as a function of cross-linking time.

    PubMed

    Baranello, Laura; Kouzine, Fedor; Sanford, Suzanne; Levens, David

    2016-05-01

    The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins in vivo. Formaldehyde cross-linking of DNA and proteins is a critical step required to trap their interactions inside the cells before immunoprecipitation and analysis. Yet insufficient attention has been given to variables that might give rise to artifacts in this procedure, such as the duration of cross-linking. We analyzed the dependence of the ChIP signal on the duration of formaldehyde cross-linking time for two proteins: DNA topoisomerase 1 (Top1) that is functionally associated with the double helix in vivo, especially with active chromatin, and green fluorescent protein (GFP) that has no known bona fide interactions with DNA. With short time of formaldehyde fixation, only Top1 immunoprecipation efficiently recovered DNA from active promoters, whereas prolonged fixation augmented non-specific recovery of GFP dramatizing the need to optimize ChIP protocols to minimize the time of cross-linking, especially for abundant nuclear proteins. Thus, ChIP is a powerful approach to study the localization of protein on the genome when care is taken to manage potential artifacts.

  12. Spirochete flagella hook protein self-catalyze a lysinoalanine covalent cross-link for motility

    PubMed Central

    Miller, Michael R.; Miller, Kelly A.; Bian, Jiang; James, Milinda E.; Zhang, Sheng; Lynch, Michael; Callery, Patrick S.; Hettick, Justin M.; Cockburn, Andrew; Liu, Jun; Li, Chunhao; Crane, Brian R.; Charon, Nyles W.

    2016-01-01

    Spirochetes are bacteria responsible for several serious diseases that include Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum), leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)1. These spirochetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochete flagella (periplasmic flagella, PFs) reside and rotate within the periplasmic space2–11. The universal joint or hook that links the rotary motor to the filament is composed of approximately 120–130 FlgE proteins, which in spirochetes form an unusually stable, high-molecular weight complex (HMWC)9,12–17. In other bacteria, the hook can be readily dissociated by treatments such as heat18. In contrast, spirochete hooks are resistant to these treatments, and several lines of evidence indicate that the HMWC is the consequence of covalent cross-linking12,13,17. Here we show that T. denticola FlgE self-catalyzes an interpeptide cross-linking reaction between conserved lysine and cysteine resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine cross-links are not needed for flagellar assembly, but they are required for cell motility, and hence infection. The self-catalytic nature of FlgE cross-linking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochetes. PMID:27670115

  13. Cross-linking of Phospholipid Membranes is a Conserved Property of Calcium-sensitive Synaptotagmins

    PubMed Central

    Connell, Emma; Giniatullina, Asiya; Lai-Kee-Him, Joséphine; Tavare, Richard; Ferrari, Enrico; Roseman, Alan; Cojoc, Dan; Brisson, Alain R.; Davletov, Bazbek

    2008-01-01

    Synaptotagmins are vesicular proteins implicated in many membrane trafficking events. They are highly conserved in evolution and the mammalian family contains 16 isoforms. We now show that the tandem C2 domains of several calcium-sensitive synaptotagmin isoforms tested, including Drosophila synaptotagmin, rapidly cross-link phospholipid membranes. In contrast to the tandem structure, individual C2 domains failed to trigger membrane cross-linking in several novel assays. Large-scale liposomal aggregation driven by tandem C2 domains in response to calcium was confirmed by the following techniques: turbidity assay, dynamic light-scattering and both confocal and negative stain electron microscopy. Firm cross-linking of membranes was evident from laser trap experiments. High-resolution cryo-electron microscopy revealed that membrane cross-linking by tandem C2 domains results in a constant distance of ∼9 nm between the apposed membranes. Our findings show the conserved nature of this important property of synaptotagmin, demonstrate the significance of the tandem C2 domain structure and provide a plausible explanation for the accelerating effect of synaptotagmins on membrane fusion. PMID:18508081

  14. Cross-linking of phospholipid membranes is a conserved property of calcium-sensitive synaptotagmins.

    PubMed

    Connell, Emma; Giniatullina, Asiya; Lai-Kee-Him, Joséphine; Tavare, Richard; Ferrari, Enrico; Roseman, Alan; Cojoc, Dan; Brisson, Alain R; Davletov, Bazbek

    2008-06-27

    Synaptotagmins are vesicular proteins implicated in many membrane trafficking events. They are highly conserved in evolution and the mammalian family contains 16 isoforms. We now show that the tandem C2 domains of several calcium-sensitive synaptotagmin isoforms tested, including Drosophila synaptotagmin, rapidly cross-link phospholipid membranes. In contrast to the tandem structure, individual C2 domains failed to trigger membrane cross-linking in several novel assays. Large-scale liposomal aggregation driven by tandem C2 domains in response to calcium was confirmed by the following techniques: turbidity assay, dynamic light-scattering and both confocal and negative stain electron microscopy. Firm cross-linking of membranes was evident from laser trap experiments. High-resolution cryo-electron microscopy revealed that membrane cross-linking by tandem C2 domains results in a constant distance of approximately 9 nm between the apposed membranes. Our findings show the conserved nature of this important property of synaptotagmin, demonstrate the significance of the tandem C2 domain structure and provide a plausible explanation for the accelerating effect of synaptotagmins on membrane fusion.

  15. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions

    PubMed Central

    Smith, A.M.; Robinson, T. M.; Salt, M. D.; Hamilton, K. S.; Silvia, B. E.; Blasiak, R.

    2009-01-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism. PMID:18952190

  16. Effect of cross-linking ultrahigh molecular weight polyethylene: Surface molecular orientation and wear characteristics

    SciTech Connect

    Sambasivan, Sharadha; Fischer, Daniel A.; Hsu, Stephen M.

    2007-07-15

    Molecular orientation at the surface layer of cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been examined. Molecular orientation has been shown to affect the wear resistance and surface mechanical properties of UHMWPE under biomechanical loading conditions. This study utilizes a nondestructive synchrotron based soft x-ray technique; near edge x-ray absorption fine structure at the carbon K-edge to examine the degree of surface molecular orientation of UHMWPE subjected to various cross-linking/sterilization techniques as a function of stress and wear. UHMWPE samples prepared under gamma irradiation, ethylene-oxide (EtO) treatment, and electron beam irradiation were worn in a wear tester systematically. Results suggest that the cross-linking resists surface orientation when the samples were under tensile and biomechanical stresses. The molecular orientation in the C-C chains in the polymer showed a monotonic decrease with an increase in gamma irradiation dosage levels. EtO sterilized samples showed more C-C chain orientation than the electron beam irradiated samples, but lower than the 30 kGy gamma irradiated samples. Ordered C-C chains in UHMWPE samples have been associated with more crystallinity or large strain plastic deformation of the polymer. Higher levels of gamma irradiation appear to induce cross-linking of C-C chains and render a polymer with more amorphous phase which resists orientation after wear and imparts wear resistance to the polymer.

  17. Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid

    PubMed Central

    Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram

    2017-01-01

    Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822

  18. A general method for targeted quantitative cross-linking mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  19. Is dialdehyde starch a valuable cross-linking agent for collagen/elastin based materials?

    PubMed

    Skopinska-Wisniewska, J; Wegrzynowska-Drzymalska, K; Bajek, A; Maj, M; Sionkowska, A

    2016-04-01

    Collagen and elastin are the main structural proteins in mammal bodies. They provide mechanical support, strength, and elasticity to various organs and tissues, e.g. skin, tendons, arteries, and bones. They are readily available, biodegradable, biocompatible and they stimulate cell growth. The physicochemical properties of collagen and elastin-based materials can be modified by cross-linking. Glutaraldehyde is one of the most efficient cross-linking agents. However, the unreacted molecules can be released from the material and cause cytotoxic reactions. Thus, the aim of our work was to investigate the influence of a safer, macromolecular cross-linking agent--dialdehyde starch (DAS). The properties of hydrogels based on collagen/elastin mixtures (95/5, 90/10) containing 5 and 10% of DAS and neutralized via dialysis against deionized water were tested. The homogenous, transparent, stiff hydrogels were obtained. The DAS addition causes the formation of intermolecular cross-linking bonds but does not affect the secondary structure of the proteins. As a result, the thermal stability, mechanical strength, and, surprisingly, swelling ability increased. At the same time, the surface properties test and in vitro study show that the materials are attractive for 3T3 cells. Moreover, the materials containing 10% of DAS are more resistant to enzymatic degradation.

  20. Quantitative cross-linking/mass spectrometry reveals subtle protein conformational changes

    PubMed Central

    2016-01-01

    Quantitative cross-linking/mass spectrometry (QCLMS) probes protein structural dynamics in solution by quantitatively comparing the yields of cross-links between different conformational statuses. We have used QCLMS to understand the final maturation step of the proteasome lid and also to elucidate the structure of complement C3(H2O). Here we benchmark our workflow using a structurally well-described reference system, the human complement protein C3 and its activated cleavage product C3b. We found that small local conformational changes affect the yields of cross-linking residues that are near in space while larger conformational changes affect the detectability of cross-links. Distinguishing between minor and major changes required robust analysis based on replica analysis and a label-swapping procedure. By providing workflow, code of practice and a framework for semi-automated data processing, we lay the foundation for QCLMS as a tool to monitor the domain choreography that drives binary switching in many protein-protein interaction networks. PMID:27976756

  1. Mechlorethamine-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells

    PubMed Central

    Michaelson-Richie, Erin D.; Ming, Xun; Codreanu, Simona G.; Loeber, Rachel L.; Liebler, Daniel C.; Campbell, Colin; Tretyakova, Natalia Y.

    2011-01-01

    Antitumor nitrogen mustards, such as bis(2-chloroethyl)methylamine (mechlorethamine), are useful chemotherapeutic agents with a long history of clinical application. The antitumor effects of nitrogen mustards are attributed to their ability to induce DNA-DNA and DNA-protein cross-links (DPCs) that block DNA replication. In the present work, a mass spectrometry based methodology was employed to characterize in vivo DNA-protein cross-linking following treatment of human fibrosarcoma (HT1080) cells with cytotoxic concentrations of mechlorethamine. A combination of mass spectrometry-based proteomics and immunological detection was used to identify 38 nuclear proteins which were covalently cross-linked to chromosomal DNA following treatment with mechlorethamine. Isotope dilution HPLC-ESI+-MS/MS analysis of total proteolytic digests revealed a concentration-dependent formation of N-[2-(S-cysteinyl)ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-N7G-EMA) conjugates, indicating that mechlorethamine cross-links cysteine thiols within proteins to N-7 positions of guanine in DNA. PMID:21486066

  2. Mechlorethamine-induced DNA-protein cross-linking in human fibrosarcoma (HT1080) cells.

    PubMed

    Michaelson-Richie, Erin D; Ming, Xun; Codreanu, Simona G; Loeber, Rachel L; Liebler, Daniel C; Campbell, Colin; Tretyakova, Natalia Y

    2011-06-03

    Antitumor nitrogen mustards, such as bis(2-chloroethyl)methylamine (mechlorethamine), are useful chemotherapeutic agents with a long history of clinical application. The antitumor effects of nitrogen mustards are attributed to their ability to induce DNA-DNA and DNA-protein cross-links (DPCs) that block DNA replication. In the present work, a mass spectrometry-based methodology was employed to characterize in vivo DNA-protein cross-linking following treatment of human fibrosarcoma (HT1080) cells with cytotoxic concentrations of mechlorethamine. A combination of mass spectrometry-based proteomics and immunological detection was used to identify 38 nuclear proteins that were covalently cross-linked to chromosomal DNA following treatment with mechlorethamine. Isotope dilution HPLC-ESI(+)-MS/MS analysis of total proteolytic digests revealed a concentration-dependent formation of N-[2-(S-cysteinyl)ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-N7G-EMA) conjugates, indicating that mechlorethamine cross-links cysteine thiols within proteins to N-7 positions of guanine in DNA.

  3. Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers

    SciTech Connect

    Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A.

    2012-10-10

    Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

  4. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet.

    PubMed

    Zaidel, Dayang Norulfairuz Abang; Arnous, Anis; Holck, Jesper; Meyer, Anne S

    2011-11-09

    Ferulic acid (FA) groups esterified to the arabinan side chains of pectic polysaccharides can be oxidatively cross-linked in vitro by horseradish peroxidase (HRP) catalysis in the presence of hydrogen peroxide (H(2)O(2)) to form ferulic acid dehydrodimers (diFAs). The present work investigated whether the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different molecular weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels decreased as a result of the enzymatic oxidation treatment with HRP and H(2)O(2). At equimolar levels of FA (0.0025-0.05 mM) in the arabinan samples, the initial rates of the HRP-catalyzed cross-linking of the longer chain arabinans were slower than those of the shorter chain arabinans. The lower initial rates may be the result of the slower movement of larger molecules coupled with steric phenomena, making the required initial reaction of two FAs on longer chain arabinans slower than on shorter arabinans.

  5. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances..., preparing, treating, packaging, transporting, or holding food, in accordance with the following prescribed... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-divinylbenzene resins, cross-linked....

  6. Polymers and Cross-Linking: A CORE Experiment to Help Students Think on the Submicroscopic Level

    ERIC Educational Resources Information Center

    Bruce, Mitchell R. M.; Bruce, Alice E.; Avargil, Shirly; Amar, Francois G.; Wemyss, Thomas M.; Flood, Virginia J.

    2016-01-01

    The Polymers and Cross-Linking experiment is presented via a new three phase learning cycle: CORE (Chemical Observations, Representations, Experimentation), which is designed to model productive chemical inquiry and to promote a deeper understanding about the chemistry operating at the submicroscopic level. The experiment is built on two familiar…

  7. Encapsulation and controlled release of hydrophilic pesticide in shell cross-linked nanocapsules containing aqueous core.

    PubMed

    Sun, Chuxiang; Shu, Ke; Wang, Wei; Ye, Zhao; Liu, Ting; Gao, Yuxiang; Zheng, Hua; He, Guanghua; Yin, Yihua

    2014-03-10

    In this study, amphiphilic biocopolymers, synthesized by mixing azidobenzaldehyde (Az) and an aqueous solution of carboxymethyl chitosan (CMCS), which self-assemble into nanocapsules with a aqueous core (ACN) in aqueous media followed by photo-cross-linking to obtain shell cross-linked nanocapsules, were used to develop a controlled release pesticide system. The system was characterized by TEM and DLS. Its encapsulation efficiency was determined. The obtained result showed that it is efficient to encapsulate methomyl reaching encapsulation efficiency as high as 90% in an aqueous medium at pH 4.0, which is mainly attributed to the hydrogen bonding adsorption between methomyl molecules and the inner surface of nanocapsules. Release profiles of methomyl from methomyl-loaded nanocapsules in an aqueous solution at pH 6.0 were shown to be diffusion controlled with a half-release time (t(½)) of 36.3-69.5h from different samples. The shell cross-linking and its degree of cross-linking are assumed to be responsible for this diffusion behavior. The insecticidal activity test in laboratory showed that the control efficacy of methomyl-loaded nanocapsules against the armyworm larvae was significantly superior to the original. The relative control efficacy still maintained 100% over 7 days.

  8. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    PubMed

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability.

  9. 21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....2710 Section 177.2710 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only as Components of Articles... cross-linked copolymer resins may be safely used as articles or components of articles intended...

  10. Energy dissipation and recovery in a simple model with reversible cross-links

    NASA Astrophysics Data System (ADS)

    Nabavi, S. Soran; Fratzl, Peter; Hartmann, Markus A.

    2015-03-01

    Reversible cross-linking is a method of enhancing the mechanical properties of polymeric materials. The inspiration for this kind of cross-linking comes from nature, which uses this strategy in a large variety of biological materials to dramatically increase their toughness. Recently, first attempts were made to transfer this principle to technological applications. In this study, Monte Carlo simulations are used to investigate the effect of the number and the topology of reversible cross-links on the mechanical performance of a simple model system. Computational cyclic loading tests are performed, and the work to fracture and the energy dissipation per cycle are determined, which both increase when the density of cross-links is increased. Furthermore, a different topology of the bonds may increase the work to fracture by a factor of more than 2 for the same density. This dependence of the mechanical properties on the topology of the bonds has important implications on the self-healing properties of such systems, because only a fast return of the system to its unloaded state after release of the load ensures that the optimal topology may form.

  11. Cross-linking carbon nanotubes by glycidyl azide polymer via click chemistry.

    PubMed

    Wei, Zhong; Du, Liang; Wang, Lin

    2012-01-01

    Functionalization and cross linking of carbon nanotubes was necessary to fabricate nanotube composites with good interfacial properties and mechanical performance. Glycidyl azide polymer was used as cross-linker of carbon nanotubes via a simple clickable one step reaction initiated by decomposition of azide groups. Both heating and UV irradiation were used to carry out the reaction. FTIR and Raman spectra confirmed the decomposition of azide groups and the anchoring of glycidyl azide polymer onto the surface of carbon nanotubes. Thermal gravity analysis showed that the polymer anchored onto carbon nanotubes was about 10% of the total mass in the solid product, but the efficiency of the reaction was low. The result of tensile test using bulky paper infiltrated with 10% GAP showed that cross linking could bring forth a higher strength, about 4 times higher than the not cross linked. The success of cross linking carbon nanotubes by glycidyl azide polymer paves a new way to fabrication of ultra strong carbon nanotube composites.

  12. Non-volatile transistor memory devices using charge storage cross-linked core-shell nanoparticles.

    PubMed

    Lo, Chen-Tsyr; Watanabe, Yu; Oya, Hiroshi; Nakabayashi, Kazuhiro; Mori, Hideharu; Chen, Wen-Chang

    2016-06-07

    Solution processable cross-linked core-shell poly[poly(ethylene glycol)methylether methacrylate]-block-poly(2,5-dibromo-3-vinylthiophene) (poly(PEGMA)m-b-poly(DB3VT)n) nanoparticles are firstly explored as charge storage materials for transistor-type memory devices owing to their efficient and controllable ability in electric charge transfer and trapping.

  13. Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.

    PubMed

    Chen, I-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

    2011-12-02

    Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm( - 1), which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

  14. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    NASA Astrophysics Data System (ADS)

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  15. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers.

    PubMed

    Zhan, Jianchao; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-01-01

    Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.

  16. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  17. Mocaf cross-linking with gluten to improve the quality of mocaf dough

    NASA Astrophysics Data System (ADS)

    Raharja, Sapta; Udin, Faqih; Suparno, Ono; Febrianti, Faricha Helfi; Nuraisyah, Ani

    2017-03-01

    Crosslink between mocaf and gluten is conducted to increase the using of mocaf which has very big potential in Indonesia. The effort of cross-linking between mocaf and gluten is to get mocaf flour with better dough quality. This study aims to produce a cross-linked mocaf-gluten flour and to evaluate the influence of heating temperature (X1) and the addition of gluten concentration (X2) using completely randomized design factorial (RAFL). The cross-linking is carried out in alkaline solution with 10%, 20%, and 30% gluten addition and heating temperature at 50, 55, and 60 °C. The result showed that mocaf - gluten flour with the treatment of 30% gluten addition at 55 °C had the largest amount of protein and baking expansion (i.e 19.77% and 2.78 mL/g). Swelling power of the flour was increasing along with the increasing of water absorbing capacity of the mocaf - gluten flour. Birefringence properties of mocaf - gluten flour tended to be reduced as the increasing heating temperature. FTIR analysis of mocaf - gluten flour showed that there was peak strengthening of the infrared spectrum of the C - N bond at 1167-1159 cm-1 which was presumably resulted from the gluten addition and the cross-linking properties.

  18. Effect of nucleotides and actin on the intramolecular cross-linking of myosin subfragment-1.

    PubMed

    Blotnick, E; Muhlrad, A

    1994-06-07

    The heavy chain of myosin subfragment-1 (S1) is cleaved by limited trypsinolysis into three fragments, 27, 50, and 20 kDa--aligned in this order from the N-terminus. The tertiary structure of the molecule is essentially not affected by trypsinolysis. The spatial relations between the various regions of the molecule and the nucleotide- and actin-induced intramolecular movements were studied by cross-linking tryptic S1 with N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC), phenylenediglyoxal (PDG), and glutaraldehyde. The formation of cross-linked products was monitored by SDS-PAGE, using the fluorescent probes 9-anthronitrile and N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine (IAEDANS), which specifically label the 27- and 20-kDa fragments, respectively. The reaction with the cross-linkers leads to the formation of 50-kDa/20-kDa, 27-kDa/20-kDa, 27-kDa/50-kDa, and 20-kDa/light chain cross-linked products. Of these, the most intensive was the formation of the 50-kDa/20-kDa products, which appeared as a doublet on the SDS-PAGE with all the cross-linkers. This indicates that the interface between the two fragments is rather extended. The presence of MgATP or MgADP promoted the formation of the 20-kDa/50-kDa cross-linked products, especially with the lower electrophoretic mobility band, when EEDQ was used as a cross-linker. With PDG as a cross-linker, MgATP also affected the cross-link formation between the 20-kDa fragment and the light chains whereas it had no influence on the formation of other products. On the other hand, the effect of actin on the cross-linking with the various cross-linkers was quite extensive, and it was manifested in the reduction of cross-link formation between the various S1 domains. It is concluded that both nucleotides and actin induce intramolecular movements in S1 and that the nucleotide-induced movements are more restricted than those induced by actin, which extend to larger

  19. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model

    PubMed Central

    McNerny, Erin M. B.; Gong, Bo; Morris, Michael D.; Kohn, David H.

    2014-01-01

    Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL+HLNL] r2=0.208, p<0.05; [HP+LP]/[DHNL+HLNL] r2=0.196, p<0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r2=0.159, p=0.014; hydroxylysyl pyridinoline r2=0.112, p<0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter

  20. Cross-linking of dimeric CitS and GltS transport proteins.

    PubMed

    Krupnik, Tomasz; Dobrowolski, Adam; Lolkema, Juke S

    2011-08-01

    CitS of Klebsiella pneumoniae and GltS of Escherichia coli are Na+-dependent secondary transporters from different families that are believed to share the same fold and quaternary structure. A 10 kDa protein tag (Biotin Acceptor Domain [BAD]) was fused to the N-terminus of both proteins (CitS-BAD1 and GltS-BAD1, respectively) and inserted in the central cytoplasmic loop that connects the two halves of the proteins (CitS-BAD260 and GltS-BAD206). Both CitS constructs and GltS-BAD206 were produced and shown to be active transporters, but GltS-BAD1 could not be detected in the membrane. Distance relationships in the complexes were studied by cross-linking studies. Both CitS constructs were shown to be in the dimeric state after purification in detergent by cross-linking with glutaraldehyde. The concentration of glutaraldehyde resulting in 50% cross-linking was significantly higher for CitS-BAD1 than for CitS and CitS-BAD260. Remarkably, GltS and GltS-BAD260 were not cross-linked by glutaraldehyde because of the lack of productive reactive sites. Cross-linking of GltS was observed when the N-terminal 46 residues of CitS with or without BAD at the N-terminus were added to the N-terminus of GltS. The stretch of 46 residues contains the first transmembrane segment of CitS that is missing in the GltS structure. The data support an orientation of the monomers in the dimer with the N-termini close to the dimer interface and the central cytoplasmic loops far away at the ends of the long axis of the dimer structure in a view perpendicular to the membrane.

  1. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking*

    PubMed Central

    Wong, Shenq-Huey; King, Chih-Yen

    2015-01-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1–61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1–61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1–61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of 14N- and 15N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  2. Cancer-associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma

    PubMed Central

    Pankova, Daniela; Chen, Yulong; Terajima, Masahiko; Schliekelman, Mark J.; Baird, Brandi N.; Fahrenholtz, Monica; Sun, Li; Gill, Bartley J.; Vadakkan, Tegy J.; Kim, Min P.; Ahn, Young-Ho; Roybal, Jonathon D.; Liu, Xin; Parra Cuentas, Edwin Roger; Rodriguez, Jaime; Wistuba, Ignacio I.; Creighton, Chad J.; Gibbons, Don L.; Hicks, John M.; Dickinson, Mary E.; West, Jennifer L.; Grande-Allen, K. Jane; Hanash, Samir M.; Yamauchi, Mitsuo; Kurie, Jonathan M.

    2015-01-01

    Intratumoral collagen cross-links heighten stromal stiffness and stimulate tumor cell invasion, but it is unclear how collagen cross-linking is regulated in epithelial tumors. To address this question, we used KrasLA1 mice, which develop lung adenocarcinomas from somatic activation of a KrasG12D allele. The lung tumors in KrasLA1 mice were highly fibrotic and contained cancer-associated fibroblasts (CAFs) that produced collagen and generated stiffness in collagen gels. In xenograft tumors generated by injection of wild-type mice with lung adenocarcinoma cells alone or in combination with CAFs, the total concentration of collagen cross-links was the same in tumors generated with or without CAFs, but co-injected tumors had higher hydroxylysine aldehyde-derived collagen cross-links (HLCCs) and lower lysine-aldehyde-derived collagen cross-links (LCCs). Therefore, we postulated that an LCC-to-HLCC switch induced by CAFs promotes the migratory and invasive properties of lung adenocarcinoma cells. To test this hypothesis, we created co-culture models in which CAFs are positioned interstitially or peripherally in tumor cell aggregates, mimicking distinct spatial orientations of CAFs in human lung cancer. In both contexts, CAFs enhanced the invasive properties of tumor cells in 3-dimensional (3D) collagen gels. Tumor cell aggregates that attached to CAF networks on a Matrigel surface dissociated and migrated on the networks. Lysyl hydroxylase 2 (PLOD2/LH2), which drives HLCC formation, was expressed in CAFs, and LH2 depletion abrogated the ability of CAFs to promote tumor cell invasion and migration. PMID:26631572

  3. A gel network constituted by rigid schizophyllan chains and nonpermanent cross-links.

    PubMed

    Fang, Yapeng; Takahashi, Rheo; Nishinari, Katsuyoshi

    2004-01-01

    This work reports a gel network formed by rigid schizophyllan (SPG) chains with Borax as a cross-linking agent. The formed cross-links are non-permanent and somewhat dynamic in nature because the cross-linking reaction is governed by a complexation equilibrium. Gelation processes are traced by dynamic viscoelastic measurements to examine the effects of Borax content, SPG concentration, temperature, salt concentration, salt type, and strain. The first-order kinetic model containing three parameters, t(0) (induction time), 1/tau(c) (gelation rate), and (saturated storage modulus), is successfully applied to describe the gelation of the SPG-Borax system. Gelation occurs faster at higher Borax content, higher SPG concentration, higher salt concentration, or lower temperature. Moreover the gelation is cation-type-specific. Storage modulus is a linear function of both Borax content and SPG concentration. The linear relationship between storage modulus and Borax content can be explained by a modified ideal rubber elasticity theory with a front factor alpha to take into account the presence of ineffective cross-links and the effect of SPG chain rigidity. On the other hand, the linear dependence of storage modulus on SPG concentration could be explained on the basis of chain-chain contacting behavior of extended SPG chains. Apparent activation energy and cross-linking enthalpy are calculated to be -74.5 and -32.4 kJ/mol for the present system. Strain sweep measurements manifest that the elasticity behavior of this gel starts to deviate from Gaussian-chain network at a small strain of 10%.

  4. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking.

    PubMed

    Wong, Shenq-Huey; King, Chih-Yen

    2015-10-09

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1-61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1-61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1-61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of (14)N- and (15)N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains.

  5. Wear measurement of highly cross-linked UHMWPE using a 7Be tracer implantation technique.

    PubMed

    Wimmer, Markus A; Laurent, Michel P; Dwiwedi, Yasha; Gallardo, Luis A; Chipps, Kelly A; Blackmon, Jeffery C; Kozub, Raymond L; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael S; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E; Ahmad, Irshad; Greene, John P; Greife, Uwe

    2013-04-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are therefore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 ((7)Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression-molded GUR 1050, were activated with 10(9) to 10(10) (7)Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 μm below the surface. The pins were tested for wear in a six-station pin-on-flat apparatus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and estimated to be 17 ± 3 μg per million cycles. The conventional-to-cross-linked ratio of the wear rates was 13.1 ± 0.8, in the expected range for these materials. Oxidative degradation damage from implantation was negligible; however, a weak dependence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  6. Triglycidylamine Cross-linking Combined with Ethanol Inhibits Bioprosthetic Heart Valve Calcification

    PubMed Central

    Connolly, Jeanne M.; Bakay, Marina A.; Alferiev, Ivan S.; Gorman, Robert C.; Gorman, Joseph H.; Kruth, Howard S.; Ashworth, Paul E.; Kutty, Jaishankar K.; Schoen, Frederick J.; Bianco, Richard W.; Levy, Robert J.

    2012-01-01

    Background One of the most important factors responsible for the calcific failure of bioprosthetic heart valves is glutaraldehyde cross-linking. Ethanol (EtOH) incubation after glutaraldehyde cross-linking has previously been reported to confer anti-calcification efficacy for bioprostheses. The present studies investigated the anticalcification efficacy in vivo of the novel cross-linking agent, triglycidyl amine (TGA), with or without EtOH incubation, in comparison to glutaraldehyde. Methods TGA cross-linking (+/− EtOH) was used to prepare porcine aortic valves for both rat subdermal implants and sheep mitral valve replacements, for comparisons with glutaraldehyde-fixed controls. Thermal denaturation temperature (Ts), an index of cross-linking, cholesterol extraction, and hydrodynamic properties were quantified. Explant endpoints included quantitative and morphologic assessment of calcification. Results Ts after TGA were intermediate between unfixed and glutaraldehyde-fixed. EtOH incubation resulted in almost complete extraction of cholesterol from TGA or glutaraldehyde-fixed cusps. Rat subdermal explants (90days) demonstrated that TGA-EtOH resulted in a significantly greater level of inhibition of calcification than other conditions. Thus, TGA-ethanol stent mounted porcine aortic valve bioprostheses were fabricated for comparisons with glutaraldehyde-pretreated controls. In hydrodynamic studies, TGA-EtOH bioprostheses had lower pressure gradients than glutaraldehyde-fixed. TGA-ethanol bioprostheses used as mitral valve replacements in juvenile sheep (150 days) demonstrated significantly lower calcium levels in both explanted porcine aortic cusp and aortic wall samples compared to glutaraldehyde-fixed controls. However, TGA-EtOH sheep explants also demonstrated isolated calcific nodules and intracuspal hematomas. Conclusions TGA-EtOH pretreatment of porcine aortic valves confers significant calcification resistance in both rat subdermal and sheep circulatory

  7. Prospective longitudinal study of corneal collagen cross-linking in progressive keratoconus.

    PubMed

    Viswanathan, Deepa; Males, John

    2013-08-01

    Collagen cross-linking has been reported to be effective in treating progressive keratoconus, and this study aims to evaluate the long-term efficacy of this procedure. Prospective longitudinal interventional study of patients with progressive keratoconus who underwent cross-linking in a tertiary referral hospital. Thirty-five patients (51 eyes) who underwent cross-linking with a mean follow-up of 14.38 ± 9.36 months (range 6-48) were compared with a control group of 25 fellow eyes that did not undergo the procedure. Cross-linking was performed using 0.1% riboflavin (in 20% dextran T500) and ultraviolet A irradiation (370 nm, 3 mW/cm(2) , 30 min). Maximum keratometry in dioptres, logMAR best spectacle-corrected visual acuity, cylindrical power, manifest refraction spherical equivalent and central corneal thickness. Analysis of the treated group demonstrated a significant flattening of maximum keratometry by 0.96 ± 2.33 dioptres (P = 0.005) and a significant improvement in visual acuity by 0.05 ± 0.13 logMAR (P = 0.04). In the control group, maximum keratometry increased significantly by 0.43 ± 0.85 dioptres (P = 0.05), and visual acuity decreased by mean 0.05 ± 0.14 (P = 0.2). No statistical differences were noted regarding cylindrical power, spherical equivalent or corneal thickness in both groups. Results indicate that corneal collagen cross-linking using riboflavin and ultraviolet A is effective as a therapeutic option in cases of progressive keratoconus by reducing the corneal curvature and by improving the visual acuity in these patients. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  8. Bioresorbable and nonresorbable macroporous thermosensitive hydrogels prepared by cryopolymerization. Role of the cross-linking agent.

    PubMed

    Perez, Paloma; Plieva, Fatima; Gallardo, Alberto; San Roman, Julio; Aguilar, Maria Rosa; Morfin, Isabelle; Ehrburger-Dolle, Françoise; Bley, Francoise; Mikhalovsky, Sergey; Galaev, Igor Yu; Mattiasson, Bo

    2008-01-01

    Macroporous poly( N-isopropylacrylamide) (pNIPA) gels (so-called cryogels), cross-linked with different bis-acrylic compounds, N,N'-methylenebisacrylamide (MBAAm) and dimethacrylate-tyrosine-lysine-tyrosine (DMTLT), were prepared through free-radical polymerization at subzero temperature in dioxane/water media. DMTLT is a hydrolytically degradable cross-linker with relatively hydrophobic character. The effects of different synthesis conditions, namely the concentration of monomers, the cross-linker, and the initiator in the reaction mixture, on the structure of the pNIPA-cryogels have been studied. The equilibrium swelling ratio of the DMTLT cross-linked pNIPA cryogels at temperatures below lower critical solution temperature (LCST) of pNIPA, was over ten times higher than that of the gels synthesized at room temperature from the same feed composition. The MBAAm cross-linked pNIPA cryogels synthesized in water exhibited the highest equilibrium swelling and the fastest response. The critical transition temperature, T c, was lower ( T c approximately 31 degrees C) for pNIPA-cryogels synthesized in dioxane/water media or cross-linked with DMTLT as compared to MBAAm cross-linked pNIPA cryogels synthesized in water (T c approximately 33 degrees C). Scanning electron microscopy (SEM) revealed different porous structure and pore surface morphology depending on the cross-linker (MBAAm or DMTLT) and the solvent (water or dioxane/water) used. Gels and cryogels were also characterized by SAXS, showing that the nanostructure of the samples is related to swelling.

  9. Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal.

    PubMed

    Zhu, Xiaochun; Gallogly, Molly M; Mieyal, John J; Anderson, Vernon E; Sayre, Lawrence M

    2009-06-01

    The lipid oxidation product 4-oxo-2-nonenal (ONE) derived from peroxidation of polyunsaturated fatty acids is a highly reactive protein cross-linking reagent. The major family of cross-links reflects conjugate addition of side chain nucleophiles such as sulfhydryl or imidazole groups to the C triple bond C of ONE to give either a 2- or 3-substituted 4-ketoaldehyde, which then undergoes Paal-Knorr condensation with the primary amine of protein lysine side chains. If ONE is intercepted in biological fluids by antielectrophiles such as glutathione (GSH) or beta-alanylhistidine (carnosine), this would lead to circulating 4-ketoaldehydes that could then bind covalently to the protein Lys residues. This phenomenon was investigated by SDS-PAGE and mass spectrometry (matrix-assisted laser desorption/ionization time-of-flight and LC-ESI-MS/MS with both tryptic and chymotryptic digestion). Under the reaction conditions of 0.25-2 mM ONE, 1 mM GSH or carnosine, 0.25 mM bovine beta-lactoglobulin (beta-LG), and 100 mM phosphate buffer (pH 7.4, 10% ethanol) for 24 h at 37 degrees C, virtually every Lys of beta-LG was found to be fractionally cross-linked to GSH. Cross-linking of Lys to carnosine was less efficient. Using cytochrome c and RNase A, we showed that ONE becomes more protein-reactive in the presence of GSH, whereas protein modification by 4-hydroxy-2-nonenal is inhibited by GSH. Stable antielectrophile-ONE-protein cross-links may serve as biomarkers of oxidative stress and may represent a novel mechanism of irreversible protein glutathionylation.

  10. Gelatin hydrogels cross-linked with bisvinyl sulfonemethyl. 2. The physical and chemical networks.

    PubMed

    Hellio-Serughetti, Dominique; Djabourov, Madeleine

    2006-09-26

    This paper deals with the physical and the chemical gelation of gelatin in the presence of a reactant, bisvinyl sulfonemethyl (BVSM). The strategy of this investigation is to separate the contributions of the two types of cross-links in order to deduce the resultant elasticity of the network. In addition, the question raised by several authors concerning an increase of the thermal stability of the triple helices in the presence of cross-links was examined by using several techniques. In this study, the concentration of gelatin and BVSM were kept constant, while the influence of the thermal protocols was put in evidence. The gel formation was followed by rheological, thermodynamic (microcalorimetry), and optical spectroscopy (optical rotation) measurements. The results demonstrate the large differences which arise on the storage moduli by changing the thermal protocols. Cross-linking of the networks in the presence of the triple helices induce a heterogeneous repartition of the bonds, which can form along the triple helices and at the end of the sequences. Consequently, the rubber like network obtained by denaturation of the triple helices is still reminiscent of the initial twist of the chains, and a large modulus is observed, as if rigid segments were still present (storage modulus 10 times larger than for random cross-linking). The hydrogels have an elastic modulus which is larger that the addition of the physical and chemical contributions. The interpretation of the network elasticity is based on the predominant role of the rigid rods of triple helices, where the BVSM cross-links can either modify the ratio between the apparent length and distance between rods, l/d, and/or increase the rigidity of the interchain connections, which are loose coils for the physical gels. The hydrogels investigated have a network which is still close to the percolation threshold of the physical gel, and therefore, the statistical models known for well developed networks cannot be

  11. Acoustic radiation force for noninvasive evaluation of corneal biomechanical changes induced by cross-linking therapy.

    PubMed

    Urs, Raksha; Lloyd, Harriet O; Silverman, Ronald H

    2014-08-01

    To noninvasively measure changes in corneal biomechanical properties induced by ultraviolet-activated riboflavin cross-linking therapy using acoustic radiation force (ARF). Cross-linking was performed on the right eyes of 6 rabbits, with the left eyes serving as controls. Acoustic radiation force was used to assess corneal stiffness before treatment and weekly for 4 weeks after treatment. Acoustic power levels were within US Food and Drug Administration guidelines for ophthalmic safety. Strain, determined from ARF-induced displacement of the front and back surfaces of the cornea, was fit to the Kelvin-Voigt model to determine the elastic modulus (E) and coefficient of viscosity (η). The stiffness factor, the ratio of E after treatment to E before treatment, was calculated for treated and control eyes. At the end of 4 weeks, ex vivo thermal shrinkage temperature analysis was performed for comparison with in vivo stiffness measurements. One-way analysis of variance and Student t tests were performed to test for differences in E, η, the stiffness factor, and corneal thickness. Biomechanical stiffening was immediately evident in cross-linking-treated corneas. At 4 weeks after treatment, treated corneas were 1.3 times stiffer and showed significant changes in E (P= .006) and η (P= .007), with no significant effect in controls. Corneal thickness increased immediately after treatment but did not differ significantly from the pretreatment value at 4 weeks. Our findings demonstrate a statistically significant increase in stiffness in cross-linking-treated rabbit corneas based on in vivo axial stress/strain measurements obtained using ARF. The capacity to noninvasively monitor corneal stiffness offers the potential for clinical monitoring of cross-linking therapy. © 2014 by the American Institute of Ultrasound in Medicine.

  12. Evaluation of the Efficacy of Excimer Laser Ablation of Cross-Linked Porcine Cornea

    PubMed Central

    Chen, Shihao; Li, Yini; Stojanovic, Aleksander; Zhang, Jia; Wang, Yibo; Wang, Qinmei; Seiler, Theo

    2012-01-01

    Background Combination of riboflavin/UVA cross-linking (CXL) and excimer laser ablation is a promising therapy for treating corneal ectasia. The cornea is strengthened by cross-linking, while the irregular astigmatism is reduced by laser ablation. This study aims to compare the efficacy of excimer laser ablation on porcine corneas with and without cross-linking. Methods and Findings The porcine cornea was de-epithelialized and treated with 0.1% riboflavin solution for 30 minutes. A half of the cornea was exposed to UVA-radiation for another 30 minutes while the controlled half of the cornea was protected from the UVA using a metal shield. Photo therapeutic keratectomy (PTK) was then performed on the central cornea. Corneal thickness of 5 paired locations on the horizontal line, ±0.5, ±1.0, ±1.5, ±2.0, and ±2.5 mm from the central spot, were measured using optical coherence tomography prior to and after PTK. The ablation depth was then determined by the corneal thickness. There was a 9% difference (P<0.001) in the overall ablation depth between the CXL-half corneas (158±22 µm) and the control-half corneas (174±26 µm). The ablation depths of all 5 correspondent locations on the CXL-half were significantly smaller (P<0.001). Conclusion The efficacy of the laser ablation seems to be lower in cross-linked cornea. Current ablation algorithms may need to be modified for cross-linked corneas. PMID:23056269

  13. Different effects of tubulin ligands on the intrachain cross-linking of beta 1-tubulin.

    PubMed

    Roach, M C; Ludueña, R F

    1984-10-10

    When bovine brain tubulin purified in the absence of GTP and MgCl2 is reacted with N,N'-ethylene-bis(iodoacetamide) (EBI), a bifunctional analogue of iodoacetamide, three new electrophoretically distinct species of tubulin are generated, migrating ahead of beta 1-tubulin on gels containing Na dodecyl sulfate. All three bands appear to be derived from the beta 1 subunit of tubulin and not from the alpha or beta 2 subunit. Accordingly, the bands have been designated beta 1 s, beta 1, and beta 1s in order of increasing electrophoretic mobility. EBI appears to introduce two intrachain cross-links into beta 1-tubulin; the beta 1s band contains one of these cross-links, designated beta s, the beta 1 band contains the other cross-link, designated beta s, and the beta 1 s band contains both cross-links. Both cross-links appear to involve sulfhydryl groups. Colchicine, podophyllotoxin, and nocodazole completely inhibit beta formation while GTP, vinblastine, and maytansine enhance it. It contrast, formation of beta s is completely blocked by guanine nucleotides and by maytansine, while vinblastine inhibits this by 70%. Colchicine, podophyllotoxin, and nocodazole enhance beta s formation. These results show that tubulin has the unusual property of having two discrete sites which can be targeted by an alkylating agent with each site having its alkylation inhibited by a different set of ligands. The results are consistent with several models, including one where vinblastine and maytansine have overlapping binding sites on the beta-subunit of tubulin relatively close to the GTP binding site.

  14. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute.

    PubMed

    Schramm, Charlotte; Spitzer, Martin S; Henke-Fahle, Sigrid; Steinmetz, Gabriele; Januschowski, Kai; Heiduschka, Peter; Geis-Gerstorfer, Jürgen; Biedermann, Tilo; Bartz-Schmidt, Karl U; Szurman, Peter

    2012-02-02

    Biopolymers are promising substances in the development of a new vitreous substitute to overcome the drawbacks associated with current hydrophobic tamponade materials. Different hydrogels were assembled by cross-linking hyaluronic acid either with adipic dihydrazide (ADH) by carboxylation with N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDCI) after hydrazation or by photocrosslinking with UV-light and N-vinyl-pyrrolidinone. The refractive index and rheologic properties of the obtained gels were investigated. To quantify the degradation of the hydrogels over time, free hyaluronic acid was measured photometrically by means of the degradation product uronic acid. For biocompatibility testing, the hydrogels were applied on top of cultured retinal pigment epithelial (RPE) cells and analyzed by the cell viability, MTT, and alamar blue viability cytotoxicity assays and flow cytometry, with Annexin V-FITC and propidium iodide co-staining. The in vivo biocompatibility of the hydrogels was tested in vitrectomized rabbit eyes for up to 6 weeks. The synthesized hydrogels were all clear and transparent and had a refractive index similar to human vitreous. The rheologic measurements suggested sufficient viscosity and elasticity for intraocular use. Quantification of the degradation products revealed only a small decay of the gels over 1 month. However, the ADH cross-linked hydrogels induced mild cytotoxicity in the RPE cells. The UV cross-linked hydrogels showed no toxicity or induction of apoptosis. In vivo the UV cross-linked biogels remained in place for 6 weeks, and electrophysiology and histology showed excellent tissue biocompatibility. Biopolymers based on UV cross-linked hyaluronic acid may be promising vitreous substitutes.

  15. Biocompatibility of chemically cross-linked gelatin hydrogels for ophthalmic use.

    PubMed

    Lai, Jui-Yang

    2010-06-01

    Biocompatibility is a major requirement for the development of functional biomaterials for ophthalmic applications. In this study, we investigated the effect of cross-linker functionality on ocular biocompatibility of chemically modified gelatin hydrogels. The test materials were cross-linked with glutaraldehyde (GTA) or 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and were analyzed using in vitro and in vivo assays. Primary rat iris pigment epithelial cultures were incubated with various gelatin discs for 2 days, and the cellular responses were monitored by cell proliferation, viability, and pro-inflammatory gene and cytokine expression. The results demonstrated that the cells exposed to EDC cross-linked gelatins had relatively lower lactate dehydrogenase activity, cytotoxicity, and interleukin-1beta and tumor necrosis factor-alpha levels than did those to GTA treated samples. In addition, the gelatin implants were inserted in the anterior chamber of rabbit eyes for 12 weeks and characterized by clinical observations and scanning electron microscopy studies. The EDC cross-linked gelatin hydrogels exhibited good biocompatibility and were well tolerated without causing toxicity and adverse effects. However, a significant inflammatory reaction was elicited by the presence of GTA treated materials. It was noted that, despite its biocompatibility, the potential application of non-cross-linked gelatin for local delivery of cell and drug therapeutics would be limited due to rapid dissolution in aqueous environments. In conclusion, these findings suggest ocular cell/tissue response to changes in cross-linker properties. In comparison to GTA treatment, the EDC cross-linking is more suitable for preparation of chemically modified gelatin hydrogels for ophthalmic use.

  16. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.

  17. Doubly Rotated Cut SAW Devices.

    DTIC Science & Technology

    1980-06-01

    A D A O S G 7 3 A M T O R A I N C S C O T T S A L E A R I Z G V E R N M E N T E L C T R O N I C S I V F / B 2 0 / 2 DOUBLY ROTATED CUT SAW DEVICES...IEEEEI-/ II//E///III I jjj 5.1 -I I II II II F~ ~ 2, I UUGLASSIF1 U100TVw CLAMOGmeIawor OU I lulP&g EWhm oe ae & oubly Rotated Cut SAW Devices& . r...doubly rotated cuts of quartz possessing speri r Surface Acoustic Wave (SAW) properties for applications involving environmentally hardened devices. The

  18. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data

    PubMed Central

    2016-01-01

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app. PMID:27302480

  19. ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data.

    PubMed

    Riffle, Michael; Jaschob, Daniel; Zelter, Alex; Davis, Trisha N

    2016-08-05

    ProXL is a Web application and accompanying database designed for sharing, visualizing, and analyzing bottom-up protein cross-linking mass spectrometry data with an emphasis on structural analysis and quality control. ProXL is designed to be independent of any particular software pipeline. The import process is simplified by the use of the ProXL XML data format, which shields developers of data importers from the relative complexity of the relational database schema. The database and Web interfaces function equally well for any software pipeline and allow data from disparate pipelines to be merged and contrasted. ProXL includes robust public and private data sharing capabilities, including a project-based interface designed to ensure security and facilitate collaboration among multiple researchers. ProXL provides multiple interactive and highly dynamic data visualizations that facilitate structural-based analysis of the observed cross-links as well as quality control. ProXL is open-source, well-documented, and freely available at https://github.com/yeastrc/proxl-web-app .

  20. Reaching for the other side: generating sequence-dependent interstrand cross-links with 5-bromodeoxyuridine and gamma-rays.

    PubMed

    Dextraze, Marie-Eve; Cecchini, Sylvain; Bergeron, François; Girouard, Sonia; Turcotte, Kathleen; Wagner, J Richard; Hunting, Darel J

    2009-03-10

    Interstrand cross-links impede critical cellular processes such as transcription and replication and are thus considered to be one of the most toxic types of DNA damage. Although several studies now point to the existence of gamma-radiation-induced cross-links in cellular DNA, little is known about the characteristics required for their creation. Recently, we reported the formation of interstrand cross-links that were specific for mismatched nucleotides within 5-bromo-2'-deoxyuridine-substituted DNA. Given the structural specificity for interstrand cross-link formation, it is likely that open or mismatched regions of DNA in cells may be particularly favorable for cross-link production. Herein, we investigated the effect of the local DNA sequence on the formation of interstrand cross-links, using 5-bromo-2'-deoxyuridine to generate radicals in a mismatched region of DNA. We investigated a total of 12 variations of bases in the mismatched region. The oligonucleotides were irradiated with gamma-rays, and interstrand cross-link formation was analyzed by denaturing gel electrophoresis. We found that the efficiency of cross-link formation was highly dependent on the nature of mismatched bases and, on the basis of electrophoretic mobility, observed several distinctive cross-link structures with specific DNA sequences. This study provides new insights into the reactivity of mismatched DNA and the mechanisms leading to interstrand cross-link formation. The potential application of 5-bromo-2'-deoxyuridine-induced interstrand cross-links to the field of DNA repair is discussed.