Science.gov

Sample records for acid-binding protein ap2

  1. Secretion of fatty acid binding protein aP2 from adipocytes through a nonclassical pathway in response to adipocyte lipase activity

    PubMed Central

    Ertunc, Meric Erikci; Sikkeland, Jørgen; Fenaroli, Federico; Griffiths, Gareth; Daniels, Mathew P.; Cao, Haiming; Saatcioglu, Fahri; Hotamisligil, Gökhan S.

    2015-01-01

    Adipocyte fatty acid binding protein 4, aP2, contributes to the pathogenesis of several common diseases including type 2 diabetes, atherosclerosis, fatty liver disease, asthma, and cancer. Although the biological functions of aP2 have classically been attributed to its intracellular action, recent studies demonstrated that aP2 acts as an adipokine to regulate systemic metabolism. However, the mechanism and regulation of aP2 secretion remain unknown. Here, we demonstrate a specific role for lipase activity in aP2 secretion from adipocytes in vitro and ex vivo. Our results show that chemical inhibition of lipase activity, genetic deficiency of adipose triglyceride lipase and, to a lesser extent, hormone-sensitive lipase blocked aP2 secretion from adipocytes. Increased lipolysis and lipid availability also contributed to aP2 release as determined in perilipin1-deficient adipose tissue explants ex vivo and upon treatment with lipids in vivo and in vitro. In addition, we identify a nonclassical route for aP2 secretion in exosome-like vesicles and show that aP2 is recruited to this pathway upon stimulation of lipolysis. Given the effect of circulating aP2 on glucose metabolism, these data support that targeting aP2 or the lipolysis-dependent secretory pathway may present novel mechanistic and translational opportunities in metabolic disease. PMID:25535287

  2. Uncoupling of Obesity from Insulin Resistance Through a Targeted Mutation in aP2, the Adipocyte Fatty Acid Binding Protein

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Johnson, Randall S.; Distel, Robert J.; Ellis, Ramsey; Papaioannou, Virginia E.; Spiegelman, Bruce M.

    1996-11-01

    Fatty acid binding proteins (FABPs) are small cytoplasmic proteins that are expressed in a highly tissue-specific manner and bind to fatty acids such as oleic and retinoic acid. Mice with a null mutation in aP2, the gene encoding the adipocyte FABP, were developmentally and metabolically normal. The aP2-deficient mice developed dietary obesity but, unlike control mice, they did not develop insulin resistance or diabetes. Also unlike their obese wild-type counterparts, obese aP2-/- animals failed to express in adipose tissue tumor necrosis factor-α (TNF-α), a molecule implicated in obesity-related insulin resistance. These results indicate that aP2 is central to the pathway that links obesity to insulin resistance, possibly by linking fatty acid metabolism to expression of TNF-α.

  3. Development of a therapeutic monoclonal antibody that targets secreted fatty acid-binding protein aP2 to treat type 2 diabetes.

    PubMed

    Burak, M Furkan; Inouye, Karen E; White, Ariel; Lee, Alexandra; Tuncman, Gurol; Calay, Ediz S; Sekiya, Motohiro; Tirosh, Amir; Eguchi, Kosei; Birrane, Gabriel; Lightwood, Daniel; Howells, Louise; Odede, Geofrey; Hailu, Hanna; West, Shauna; Garlish, Rachel; Neale, Helen; Doyle, Carl; Moore, Adrian; Hotamisligil, Gökhan S

    2015-12-23

    The lipid chaperone aP2/FABP4 has been implicated in the pathology of many immunometabolic diseases, including diabetes in humans, but aP2 has not yet been targeted for therapeutic applications. aP2 is not only an intracellular protein but also an active adipokine that contributes to hyperglycemia by promoting hepatic gluconeogenesis and interfering with peripheral insulin action. Serum aP2 levels are markedly elevated in mouse and human obesity and strongly correlate with metabolic complications. These observations raise the possibility of a new strategy to treat metabolic disease by targeting serum aP2 with a monoclonal antibody (mAb) to aP2. We evaluated mAbs to aP2 and identified one, CA33, that lowered fasting blood glucose, improved systemic glucose metabolism, increased systemic insulin sensitivity, and reduced fat mass and liver steatosis in obese mouse models. We examined the structure of the aP2-CA33 complex and resolved the target epitope by crystallographic studies in comparison to another mAb that lacked efficacy in vivo. In hyperinsulinemic-euglycemic clamp studies, we found that the antidiabetic effect of CA33 was predominantly linked to the regulation of hepatic glucose output and peripheral glucose utilization. The antibody had no effect in aP2-deficient mice, demonstrating its target specificity. We conclude that an aP2 mAb-mediated therapeutic constitutes a feasible approach for the treatment of diabetes. PMID:26702093

  4. X-ray crystallographic analysis of adipocyte fatty acid binding protein (aP2) modified with 4-hydroxy-2-nonenal

    SciTech Connect

    Hellberg, Kristina; Grimsrud, Paul A.; Kruse, Andrew C.; Banaszak, Leonard J.; Ohlendorf, Douglas H.; Bernlohr, David A.

    2012-07-11

    Fatty acid binding proteins (FABP) have been characterized as facilitating the intracellular solubilization and transport of long-chain fatty acyl carboxylates via noncovalent interactions. More recent work has shown that the adipocyte FABP is also covalently modified in vivo on Cys117 with 4-hydroxy-2-nonenal (4-HNE), a bioactive aldehyde linked to oxidative stress and inflammation. To evaluate 4-HNE binding and modification, the crystal structures of adipocyte FABP covalently and noncovalently bound to 4-HNE have been solved to 1.9 {angstrom} and 2.3 {angstrom} resolution, respectively. While the 4-HNE in the noncovalently modified protein is coordinated similarly to a carboxylate of a fatty acid, the covalent form show a novel coordination through a water molecule at the polar end of the lipid. Other defining features between the two structures with 4-HNE and previously solved structures of the protein include a peptide flip between residues Ala36 and Lys37 and the rotation of the side chain of Phe57 into its closed conformation. Representing the first structure of an endogenous target protein covalently modified by 4-HNE, these results define a new class of in vivo ligands for FABPs and extend their physiological substrates to include bioactive aldehydes.

  5. Liver Fatty Acid Binding Protein and Obesity

    PubMed Central

    Atshaves, B.P.; Martin, G.G.; Hostetler, H.A.; McIntosh, A.L.; Kier, A.B.; Schroeder, F.

    2010-01-01

    While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes, and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity, and metabolic syndrome. Consequently, mammals evolved fatty acid binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15 member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP, or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair-fed a high fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity. PMID:20537520

  6. Evolution and protein interactions of AP2 proteins in Brassicaceae: Evidence linking development and environmental responses.

    PubMed

    Zeng, Liping; Yin, Yue; You, Chenjiang; Pan, Qianli; Xu, Duo; Jin, Taijie; Zhang, Bailong; Ma, Hong

    2016-06-01

    Plants have evolved a large number of transcription factors (TF), which are enriched among duplicate genes, highlighting their roles in complex regulatory networks. The APETALA2/EREBP-like genes constitute a large plant TF family and participate in development and stress responses. To probe the conservation and divergence of AP2/EREBP genes, we analyzed the duplication patterns of this family in Brassicaceae and identified interacting proteins of representative Arabidopsis AP2/EREBP proteins. We found that many AP2/EREBP duplicates generated early in Brassicaceae history were quickly lost, but many others were retained in all tested Brassicaceae species, suggesting early functional divergence followed by persistent conservation. In addition, the sequences of the AP2 domain and exon numbers were highly conserved in rosids. Furthermore, we used 16 A. thaliana AP2/EREBP proteins as baits in yeast screens and identified 1,970 potential AP2/EREBP-interacting proteins, with a small subset of interactions verified in planta. Many AP2 genes also exhibit reduced expression in an anther-defective mutant, providing a possible link to developmental regulation. The putative AP2-interacting proteins participate in many functions in development and stress responses, including photomorphogenesis, flower development, pathogenesis, drought and cold responses, abscisic acid and auxin signaling. Our results present the AP2/EREBP evolution patterns in Brassicaceae, and support a proposed interaction network of AP2/EREBP proteins and their putative interacting proteins for further study. PMID:26472270

  7. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    PubMed

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes.

  8. Review: the liver bile acid-binding proteins.

    PubMed

    Monaco, Hugo L

    2009-12-01

    The liver bile acid-binding proteins, L-BABPs, formerly called the liver "basic" fatty acid-binding proteins, are a subfamily of the fatty acid-binding proteins, FABPs. All the members of this protein group share the same fold: a 10 stranded beta barrel in which two short helices are inserted in between the first and the second strand of antiparallel beta sheet. The barrel encloses the ligand binding cavity of the protein while the two helices are believed to be involved in ligand accessibility to the binding site. The L-BABP subfamily has been found to be present in the liver of several vertebrates: fish, amphibians, reptiles, and birds but not in mammals. The members of the FABP family present in mammals that appear to be more closely related to the L-BABPs are the liver FABPs and the ileal BABPs, both very extensively studied. Several L-BABP X-ray structures are available and chicken L-BABP has also been studied using NMR spectroscopy. The stoichiometry of ligand binding for bile acids, first determined by X-ray crystallography for the chicken liver protein, is of two cholates per protein molecule with the only exception of zebrafish L-BABP which, due to the presence of a disulfide bridge, has a stoichiometry of 1:1. The stoichiometry of ligand binding for fatty acids, determined with several different techniques, is 1:1. An unanswered question of great relevance is the identity of the protein that in mammals performs the function that in other vertebrates is carried out by the L-BABPS.

  9. Fatty acid binding protein in the intestine of the chicken.

    PubMed

    Katongole, J B; March, B E

    1979-03-01

    The mucosa of the mesenteric intestine of the chicken has been found to contain a fatty acid binding protein (FABP) with a molecular weight of less than 12,400. The protein is present in the newly hatched chick before ingestion of feed and in the adult bird. When a low-fat diet is fed, the concentration of the FABP is highest in the proximal portion of the intestine and decreases posteriorly. When a high-fat diet is fed, an increase occurs in the amount of FABP in the lower section of the intestine.

  10. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    PubMed

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  11. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation.

  12. Retinoic acid binding protein in normal and neopolastic rat prostate.

    PubMed

    Gesell, M S; Brandes, M J; Arnold, E A; Isaacs, J T; Ueda, H; Millan, J C; Brandes, D

    1982-01-01

    Sucrose density gradient analysis of cytosol from normal and neoplastic rat prostatic tissues exhibited a peak of (3H) retinoic acid binding in the 2S region, corresponding to the cytoplasmic retinoic acid binding protein (cRABP). In the Fisher-Copenhagen F1 rat, cRABP was present in the lateral lobe, but could not be detected in the ventral nor in the dorsal prostatic lobes. Four sublines of the R-3327 rat prostatic tumor contained similar levels of this binding protein. The absence of cRABP in the normal tissue of origin of the R-3327 tumor, the rat dorsal prostate, and reappearance in the neoplastic tissues follows a pattern described in other human and animal tumors. The occurrence of cRABP in the well-differentiated as well as in the anaplastic R-3327 tumors in which markers which reflect a state of differentiation and hormonal regulation, such as androgen receptor, 5 alpha reductase, and secretory acid phosphatase are either markedly reduced or absent, points to cRABP as a marker of malignant transformation. PMID:6283503

  13. Binding of AP-2 adaptor complex to brain membrane is regulated by phosphorylation of proteins

    SciTech Connect

    Alberdi, A. . E-mail: aalberdi@fcm.uncu.edu.ar; Sartor, T.; Sosa, M.A.

    2005-05-13

    Phosphorylation of proteins appears as a key process in early steps of clathrin coated vesicle formation. Here, we report that treatment of post-nuclear fraction with alkaline phosphatase induced redistribution of {alpha} subunits of AP-2 adaptor complex to cytosol and this effect was higher in the {alpha}2 subunit. A high serine phosphorylation status of {alpha} subunits correlated with the higher affinity of AP-2 to membranes. Using a simple binding assay, where membranes were incubated with either purified adaptors or cytosols, we observed an inhibitory effect of tyrphostin, a tyrosine kinase inhibitor, on the binding of AP-2 to membranes, but also an unexpected decrease induced by the phosphatase inhibitor cyclosporine. We also show an inhibitory effect of ATP mediated by cytosolic proteins, although it could not be related to the phosphorylation of AP-2, suggesting an action upstream a cascade of phosphorylations that participate in the regulation of the assembly of AP-2 to membranes.

  14. Transcriptional regulation of muscle fatty acid-binding protein.

    PubMed Central

    Carey, J O; Neufer, P D; Farrar, R P; Veerkamp, J H; Dohm, G L

    1994-01-01

    Heart fatty acid-binding protein (H-FABP) is present in a wide variety of tissues but is found in the highest concentration in cardiac and red skeletal muscle. It has been proposed that the expression of H-FABP correlates directly with the fatty acid-oxidative capacity of the tissue. In the present study, the expression of H-FABP was measured in red and white skeletal muscle under two conditions in which fatty acid utilization is known to be increased: streptozotocin-induced diabetes and fasting. Protein concentration, mRNA concentration and transcription rate were measured under both conditions. The level of both protein and mRNA increased approximately 2-fold under each condition. The transcription rate was higher in red skeletal muscle than in white muscle, was increased 2-fold during fasting, but was unchanged by streptozotocin-induced diabetes. In addition to supporting the hypothesis that H-FABP is induced during conditions of increased fatty acid utilization, these findings demonstrate that the regulation of H-FABP expression may or may not be at the level of transcription depending on the stimulus. Images Figure 2 Figure 3 PMID:8141774

  15. Role of fatty acid binding protein on hepatic palmitate uptake.

    PubMed

    Burczynski, F J; Zhang, M N; Pavletic, P; Wang, G Q

    1997-12-01

    Expression of hepatic fatty acid binding protein (FABP) mRNA is regulated by growth hormone. In the absence of growth hormone, there is a 60% reduction in FABP mRNA levels (S.A. Berry, J.-B Yoon, U. List, and S. Seelig. J. Am. Coll. Nutr. 12:638-642. 1995). Previous work in our laboratory focused on the role of extracellular binding proteins in the hepatic uptake of long chain fatty acids. In the present study we were interested to determine the role of FABP in the transmembrane flux of long chain fatty acids. Using hepatocyte monolayers from control (n = 9) and hypophysectomized (n = 6) rats, we investigated the uptake of [3H]palmitate in the presence and absence of albumin. In the absence of albumin, total hepatocyte [3H]palmitate clearance rates from control (17.2 +/- 1.5 microL.mg-1 protein.s-1; mean +/- SEM; n = 9) and hypophysectomized (15.5 +/- 2.1 microL.mg-1 protein.s-1; n = 6) animals were similar (p > 0.05). In the presence of 2 microM albumin the total [3H]palmitate clearance rate from control hepatocytes (1.63 +/- 0.11 microL.mg-1 protein.s-1; n = 9) was significantly larger (40%) than from hepatocytes obtained from hypophysectomized (0.97 +/- 0.15 microL.mg-1 protein.s-1; n = 6; p < 0.01) animals. SDS-PAGE electrophoresis revealed that plasma membrane FABP levels from control and hypophysectomized animals were similar. However, there was a 49% decrease in the cytosolic FABP levels of hepatocytes isolated from hypophysectomized as compared with control animals. The decreased cytosolic FABB levels paralleled the decrease in palmitate uptake. We conclude that in the absence of extracellular binding proteins the rate-limiting step in the overall uptake of long chain fatty acids is diffusion to the cell surface. However, in the presence of albumin, the rate of palmitate uptake is determined primarily by cytosolic FABP levels.

  16. Characterization of a fatty acid-binding protein from rat heart.

    PubMed

    Offner, G D; Troxler, R F; Brecher, P

    1986-04-25

    A fatty acid-binding protein has been isolated from rat heart and purified by gel filtration chromatography on Sephadex G-75 and anion-exchange chromatography on DE52. The circular dichroic spectrum of this protein was not affected by protein concentration, suggesting that it does not aggregate into multimers. Computer analyses of the circular dichroic spectrum predicted that rat heart fatty acid-binding protein contains approximately 22% alpha-helix, 45% beta-form and 33% unordered structure. Immunological studies showed that the fatty acid-binding proteins from rat heart and rat liver are immunochemically unrelated. The amino acid composition and partial amino acid sequence of the heart protein indicated that it is structurally related to, but distinct from, other fatty acid-binding proteins from liver, intestine, and 3T3 adipocytes. Using a binding assay which measures the transfer of fatty acids between donor liposomes and protein (Brecher, P., Saouaf, R., Sugarman, J. M., Eisenberg, D., and LaRosa, K. (1984) J. Biol. Chem. 259, 13395-13401), it was shown that both rat heart and liver fatty acid-binding proteins bind 2 mol of oleic acid or palmitic acid/mol of protein. The structural and functional relationship of rat heart fatty acid-binding protein to fatty acid-binding proteins from other tissues is discussed. PMID:3957934

  17. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  18. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  19. ENTH and ANTH domain proteins participate in AP2-independent clathrin-mediated endocytosis.

    PubMed

    Manna, Paul T; Gadelha, Catarina; Puttick, Amy E; Field, Mark C

    2015-06-01

    Clathrin-mediated endocytosis (CME) is a major route of entry into eukaryotic cells. A core of evolutionarily ancient genes encodes many components of this system but much of our mechanistic understanding of CME is derived from a phylogenetically narrow sampling of a few model organisms. In the parasite Trypanosoma brucei, which is distantly related to the better characterised animals and fungi, exceptionally fast endocytic turnover aids its evasion of the host immune system. Although clathrin is absolutely essential for this process, the adaptor protein complex 2 (AP2) has been secondarily lost, suggesting mechanistic divergence. Here, we characterise two phosphoinositide-binding monomeric clathrin adaptors, T. brucei (Tb)EpsinR and TbCALM, which in trypanosomes are represented by single genes, unlike the expansions present in animals and fungi. Depletion of these gene products reveals essential, but partially redundant, activities in CME. Ultrastructural analysis of TbCALM and TbEpsinR double-knockdown cells demonstrated severe defects to clathrin-coated pit formation and morphology associated with a dramatic inhibition of endocytosis. Depletion of TbCALM alone, however, produced a distinct lysosomal segregation phenotype, indicating an additional non-redundant role for this protein. Therefore, TbEpsinR and TbCALM represent ancient phosphoinositide-binding proteins with distinct and vital roles in AP2-independent endocytosis.

  20. ENTH and ANTH domain proteins participate in AP2-independent clathrin-mediated endocytosis

    PubMed Central

    Manna, Paul T.; Gadelha, Catarina; Puttick, Amy E.; Field, Mark C.

    2015-01-01

    ABSTRACT Clathrin-mediated endocytosis (CME) is a major route of entry into eukaryotic cells. A core of evolutionarily ancient genes encodes many components of this system but much of our mechanistic understanding of CME is derived from a phylogenetically narrow sampling of a few model organisms. In the parasite Trypanosoma brucei, which is distantly related to the better characterised animals and fungi, exceptionally fast endocytic turnover aids its evasion of the host immune system. Although clathrin is absolutely essential for this process, the adaptor protein complex 2 (AP2) has been secondarily lost, suggesting mechanistic divergence. Here, we characterise two phosphoinositide-binding monomeric clathrin adaptors, T. brucei (Tb)EpsinR and TbCALM, which in trypanosomes are represented by single genes, unlike the expansions present in animals and fungi. Depletion of these gene products reveals essential, but partially redundant, activities in CME. Ultrastructural analysis of TbCALM and TbEpsinR double-knockdown cells demonstrated severe defects to clathrin-coated pit formation and morphology associated with a dramatic inhibition of endocytosis. Depletion of TbCALM alone, however, produced a distinct lysosomal segregation phenotype, indicating an additional non-redundant role for this protein. Therefore, TbEpsinR and TbCALM represent ancient phosphoinositide-binding proteins with distinct and vital roles in AP2-independent endocytosis. PMID:25908855

  1. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  2. Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins.

    PubMed

    Thomas, Marshall P; Whangbo, Jennifer; McCrossan, Geoffrey; Deutsch, Aaron J; Martinod, Kimberly; Walch, Michael; Lieberman, Judy

    2014-06-01

    Killer lymphocyte granzyme (Gzm) serine proteases induce apoptosis of pathogen-infected cells and tumor cells. Many known Gzm substrates are nucleic acid binding proteins, and the Gzms accumulate in the target cell nucleus by an unknown mechanism. In this study, we show that human Gzms bind to DNA and RNA with nanomolar affinity. Gzms cleave their substrates most efficiently when both are bound to nucleic acids. RNase treatment of cell lysates reduces Gzm cleavage of RNA binding protein targets, whereas adding RNA to recombinant RNA binding protein substrates increases in vitro cleavage. Binding to nucleic acids also influences Gzm trafficking within target cells. Preincubation with competitor DNA and DNase treatment both reduce Gzm nuclear localization. The Gzms are closely related to neutrophil proteases, including neutrophil elastase (NE) and cathepsin G. During neutrophil activation, NE translocates to the nucleus to initiate DNA extrusion into neutrophil extracellular traps, which bind NE and cathepsin G. These myeloid cell proteases, but not digestive serine proteases, also bind DNA strongly and localize to nuclei and neutrophil extracellular traps in a DNA-dependent manner. Thus, high-affinity nucleic acid binding is a conserved and functionally important property specific to leukocyte serine proteases. Furthermore, nucleic acid binding provides an elegant and simple mechanism to confer specificity of these proteases for cleavage of nucleic acid binding protein substrates that play essential roles in cellular gene expression and cell proliferation.

  3. Enterocyte Fatty Acid Binding Proteins (FABPs): Different Functions of Liver- and Intestinal- FABPs in the Intestine

    PubMed Central

    Gajda, Angela M.; Storch, Judith

    2014-01-01

    SUMMARY Fatty acid binding proteins (FABP) are highly abundant cytosolic proteins that are expressed in most mammalian tissues. In the intestinal enterocyte, both Liver- (LFABP; FABP1) and Intestinal-fatty acid binding proteins (IFABP; FABP2) are expressed. These proteins display high affinity binding for long chain fatty acids (FA) and other hydrophobic ligands, thus they are believed to be involved with uptake and trafficking of lipids in the intestine. In vitro studies have identified differences in ligand binding stoichiometry and specificity, and in mechanisms of FA transfer to membranes, and it has been hypothesized that LFABP and IFABP have difference functions in the enterocyte. Studies directly comparing LFABP- and IFABP-null mice have revealed markedly different phenotypes, indicating that these proteins indeed have different functions in intestinal lipid metabolism and whole body energy homeostasis. In this review, we discuss the evolving knowledge of the functions of LFABP and IFABP in the intestinal enterocyte. PMID:25458898

  4. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological Insights and Potent Clinical Biomarker of Metabolic and Cardiovascular Diseases

    PubMed Central

    Furuhashi, Masato; Saitoh, Shigeyuki; Shimamoto, Kazuaki; Miura, Tetsuji

    2014-01-01

    Over the past decade, evidences of an integration of metabolic and inflammatory pathways, referred to as metaflammation in several aspects of metabolic syndrome, have been accumulating. Fatty acid-binding protein 4 (FABP4), also known as adipocyte FABP (A-FABP) or aP2, is mainly expressed in adipocytes and macrophages and plays an important role in the development of insulin resistance and atherosclerosis in relation to metaflammation. Despite lack of a typical secretory signal peptide, FABP4 has been shown to be released from adipocytes in a non-classical pathway associated with lipolysis, possibly acting as an adipokine. Elevation of circulating FABP4 levels is associated with obesity, insulin resistance, diabetes mellitus, hypertension, cardiac dysfunction, atherosclerosis, and cardiovascular events. Furthermore, ectopic expression and function of FABP4 in several types of cells and tissues have been recently demonstrated. Here, we discuss both the significant role of FABP4 in pathophysiological insights and its usefulness as a biomarker of metabolic and cardiovascular diseases. PMID:25674026

  5. Urinary liver-type fatty acid-binding protein change in gestational diabetes mellitus.

    PubMed

    Fu, Wen-Jin; Wang, Du-Juan; Deng, Ren-Tang; Huang, Zhi-Hong; Chen, Mei-Lian; Jang, You-Ming; Wen, Shu; Yang, Hong-Ling; Huang, Xian-zhang

    2015-09-01

    We compared urinary liver-type fatty acid-binding protein (L-FABP) among non-pregnant and pregnant women with and without gestational diabetes mellitus (GDM). Higher urinary L-FABP was found in pregnant with and without GDM, and considerably higher urinary L-FABP was found in the GDM group compared with the non-GDM group. Hyperglycemia and anemia were related with high urinary L-FABP expression. PMID:26254248

  6. Urinary liver-type fatty acid-binding protein change in gestational diabetes mellitus.

    PubMed

    Fu, Wen-Jin; Wang, Du-Juan; Deng, Ren-Tang; Huang, Zhi-Hong; Chen, Mei-Lian; Jang, You-Ming; Wen, Shu; Yang, Hong-Ling; Huang, Xian-zhang

    2015-09-01

    We compared urinary liver-type fatty acid-binding protein (L-FABP) among non-pregnant and pregnant women with and without gestational diabetes mellitus (GDM). Higher urinary L-FABP was found in pregnant with and without GDM, and considerably higher urinary L-FABP was found in the GDM group compared with the non-GDM group. Hyperglycemia and anemia were related with high urinary L-FABP expression.

  7. Characterization of a protein phosphatase 2A holoenzyme that dephosphorylates the clathrin adaptors AP-1 and AP-2.

    PubMed

    Ricotta, Doris; Hansen, Jens; Preiss, Carolin; Teichert, Dominic; Höning, Stefan

    2008-02-29

    The AP-2 complex is a key factor in the formation of endocytic clathrin-coated vesicles (CCVs). AP-2 sorts and packages cargo membrane proteins into CCVs, binds the coat protein clathrin, and recruits numerous other factors to the site of vesicle formation. Structural information on the AP-2 complex and biochemical work have allowed understanding its function on the molecular level, and recent studies showed that cycles of phosphorylation are key steps in the regulation of AP-2 function. The complex is phosphorylated on both large subunits (alpha- and beta2-adaptins) as well as at a single threonine residue (Thr-156) of the medium subunit mu2. Phosphorylation of mu2 is necessary for efficient cargo recruitment, whereas the functional context of the large subunit phosphorylation is unknown. Here, we show that the subunit phosphorylation of AP-2 exhibits striking differences, with calculated half-lives of <1 min for mu2, approximately 25 min for beta2, and approximately 70 min for alpha. We were also able to purify a phosphatase that dephosphorylates the mu2 subunit. The enzyme is a member of the protein phosphatase 2A family and composed of a catalytic Cbeta subunit, a scaffolding Abeta subunit, and a regulatory Balpha subunit. RNA interference knock down of the latter subunit in HeLa cells resulted in increased levels of phosphorylated adaptors and altered endocytosis, showing that a specific PP2A holoenzyme is an important regulatory enzyme in CCV-mediated transport.

  8. Characterization and amino acid sequence of a fatty acid-binding protein from human heart.

    PubMed Central

    Offner, G D; Brecher, P; Sawlivich, W B; Costello, C E; Troxler, R F

    1988-01-01

    The complete amino acid sequence of a fatty acid-binding protein from human heart was determined by automated Edman degradation of CNBr, BNPS-skatole [3'-bromo-3-methyl-2-(2-nitrobenzenesulphenyl)indolenine], hydroxylamine, Staphylococcus aureus V8 proteinase, tryptic and chymotryptic peptides, and by digestion of the protein with carboxypeptidase A. The sequence of the blocked N-terminal tryptic peptide from citraconylated protein was determined by collisionally induced decomposition mass spectrometry. The protein contains 132 amino acid residues, is enriched with respect to threonine and lysine, lacks cysteine, has an acetylated valine residue at the N-terminus, and has an Mr of 14768 and an isoelectric point of 5.25. This protein contains two short internal repeated sequences from residues 48-54 and from residues 114-119 located within regions of predicted beta-structure and decreasing hydrophobicity. These short repeats are contained within two longer repeated regions from residues 48-60 and residues 114-125, which display 62% sequence similarity. These regions could accommodate the charged and uncharged moieties of long-chain fatty acids and may represent fatty acid-binding domains consistent with the finding that human heart fatty acid-binding protein binds 2 mol of oleate or palmitate/mol of protein. Detailed evidence for the amino acid sequences of the peptides has been deposited as Supplementary Publication SUP 50143 (23 pages) at the British Library Lending Division, Boston Spa, Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1988) 249, 5. PMID:3421901

  9. Cold shock domain protein from Philosamia ricini prefers single-stranded nucleic acids binding.

    PubMed

    Mani, Ashutosh; Yadava, P K; Gupta, Dwijendra K

    2012-01-01

    The cold shock proteins are evolutionarily conserved nucleic acid-binding proteins. Their eukaryotic homologs are present as cold shock domain (CSD) in Y-box proteins. CSDs too share striking similarity among different organisms and show nucleic acid binding properties. The purpose of the study was to investigate the preferential binding affinity of CSD protein for nucleic acids in Philosamia ricini. We have cloned and sequenced the first cDNA coding for Y-box protein in P. ricini; the sequence has been deposited in GenBank. Comparative genomics and phylogenetic analytics further confirmed that the deduced amino acid sequence belongs to the CSD protein family. A comparative study employing molecular docking was performed with P. ricini CSD, human CSD, and bacterial cold shock protein with a range of nucleic acid entities. The results indicate that CSD per se exhibits preferential binding affinity for single-stranded RNA and DNA. Possibly, the flanking N- and C-terminal domains are additionally involved in interactions with dsDNA or in conferring extra stability to CSD for improved binding.

  10. Zebrafish cellular nucleic acid-binding protein: gene structure and developmental behaviour.

    PubMed

    Armas, Pablo; Cachero, Sebastián; Lombardo, Verónica A; Weiner, Andrea; Allende, Miguel L; Calcaterra, Nora B

    2004-08-01

    Here we analyse the structural organisation and expression of the zebrafish cellular nucleic acid-binding protein (zCNBP) gene and protein. The gene is organised in five exons and four introns. A noteworthy feature of the gene is the absence of a predicted promoter region. The coding region encodes a 163-amino acid polypeptide with the highly conserved general structural organisation of seven CCHC Zn knuckle domains and an RGG box between the first and the second Zn knuckles. Although theoretical alternative splicing is possible, only one form of zCNBP is actually detected. This form is able to bind to single-stranded DNA and RNA probes in vitro. The analysis of zCNBP developmental expression shows a high amount of CNBP-mRNA in ovary and during the first developmental stages. CNBP-mRNA levels decrease while early development progresses until the midblastula transition (MBT) stage and increases again thereafter. The protein is localised in the cytoplasm of blastomeres whereas it is mainly nuclear in developmental stages after the MBT. These findings suggest that CNBP is a strikingly conserved single-stranded nucleic acid-binding protein which might interact with maternal mRNA during its storage in the embryo cell cytoplasm. It becomes nuclear once MBT takes place possibly in order to modulate zygotic transcription and/or to associate with newly synthesised transcripts.

  11. Identification and Investigation of Novel Binding Fragments in the Fatty Acid Binding Protein 6 (FABP6).

    PubMed

    Hendrick, Alan G; Müller, Ilka; Willems, Henriëtte; Leonard, Philip M; Irving, Steve; Davenport, Richard; Ito, Takashi; Reeves, Jenny; Wright, Susanne; Allen, Vivienne; Wilkinson, Stephen; Heffron, Helen; Bazin, Richard; Turney, Jennifer; Mitchell, Philip J

    2016-09-01

    Fatty acid binding protein 6 (FABP6) is a potential drug discovery target, which, if inhibited, may have a therapeutic benefit for the treatment of diabetes. Currently, there are no published inhibitors of FABP6, and with the target believed to be amenable to fragment-based drug discovery, a structurally enabled program was initiated. This program successfully identified fragment hits using the surface plasmon resonance (SPR) platform. Several hits were validated with SAR and were found to be displaced by the natural ligand taurocholate. We report the first crystal structure of human FABP6 in the unbound form, in complex with cholate, and with one of the key fragments. PMID:27500412

  12. Hypertension induces tissue-specific gene suppression of a fatty acid binding protein in rat aorta.

    PubMed Central

    Sarzani, R; Claffey, K P; Chobanian, A V; Brecher, P

    1988-01-01

    The effect of hypertension on the expression of a fatty acid binding protein localized in the rat aorta was studied. The presence of rat heart fatty acid binding protein (hFABP) was documented in aortic tissue by using a cDNA probe and polyclonal antibodies. Hypertension was induced in groups of rats by implantation of deoxycorticosterone acetate in conjunction with 1% salt in the drinking water (deoxycorticosterone/salt). By the third week of this treatment a marked reduction (by a factor of 20) in the expression of hFABP mRNA in aorta was found, concomitant with a reduction in immunologically detectable protein, suggesting transcriptional regulation. This effect was tissue specific, since no change in the normal amounts of hFABP mRNA in heart, skeletal muscle, or kidney was found. This reduction in aortic hFABP mRNA was also found in mildly hypertensive uninephrectomized rats given salt but no deoxycorticosterone and in normotensive rats given deoxycorticosterone but no excess salt intake. A marked decrease in aortic hFABP mRNA also was observed in the Goldblatt two kidney-one clip hypertensive model, and administration of angiotensin II for 6 days by osmotic minipump also caused a reduction. These findings suggest that hFABP is under complex regulation in aortic tissue and is suppressed by arterial hypertension. Images PMID:3174661

  13. Molecular dynamics simulation of ligand dissociation from liver fatty acid binding protein.

    PubMed

    Long, Dong; Mu, Yuguang; Yang, Daiwen

    2009-06-30

    The mechanisms of how ligands enter and leave the binding cavity of fatty acid binding proteins (FABPs) have been a puzzling question over decades. Liver fatty acid binding protein (LFABP) is a unique family member which accommodates two molecules of fatty acids in its cavity and exhibits the capability of interacting with a variety of ligands with different chemical structures and properties. Investigating the ligand dissociation processes of LFABP is thus a quite interesting topic, which however is rather difficult for both experimental approaches and ordinary simulation strategies. In the current study, random expulsion molecular dynamics simulation, which accelerates ligand motions for rapid dissociation, was used to explore the potential egress routes of ligands from LFABP. The results showed that the previously hypothesized "portal region" could be readily used for the dissociation of ligands at both the low affinity site and the high affinity site. Besides, one alternative portal was shown to be highly favorable for ligand egress from the high affinity site and be related to the unique structural feature of LFABP. This result lends strong support to the hypothesis from the previous NMR exchange studies, which in turn indicates an important role for this alternative portal. Another less favored potential portal located near the N-terminal end was also identified. Identification of the dissociation pathways will allow further mechanistic understanding of fatty acid uptake and release by computational and/or experimental techniques.

  14. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment.

    PubMed

    Gruber, David F; Gaffney, Jean P; Mehr, Shaadi; DeSalle, Rob; Sparks, John S; Platisa, Jelena; Pieribone, Vincent A

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein's fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment.

  15. Adaptive Evolution of Eel Fluorescent Proteins from Fatty Acid Binding Proteins Produces Bright Fluorescence in the Marine Environment

    PubMed Central

    Gruber, David F.; Gaffney, Jean P.; Mehr, Shaadi; DeSalle, Rob; Sparks, John S.; Platisa, Jelena; Pieribone, Vincent A.

    2015-01-01

    We report the identification and characterization of two new members of a family of bilirubin-inducible fluorescent proteins (FPs) from marine chlopsid eels and demonstrate a key region of the sequence that serves as an evolutionary switch from non-fluorescent to fluorescent fatty acid-binding proteins (FABPs). Using transcriptomic analysis of two species of brightly fluorescent Kaupichthys eels (Kaupichthys hyoproroides and Kaupichthys n. sp.), two new FPs were identified, cloned and characterized (Chlopsid FP I and Chlopsid FP II). We then performed phylogenetic analysis on 210 FABPs, spanning 16 vertebrate orders, and including 163 vertebrate taxa. We show that the fluorescent FPs diverged as a protein family and are the sister group to brain FABPs. Our results indicate that the evolution of this family involved at least three gene duplication events. We show that fluorescent FABPs possess a unique, conserved tripeptide Gly-Pro-Pro sequence motif, which is not found in non-fluorescent fatty acid binding proteins. This motif arose from a duplication event of the FABP brain isoforms and was under strong purifying selection, leading to the classification of this new FP family. Residues adjacent to the motif are under strong positive selection, suggesting a further refinement of the eel protein’s fluorescent properties. We present a phylogenetic reconstruction of this emerging FP family and describe additional fluorescent FABP members from groups of distantly related eels. The elucidation of this class of fish FPs with diverse properties provides new templates for the development of protein-based fluorescent tools. The evolutionary adaptation from fatty acid-binding proteins to fluorescent fatty acid-binding proteins raises intrigue as to the functional role of bright green fluorescence in this cryptic genus of reclusive eels that inhabit a blue, nearly monochromatic, marine environment. PMID:26561348

  16. Model of β-Sheet of Muscle Fatty Acid Binding Protein of Locusta migratoria Displays Characteristic Topology

    PubMed Central

    Kizilbash, Nadeem A; Hai, Abdul; Alruwaili, Jamal

    2013-01-01

    The β-sheet of muscle fatty acid binding protein of Locusta migratoria (Lm-FABP) was modeled by employing 2-D NMR data and the Rigid Body Assembly method. The model shows the β-sheet to comprise ten β-strands arranged anti-parallel to each other. There is a β-bulge between Ser 13 and Gln 14 which is a difference from the published structure of β-sheet of bovine heart Fatty Acid Binding Protein. Also, a hydrophobic patch consisting of Ile 45, Phe 51, Phe 64 and Phe 66 is present on the surface which is characteristic of most Fatty Acid Binding Proteins. A “gap” is present between βD and βE that provides evidence for the presence of a portal or opening between the polypeptide chains which allows ligand fatty acids to enter the protein cavity and bind to the protein. PMID:24497726

  17. Direct protein-protein interactions and substrate channeling between cellular retinoic acid binding proteins and CYP26B1.

    PubMed

    Nelson, Cara H; Peng, Chi-Chi; Lutz, Justin D; Yeung, Catherine K; Zelter, Alex; Isoherranen, Nina

    2016-08-01

    Cellular retinoic acid binding proteins (CRABPs) bind all-trans-retinoic acid (atRA) tightly. This study aimed to determine whether atRA is channeled directly to cytochrome P450 (CYP) CYP26B1 by CRABPs, and whether CRABPs interact directly with CYP26B1. atRA bound to CRABPs (holo-CRABP) was efficiently metabolized by CYP26B1. Isotope dilution experiments showed that delivery of atRA to CYP26B1 in solution was similar with or without CRABP. Holo-CRABPs had higher affinity for CYP26B1 than free atRA, but both apo-CRABPs inhibited the formation of 4-OH-RA by CYP26B1. Similar protein-protein interactions between soluble binding proteins and CYPs may be important for other lipophilic CYP substrates.

  18. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance.

    PubMed

    Baier, L J; Sacchettini, J C; Knowler, W C; Eads, J; Paolisso, G; Tataranni, P A; Mochizuki, H; Bennett, P H; Bogardus, C; Prochazka, M

    1995-03-01

    The intestinal fatty acid binding protein locus (FABP2) was investigated as a possible genetic factor in determining insulin action in the Pima Indian population. A polymorphism at codon 54 of FABP2 was identified that results in an alanine-encoding allele (frequency 0.71) and a threonine-encoding allele (frequency 0.29). Pimas who were homozygous or heterozygous for the threonine-encoding allele were found to have a higher mean fasting plasma insulin concentration, a lower mean insulin-stimulated glucose uptake rate, a higher mean insulin response to oral glucose and a mixed meal, and a higher mean fat oxidation rate compared with Pimas who were homozygous for the alanine-encoding allele. Since the FABP2 threonine-encoding allele was found to be associated with insulin resistance and increased fat oxidation in vivo, we further analyzed the FABP2 gene products for potential functional differences. Titration microcalorimetry studies with purified recombinant protein showed that the threonine-containing protein had a twofold greater affinity for long-chain fatty acids than the alanine-containing protein. We conclude that the threonine-containing protein may increase absorption and/or processing of dietary fatty acids by the intestine and thereby increase fat oxidation, which has been shown to reduce insulin action. PMID:7883976

  19. Affinity regression predicts the recognition code of nucleic acid binding proteins

    PubMed Central

    Pelossof, Raphael; Singh, Irtisha; Yang, Julie L.; Weirauch, Matthew T.; Hughes, Timothy R.; Leslie, Christina S.

    2016-01-01

    Predicting the affinity profiles of nucleic acid-binding proteins directly from the protein sequence is a major unsolved problem. We present a statistical approach for learning the recognition code of a family of transcription factors (TFs) or RNA-binding proteins (RBPs) from high-throughput binding assays. Our method, called affinity regression, trains on protein binding microarray (PBM) or RNA compete experiments to learn an interaction model between proteins and nucleic acids, using only protein domain and probe sequences as inputs. By training on mouse homeodomain PBM profiles, our model correctly identifies residues that confer DNA-binding specificity and accurately predicts binding motifs for an independent set of divergent homeodomains. Similarly, learning from RNA compete profiles for diverse RBPs, our model can predict the binding affinities of held-out proteins and identify key RNA-binding residues. More broadly, we envision applying our method to model and predict biological interactions in any setting where there is a high-throughput ‘affinity’ readout. PMID:26571099

  20. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4)

    PubMed Central

    González, Javier M.; Fisher, S. Zoë

    2015-01-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments. PMID:25664790

  1. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  2. Structural analysis of ibuprofen binding to human adipocyte fatty-acid binding protein (FABP4).

    PubMed

    González, Javier M; Fisher, S Zoë

    2015-02-01

    Inhibition of human adipocyte fatty-acid binding protein (FABP4) has been proposed as a treatment for type 2 diabetes, fatty liver disease and atherosclerosis. However, FABP4 displays a naturally low selectivity towards hydrophobic ligands, leading to the possibility of side effects arising from cross-inhibition of other FABP isoforms. In a search for structural determinants of ligand-binding selectivity, the binding of FABP4 towards a group of small molecules structurally related to the nonsteroidal anti-inflammatory drug ibuprofen was analyzed through X-ray crystallography. Several specific hydrophobic interactions are shown to enhance the binding affinities of these compounds, whereas an aromatic edge-to-face interaction is proposed to determine the conformation of bound ligands, highlighting the importance of aromatic interactions in hydrophobic environments.

  3. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    PubMed

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  5. Conformational and nucleic acid binding studies on the synthetic nucleocapsid protein of HIV-1.

    PubMed

    Surovoy, A; Dannull, J; Moelling, K; Jung, G

    1993-01-01

    A 55 residue peptide corresponding to the nucleocapsid protein of HIV-1 (NCp7) containing two zinc binding domains as well as three truncated peptides were synthesized by Fmoc-based solid phase synthesis using the fragment condensation approach. Circular dichroism (CD) data support a conformational model in trifluoroethanol/buffer solution consisting of two helical segments at the chain ends with two Zn-modules in the center of the molecule. CD titration experiments show that the synthetic protein binds two equivalents of Zn2+ stoichiometrically, and the Zn2+ induced conformational changes are completely reversible by addition of EDTA. NCp7 and its S-acetamidomethylated analog (NCp7-Acm), devoid of the zinc co-ordination centers, exhibit preferential binding to RNA with a Kd = approximately 10(-9) M irrespective of the cysteine modification as determined by filter binding assays. The binding affinity of the NCp7 protein to single-stranded DNA is lower than to RNA. Binding to double-stranded DNA is lower than to ssDNA. The NCp7-Acm protein exhibits reduced single-stranded DNA binding affinity compared to the unmodified protein. Nucleic acid binding analyses with the fragments of NCp7 protein suggest that two basic amino acid stretches are involved in RNA binding of the NCp7.

  6. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    PubMed

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used. PMID:6490659

  7. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein.

    PubMed

    Callahan, Kathryn E; Hickman, Alison B; Jones, Charles E; Ghirlando, Rodolfo; Furano, Anthony V

    2012-01-01

    The L1 (LINE 1) retrotransposable element encodes two proteins, ORF1p and ORF2p. ORF2p is the L1 replicase, but the role of ORF1p is unknown. Mouse ORF1p, a coiled-coil-mediated trimer of ∼42-kDa monomers, binds nucleic acids and has nucleic acid chaperone activity. We purified human L1 ORF1p expressed in insect cells and made two findings that significantly advance our knowledge of the protein. First, in the absence of nucleic acids, the protein polymerizes under the very conditions (0.05 M NaCl) that are optimal for high (∼1 nM)-affinity nucleic acid binding. The non-coiled-coil C-terminal half mediates formation of the polymer, an active conformer that is instantly resolved to trimers, or multimers thereof, by nucleic acid. Second, the protein has a biphasic effect on mismatched double-stranded DNA, a proxy chaperone substrate. It protects the duplex from dissociation at 37°C before eventually melting it when largely polymeric. Therefore, polymerization of ORF1p seemingly affects its interaction with nucleic acids. Additionally, polymerization of ORF1p at its translation site could explain the heretofore-inexplicable phenomenon of cis preference-the favored retrotransposition of the actively translated L1 transcript, which is essential for L1 survival. PMID:21937507

  8. Expression Pattern of Fatty Acid Binding Proteins in Celiac Disease Enteropathy

    PubMed Central

    Bottasso Arias, Natalia M.; García, Marina; Bondar, Constanza; Guzman, Luciana; Redondo, Agustina; Chopita, Nestor; Córsico, Betina; Chirdo, Fernando G.

    2015-01-01

    Celiac disease (CD) is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs): intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs' expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa. PMID:26346822

  9. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-01

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth.

  10. Identification of Apolipoprotein A-I as a Retinoic Acid-binding Protein in the Eye.

    PubMed

    Summers, Jody A; Harper, Angelica R; Feasley, Christa L; Van-Der-Wel, Hanke; Byrum, Jennifer N; Hermann, Marcela; West, Christopher M

    2016-09-01

    All-trans-retinoic acid may be an important molecular signal in the postnatal control of eye size. The goal of this study was to identify retinoic acid-binding proteins secreted by the choroid and sclera during visually guided ocular growth. Following photoaffinity labeling with all-trans-[11,12-(3)H]retinoic acid, the most abundant labeled protein detected in the conditioned medium of choroid or sclera had an apparent Mr of 27,000 Da. Following purification and mass spectrometry, the Mr 27,000 band was identified as apolipoprotein A-I. Affinity capture of the radioactive Mr 27,000 band by anti-chick apolipoprotein A-I antibodies confirmed its identity as apolipoprotein A-I. Photoaffinity labeling and fluorescence quenching experiments demonstrated that binding of retinoic acid to apolipoprotein A-I is 1) concentration-dependent, 2) selective for all-trans-retinoic acid, and 3) requires the presence of apolipoprotein A-I-associated lipids for retinoid binding. Expression of apolipoprotein A-I mRNA and protein synthesis were markedly up-regulated in choroids of chick eyes during the recovery from induced myopia, and apolipoprotein A-I mRNA was significantly increased in choroids following retinoic acid treatment. Together, these data suggest that apolipoprotein A-I may participate in a regulatory feedback mechanism with retinoic acid to control the action of retinoic acid on ocular targets during postnatal ocular growth. PMID:27402828

  11. Astrocyte fatty acid binding protein-7 is a marker for neurogenic niches in the rat hippocampus.

    PubMed

    Young, John K; Heinbockel, Thomas; Gondré-Lewis, Marjorie C

    2013-12-01

    Recent research has determined that newborn neurons in the dentate gyrus of the hippocampus of the macaque are frequently adjacent to astrocytes immunoreactive for fatty acid binding protein-7 (FABP7). To investigate if a similar relationship between FABP7-positive (FABP7+) astrocytes and proliferating cells exists in the rodent brain, sections of brains from juvenile rats were stained by immunohistochemistry to demonstrate newborn cells (antibody to Ki67 protein) and FABP7+ astrocytes. In rat brains, FABP7+ astrocytes were particularly abundant in the dentate gyrus of the hippocampus and were frequently close to dividing cells immunoreactive for Ki67 protein. FABP7+ astrocytes were also present in the olfactory bulbs, arcuate nucleus of the hypothalamus, and in the dorsal medulla subjacent to the area postrema, sites where more modest numbers of newborn neurons can also be found. These data suggest that regional accumulations of FABP7+ astrocytes may represent reservoirs of cells having the potential for neurogenesis. Because FABP7+ astrocytes are particularly abundant in the hippocampus, and since the gene for FABP7 has been linked to Alzheimer's disease, age-related changes in FABP7+ astrocytes (mitochondrial degeneration) may be relevant to age-associated disorders of the hippocampus.

  12. Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4.

    PubMed

    Gorbenko, O; Panayotou, G; Zhyvoloup, A; Volkova, D; Gout, I; Filonenko, V

    2010-04-01

    PTEN is a tumor suppressor with dual protein and lipid-phosphatase activity, which is frequently deleted or mutated in many human advanced cancers. Recent studies have also demonstrated that PTEN is a promising target in type II diabetes and obesity treatment. Using C-terminal PTEN sequence in pEG202-NLS as bait, yeast two-hybrid screening on Mouse Embryo, Colon Cancer, and HeLa cDNA libraries was carried out. Isolated positive clones were validated by mating assay and identified through automated DNA sequencing and BLAST database searches. Sequence analysis revealed a number of PTEN-binding proteins linking this phosphatase to a number of different signaling cascades, suggesting that PTEN may perform other functions besides tumor-suppressing activity in different cell types. In particular, the interplay between PTEN function and adipocyte-specific fatty-acid-binding protein FABP4 is of notable interest. The demonstrable tautology of PTEN to FABP4 suggested a role for this phosphatase in the regulation of lipid metabolism and adipocyte differentiation. This interaction was further studied using coimmunoprecipitation and gel-filtration assays. Finally, based on Biacore assay, we have calculated the K(D) of PTEN-FABP4 complex, which is around 2.8 microM.

  13. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus.

    PubMed Central

    Krempl, C; Schultze, B; Laude, H; Herrler, G

    1997-01-01

    Enteropathogenic transmissible gastroenteritis virus (TGEV), a porcine coronavirus, is able to agglutinate erythrocytes because of sialic acid binding activity. Competitive inhibitors that may mask the sialic acid binding activity can be inactivated by sialidase treatment of virions. Here, we show that TGEV virions with efficient hemagglutinating activity were also obtained when cells were treated with sialidase prior to infection. This method was used to analyze TGEV mutants for hemagglutinating activity. Recently, mutants with strongly reduced enteropathogenicity that have point mutations or a deletion of four amino acids within residues 145 to 155 of the S protein have been described. Here, we show that in addition to their reduced pathogenicity, these mutants also have lost hemagglutinating activity. These results connect sialic acid binding activity with the enteropathogenicity of TGEV. PMID:9060696

  14. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes. PMID:19754879

  15. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  16. Structural Basis for Activation of Fatty Acid-binding Protein 4

    SciTech Connect

    Gillilan,R.; Ayers, S.; Noy, N.

    2007-01-01

    Fatty acid-binding protein 4 (FABP4) delivers ligands from the cytosol to the nuclear receptor PPAR{gamma} in the nucleus, thereby enhancing the transcriptional activity of the receptor. Notably, FABP4 binds multiple ligands with a similar affinity but its nuclear translocation is activated only by specific compounds. To gain insight into the structural features that underlie the ligand-specificity in activation of the nuclear import of FABP4, we solved the crystal structures of the protein complexed with two compounds that induce its nuclear translocation, and compared these to the apo-protein and to FABP4 structures bound to non-activating ligands. Examination of these structures indicates that activation coincides with closure of a portal loop phenylalanine side-chain, contraction of the binding pocket, a subtle shift in a helical domain containing the nuclear localization signal of the protein, and a resultant change in oligomeric state that exposes the nuclear localization signal to the solution. Comparisons of backbone displacements induced by activating ligands with a measure of mobility derived from translation, libration, screw (TLS) refinement, and with a composite of slowest normal modes of the apo state suggest that the helical motion associated with the activation of the protein is part of the repertoire of the equilibrium motions of the apo-protein, i.e. that ligand binding does not induce the activated configuration but serves to stabilize it. Nuclear import of FABP4 can thus be understood in terms of the pre-existing equilibrium hypothesis of ligand binding.

  17. Fatty acid binding protein 7 regulates phagocytosis and cytokine production in Kupffer cells during liver injury.

    PubMed

    Miyazaki, Hirofumi; Sawada, Tomoo; Kiyohira, Miwa; Yu, Zhiqian; Nakamura, Keiji; Yasumoto, Yuki; Kagawa, Yoshiteru; Ebrahimi, Majid; Islam, Ariful; Sharifi, Kazem; Kawamura, Saki; Kodama, Takanori; Yamamoto, Yui; Adachi, Yasuhiro; Tokuda, Nobuko; Terai, Shuji; Sakaida, Isao; Ishikawa, Toshizo; Owada, Yuji

    2014-09-01

    Kupffer cells (KCs) are involved in the progression of liver diseases such as hepatitis and liver cancer. Several members of the fatty acid binding proteins (FABPs) are expressed by tissue macrophages, and FABP7 is localized only in KCs. To clarify the role of FABP7 in the regulation of KC function, we evaluated pathological changes of Fabp7 knockout mice during carbon tetrachloride-induced liver injury. During liver injury in Fabp7 knockout mice, serum liver enzymes were increased, cytokine expression (tumor necrosis factor-α, monocyte chemoattractant protein-1, and transforming growth factor-β) was decreased in the liver, and the number of KCs in the liver necrotic area was significantly decreased. Interestingly, in the FABP7-deficient KCs, phagocytosis of apoptotic cells was impaired, and expression of the scavenger receptor CD36 was markedly decreased. In chronic liver injury, Fabp7 knockout mice showed less fibrogenic response to carbon tetrachloride compared with wild-type mice. Taken together, FABP7 is involved in the liver injury process through its regulation of KC phagocytic activity and cytokine production. Such modulation of KC function by FABP7 may provide a novel therapeutic approach to the treatment of liver diseases.

  18. Structural and biochemical characterization of the lungfish (Lepidosiren paradoxa) liver basic fatty acid binding protein.

    PubMed

    Di Pietro, S M; Santomé, J A

    2001-04-01

    Only one fatty acid-binding protein (FABP) from the liver of the lungfish (Lepidosiren paradoxa) was isolated and characterized. The sequence comparison of lungfish FABP with that of the known members of the liver FABP (L-FABP) and liver basic FABP (Lb-FABP) subfamilies indicates that it is more closely related to chicken, iguana, frog, axolotl, catfish, and shark Lb-FABPs than to mammalian and axolotl L-FABPs. Lungfish liver expression of this single Lb-FABP contrasts with the other fish studied so far which coexpress an Lb-FABP with heart-adipocyte and/or intestinal FABP types. The lungfish liver FABP expression pattern resembles that of tetrapods, which only expresses liver type FABPs. Lungfish Lb-FABP is one of the two FABPs reported to have a disulfide bridge. The molecular modeling of lungfish Lb-FABP predicts that nine of the conserved residues of Lb-FABPs are oriented toward the binding cavity, thus suggesting they are related to the protein binding characteristics.

  19. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization.

    PubMed

    Binas, B; Danneberg, H; McWhir, J; Mullins, L; Clark, A J

    1999-05-01

    Nonenzymatic cytosolic fatty acid binding proteins (FABPs) are abundantly expressed in many animal tissues with high rates of fatty acid metabolism. No physiological role has been demonstrated for any FABP, although these proteins have been implicated in transport of free long-chain fatty acids (LCFAs) and protection against LCFA toxicity. We report here that mice lacking heart-type FABP (H-FABP) exhibit a severe defect of peripheral (nonhepatic, non-fat) LCFA utilization. In these mice, the heart is unable to efficiently take up plasma LCFAs, which are normally its main fuel, and switches to glucose usage. Altered plasma levels of LCFAs, glucose, lactate and beta-hydroxybutyrate are consistent with depressed peripheral LCFA utilization, intensified carbohydrate usage, and increased hepatic LCFA oxidation; these changes are most pronounced under conditions favoring LCFA oxidation. H-FABP deficiency is only incompletely compensated, however, causing acute exercise intolerance and, at old age, a localized cardiac hypertrophy. These data establish a requirement for H-FABP in cardiac intracellular lipid transport and fuel selection and a major role in metabolic homeostasis. This new animal model should be particularly useful for investigating the significance of peripheral LCFA utilization for heart function, insulin sensitivity, and blood pressure.

  20. Coexistence of multiple minor states of fatty acid binding protein and their functional relevance

    PubMed Central

    Yu, Binhan; Yang, Daiwen

    2016-01-01

    Proteins are dynamic over a wide range of timescales, but determining the number of distinct dynamic processes and identifying functionally relevant dynamics are still challenging. Here we present the study on human intestinal fatty acid binding protein (hIFABP) using a novel analysis of 15N relaxation dispersion (RD) and chemical shift saturation transfer (CEST) experiments. Through combined analysis of the two types of experiments, we found that hIFABP exists in a four-state equilibrium in which three minor states interconvert directly with the major state. According to conversion rates from the major “closed” state to minor states, these minor states are irrelevant to the function of fatty acid transport. Based on chemical shifts of the minor states which could not be determined from RD data alone but were extracted from a combined analysis of RD and CEST data, we found that all the minor states are native-like. This conclusion is further supported by hydrogen-deuterium exchange experiments. Direct conversions between the native state and native-like intermediate states may suggest parallel multitrack unfolding/folding pathways of hIFABP. Moreover, hydrogen-deuterium exchange data indicate the existence of another locally unfolded minor state that is relevant to the fatty acid entry process. PMID:27677899

  1. [L-type fatty acid binding protein (L-FABP) and kidney disease].

    PubMed

    Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Kimura, Kenjiro

    2014-02-01

    Liver-type fatty acid binding protein (L-FABP) is expressed in the cytoplasm of human renal proximal tubules. Renal L-FABP expression is up-regulated and urinary excretion of renal L-FABP is increased by various stressors, such as urinary protein, hyperglycemia, tubular ischemia, toxins, and salt-sensitive hypertension, which lead to the progression of kidney disease. Urinary L-FABP levels accurately reflect the degree of tubulointerstitial damage and are strongly correlated with the prognosis of chronic kidney disease (CKD) patients in clinical studies. In patients with type I or type II diabetes, urinary L-FABP levels were reported to be significantly higher in patients with normal levels of urinary albumin than in those with microalbuminuria. Urinary L-FABP may be useful for the early detection of diabetic nephropathy. Furthermore, in a longitudinal study, a higher level of urinary L-FABP was found to be a risk factor for the progression of diabetic nephropathy. With respect to acute kidney disease (AKI), urinary L-FABP facilitates the early detection of AKI before an increase in serum creatinine. Therefore, urinary L-FABP was approved as a new tubular biomarker by the Ministry of Health, Labour and Welfare of Japan.

  2. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins. PMID:26774272

  3. Biochemical Roles for Conserved Residues in the Bacterial Fatty Acid-binding Protein Family.

    PubMed

    Broussard, Tyler C; Miller, Darcie J; Jackson, Pamela; Nourse, Amanda; White, Stephen W; Rock, Charles O

    2016-03-18

    Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.

  4. Temporal profile of intestinal tissue expression of intestinal fatty acid-binding protein in a rat model of necrotizing enterocolitis

    PubMed Central

    Simões, Ana Leda Bertoncini; Figueira, Rebeca Lopes; Gonçalves, Frances Lilian Lanhellas; Mitidiero, Luís Felipe Tsuyoshi; Silva, Orlando Castro e; Peiró, José Luis; Sbragia, Lourenço

    2016-01-01

    OBJECTIVES: Necrotizing enterocolitis is a severe multifactorial intestinal disorder that primarily affects preterm newborns, causing 20-40% mortality and morbidity. Intestinal fatty acid-binding protein has been reported to be a biomarker for the detection of intestinal injuries. Our aim was to assess intestinal tissue injury and the molecular expression of intestinal fatty acid-binding protein over time in a necrotizing enterocolitis model. METHODS: A total of 144 Newborn rats were divided into two groups: 1) Control, which received breastfeeding (n=72) and 2) Necrotizing Enterocolitis, which received formula feeding and underwent hypoxia and hypothermia (n=72). A total of six time points of ischemia (2 times a day for 3 days; 12 pups for each time point) were examined. Samples were collected for analysis of body weight, morphological and histological characteristics, intestinal weight, intestinal weight/body weight ratio, injury grade, and intestinal fatty acid-binding protein levels. RESULTS: Body and intestinal weights were lower in the Necrotizing Enterocolitis group than in the Control group (p<0.005 and p<0.0005, respectively). The intestinal weight/body weight ratio was higher in the Necrotizing Enterocolitis group than in the Control group (p<0.005) only at the sixth ischemia time point. The Necrotizing Enterocolitis group displayed higher expression of intestinal fatty acid-binding protein (p<0.0005) and showed greater tissue damage than the Control group. CONCLUSION: Intestinal fatty acid-binding protein was an efficient marker of ischemic injury to the intestine and a good correlation was demonstrated between the time of ischemic injury and the grade of intestinal injury. PMID:27464299

  5. Crystal Structure of Okadaic Acid Binding Protein 2.1: A Sponge Protein Implicated in Cytotoxin Accumulation.

    PubMed

    Ehara, Haruhiko; Makino, Marie; Kodama, Koichiro; Konoki, Keiichi; Ito, Takuhiro; Sekine, Shun-ichi; Fukuzawa, Seketsu; Yokoyama, Shigeyuki; Tachibana, Kazuo

    2015-07-01

    Okadaic acid (OA) is a marine polyether cytotoxin that was first isolated from the marine sponge Halichondria okadai. OA is a potent inhibitor of protein serine/threonine phosphatases (PP) 1 and 2A, and the structural basis of phosphatase inhibition has been well investigated. However, the role and mechanism of OA retention in the marine sponge have remained elusive. We have solved the crystal structure of okadaic acid binding protein 2.1 (OABP2.1) isolated from H. okadai; it has strong affinity for OA and limited sequence homology to other proteins. The structure revealed that OABP2.1 consists of two α-helical domains, with the OA molecule deeply buried inside the protein. In addition, the global fold of OABP2.1 was unexpectedly similar to that of aequorin, a jellyfish photoprotein. The presence of structural homologues suggested that, by using similar protein scaffolds, marine invertebrates have developed diverse survival systems adapted to their living environments.

  6. Plasma Fatty Acid Binding Protein 4 and Risk of Sudden Cardiac Death in Older Adults

    PubMed Central

    Djoussé, Luc; Maziarz, Marlena; Biggs, Mary L.; Ix, Joachim H.; Zieman, Susan J.; Kizer, Jorge R.; Lemaitre, Rozenn N.; Mozaffarian, Dariush; Tracy, Russell P.; Mukamal, Kenneth J.; Siscovick, David S.; Sotoodehnia, Nona

    2013-01-01

    Although fatty acid binding protein 4 (FABP4) may increase risk of diabetes and exert negative cardiac inotropy, it is unknown whether plasma concentrations of FABP4 are associated with incidence of sudden cardiac death (SCD). We prospectively analyzed data on 4,560 participants of the Cardiovascular Health Study. FABP4 was measured at baseline using ELISA, and SCD events were adjudicated through review of medical records. We used Cox proportional hazards to estimate effect measures. During a median followup of 11.8 years, 146 SCD cases occurred. In a multivariable model adjusting for demographic, lifestyle, and metabolic factors, relative risk of SCD associated with each higher standard deviation (SD) of plasma FABP4 was 1.15 (95% CI: 0.95–1.38), P = 0.15. In a secondary analysis stratified by prevalent diabetes status, FABP4 was associated with higher risk of SCD in nondiabetic participants, (RR per SD higher FABP4: 1.33 (95% CI: 1.07–1.65), P = 0.009) but not in diabetic participants (RR per SD higher FABP4: 0.88 (95% CI: 0.62–1.27), P = 0.50), P for diabetes-FABP4 interaction 0.049. In summary, a single measure of plasma FABP4 obtained later in life was not associated with the risk of SCD in older adults overall. Confirmation of our post-hoc results in nondiabetic people in other studies is warranted. PMID:24455402

  7. Association of androgen with gender difference in serum adipocyte fatty acid binding protein levels

    PubMed Central

    Hu, Xiang; Ma, Xiaojing; Pan, Xiaoping; Luo, Yuqi; Xu, Yiting; Xiong, Qin; Bao, Yuqian; Jia, Weiping

    2016-01-01

    Clinical investigations have indicated women have higher levels of adipocyte fatty acid binding protein (A-FABP) than men. The present study aimed to identify factors related to gender difference in serum A-FABP levels. A total of 507 participants (194 men, 132 premenopausal women, and 181 postmenopausal women) were enrolled in the present study. Serum A-FABP levels increased in the order from men to premenopausal women to postmenopausal women in both body mass index categories (<25.0 and ≥25.0 kg/m2; all P < 0.05). Multiple stepwise regression analyses showed that after adjustment for factors related to serum A-FABP levels, the trunk fat mass was an independent and positive factor of serum A-FABP levels. For men, total testosterone was associated independently and inversely with serum A-FABP levels. For pre- and postmenopausal women, bioavailable testosterone and total testosterone were independent and positive factors associated with serum A-FABP levels, respectively. The present study demonstrated that the androgen was correlated with the serum A-FABP levels negatively in men, but positively in women. With these effects on the fat content, especially trunk fat, androgen might contribute to the gender difference in serum A-FABP levels. PMID:27270834

  8. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells

    SciTech Connect

    Montoudis, Alain; Delvin, Edgard; Menard, Daniel

    2006-01-06

    Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferation and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.

  9. Exploring and Expanding the Fatty-Acid-Binding Protein Superfamily in Fasciola Species.

    PubMed

    Morphew, Russell M; Wilkinson, Toby J; Mackintosh, Neil; Jahndel, Veronika; Paterson, Steve; McVeigh, Paul; Abbas Abidi, Syed M; Saifullah, Khalid; Raman, Muthusamy; Ravikumar, Gopalakrishnan; LaCourse, James; Maule, Aaron; Brophy, Peter M

    2016-09-01

    The liver flukes Fasciola hepatica and F. gigantica infect livestock worldwide and threaten food security with climate change and problematic control measures spreading disease. Fascioliasis is also a foodborne disease with up to 17 million humans infected. In the absence of vaccines, treatment depends on triclabendazole (TCBZ), and overuse has led to widespread resistance, compromising future TCBZ control. Reductionist biology from many laboratories has predicted new therapeutic targets. To this end, the fatty-acid-binding protein (FABP) superfamily has proposed multifunctional roles, including functions intersecting vaccine and drug therapy, such as immune modulation and anthelmintic sequestration. Research is hindered by a lack of understanding of the full FABP superfamily complement. Although discovery studies predicted FABPs as promising vaccine candidates, it is unclear if uncharacterized FABPs are more relevant for vaccine formulations. We have coupled genome, transcriptome, and EST data mining with proteomics and phylogenetics to reveal a liver fluke FABP superfamily of seven clades: previously identified clades I-III and newly identified clades IV-VII. All new clade FABPs were analyzed using bioinformatics and cloned from both liver flukes. The extended FABP data set will provide new study tools to research the role of FABPs in parasite biology and as therapy targets. PMID:27495901

  10. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests.

    PubMed

    Ma, Yuanyuan; Xiong, Youling L

    2009-05-27

    The objective of the study was to assess the antioxidant and bile acid removing potential of buckwheat protein (BWP) during a two-stage in vitro digestion (1 h of pepsin followed by 2 h of pancreatin). Antioxidant activity of the digests was analyzed by determining: (1) Fe(2+) chelation, (2) reducing power, (3) 2,2'-azinobis (3-ethylbenzothiszoline-6-sulfonic acid) (ABTS(+•)) radical scavenging capacity, and (4) TBARS formation in a liposome system. The initial pepsin digestion decreased the BWP antioxidant activity; however, subsequent pancreatin digestion fully recovered the reducing power and increased (P < 0.05) the ability to chelate Fe(2+) (45%), scavenge ABTS(+•) (87%), and curtail lipid peroxidation (45%) when compared with intact BWP. The final BWP digest exhibited a 67% increase (P < 0.05) in cholic acid binding capability over that of the nondigested BWP control but was comparable to the control in binding chenodeoxycholic and deoxycholic acids. Digestion-resistant peptides were largely responsible for bile acid elimination. PMID:19320435

  11. Serologic Intestinal-Fatty Acid Binding Protein in Necrotizing Enterocolitis Diagnosis: A Meta-Analysis

    PubMed Central

    Cheng, Shupeng; Yu, Jialin; Zhou, Min; Tu, Yan; Lu, Qi

    2015-01-01

    Background. Previous studies showed that intestinal-fatty acid binding protein (I-FABP) may be a valid and promising serologic biomarker for early diagnosis of necrotizing enterocolitis (NEC). Objective. To investigate the early diagnostic value of serologic I-FABP in NEC for the premature neonates. Methods. All major databases were searched from January 1, 1990, to May 1, 2015. We used Meta-Disc 1.4 and Revman5.0 software to calculate the diagnostic accuracy. Results. Seven studies with 444 subjects were identified. The pooled sensitivity of I-FABP was 0.67 for NEC I, 0.74 for NEC II, and 0.83 for NEC III, and the pooled specificity was 0.84, respectively, which showed a moderate diagnostic accuracy. The area under curve (AUC) for each stage was 0.75 (Q⁎ = 0.69), 0.82 (Q⁎ = 0.76), and 0.91 (Q⁎ = 0.84). The diagnostic threshold analysis showed no significant difference in threshold effect. The metaregression showed that the cut-off value has the largest effect on heterogeneity. The funnel plots indicated the existence of publication bias. Conclusion. I-FABP is a valid serologic biomarker for early diagnosis in NEC for the premature neonates with a moderate accuracy. PMID:26798632

  12. Nucleic acid binding affinity of fd gene 5 protein in the cooperative binding mode.

    PubMed

    Bobst, A M; Ireland, J C; Bobst, E V

    1984-02-25

    A sensitive ESR method which allows a direct quantitative determination of nucleic acid binding affinities of proteins under physiologically relevant conditions has been applied to the gene 5 protein of bacteriophage fd. This was achieved with two spin-labeled nucleic acids, (ldT, dT)n and (lA,A)n, which served as macro-molecular spin probes in ESR competition experiments. With the two different macromolecular spin probes, it was possible to determine the relative apparent affinity constants, Kapp, over a large affinity domain. In 20 mM Tris X HCl (pH 8.1), 1 mM sodium EDTA, 0.1 mM dithiothreitol, 10% (w/v) glycerol, 0.05% Triton, and 125 mM NaCl, the following affinity relationship was observed: K(dT)napp = 10(3) KfdDNAapp = 2 X 10(4) K(A)napp = 6.6 X 10(4) KrRNAapp = 1.5 X 10(5) KR17RNAapp. Increasing the [NaCl] from 125 to 200 mM caused considerably less tight binding of gene 5 protein to (lA,A)n, and a typical cooperative binding isotherm was observed, whereas at the lower [NaCl] used for the competition experiments, the binding was essentially stoichiometric. A computer fit of the experimental titration data at 200 mM NaCl gave an intrinsic binding constant, Kint, of 1300 M-1 and a cooperativity factor, omega, of 60 (Kint omega = Kapp) for (lA,A)n.

  13. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex. PMID:19603488

  14. Towards the elucidation of molecular determinants of cooperativity in the liver bile acid binding protein.

    PubMed

    Pedò, Massimo; D'Onofrio, Mariapina; Ferranti, Pasquale; Molinari, Henriette; Assfalg, Michael

    2009-11-15

    Bile acid binding proteins (BABPs) are cytosolic lipid chaperones contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Liver BABPs act in parallel with ileal transporters to ensure vectorial transport of bile salts in hepatocytes and enterocytes, respectively. We describe the investigation of ligand binding to liver BABP, an essential step in the understanding of intracellular bile salt transport. Binding site occupancies were monitored in NMR titration experiments using (15)N-labelled ligand, while the relative populations of differently bound BABP forms were assessed by mass spectrometry. This site-specific information allowed the determination of intrinsic thermodynamic parameters and the identification of an extremely high cooperativity between two binding sites. Protein-observed NMR experiments revealed a global structural rearrangement which suggests an allosteric mechanism at the basis of the observed cooperativity. The view of a molecular tool capable of buffering against significant concentrations of free bile salts in a large range of solution conditions emerges from the observed pH-dependence of binding. We set to determine the molecular determinants of cooperativity by analysing the binding properties of a protein containing a mutated internal histidine. Both mass spectrometry and NMR experiments are consistent with an overall decreased binding affinity of the mutant, while the measured diffusion coefficients of ligand species reveal that the affinity loss concerns essentially one of the two binding sites. We therefore identified a mutation able to disrupt energetic communication functional to efficient binding and conclude that the buried histidine establishes contacts that stabilize the ternary complex.

  15. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein.

    PubMed

    Sheng, Nan; Li, Juan; Liu, Hui; Zhang, Aiqian; Dai, Jiayin

    2016-01-01

    Perfluoroalkyl acids (PFAAs) are highly persistent and bioaccumulative, resulting in their broad distribution in humans and the environment. The liver is an important target for PFAAs, but the mechanisms behind PFAAs interaction with hepatocyte proteins remain poorly understood. We characterized the binding of PFAAs to human liver fatty acid-binding protein (hL-FABP) and identified critical structural features in their interaction. The binding interaction of PFAAs with hL-FABP was determined by fluorescence displacement and isothermal titration calorimetry (ITC) assay. Molecular simulation was conducted to define interactions at the binding sites. ITC measurement revealed that PFOA/PFNA displayed a moderate affinity for hL-FABP at a 1:1 molar ratio, a weak binding affinity for PFHxS and no binding for PFHxA. Moreover, the interaction was mainly mediated by electrostatic attraction and hydrogen bonding. Substitution of Asn111 with Asp caused loss of binding affinity to PFAA, indicating its crucial role for the initial PFAA binding to the outer binding site. Substitution of Arg122 with Gly caused only one molecule of PFAA to bind to hL-FABP. Molecular simulation showed that substitution of Arg122 increased the volume of the outer binding pocket, making it impossible to form intensive hydrophobic stacking and hydrogen bonds with PFOA, and highlighting its crucial role in the binding process. The binding affinity of PFAAs increased significantly with their carbon number. Arg122 and Asn111 played a pivotal role in these interactions. Our findings may help understand the distribution pattern, bioaccumulation, elimination, and toxicity of PFAAs in humans.

  16. The RRM Domain of Human Fused in Sarcoma Protein Reveals a Non-Canonical Nucleic Acid Binding Site

    PubMed Central

    Liu, Xuehui; Niu, Chunyan; Ren, Jintao; Zhang, Jiayu; Xie, Xiaodong; Zhu, Haining; Feng, Wei; Gong, Weimin

    2012-01-01

    Fused in sarcoma (FUS) is involved in many processes of RNA metabolism. FUS and another RNA binding protein, TDP-43, are implicated in amyotrophic lateral sclerosis (ALS). It is significant to characterize the RNA recognition motif (RRM) of FUS as its nucleic acid binding properties are unclear. More importantly, abolishing the RNA binding ability of the RRM domain of TDP43 was reported to suppress the neurotoxicity of TDP-43 in Drosophila. The sequence of FUS-RRM varies significantly from canonical RRMs, but the solution structure of FUS-RRM determined by NMR showed a similar overall folding as other RRMs. We found that FUS-RRM directly bound to RNA and DNA and the binding affinity was in the micromolar range as measured by surface plasmon resonance and NMR titration. The nucleic acid binding pocket in FUS-RRM is significantly distorted since several critical aromatic residues are missing. An exceptionally positively charged loop in FUS-RRM, which is not found in other RRMs, is directly involved in the RNA/DNA binding. Substituting the lysine residues in the unique KK loop impaired the nucleic acid binding and altered FUS subcellular localization. The results provide insights into the nucleic acid binding properties of FUS-RRM and its potential relevance to ALS. PMID:23200923

  17. Light microscopic immunocytochemical localization of hepatic and intestinal types of fatty acid-binding proteins in rat small intestine.

    PubMed

    Shields, H M; Bates, M L; Bass, N M; Best, C J; Alpers, D H; Ockner, R K

    1986-05-01

    Monospecific antisera to purified hepatic fatty acid-binding protein (hFABP) and gut fatty acid-binding protein (gFABP) have been used to localize these two proteins in the small intestine of fed rats at the light microscopic level. Pieces of duodenum, jejunum, and ileum were removed from 4-, 10-, 20-, 22-, and 60-day-old Sprague-Dawley rats. Both cryostat and paraffin sections were studied for the presence of hFABP or gFABP by the avidin-biotin immunoperoxidase method. Slides were graded blind for the intensity of staining. Despite the structural and immunological differences between these two proteins, we showed no major differences between their staining patterns or their staining intensity throughout the intestine during postnatal development. The staining for both fatty acid-binding proteins was cytoplasmic. No brush border staining was found. Staining was more intense in the proximal rather than distal intestine, in the villus rather than crypt cells, and in the apex rather than the base of intestinal cells. Shifts in staining patterns, and staining intensity occurring during development may be related to variations in dietary fat intake, rates of cell proliferation, intestinal anatomy, and mechanisms for fat absorption.

  18. Fatty Acid-Binding Protein 5 Facilitates the Blood-Brain Barrier Transport of Docosahexaenoic Acid.

    PubMed

    Pan, Yijun; Scanlon, Martin J; Owada, Yuji; Yamamoto, Yui; Porter, Christopher J H; Nicolazzo, Joseph A

    2015-12-01

    The brain has a limited ability to synthesize the essential polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA) from its omega-3 fatty acid precursors. Therefore, to maintain brain concentrations of this PUFA at physiological levels, plasma-derived DHA must be transported across the blood-brain barrier (BBB). While DHA is able to partition into the luminal membrane of brain endothelial cells, its low aqueous solubility likely limits its cytosolic transfer to the abluminal membrane, necessitating the requirement of an intracellular carrier protein to facilitate trafficking of this PUFA across the BBB. As the intracellular carrier protein fatty acid-binding protein 5 (FABP5) is expressed at the human BBB, the current study assessed the putative role of FABP5 in the brain endothelial cell uptake and BBB transport of DHA in vitro and in vivo, respectively. hFAPB5 was recombinantly expressed and purified from Escherichia coli C41(DE3) cells and the binding affinity of DHA to hFABP5 assessed using isothermal titration calorimetry. The impact of FABP5 siRNA on uptake of (14)C-DHA into immortalized human brain microvascular endothelial (hCMEC/D3) cells was assessed. An in situ transcardiac perfusion method was optimized in C57BL/6 mice and subsequently used to compare the BBB influx rate (Kin) of (14)C-DHA between FABP5-deficient (FABP5(-/-)) and wild-type (FABP5(+/+)) C57BL/6 mice. DHA bound to hFABP5 with an equilibrium dissociation constant of 155 ± 8 nM (mean ± SEM). FABP5 siRNA transfection decreased hCMEC/D3 mRNA and protein expression of FABP5 by 53.2 ± 5.5% and 44.8 ± 13.7%, respectively, which was associated with a 14.1 ± 2.7% reduction in (14)C-DHA cellular uptake. By using optimized conditions for the in situ transcardiac perfusion (a 1 min preperfusion (10 mL/min) followed by perfusion of (14)C-DHA (1 min)), the Kin of (14)C-DHA was 0.04 ± 0.01 mL/g/s. Relative to FABP5(+/+) mice, the Kin of (14)C-DHA decreased 36.7 ± 12.4% in FABP5(-/-) mice

  19. Examination of the Addictive and Behavioral Properties of Fatty Acid-Binding Protein Inhibitor SBFI26

    PubMed Central

    Thanos, Panayotis K.; Clavin, Brendan H.; Hamilton, John; O’Rourke, Joseph R.; Maher, Thomas; Koumas, Christopher; Miao, Erick; Lankop, Jessenia; Elhage, Aya; Haj-Dahmane, Samir; Deutsch, Dale; Kaczocha, Martin

    2016-01-01

    The therapeutic properties of cannabinoids have been well demonstrated but are overshadowed by such adverse effects as cognitive and motor dysfunction, as well as their potential for addiction. Recent research on the natural lipid ligands of cannabinoid receptors, also known as endocannabinoids, has shed light on the mechanisms of intracellular transport of the endocannabinoid anandamide by fatty acid-binding proteins (FABPs) and subsequent catabolism by fatty acid amide hydrolase. These findings facilitated the recent development of SBFI26, a pharmacological inhibitor of epidermal- and brain-specific FABP5 and FABP7, which effectively increases anandamide signaling. The goal of this study was to examine this compound for any possible rewarding and addictive properties as well as effects on locomotor activity, working/recognition memory, and propensity for sociability and preference for social novelty (SN) given its recently reported anti-inflammatory and analgesic properties. Male C57BL mice were split into four treatment groups and conditioned with 5.0, 20.0, 40.0 mg/kg SBFI26, or vehicle during a conditioned place preference (CPP) paradigm. Following CPP, mice underwent a battery of behavioral tests [open field, novel object recognition (NOR), social interaction (SI), and SN] paired with acute SBFI26 administration. Results showed that SBFI26 did not produce CPP or conditioned place aversion regardless of dose and did not induce any differences in locomotor and exploratory activity during CPP- or SBFI26-paired open field activity. We also observed no differences between treatment groups in NOR, SI, and SN. In conclusion, as SBFI26 was shown previously by our group to have significant analgesic and anti-inflammatory properties, here we show that it does not pose a risk of dependence or motor and cognitive impairment under the conditions tested. PMID:27092087

  20. Two types of fatty acid-binding protein in human kidney. Isolation, characterization and localization.

    PubMed Central

    Maatman, R G; Van Kuppevelt, T H; Veerkamp, J H

    1991-01-01

    Two types of fatty acid-binding protein (FABP) were isolated from human kidney by gel filtration and ion-exchange chromatography. Northern-blot analysis showed the presence of two FABP transcripts in total kidney RNA, hybridizing with cDNA of human liver and muscle FABP respectively. Characterisation based on molecular mass, isoelectric point, fluorescence with dansylaminoundecanoic acid and immunological cross-reactivity showed that one, type B, was fairly similar to human heart FABP. The other, type A, showed, like human liver FABP, a high fluorescence enhancement and a wavelength shift with dansylaminoundecanoic acid as well as the binding of a variety of ligands. Antibodies raised against FABP type A and against liver FABP markedly cross-reacted in e.l.i.s.a., in Western blotting and in indirect immunoperoxidase staining on kidney and liver sections. Differences in amino acid composition and isoelectric points, however, indicate that type A is a new kidney-specific FABP type. The FABP type A is more abundant in kidney than the B type and is predominantly localized in the cortex, especially in the cells of the proximal tubules. The FABP type B is mainly present in the cells of the distal tubules. In conclusion, this study shows the presence of two types of FABP in the kidney. One type seems to be related to heart FABP, while the other type resembles, but is not identical with, liver FABP. Both types have a characteristic cellular distribution along the nephron. Images Fig. 2. Fig. 3. Fig. 6. Fig. 7. Fig. 8. Fig. 9. PMID:1996972

  1. Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly.

    PubMed

    Neveu, Gregory; Barouch-Bentov, Rina; Ziv-Av, Amotz; Gerber, Doron; Jacob, Yves; Einav, Shirit

    2012-01-01

    Novel therapies are urgently needed against hepatitis C virus infection (HCV), a major global health problem. The current model of infectious virus production suggests that HCV virions are assembled on or near the surface of lipid droplets, acquire their envelope at the ER, and egress through the secretory pathway. The mechanisms of HCV assembly and particularly the role of viral-host protein-protein interactions in mediating this process are, however, poorly understood. We identified a conserved heretofore unrecognized YXXΦ motif (Φ is a bulky hydrophobic residue) within the core protein. This motif is homologous to sorting signals within host cargo proteins known to mediate binding of AP2M1, the μ subunit of clathrin adaptor protein complex 2 (AP-2), and intracellular trafficking. Using microfluidics affinity analysis, protein-fragment complementation assays, and co-immunoprecipitations in infected cells, we show that this motif mediates core binding to AP2M1. YXXΦ mutations, silencing AP2M1 expression or overexpressing a dominant negative AP2M1 mutant had no effect on HCV RNA replication, however, they dramatically inhibited intra- and extracellular infectivity, consistent with a defect in viral assembly. Quantitative confocal immunofluorescence analysis revealed that core's YXXΦ motif mediates recruitment of AP2M1 to lipid droplets and that the observed defect in HCV assembly following disruption of core-AP2M1 binding correlates with accumulation of core on lipid droplets, reduced core colocalization with E2 and reduced core localization to trans-Golgi network (TGN), the presumed site of viral particles maturation. Furthermore, AAK1 and GAK, serine/threonine kinases known to stimulate binding of AP2M1 to host cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, approved anti-cancer drugs that inhibit AAK1 or GAK not only disrupt core-AP2M1 binding, but also significantly inhibit HCV assembly and infectious virus production

  2. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  3. Discovery of FDA-approved drugs as inhibitors of fatty acid binding protein 4 using molecular docking screening.

    PubMed

    Wang, Yan; Law, Wai-Kit; Hu, Jian-Shu; Lin, Huang-Quan; Ip, Tsz-Ming; Wan, David Chi-Cheong

    2014-11-24

    We first identified fluorescein, ketazolam, antrafenine, darifenacin, fosaprepitant, paliperidone, risperidone, pimozide, trovafloxacin, and levofloxacin as inhibitors of fatty acid binding protein 4 using molecular docking screening from FDA-approved drugs. Subsequently, the biochemical characterizations showed that levofloxacin directly inhibited FABP4 activity in both the in vitro ligand displacement assay and cell-based function assay. Furthermore, levofloxacin did not induce adipogenesis in adipocytes, which is the major adverse effect of FABP4 inhibitors.

  4. RAD51AP2, a novel vertebrate- and meiotic-specific protein, sharesa conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    SciTech Connect

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-07-25

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1.

  5. Molecular cloning of a cDNA encoding a novel fatty acid-binding protein from rat skin.

    PubMed

    Watanabe, R; Fujii, H; Odani, S; Sakakibara, J; Yamamoto, A; Ito, M; Ono, T

    1994-04-15

    A novel skin-type fatty acid-binding protein, termed cutaneous(C)-FABP, has been purified from rat skin and a cDNA clone for this protein has been identified. The purified protein had the ability to bind long chain fatty acids like other rat FABPs. The deduced amino acid sequence of the cDNA clone comprises residues yielding a molecular mass for the polypeptide of 15.1 kDa and exhibits around 50% identity to myelin P2 protein, adipocyte FABP and heart FABP. Our results propose that C-FABP is a new member of the FABP family.

  6. Development of a Radioiodinated Triazolopyrimidine Probe for Nuclear Medical Imaging of Fatty Acid Binding Protein 4

    PubMed Central

    Onoe, Satoru; Sampei, Sotaro; Kimura, Ikuo; Ono, Masahiro; Saji, Hideo

    2014-01-01

    Fatty acid binding protein 4 (FABP4) is the most well-characterized FABP isoform. FABP4 regulates inflammatory pathways in adipocytes and macrophages and is involved in both inflammatory diseases and tumor formation. FABP4 expression was recently reported for glioblastoma, where it may participate in disease malignancy. While FABP4 is a potential molecular imaging target, with the exception of a tritium labeled probe there are no reports of other nuclear imaging probes that target this protein. Here we designed and synthesized a nuclear imaging probe, [123I]TAP1, and evaluated its potential as a FABP4 targeting probe in in vitro and in vivo assays. We focused on the unique structure of a triazolopyrimidine scaffold that lacks a carboxylic acid to design the TAP1 probe that can undergo facilitated delivery across cell membranes. The affinity of synthesized TAP1 was measured using FABP4 and 8-anilino-1-naphthalene sulfonic acid. [125I]TAP1 was synthesized by iododestannylation of a precursor, followed by affinity and selectivity measurements using immobilized FABPs. Biodistributions in normal and C6 glioblastoma-bearing mice were evaluated, and excised tumors were subjected to autoradiography and immunohistochemistry. TAP1 and [125I]TAP1 showed high affinity for FABP4 (Ki = 44.5±9.8 nM, Kd = 69.1±12.3 nM). The FABP4 binding affinity of [125I]TAP1 was 11.5- and 35.5-fold higher than for FABP3 and FABP5, respectively. In an in vivo study [125I]TAP1 displayed high stability against deiodination and degradation, and moderate radioactivity accumulation in C6 tumors (1.37±0.24% dose/g 3 hr after injection). The radioactivity distribution profile in tumors partially corresponded to the FABP4 positive area and was also affected by perfusion. The results indicate that [125I]TAP1 could detect FABP4 in vitro and partly in vivo. As such, [125I]TAP1 is a promising lead compound for further refinement for use in in vivo FABP4 imaging. PMID:24732569

  7. The AP2 clathrin adaptor protein complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of Caenorhabditis elegans

    PubMed Central

    Garafalo, Steven D.; Luth, Eric S.; Moss, Benjamin J.; Monteiro, Michael I.; Malkin, Emily; Juo, Peter

    2015-01-01

    Regulation of glutamate receptor (GluR) abundance at synapses by clathrin-mediated endocytosis can control synaptic strength and plasticity. We take advantage of viable, null mutations in subunits of the clathrin adaptor protein 2 (AP2) complex in Caenorhabditis elegans to characterize the in vivo role of AP2 in GluR trafficking. In contrast to our predictions for an endocytic adaptor, we found that levels of the GluR GLR-1 are decreased at synapses in the ventral nerve cord (VNC) of animals with mutations in the AP2 subunits APM-2/μ2, APA-2/α, or APS-2/σ2. Rescue experiments indicate that APM-2/μ2 functions in glr-1–expressing interneurons and the mature nervous system to promote GLR-1 levels in the VNC. Genetic analyses suggest that APM-2/μ2 acts upstream of GLR-1 endocytosis in the VNC. Consistent with this, GLR-1 accumulates in cell bodies of apm-2 mutants. However, GLR-1 does not appear to accumulate at the plasma membrane of the cell body as expected, but instead accumulates in intracellular compartments including Syntaxin-13– and RAB-14–labeled endosomes. This study reveals a novel role for the AP2 clathrin adaptor in promoting the abundance of GluRs at synapses in vivo, and implicates AP2 in the regulation of GluR trafficking at an early step in the secretory pathway. PMID:25788288

  8. Sex Steroid Modulation of Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Lysenko, Nina; Manning, Joan A.; Monroe, Scott E.; Burnett, David A.

    1980-01-01

    The mechanism by which sex steroids influence very low density hepatic lipoprotein triglyceride production has not been fully elucidated. In previous studies we showed that [14C]oleate utilization and incorporation into triglycerides were greater in hepatocyte suspensions from adult female rats than from males. The sex differences were not related to activities of the enzymes of triglyceride biosynthesis, whereas fatty acid binding protein (FABP) concentration in liver cytosol was greater in females. These findings suggested that sex differences in lipoprotein could reflect a sex steroid influence on the availability of fatty acids for hepatocellular triglyceride biosynthesis. In the present studies, sex steroid effects on hepatocyte [14C]oleate utilization and FABP concentration were investigated directly. Hepatocytes from immature (30-d-old) rats exhibited no sex differences in [14C]oleate utilization. With maturation, total [14C]oleate utilization and triglyceride biosynthesis increased moderately in female cells and decreased markedly in male cells; the profound sex differences in adults were maximal by age 60 d. Fatty acid oxidation was little affected. Rats were castrated at age 30 d, and received estradiol, testosterone, or no hormone until age 60 d, when hepatocyte [14C]oleate utilization was studied. Castration virtually eliminated maturational changes and blunted the sex differences in adults. Estradiol or testosterone largely reproduced the appropriate adult pattern of [14C]oleate utilization regardless of the genotypic sex of the treated animal. In immature females and males, total cytosolic FABP concentrations were similar. In 60-d-old animals, there was a striking correlation among all groups (females, males, castrates, and hormone-treated) between mean cytosolic FABP concentration on the one hand, and mean total [14C]oleate utilization (r = 0.91) and incorporation into triglycerides (r = 0.94) on the other. In 30-d-old animals rates of [14C

  9. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis.

    PubMed

    Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; Gu, Ying

    2015-10-13

    Cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few other eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis.

  10. The TWD40-2 protein and the AP2 complex cooperate in the clathrin-mediated endocytosis of cellulose synthase to regulate cellulose biosynthesis

    PubMed Central

    Bashline, Logan; Li, Shundai; Zhu, Xiaoyu; Gu, Ying

    2015-01-01

    Cellulose biosynthesis is performed exclusively by plasma membrane-localized cellulose synthases (CESAs). Therefore, the trafficking of CESAs to and from the plasma membrane is an important mechanism for regulating cellulose biosynthesis. CESAs were recently identified as cargo proteins of the classic adaptor protein 2 (AP2) complex of the clathrin-mediated endocytosis (CME) pathway. The AP2 complex of the CME pathway is conserved in yeast, animals, and plants, and has been well-characterized in many systems. In contrast, the recently discovered TPLATE complex (TPC), which is proposed to function as a CME adaptor complex, is only conserved in plants and a few other eukaryotes. In this study, we discovered that the TWD40-2 protein, a putative member of the TPC, is also important for the endocytosis of CESAs. Genetic analysis between TWD40-2 and AP2M of the AP2 complex revealed that the roles of TWD40-2 in CME are both distinct from and cooperative with the AP2 complex. Loss of efficient CME in twd40-2-3 resulted in the unregulated overaccumulation of CESAs at the plasma membrane. In seedlings of twd40-2-3 and other CME-deficient mutants, a direct correlation was revealed between endocytic deficiency and cellulose content deficiency, highlighting the importance of controlled CESA endocytosis in regulating cellulose biosynthesis. PMID:26417106

  11. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  12. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.

  13. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    PubMed

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-07-24

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome.

  14. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    PubMed

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-07-24

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897

  15. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling*

    PubMed Central

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina

    2015-01-01

    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the “lipolysome.” Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome. PMID:25953897

  16. Compartmentation of hepatic fatty-acid-binding protein in liver cells and its effect on microsomal phosphatidic acid biosynthesis.

    PubMed

    Bordewick, U; Heese, M; Börchers, T; Robenek, H; Spener, F

    1989-03-01

    Fatty-acid-binding proteins are known to occur in the cytosol of mammalian cells and to bind fatty acids and their CoA-esters. Application of the postembedding protein A-gold labeling method with antibody against the hepatic type fatty-acid-binding protein (hFABP) to cross-sections of liver cells and a newly developed gel-chromatographic immunofluorescence assay established qualitatively (1) that hFABP in mitochondria was confined to outer mitochondrial membranes, (2) the presence of this protein in microsomes and (3) that nuclei were also filled with hFABP. Quantitative data elaborated with a non-competitive ELISA confirmed these results. A significant difference to the distribution of cardiac FABP in heart muscle cells, where this type of protein was found in cytosol, matrix and nuclei, was observed (Börchers et al. (1989) Biochim. Biophys. Acta, in the press). hFABP-containing rat liver microsomes were incubated with long-chain acyl-CoAs in the presence of hFABP (isolated from rat liver cytosol) in a study on the acylation of sn-glycerol-3-phosphate and lysophosphatidic acid. Both acyltransferases were stimulated by addition of hFABP to the incubation medium. The morphological, immunochemical as well as kinetic data infer a direct interaction of hFABP with microsomal membranes in liver cells.

  17. Common genetic variants in fatty acid-binding protein-4 (FABP4) and clinical diabetes risk in the Women's Health Initiative Observational Study.

    PubMed

    Chan, Kei-Hang K; Song, Yiqing; Hsu, Yi-Hsiang; You, Nai-Chieh Y; F Tinker, Lesley; Liu, Simin

    2010-09-01

    Adipocypte fatty acid-binding protein-4 (FABP4/adipocyte P2) may play a central role in energy metabolism and inflammation. In animal models, defects of the aP2 gene (aP2(-/-)) partially protected against the development of obesity-related insulin resistance, dyslipidemia, and atherosclerosis. However, it is unclear whether common genetic variation in FABP4 gene contributes to risk of type 2 diabetes (T2D) or diabetes-related metabolic traits in humans. We comprehensively assess the genetic associations of variants in the FABP4 gene with T2D risk and diabetes-associated biomarkers in a prospective study of 1,529 cases and 2,147 controls among postmenopausal women aged 50-79 years who enrolled in the Women's Health Initiative Observational Study (WHI-OS). We selected and genotyped a total of 11 haplotype-tagging single-nucleotide polymorphisms (tSNPs) spanning 41.3 kb across FABP4 in all samples. None of the SNPs and their derived haplotypes showed significant association with T2D risk. There were no significant associations between SNPs and plasma levels of inflammatory and endothelial biomarkers, including C-reactive protein, tumor necrosis factor (TNF), interleukin-6 (IL-6), E-selectin, and intercellular adhesion molecule (ICAM-1). Among African-American women, several SNPs were significantly associated with lower levels of vascular cell adhesion molecule-1 (VCAM-1), especially among those with incident T2D. On average, plasma levels of VCAM-1 were significantly lower among carriers of each minor allele at rs1486004(C/T; -1.08 ng/ml, P = 0.01), rs7017115(A/G; -1.07 ng/ml, P = 0.02), and rs2290201(C/T; -1.12 ng/ml, P = 0.002) as compared with the homozygotes of the common allele, respectively. After adjusting for multiple testing, carriers of the rs2290201 minor allele remained significantly associated with decreasing levels of plasma VCAM-1 in these women (P = 0.02). In conclusion, our finding from a multiethnic cohort of postmenopausal women did not support the

  18. Characterization of binding and structural properties of rat liver fatty-acid-binding protein using tryptophan mutants.

    PubMed Central

    Thumser, A E; Wilton, D C

    1994-01-01

    Rat liver fatty-acid-binding protein (FABP) does not contain tryptophan. Three mutant proteins have been produced in which a single tryptophan residue has been inserted by site-directed mutagenesis at positions 3 (F3W), 18 (F18W) and 69 (C69W). These tryptophans have been strategically located in order to provide fluorescent reporter groups to study the binding and structural characteristics of rat liver FABP. Two fluorescent fatty acid analogues, DAUDA (11-[(5-dimethylaminonaphthalene-1- sulphonyl)amino]undecanoic acid) and 3-[p-(6-phenyl)-hexa-1,3,5-trienyl]phenylpropionic acid, showed no significant difference in binding affinities for the different mutant proteins, although maximum fluorescence values were decreased for F3W and increased for C69W. These findings were confirmed by studies of DAUDA displacement by oleate. Protein-denaturation studies in the presence of urea indicated subtle differences for the three mutants which could be explained by multiple unfolding pathways. Fatty acid binding increased tryptophan fluorescence emission in the case of the F18W protein, but had no effect on the F3W and C69W proteins. Fluorescence quenching studies with 2-bromopalmitate showed that a fatty acid carboxylate is close to the tryptophan in the F18W protein. Energy-transfer studies showed that the fluorescent moiety of DAUDA is equidistant from the three mutated amino acids and is bound within the beta-clam solvent cavity of liver FABP. This interpretation of the fluorescence quenching and energy-transfer data supports the difference in ligand orientation between intestinal and liver FABP observed in previous studies. PMID:8010966

  19. Hepatitis B Virus X Protein Induces Hepatic Steatosis by Enhancing the Expression of Liver Fatty Acid Binding Protein

    PubMed Central

    Wu, Yun-li; Peng, Xian-e; Zhu, Yi-bing; Yan, Xiao-li; Chen, Wan-nan

    2015-01-01

    ABSTRACT Hepatitis B virus (HBV) has been implicated as a potential trigger of hepatic steatosis although molecular mechanisms involved in the pathogenesis of HBV-associated hepatic steatosis still remain elusive. Our prior work has revealed that the expression level of liver fatty acid binding protein 1 (FABP1), a key regulator of hepatic lipid metabolism, was elevated in HBV-producing hepatoma cells. In this study, the effects of HBV X protein (HBx) mediated FABP1 regulation on hepatic steatosis and the underlying mechanism were determined. mRNA and protein levels of FABP1 were measured by quantitative RT-PCR (qPCR) and Western blotting. HBx-mediated FABP1 regulation was evaluated by luciferase assay, coimmunoprecipitation, and chromatin immunoprecipitation. Hepatic lipid accumulation was measured by using Oil-Red-O staining and the triglyceride level. It was found that expression of FABP1 was increased in HBV-producing hepatoma cells, the sera of HBV-infected patients, and the sera and liver tissues of HBV-transgenic mice. Ectopic overexpression of HBx resulted in upregulation of FABP1 in HBx-expressing hepatoma cells, whereas HBx abolishment reduced FABP1 expression. Mechanistically, HBx activated the FABP1 promoter in an HNF3β-, C/EBPα-, and PPARα-dependent manner, in which HBx increased the gene expression of HNF3β and physically interacted with C/EBPα and PPARα. On the other hand, knockdown of FABP1 remarkably blocked lipid accumulation both in long-chain free fatty acids treated HBx-expressing HepG2 cells and in a high-fat diet-fed HBx-transgenic mice. Therefore, FABP1 is a key driver gene in HBx-induced hepatic lipid accumulation via regulation of HNF3β, C/EBPα, and PPARα. FABP1 may represent a novel target for treatment of HBV-associated hepatic steatosis. IMPORTANCE Accumulating evidence from epidemiological and experimental studies has indicated that chronic HBV infection is associated with hepatic steatosis. However, the molecular mechanism

  20. Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Bayır, Mehtap; Bayır, Abdulkadir; Wright, Jonathan M

    2015-06-01

    The increased use of plant oil as a dietary supplement with the resultant high dietary lipid loads challenges the lipid transport, metabolism and storage mechanisms in economically important aquaculture species, such as rainbow trout. Fatty acid-binding proteins (Fabp), ubiquitous in tissues highly active in fatty acid metabolism, participate in lipid uptake and transport, and overall lipid homeostasis. In the present study, searches of nucleotide sequence databases identified mRNA transcripts coded by 14 different fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss), which include the complete minimal suite of seven distinct fabp genes (fabp1, 2, 3, 6, 7, 10 and 11) discovered thus far in teleost fishes. Phylogenetic analyses suggest that many of these extant fabp genes in rainbow trout exist as duplicates, which putatively arose owing to the teleost-specific whole genome duplication (WGD); three pairs of duplicated fabp genes (fabp2a.1/fabp2a.2, fabp7b.1/fabp7b.2 and fabp10a.1/fabp10a.2) most likely were generated by the salmonid-specific WGD subsequent to the teleost-specific WGD; and fabp3 and fabp6 exist as single copy genes in the rainbow trout genome. Assay of the steady-state levels of fabp gene transcripts by RT-qPCR revealed: (1) steady-state transcript levels differ substantially between fabp genes and, in some instances, by as much as 30×10(4)-fold; (2) some fabp transcripts are widely distributed in many tissues, whereas others are restricted to one or a few tissues; and (3) divergence of regulatory mechanisms that control spatial transcription of duplicated fabp genes in rainbow trout appears related to length of time since their duplication. The suite of fabp genes described here provides the foundation to investigate the role(s) of fatty acid-binding proteins in the uptake, mobilization and storage of fatty acids in cultured fish fed diets differing in lipid content, especially the use of plant oil as a dietary supplement

  1. Peri-operative heart-type fatty acid binding protein is associated with acute kidney injury after cardiac surgery

    PubMed Central

    Schaub, Jennifer A.; Garg, Amit X.; Coca, Steven G.; Testani, Jeffrey M.; Shlipak, Michael G.; Eikelboom, John; Kavsak, Peter; McArthur, Eric; Shortt, Colleen; Whitlock, Richard; Parikh, Chirag R.

    2015-01-01

    Acute Kidney Injury (AKI) is a common complication after cardiac surgery and is associated with worse outcomes. Since heart fatty acid binding protein (H-FABP) is a myocardial protein that detects cardiac injury, we sought to determine if plasma H-FABP was associated with AKI in the TRIBE-AKI cohort; a multi-center cohort of 1219 patients at high risk for AKI who underwent cardiac surgery. The primary outcomes of interest were any AKI (Acute Kidney Injury Network (AKIN) stage 1 or higher) and severe AKI (AKIN stage 2 or higher). The secondary outcome was long-term mortality after discharge. Patients who developed AKI had higher levels of H-FABP pre- and post-operatively than patients who did not have AKI. In analyses adjusted for known AKI risk factors, first post-operative log(H-FABP) was associated with severe AKI (adjusted OR 5.39 [95% CI, 2.87-10.11] per unit increase), while pre-operative log(H-FABP) was associated with any AKI (2.07 [1.48-2.89]) and mortality (1.67 [1.17-2.37]). These relationships persisted after adjustment for change in serum creatinine (for first postoperative log(H-FABP)) and biomarkers of cardiac and kidney injury, including brain natriuretic peptide, cardiac troponin-I, interleukin-18, liver fatty acid binding protein, kidney injury molecule-1, and neutrophil gelatinase associated lipocalin. Thus, peri-operative plasma H-FABP levels may be used for risk-stratification of AKI and mortality following cardiac surgery. PMID:25830762

  2. The Heptameric SmAP1 and SmAP2 Proteins of the Crenarchaeon Sulfolobus Solfataricus Bind to Common and Distinct RNA Targets

    PubMed Central

    Märtens, Birgit; Bezerra, Gustavo Arruda; Kreuter, Mathias Josef; Grishkovskaya, Irina; Manica, Andrea; Arkhipova, Valentina; Djinovic-Carugo, Kristina; Bläsi, Udo

    2015-01-01

    Sm and Sm-like proteins represent an evolutionarily conserved family with key roles in RNA metabolism. Sm-based regulation is diverse and can range in scope from eukaryotic mRNA splicing to bacterial quorum sensing, with at least one step in these processes being mediated by an RNA-associated molecular assembly built on Sm proteins. Despite the availability of several 3D-structures of Sm-like archaeal proteins (SmAPs), their function has remained elusive. The aim of this study was to shed light on the function of SmAP1 and SmAP2 of the crenarchaeon Sulfolobus solfataricus (Sso). Using co-purification followed by RNASeq different classes of non-coding RNAs and mRNAs were identified that co-purified either with both paralogues or solely with Sso-SmAP1 or Sso-SmAP2. The large number of associated intron-containing tRNAs and tRNA/rRNA modifying RNAs may suggest a role of the two Sso-SmAPs in tRNA/rRNA processing. Moreover, the 3D structure of Sso-SmAP2 was elucidated. Like Sso-SmAP1, Sso-SmAP2 forms homoheptamers. The binding of both proteins to distinct RNA substrates is discussed in terms of surface conservation, structural differences in the RNA binding sites and differences in the electrostatic surface potential of the two Sso-SmAP proteins. Taken together, this study may hint to common and different functions of both Sso-SmAPs in Sso RNA metabolism. PMID:25905548

  3. The beta-appendages of the four adaptor-protein (AP) complexes: structure and binding properties, and identification of sorting nexin 9 as an accessory protein to AP-2.

    PubMed Central

    Lundmark, Richard; Carlsson, Sven R

    2002-01-01

    Adaptor protein (AP) complexes are essential components for the formation of coated vesicles and the recognition of cargo proteins for intracellular transport. Each AP complex exposes two appendage domains with that function to bind regulatory accessory proteins in the cytosol. Secondary structure predictions, sequence alignments and CD spectroscopy were used to relate the beta-appendages of all human AP complexes to the previously published crystal structure of AP-2. The results suggested that the beta-appendages of AP-1, AP-2 and AP-3 have similar structures, consisting of two subdomains, whereas that of AP-4 lacks the inner subdomain. Pull-down and overlay assays showed partial overlap in the binding specificities of the beta-appendages of AP-1 and AP-2, whereas the corresponding domain of AP-3 displayed a unique binding pattern. That AP-4 may have a truncated, non-functional domain was indicated by its apparent inability to bind any proteins from cytosol. Of several novel beta-appendage-binding proteins detected, one that had affinity exclusively for AP-2 was identified as sorting nexin 9 (SNX9). SNX9, which contains a phox and an Src homology 3 domain, was found in large complexes and was at least partially associated with AP-2 in the cytosol. SNX9 may function to assist AP-2 in its role at the plasma membrane. PMID:11879186

  4. Fatty acid binding protein 7 and n-3 poly unsaturated fatty acid supply in early rat brain development.

    PubMed

    Maximin, Elise; Langelier, Bénédicte; Aïoun, Josiane; Al-Gubory, Kaïs H; Bordat, Christian; Lavialle, Monique; Heberden, Christine

    2016-03-01

    Fatty acid binding protein 7 (FABP7), abundant in the embryonic brain, binds with the highest affinity to docosahexaenoic acid (DHA) and is expressed in the early stages of embryogenesis. Here, we have examined the consequences of the exposure to different DHA levels and of the in utero depletion of FABP7 on early rat brain development. Neurodevelopment was evaluated through the contents of two proteins, connexin 43 (Cx43) and cyclin-dependent kinase 5 (CDK5), both involved in neuroblast proliferation, differentiation, and migration. The dams were fed with diets presenting different DHA contents, from deficiency to supplementation. DHA brain embryos contents already differed at embryonic day 11.5 and the differences kept increasing with time. Cx43 and CDK5 contents were positively associated with the brain DHA levels. When FABP7 was depleted in vivo by injections of siRNA in the telencephalon, the enhancement of the contents of both proteins was lost in supplemented animals, but FABP7 depletion did not modify phospholipid compositions regardless of the diets. Thus, FABP7 is a necessary mediator of the effect of DHA on these proteins synthesis, but its role in DHA uptake is not critical, although FABP7 is localized in phospholipid-rich areas. Our study shows that high contents of DHA associated with FABP7 are necessary to promote early brain development, which prompted us to recommend DHA supplementation early in pregnancy.

  5. Lipoteichoic acid-binding and biological properties of T protein of group A streptococcus.

    PubMed

    Johnson, R H; Simpson, W A; Dale, J B; Ofek, I; Beachey, E H

    1980-08-01

    T protein was extracted with trypsin from an avirulent, M protein-deficient, type 1 group A Streptococcus and purified by ammonium sulfate precipitation and anion-exchange chromatography. The latter procedure removed contaminating lipoteichoic acid (LTA) from the T protein, which consisted of a heterogeneous mixture of polypeptides resistant to digestion by trypsin and ranged in molecular size from 160,000 to 200,000 daltons. Threonine, aspartic acid, glutamic acid, lysine, and valine were the most predominant amino acids. The binding of LTA to an affinity column of T protein was reversible with increasing concentrations of ethanol but not with increasing ionic strength. T protein bound less palmitic acid and LTA than did fatty acid-free bovine albumin and did not stimulate human peripheral lymphocytes. Because the surface and cell wall distribution of the T proteins and LTA appear similar, the possibility exists that T proteins and LTA may interact in situ by weakly hydrophobic bonds. Such ligand-ligand interaction may be indirectly involved in the adherence of group A streptococci to host cell membranes that is known to be mediated by LTA.

  6. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    SciTech Connect

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. ); Wada, H.; Horio, Y. )

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  7. Measurement of rat heart fatty acid binding protein by ELISA. Tissue distribution, developmental changes and subcellular distribution.

    PubMed

    Crisman, T S; Claffey, K P; Saouaf, R; Hanspal, J; Brecher, P

    1987-05-01

    A class of soluble, low molecular weight proteins collectively called fatty acid binding proteins (FABP) are thought to function in the intracellular movement of fatty acids. To understand more clearly the role of FABP in cardiac metabolism, we used ELISA and immunoblotting techniques to study the distribution of heart FABP in several rat tissues, compare male and female rat heart content, quantitate developmental changes, and determine its subcellular distribution. Immunoreactive protein was found in appreciable amounts in rat heart, red skeletal muscle and kidney. Adult rat heart contained about 1.5 mg FABP/g tissue wet weight with the atrial content being approximately 50% of the ventricular concentration. No significant difference was detected between the sexes. The amount of FABP increased progressively during development from fetal to adult animals, and measureable amounts were found in 17-day-old fetal tissue. Comparisons between myoglobin and FABP showed that FABP appeared earlier than myoglobin in development, but myoglobin was more abundant than FABP at birth. Using immunoblots it was determined that rat heart FABP was localized in the cytosol with no detectable intramitochondrial material. PMID:3625779

  8. Identification of hyaluronic acid-binding proteins and their expressions in porcine cumulus-oocyte complexes during in vitro maturation.

    PubMed

    Yokoo, Masaki; Miyahayashi, Yasunori; Naganuma, Takako; Kimura, Naoko; Sasada, Hiroshi; Sato, Eimei

    2002-10-01

    Hyaluronic acid-binding proteins (HABPs) are necessary for expansion of the cumulus-oocyte complex (COC) during oocyte maturation. In this study, to obtain the detailed information of HABPs during cumulus expansion, we examined the expression of HABPs in porcine COCs during in vitro maturation (IVM). After maturation culture, proteins were extracted from porcine COCs and separated by SDS-PAGE and then transferred to polyvinylidene fluoride membranes. After transfer, the membranes were subjected to ligand blotting with biotinylated hyaluronic acid (bHA) or fluorescein isothiocyanate-labeled hyaluronic acid (FITC-HA). Furthermore, the extracted proteins were subjected to immunoprecipitation, Western blotting, and immunofluorescence analysis to dissect the HABPs. Ligand blotting with FITC-HA could detect HABPs. Using this ligand-blotting method, 13 and 14 bands of HABPs were detected in porcine COCs after 0 and 48 h in culture, respectively. Of these, the level of expression of 85-kDa HABP increased with cumulus expansion during IVM and was newly detected after culture. Immunoprecipitation, Western blotting, and immunofluorescent analysis confirmed that the 85-kDa HABP corresponded to CD44 and that it existed on/in the membrane of cumulus cells. The present results indicated that HABP expressed in porcine COCs during IVM, particularly CD44, may form a network of the matrices in the extracellular space of the oocyte with cumulus expansion during IVM.

  9. Importance of brain‑type fatty acid binding protein for cell-biological processes in human renal carcinoma cells.

    PubMed

    Tölle, Angelika; Krause, Hans; Miller, Kurt; Jung, Klaus; Stephan, Carsten

    2011-05-01

    The molecular mechanisms underlying renal cell carcinoma (RCC) development and progression are still not completely understood. The importance of fatty acid binding proteins (FABP) for the progression of carcinomas has been shown for several tumors. However, the importance of brain-type FABP (B‑FABP) in cell-biological processes in renal carcinoma cells is unknown. Therefore, it was the aim of this study to evaluate the role of B‑FABP in processes such as proliferation, migration and invasion. By using the approach of down- and up-regulation of B‑FABP in human kidney carcinoma cells Caki‑2 and Caki‑1, the potential participation of B‑FABP in proliferation, migration and invasion was demonstrated. B‑FABP was down-regulated at both mRNA and protein levels following treatment of Caki‑2 cells with B‑FABP siRNA. Down-regulation of B‑FABP decreased cell proliferation and migration but did not affect invasion. The transfection of Caki‑1 cells with human B‑FABP cDNA generated an increment of B‑FABP mRNA but the protein was not detectable. Transfected Caki‑1 cells developed a faster proliferation compared to untreated cells. An effect on the process of invasion was not observed. Our data suggest that B‑FABP is involved in cell proliferation and migration of human renal carcinoma cells. The detailed molecular mechanisms remain to be elucidated.

  10. Differentiation-dependent activation of the extracellular fatty acid binding protein (Ex-FABP) gene during chondrogenesis.

    PubMed

    Giannoni, Paolo; Zambotti, Adriana; Pagano, Aldo; Cancedda, Ranieri; Dozin, Beatrice

    2004-01-01

    Chicken hypertrophic chondrocytes secrete the extracellular fatty acid binding protein (Ex-FABP), a lipocalin not expressed by their undifferentiated precursors. Genomic clones coding for the full protein are here structurally and functionally analyzed. We first determined that the promoter sequence markedly differs from that reported for the homologous p20K, and we confirmed by genomic DNA Southern analysis the exactness of our sequence. This is of relevance since we have identified another lipocalin gene within the region of discrepancy, indicating thereby the existence of a lipocalin cluster within the same chromosomal locus. By transient transfections with 5'-deletions and the chloramphenicol acetyl transferase (CAT) reporter gene, the region between nt -926 and nt -629 was shown to be strongly active, specifically in hypertrophic chondrocytes and not in dedifferentiated cells. Responsive elements for several potential transcription factors lay within this sequence. Among those, activating protein-1 (AP-1) was shown to be involved in the regulation of the Ex-FABP gene during chondrocyte differentiation, as indicated by electrophoretic mobility shift assay, AP-1 site mutagenesis and functional interference assays.

  11. Fatty acid binding protein is induced in neurons of the dorsal root ganglia after peripheral nerve injury.

    PubMed

    De León, M; Welcher, A A; Nahin, R H; Liu, Y; Ruda, M A; Shooter, E M; Molina, C A

    1996-05-01

    Peripheral nerve trauma induces the expression of genes presumed to be involved in the process of nerve degeneration and repair. In the present study, an in vivo paradigm was employed to identify molecules which may have important roles in these processes. A cDNA library was constructed with RNA extracted from rat dorsal root ganglia (DRG) 3 days after a sciatic nerve crush. After differential hybridization to this library, several cDNAs were identified that encoded mRNAs that were upregulated in the DRG ipsilateral to the crush injury, as opposed to the contralateral or naive DRG. Approximately 0.15% of all the clones screened were found to be induced. This report presents the types of induced sequences identified and characterizes one of them, DA11. The 0.7 kb DA11 full length cDNA clone contains a 405 nucleotide open reading frame that encodes a putative protein of 15.2 kDa (135 amino acid residues) and is a member of the family of fatty acid binding proteins (FABP). The DA11 protein differs by one amino acid residue from the sequence of the C-FAPB protein and by eight residues from the sequence of mal1, proteins found in rat and mouse skin, respectively. Northern and Western blot analyses showed that the DA11 mRNA and protein were induced in the injured DRG. Furthermore, studies using antibodies generated against DA11 found that the DA11-like immunoreactivity was more pronounced in the nuclei of neurons located in the DRG ipsilateral to the sciatic cut than those located in the contralateral DRG. The induction of DA11 mRNA and protein in DRG neurons suggests, for the first time, the involvement of a neuronal FABP in the process of degeneration and repair in the nervous system.

  12. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    PubMed Central

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states. PMID:25004958

  13. Low abdominal NIRS values and elevated plasma intestinal fatty acid-binding protein in a premature piglet model of necrotizing enterocolitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify early markers of necrotizing enterocolitis (NEC), we hypothesized that continuous abdominal near-infrared spectroscopy (A-NIRS) measurement of splanchnic tissue oxygen saturation and intermittent plasma intestinal fatty-acid binding protein (pI-FABP) measured every 6 hours can detect NEC...

  14. Identification of multiple salicylic acid-binding proteins using two high throughput screens

    PubMed Central

    Manohar, Murli; Tian, Miaoying; Moreau, Magali; Park, Sang-Wook; Choi, Hyong Woo; Fei, Zhangjun; Friso, Giulia; Asif, Muhammed; Manosalva, Patricia; von Dahl, Caroline C.; Shi, Kai; Ma, Shisong; Dinesh-Kumar, Savithramma P.; O'Doherty, Inish; Schroeder, Frank C.; van Wijk, Klass J.; Klessig, Daniel F.

    2014-01-01

    Salicylic acid (SA) is an important hormone involved in many diverse plant processes, including floral induction, stomatal closure, seed germination, adventitious root initiation, and thermogenesis. It also plays critical functions during responses to abiotic and biotic stresses. The role(s) of SA in signaling disease resistance is by far the best studied process, although it is still only partially understood. To obtain insights into how SA carries out its varied functions, particularly in activating disease resistance, two new high throughput screens were developed to identify novel SA-binding proteins (SABPs). The first utilized crosslinking of the photo-reactive SA analog 4-AzidoSA (4AzSA) to proteins in an Arabidopsis leaf extract, followed by immuno-selection with anti-SA antibodies and then mass spectroscopy-based identification. The second utilized photo-affinity crosslinking of 4AzSA to proteins on a protein microarray (PMA) followed by detection with anti-SA antibodies. To determine whether the candidate SABPs (cSABPs) obtained from these screens were true SABPs, recombinantly-produced proteins were generated and tested for SA-inhibitable crosslinking to 4AzSA, which was monitored by immuno-blot analysis, SA-inhibitable binding of the SA derivative 3-aminoethylSA (3AESA), which was detected by a surface plasmon resonance (SPR) assay, or SA-inhibitable binding of [3H]SA, which was detected by size exclusion chromatography. Based on our criteria that true SABPs must exhibit SA-binding activity in at least two of these assays, nine new SABPs are identified here; nine others were previously reported. Approximately 80 cSABPs await further assessment. In addition, the conflicting reports on whether NPR1 is an SABP were addressed by showing that it bound SA in all three of the above assays. PMID:25628632

  15. A Photocytes-Associated Fatty Acid-Binding Protein from the Light Organ of Adult Taiwanese Firefly, Luciola cerata

    PubMed Central

    Goh, King-Siang; Li, Chia-Wei

    2011-01-01

    Background Intracellular fatty acid-binding proteins (FABPs) are considered to be an important energy source supplier in lipid metabolism; however, they have never been reported in any bioluminescent tissue before. In this study, we determined the structural and functional characteristics of a novel FABP (lcFABP) from the light organ of adult Taiwanese firefly, Luciola cerata, and showed anatomical association of lcFABP with photocytes. Principal Findings Our results demonstrated the primary structure of lcFABP deduced from the cDNA clone of light organ shares structural homologies with other insect and human FABPs. In vitro binding assay indicated the recombinant lcFABP binds saturated long chain fatty acids (C14-C18) more strongly than other fatty acids and firefly luciferin. In addition, tissue distribution screening assay using a rabbit antiserum specifically against the N-terminal sequence of lcFABP confirmed the light organ-specific expression of lcFABP. In the light organ, the lcFABP constituted about 15% of total soluble proteins, and was detected in both cytosol and nucleus of photocytes. Conclusions The specific localization of abundant lcFABP in the light organ suggests that sustained bioluminescent flashes in the light organ might be a high energy demanding process. In photocytes, lcFABP might play a key role in providing long chain fatty acids to peroxisomes for the luciferase-catalyzed long chain acyl-CoA synthetic reaction. PMID:22242133

  16. Molecular characterization, tissue expression, and polymorphism analysis of liver-type fatty acid binding protein in Landes geese.

    PubMed

    Song, Z; Shao, D; Sun, X X; Niu, J W; Gong, D Q

    2015-01-01

    Liver weight is an important economic trait in the fatty goose liver industry. Liver-type fatty acid binding protein (L-FABP) is involved in the formation and metabolism of fatty acids. Thus, we hypothesized that sequence polymorphisms in L-FABP were associated with fatty liver weight in goose. We first isolated, sequenced, and characterized the goose L-FABP gene, which had not been previously reported. The goose L-FABP gene was 2490 bp and included 4 exons coding for a 126-amino acid protein. Analysis of expression levels of the goose L-FABP gene in different tissues showed that the expression level in the liver tissue was higher than in other tissues, and was significantly higher in the liver tissue of overfed geese than in control geese. Moreover, a single nucleotide polymorphism located at 774 bp in the gene was identified in a Landes goose population. To test whether this single nucleotide polymorphism was associated with fatty liver production, liver weight and the ratio of liver to carcass weights were determined for the 3 genotypes with this single nucleotide polymorphism (TT, TG, GG) in overfed Landes geese. Our data indicate that individuals with the GG genotype had higher values for the variables measured than those with the other 2 genotypes, suggesting that L-FABP can be a selection marker for the trait of fatty liver production in goose. PMID:25729971

  17. Cytokine-like Activity of Liver Type Fatty Acid Binding Protein (L-FABP) Inducing Inflammatory Cytokine Interleukin-6

    PubMed Central

    Kim, Hyunwoo; Gil, Gaae; Lee, Siyoung; Kwak, Areum; Jo, Seunghyun; Kim, Ensom; Nguyen, Tam T.; Kim, Sinae; Jhun, Hyunjhung; Kim, Somi; Kim, Miyeon; Lee, Youngmin

    2016-01-01

    It has been reported that fatty acid binding proteins (FABPs) do not act only as intracellular mediators of lipid responses but also have extracellular functions. This study aimed to investigate whether extracellular liver type (L)-FABP has a biological activity and to determined serum L-FABP levels in patients with end-stage renal disease (ESRD). We isolated L-FABP complementary deoxyribonucleic acid (cDNA) from the Huh7 human hepatocarcinoma cell line and expressed the recombinant L-FABP protein in Escherichia coli. A549 lung carcinoma and THP-1 monocytic cells were stimulated with the human recombinant L-FABP. Human whole blood cells were also treated with the human recombinant L-FABP or interleukin (IL)-1α. IL-6 levels were measured in cell culture supernatants using IL-6 enzyme-linked immunosorbent assay (ELISA). Human recombinant L-FABP induced IL-6 in a dose-dependent manner in A549, THP-1 cells, and whole blood cells. The blood samples of healthy volunteers and patients with ESRD were taken after an overnight fast. The serum levels of L-FABP in healthy volunteers and ESRD patients were quantified with L-FABP ELISA. The values of L-FABP in patients with ESRD were significantly lower than those in the control group. Our results demonstrated the biological activity of L-FABP in human cells suggesting L-FABP can be a mediator of inflammation. PMID:27799875

  18. Molecular characterization, tissue expression, and polymorphism analysis of liver-type fatty acid binding protein in Landes geese.

    PubMed

    Song, Z; Shao, D; Sun, X X; Niu, J W; Gong, D Q

    2015-01-23

    Liver weight is an important economic trait in the fatty goose liver industry. Liver-type fatty acid binding protein (L-FABP) is involved in the formation and metabolism of fatty acids. Thus, we hypothesized that sequence polymorphisms in L-FABP were associated with fatty liver weight in goose. We first isolated, sequenced, and characterized the goose L-FABP gene, which had not been previously reported. The goose L-FABP gene was 2490 bp and included 4 exons coding for a 126-amino acid protein. Analysis of expression levels of the goose L-FABP gene in different tissues showed that the expression level in the liver tissue was higher than in other tissues, and was significantly higher in the liver tissue of overfed geese than in control geese. Moreover, a single nucleotide polymorphism located at 774 bp in the gene was identified in a Landes goose population. To test whether this single nucleotide polymorphism was associated with fatty liver production, liver weight and the ratio of liver to carcass weights were determined for the 3 genotypes with this single nucleotide polymorphism (TT, TG, GG) in overfed Landes geese. Our data indicate that individuals with the GG genotype had higher values for the variables measured than those with the other 2 genotypes, suggesting that L-FABP can be a selection marker for the trait of fatty liver production in goose.

  19. Impaired noradrenaline-induced lipolysis in white fat of aP2-Ucp1 transgenic mice is associated with changes in G-protein levels.

    PubMed Central

    Flachs, Pavel; Novotný, Jirí; Baumruk, Filip; Bardová, Kristina; Bourová, Lenka; Miksík, Ivan; Sponarová, Jana; Svoboda, Petr; Kopecký, Jan

    2002-01-01

    In vitro experiments suggest that stimulation of lipolysis by catecholamines in adipocytes depends on the energy status of these cells. We tested whether mitochondrial uncoupling proteins (UCPs) that control the efficiency of ATP production could affect lipolysis and noradrenaline signalling in white fat in vivo. The lipolytic effect of noradrenaline was lowered by ectopic UCP1 in white adipocytes of aP2-Ucp1 transgenic mice, overexpressing the UCP1 gene from the aP2 gene promoter, reflecting the magnitude of UCP1 expression, the impaired stimulation of cAMP levels by noradrenaline and the reduction of the ATP/ADP ratio in different fat depots. Thus only subcutaneous but not epididymal fat was affected. UCP1 also down-regulated the expression of hormone-sensitive lipase and lowered its activity, and altered the expression of trimeric G-proteins in adipocytes. The adipose tissue content of the stimulatory G-protein alpha subunit was increased while that of the inhibitory G-protein alpha subunits decreased in response to UCP1 expression. Our results support the idea that the energy status of cells, and the ATP/ADP ratio in particular, modulates the lipolytic effects of noradrenaline in adipose tissue in vivo. They also demonstrate changes at the G-protein level that tend to overcome the reduction of lipolysis when ATP level in adipocytes is low. Therefore, respiratory uncoupling may exert a broad effect on hormonal signalling in adipocytes. PMID:12023879

  20. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related.

    PubMed Central

    Berk, P D; Wada, H; Horio, Y; Potter, B J; Sorrentino, D; Zhou, S L; Isola, L M; Stump, D; Kiang, C L; Thung, S

    1990-01-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABPPM) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate with a Ka approximately 1.2-1.4 x 10(7) M-1. Sinusoidally enriched liver plasma membranes and purified h-FABPPM have GOT enzymatic activity; the relative specific activities (units/mg) of the membranes and purified protein suggest that h-FABPPM constitutes 1-2% of plasma membrane protein in the rat hepatocyte. Monospecific rabbit antiserum against h-FABPPM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [3H]oleate but not that of [35S]sulfobromophthalein or [14C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABPPM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABPPM and mGOT are closely related. Images PMID:2185471

  1. Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3.

    PubMed

    Serrano, Pedro; Johnson, Margaret A; Chatterjee, Amarnath; Neuman, Benjamin W; Joseph, Jeremiah S; Buchmeier, Michael J; Kuhn, Peter; Wüthrich, Kurt

    2009-12-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand beta-sheet holding two alpha-helices of three and four turns that are oriented antiparallel to the beta-strands. Two antiparallel two-strand beta-sheets and two 3(10)-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold.

  2. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle.

    PubMed

    Jurie, C; Cassar-Malek, I; Bonnet, M; Leroux, C; Bauchart, D; Boulesteix, P; Pethick, D W; Hocquette, J F

    2007-10-01

    Marbling is an important criterion for beef quality grading in many countries. The purpose of the current study was to utilize the natural genetic variation to identify major metabolic indicators of marbling in cattle differing in genotypes. Rectus abdominis (RA, oxidative), semitendinosus (glycolytic), and longissimus thoracis (LT, oxido-glycolytic) muscles were taken from steers of different genotypes that expressed high [Angus, n = 16; and crossbred (Angus x Japanese Black), n = 10] or low (Limousin, n = 12) levels of marbling in their meat. Muscles from Angus and crossbred steers were characterized, as expected, by a greater triacylglycerol (TAG) content (P < 0.001) and also by greater protein contents of fatty acid-binding protein specific for heart and muscles (H-FABP; P < 0.001 for RA and P < 0.05 for LT muscle) or for adipocytes (A-FABP; P < 0.001 for RA and LT muscles). Moreover, oxidative enzyme activities (beta-hydroxyacyl-CoA dehydrogenase, citrate synthase, isocitrate dehydrogenase, cytochrome-c oxidase) were greater (P < 0.01 to 0.001) in the 3 muscles studied, whereas glycolytic enzyme activities (phosphofructokinase and lactate dehydrogenase) were lower (P < 0.001) in RA muscle in Angus and crossbred steers compared with Limousin steers. Significant correlations were observed between TAG content and H- and A-FABP protein contents, and oxidative (r > or = +0.55, P < 0.001) or glycolytic enzyme activities (r > or = -0.47, P < 0.001), when the 3 genotypes and muscles studied were considered as a whole. In addition, A-FABP protein content and some oxidative enzyme activities were significantly correlated with TAG content independently of the genotype and muscle effects. In conclusion, A-FABP protein content, as well as oxidative enzyme activities, may be used as indicators of the ability of steers from extreme genotypes to deposit intramuscular fat.

  3. A Novel Fatty Acid-Binding Protein-Like Carotenoid-Binding Protein from the Gonad of the New Zealand Sea Urchin Evechinus chloroticus

    PubMed Central

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9′-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid. PMID:25192378

  4. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.

    PubMed

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid.

  5. A novel fatty acid-binding protein-like carotenoid-binding protein from the gonad of the New Zealand sea urchin Evechinus chloroticus.

    PubMed

    Pilbrow, Jodi; Sabherwal, Manya; Garama, Daniel; Carne, Alan

    2014-01-01

    A previously uncharacterized protein with a carotenoid-binding function has been isolated and characterized from the gonad of the New Zealand sea urchin Evechinus chloroticus. The main carotenoid bound to the protein was determined by reversed phase-high performance liquid chromatography to be 9'-cis-echinenone and hence this 15 kDa protein has been called an echinenone-binding protein (EBP). Purification of the EBP in quantity from the natural source proved to be challenging. However, analysis of EBP by mass spectrometry combined with information from the Strongylocentrotus purpuratus genome sequence and the recently published E. chloroticus transcriptome database, enabled recombinant expression of wild type EBP and also of a cysteine61 to serine mutant that had improved solubility characteristics. Circular dichroism data and ab initio structure prediction suggests that the EBP adopts a 10-stranded β-barrel fold consistent with that of fatty acid-binding proteins. Therefore, EBP may represent the first report of a fatty acid-binding protein in complex with a carotenoid. PMID:25192378

  6. A structure-specific nucleic acid-binding domain conserved among DNA repair proteins

    PubMed Central

    Mason, Aaron C.; Rambo, Robert P.; Greer, Briana; Pritchett, Michael; Tainer, John A.; Cortez, David; Eichman, Brandt F.

    2014-01-01

    SMARCAL1, a DNA remodeling protein fundamental to genome integrity during replication, is the only gene associated with the developmental disorder Schimke immuno-osseous dysplasia (SIOD). SMARCAL1-deficient cells show collapsed replication forks, S-phase cell cycle arrest, increased chromosomal breaks, hypersensitivity to genotoxic agents, and chromosomal instability. The SMARCAL1 catalytic domain (SMARCAL1CD) is composed of an SNF2-type double-stranded DNA motor ATPase fused to a HARP domain of unknown function. The mechanisms by which SMARCAL1 and other DNA translocases repair replication forks are poorly understood, in part because of a lack of structural information on the domains outside of the common ATPase motor. In the present work, we determined the crystal structure of the SMARCAL1 HARP domain and examined its conformation and assembly in solution by small angle X-ray scattering. We report that this domain is conserved with the DNA mismatch and damage recognition domains of MutS/MSH and NER helicase XPB, respectively, as well as with the putative DNA specificity motif of the T4 phage fork regression protein UvsW. Loss of UvsW fork regression activity by deletion of this domain was rescued by its replacement with HARP, establishing the importance of this domain in UvsW and demonstrating a functional complementarity between these structurally homologous domains. Mutation of predicted DNA-binding residues in HARP dramatically reduced fork binding and regression activities of SMARCAL1CD. Thus, this work has uncovered a conserved substrate recognition domain in DNA repair enzymes that couples ATP-hydrolysis to remodeling of a variety of DNA structures, and provides insight into this domain’s role in replication fork stability and genome integrity. PMID:24821763

  7. Urinary Intestinal Fatty Acid-Binding Protein Can Distinguish Necrotizing Enterocolitis from Sepsis in Early Stage of the Disease

    PubMed Central

    Snajdauf, Jiri; Rygl, Michal

    2016-01-01

    Necrotizing enterocolitis (NEC) is severe disease of gastrointestinal tract, yet its early symptoms are nonspecific, easily interchangeable with sepsis. Therefore, reliable biomarkers for early diagnostics are needed in clinical practice. Here, we analyzed if markers of gut mucosa damage, caspase cleaved cytokeratin 18 (ccCK18) and intestinal fatty acid-binding protein (I-FABP), could be used for differential diagnostics of NEC at early stage of disease. We collected paired serum (at enrollment and week later) and urine (collected for two days in 6 h intervals) samples from 42 patients with suspected NEC. These patients were later divided into NEC (n = 24), including 13 after gastrointestinal surgery, and sepsis (n = 18) groups using standard criteria. Healthy infants (n = 12), without any previous gut surgery, served as controls. Both biomarkers were measured by a commercial ELISA assay. There were no statistically significant differences in serum ccCK18 between NEC and sepsis but NEC patients had significantly higher levels of serum and urinary I-FABP than either sepsis patients or healthy infants. Urinary I-FABP has high sensitivity (81%) and specificity (100%) and can even distinguish NEC from sepsis in patients after surgery. Urinary I-FABP can be used to distinguish NEC from neonatal sepsis, including postoperative one, better than abdominal X-ray. PMID:27110575

  8. Common FABP4 Genetic Variants and Plasma Levels of Fatty Acid Binding Protein 4 in Older Adults

    PubMed Central

    Mukamal, Kenneth J.; Wilk, Jemma B.; Biggs, Mary L.; Jensen, Majken K.; Ix, Joachim H.; Kizer, Jorge R.; Tracy, Russell P.; Zieman, Susan J.; Mozaffarian, Dariush; Psaty, Bruce M.; Siscovick, David S.; Djoussé, Luc

    2013-01-01

    We examined common variants in the fatty acid binding protein 4 gene (FABP4) and plasma levels of FABP4 in adults aged 65 and older from the Cardiovascular Health Study. We genotyped rs16909187, rs1054135, rs16909192, rs10808846, rs7018409, rs2290201, and rs6992708 and measured circulating FABP4 levels among 3190 European Americans and 660 African Americans. Among European Americans, the minor alleles of six single nucleotide polymorphisms (SNP) were associated with lower FABP4 levels (all p ≤ 0.01). Among African Americans, the SNP with the lowest minor allele frequency was associated with lower FABP4 levels (p = 0.015). The C-A haplotype of rs16909192 and rs2290201 was associated with lower FABP4 levels in both European Americans (frequency = 16 %; p = 0.001) and African Americans (frequency = 8 %; p = 0.04). The haplotype combined a SNP in the first intron with one in the 3′untranslated region. However, the alleles associated with lower FABP4 levels were associated with higher fasting glucose in meta-analyses from the MAGIC consortium. These results demonstrate associations of common SNP and haplotypes in the FABP4 gene with lower plasma FABP4 but higher fasting glucose levels. PMID:24043587

  9. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    SciTech Connect

    Klapper, Maja . E-mail: klapper@molnut.uni-kiel.de; Boehme, Mike; Nitz, Inke; Doering, Frank

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  10. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma.

    PubMed

    Ku, Chung-Yu; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2016-04-01

    Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy. PMID:26919097

  11. Immunodiagnostic monoclonal antibody-based sandwich ELISA of fasciolosis by detection of Fasciola gigantica circulating fatty acid binding protein.

    PubMed

    Anuracpreeda, Panat; Chawengkirttikul, Runglawan; Sobhon, Prasert

    2016-09-01

    Up to now, parasitological diagnosis of fasciolosis is often unreliable and possesses low sensitivity. Hence, the detection of circulating parasite antigens is thought to be a better alternative for diagnosis of fasciolosis, as it reflects the real parasite burden. In the present study, a monoclonal antibody (MoAb) against recombinant Fasciola gigantica fatty acid binding protein (rFgFABP) has been produced. As well, a reliable sandwich enzyme-linked immunosorbent assay (sandwich ELISA) has been developed for the detection of circulating FABP in the sera of mice experimentally and cattle naturally infected with F. gigantica. MoAb 3A3 and biotinylated rabbit anti-recombinant FABP antibody were selected due to their high reactivities and specificities. The lower detection limit of sandwich ELISA was 5 pg mL-1, and no cross-reaction with other parasite antigens was observed. This assay could detect F. gigantica infection from day 1 post infection. In experimental mice, the sensitivity, specificity and accuracy of this assay were 93·3, 100 and 98·2%, while in natural cattle they were 96·7, 100 and 99·1%. Hence, this sandwich ELISA method showed high efficiencies and precisions for diagnosis of fasciolosis by F. gigantica. PMID:27312522

  12. Fatty Acid-binding Proteins Transport N-Acylethanolamines to Nuclear Receptors and Are Targets of Endocannabinoid Transport Inhibitors*

    PubMed Central

    Kaczocha, Martin; Vivieca, Stephanie; Sun, Jing; Glaser, Sherrye T.; Deutsch, Dale G.

    2012-01-01

    N-Acylethanolamines (NAEs) are bioactive lipids that engage diverse receptor systems. Recently, we identified fatty acid-binding proteins (FABPs) as intracellular NAE carriers. Here, we provide two new functions for FABPs in NAE signaling. We demonstrate that FABPs mediate the nuclear translocation of the NAE oleoylethanolamide, an agonist of nuclear peroxisome proliferator-activated receptor α (PPARα). Antagonism of FABP function through chemical inhibition, dominant-negative approaches, or shRNA-mediated knockdown reduced PPARα activation, confirming a requisite role for FABPs in this process. In addition, we show that NAE analogs, traditionally employed as inhibitors of the putative endocannabinoid transmembrane transporter, target FABPs. Support for the existence of the putative membrane transporter stems primarily from pharmacological inhibition of endocannabinoid uptake by such transport inhibitors, which are widely employed in endocannabinoid research despite lacking a known cellular target(s). Our approach adapted FABP-mediated PPARα signaling and employed in vitro binding, arachidonoyl-[1-14C]ethanolamide ([14C]AEA) uptake, and FABP knockdown to demonstrate that transport inhibitors exert their effects through inhibition of FABPs, thereby providing a molecular rationale for the underlying physiological effects of these compounds. Identification of FABPs as targets of transport inhibitors undermines the central pharmacological support for the existence of an endocannabinoid transmembrane transporter. PMID:22170058

  13. Urinary Intestinal Fatty Acid-Binding Protein Can Distinguish Necrotizing Enterocolitis from Sepsis in Early Stage of the Disease.

    PubMed

    Coufal, Stepan; Kokesova, Alena; Tlaskalova-Hogenova, Helena; Snajdauf, Jiri; Rygl, Michal; Kverka, Miloslav

    2016-01-01

    Necrotizing enterocolitis (NEC) is severe disease of gastrointestinal tract, yet its early symptoms are nonspecific, easily interchangeable with sepsis. Therefore, reliable biomarkers for early diagnostics are needed in clinical practice. Here, we analyzed if markers of gut mucosa damage, caspase cleaved cytokeratin 18 (ccCK18) and intestinal fatty acid-binding protein (I-FABP), could be used for differential diagnostics of NEC at early stage of disease. We collected paired serum (at enrollment and week later) and urine (collected for two days in 6 h intervals) samples from 42 patients with suspected NEC. These patients were later divided into NEC (n = 24), including 13 after gastrointestinal surgery, and sepsis (n = 18) groups using standard criteria. Healthy infants (n = 12), without any previous gut surgery, served as controls. Both biomarkers were measured by a commercial ELISA assay. There were no statistically significant differences in serum ccCK18 between NEC and sepsis but NEC patients had significantly higher levels of serum and urinary I-FABP than either sepsis patients or healthy infants. Urinary I-FABP has high sensitivity (81%) and specificity (100%) and can even distinguish NEC from sepsis in patients after surgery. Urinary I-FABP can be used to distinguish NEC from neonatal sepsis, including postoperative one, better than abdominal X-ray. PMID:27110575

  14. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma

    PubMed Central

    Ku, Chung-Yu; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2016-01-01

    Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy. PMID:26919097

  15. Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma.

    PubMed

    Ku, Chung-Yu; Liu, Yu-Huei; Lin, Hsuan-Yuan; Lu, Shao-Chun; Lin, Jung-Yaw

    2016-04-01

    Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy.

  16. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    PubMed

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-01

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders.

  17. Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD).

    PubMed

    Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G

    2015-04-01

    Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611

  18. Fatty Acid-binding Proteins (FABPs) Are Intracellular Carriers for Δ9-Tetrahydrocannabinol (THC) and Cannabidiol (CBD)*

    PubMed Central

    Elmes, Matthew W.; Kaczocha, Martin; Berger, William T.; Leung, KwanNok; Ralph, Brian P.; Wang, Liqun; Sweeney, Joseph M.; Miyauchi, Jeremy T.; Tsirka, Stella E.; Ojima, Iwao; Deutsch, Dale G.

    2015-01-01

    Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611

  19. Molecular characterization, functional expression, tissue localization and protective potential of a Taenia solium fatty acid-binding protein.

    PubMed

    Illescas, Oscar; Carrero, Julio C; Bobes, Raúl J; Flisser, Ana; Rosas, Gabriela; Laclette, Juan P

    2012-12-01

    The fatty acid-binding proteins (FABPs) comprise a family of proteins that are widely expressed in animal cells and perform a variety of vital functions. Here, we report the identification, characterization, recombinant expression, tissue localization and protective potential of a Taenia solium FABP (TsFABP1). The TsFABP1 primary structure showed all the conserved residues characteristic of the subfamily iv of the intracellular Lipid-Binding Proteins (iLBPs), including those involved in the binding stabilization of the fatty acid molecule. Through a competitive binding assay we found that TsFABP1 is able to bind at least six different fatty acids with preference toward palmitic and stearic acid, suggesting that TsFABP1 is a member of the iLBP subfamily iv. Immunolocalization assays carried out on larval and adult tissues of four species of taeniids using anti-TsFABP1 hyperimmune sera produced in mice and rabbit, showed intense labeling in the tegument of the spiral canal and in subtegumental cytons of the larvae. These findings suggest that the spiral canal might be a major place for FA uptake in the developing scolex. In contrast, only subtegumental cytons in the adult worms stained positive. We propose that TsFABP1 is involved in the mechanism to mobilize fatty acids between compartments in the extensive syncytial tissue of taeniids. Protection assays carried out in a murine model of cysticercosis showed that subcutaneous immunization with TsFABP1 resulted in about 45% reduction of parasite load against an intraperitoneal challenge with Taenia crassiceps cysts. This reduction in parasite load correlated with the level of cellular and humoral immune responses against TsFABP1, as determined in spleen lymphocyte proliferation and ELISA testing.

  20. Fatty Acid-binding Protein 4, a Point of Convergence for Angiogenic and Metabolic Signaling Pathways in Endothelial Cells*

    PubMed Central

    Harjes, Ulrike; Bridges, Esther; McIntyre, Alan; Fielding, Barbara A.; Harris, Adrian L.

    2014-01-01

    Fatty acid-binding protein 4 (FABP4) is an adipogenic protein and is implicated in atherosclerosis, insulin resistance, and cancer. In endothelial cells, FABP4 is induced by VEGFA, and inhibition of FABP4 blocks most of the VEGFA effects. We investigated the DLL4-NOTCH-dependent regulation of FABP4 in human umbilical vein endothelial cells by gene/protein expression and interaction analyses following inhibitor treatment and RNA interference. We found that FABP4 is directly induced by NOTCH. Stimulation of NOTCH signaling with human recombinant DLL4 led to FABP4 induction, independently of VEGFA. FABP4 induction by VEGFA was reduced by blockade of DLL4 binding to NOTCH or inhibition of NOTCH signal transduction. Chromatin immunoprecipitation of the NOTCH intracellular domain showed increased binding to two specific regions in the FABP4 promoter. The induction of FABP4 gene expression was dependent on the transcription factor FOXO1, which was essential for basal expression of FABP4, and FABP4 up-regulation following stimulation of the VEGFA and/or the NOTCH pathway. Thus, we show that the DLL4-NOTCH pathway mediates endothelial FABP4 expression. This indicates that induction of the angiogenesis-restricting DLL4-NOTCH can have pro-angiogenic effects via this pathway. It also provides a link between DLL4-NOTCH and FOXO1-mediated regulation of endothelial gene transcription, and it shows that DLL4-NOTCH is a nodal point in the integration of pro-angiogenic and metabolic signaling in endothelial cells. This may be crucial for angiogenesis in the tumor environment. PMID:24939870

  1. Functional analysis of peroxisome-proliferator-responsive element motifs in genes of fatty acid-binding proteins

    PubMed Central

    2004-01-01

    Retinoic acids and long-chain fatty acids are lipophilic agonists of nuclear receptors such as RXRs (retinoic X receptors) and PPARs (peroxisome-proliferator-activated receptors) respectively. These agonists are also ligands of intracellular lipid-binding proteins, which include FABPs (fatty acid-binding proteins). We reported previously that L (liver-type)-FABP targets fatty acids to the nucleus of hepatocytes and affects PPARα activation, which binds together with an RXR subtype to a PPRE (peroxisome-proliferator-responsive element). In the present study, we first determined the optimal combination of murine PPAR/RXR subtypes for binding to known murine FABP-PPREs and to those found by computer search and then tested their in vitro functionality. We show that all PPARs bind to L-FABP-PPRE, PPARα, PPARγ1 and PPARγ2 to A (adipocyte-type)-FABP-PPRE. All PPAR/RXR heterodimers transactivate L-FABP-PPRE, best are combinations of PPARα with RXRα or RXRγ. In contrast, PPARα heterodimers do not transactivate A-FABP-PPRE, best combinations are of PPARγ1 with RXRα and RXRγ, and of PPARγ2 with all RXR subtypes. We found that the predicted E (epidermal-type)- and H (heart-type)-FABP-PPREs are not activated by any PPAR/RXR combination without or with the PPAR pan-agonist bezafibrate. In the same way, C2C12 myoblasts transfected with promoter fragments of E-FABP and H-FABP genes containing putative PPREs are also not activated through stimulation of PPARs with bezafibrate applied to the cells. These results demonstrate that only PPREs of L- and A-FABP promoters are functional, and that binding of PPAR/RXR heterodimers to a PPRE in vitro does not necessarily predict transactivation. PMID:15130092

  2. Effect of liver fatty acid binding protein on fatty acid movement between liposomes and rat liver microsomes.

    PubMed Central

    McCormack, M; Brecher, P

    1987-01-01

    Although movement of fatty acids between bilayers can occur spontaneously, it has been postulated that intracellular movement is facilitated by a class of proteins named fatty acid binding proteins (FABP). In this study we have incorporated long chain fatty acids into multilamellar liposomes made of phosphatidylcholine, incubated them with rat liver microsomes containing an active acyl-CoA synthetase, and measured formation of acyl-CoA in the absence or presence of FABP purified from rat liver. FABP increased about 2-fold the accumulation of acyl-CoA when liposomes were the fatty acid donor. Using fatty acid incorporated into liposomes made either of egg yolk lecithin or of dipalmitoylphosphatidylcholine, it was found that the temperature dependence of acyl-CoA accumulation in the presence of FABP correlated with both the physical state of phospholipid molecules in the liposomes and the binding of fatty acid to FABP, suggesting that fatty acid must first desorb from the liposomes before FABP can have an effect. An FABP-fatty acid complex incubated with microsomes, in the absence of liposomes, resulted in greater acyl-CoA formation than when liposomes were present, suggesting that desorption of fatty acid from the membrane is rate-limiting in the accumulation of acyl-CoA by this system. Finally, an equilibrium dialysis cell separating liposomes from microsomes on opposite sides of a Nuclepore filter was used to show that liver FABP was required for the movement and activation of fatty acid between the compartments. These studies show that liver FABP interacts with fatty acid that desorbs from phospholipid bilayers, and promotes movement to a membrane-bound enzyme, suggesting that FABP may act intracellularly by increasing net desorption of fatty acid from cell membranes. PMID:3446187

  3. NMR unfolding studies on a liver bile acid binding protein reveal a global two-state unfolding and localized singular behaviors.

    PubMed

    D'Onofrio, Mariapina; Ragona, Laura; Fessas, Dimitrios; Signorelli, Marco; Ugolini, Raffaella; Pedò, Massimo; Assfalg, Michael; Molinari, Henriette

    2009-01-01

    The folding properties of a bile acid binding protein, belonging to a subfamily of the fatty acid binding proteins, have been here investigated both by hydrogen exchange measurements, using the SOFAST NMR approach, and urea denaturation experiments. The urea unfolding profiles of individual residues, acting as single probes, were simultaneously analyzed through a global fit, according to a two-state unfolding model. The resulting conformational stability DeltaG(U)(H(2)O)=7.2+/-0.25kcal mol(-1) is in good agreement with hydrogen exchange stability DeltaG(op). While the majority of protein residues satisfy this model, few amino-acids display a singular behavior, not directly amenable to the presence of a folding intermediate, as reported for other fatty acid binding proteins. These residues are part of a protein patch characterized by enhanced plasticity. To explain this singular behavior a tentative model has been proposed which takes into account the interplay between the dynamic features and the formation of transient aggregates. A functional role for this plasticity, related to translocation across the nuclear membrane, is discussed. PMID:18977333

  4. NMR unfolding studies on a liver bile acid binding protein reveal a global two-state unfolding and localized singular behaviors.

    PubMed

    D'Onofrio, Mariapina; Ragona, Laura; Fessas, Dimitrios; Signorelli, Marco; Ugolini, Raffaella; Pedò, Massimo; Assfalg, Michael; Molinari, Henriette

    2009-01-01

    The folding properties of a bile acid binding protein, belonging to a subfamily of the fatty acid binding proteins, have been here investigated both by hydrogen exchange measurements, using the SOFAST NMR approach, and urea denaturation experiments. The urea unfolding profiles of individual residues, acting as single probes, were simultaneously analyzed through a global fit, according to a two-state unfolding model. The resulting conformational stability DeltaG(U)(H(2)O)=7.2+/-0.25kcal mol(-1) is in good agreement with hydrogen exchange stability DeltaG(op). While the majority of protein residues satisfy this model, few amino-acids display a singular behavior, not directly amenable to the presence of a folding intermediate, as reported for other fatty acid binding proteins. These residues are part of a protein patch characterized by enhanced plasticity. To explain this singular behavior a tentative model has been proposed which takes into account the interplay between the dynamic features and the formation of transient aggregates. A functional role for this plasticity, related to translocation across the nuclear membrane, is discussed.

  5. Increased expression of fatty acid binding protein 4 and leptin in resident macrophages characterises atherosclerotic plaque rupture

    PubMed Central

    Lee, K.; Santibanez-Koref, M.; Polvikoski, T.; Birchall, D.; Mendelow, A.D.; Keavney, B.

    2013-01-01

    Objective Resident macrophages play an important role in atheromatous plaque rupture. The macrophage gene expression signature associated with plaque rupture is incompletely defined due to the complex cellular heterogeneity in the plaque. We aimed to characterise differential gene expression in resident plaque macrophages from ruptured and stable human atheromatous lesions. Methods and results We performed genome-wide expression analyses of isolated macrophage-rich regions of stable and ruptured human atherosclerotic plaques. Plaques present in carotid endarterectomy specimens were designated as stable or ruptured using clinical, radiological and histopathological criteria. Macrophage-rich regions were excised from 5 ruptured and 6 stable plaques by laser micro-dissection. Transcriptional profiling was performed using Affymetrix microarrays. The profiles were characteristic of activated macrophages. At a false discovery rate of 10%, 914 genes were differentially expressed between stable and ruptured plaques. The findings were confirmed in fourteen further stable and ruptured samples for a subset of eleven genes with the highest expression differences (p < 0.05). Pathway analysis revealed that components of the PPAR/Adipocytokine signaling pathway were the most significantly upregulated in ruptured compared to stable plaques (p = 5.4 × 10−7). Two key components of the pathway, fatty-acid binding-protein 4 (FABP4) and leptin, showed nine-fold (p = 0.0086) and five-fold (p = 0.0012) greater expression respectively in macrophages from ruptured plaques. Conclusions We found differences in gene expression signatures between macrophages isolated from stable and ruptured human atheromatous plaques. Our findings indicate the involvement of FABP4 and leptin in the progression of atherosclerosis and plaque rupture, and suggest that down-regulation of PPAR/adipocytokine signaling within plaques may have therapeutic potential. PMID:23122912

  6. Plasma Free Fatty Acids, Fatty Acid-binding Protein 4, and Mortality in Older Adults (From the Cardiovascular Health Study)

    PubMed Central

    Miedema, Michael D.; Maziarz, Marlena; Biggs, Mary L.; Zieman, Susan J.; Kizer, Jorge R.; Ix, Joachim H.; Mozaffarian, Dariush; Tracy, Russell P.; Psaty, Bruce M.; Siscovick, David S.; Mukamal, Kenneth J.; Djousse, Luc

    2014-01-01

    Plasma free fatty acids (FFA) are largely derived from adipose tissue. Elevated levels of FFA and fatty acid-binding protein 4 (FABP4), a key cytoplasmic chaperone of fatty acids, have been associated with adverse cardiovascular outcomes but limited data are available on the relation of these biomarkers with cardiovascular and total mortality. We studied 4,707 participants with a mean age of 75 years who had plasma FFA and FABP4 measured in 1992–1993 as part of the Cardiovascular Health Study, an observational cohort of community dwelling older adults. Over a median follow-up of 11.8 years, 3,555 participants died. Cox proportional hazard regression was used to determine the association between FFA, FABP4, and mortality. In fully adjusted models, FFA were associated with dose-dependent significantly higher total mortality (hazard ratio (HR) per standard deviation (SD): 1.14, 95% confidence interval (CI) 1.09–1.18), but FABP4 levels were not (HR 1.04, 95% CI 0.98–1.09). In a cause-specific mortality analysis, higher concentrations of FFA were associated with significantly higher risk of death due to cardiovascular disease, dementia, infection, and respiratory causes, but not cancer or trauma. We did not find evidence of an interaction between FFA and FABP4 (p=0.45), but FABP4 appeared to be associated with total mortality differentially among men and women (HR 1.17 (1.08–1.26) for men, HR 1.02 (0.96–1.07) for women, interaction p-value <0.001). In conclusion, in a cohort of community-dwelling older individuals, elevated plasma concentrations of FFA, but not FABP4, were associated with cardiovascular and non-cardiovascular mortality. PMID:25073566

  7. Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4

    SciTech Connect

    Song, Jun; Ren, Pingping; Zhang, Lin; Wang, Xing Li; Chen, Li; Shen, Ying H.

    2010-02-26

    Objective: The accumulation of lipids in macrophages contributes to the development of atherosclerosis. Strategies to reduce lipid accumulation in macrophages may have therapeutic potential for preventing and treating atherosclerosis and cardiovascular complications. The antidiabetic drug metformin has been reported to reduce lipid accumulation in adipocytes. In this study, we examined the effects of metformin on lipid accumulation in macrophages and investigated the mechanisms involved. Methods and results: We observed that metformin significantly reduced palmitic acid (PA)-induced intracellular lipid accumulation in macrophages. Metformin promoted the expression of carnitine palmitoyltransferase I (CPT-1), while reduced the expression of fatty acid-binding protein 4 (FABP4) which was involved in PA-induced lipid accumulation. Quantitative real-time PCR showed that metformin regulates FABP4 expression at the transcriptional level. We identified forkhead transcription factor FOXO1 as a positive regulator of FABP4 expression. Inhibiting FOXO1 expression with FOXO1 siRNA significantly reduced basal and PA-induced FABP4 expression. Overexpression of wild-type FOXO1 and constitutively active FOXO1 significantly increased FABP4 expression, whereas dominant negative FOXO1 dramatically decreased FABP4 expression. Metformin reduced FABP4 expression by promoting FOXO1 nuclear exclusion and subsequently inhibiting its activity. Conclusions: Taken together, these results suggest that metformin reduces lipid accumulation in macrophages by repressing FOXO1-mediated FABP4 transcription. Thus, metformin may have a protective effect against lipid accumulation in macrophages and may serve as a therapeutic agent for preventing and treating atherosclerosis in metabolic syndrome.

  8. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: a meta-analysis

    PubMed Central

    Sun, Da-Li; Cen, Yun-Yun; Li, Shu-Min; Li, Wei-Ming; Lu, Qi-Ping; Xu, Peng-Yuan

    2016-01-01

    Numerous studies have investigated the utility of serum intestinal fatty-acid binding protein (I-FABP) in differentiating acute intestinal ischemia from acute abdomen. However, the results remain controversial. The aim of this meta-analysis is to determine the overall accuracy of serum I-FABP in the diagnosis of acute intestinal ischemia. Publications addressing the accuracy of serum I-FABP in the diagnosis of ischemic bowel diseases were selected from databases. The values of true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) were extracted or calculated for each study. Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated. The overall diagnostic performance was assessed using a summary receiver operating characteristic curve (SROC) and area under curve (AUC). Nine studies that collectively included 1246 patients met the eligible criteria. The pooled sensitivity, specificity, DOR, PLR, and NLR were 0.80 (95% CI: 0.72–0.86), 0.85 (95% CI: 0.73–0.93), 24 (95% CI: 9–65), 5.5 (95% CI: 2.8–10.8) and 0.23 (95% CI: 0.15–0.35), respectively. The AUC was 0.86 (95% CI: 0.83–0.89). The meta-analysis carried out in this report suggests that the I-FABP may be a useful diagnostic tool to confirm acute intestinal ischemia in acute abdomen, but better-designed trials are still required to confirm our findings. PMID:27681959

  9. Monitoring of urinary L-type fatty acid-binding protein predicts histological severity of acute kidney injury.

    PubMed

    Negishi, Kousuke; Noiri, Eisei; Doi, Kent; Maeda-Mamiya, Rui; Sugaya, Takeshi; Portilla, Didier; Fujita, Toshiro

    2009-04-01

    The present study aimed to evaluate whether levels of urinary L-type fatty acid-binding protein (L-FABP) could be used to monitor histological injury in acute kidney injury (AKI) induced by cis-platinum (CP) injection and ischemia reperfusion (IR). Different degrees of AKI severity were induced by several renal insults (CP dose and ischemia time) in human L-FABP transgenic mice. Renal histological injury scores increased with both CP dose and ischemic time. In CP-induced AKI, urinary L-FABP levels increased exponentially even in the lowest dose group as early as 2 hours, whereas blood urea nitrogen (BUN) levels increased at 48 hours. In IR-induced AKI, BUN levels increased only in the 30-minute ischemia group 24 hours after reperfusion; however, urinary L-FABP levels increased more than 100-fold, even in the 5-minute ischemia group after 1 hour. In both AKI models, urinary L-FABP levels showed a better correlation with final histological injury scores and glomerular filtration rates measured by fluorescein isothiocyanate-labeled inulin injection than with levels of BUN and urinary N-acetyl-D-glucosaminidase, especially at earlier time points. Receiver operating characteristic curve analysis demonstrated that urinary L-FABP was superior to other biomarkers for the detection of significant histological injuries and functional declines. In conclusion, urinary L-FABP levels are better suited to allow the accurate and earlier detection of both histological and functional insults in ischemic and nephrotoxin-induced AKI compared with conventional renal markers.

  10. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity.

    PubMed

    Matsui, Katsuomi; Kamijo-Ikemorif, Atsuko; Sugaya, Takeshi; Yasuda, Takashi; Kimura, Kenjiro

    2011-03-01

    Injection of aristolochic acid (AA) in mice causes AA-induced nephrotoxicity, in which oxidative stress contributes to development of tubulointerstitial damage (TID). Liver-type fatty acid binding protein (L-FABP) is expressed in human proximal tubules and has an endogenous antioxidative function. The renoprotection of renal L-FABP was examined in a model of AA-induced nephrotoxicity. Established human L-FABP (hL-FABP) transgenic (Tg) mice and wild-type (WT) mice were treated with AA for up to 5 days. Mice were sacrificed on days 1, 3, and 5 after the start of AA injection. Although mouse L-FABP was not expressed in proximal tubules of WT mice, hL-FABP was expressed in proximal tubules of Tg mice. The expression of renal hL-FABP was significantly increased in Tg mice administered AA (Tg-AA), compared with the control (saline-treated Tg mice). In WT-AA mice, there was high urinary excretion of N(ε)-(hexanoyl)-lysine, the production of heme oxygenase-1 and receptor for advanced glycation end products increased, and TID was provoked. In contrast, renal hL-FABP in Tg-AA mice suppressed production of N(ε)-(hexanoyl)lysine, heme oxygenase-1, and receptor for advanced glycation end products. Renal dysfunction was significantly milder in Tg-AA mice than in WT-AA mice. The degree of TID was significantly attenuated in Tg-AA mice, compared with WT-AA. In conclusion, renal hL-FABP reduced the oxidative stress in AA-induced nephrotoxicity and attenuated TID.

  11. Associations of a polymorphic AP-2 binding site in the 5'-flanking region of the bovine beta-lactoglobulin gene with milk proteins.

    PubMed

    Kuss, A W; Gogol, J; Geidermann, H

    2003-06-01

    Studies on a polymorphic position (R10) in an Activator-Protein-2 (AP-2) binding site of the bovine beta-Lactoglobulin (beta-Lg) gene promoter region and quantitative traits of individual milk proteins were based on material from 79 German Holstein Friesian (HF) and 61 Simmental (Sm) cows. At least four milk samples per cow were analyzed with alkaline Urea-PAGE in combination with densitometry for quantification of individual milk proteins. The two alleles of the R10 single nucleotide polymorphism (SNP) carry either G or C in position -435 bp of the beta-Lg promoter region. G- and C-alleles were found in Sm with nearly equal frequencies, while in HF the C-allele frequency was higher (0.73) than that of the G-allele. In both breeds, the R10 G-homozygotes had higher (P < 0.001) amounts of beta-Lg secreted per day and proportion of beta-Lg in milk protein compared with the C-homozygotes. A similar association was found for alpha-lactalbumin, whereas the relative proportions and daily secreted amounts of caseins (alphaS1, beta, kappa) showed lower values in beta-Lg R10 G-homozygotes. A positive association (P < 0.001) of R10 CC with milk yield has also been observed and indicates a close proximity of the beta-Lg locus to a candidate gene for this trait. The association between the SNP in the AP-2 binding site of the beta-Lg gene and its gene product can be explained as the result of differences in protein binding activity, and, therefore, allele specific differences in gene expression. Thus, our study clearly links a DNA polymorphism of molecular function very closely with in vivo expression parameters of the same locus.

  12. Sequence Comparison and Phylogeny of Nucleotide Sequence of Coat Protein and Nucleic Acid Binding Protein of a Distinct Isolate of Shallot virus X from India.

    PubMed

    Majumder, S; Baranwal, V K

    2011-06-01

    Shallot virus X (ShVX), a type species in the genus Allexivirus of the family Alfaflexiviridae has been associated with shallot plants in India and other shallot growing countries like Russia, Germany, Netherland, and New Zealand. Coat protein (CP) and nucleic acid binding protein (NB) region of the virus was obtained by reverse transcriptase polymerase chain reaction from scales leaves of shallot bulbs. The partial cDNA contained two open reading frames encoding proteins of molecular weights of 28.66 and 14.18 kDa belonging to Flexi_CP super-family and viral NB super-family, respectively. The percent identity and phylogenetic analysis of amino acid sequences of CP and NB region of the virus associated with shallot indicated that it was a distinct isolate of ShVX.

  13. Sequence Comparison and Phylogeny of Nucleotide Sequence of Coat Protein and Nucleic Acid Binding Protein of a Distinct Isolate of Shallot virus X from India.

    PubMed

    Majumder, S; Baranwal, V K

    2011-06-01

    Shallot virus X (ShVX), a type species in the genus Allexivirus of the family Alfaflexiviridae has been associated with shallot plants in India and other shallot growing countries like Russia, Germany, Netherland, and New Zealand. Coat protein (CP) and nucleic acid binding protein (NB) region of the virus was obtained by reverse transcriptase polymerase chain reaction from scales leaves of shallot bulbs. The partial cDNA contained two open reading frames encoding proteins of molecular weights of 28.66 and 14.18 kDa belonging to Flexi_CP super-family and viral NB super-family, respectively. The percent identity and phylogenetic analysis of amino acid sequences of CP and NB region of the virus associated with shallot indicated that it was a distinct isolate of ShVX. PMID:23637504

  14. Sex Differences in Long Chain Fatty Acid Utilization and Fatty Acid Binding Protein Concentration in Rat Liver

    PubMed Central

    Ockner, Robert K.; Burnett, David A.; Lysenko, Nina; Manning, Joan A.

    1979-01-01

    Female sex and estrogen administration are associated with increased hepatic production of triglyceride-rich lipoproteins; the basis for this has not been fully elucidated. Inasmuch as hepatic lipoprotein production is also influenced by FFA availability and triglyceride biosynthesis, we investigated sex differences in FFA utilization in rat hepatocyte suspensions and in the components of the triglyceride biosynthetic pathway. Isolated adult rat hepatocyte suspensions were incubated with albumin-bound [14C]oleate for up to 15 min. At physiological and low oleate concentrations, cells from females incorporated significantly more 14C into glycerolipids, especially triglycerides, and into oxidation products than did male cells, per milligram cell protein. At 0.44 mM oleate, incorporation into triglycerides in female cells was approximately twice that in male cells. Comparable sex differences were observed in cells from fasted animals and when [14C]-glycerol incorporation was measured. At higher oleate concentrations, i.e., fatty acid:albumin mole ratios in excess of 2:1, these sex differences were no longer demonstrable, suggesting that maximal rates of fatty acid esterification and oxidation were similar in female and male cells. In female and male hepatic microsomes, specific activities of long chain acyl coenzyme A synthetase, phosphatidate phosphohydrolase, and diglyceride acyltransferase were similar, but glycerol-3-phosphate acyltransferase activity was slightly greater in females at certain substrate concentrations. Microsomal incorporation of [14C]oleate into total glycerolipids was not significantly greater in females. In further contrast to intact cells, microsomal incorporation of [14C]oleate into triglycerides, although significantly greater in female microsomes, accounted for only a small fraction of the fatty acid esterified. The binding affinity and stoichiometry of partially purified female hepatic fatty acid binding protein (FABP) were similar to

  15. Elevated Cellular Retinoic Acid Binding Protein-I in Cerebrospinal Fluid of Patients with Hemorrhagic Cerebrovascular Diseases : Preliminary Study

    PubMed Central

    Jeon, Jin Pyeong; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Seung-Ki; Oh, Chang Wan

    2015-01-01

    Objective Elevated cellular retinoic acid binding protein-I (CRABP-I) is thought to be related to the abnormal proliferation and migration of smooth muscle cells (SMCs). Accordingly, a higher CRABP-I level could cause disorganized vessel walls by causing immature SMC phenotypes and altering extracellular matrix proteins which could result in vulnerable arterial walls with inadequate responses to hemodynamic stress. We hypothesized that elevated CRABP-I level in the cerebrospinal fluid (CSF) could be related to subarachnoid hemorrhage (SAH). Moreover, we also extended this hypothesis in patients with vascular malformation according to the presence of hemorrhage. Methods We investigated the CSF of 26 patients : SAH, n=7; unruptured intracranial aneurysm (UIA), n=7; arteriovenous malformation (AVM), n=4; cavernous malformation (CM), n=3; control group, n=5. The optical density of CRABP-I was confirmed by Western blotting and presented as mean±standard error of the measurement. Results CRABP-I in SAH (0.33±0.09) was significantly higher than that in the UIA (0.12±0.01, p=0.033) or control group (0.10±0.01, p=0.012). Hemorrhage presenting AVM (mean 0.45, ranged 0.30-0.59) had a higher CRABP-I level than that in AVM without hemorrhage presentation (mean 0.16, ranged 0.14-0.17). The CRABP-I intensity in CM with hemorrhage was 0.21 and 0.31, and for CM without hemorrhage 0.14. Overall, the hemorrhage presenting group (n=11, 0.34±0.06) showed a significantly higher CRABP-I intensity than that of the non-hemorrhage presenting group (n=10, 0.13±0.01, p=0.001). Conclusion The results suggest that elevated CRABP-I in the CSF could be related with aneurysm rupture. Additionally, a higher CRABP-I level seems to be associated with hemorrhage development in vascular malformation. PMID:25733988

  16. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51

    PubMed Central

    Kovalenko, Oleg V.; Wiese, Claudia; Schild, David

    2006-01-01

    Many interacting proteins regulate and/or assist the activities of RAD51, a recombinase which plays a critical role in both DNA repair and meiotic recombination. Yeast two-hybrid screening of a human testis cDNA library revealed a new protein, RAD51AP2 (RAD51 Associated Protein 2), that interacts strongly with RAD51. A full-length cDNA clone predicts a novel vertebrate-specific protein of 1159 residues, and the RAD51AP2 transcript was observed only in meiotic tissue (i.e. adult testis and fetal ovary), suggesting a meiotic-specific function for RAD51AP2. In HEK293 cells the interaction of RAD51 with an ectopically-expressed recombinant large fragment of RAD51AP2 requires the C-terminal 57 residues of RAD51AP2. This RAD51-binding region shows 81% homology to the C-terminus of RAD51AP1/PIR51, an otherwise totally unrelated RAD51-binding partner that is ubiquitously expressed. Analyses using truncations and point mutations in both RAD51AP1 and RAD51AP2 demonstrate that these proteins use the same structural motif for RAD51 binding. RAD54 shares some homology with this RAD51-binding motif, but this homologous region plays only an accessory role to the adjacent main RAD51-interacting region, which has been narrowed here to 40 amino acids. A novel protein, RAD51AP2, has been discovered that interacts with RAD51 through a C-terminal motif also present in RAD51AP1. PMID:16990250

  17. Deficiency of adipocyte fatty-acid-binding protein alleviates myocardial ischaemia/reperfusion injury and diabetes-induced cardiac dysfunction.

    PubMed

    Zhou, Mi; Bao, Yuqian; Li, Haobo; Pan, Yong; Shu, Lingling; Xia, Zhengyuan; Wu, Donghai; Lam, Karen S L; Vanhoutte, Paul M; Xu, Aimin; Jia, Weiping; Hoo, Ruby L-C

    2015-10-01

    Clinical evidence shows that circulating levels of adipocyte fatty-acid-binding protein (A-FABP) are elevated in patients with diabetes and closely associated with ischaemic heart disease. Patients with diabetes are more susceptible to myocardial ischaemia/reperfusion (MI/R) injury. The experiments in the present study investigated the role of A-FABP in MI/R injury with or without diabetes. Non-diabetic and diabetic (streptozotocin-induced) A-FABP knockout and wild-type mice were subjected to MI/R or sham intervention. After MI/R, A-FABP knockout mice exhibited reductions in myocardial infarct size, apoptotic index, oxidative and nitrative stress, and inflammation. These reductions were accompanied by an improved left ventricular function compared with the relative controls under non-diabetic or diabetic conditions. After diabetes induction, A-FABP knockout mice exhibited a preserved cardiac function compared with that in wild-type mice. Endothelial cells, but not cardiomyocytes, were identified as the most likely source of cardiac A-FABP. Cardiac and circulating A-FABP levels were significantly increased in mice with diabetes or MI/R. Diabetes-induced superoxide anion production was significantly elevated in wild-type mice, but diminished in A-FABP knockout mice, and this elevation contributed to the exaggeration of MI/R-induced cardiac injury. Phosphorylation of endothelial nitric oxide synthase (eNOS) and production of nitric oxide (NO) were enhanced in both diabetic and non-diabetic A-FABP knockout mice after MI/R injury, but diminished in wild-type mice. The beneficial effects of A-FABP deficiency on MI/R injury were abolished by the NOS inhibitor N(G)-nitro-L-arginine methyl ester. Thus, A-FABP deficiency protects mice against MI/R-induced and/or diabetes-induced cardiac injury at least partially through activation of the eNOS/NO pathway and reduction in superoxide anion production.

  18. Urinary liver-type fatty acid-binding protein in septic shock: effect of polymyxin B-immobilized fiber hemoperfusion.

    PubMed

    Nakamura, Tsukasa; Sugaya, Takeshi; Koide, Hikaru

    2009-05-01

    We aimed to determine retrospectively whether urinary liver-type fatty acid-binding protein (L-FABP) levels are altered in patients with septic shock or severe sepsis without shock and whether polymyxin B-immobilized fiber (PMX-F) hemoperfusion affects these levels. Forty patients with septic shock, 20 patients with severe sepsis without shock, 20 acute renal failure (ARF) patients without septic shock (mean serum creatinine, 2.8 mg/dL), and 30 healthy volunteers were included in this study. Polymyxin B-immobilized fiber hemoperfusion was performed twice in 40 patients. In addition, 10 patients with septic shock without PMX-F treatment (conventional treatment) were also enrolled in this study. Their families did not choose PMX-F treatment. Thus, their informed consents to perform PMX-F treatment were not obtained. Septic shock or severe sepsis was defined by the American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference Committee. Patients with septic shock were eligible for inclusion in the study if they had a definable source of infection and/or positive blood cultures. Patients with cardiogenic or hemorrhagic shock were excluded from the study. The patients were not randomly allocated to receive PMX-F treatment. Urinary and serum L-FABP levels were measured by enzyme-linked immunosorbent assay method. Plasma endotoxin levels in patients with septic shock were significantly higher than those in patients with severe sepsis (P < 0.05), patients with ARF (P < 0.001), and healthy subjects (P < 0.001). Urinary L-FABP levels in patients with septic shock were significantly higher than those in patients with severe sepsis without shock (P < 0.001), patients with ARF (P < 0.001), and healthy subjects (P < 0.001), whereas serum L-FABP levels showed no significant differences between patients with septic shock, patients with severe sepsis, patients with ARF, and healthy subjects. Urinary L-FABP was not correlated with serum L-FABP. Twenty

  19. Characterization of the sources of protein-ligand affinity: 1-sulfonato-8-(1')anilinonaphthalene binding to intestinal fatty acid binding protein.

    PubMed Central

    Kirk, W R; Kurian, E; Prendergast, F G

    1996-01-01

    1-Sulfonato-8-(1')anilinonaphthalene (1,8-ANS) was employed as a fluorescent probe of the fatty acid binding site of recombinant rat intestinal fatty acid binding protein (1-FABP). The enhancement of fluorescence upon binding allowed direct determination of binding affinity by fluorescence titration experiments, and measurement of the effects on that affinity of temperature, pH, and ionic strength. Solvent isotope effects were also determined. These data were compared to results from isothermal titration calorimetry. We obtained values for the enthalpy and entropy of this interaction at a variety of temperatures, and hence determined the change in heat capacity of the system consequent upon binding. The ANS-1-FABP is enthalpically driven; above approximately 14 degrees C it is entropically opposed, but below this temperature the entropy makes a positive contribution to the binding. The changes we observe in both enthalpy and entropy of binding with temperature can be derived from the change in heat capacity upon binding by integration, which demonstrates the internal consistency of our results. Bound ANS is displaced by fatty acids and can itself displace fatty acids bound to I-FABP. The binding site for ANS appears to be inside the solvent-containing cavity observed in the x-ray crystal structure, the same cavity occupied by fatty acid. From the fluorescence spectrum and from an inversion of the Debye-Hueckel formula for the activity coefficients as a function of added salt, we inferred that this cavity is fairly polar in character, which is in keeping with inferences drawn from the x-ray structure. The binding affinity of ANS is considered to be a consequence of both electrostatic and conditional hydrophobic effects. We speculate that the observed change in heat capacity is produced mainly by the displacement of strongly hydrogen-bonded waters from the protein cavity. PMID:8770188

  20. Characterization of a Single-Stranded DNA-Binding-Like Protein from Nanoarchaeum equitans—A Nucleic Acid Binding Protein with Broad Substrate Specificity

    PubMed Central

    Olszewski, Marcin; Balsewicz, Jan; Nowak, Marta; Maciejewska, Natalia; Cyranka-Czaja, Anna; Zalewska-Piątek, Beata; Piątek, Rafał; Kur, Józef

    2015-01-01

    Background SSB (single-stranded DNA-binding) proteins play an essential role in all living cells and viruses, as they are involved in processes connected with ssDNA metabolism. There has recently been an increasing interest in SSBs, since they can be applied in molecular biology techniques and analytical methods. Nanoarchaeum equitans, the only known representative of Archaea phylum Nanoarchaeota, is a hyperthermophilic, nanosized, obligatory parasite/symbiont of Ignicoccus hospitalis. Results This paper reports on the ssb-like gene cloning, gene expression and characterization of a novel nucleic acid binding protein from Nanoarchaeum equitans archaeon (NeqSSB-like protein). This protein consists of 243 amino acid residues and one OB fold per monomer. It is biologically active as a monomer like as SSBs from some viruses. The NeqSSB-like protein displays a low sequence similarity to the Escherichia coli SSB, namely 10% identity and 29% similarity, and is the most similar to the Sulfolobus solfataricus SSB (14% identity and 32% similarity). The NeqSSB-like protein binds to ssDNA, although it can also bind mRNA and, surprisingly, various dsDNA forms, with no structure-dependent preferences as evidenced by gel mobility shift assays. The size of the ssDNA binding site, which was estimated using fluorescence spectroscopy, is 7±1 nt. No salt-dependent binding mode transition was observed. NeqSSB-like protein probably utilizes a different model for ssDNA binding than the SSB proteins studied so far. This protein is highly thermostable; the half-life of the ssDNA binding activity is 5 min at 100°C and melting temperature (Tm) is 100.2°C as shown by differential scanning calorimetry (DSC) analysis. Conclusion NeqSSB-like protein is a novel highly thermostable protein which possesses a unique broad substrate specificity and is able to bind all types of nucleic acids. PMID:25973760

  1. Deficiency in pulmonary surfactant proteins in mice with fatty acid binding protein 4-Cre-mediated knockout of the tuberous sclerosis complex 1 gene.

    PubMed

    Xiang, Xinxin; Yuan, Fang; Zhao, Jing; Li, Ziru; Wang, Xian; Guan, Youfei; Tang, Chaoshu; Sun, Guang; Li, Yin; Zhang, Weizhen

    2013-03-01

    Tuberous sclerosis complex 1 (TSC1) forms a heterodimmer with tuberous sclerosis complex 2, to inhibit signalling by the mammalian target of rapamycin (mTOR) complex 1 (mTORC1). The mTORC1 stimulates cell growth by promoting anabolic cellular processes, such as gene transcription and protein translation, in response to growth factors and nutrient signals. Originally designed to test the role of TSC1 in adipocyte function, mice in which the gene for TSC1 was specifically deleted by the fatty acid binding protein 4 (FABP4)-Cre (Fabp4-Tsc1cKO mice) died prematurely within 48 h after birth. The Fabp4-Tsc1cKO mouse revealed a much smaller phenotype relative to the wild-type littermates. Maternal administration of rapamycin, a classical mTOR inhibitor, significantly increased the survival time of Fabp4-Tsc1cKO mice for up to 23 days. Both macroscopic and microscopic haemorrhages were observed in the lungs of Fabp4-Tsc1cKO mice, while other tissues showed no significant changes. Levels of surfactant proteins A and B demonstrated a significant decrease in the Fabp4-Tsc1cKO mice, which was rescued by maternal injection of rapamycin. Co-localization of FABP4 or TSC1 with surfactant protein B was also detected in neonatal pulmonary tissues. Our study suggests that TSC1-mTORC1 may be critical for the synthesis of surfactant proteins A and B.

  2. The Escherichia coli uropathogenic-specific-protein-associated immunity protein 3 (Imu3) has nucleic acid -binding activity

    PubMed Central

    2014-01-01

    Background The Escherichia coli uropathogenic-specific protein (Usp) is a bacteriocin-like genotoxin, active against mammalian cells and associated with E. coli strains that provoke pyelonephritis, prostatitis and bacteraemia. Usp is encoded by a small pathogenicity island with three downstream small open reading frames (Imu1-3) that are believed to provide immunity to the producer. To prevent host suicide, colicins, bacteriocins of E. coli, form tight complexes with their cognate immunity proteins. Colicin – immunity protein complexes are among the strongest protein complexes known. Here, the Usp associated immunity protein 3 (Imu3) was partially characterized to gain insight into its role and mechanism of activity. Results Isolation and partial characterisation of the Usp-associated immunity protein-3 (Imu3) revealed that, while Usp and Imu3 do not form a high affinity complex, Imu3 exhibits DNA and RNA binding activity. Imu3 was also shown to protect DNA against degradation by colicin E7. Conclusions Our data infer that nonspecific DNA binding of the Imu3 immunity protein, prevents suicide of E. coli producing the genotoxin Usp. PMID:24472116

  3. /sup 113/Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7

    SciTech Connect

    South, T.L.; Kim, B.; Summers, M.F.

    1989-01-04

    The Zn/sup 2+/ and Cd/sup 2+/ adducts with the 18-residue peptide comprising the amino acid sequence of the first finger (residues 13 through 30) of retroviral nucleic acid binding proteins p7 from HIV-1 (the causative agent of AIDS) have been prepared. /sup 1/H NMR data indicate that the metal adducts are 1:1 compounds that are stable in aqueous solutions for at least a month. The /sup 113/Cd NMR spectral results for the adduct are presented and analyzed. 26 references, 3 figures.

  4. N-Benzyl-indolo carboxylic acids: Design and synthesis of potent and selective adipocyte fatty-acid binding protein (A-FABP) inhibitors.

    PubMed

    Barf, Tjeerd; Lehmann, Fredrik; Hammer, Kristin; Haile, Saba; Axen, Eva; Medina, Carmen; Uppenberg, Jonas; Svensson, Stefan; Rondahl, Lena; Lundbäck, Thomas

    2009-03-15

    Small molecule inhibitors of adipocyte fatty-acid binding protein (A-FABP) have gained renewed interest following the recent publication of pharmacologically beneficial effects of such inhibitors. Despite the potential utility of selective A-FABP inhibitors within the fields of metabolic disease, inflammation and atherosclerosis, there are few examples of useful A-FABP inhibitors in the public domain. Herein, we describe the optimization of N-benzyl-tetrahydrocarbazole derivatives through the use of co-crystal structure guided medicinal chemistry efforts. This led to the identification of a potent and selective class of A-FABP inhibitors as illustrated by N-benzyl-hexahydrocyclohepta[b]indole 30. PMID:19217286

  5. AP-2 Is the Crucial Clathrin Adaptor Protein for CD4 Downmodulation by HIV-1 Nef in Infected Primary CD4+ T Cells.

    PubMed

    Gondim, Marcos Vinicius; Wiltzer-Bach, Linda; Maurer, Brigitte; Banning, Carina; Arganaraz, Enrique; Schindler, Michael

    2015-12-01

    HIV-1 Nef-mediated CD4 downmodulation involves various host factors. We investigated the importance of AP-1, AP-2, AP-3, V1H-ATPase, β-COP, and ACOT8 for CD4 downmodulation in HIV-1-infected short hairpin RNA (shRNA)-expressing CD4(+) T cells and characterized direct interaction with Nef by Förster resonance energy transfer (FRET). Binding of lentiviral Nefs to CD4 and AP-2 was conserved, and only AP-2 knockdown impaired Nef-mediated CD4 downmodulation from primary T cells. Altogether, among the factors tested, AP-2 is the most important player for Nef-mediated CD4 downmodulation.

  6. The fatty acid binding protein 6 gene (Fabp6) is expressed in murine granulosa cells and is involved in ovulatory response to superstimulation

    PubMed Central

    DUGGAVATHI, Raj; SIDDAPPA, Dayananda; SCHUERMANN, Yasmin; PANSERA, Melissa; MENARD, Isabelle J.; PRASLICKOVA, Dana; AGELLON, Luis B.

    2015-01-01

    The fatty acid binding protein 6 (Fabp6) is commonly regarded as a bile acid binding protein found in the distal portion of the small intestine and has been shown to be important in maintaining bile acid homeostasis. Previous studies have also reported the presence of Fabp6 in human, rat and fish ovaries, but the significance of Fabp6 in this organ is largely unknown. Therefore, we surveyed murine ovaries for Fabp6 gene expression and evaluated its role in ovarian function using mice with whole body Fabp6 deficiency. Here we show that the Fabp6 gene is expressed in granulosa and luteal cells of the mouse ovary. Treatment with gonadotropins stimulated Fabp6 gene expression in large antral follicles. The ovulation rate in response to superovulatory treatment in Fabp6-deficient mice was markedly decreased compared to wildtype (C57BL/6) mice. The results of this study suggest that expression of Fabp6 gene in granulosa cells serves an important and previously unrecognized function in fertility. PMID:25754072

  7. Involvement of AP-2 in regulation of the R-FABP gene in the developing chick retina.

    PubMed Central

    Bisgrove, D A; Monckton, E A; Godbout, R

    1997-01-01

    Little is known regarding the molecular pathways that underlie the retinal maturation process. We are studying the regulation of the retinal fatty-acid-binding protein (R-FABP) gene, highly expressed in retinal precursor cells, to identify DNA regulatory elements and transcriptional factors involved in retinal development. Although the upstream sequence of the R-FABP gene is extremely GC rich, CpG methylation in this region is not implicated in the regulation of this gene because the 5' flanking DNA remains unmethylated with tissue differentiation when there is a dramatic decrease in R-FABP transcript levels. Using a combination of DNase I hypersensitivity experiments, gel shift assays, and DNase I footprinting, we have found three sites of DNA-protein interaction within 205 bp of 5' flanking DNA in the undifferentiated retina and four sites in the differentiated retina. DNA transfection analysis indicates that the first two footprints located within 150 bp of 5' flanking DNA are required for high levels of transcription in primary undifferentiated retinal cultures. The first footprint includes a putative TATA box and Spl binding sites while the second footprint contains a consensus AP-2 DNA binding site. Supershift experiments using antibodies to AP-2 and methylation interference experiments indicate that an AP-2-like transcription factor present in both late-proliferative-stage retina and differentiated retina binds to the upstream region of the R-FABP gene. A combination of data including the expression profile of AP-2 during retinal development and DNA transfection analysis using constructs mutated at critical residues within the AP-2 binding site suggests that AP-2 is a repressor of R-FABP transcription. PMID:9315651

  8. An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 'adapter adapter' protein m04/gp34 antagonizes virus evasion of natural killer cells.

    PubMed

    Fink, Annette; Blaum, Franziska; Babic Cac, Marina; Ebert, Stefan; Lemmermann, Niels A W; Reddehase, Matthias J

    2015-06-01

    Viruses have evolved proteins that bind immunologically relevant cargo molecules at the cell surface for their downmodulation by internalization. Via a tyrosine-based sorting motif YXXΦ in their cytoplasmic tails, they link the bound cargo to the cellular adapter protein-2 (AP2), thereby sorting it into clathrin-triskelion-coated pits for accelerated endocytosis. Downmodulation of CD4 molecules by lentiviral protein NEF represents the most prominent example. Based on connecting cargo to cellular adapter molecules, such specialized viral proteins have been referred to as 'connectors' or 'adapter adapters.' Murine cytomegalovirus glycoprotein m04/gp34 binds stably to MHC class-I (MHC-I) molecules and suspiciously carries a canonical YXXΦ endocytosis motif YRRF in its cytoplasmic tail. Disconnection from AP2 by motif mutation ARRF should retain m04-MHC-I complexes at the cell surface and result in an enhanced silencing of natural killer (NK) cells, which recognize them via inhibitory receptors. We have tested this prediction with a recombinant virus in which the AP2 motif is selectively destroyed by point mutation Y248A, and compared this with the deletion of the complete protein in a Δm04 mutant. Phenotypes were antithetical in that loss of AP2-binding enhanced NK cell silencing, whereas absence of m04-MHC-I released them from silencing. We thus conclude that AP2-binding antagonizes NK cell silencing by enhancing endocytosis of the inhibitory ligand m04-MHC-I. Based on a screen for tyrosine-based endocytic motifs in cytoplasmic tail sequences, we propose here the new hypothesis that most proteins of the m02-m16 gene family serve as 'adapter adapters,' each selecting its specific cell surface cargo for clathrin-assisted internalization.

  9. The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height.

    PubMed

    Luo, Huolin; Chen, Sumei; Jiang, Jiafu; Teng, Nianjun; Chen, Yu; Chen, Fadi

    2012-07-01

    APETALA2 (AP2) genes are ancient and widely distributed among the seed plants, and play an important role during the plant life cycle, acting as key regulators of many developmental processes. In this study, an AP2 homologue, NsAP2, was characterized from water lily (Nymphaea sp. cv. 'Yellow Prince') and is believed to be rather primitive in the evolution of the angiosperms. In situ RNA hybridization showed that NsAP2 transcript was present in all regions of the floral primordium, but had the highest level in the emerging floral organ primordium. After the differentiation of floral organs, NsAP2 was strongly expressed in sepals and petals, while low levels were found in stamens and carpels. The NsAP2 protein was suggested to be localized in the cell nucleus by onion transient expression experiment. Overexpression of NsAP2 in Arabidopsis led to more petal numbers, and Arabidopsis plants expressing NsAP2 exhibited higher plant height, which may be a result of down-regulated expression of GA2ox2 and GA2ox7. Our results indicated that the NsAP2 protein may function in flower organogenesis in water lily, and it is a promising gene for plant height improvement.

  10. The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height.

    PubMed

    Luo, Huolin; Chen, Sumei; Jiang, Jiafu; Teng, Nianjun; Chen, Yu; Chen, Fadi

    2012-07-01

    APETALA2 (AP2) genes are ancient and widely distributed among the seed plants, and play an important role during the plant life cycle, acting as key regulators of many developmental processes. In this study, an AP2 homologue, NsAP2, was characterized from water lily (Nymphaea sp. cv. 'Yellow Prince') and is believed to be rather primitive in the evolution of the angiosperms. In situ RNA hybridization showed that NsAP2 transcript was present in all regions of the floral primordium, but had the highest level in the emerging floral organ primordium. After the differentiation of floral organs, NsAP2 was strongly expressed in sepals and petals, while low levels were found in stamens and carpels. The NsAP2 protein was suggested to be localized in the cell nucleus by onion transient expression experiment. Overexpression of NsAP2 in Arabidopsis led to more petal numbers, and Arabidopsis plants expressing NsAP2 exhibited higher plant height, which may be a result of down-regulated expression of GA2ox2 and GA2ox7. Our results indicated that the NsAP2 protein may function in flower organogenesis in water lily, and it is a promising gene for plant height improvement. PMID:22591856

  11. Cellular nucleic acid binding protein binds G-rich single-stranded nucleic acids and may function as a nucleic acid chaperone.

    PubMed

    Armas, Pablo; Nasif, Sofía; Calcaterra, Nora B

    2008-02-15

    Cellular nucleic acid binding protein (CNBP) is a small single-stranded nucleic acid binding protein made of seven Zn knuckles and an Arg-Gly rich box. CNBP is strikingly conserved among vertebrates and was reported to play broad-spectrum functions in eukaryotic cells biology. Neither its biological function nor its mechanisms of action were elucidated yet. The main goal of this work was to gain further insights into the CNBP biochemical and molecular features. We studied Bufo arenarum CNBP (bCNBP) binding to single-stranded nucleic acid probes representing the main reported CNBP putative targets. We report that, although bCNBP is able to bind RNA and single-stranded DNA (ssDNA) probes in vitro, it binds RNA as a preformed dimer whereas both monomer and dimer are able to bind to ssDNA. A systematic analysis of variant probes shows that the preferred bCNBP targets contain unpaired guanosine-rich stretches. These data expand the knowledge about CNBP binding stoichiometry and begins to dissect the main features of CNBP nucleic acid targets. Besides, we show that bCNBP presents a highly disordered predicted structure and promotes the annealing and melting of nucleic acids in vitro. These features are typical of proteins that function as nucleic acid chaperones. Based on these data, we propose that CNBP may function as a nucleic acid chaperone through binding, remodeling, and stabilizing nucleic acids secondary structures. This novel CNBP biochemical activity broadens the field of study about its biological function and may be the basis to understand the diverse ways in which CNBP controls gene expression.

  12. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues

    PubMed Central

    Myers, Jennifer S.; von Lersner, Ariana K.; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  13. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    PubMed

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  14. Proteomic Upregulation of Fatty Acid Synthase and Fatty Acid Binding Protein 5 and Identification of Cancer- and Race-Specific Pathway Associations in Human Prostate Cancer Tissues.

    PubMed

    Myers, Jennifer S; von Lersner, Ariana K; Sang, Qing-Xiang Amy

    2016-01-01

    Protein profiling studies of prostate cancer have been widely used to characterize molecular differences between diseased and non-diseased tissues. When combined with pathway analysis, profiling approaches are able to identify molecular mechanisms of prostate cancer, group patients by cancer subtype, and predict prognosis. This strategy can also be implemented to study prostate cancer in very specific populations, such as African Americans who have higher rates of prostate cancer incidence and mortality than other racial groups in the United States. In this study, age-, stage-, and Gleason score-matched prostate tumor specimen from African American and Caucasian American men, along with non-malignant adjacent prostate tissue from these same patients, were compared. Protein expression changes and altered pathway associations were identified in prostate cancer generally and in African American prostate cancer specifically. In comparing tumor to non-malignant samples, 45 proteins were significantly cancer-associated and 3 proteins were significantly downregulated in tumor samples. Notably, fatty acid synthase (FASN) and epidermal fatty acid-binding protein (FABP5) were upregulated in human prostate cancer tissues, consistent with their known functions in prostate cancer progression. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3) was also upregulated in tumor samples. The Metastasis Associated Protein 3 (MTA3) pathway was significantly enriched in tumor samples compared to non-malignant samples. While the current experiment was unable to detect statistically significant differences in protein expression between African American and Caucasian American samples, differences in overrepresentation and pathway enrichment were found. Structural components (Cytoskeletal Proteins and Extracellular Matrix Protein protein classes, and Biological Adhesion Gene Ontology (GO) annotation) were overrepresented in African American but not Caucasian American tumors. Additionally, 5

  15. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  16. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGES

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  17. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  18. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  19. Time course characterization of serum cardiac troponins, heart fatty acid-binding protein, and morphologic findings with isoproterenol-induced myocardial injury in the rat.

    PubMed

    Clements, Peter; Brady, Sally; York, Malcolm; Berridge, Brian; Mikaelian, Igor; Nicklaus, Rosemary; Gandhi, Mitul; Roman, Ian; Stamp, Clare; Davies, Dai; McGill, Paul; Williams, Thomas; Pettit, Syril; Walker, Dana; Turton, John

    2010-08-01

    We investigated the kinetics of circulating biomarker elevation, specifically correlated with morphology in acute myocardial injury. Male Hanover Wistar rats underwent biomarker and morphologic cardiac evaluation at 0.5 to seventy-two hours after a single subcutaneous isoproterenol administration (100 or 4000 microg/kg). Dose-dependent elevations of serum cardiac troponins I and T (cTnI, cTnT), and heart fatty acid-binding protein (H-FABP) occurred from 0.5 hour, peaked at two to three hours, and declined to baseline by twelve hours (H-FABP) or forty-eight to seventy-two hours (Serum cTns). They were more sensitive in detecting cardiomyocyte damage than other serum biomarkers. The Access 2 platform, an automated chemiluminescence analyzer (Beckman Coulter), showed the greatest cTnI fold-changes and low range sensitivity. Myocardial injury was detected morphologically from 0.5 hour, correlating well with loss of cTnI immunoreactivity and serum biomarker elevation at early time points. Ultrastructurally, there was no evidence of cardiomyocyte death at 0.5 hour. After three hours, a clear temporal disconnect occurred: lesion scores increased with declining cTnI, cTnT, and H-FABP values. Serum cTns are sensitive and specific markers for detecting acute/active cardiomyocyte injury in this rat model. Heart fatty acid-binding protein is a good early marker but is less sensitive and nonspecific. Release of these biomarkers begins early in myocardial injury, prior to necrosis. Assessment of cTn merits increased consideration for routine screening of acute/ongoing cardiomyocyte injury in rat toxicity studies.

  20. Liver fatty acid-binding protein (L-Fabp) modifies intestinal fatty acid composition and adenoma formation in ApcMin/+ mice.

    PubMed

    Dharmarajan, Sekhar; Newberry, Elizabeth P; Montenegro, Grace; Nalbantoglu, Ilke; Davis, Victoria R; Clanahan, Michael J; Blanc, Valerie; Xie, Yan; Luo, Jianyang; Fleshman, James W; Kennedy, Susan; Davidson, Nicholas O

    2013-10-01

    Evidence suggests a relationship between dietary fat intake, obesity, and colorectal cancer, implying a role for fatty acid metabolism in intestinal tumorigenesis that is incompletely understood. Liver fatty acid-binding protein (L-Fabp), a dominant intestinal fatty acid-binding protein, regulates intestinal fatty acid trafficking and metabolism, and L-Fabp deletion attenuates diet-induced obesity. Here, we examined whether changes in intestinal fatty acid metabolism following L-Fabp deletion modify adenoma development in Apc(Min)(/+) mice. Compound L-Fabp(-/-)Apc(Min)(/+) mice were generated and fed a 10% fat diet balanced equally between saturated, monounsaturated, and polyunsaturated fat. L-Fabp(-/-)Apc(Min)(/+) mice displayed significant reductions in adenoma number and total polyp area compared with Apc(Min)(/+)controls, reflecting a significant shift in distribution toward smaller polyps. Adenomas from L-Fabp(-/-)Apc(Min)(/+) mice exhibited reductions in cellular proliferation, high-grade dysplasia, and nuclear β-catenin translocation. Intestinal fatty acid content was increased in L-Fabp(-/-)Apc(Min)(/+) mice, and lipidomic profiling of intestinal mucosa revealed significant shifts to polyunsaturated fatty acid species with reduced saturated fatty acid species. L-Fabp(-/-)Apc(Min)(/+) mice also showed corresponding changes in mRNA expression of enzymes involved in fatty acid elongation and desaturation. Furthermore, adenomas from L-Fabp(-/-)Apc(Min)(/+) mice displayed significant reductions in mRNA abundance of nuclear hormone receptors involved in cellular proliferation and in enzymes involved in lipogenesis. These findings collectively implicate L-Fabp as an important genetic modifier of intestinal tumorigenesis, and identify fatty acid trafficking and metabolic compartmentalization as an important pathway linking dietary fat intake, obesity, and intestinal tumor formation.

  1. Genome-Wide Identification of the Target Genes of AP2-O, a Plasmodium AP2-Family Transcription Factor

    PubMed Central

    Kaneko, Izumi; Iwanaga, Shiroh; Kato, Tomomi; Kobayashi, Issei; Yuda, Masao

    2015-01-01

    Stage-specific transcription is a fundamental biological process in the life cycle of the Plasmodium parasite. Proteins containing the AP2 DNA-binding domain are responsible for stage-specific transcriptional regulation and belong to the only known family of transcription factors in Plasmodium parasites. Comprehensive identification of their target genes will advance our understanding of the molecular basis of stage-specific transcriptional regulation and stage-specific parasite development. AP2-O is an AP2 family transcription factor that is expressed in the mosquito midgut-invading stage, called the ookinete, and is essential for normal morphogenesis of this stage. In this study, we identified the genome-wide target genes of AP2-O by chromatin immunoprecipitation-sequencing and elucidate how this AP2 family transcription factor contributes to the formation of this motile stage. The analysis revealed that AP2-O binds specifically to the upstream genomic regions of more than 500 genes, suggesting that approximately 10% of the parasite genome is directly regulated by AP2-O. These genes are involved in distinct biological processes such as morphogenesis, locomotion, midgut penetration, protection against mosquito immunity and preparation for subsequent oocyst development. This direct and global regulation by AP2-O provides a model for gene regulation in Plasmodium parasites and may explain how these parasites manage to control their complex life cycle using a small number of sequence-specific AP2 transcription factors. PMID:26018192

  2. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2014-05-01

    The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands.

  3. Structural Stability of Burkholderia cenocepacia Biofilms Is Reliant on eDNA Structure and Presence of a Bacterial Nucleic Acid Binding Protein

    PubMed Central

    Novotny, Laura A.; Amer, Amal O.; Brockson, M. Elizabeth; Goodman, Steven D.; Bakaletz, Lauren O.

    2013-01-01

    Cystic fibrosis (CF) is the most common lethal inherited genetic disorder affection Caucasians. Even with medical advances, CF is life-shortening with patients typically surviving only to age 38. Infection of the CF lung by Burkholderia cenocepacia presents exceptional challenges to medical management of these patients as clinically this microbe is resistant to virtually all antibiotics, is highly transmissible and infection of CF patients with this microbe renders them ineligible for lung transplant, often the last lifesaving option. Here we have targeted two abundant components of the B. cenocepacia biofilm for immune intervention: extracellular DNA and DNABII proteins, the latter of which are bacterial nucleic acid binding proteins. Treatment of B. cenocepacia biofilms with antiserum directed at one of these DNABII proteins (integration host factor or IHF) resulted in significant disruption of the biofilm. Moreover, when anti-IHF mediated destabilization of a B. cenocepacia biofilm was combined with exposure to traditional antibiotics, B. cenocepacia resident within the biofilm and thereby typically highly resistant to the action of antibiotics, were now rendered susceptible to killing. Pre-incubation of B. cenocepacia with anti-IHF serum prior to exposure to murine CF macrophages, which are normally unable to effectively degrade ingested B. cenocepacia, resulted in a statistically significant increase in killing of phagocytized B. cenocepacia. Collectively, these findings support further development of strategies that target DNABII proteins as a novel approach for treatment of CF patients, particularly those whose lungs are infected with B. cenocepacia. PMID:23799151

  4. Regulation of fatty acid binding proteins by hypoxia inducible factors 1α and 2α in the placenta: relevance to pre-eclampsia.

    PubMed

    Jadoon, Ayesha; Cunningham, Phil; McDermott, Lindsay C

    2015-02-01

    Pre-eclampsia is characterized by placental hypoxia and dyslipidemia. Arachidonic and docosahexanoic acids are essential maternal nutrients for fetal development. They are transported via placental trophoblast cells by membrane and cytosolic fatty acid binding proteins. Others report the expressions of these proteins which are increased in hypoxic trophoblasts. Using bioinformatics, BeWo cells, reporter assays, quantitative real-time PCR and immunoblotting we tested the hypothesis that hypoxia inducible factors 1α (HIF-1α) and/or 2α (HIF-2α) regulate the expressions of FABP1, FABP3, FABP4 and FATP2 proteins. Three hypoxia responsive elements (HRE) were identified in FABP1 which cumulatively responded strongly to HIF-1α and weakly to HIF-2α. FABP3 expression partially responded to HIF-1α. Two putative HRE were validated in FABP4 both of which responded weakly to HIF-1α and HIF-2α. FATP2 protein expression reacted positively to hypoxia. Thus, fetal essential fatty acid supply via the placenta is protected under hypoxia. It will be interesting to determine if our findings are replicated in human pre-eclamptic placenta. PMID:25305177

  5. Essential role of an activator protein-2 (AP-2)/specificity protein 1 (Sp1) cluster in the UVB-mediated induction of the human vascular endothelial growth factor in HaCaT keratinocytes.

    PubMed Central

    Brenneisen, Peter; Blaudschun, Ralf; Gille, Jens; Schneider, Lars; Hinrichs, Ralf; Wlaschek, Meinhard; Eming, Sabine; Scharffetter-Kochanek, Karin

    2003-01-01

    Chronic sun exposure of the skin has long been postulated to enhance cutaneous angiogenesis, resulting in highly vascularized skin cancers. As the UVB component of sunlight is a major contributor to photocarcinogenesis, we aimed to explore the effects of UVB radiation on vascular endothelial growth factor (VEGF) gene expression, using the immortalized keratinocyte cell line HaCaT as a model for transformed premalignant epithelial cells. In the present paper, we studied the molecular mechanism of UVB-induced VEGF providing a major angiogenic activity in tumour progression and invasion. After 12-24 h of UVB irradiation, a 2.4- to 2.7-fold increase in endogenous VEGF protein level was measured, correlating with an up to 2.5-fold induction of promoter-based reporter gene constructs of VEGF. Furthermore, we identified a GC-rich UVB-responsive region between -87 and -65 bp of the VEGF promoter. In electrophoretic mobility-shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional UVB-inducible protein complex distinct from Sp1 protein. The transcription factor AP-2 (activator protein-2) was detected as a component of the UVB-inducible protein complex. The critical role of the AP-2/Sp1 (specificity protein 1) cluster was supported by demonstration of a significant reduction of UVB-mediated promoter activity upon deletion of this recognition site. The specificity of this region for UVB irradiation was demonstrated using PMA, which increased VEGF activity in HaCaT cells after transient transfection of the deleted promoter construct. In conclusion, our data clarified regulatory mechanisms of UVB-dependent VEGF stimulation which may be critical for angiogenic processes in the skin. PMID:12358602

  6. LIVER TYPE FATTY ACID BINDING PROTEIN (L-FABP) GENE ABLATION REDUCES NUCLEAR LIGAND DISTRIBUTION AND PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR-α ACTIVITY IN CULTURED PRIMARY HEPATOCYTES1

    PubMed Central

    McIntosh, Avery L.; Atshaves, Barbara P.; Hostetler, Heather A.; Huang, Huan; Davis, Jason; Lyuksyutova, Olga I.; Landrock, Danilo; Kier, Ann B.; Schroeder, Friedhelm

    2009-01-01

    The effect of liver type fatty acid binding protein (L-FABP) gene ablation on the uptake and distribution of long chain fatty acids (LCFA) to the nucleus by real-time laser scanning confocal imaging and peroxisome proliferator activated receptor-α (PPARα) activity was examined in cultured primary hepatocytes from livers wild-type L-FABP+/+ and gene ablated L-FABP−/− mice. Cultured primary hepatocytes from livers of L-FABP−/− mice exhibited: (i) reduced oxidation of palmitic acid, a common dietary long chain fatty acid (LCFA); (ii) reduced expression of fatty acid oxidative enzymes—proteins transcriptionally regulated by PPARα; (iii) reduced palmitic acid-induced PPARα coimmunoprecipitation with coactivator SRC1 concomitant with increased PPARα coimmunoprecipitation with coinhibitor N-CoR; (iv) reduced palmitic acid-induced PPARα. Diminished PPARα activation in L-FABP null hepatocytes was associated with lower uptake of common dietary LCFA (palmitic acid as well as its fluorescent derivative BODIPY FL C16), reduced level of total unesterified LCFA, and real-time redistribution of BODIPY FL C16 from the central nucleoplasm to the nuclear envelope. Taken together, these studies support the hypothesis that L-FABP may facilitate ligand (LCFA)-activated PPARα transcriptional activity at least in part by increasing total LCFA ligand available to PPARα for inducing PPARα-mediated transcription of proteins involved in LCFA metabolism. PMID:19285478

  7. Sensing of a nucleic acid binding protein via a label-free perylene probe fluorescence recovery assay.

    PubMed

    Liao, Dongli; Li, Wenying; Chen, Jian; Jiao, Huping; Zhou, Huipeng; Wang, Bin; Yu, Cong

    2013-10-01

    A novel label-free fluorescence recovery assay for the sensing of a DNA binding protein has been developed. A transcription factor c-Jun protein, and a 21 base pair duplex DNA containing the c-Jun protein binding site (J-DNA) were selected. J-DNA was mixed with a cationic fluorescent perylene probe (compound 1), and induced aggregation of the probe. Quenching of the probe's fluorescence was observed. However, when c-Jun protein was mixed with the J-DNA, c-Jun bound to the duplex DNA, which reduced the degree of the induced perylene probe aggregation, and a turn on fluorescence signal was observed. The recovered fluorescence intensity was directly related to the amount of c-Jun added. The method is highly selective, six non-DNA binding proteins and one randomly selected 21 base pair duplex DNA (con-1) were tested. No noticeable compound 1 fluorescence recovery was observed. Mutations were also introduced to the c-Jun recognition sequence and much reduced fluorescence recovery was observed. Our assay is label-free, convenient, inexpensive, and fast. It can be used in biomedical research such as high throughput screening of drugs targeted at DNA-binding proteins.

  8. TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein

    SciTech Connect

    Wang Z.; Xu C.; Benning, C.

    2012-05-01

    The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal {beta}-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.

  9. Structure of ginseng major latex-like protein 151 and its proposed lysophosphatidic acid-binding mechanism.

    PubMed

    Choi, Sun Hye; Hong, Myoung Ki; Kim, Hyeon Joong; Ryoo, Nayeon; Rhim, Hyewhon; Nah, Seung Yeol; Kang, Lin Woo

    2015-05-01

    Lysophosphatidic acid (LPA) is a phospholipid growth factor with myriad effects on biological systems. LPA is usually present bound to animal plasma proteins such as albumin or gelsolin. When LPA complexes with plasma proteins, it binds to its cognate receptors with higher affinity than when it is free. Recently, gintonin from ginseng was found to bind to LPA and to activate mammalian LPA receptors. Gintonin contains two components: ginseng major latex-like protein 151 (GLP) and ginseng ribonuclease-like storage protein. Here, the crystal structure of GLP is reported, which belongs to the plant Bet v 1 superfamily, and a model is proposed for how GLP binds LPA. Amino-acid residues of GLP recognizing LPA were identified using site-directed mutagenesis and isothermal titration calorimetry. The resulting GLP mutants were used to study the activation of LPA receptor-dependent signalling pathways. In contrast to wild-type GLP, the H147A mutant did not bind LPA, elicit intracellular Ca(2+) transients in neuronal cells or activate Ca(2+)-dependent Cl(-) channels in Xenopus oocytes. Based on these results, a mechanism by which GLP recognizes LPA and its requirement to activate G protein-coupled LPA receptors to elicit diverse biological responses were proposed. PMID:25945569

  10. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes.

    PubMed

    Kajimoto, Kazuaki; Minami, Yoshitaka; Harashima, Hideyoshi

    2014-01-01

    The fatty acid binding protein 4 (FABP4), one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF) production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER) stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS) and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA) against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH), superoxide dismutase (SOD) and glutathione S-transferase A4 (GSTA4) were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2). FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1), the signal sequence receptor α (Ssr1), the ORM1-like 3 (Ormdl3), and the spliced X-box binding protein 1 (Xbp1s), were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  11. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  12. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 • Nup98).

    PubMed

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-06-24

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.

  13. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1∙Nup98)

    SciTech Connect

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-07-01

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.

  14. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1•Nup98)

    PubMed Central

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-01-01

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore. PMID:24927547

  15. The nucleic acid-binding protein PcCNBP is transcriptionally regulated during the immune response in red swamp crayfish Procambarus clarkii.

    PubMed

    Nicosia, Aldo; Costa, Salvatore; Tagliavia, Marcello; Maggio, Teresa; Salamone, Monica; Adamo, Giorgia; Ragusa, Maria Antonietta; Bennici, Carmelo; Masullo, Tiziana; Mazzola, Salvatore; Gianguzza, Fabrizio; Cuttitta, Angela

    2016-05-01

    Gene family encoding cellular nucleic acid binding proteins (CNBP) is well conserved among vertebrates; however, there is limited knowledge in lower organisms. In this study, a CNBP homolog from the red swamp crayfish Procambarus clarkii was characterised. The full-length cDNA of PcCNBP was of 1257 bp with a 5'-untranslated region (UTR) of 63 bp and a 3'-UTR of 331 bp with a poly (A) tail, and an open-reading frame (ORF) of 864 bp encoding a polypeptide of 287 amino acids with the predicted molecular weight of about 33 kDa. The predicted protein possesses 7 tandem repeats of 14 amino acids containing the CCHC zinc finger consensus sequence, two RGG-rich single-stranded RNA-binding domain and a nuclear localization signal, strongly suggesting that PcCNBP was a homolog of vertebrate CNBP. The PcCNBP transcript was constitutively expressed in all tested tissues of unchallenged crayfish, including hepatopancreas, gill, eyestalk, haemocytes, intestine, stomach and cuticle with highest expression in haemocytes, intestine, gills and hepatopancreas. The mRNA expression of PcCNBP in haemocytes was modulated at transcriptional level by different immune challenges, suggesting its involvement in the immune response of P. clarkii during both bacteria and viruses infection. PMID:26939892

  16. Epidermal Fatty Acid Binding Protein (E-FABP) Is Not Required for the Generation or Maintenance of Effector and Memory T Cells following Infection with Listeria monocytogenes.

    PubMed

    Li, Bing; Schmidt, Nathan W

    2016-01-01

    Following activation of naïve T cells there are dynamic changes in the metabolic pathways used by T cells to support both the energetic needs of the cell and the macromolecules required for growth and proliferation. Among other changes, lipid metabolism undergoes dynamic transitions between fatty acid oxidation and fatty acid synthesis as cells progress from naïve to effector and effector to memory T cells. The hydrophobic nature of lipids requires that they be bound to protein chaperones within a cell. Fatty acid binding proteins (FABPs) represent a large class of lipid chaperones, with epidermal FABP (E-FABP) expressed in T cells. The objective of this study was to determine the contribution of E-FABP in antigen-specific T cell responses. Following infection with Listeria monocytogenes, we observed similar clonal expansion, contraction and formation of memory CD8 T cells in WT and E-FABP-/- mice, which also exhibited similar phenotypic and functional characteristics. Analysis of Listeria-specific CD4 T cells also revealed no defect in the expansion, contraction, and formation of memory CD4 T cells in E-FABP-/- mice. These data demonstrate that E-FABP is dispensable for antigen-specific T cell responses following a bacterial infection. PMID:27588422

  17. Primary structure and developmental expression of Bufo arenarum cellular nucleic acid-binding protein: changes in subcellular localization during early embryogenesis.

    PubMed

    Armas, P; Cabada, M O; Calcaterra, N B

    2001-02-01

    A Bufo arenarum cellular nucleic acid-binding protein (bCNBP) full-length cDNA was cloned. bCNBP is a 19.4 kDa protein containing seven CCHC zinc finger motifs, an RGG box and a Ser-rich region. Amino acid comparisons showed high values of homology in vertebrates and smaller values in insects or inferior eukaryotes. Northern blot analysis during oogenesis and early development revealed two transcripts with different expressions of pattern behavior. One of them is present in all stages analyzed, whereas the other is only detected from the beginning of zygotic transcription. Immunocytochemistry assays carried out on sections of ovary and early embryos showed that there was no specific staining of previtellogenic oocytes. In early vitellogenic oocytes, in oocytes at stages V/VI and in embryos at early blastula stage, reaction was observed inside the cytoplasm. At mid-blastula stage, CNBP was mainly detected in the epiblast. At the late gastrula stage, two layers of cells were stained in the archenteron roof, in which the internal one presented as strong staining. Nuclei in this layer were stained even stronger than the cytoplasm. Changes in mRNA expression patterns, accompanied by changes in subcellular localization, suggest that CNBP might interact with both nuclear and cytoplasmic nucleic acids.

  18. Epidermal Fatty Acid Binding Protein (E-FABP) Is Not Required for the Generation or Maintenance of Effector and Memory T Cells following Infection with Listeria monocytogenes

    PubMed Central

    Li, Bing; Schmidt, Nathan W.

    2016-01-01

    Following activation of naïve T cells there are dynamic changes in the metabolic pathways used by T cells to support both the energetic needs of the cell and the macromolecules required for growth and proliferation. Among other changes, lipid metabolism undergoes dynamic transitions between fatty acid oxidation and fatty acid synthesis as cells progress from naïve to effector and effector to memory T cells. The hydrophobic nature of lipids requires that they be bound to protein chaperones within a cell. Fatty acid binding proteins (FABPs) represent a large class of lipid chaperones, with epidermal FABP (E-FABP) expressed in T cells. The objective of this study was to determine the contribution of E-FABP in antigen-specific T cell responses. Following infection with Listeria monocytogenes, we observed similar clonal expansion, contraction and formation of memory CD8 T cells in WT and E-FABP-/- mice, which also exhibited similar phenotypic and functional characteristics. Analysis of Listeria-specific CD4 T cells also revealed no defect in the expansion, contraction, and formation of memory CD4 T cells in E-FABP-/- mice. These data demonstrate that E-FABP is dispensable for antigen-specific T cell responses following a bacterial infection. PMID:27588422

  19. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein.

    PubMed

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793-0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741-0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697-0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers. PMID:27605390

  20. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein

    PubMed Central

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793–0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741–0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697–0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers. PMID:27605390

  1. Impact of clinical context on acute kidney injury biomarker performances: differences between neutrophil gelatinase-associated lipocalin and L-type fatty acid-binding protein.

    PubMed

    Asada, Toshifumi; Isshiki, Rei; Hayase, Naoki; Sumida, Maki; Inokuchi, Ryota; Noiri, Eisei; Nangaku, Masaomi; Yahagi, Naoki; Doi, Kent

    2016-01-01

    Application of acute kidney injury (AKI) biomarkers with consideration of nonrenal conditions and systemic severity has not been sufficiently determined. Herein, urinary neutrophil gelatinase-associated lipocalin (NGAL), L-type fatty acid-binding protein (L-FABP) and nonrenal disorders, including inflammation, hypoperfusion and liver dysfunction, were evaluated in 249 critically ill patients treated at our intensive care unit. Distinct characteristics of NGAL and L-FABP were revealed using principal component analysis: NGAL showed linear correlations with inflammatory markers (white blood cell count and C-reactive protein), whereas L-FABP showed linear correlations with hypoperfusion and hepatic injury markers (lactate, liver transaminases and bilirubin). We thus developed a new algorithm by combining urinary NGAL and L-FABP with stratification by the Acute Physiology and Chronic Health Evaluation score, presence of sepsis and blood lactate levels to improve their AKI predictive performance, which showed a significantly better area under the receiver operating characteristic curve [AUC-ROC 0.940; 95% confidential interval (CI) 0.793-0.985] than that under NGAL alone (AUC-ROC 0.858, 95% CI 0.741-0.927, P = 0.03) or L-FABP alone (AUC-ROC 0.837, 95% CI 0.697-0.920, P = 0.007) and indicated that nonrenal conditions and systemic severity should be considered for improved AKI prediction by NGAL and L-FABP as biomarkers.

  2. Dynamics of linker residues modulate the nucleic acid binding properties of the HIV-1 nucleocapsid protein zinc fingers.

    PubMed

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity.

  3. Interaction of aurintricarboxylic acid (ATA) with four nucleic acid binding proteins DNase I, RNase A, reverse transcriptase and Taq polymerase

    NASA Astrophysics Data System (ADS)

    Ghosh, Utpal; Giri, Kalyan; Bhattacharyya, Nitai P.

    2009-12-01

    In the investigation of interaction of aurintricarboxylic acid (ATA) with four biologically important proteins we observed inhibition of enzymatic activity of DNase I, RNase A, M-MLV reverse transcriptase and Taq polymerase by ATA in vitro assay. As the telomerase reverse transcriptase (TERT) is the main catalytic subunit of telomerase holoenzyme, we also monitored effect of ATA on telomerase activity in vivo and observed dose-dependent inhibition of telomerase activity in Chinese hamster V79 cells treated with ATA. Direct association of ATA with DNase I ( Kd = 9.019 μM)), RNase A ( Kd = 2.33 μM) reverse transcriptase ( Kd = 0.255 μM) and Taq polymerase ( Kd = 81.97 μM) was further shown by tryptophan fluorescence quenching studies. Such association altered the three-dimensional conformation of DNase I, RNase A and Taq polymerase as detected by circular dichroism. We propose ATA inhibits enzymatic activity of the four proteins through interfering with DNA or RNA binding to the respective proteins either competitively or allosterically, i.e. by perturbing three-dimensional structure of enzymes.

  4. Purification and characterization of the human epidermal fatty acid-binding protein: localization during epidermal cell differentiation in vivo and in vitro.

    PubMed

    Siegenthaler, G; Hotz, R; Chatellard-Gruaz, D; Didierjean, L; Hellman, U; Saurat, J H

    1994-09-01

    Epidermal fatty acid-binding protein (E-FABP) was isolated from human skin and purified to homogeneity. Its molecular mass was estimated to be 15 kDa and the pI of non-denaturing protein was 5.6. Scatchard-plot analysis revealed one class of binding site for oleic acid with a Kd of 0.46 microM. Structure-binding relation experiments revealed a high affinity of E-FABP for stearic acid which decreased on reduction of the number of carbon atoms or introduction of double bonds into the fatty acid chain. Squalene, cholesterol and retinoic acid isomers showed no affinity, suggesting that E-FABP displays high specificity for fatty acids. E-FABP is a scarce cytosolic protein (0.065% of total protein). Only trace amounts could be detected in normal human skin but up to 42.5 +/- 3.4 pmol/mg of protein was found in a non-malignant defect of keratinocyte differentiation (psoriatic lesions). E-FABP levels were low in cultured human keratinocytes grown under proliferation-stimulating conditions but increased about 2-fold on induction of differentiation by Ca2+. Immunohistochemical localization showed cytosolic staining in differentiated cells of normal and psoriatic skin, suggesting a link between E-FABP and keratinocyte differentiation. The presence of E-FABP in tissues other than skin (heart, intestine and adipose tissue) excludes its specific role in fatty acid metabolism in epithelial cells or its involvement in skin lipid-barrier function.

  5. Nuclear Magnetic Resonance Structure of the Nucleic Acid-Binding Domain of Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein 3▿

    PubMed Central

    Serrano, Pedro; Johnson, Margaret A.; Chatterjee, Amarnath; Neuman, Benjamin W.; Joseph, Jeremiah S.; Buchmeier, Michael J.; Kuhn, Peter; Wüthrich, Kurt

    2009-01-01

    The nuclear magnetic resonance (NMR) structure of a globular domain of residues 1071 to 1178 within the previously annotated nucleic acid-binding region (NAB) of severe acute respiratory syndrome coronavirus nonstructural protein 3 (nsp3) has been determined, and N- and C-terminally adjoining polypeptide segments of 37 and 25 residues, respectively, have been shown to form flexibly extended linkers to the preceding globular domain and to the following, as yet uncharacterized domain. This extension of the structural coverage of nsp3 was obtained from NMR studies with an nsp3 construct comprising residues 1066 to 1181 [nsp3(1066-1181)] and the constructs nsp3(1066-1203) and nsp3(1035-1181). A search of the protein structure database indicates that the globular domain of the NAB represents a new fold, with a parallel four-strand β-sheet holding two α-helices of three and four turns that are oriented antiparallel to the β-strands. Two antiparallel two-strand β-sheets and two 310-helices are anchored against the surface of this barrel-like molecular core. Chemical shift changes upon the addition of single-stranded RNAs (ssRNAs) identified a group of residues that form a positively charged patch on the protein surface as the binding site responsible for the previously reported affinity for nucleic acids. This binding site is similar to the ssRNA-binding site of the sterile alpha motif domain of the Saccharomyces cerevisiae Vts1p protein, although the two proteins do not share a common globular fold. PMID:19828617

  6. Fatty Acid binding protein 7 is a molecular marker in adenoid cystic carcinoma of the salivary glands: implications for clinical significance.

    PubMed

    Phuchareon, Janyaporn; Overdevest, Jonathan B; McCormick, Frank; Eisele, David W; van Zante, Annemieke; Tetsu, Osamu

    2014-12-01

    Adenoid cystic carcinoma (ACC) is an aggressive malignant neoplasm of the salivary glands. Its diagnosis is difficult due to overlapping features with other salivary tumors. Gene expression analysis may complement traditional diagnostic methods. We searched gene expression patterns in the Gene Expression Omnibus (GEO) database and in our tumor and normal samples. The biologic and prognostic potential of the identified genes was analyzed. The GEO data set of primary xenografted ACCs revealed that expression of five genes, engrailed homeobox 1 (EN1), fatty acid binding protein 7 (FABP7), hemoglobin epsilon 1, MYB, and versican (VCAN), was dramatically increased. mRNA expression of EN1, FABP7, MYB, and VCAN distinguished our sporadic ACCs from normal tissues and benign tumors. FABP7 expression appeared to be regulated differently from EN1 and MYB and was crossly correlated with poor prognosis in our ACC cohort. Immunohistochemistry showed that FABP7 protein was predominantly expressed in the nucleus of myoepithelial cells of both tubular and cribriform subtypes. In contrast, in the solid subtype, which is often associated with a lower survival rate, FABP7 protein was uniformly expressed in cancerous cells. One case with cribriform architecture and the highest level of FABP7 mRNA showed strong FABP7 staining in both duct-type epithelial and myoepithelial cells, suggesting that diffuse expression of FABP7 protein might be related to aggressive tumor behavior and poor prognosis. We propose FABP7 as a novel biomarker in ACC. The molecule may be useful in diagnosis and for identifying more effective therapies targeting this protein or upstream molecules that regulate it.

  7. The combined use of photoaffinity labeling and surface plasmon resonance-based technology identifies multiple salicylic acid-binding proteins.

    PubMed

    Tian, Miaoying; von Dahl, Caroline C; Liu, Po-Pu; Friso, Giulia; van Wijk, Klaas J; Klessig, Daniel F

    2012-12-01

    Salicylic acid (SA) is a small phenolic molecule that not only is the active ingredient in the multi-functional drug aspirin, but also serves as a plant hormone that affects diverse processes during growth, development, responses to abiotic stresses and disease resistance. Although a number of SA-binding proteins (SABPs) have been identified, the underlying mechanisms of action of SA remain largely unknown. Efforts to identify additional SA targets, and thereby elucidate the complex SA signaling network in plants, have been hindered by the lack of effective approaches. Here, we report two sensitive approaches that utilize SA analogs in conjunction with either a photoaffinity labeling technique or surface plasmon resonance-based technology to identify and evaluate candidate SABPs from Arabidopsis. Using these approaches, multiple proteins, including the E2 subunit of α-ketoglutarate dehydrogenase and the glutathione S-transferases GSTF2, GSTF8, GSTF10 and GSTF11, were identified as SABPs. Their association with SA was further substantiated by the ability of SA to inhibit their enzymatic activity. The photoaffinity labeling and surface plasmon resonance-based approaches appear to be more sensitive than the traditional approach for identifying plant SABPs using size-exclusion chromatography with radiolabeled SA, as these proteins exhibited little to no SA-binding activity in such an assay. The development of these approaches therefore complements conventional techniques and helps dissect the SA signaling network in plants, and may also help elucidate the mechanisms through which SA acts as a multi-functional drug in mammalian systems.

  8. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor α in a Ligand-selective Manner*

    PubMed Central

    Hughes, Maria L. R.; Liu, Bonan; Halls, Michelle L.; Wagstaff, Kylie M.; Patil, Rahul; Velkov, Tony; Jans, David A.; Bunnett, Nigel W.; Scanlon, Martin J.; Porter, Christopher J. H.

    2015-01-01

    Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner. PMID:25847235

  9. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    PubMed

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions.

  10. Long-Term Effect of Docosahexaenoic Acid Feeding on Lipid Composition and Brain Fatty Acid-Binding Protein Expression in Rats

    PubMed Central

    Elsherbiny, Marwa E.; Goruk, Susan; Monckton, Elizabeth A.; Richard, Caroline; Brun, Miranda; Emara, Marwan; Field, Catherine J.; Godbout, Roseline

    2015-01-01

    Arachidonic (AA) and docosahexaenoic acid (DHA) brain accretion is essential for brain development. The impact of DHA-rich maternal diets on offspring brain fatty acid composition has previously been studied up to the weanling stage; however, there has been no follow-up at later stages. Here, we examine the impact of DHA-rich maternal and weaning diets on brain fatty acid composition at weaning and three weeks post-weaning. We report that DHA supplementation during lactation maintains high DHA levels in the brains of pups even when they are fed a DHA-deficient diet for three weeks after weaning. We show that boosting dietary DHA levels for three weeks after weaning compensates for a maternal DHA-deficient diet during lactation. Finally, our data indicate that brain fatty acid binding protein (FABP7), a marker of neural stem cells, is down-regulated in the brains of six-week pups with a high DHA:AA ratio. We propose that elevated levels of DHA in developing brain accelerate brain maturation relative to DHA-deficient brains. PMID:26506385

  11. A high-fat diet and the threonine-encoding allele (Thr54) polymorphism of fatty acid-binding protein 2 reduce plasma triglyceride-rich lipoproteins.

    PubMed

    McColley, Steven P; Georgopoulos, Angeliki; Young, Lindsay R; Kurzer, Mindy S; Redmon, J Bruce; Raatz, Susan K

    2011-07-01

    The threonine-encoding allele (Thr54) of the fatty acid-binding protein 2 (FABP2) DNA polymorphism is associated with increased triglyceride (TG)-rich lipoproteins (TRL). We hypothesized that the TRL response to diets of varied fat content is affected by the FABP2 A54T polymorphism, specifically that a high-fat diet would reduce TRL and that the Thr54 allele would have an enhanced response. Sixteen healthy, postmenopausal women completed a crossover dietary intervention that included three 8-week, isoenergetic diet treatments. The treatments consisted of high fat (40% of energy as fat), low fat (20% of energy), and low fat + n-3 fatty acids (20% of energy plus 3% as n-3 fatty acids). Eight subjects were homozygous for the wild type (Ala54/Ala54) of the FABP2 polymorphism, whereas 8 subjects had at least 1 Thr54 allele (7, Ala54/Thr54; 1, Thr54/Thr54). High-fat diet showed significantly reduced plasma TGs, chylomicron TG, and very low-density lipoprotein TG from baseline in all participants. Although carriers of the Thr54 allele of the FABP2 polymorphism had significantly reduced TRL, there is no evidence of an interaction, which does not support our hypothesis. The alanine-encoding allele did not influence the dietary effects on the plasma lipids. PMID:21840466

  12. Fat utilization in relation to intestinal fatty acid binding protein and bile salts in chicks of different ages and different genetic sources.

    PubMed

    Katongole, J B; March, B E

    1980-04-01

    New Hampshire chicks utilized dietary fat more efficiently than did broiler-type or White Leghorn chicks. The difference was more pronounced with tallow than with corn oil. Utilization of fat by all three types of chicks increased until the chicks were about six weeks old. At hatching, the concentration of fatty acid binding protein (FABP) in the intestine of the broiler-type chicks was significantly less than in the New Hampshire and White Leghorn chicks. Concentration of FABP declined during the first 1 to 2 weeks of life and then increased. By four weeks of age the breed differences in concentration of FABP in the intestine were no longer apparent. At some time after four weeks of age, FABP reached maximum concentrations in the intestinal tissue of the chicks of different breeds and thereafter declined as a proportion of the total intestinal tissue. Broiler-type chicks, which did not utilize fat as efficiently as did New Hampshire chicks in the first weeks of life, displayed lower concentrations in the proximal third of the intestine and higher concentrations in the remainder of the intestine than was the case with the New Hampshire chicks. A high level of dietary fat or dietary supplementation with sodium taurocholate increased the concentration of FABP in the intestine.

  13. Cellular nucleic-acid-binding protein, a transcriptional enhancer of c-Myc, promotes the formation of parallel G-quadruplexes.

    PubMed

    Borgognone, Mariana; Armas, Pablo; Calcaterra, Nora B

    2010-06-15

    G-rich sequences that contain stretches of tandem guanines can form four-stranded, intramolecular stable DNA structures called G-quadruplexes (termed G4s). Regulation of the equilibrium between single-stranded and G4 DNA in promoter regions is essential for control of gene expression in the cell. G4s are highly stable structures; however, their folding kinetics are slow under physiological conditions. CNBP (cellular nucleic-acid-binding protein) is a nucleic acid chaperone that binds the G4-forming G-rich sequence located within the NHE (nuclease hypersensitivity element) III of the c-Myc proto-oncogene promoter. Several reports have demonstrated that CNBP enhances the transcription of c-Myc in vitro and in vivo; however, none of these reports have assessed the molecular mechanisms responsible for this control. In the present study, by means of Taq polymerase stop assays, electrophoretic mobility-shift assays and CD spectroscopy, we show that CNBP promotes the formation of parallel G4s to the detriment of anti-parallel G4s, and its nucleic acid chaperone activity is required for this effect. These findings are the first to implicate CNBP as a G4-folding modulator and, furthermore, assign CNBP a novel mode-of-action during c-Myc transcriptional regulation.

  14. Diagnostic potential of Fasciola gigantica-derived 14.5 kDa fatty acid binding protein in the immunodiagnosis of bubaline fascioliasis.

    PubMed

    Allam, G; Bauomy, I R; Hemyeda, Z M; Diab, T M; Sakran, T F

    2013-06-01

    The 14.5 kDa fatty acid binding protein (FABP) was isolated from the crude extract of adult Fasciola gigantica worms. Polyclonal anti-FABP IgG was generated in rabbits immunized with prepared FABP antigen. Sandwich enzyme-linked immunosorbent assay (ELISA) was applied to detect coproantigen in stools and circulating Fasciola antigen (CA) in sera of 126 water buffaloes by using purified and horseradish peroxidase (HRP)-conjugated anti-FABP IgG. Sandwich ELISA sensitivity was 96.97% and 94.95%; while specificity was 94.12% and 82.35% for coproantigen and CA detection, respectively. However, sensitivity and specificity of the Kato-Katz technique was 73.74% and 100%, respectively. The diagnostic efficacy of sandwich ELISA was 96.55% and 93.1% for coproantigen and CA detection, respectively. In contrast, the diagnostic efficacy of the Kato-Katz technique was 77.59%. In conclusion, these results demonstrate that the purified 14.5 kDa FABP provides a more suitable antigen for immunodiagnosis of early and current bubaline fascioliasis by using sandwich ELISA.

  15. Identification of polymorphism in fatty acid binding protein 3 (FABP3) gene and its association with milk fat traits in riverine buffalo (Bubalus bubalis).

    PubMed

    Dubey, Praveen Kumar; Goyal, Shubham; Mishra, Shailendra Kumar; Arora, Reena; Mukesh, Manishi; Niranjan, Saket Kumar; Kathiravan, Periasamy; Kataria, Ranjit Singh

    2016-04-01

    The fatty acid binding protein 3 (FABP3) gene, known to be associated with fat percentage of milk and meat in bovines, was screened among swamp and riverine buffaloes for polymorphism detection and further association with milk fat contents. An SNP g.307C > T was identified in the intron 2 (+53 exon 2) region of FABP3 gene of Indian buffaloes. The SNP identified was genotyped in 692 animals belonging to 15 riverine, swamp and hybrid (riverine × swamp) buffalo populations of diverse phenotypes and utilities, by PCR-RFLP. A marked contrast was observed between the C and T allele frequencies in three types of buffaloes. The frequency of C allele ranged from 0.67 to 0.96 in pure swamp buffalo populations, with the highest in Mizoram (0.96). Whereas the frequency of T allele was high across all the Indian riverine buffalo breeds, ranging from 0.57 to 0.96. None of the genotypes at FABP3 g.307C > T locus was found to have significant association with milk fat and other production traits in Mehsana dairy buffalo breed. Our study revealed marked differences in the allele frequencies between riverine and swamp buffaloes at FABP3 g.307C > T locus, without any significant association with different milk traits in riverine buffaloes.

  16. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; McCauley, Micah J.; Wang, Wei; Qualley, Dominic F.; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S. B.; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G.; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C.

    2014-01-01

    The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.

  17. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix

    PubMed Central

    Barneda, David; Planas-Iglesias, Joan; Gaspar, Maria L; Mohammadyani, Dariush; Prasannan, Sunil; Dormann, Dirk; Han, Gil-Soo; Jesch, Stephen A; Carman, George M; Kagan, Valerian; Parker, Malcolm G; Ktistakis, Nicholas T; Klein-Seetharaman, Judith; Dixon, Ann M; Henry, Susan A; Christian, Mark

    2015-01-01

    Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat. DOI: http://dx.doi.org/10.7554/eLife.07485.001 PMID:26609809

  18. Ligand-specific and non-specific in vivo modulation of human epidermal cellular retinoic acid binding protein (CRABP).

    PubMed

    Hirschel-Scholz, S; Siegenthaler, G; Saurat, J H

    1989-04-01

    Retinoic acid (RA) is bound intracellularly by a specific, low molecular weight protein (CRABP), that is unrelated to its nuclear receptor and whose function and regulation are still unknown. In the present study we were able to obtain an in vivo modulation of CRABP by different stimuli in one of the major target organs of RA: the human skin. We found increased CRABP after daily application during 4 days of natural or synthetic retinoids (RA, acitretin, isotretinoin, Ro137410, retinol), that have either a high affinity to CRABP or can be transformed into RA. Only Ro150778 with no affinity and no reported transformation had no effect. No macro- or microscopical changes could be observed with any of the tested compounds. Induction of inflammatory and hyperproliferative changes in the skin by topical dithranol treatment, UVB irradiation or scotch tape stripping also induced a significant increase of CRABP 3 days after exposure. Topical diflucortolone showed not only a tendancy to decrease intrinsic CRABP levels, but significantly reduced the retinoid stimulated rise of CRABP. Thus we conclude that the increase of CRABP in a fully differentiated adult tissue seems to be a biological phenomenon following processes of inflammation and proliferation with a lag of several days, while retinoids seem to be able to induce such a rise independently of, or before, the appearance of such processes. Corticosteroids seem to be inhibitors of this reaction. We discuss the hypothesis that CRABP might function as an intracellular 'buffer' in the case of RA overload. PMID:2543582

  19. The Non-native Helical Intermediate State May Accumulate at Low pH in the Folding and Aggregation Landscape of the Intestinal Fatty Acid Binding Protein.

    PubMed

    Sarkar-Banerjee, Suparna; Chowdhury, Sourav; Paul, Simanta Sarani; Dutta, Debashis; Ghosh, Anisa; Chattopadhyay, Krishnananda

    2016-08-16

    There has been widespread interest in studying early intermediate states and their roles in protein folding. The interest in intermediate states has been further emphasized in the recent literature because of their implications for protein aggregation. Unfortunately, direct kinetic characterization of intermediates has been difficult because of the limited time resolutions offered by the kinetic techniques and the heterogeneity of the folding and aggregation landscape. Even in equilibrium experiments, the characterization of intermediate states could be difficult because (a) their populations in equilibrium could be low and/or (b) they lack any specific biochemical or biophysical signatures for their identification. In this paper, we have used fluorescence correlation spectroscopy to study the nature of a low-pH intermediate state of the intestinal fatty acid binding protein, a small protein with predominantly β-sheet structure. Our results have shown that the pH 3 intermediate diffuses faster than the folded protein and has strong helix forming propensity. These behaviors support Lim's hypothesis according to which even an entirely β-sheet protein would form helical bundles at the early stage. Using dynamic light scattering and thioflavin T binding measurements, we have observed that the pH 3 intermediate is prone to aggregation. We believe that early helix formation is the result of a local effect, which originates from the interaction of the neighboring amino acids around the hydrophobic core residues. This early intermediate reorganizes subsequently, and this structural reorganization is initiated by the destabilizing interactions induced by the distant residues, unfavorable entropic costs, and steric constraints of the hydrophobic side chains. Mutational analyses show further that the increase in the hydrophobicity in the hydrophobic core region increases the population of the α-helical intermediate, enhancing the aggregation propensity of the protein

  20. A Personal Retrospective: Elevating Anandamide (AEA) by Targeting Fatty Acid Amide Hydrolase (FAAH) and the Fatty Acid Binding Proteins (FABPs)

    PubMed Central

    Deutsch, Dale G.

    2016-01-01

    This perspective was adapted from a Career Achievement Award talk given at the International Cannabinoid Research Society Symposium in Bukovina, Poland on June 27, 2016. As a biochemist working in the neurosciences, I was always fascinated with neurotransmitter inactivation. In 1993 we identified an enzyme activity that breaks down anandamide. We called the enzyme anandamide amidase, now called FAAH. We and other laboratories developed FAAH inhibitors that were useful reagents that also proved to have beneficial physiological effects and until recently, new generations of inhibitors were in clinical trials. Nearly all neurotransmitters are water soluble and as such, require a transmembrane protein transporter to pass through the lipid membrane for inactivation inside the cell. However, using model systems, we and others have shown that this is unnecessary for anandamide, an uncharged hydrophobic molecule that readily diffuses across the cellular membrane. Interestingly, its uptake is driven by the concentration gradient resulting from its breakdown mainly by FAAH localized in the endoplasmic reticulum. We identified the FABPs as intracellular carriers that “solubilize” anandamide, transporting anandamide to FAAH. Compounds that bind to FABPs block AEA breakdown, raising its level. The cannabinoids (THC and CBD) also were discovered to bind FABPs and this may be one of the mechanisms by which CBD works in childhood epilepsy, raising anandamide levels. Targeting FABPs may be advantageous since they have some tissue specificity and do not require reactive serine hydrolase inhibitors, as does FAAH, with potential for off-target reactions. At the International Cannabis Research Society Symposium in 1992, Raphe Mechoulam revealed that his laboratory isolated an endogenous lipid molecule that binds to the CB1 receptor (cannabinoid receptor type 1) and this became the milestone paper published in December of that year describing anandamide (AEA, Devane et al., 1992

  1. [Urinary L-type fatty acid binding protein (L-FABP) as a new urinary biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan].

    PubMed

    Kamijo-Ikemori, Atsuko; Ichikawa, Daisuke; Matsui, Katsuomi; Yokoyama, Takeshi; Sugaya, Takeshi; Kimura, Kenjiro

    2013-07-01

    Liver-type fatty acid binding protein (L-FABP) is a 14kDa protein found in the cytoplasm of human renal proximal tubules. Fatty acids are bound with L-FABP and transported to the mitochondria or peroxisomes, where fatty acids are beta-oxidized, and this may play a role in fatty acid homeostasis. Moreover, L-FABP has high affinity and capacity to bind long-chain fatty acid oxidation products, and may be an effective endogenous antioxidant. Renal L-FABP is rarely expressed in the kidneys of rodents. In order to evaluate the pathological dynamics of renal L-FABP in kidney disease, human L-FABP chromosomal transgenic mice were generated. Various stress, such as massive proteinuria, hyperglycemia, hypertension, and toxins overloaded in the proximal tubules were revealed to up-regulate the gene expression of renal L-FABP and increase the excretion of L-FABP derived from the proximal tubules into urine. In clinical studies of chronic kidney disease (CKD), urinary L-FABP accurately reflected the degree of tubulointerstitial damage and correlated with the rate of CKD progression. Furthermore, a multicenter trial has shown that urinary L-FABP is more sensitive than urinary protein in predicting the progression of CKD. With respect to diabetic nephropathy and acute kidney disease (AKI), urinary L-FABP is an early diagnostic of kidney disease or a predictive marker for renal prognosis. After many clinical studies, urinary L-FABP was approved as a new tubular biomarker promulgated by the Ministry of Health, Labour and Welfare in Japan.

  2. Influence of ALA54THR polymorphism of fatty acid-binding protein 2 on obesity and cardiovascular risk factors.

    PubMed

    de Luis, D A; Sagrado, M G; Aller, R; Izaola, O; Conde, R

    2007-11-01

    A transition of G to A at codon 54 of FABP2 results in an amino acid substitution (Ala54 to Thr54). This polymorphism was associated with some cardiovascular risk factors. The aim of our study was to investigate the influence of Thr54 polymorphism in the FABP2 gene on obesity anthropometric parameters and cardiovascular risk factors. A population of 226 obesity (body mass index >30) nondiabetic outpatients were analyzed. An indirect calorimetry, tetrapolar electrical bioimpedance, blood pressure, a serial assessment of nutritional intake with 3 days of written food records, and biochemical analysis (lipid profile, adipocytokines, insulin, CRP, and lipoprotein-a) were performed. The statistical analysis was performed for the combined ALA54/THR54 and THR54/THR54 as a mutant group and wild type ALA54/ALA54 as a second group. Two-hundred and twenty-six patients gave informed consent and were enrolled in the study. The mean age was 44.2+/-16 years and the mean BMI 35.1+/-5.1, with 63 males (28.3%) and 163 females (71.7%). One-hundred and thirteen patients (50%) had the genotype ALA54/ALA54 (wild group) and 113 (50%) patients had the genotype ALA54/THR54 (91 patients, 40.2%) or THR54/THR54 (22 patients, 9.8%) (mutant group). The ANOVA analysis of the three groups ( ALA54/THR54, THR54/THR54 and ALA54/ALA54) shows a higher levels of fat mass in Thr54/Thr54 group (45.6+/-14.6 kg) than Ala54/Ala54 (37.5+/-11.2 kg: p<0.05), without differences with Ala54/Thr54 group (41.2+/-13.5 kg). CRP, IL-6, and lipoprotein-a were higher in mutant group ( ALA54/THR54, THR54/THR54) than in wild group ( ALA54/ALA54). The novel finding of this study is the association of the Thr54/Ala54 and Thr54/Thr54 FABP2 phenotypes with higher levels of C reactive protein, IL6, and lipoprotein-a. Further studies are needed to explain the role of this polymorphism in different populations.

  3. Increase in skin autofluorescence and release of heart-type fatty acid binding protein in plasma predicts mortality of hemodialysis patients.

    PubMed

    Arsov, Stefan; Trajceska, Lada; van Oeveren, Wim; Smit, Andries J; Dzekova, Pavlina; Stegmayr, Bernd; Sikole, Aleksandar; Rakhorst, Gerhard; Graaff, Reindert

    2013-07-01

    Advanced glycation end-products (AGEs) are uremic toxins that accumulate progressively in hemodialysis (HD) patients. The aim of this study was to assess the 1-year increase in skin autofluorescence (ΔAF), a measure of AGEs accumulation and plasma markers, as predictors of mortality in HD patients. One hundred sixty-nine HD patients were enrolled in this study. Skin autofluorescence was measured twice, 1 year apart using an AGE Reader (DiagnOptics Technologies BV, Groningen, The Netherlands). Besides routine blood chemistry, additional plasma markers including superoxide dismutase, myeloperoxydase, intercellular adhesion molecule 1 (ICAM-1), C-reactive protein (hs-CRP), heart-type fatty acid binding protein (H-FABP), and von Willebrand factor were measured at baseline. The mortality of HD patients was followed for 36 months. Skin autofluorescence values of the HD patients at the two time points were significantly higher (P < 0.001) than those of healthy subjects of the same age. Mean 1-year ΔAF of HD patients was 0.16 ± 0.06, which was around seven- to ninefold higher than 1-year ΔAF in healthy subjects. Multivariate Cox regression showed that age, hypertension, 1-year ΔAF, hs-CRP, ICAM-1, and H-FABP were independent predictors of overall mortality. Hypertension, 1-year ΔAF, hs-CRP, and H-FABP were also independent predictors of cardiovascular mortality. One-year ΔAF and plasma H-FABP, used separately and in combination, are strong predictors of overall and cardiovascular mortality in HD patients.

  4. Increase in skin autofluorescence and release of heart-type fatty acid binding protein in plasma predicts mortality of hemodialysis patients.

    PubMed

    Arsov, Stefan; Trajceska, Lada; van Oeveren, Wim; Smit, Andries J; Dzekova, Pavlina; Stegmayr, Bernd; Sikole, Aleksandar; Rakhorst, Gerhard; Graaff, Reindert

    2013-07-01

    Advanced glycation end-products (AGEs) are uremic toxins that accumulate progressively in hemodialysis (HD) patients. The aim of this study was to assess the 1-year increase in skin autofluorescence (ΔAF), a measure of AGEs accumulation and plasma markers, as predictors of mortality in HD patients. One hundred sixty-nine HD patients were enrolled in this study. Skin autofluorescence was measured twice, 1 year apart using an AGE Reader (DiagnOptics Technologies BV, Groningen, The Netherlands). Besides routine blood chemistry, additional plasma markers including superoxide dismutase, myeloperoxydase, intercellular adhesion molecule 1 (ICAM-1), C-reactive protein (hs-CRP), heart-type fatty acid binding protein (H-FABP), and von Willebrand factor were measured at baseline. The mortality of HD patients was followed for 36 months. Skin autofluorescence values of the HD patients at the two time points were significantly higher (P < 0.001) than those of healthy subjects of the same age. Mean 1-year ΔAF of HD patients was 0.16 ± 0.06, which was around seven- to ninefold higher than 1-year ΔAF in healthy subjects. Multivariate Cox regression showed that age, hypertension, 1-year ΔAF, hs-CRP, ICAM-1, and H-FABP were independent predictors of overall mortality. Hypertension, 1-year ΔAF, hs-CRP, and H-FABP were also independent predictors of cardiovascular mortality. One-year ΔAF and plasma H-FABP, used separately and in combination, are strong predictors of overall and cardiovascular mortality in HD patients. PMID:23635017

  5. Expansion and Functional Divergence of AP2 Group Genes in Spermatophytes Determined by Molecular Evolution and Arabidopsis Mutant Analysis

    PubMed Central

    Wang, Pengkai; Cheng, Tielong; Lu, Mengzhu; Liu, Guangxin; Li, Meiping; Shi, Jisen; Lu, Ye; Laux, Thomas; Chen, Jinhui

    2016-01-01

    The APETALA2 (AP2) genes represent the AP2 group within a large group of DNA-binding proteins called AP2/EREBP. The AP2 gene is functional and necessary for flower development, stem cell maintenance, and seed development, whereas the other members of AP2 group redundantly affect flowering time. Here we study the phylogeny of AP2 group genes in spermatophytes. Spermatophyte AP2 group genes can be classified into AP2 and TOE types, six clades, and we found that the AP2 group homologs in gymnosperms belong to the AP2 type, whereas TOE types are absent, which indicates the AP2 type gene are more ancient and TOE type was split out of AP2 type and losing the major function. In Brassicaceae, the expansion of AP2 and TOE type lead to the gene number of AP2 group were up to six. Purifying selection appears to have been the primary driving force of spermatophyte AP2 group evolution, although positive selection occurred in the AP2 clade. The transition from exon to intron of AtAP2 in Arabidopsis mutant leads to the loss of gene function and the same situation was found in AtTOE2. Combining this evolutionary analysis and published research, the results suggest that typical AP2 group genes may first appear in gymnosperms and diverged in angiosperms, following expansion of group members and functional differentiation. In angiosperms, AP2 genes (AP2 clade) inherited key functions from ancestors and other genes of AP2 group lost most function but just remained flowering time controlling in gene formation. In this study, the phylogenies of AP2 group genes in spermatophytes was analyzed, which supported the evidence for the research of gene functional evolution of AP2 group. PMID:27703459

  6. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    PubMed

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001) in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides) subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA) of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p < 0.05) more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH) was 1.54-fold (p

  7. Label-Free LC-MS Profiling of Skeletal Muscle Reveals Heart-Type Fatty Acid Binding Protein as a Candidate Biomarker of Aerobic Capacity.

    PubMed

    Malik, Zulezwan Ab; Cobley, James N; Morton, James P; Close, Graeme L; Edwards, Ben J; Koch, Lauren G; Britton, Steven L; Burniston, Jatin G

    2013-12-01

    Two-dimensional gel electrophoresis provides robust comparative analysis of skeletal muscle, but this technique is laborious and limited by its inability to resolve all proteins. In contrast, orthogonal separation by SDS-PAGE and reverse-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) affords deep mining of the muscle proteome, but differential analysis between samples is challenging due to the greater level of fractionation and the complexities of quantifying proteins based on the abundances of their tryptic peptides. Here we report simple, semi-automated and time efficient (i.e., 3 h per sample) proteome profiling of skeletal muscle by 1-dimensional RPLC electrospray ionisation tandem MS. Solei were analysed from rats (n = 5, in each group) bred as either high- or low-capacity runners (HCR and LCR, respectively) that exhibited a 6.4-fold difference (1,625 ± 112 m vs. 252 ± 43 m, p < 0.0001) in running capacity during a standardized treadmill test. Soluble muscle proteins were extracted, digested with trypsin and individual biological replicates (50 ng of tryptic peptides) subjected to LC-MS profiling. Proteins were identified by triplicate LC-MS/MS analysis of a pooled sample of each biological replicate. Differential expression profiling was performed on relative abundances (RA) of parent ions, which spanned three orders of magnitude. In total, 207 proteins were analysed, which encompassed almost all enzymes of the major metabolic pathways in skeletal muscle. The most abundant protein detected was type I myosin heavy chain (RA = 5,843 ± 897) and the least abundant protein detected was heat shock 70 kDa protein (RA = 2 ± 0.5). Sixteen proteins were significantly (p < 0.05) more abundant in HCR muscle and hierarchal clustering of the profiling data highlighted two protein subgroups, which encompassed proteins associated with either the respiratory chain or fatty acid oxidation. Heart-type fatty acid binding protein (FABPH) was 1.54-fold (p

  8. Serum Level of Heart-Type Fatty Acid Binding Protein (H-FABP) Before and After Treatment of Congestive Heart Failure in Children.

    PubMed

    Zoair, Amr; Mawlana, Wegdan; Abo-Elenin, Amany; Korrat, Mostafa

    2015-12-01

    Remodeling of the heart following injury affects the morbidity and mortality in children presented with heart failure (HF). Heart-type fatty acid binding protein (H-FABP) is a novel biomarker that could be of help to predict the prognosis and risk stratification in those children. We aimed to evaluate the diagnostic and prognostic value of H-FABP in children with heart failure before and after treatment. The study was conducted as a prospective cohort study. It included 30 children with HF as a patient group and 20 healthy children matched for age and sex as a control group. Echocardiographic assessment of the heart was done using conventional Doppler echocardiography. Serum levels of (H-FABP) were measured using enzyme-linked immunosorbent assay before and after treatment of HF. All patients were observed during follow-up period of 3 months. There was a significant difference in the serum level of H-FABP in our patients before treatment (5.278 ± 3.253 ng/ml) compared with after treatment (2.089 ± 0.160 ng/ml) with significant difference compared with the control group. There was a significant increase in the serum level of H-FABP with increase in the severity of heart failure according to Ross classification. Significant increase in the H-FABP was associated with adverse outcome. Serum levels of H-FABP strongly correlated with clinical and echocardiographic assessment of LV performance of children with HF, and its levels significantly increased in children with adverse outcome suggesting its value as a useful diagnostic and prognostic predictor (with high sensitivity and specificity). PMID:26123812

  9. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken.

    PubMed

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-10-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time.

  10. Heart-Type Fatty Acid-Binding Protein, in Early Detection of Acute Myocardial Infarction: Comparison with CK-MB, Troponin I and Myoglobin.

    PubMed

    Pyati, Anand K; Devaranavadagi, Basavaraj B; Sajjannar, Sanjeev L; Nikam, Shashikant V; Shannawaz, Mohd; Patil, Satish

    2016-10-01

    The study aimed to investigate whether heart-type fatty acid binding protein (H-FABP) measurement provides additional diagnostic value to that of conventional cardiac markers in acute myocardial infarction (AMI) within first 6 h after the onset of symptoms. The study included 120 subjects: 60 AMI cases and 60 age and sex matched controls. The cases and controls were further divided into 2 subgroups depending on the time since onset of chest pain as (1) subjects within 3 h and (2) between 3 and 6 h of onset of chest pain. In all the cases and controls, serum H-FABP concentration was measured by Immunoturbidimetric method, serum Troponin I and myoglobin concentrations by Chemiluminescence immunoassay and serum CK-MB concentration by Immuno-inhibition method. The sensitivity, specificity, positive and negative predictive values of H-FABP were significantly greater than CK-MB and myoglobin but were lesser than Troponin I in patients with suspected AMI in both within 3 h and 3-6 h groups. Receiver operating characteristic curves demonstrated greatest diagnostic ability for Troponin I (AUC = 0.99, p < 0.001) followed by H-FABP (AUC = 0.906, p < 0.001) within 3 h and 3-6 h after the onset of chest pain. In conclusion, the diagnostic value of H-FABP is greater than CK-MB and myoglobin but slightly lesser than troponin I for the early diagnosis of AMI within first 6 h of chest pain. H-FABP can be used as an additional diagnostic tool for the early diagnosis of AMI along with troponin I. PMID:27605741

  11. Dual role of fatty acid-binding protein 5 on endothelial cell fate: a potential link between lipid metabolism and angiogenic responses.

    PubMed

    Yu, Chen-Wei; Liang, Xiaoliang; Lipsky, Samantha; Karaaslan, Cagatay; Kozakewich, Harry; Hotamisligil, Gokhan S; Bischoff, Joyce; Cataltepe, Sule

    2016-01-01

    Fatty acid-binding proteins (FABP) are small molecular mass intracellular lipid chaperones that are expressed in a tissue-specific manner with some overlaps. FABP4 and FABP5 share ~55 % amino acid sequence homology and demonstrate synergistic effects in regulation of metabolic and inflammatory responses in adipocytes and macrophages. Recent studies have shown that FABP4 and FABP5 are also co-expressed in a subset of endothelial cells (EC). FABP4, which has a primarily microvascular distribution, enhances angiogenic responses of ECs, including proliferation, migration, and survival. However, the vascular expression of FABP5 has not been well characterized, and the role of FABP5 in regulation of angiogenic responses in ECs has not been studied to date. Herein we report that while FABP4 and FABP5 are co-expressed in microvascular ECs in several tissues, FABP5 expression is also detected in ECs of larger blood vessels. In contrast to FABP4, EC-FABP5 levels are not induced by VEGF-A or bFGF. FABP5 deficiency leads to a profound impairment in EC proliferation and chemotactic migration. These effects are recapitulated in an ex vivo assay of angiogenesis, the aortic ring assay. Interestingly, in contrast to FABP4-deficient ECs, FABP5-deficient ECs are significantly more resistant to apoptotic cell death. The effect of FABP5 on EC proliferation and survival is mediated, only in part, by PPARδ-dependent pathways. Collectively, these findings demonstrate that EC-FABP5, similar to EC-FABP4, promotes angiogenic responses under certain conditions, but it can also exert opposing effects on EC survival as compared to EC-FABP4. Thus, the balance between FABP4 and FABP5 in ECs may be important in regulation of angiogenic versus quiescent phenotypes in blood vessels.

  12. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken.

    PubMed

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-10-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394

  13. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias.

    PubMed

    Schroeder, Friedhelm; McIntosh, Avery L; Martin, Gregory G; Huang, Huan; Landrock, Danilo; Chung, Sarah; Landrock, Kerstin K; Dangott, Lawrence J; Li, Shengrong; Kaczocha, Martin; Murphy, Eric J; Atshaves, Barbara P; Kier, Ann B

    2016-06-01

    The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety. PMID:27117865

  14. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by LPS in vitro and in vivo

    PubMed Central

    Martin, Ivelisse; Cabán-Hernández, Kimberly; Figueroa-Santiago, Olgary; Espino, Ana M.

    2015-01-01

    Toll-like receptor 4 (TLR4), the innate immunity receptor for bacterial endotoxins, plays a pivotal role in the induction of inflammatory responses. There is a need to develop molecules that block either activation through TLR4 or the downstream signaling pathways to inhibit the storm of inflammation typically elicited by bacterial lipopolysaccharide (LPS), which is a major cause of the high mortality associated with bacterial sepsis. We report here that a single intraperitoneal injection of 15μg Fasciola hepatica fatty acid binding protein (Fh12) 1 hour before exposure to LPS suppressed significantly the expression of serum inflammatory cytokines in a model of septic shock using C57BL/6 mice. Because macrophages are good source of IL12p70 and TNFα, and critical in driving adaptive immunity, we investigated the effect of Fh12 on the function of mouse bone marrow derived macrophages (bmMΦs). Whereas Fh12 alone did not induce cytokine expression, it significantly suppressed the expression of IL12, TNFα, IL6 and IL1β cytokines as well as iNOS2 in bmMΦs, and also impaired the phagocytic capacity of bmMΦs. Fh12 had a limited effect on the expression of inflammatory cytokines induced in response to other TLR-ligands. One mechanism used by Fh12 to exert its anti-inflammatory effect is binding to the CD14 co-receptor. Moreover, it suppresses phosphorylation of ERK, p38 and JNK. The potent anti-inflammatory properties of Fh12 demonstrated here open doors to further studies directed at exploring the potential of this molecule as a new class of drug against septic shock or other inflammatory diseases. PMID:25780044

  15. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion.

    PubMed

    Shibue, Kimitaka; Yamane, Shunsuke; Harada, Norio; Hamasaki, Akihiro; Suzuki, Kazuyo; Joo, Erina; Iwasaki, Kanako; Nasteska, Daniela; Harada, Takanari; Hayashi, Yoshitaka; Adachi, Yasuhiro; Owada, Yuji; Takayanagi, Ryoichi; Inagaki, Nobuya

    2015-04-01

    Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K cells in response to nutrient intake, especially fat. GIP is one of the contributing factors inducing fat accumulation that results in obesity. A recent study shows that fatty acid-binding protein 5 (FABP5) is expressed in murine K cells and is involved in fat-induced GIP secretion. We investigated the mechanism of fat-induced GIP secretion and the impact of FABP5-related GIP response on diet-induced obesity (DIO). Single oral administration of glucose and fat resulted in a 40% reduction of GIP response to fat but not to glucose in whole body FABP5-knockout (FABP5(-/-)) mice, with no change in K cell count or GIP content in K cells. In an ex vivo experiment using isolated upper small intestine, oleic acid induced only a slight increase in GIP release, which was markedly enhanced by coadministration of bile and oleic acid together with attenuated GIP response in the FABP5(-/-) sample. FABP5(-/-) mice exhibited a 24% reduction in body weight gain and body fat mass under a high-fat diet compared with wild-type (FABP5(+/+)) mice; the difference was not observed between GIP-GFP homozygous knock-in (GIP(gfp/gfp))-FABP5(+/+) mice and GIP(gfp/gfp)-FABP5(-/-) mice, in which GIP is genetically deleted. These results demonstrate that bile efficiently amplifies fat-induced GIP secretion and that FABP5 contributes to the development of DIO in a GIP-dependent manner.

  16. Fatty Acid Binding Protein-1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias.

    PubMed

    Schroeder, Friedhelm; McIntosh, Avery L; Martin, Gregory G; Huang, Huan; Landrock, Danilo; Chung, Sarah; Landrock, Kerstin K; Dangott, Lawrence J; Li, Shengrong; Kaczocha, Martin; Murphy, Eric J; Atshaves, Barbara P; Kier, Ann B

    2016-06-01

    The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.

  17. Correlation between Heart-type Fatty Acid-binding Protein Gene Polymorphism and mRNA Expression with Intramuscular Fat in Baicheng-oil Chicken

    PubMed Central

    Wang, Yong; He, Jianzhong; Yang, Wenxuan; Muhantay, Gemenggul; Chen, Ying; Xing, Jinming; Liu, Jianzhu

    2015-01-01

    This study aims to determine the polymorphism and mRNA expression pattern of the heart-type fatty acid-binding protein (H-FABP) gene and their association with intramuscular fat (IMF) content in the breast and leg muscles of Baicheng oil chicken (BOC). A total of 720 chickens, including 240 black Baicheng oil chicken (BBOC), 240 silky Baicheng oil chicken (SBOC), and 240 white Baicheng oil chicken (WBOC) were raised. Three genotypes of H-FABP gene second extron following AA, AB, and BB were detected by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) strategy. The G939A site created AA genotype and G956A site created BB genotype. The content of IMF in AA genotype in breast muscle of BBOC was significantly higher than that of AB (p = 0.0176) and the genotype in leg muscle of WBOC was significantly higher than that of AB (p = 0.0145). The G939A site could be taken as genetic marker for higher IMF content selecting for breast muscle of BBOC and leg muscle of WBOC. The relative mRNA expression of H-FABP was measured by real-time PCR at 30, 60, 90, and 120 d. The IMF content significantly increased with age in both muscles. The mRNA expression level of H-FABP significantly decreased with age in both muscles of the three types of chickens. Moreover, a significant negative correlation between H-FABP abundance and IMF content in the leg muscles of WBOC (p = 0.035) was observed. The mRNA expression of H-FABP negatively correlated with the IMF content in both breast and leg muscles of BOC sat slaughter time. PMID:26323394

  18. Proteomic analysis of human papillomavirus-related oral squamous cell carcinoma: identification of thioredoxin and epidermal-fatty acid binding protein as upregulated protein markers in microdissected tumor tissue.

    PubMed

    Melle, Christian; Ernst, Günther; Winkler, Robert; Schimmel, Bettina; Klussmann, Jens Peter; Wittekindt, Claus; Guntinas-Lichius, Orlando; von Eggeling, Ferdinand

    2009-04-01

    Human papillomavirus (HPV) infection has been identified as an etiologic agent for a subset of oral squamous cell carcinoma (OSCC) with increasing incidence. HPV DNA-positivity may confer better prognosis but the related oncogenic mechanisms are unknown. For the identification of HPV relevant proteins, we analyzed microdissected cells from HPV DNA-positive (n = 17) and HPV DNA-negative (n = 7) OSCC tissue samples. We identified 18 proteins from tumor tissues by peptide fingerprint mapping and SELDI MS that were separated using 2-DE. Among a number of signals that were detected as significantly different in the protein profiling analysis, we identified thioredoxin (TRX) and epidermal-fatty acid binding protein as upregulated in HPV related tumor tissue. This study, investigating for the first time proteomic changes in microdissected HPV infected tumor tissue, provides an indication on the oncogenic potential of viruses. PMID:19337991

  19. The AP2-like gene OitaAP2 is alternatively spliced and differentially expressed in inflorescence and vegetative tissues of the orchid Orchis italica.

    PubMed

    Salemme, Marinella; Sica, Maria; Iazzetti, Giovanni; Gaudio, Luciano; Aceto, Serena

    2013-01-01

    The AP2/ERF proteins are plant-specific transcription factors involved in multiple regulatory pathways, from plant organ development to response to various environmental stresses. One of the mechanisms that regulates the AP2-like genes involves the microRNA miR172, which controls their activity at the post-transcriptional level. Extensive studies on AP2-like genes are available in many different species; however, in orchids, one of the largest plant families, studies are restricted to a few species, all belonging to the Epidendroideae subfamily. In the present study, we report the isolation of an AP2-like gene in the Mediterranean orchid Orchis italica (Orchidoideae). The OitaAP2 locus includes 10 exons and 9 introns, and its transcript is alternatively spliced, resulting in the long OitaAP2 and the short OitaAP2_ISO isoforms, with the latter skipping exon 9. Both isoforms contain the conserved target site for miR172, whose action is demonstrated by the presence of cleaved OitaAP2 mRNA. The OitaAP2 and OitaAP2_ISO mRNAs are present in the tepals and lip before and after anthesis at different expression levels. In addition, the OitaAP2_ISO isoform is expressed in the ovary before pollination and in the root and stem. The isoform-specific expression pattern suggests a functional differentiation of the OitaAP2 alternatively spliced transcripts. The expression profile of miR172 is complementary to that of the OitaAP2 isoforms in inflorescence tissues before anthesis, whereas after anthesis and in ovary tissue before and after pollination, this relationship disappears, suggesting the existence of OitaAP2 inhibitory mechanisms in these tissues that differ from that involving miR172.

  20. [Type 2 autoimmune polyendocrine syndromes (APS-2)].

    PubMed

    Vialettes, Bernard; Dubois-Leonardon, Noémie

    2013-01-01

    Type 2 autoimmune polyendocrine syndromes (APS-2) are the most frequent disorders associating several organ-specific autoimmune diseases. Their high prevalence is due to the fact that the main manifestations of APS-2, such as thyroidal autoimmunity, type 1 diabetes, autoimmune gastric atrophy and vitiligo, are common diseases. APS-2 represents a clinical model that can serve to help unravel the mechanisms underlying autoimmunity. Diagnosis of APS-2 is a challenge for the clinician, especially in poorly symptomatic forms, and may require systematic screening based on measurement of autoantibodies and functional markers.

  1. Clinical Usefulness of Urinary Fatty Acid Binding Proteins in Assessing the Severity and Predicting Treatment Response of Pneumonia in Critically Ill Patients

    PubMed Central

    Tsao, Tsung-Cheng; Tsai, Han-Chen; Chang, Shi-Chuan

    2016-01-01

    Abstract To investigate the clinical relevance of urinary fatty acid binding proteins (FABPs), including intestinal-FABP, adipocyte-FABP, liver-FABP, and heart-FABP in pneumonia patients required admission to respiratory intensive care unit (RICU). Consecutive pneumonia patients who admitted to RICU from September 2013 to October 2014 were enrolled except for those with pneumonia for more than 24 h before admission to RICU. Pneumonia patients were further divided into with and without septic shock subgroups. Twelve patients without infection were enrolled to serve as control group. Urine samples were collected on days 1 and 7 after admission to RICU for measuring FABPs and inflammatory cytokines. Clinical and laboratory data were collected and compared between pneumonia and control groups, and between the pneumonia patients with and without septic shock. There were no significant differences in urinary levels of various FABPs and inflammatory cytokines measured on day 1 between control and pneumonia groups. Urinary values of intestine-FABP (P = 0.020), adipocyte-FABP (P = 0.005), heart-FABP (P = 0.025), and interleukin-6 (P = 0.019) were significantly higher and arterial oxygen tension/fraction of inspired oxygen (PaO2/FiO2, P/F) ratio (P = 0.024) was significantly lower in pneumonia patients with septic shock on day 1 than in those without septic shock. After multivariate analysis, adipocyte-FABP was the independent factor (P = 0.026). Urinary levels of FABPs measured on day 7 of pneumonia patients were significantly lower in the improved than in nonimproved groups (P = 0.030 for intestine-FABP, P = 0.003 for adipocyte-FABP, P = 0.010 for heart-FABP, and P = 0.008 for liver-FABP, respectively). After multivariate analysis, adipocyte-FABP was the independent factor (P = 0.023). For pneumonia patients required admission to RICU, urinary levels of adipocyte-FABP on days 1 and 7 after admission to RICU may be valuable in

  2. Renoprotective effect of renal liver-type fatty acid binding protein and angiotensin II type 1a receptor loss in renal injury caused by RAS activation.

    PubMed

    Ichikawa, Daisuke; Kamijo-Ikemori, Atsuko; Sugaya, Takeshi; Shibagaki, Yugo; Yasuda, Takashi; Katayama, Kimie; Hoshino, Seiko; Igarashi-Migitaka, Junko; Hirata, Kazuaki; Kimura, Kenjiro

    2014-03-15

    The aim of this study was to assess the renoprotective effect of renal human liver-type fatty acid binding protein (hL-FABP) and angiotensin II (ANG II) type 1A receptor (AT1a) loss in renal injury caused by renin-angiotensin system (RAS) activation. We established hL-FABP chromosomal transgenic mice (L-FABP(+/-)AT1a(+/+)), crossed the L-FABP(+/-)AT1a(+/+) with AT1a knockdown homo mice (L-FABP(-/-)AT1a(-/-)), and generated L-FABP(+/-)AT1a hetero mice (L-FABP(+/-)AT1a(+/-)). After the back-cross of these cubs, L-FABP(+/-)AT1a(-/-) were obtained. To activate the renal RAS, wild-type mice (L-FABP(-/-)AT1a(+/+)), L-FABP(+/-)AT1a(+/+), L-FABP(-/-)AT1a(+/-), L-FABP(+/-)AT1a(+/-), L-FABP(-/-)AT1a(-/-), and L-FABP(+/-)AT1a(-/-) were administered high-dose systemic ANG II infusion plus a high-salt diet for 28 days. In the L-FABP(-/-)AT1a(+/+), RAS activation (L-FABP(-/-)AT1a(+/+)RAS) caused hypertension and tubulointerstitial damage. In the L-FABP(+/-)AT1a(+/+)RAS, tubulointerstitial damage was significantly attenuated compared with L-FABP(-/-)AT1a(+/+)RAS. In the AT1a partial knockout (AT1a(+/-)) or complete knockout (AT1a(-/-)) mice, reduction of AT1a expression led to a significantly lower degree of renal injury compared with L-FABP(-/-)AT1a(+/+)RAS or L-FABP(+/-)AT1a(+/+)RAS mice. Renal injury in L-FABP(+/-)AT1a(+/-)RAS mice was significantly attenuated compared with L-FABP(-/-)AT1a(+/-)RAS mice. In both L-FABP(-/-)AT1a(-/-)RAS and L-FABP(+/-)AT1a(-/-)RAS mice, renal damage was rarely found. The degrees of renal hL-FABP expression and urinary hL-FABP levels increased by RAS activation and gradually decreased along with reduction of AT1a expression levels. In conclusion, in this mouse model, renal hL-FABP expression and a decrease in AT1a expression attenuated tubulointerstitial damage due to RAS activation.

  3. Ectopic expression of AP-2α transcription factor suppresses glioma progression.

    PubMed

    Su, Wenjing; Xia, Juan; Chen, Xueqin; Xu, Miao; Nie, Ling; Chen, Ni; Gong, Jing; Li, Xinglan; Zhou, Qiao

    2014-01-01

    The transcriptional factor AP-2α is a tumor suppressor gene and is downregulated in various neoplasms including glioma. Although the level of AP-2α is negatively associated with the grade of human glioma, the specific functions of AP-2α in glioma are still unknown. In this study, we experimentally showed that artificial overexpression of AP-2α in glioma T98G and U251 cells significantly downregulated the mRNA levels of Bcl-xl, Bcl-2, c-IAP2 and survivin, together with upregulation of the Hrk mRNA levels. Reintroduction of AP-2α also induced downregulation of the protein levels of survivin and VEGF in glioma cells. In biological assays with T98G and U251 cells, AP-2α reduced tumor cell growth, increased cell death, attenuated cell migration and endothelial tube formation. The AP-2α transcription factor may play an important role in suppressing glioma progression. PMID:25674231

  4. Ectopic expression of AP-2α transcription factor suppresses glioma progression

    PubMed Central

    Su, Wenjing; Xia, Juan; Chen, Xueqin; Xu, Miao; Nie, Ling; Chen, Ni; Gong, Jing; Li, Xinglan; Zhou, Qiao

    2014-01-01

    The transcriptional factor AP-2α is a tumor suppressor gene and is downregulated in various neoplasms including glioma. Although the level of AP-2α is negatively associated with the grade of human glioma, the specific functions of AP-2α in glioma are still unknown. In this study, we experimentally showed that artificial overexpression of AP-2α in glioma T98G and U251 cells significantly downregulated the mRNA levels of Bcl-xl, Bcl-2, c-IAP2 and survivin, together with upregulation of the Hrk mRNA levels. Reintroduction of AP-2α also induced downregulation of the protein levels of survivin and VEGF in glioma cells. In biological assays with T98G and U251 cells, AP-2α reduced tumor cell growth, increased cell death, attenuated cell migration and endothelial tube formation. The AP-2α transcription factor may play an important role in suppressing glioma progression. PMID:25674231

  5. Regulation of the HMOX1 gene by the transcription factor AP-2δ with unique DNA binding site.

    PubMed

    Sun, Liyun; Zhao, Yuxia; Gu, Shaohua; Mao, Yumin; Ji, Chaoneng; Xin, Xiujuan

    2014-07-01

    AP-2 transcription factors are important sequence-specific DNA-binding regulators that are expressed in the neural crest and other tissues during mammalian development. The human AP-2 family of transcription factors consists of five members, AP-2α, -β, -γ, -δ and -ε, which have an important role in the regulation of gene expression during development and in the differentiation of multiple organs and tissues. The present study aimed to investigate the mechanism by which AP-2δ mediates heme oxygenase-1 (HMOX1) gene expression. It was identified that the human AP-2δ protein exhibited weak binding to a suboptimal AP-2 sequence, 5'-GCCN3GGC-3', to which all other AP-2 proteins bind in vitro, providing the first example of DNA target specificity amongst the AP-2 family. AP-2δ protein bound to an optimized AP-2 consensus DNA sequence, 5'-GCCTGAGGC-3', in vitro and transactivated gene expression in eukaryotic cells. The transactivation domain of Ap-2δ differs notably from those in the other AP-2 proteins as it lacks the PY motif (XPPXY) and several other conserved residues that are important for the transcriptional activity of AP-2 proteins, yet it functions as an equally strong activator. PMID:24789576

  6. R Factor Proteins Synthesized in Escherichia coli Minicells: Incorporation Studies with Different R Factors and Detection of Deoxyribonucleic Acid-Binding Proteins1

    PubMed Central

    Levy, Stuart B.

    1974-01-01

    Analysis of the protein synthesized by Escherichia coli minicells containing R factors demonstrated a variety of low- and high-molecular-weight polypeptides in sodium dodecyl sulfate (SDS)-polyacrylamide gels. Only half of this protein was released into a soluble fraction on lysis of these minicells. The other half remained associated with the minicell envelope. The efficiency of precursor incorporation into protein and the kinds of proteins synthesized changed with the age of the minicells at the time of harvest. About 1 to 2% of the soluble R factor-coded protein bound to calf thymus, E. coli, or R factor DNA-cellulose. Although most of these proteins were excluded from Sephadex G-100 columns, they migrated chiefly as low-molecular-weight-polypeptides (13,000 to 15,000) in SDS-polyacrylamide gels. Additional DNA-binding proteins that appeared to be higher-molecular-weight peptides were noted in extracts from younger minicells. At least one protein, identified as an SDS band, appeared to bind selectively to R factor DNA-cellulose. Minicells with R factors also contained DNA-binding proteins of cell origin, including the core RNA polymerase. No such binding proteins were found in R− minicells. These studies suggest that: (i) R factors code for proteins that may be involved in their own DNA metabolism; (ii) R factor DNA-binding proteins may be associated with larger host cell DNA-binding proteins or subunits of larger R factor proteins; and (iii) the age of the minicell influences the extent of protein synthesis and the kinds of proteins synthesized by R factors in minicells. Images PMID:4612023

  7. Uses of phage display in agriculture: sequence analysis and comparative modeling of late embryogenesis abundant client proteins suggest protein-nucleic acid binding functionality.

    PubMed

    Kushwaha, Rekha; Downie, A Bruce; Payne, Christina M

    2013-01-01

    A group of intrinsically disordered, hydrophilic proteins-Late Embryogenesis Abundant (LEA) proteins-has been linked to survival in plants and animals in periods of stress, putatively through safeguarding enzymatic function and prevention of aggregation in times of dehydration/heat. Yet despite decades of effort, the molecular-level mechanisms defining this protective function remain unknown. A recent effort to understand LEA functionality began with the unique application of phage display, wherein phage display and biopanning over recombinant Seed Maturation Protein homologs from Arabidopsis thaliana and Glycine max were used to retrieve client proteins at two different temperatures, with one intended to represent heat stress. From this previous study, we identified 21 client proteins for which clones were recovered, sometimes repeatedly. Here, we use sequence analysis and homology modeling of the client proteins to ascertain common sequence and structural properties that may contribute to binding affinity with the protective LEA protein. Our methods uncover what appears to be a predilection for protein-nucleic acid interactions among LEA client proteins, which is suggestive of subcellular residence. The results from this initial computational study will guide future efforts to uncover the protein protective mechanisms during heat stress, potentially leading to phage-display-directed evolution of synthetic LEA molecules.

  8. Tissue-specific differential induction of duplicated fatty acid-binding protein genes by the peroxisome proliferator, clofibrate, in zebrafish (Danio rerio)

    PubMed Central

    2012-01-01

    Background Force, Lynch and Conery proposed the duplication-degeneration-complementation (DDC) model in which partitioning of ancestral functions (subfunctionalization) and acquisition of novel functions (neofunctionalization) were the two primary mechanisms for the retention of duplicated genes. The DDC model was tested by analyzing the transcriptional induction of the duplicated fatty acid-binding protein (fabp) genes by clofibrate in zebrafish. Clofibrate is a specific ligand of the peroxisome proliferator-activated receptor (PPAR); it activates PPAR which then binds to a peroxisome proliferator response element (PPRE) to induce the transcriptional initiation of genes primarily involved in lipid homeostasis. Zebrafish was chosen as our model organism as it has many duplicated genes owing to a whole genome duplication (WGD) event that occurred ~230-400 million years ago in the teleost fish lineage. We assayed the steady-state levels of fabp mRNA and heterogeneous nuclear RNA (hnRNA) transcripts in liver, intestine, muscle, brain and heart for four sets of duplicated fabp genes, fabp1a/fabp1b.1/fabp1b.2, fabp7a/fabp7b, fabp10a/fabp10b and fabp11a/fabp11b in zebrafish fed different concentrations of clofibrate. Result Electron microscopy showed an increase in the number of peroxisomes and mitochondria in liver and heart, respectively, in zebrafish fed clofibrate. Clofibrate also increased the steady-state level of acox1 mRNA and hnRNA transcripts in different tissues, a gene with a functional PPRE. These results demonstrate that zebrafish is responsive to clofibrate, unlike some other fishes. The levels of fabp mRNA and hnRNA transcripts for the four sets of duplicated fabp genes was determined by reverse transcription, quantitative polymerase chain reaction (RT-qPCR). The level of hnRNA coded by a gene is an indirect estimate of the rate of transcriptional initiation of that gene. Clofibrate increased the steady-state level of fabp mRNAs and hnRNAs for both the

  9. Genome-wide comparison of AP2/ERF superfamily genes between Gossypium arboreum and G. raimondii.

    PubMed

    Lei, Z P; He, D H; Xing, H Y; Tang, B S; Lu, B X

    2016-01-01

    The APETALA2/ethylene response factor (AP2/ERF) transcription factor superfamily is known to regulate diverse processes of plant development and stress responses. We conducted a genome-wide analysis of the AP2/ERF gene in Gossypium arboreum and G. raimondii. Using RPSBLAST and HMMsearch, a total of 271 and 269 AP2/ERF genes were identified in the G. arboreum and G. raimondii genomes, respectively. A phylogenetic analysis classified diploid Gossypium spp AP2/ERF genes into 4 families and 16 subfamilies. Orthologous genes predominated the terminal branch of the phylogenetic tree. Physical mapping showed at least 30% of AP2/ERF genes clustered together. A high level of intra- and inter-species collinearity involving AP2/ERF genes was observed, indicating common (before species divergence) or parallel (after species divergence) segmental duplications, along with tandem duplications, resulting in the species-specific expansion of AP2/ERF genes in diploid Gossypium species. Motif analyses of the AP2/ERF proteins revealed that motif arrangements were highly diverse among subfamilies, but shared by orthologous gene pairs. An examination of nucleotide divergence of AP2/ERF coding regions identified small and non-significant sequence differences among orthologs. Expression profiling of AP2/ERF orthologous gene pairs showed similar abundance levels of orthologous copies between G. arboreum and G. raimondii. Thus, cotton species possess abundant and diverse AP2/ERF genes, resulting from tandem and segmental duplications. Protein and nucleotide sequence and mRNA expression analyses revealed symmetrical evolution, indicating that most AP2/ ERF genes may not have undergone significant biochemical and morphological divergence between sister species. Our study provides detailed insights into the evolutionary characteristics and functional importance of AP2/ERF genes, and could aid in the genetic improvement of agriculturally significant crops in this genus. PMID:27525884

  10. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon.

    PubMed

    Chen, Lihong; Han, Jiapeng; Deng, Xiaomin; Tan, Shenglong; Li, Lili; Li, Lun; Zhou, Junfei; Peng, Hai; Yang, Guangxiao; He, Guangyuan; Zhang, Weixiong

    2016-01-01

    APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plant, and play essential roles in growth, development and stress response. Except a few members, the AP2/EREBP family has not been characterized in Brachypodium distachyon, a model plant of Poaceae. We performed a genome-wide study of this family in B. distachyon by phylogenetic analyses, transactivation assays and transcript profiling. A total of 149 AP2/EREBP genes were identified and divided into four subfamilies, i.e., ERF (ethylene responsive factor), DREB (dehydration responsive element binding gene), RAV (related to ABI3/VP) and AP2. Tandem duplication was a major force in expanding B. distachyon AP2/EREBP (BdAP2/EREBP) family. Despite a significant expansion, genomic organizations of BdAP2/EREBPs were monotonous as the majority of them, except those of AP2 subfamily, had no intron. An analysis of transcription activities of several closely related and duplicated BdDREB genes showed their functional divergence and redundancy in evolution. The expression of BdAP2/EREBPs in different tissues and the expression of DREB/ERF subfamilies in B. distachyon, wheat and rice under abiotic stresses were investigated by next-generation sequencing and microarray profiling. Our results are valuable for further function analysis of stress tolerant AP2/EREBP genes in B. distachyon. PMID:26869021

  11. Induction of neural crest in Xenopus by transcription factor AP2alpha.

    PubMed

    Luo, Ting; Lee, Young-Hoon; Saint-Jeannet, Jean-Pierre; Sargent, Thomas D

    2003-01-21

    We report experiments with Xenopus laevis, using both intact embryos and ectodermal explants, showing that the transcription factor AP2alpha is positively regulated by bone morphogenetic protein (BMP) and Wnt signaling, and that this activation is an essential step in the induction of neural crest (NC). Ectopic expression of AP2alpha is sufficient to activate high-level expression of NC-specific genes such as Slug and Sox9, which can occur as isolated domains within the neural plate as well as by expansion of endogenous NC territories. AP2alpha also has the property of inducing NC in isolated ectoderm in which Wnt signaling is provided but BMP signaling is minimized by overexpression of chordin. Like other NC regulatory factors, activation of AP2alpha requires some attenuation of endogenous BMP signaling; however, this process occurs at a lower threshold for AP2alpha. Furthermore, AP2alpha expression domains are larger than for other NC factors. Loss-of-function experiments with antisense AP2alpha morpholino oligonucleotides result in severe reduction in the NC territory. These results support a central role for AP2alpha in NC induction. We propose a model in which AP2alpha expression, along with inactivation of NC inhibitory factors such as Dlx3, establish a feedback loop comprising AP2alpha, Sox9, and Slug, leading to and maintaining NC specification. PMID:12511599

  12. Expansion and stress responses of AP2/EREBP superfamily in Brachypodium Distachyon

    PubMed Central

    Chen, Lihong; Han, Jiapeng; Deng, Xiaomin; Tan, Shenglong; Li, Lili; Li, Lun; Zhou, Junfei; Peng, Hai; Yang, Guangxiao; He, Guangyuan; Zhang, Weixiong

    2016-01-01

    APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factors constitute one of the largest and most conserved gene families in plant, and play essential roles in growth, development and stress response. Except a few members, the AP2/EREBP family has not been characterized in Brachypodium distachyon, a model plant of Poaceae. We performed a genome-wide study of this family in B. distachyon by phylogenetic analyses, transactivation assays and transcript profiling. A total of 149 AP2/EREBP genes were identified and divided into four subfamilies, i.e., ERF (ethylene responsive factor), DREB (dehydration responsive element binding gene), RAV (related to ABI3/VP) and AP2. Tandem duplication was a major force in expanding B. distachyon AP2/EREBP (BdAP2/EREBP) family. Despite a significant expansion, genomic organizations of BdAP2/EREBPs were monotonous as the majority of them, except those of AP2 subfamily, had no intron. An analysis of transcription activities of several closely related and duplicated BdDREB genes showed their functional divergence and redundancy in evolution. The expression of BdAP2/EREBPs in different tissues and the expression of DREB/ERF subfamilies in B. distachyon, wheat and rice under abiotic stresses were investigated by next-generation sequencing and microarray profiling. Our results are valuable for further function analysis of stress tolerant AP2/EREBP genes in B. distachyon. PMID:26869021

  13. Expression of transcription factor AP-2α predicts survival in epithelial ovarian cancer

    PubMed Central

    Anttila, M A; Kellokoski, J K; Moisio, K I; Mitchell, P J; Saarikoski, S; Syrjänen, K; Kosma, V-M

    2000-01-01

    The 52-kDa activator protein (AP)-2 is a DNA-binding transcription factor which has been reported to have growth inhibitory effects in cancer cell lines and in human tumours. In this study the expression of AP-2α was analysed in 303 epithelial ovarian carcinomas by immunohistochemistry (IHC) with a polyclonal AP-2α antibody and its mRNA status was determined by in situ hybridization (ISH) and reverse transcriptase-polymerase chain reaction (RT-PCR). The immunohistochemical expression of AP-2α was correlated with clinicopathological variables, p21/WAF1 protein expression and survival. In normal ovaries, epithelial cells expressed AP-2α protein only in the cytoplasm. In carcinomas nuclear AP-2α expression was observed in 28% of the cases although cytoplasmic expression was more common (51%). The expression of AP-2α varied according to the histological subtype and differentiation. AP-2α and p21/WAF1 expressions did not correlate with each other. Both in univariate (P = 0.002) and multivariate analyses (relative risks (RR) 1.6, 95% confidence interval (CI) 1.13–2.18, P = 0.007) the high cytoplasmic AP-2α expression favoured the overall survival. In contrast, the nuclear AP-2α expression combined with low cytoplasmic expression increased the risk of dying of ovarian cancer (RR = 2.10, 95% CI 1.13–3.83, P = 0.018). The shift in the expression pattern of AP-2α (nuclear vs cytoplasmic) in carcinomas points out to the possibility that this transcription factor may be used by oncogenes in certain histological subtypes. Based on the mRNA analyses, the incomplete expression and translation of AP-2α in ovarian cancer may be due to post-transcriptional regulation. © 2000 Cancer Research Campaign PMID:10864206

  14. A combination of probiotics and whey proteins enhances anti-obesity effects of calcium and dairy products during nutritional energy restriction in aP2-agouti transgenic mice.

    PubMed

    Yoda, Kazutoyo; Sun, Xiaocum; Kawase, Manabu; Kubota, Akira; Miyazawa, Kenji; Harata, Gaku; Hosoda, Masataka; Hiramatsu, Masaru; He, Fang; Zemel, Michael B

    2015-06-14

    Lactobacillus rhamnosus GG, Lactobacillus paracasei TMC0409, Streptococcus thermophilus TMC1543 and whey proteins were used to prepare fermented milk. For the experiment aP2- agouti transgenic mice were pre-treated with a high-sucrose/high-fat diet for 6 weeks to induce obesity. The obese mice were fed a diet containing 1·2% Ca and either non-fat dried milk (NFDM) or probiotic-fermented milk (PFM) with nutritional energy restriction for 6 weeks. The animals were examined after the treatment for changes in body weight, fat pad weight, fatty acid synthase (FAS) activity, lypolysis, the expression levels of genes related to lipid metabolism, insulin sensitivity in adipocytes and skeletal muscle and the presence of biomarkers for oxidative and inflammatory stress in plasma. It was found that the PFM diet significantly reduced body weight, fat accumulation, and adipocyte FAS activity, and increased adipocyte lipolysis as compared with the effects of the NFDM diet (P<0·05). The adipose tissue gene expression of 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) was significantly suppressed in mice that were fed PFM as compared with those that were fed NFDM (P<0·05). PFM caused a greater up-regulation of skeletal muscle PPARα, PPARδ, uncoupling protein 3 (UCP3) and GLUT4 expression and a significant decrease in the plasma concentration of insulin, malondialdehyde, TNF-α, monocyte chemotactic protein-1 and C-reactive protein as compared with the effects of NFDM (P<0·05). Fermentation of milk with selected probiotics and supplementation of milk with whey proteins may thus enhance anti-obesity effects of Ca and dairy products by the suppression of adipose tissue lipogenesis, activation of fat oxidation in skeletal muscle and reduction of oxidative and inflammatory stress.

  15. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk.

    PubMed

    Nafikov, R A; Schoonmaker, J P; Korn, K T; Noack, K; Garrick, D J; Koehler, K J; Minick-Bormann, J; Reecy, J M; Spurlock, D E; Beitz, D C

    2013-09-01

    The main goal of this study was to develop tools for genetic selection of animals producing milk with a lower concentration of saturated fatty acids (SFA) and a higher concentration of unsaturated fatty acids (UFA). The reasons for changing milk fatty acid (FA) composition were to improve milk technological properties, such as for production of more spreadable butter, and milk nutritional value with respect to the potentially adverse effects of SFA on human health. We hypothesized that genetic polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) fatty acid transport protein gene and fatty acid binding protein (FABP)-3 and FABP-4 (FABP3 and FABP4) would affect the selectivity of FA uptake into, and FA redistribution inside, mammary epithelial cells, resulting in altered FA composition of bovine milk. The objectives of our study were to discover genetic polymorphisms in SLC27A6, FABP3, and FABP4, and to test those polymorphisms for associations with milk FA composition. The results showed that after pairwise comparisons between SLC27A6 haplotypes for significantly associated traits, haplotype H3 was significantly associated with 1.37 weight percentage (wt%) lower SFA concentration, 0.091 lower SFA:UFA ratio, and 0.17 wt% lower lauric acid (12:0) concentration, but 1.37 wt% higher UFA and 1.24 wt% higher monounsaturated fatty acid (MUFA) concentrations compared with haplotype H1 during the first 3 mo of lactation. Pairwise comparisons between FABP4 haplotypes for significantly associated traits showed that haplotype H3 was significantly associated with 1.04 wt% lower SFA concentration, 0.079 lower SFA:UFA ratio, 0.15 wt% lower lauric acid (12:0), and 0.27 wt% lower myristic acid (14:0) concentrations, but 1.04 wt% higher UFA and 0.91 wt% higher MUFA concentrations compared with haplotype H1 during the first 3 mo of lactation. Percentages of genetic variance explained by H3 versus H1 haplotype substitutions for SLC27A6 and FABP4 ranged from 2.50 to 4.86% and

  16. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection. PMID:25834094

  17. Bombyx mori nucleopolyhedrovirus nucleic acid binding proteins BRO-B and BRO-E associate with host T-cell intracellular antigen 1 homologue BmTRN-1 to influence protein synthesis during infection.

    PubMed

    Kotani, Eiji; Muto, Sayaka; Ijiri, Hiroshi; Mori, Hajime

    2015-07-01

    Previous reports have indicated that the Bombyx mori nucleopolyhedrovirus (BmNPV) nucleic acid binding proteins BRO-B and BRO-E are expressed during the early stage of infection and that the BRO family likely supports the regulation of mRNA; however, no study has directly examined the function of BRO family proteins in virus-permissive cells. Here, we show that BRO-B and BRO-E associate with cellular T-cell intracellular antigen 1 homologue (BmTRN-1), a translational regulator, and other cellular translation-related proteins in silkworm cells during viral infection. We created BM-N cells that expressed BRO-B/E to study molecular interactions between BmTRN-1 and BRO-B/E and how they influenced protein synthesis. Fluorescent microscopy revealed that BmTRN-1 was localized in cytoplasmic foci during BmNPV infection. Immunofluorescence studies confirmed that BmTRN-1 and BRO-B/E were colocalized in the amorphous conspicuous cytoplasmic foci. Reporter gene studies revealed that co-expression of BRO-B/E synergistically led to a significant decrease in protein synthesis from a designed transcript carrying the 5'untranslated region of a cellular mRNA with no significant change of transcript abundance. Additionally, RNA interference-mediated knockdown of BmTRN-1 resulted in a marked inhibition of the ability of BRO-B/E to regulate the transcript. These results suggested that the association of BmTRN-1 with BRO-B/E is responsible for the inhibitory regulation of certain mRNAs at the post-transcriptional level and add an additional mechanism for how baculoviruses control protein synthesis during infection.

  18. A surface-associated retinol- and fatty acid-binding protein (Gp-FAR-1) from the potato cyst nematode Globodera pallida: lipid binding activities, structural analysis and expression pattern.

    PubMed Central

    Prior, A; Jones, J T; Blok, V C; Beauchamp, J; McDermott, L; Cooper, A; Kennedy, M W

    2001-01-01

    Parasitic nematodes produce at least two structurally novel classes of small helix-rich retinol- and fatty-acid-binding proteins that have no counterparts in their plant or animal hosts and thus represent potential targets for new nematicides. Here we describe a protein (Gp-FAR-1) from the plant-parasitic nematode Globodera pallida, which is a member of the nematode-specific fatty-acid- and retinol-binding (FAR) family of proteins but localizes to the surface of this species, placing it in a strategic position for interaction with the host. Recombinant Gp-FAR-1 was found to bind retinol, cis-parinaric acid and the fluorophore-tagged lipids 11-(dansylamino)undecanoic acid and dansyl-D,L-alpha-amino-octanoic acid. The fluorescence emission characteristics of the dansylated analogues indicated that the entire ligand enters the binding cavity. Fluorescence competition experiments showed that Gp-FAR-1 binds fatty acids in the range C(11) to C(24), with optimal binding at C(15). Intrinsic fluorescence analysis of a mutant protein into which a tryptophan residue had been inserted supported computer-based predictions of the position of this residue at the protein's interior and possibly also at the binding site. Of direct relevance to plant defence systems was the observation that Gp-FAR-1 binds two lipids (linolenic and linoleic acids) that are precursors of plant defence compounds and the jasmonic acid signalling pathway. Moreover, Gp-FAR-1 was found to inhibit the lipoxygenase-mediated modification of these substrates in vitro. Thus not only does Gp-FAR-1 function as a broad-spectrum retinol- and fatty-acid-binding protein, the results are consistent with the idea that Gp-FAR-1 is involved in the evasion of primary host plant defence systems. PMID:11368765

  19. Sequence-specific {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments for intestinal fatty-acid-binding protein complexed with palmitate (15.4 kDA)

    SciTech Connect

    Hodsdon, M.E.; Toner, J.J.; Cistola, D.P.

    1994-12-01

    Intestinal fatty-acid-binding protein (I-FABP) belongs to a family of soluble, cytoplasmic proteins that are thought to function in the intracellular transport and trafficking of polar lipids. Individual members of this protein family have distinct specificities and affinities for fatty acids, cholesterol, bile salts, and retinoids. We are comparing several retinol- and fatty-acid-binding proteins from intestine in order to define the factors that control molecular recognition in this family of proteins. We have established sequential resonance assignments for uniformly {sup 13}C/{sup 15}N-enriched I-FABP complexed with perdeuterated palmitate at pH7.2 and 37{degrees}C. The assignment strategy was similar to that introduced for calmodulin. We employed seven three-dimensional NMR experiments to establish scalar couplings between backbone and sidechain atoms. Backbone atoms were correlated using triple-resonance HNCO, HNCA, TOCSY-HMQC, HCACO, and HCA(CO)N experiments. Sidechain atoms were correlated using CC-TOCSY, HCCH-TOCSY, and TOCSY-HMQC. The correlations of peaks between three-dimensional spectra were established in a computer-assisted manner using NMR COMPASS (Molecular Simulations, Inc.) Using this approach, {sup 1}H, {sup 13}C, and {sup 15}N resonance assignments have been established for 120 of the 131 residues of I-FABP. For 18 residues, amide {sup 1}H and {sup 15}N resonances were unobservable, apparently because of the rapid exchange of amide protons with bulk water at pH 7.2. The missing amide protons correspond to distinct amino acid patterns in the protein sequence, which will be discussed. During the assignment process, several sources of ambiguity in spin correlations were observed. To overcome this ambiguity, the additional inter-residue correlations often observed in the HNCA experiment were used as cross-checks for the sequential backbone assignments.

  20. A Look at the AP2 Beamline

    SciTech Connect

    Gollwitzer, Keith; /Fermilab

    2001-01-08

    Some recent work has been done to look at improvements of transporting beam from the Lithium Lens to the Debuncher. This work has been done using the beamline modeling tools developed by Dave McGinnis. These tools, console application P143 and optimization code running MAD repeatedly on the Beam Physics UNIX system, were first used to match the Twiss and dispersion parameters at the end of AP2 to the Debuncher. Imaginary trims were then added to AP2 to study where additional trims could be used to help with beam control in small aperture areas.

  1. Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica).

    PubMed

    Zhang, C H; Shangguan, L F; Ma, R J; Sun, X; Tao, R; Guo, L; Korir, N K; Yu, M L

    2012-10-17

    We identified 131 AP2/ERF (APETALA2/ethylene-responsive factor) genes in material from peach using the gene sequences of AP2/ERF amino acids of Arabidopsis thaliana (Brassicaceae) as probes. Based on the number of AP2/ERF domains and individual gene characteristics, the AP2/ERF superfamily gene in peach can be classified broadly into three families, ERF (ethylene-responsive factor), RAV (related to ABI3/VP1), and AP2 (APETALA2), containing 104, 5, and 21 members, respectively, along with a solo gene (ppa005376m). The 104 genes in the ERF family were further divided into 11 groups based on the group classification made for Arabidopsis. The scaffold localizations of the AP2/ERF genes indicated that 129 AP2/ERF genes were all located on scaffolds 1 to 8, except for two genes, which were on scaffolds 17 and 10. Although the primary structure varied among AP2/ERF superfamily proteins, their tertiary structures were similar. Most ERF family genes have no introns, while members of the AP2 family have more introns than genes in the ERF and RAV families. All sequences of AP2 family genes were disrupted by introns into several segments of varying sizes. The expression of the AP2/ERF superfamily genes was highest in the mesocarp; it was far higher than in the other seven tissues that we examined, implying that AP2/ERF superfamily genes play an important role in fruit growth and development in the peach. These results will be useful for selecting candidate genes from specific subgroups for functional analysis.

  2. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    PubMed

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.

  3. Rosuvastatin Decreases Intestinal Fatty Acid Binding Protein (I-FABP), but Does Not Alter Zonulin or Lipopolysaccharide Binding Protein (LBP) Levels, in HIV-Infected Subjects on Antiretroviral Therapy

    PubMed Central

    Funderburg, Nicholas T.; Boucher, Morgan; Sattar, Abdus; Kulkarni, Manjusha; Labbato, Danielle; Kinley, Bruce I.; McComsey, Grace A.

    2016-01-01

    Introduction Altered gastrointestinal (GI) barrier integrity and subsequent microbial translocation may contribute to immune activation in HIV infection. We have reported that rosuvastatin improved several markers of immune activation in HIV+ participants, but the effect of statin treatment on markers of GI barrier dysfunction is unknown. Methods SATURN-HIV is a randomized, double-blind, placebo-controlled trial assessing the effect of rosuvastatin (10mg/daily) on markers of cardiovascular disease, inflammation, and immune activation in ART-treated patients. Gut-barrier integrity was assessed by the surrogate markers intestinal fatty acid binding protein (I-FABP), a marker of enterocyte death, and zonulin-1, a marker of gut epithelial cell function. Levels of lipopolysaccharide binding protein (LBP) were measured as a marker of microbial translocation. Results Rosuvastatin significantly reduced levels of I-FABP during the treatment period compared to the placebo. There was no effect of rosuvastatin treatment on levels of zonulin or LBP. Baseline levels of LBP were directly related to several markers of immune activation in samples from all participants, including soluble CD163, IP-10, VCAM-1, TNFR-II, and the proportion of CD4+ and CD8+ T cells expressing CD38 and HLA-DR. Many of these relationships, however, were not seen in the statin arm alone at baseline or over time, as inflammatory markers often decreased and LBP levels were unchanged. Conclusions Forty-eight weeks of rosuvastatin treatment reduced levels of I-FABP, but did not affect levels of zonulin or LBP. The reduction in levels of inflammatory markers that we have reported with rosuvastatin treatment is likely mediated through other mechanisms not related to gut integrity or microbial translocation. PMID:27500282

  4. The Prognostic Value of Serum Levels of Heart-Type Fatty Acid Binding Protein and High Sensitivity C-Reactive Protein in Patients With Increased Levels of Amino-Terminal Pro-B Type Natriuretic Peptide

    PubMed Central

    Jeong, Ji Hun; Seo, Yiel Hea; Ahn, Jeong Yeal; Kim, Kyung Hee; Seo, Ja Young; Kim, Moon Jin; Lee, Hwan Tae

    2016-01-01

    Background Amino-terminal pro-B type natriuretic peptide (NT-proBNP) is a well-established prognostic factor in heart failure (HF). However, numerous causes may lead to elevations in NT-proBNP, and thus, an increased NT-proBNP level alone is not sufficient to predict outcome. The aim of this study was to evaluate the utility of two acute response markers, high sensitivity C-reactive protein (hsCRP) and heart-type fatty acid binding protein (H-FABP), in patients with an increased NT-proBNP level. Methods The 278 patients were classified into three groups by etiology: 1) acute coronary syndrome (ACS) (n=62), 2) non-ACS cardiac disease (n=156), and 3) infectious disease (n=60). Survival was determined on day 1, 7, 14, 21, 28, 60, 90, 120, and 150 after enrollment. Results H-FABP (P<0.001), NT-proBNP (P=0.006), hsCRP (P<0.001) levels, and survival (P<0.001) were significantly different in the three disease groups. Patients were divided into three classes by using receiver operating characteristic curves for NT-proBNP, H-FABP, and hsCRP. Patients with elevated NT-proBNP (≥3,856 pg/mL) and H-FABP (≥8.8 ng/mL) levels were associated with higher hazard ratio for mortality (5.15 in NT-proBNP and 3.25 in H-FABP). Area under the receiver operating characteristic curve analysis showed H-FABP was a better predictor of 60-day mortality than NT-proBNP. Conclusions The combined measurement of H-FABP with NT-proBNP provides a highly reliable means of short-term mortality prediction for patients hospitalized for ACS, non-ACS cardiac disease, or infectious disease. PMID:27374706

  5. Autoimmune Regulator (AIRE) Is Expressed in Spermatogenic Cells, and It Altered the Expression of Several Nucleic-Acid-Binding and Cytoskeletal Proteins in Germ Cell 1 Spermatogonial (GC1-spg) Cells.

    PubMed

    Radhakrishnan, Karthika; Bhagya, Kongattu P; Kumar, Anil Tr; Devi, Anandavalli N; Sengottaiyan, Jeeva; Kumar, Pradeep G

    2016-08-01

    Autoimmune regulator (AIRE) is a gene associated with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE is expressed heavily in the thymic epithelial cells and is involved in maintaining self-tolerance through regulating the expression of tissue-specific antigens. The testes are the most predominant extrathymic location where a heavy expression of AIRE is reported. Homozygous Aire-deficient male mice were infertile, possibly due to impaired spermatogenesis, deregulated germ cell apoptosis, or autoimmunity. We report that AIRE is expressed in the testes of neonatal, adolescent, and adult mice. AIRE expression was detected in glial cell derived neurotrophic factor receptor alpha (GFRα)(+) (spermatogonia), GFRα(-)/synaptonemal complex protein (SCP3)(+) (meiotic), and GFRα(-)/Phosphoglycerate kinase 2 (PGK2)(+) (postmeiotic) germ cells in mouse testes. GC1-spg, a germ-cell-derived cell line, did not express AIRE. Retinoic acid induced AIRE expression in GC1-spg cells. Ectopic expression of AIRE in GC1-spg cells using label-free LC-MS/MS identified a total of 371 proteins that were differentially expressed. 100 proteins were up-regulated, and 271 proteins were down-regulated. Data are available via ProteomeXchange with identifier PXD002511. Functional analysis of the differentially expressed proteins showed increased levels of various nucleic-acid-binding proteins and transcription factors and a decreased level of various cytoskeletal and structural proteins in the AIRE overexpressing cells as compared with the empty vector-transfected controls. The transcripts of a select set of the up-regulated proteins were also elevated. However, there was no corresponding decrease in the mRNA levels of the down-regulated set of proteins. Molecular function network analysis indicated that AIRE influenced gene expression in GC1-spg cells by acting at multiple levels, including transcription, translation, RNA processing, protein transport, protein

  6. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3.

    PubMed

    Nesbit, M Andrew; Hannan, Fadil M; Howles, Sarah A; Reed, Anita A C; Cranston, Treena; Thakker, Clare E; Gregory, Lorna; Rimmer, Andrew J; Rust, Nigel; Graham, Una; Morrison, Patrick J; Hunter, Steven J; Whyte, Michael P; McVean, Gil; Buck, David; Thakker, Rajesh V

    2013-01-01

    Adaptor protein-2 (AP2), a central component of clathrin-coated vesicles (CCVs), is pivotal in clathrin-mediated endocytosis, which internalizes plasma membrane constituents such as G protein-coupled receptors (GPCRs). AP2, a heterotetramer of α, β, μ and σ subunits, links clathrin to vesicle membranes and binds to tyrosine- and dileucine-based motifs of membrane-associated cargo proteins. Here we show that missense mutations of AP2 σ subunit (AP2S1) affecting Arg15, which forms key contacts with dileucine-based motifs of CCV cargo proteins, result in familial hypocalciuric hypercalcemia type 3 (FHH3), an extracellular calcium homeostasis disorder affecting the parathyroids, kidneys and bone. We found AP2S1 mutations in >20% of cases of FHH without mutations in calcium-sensing GPCR (CASR), which cause FHH1. AP2S1 mutations decreased the sensitivity of CaSR-expressing cells to extracellular calcium and reduced CaSR endocytosis, probably through loss of interaction with a C-terminal CaSR dileucine-based motif, whose disruption also decreased intracellular signaling. Thus, our results identify a new role for AP2 in extracellular calcium homeostasis. PMID:23222959

  7. Mutations in AP2S1 cause familial hypocalciuric hypercalcemia type 3.

    PubMed

    Nesbit, M Andrew; Hannan, Fadil M; Howles, Sarah A; Reed, Anita A C; Cranston, Treena; Thakker, Clare E; Gregory, Lorna; Rimmer, Andrew J; Rust, Nigel; Graham, Una; Morrison, Patrick J; Hunter, Steven J; Whyte, Michael P; McVean, Gil; Buck, David; Thakker, Rajesh V

    2013-01-01

    Adaptor protein-2 (AP2), a central component of clathrin-coated vesicles (CCVs), is pivotal in clathrin-mediated endocytosis, which internalizes plasma membrane constituents such as G protein-coupled receptors (GPCRs). AP2, a heterotetramer of α, β, μ and σ subunits, links clathrin to vesicle membranes and binds to tyrosine- and dileucine-based motifs of membrane-associated cargo proteins. Here we show that missense mutations of AP2 σ subunit (AP2S1) affecting Arg15, which forms key contacts with dileucine-based motifs of CCV cargo proteins, result in familial hypocalciuric hypercalcemia type 3 (FHH3), an extracellular calcium homeostasis disorder affecting the parathyroids, kidneys and bone. We found AP2S1 mutations in >20% of cases of FHH without mutations in calcium-sensing GPCR (CASR), which cause FHH1. AP2S1 mutations decreased the sensitivity of CaSR-expressing cells to extracellular calcium and reduced CaSR endocytosis, probably through loss of interaction with a C-terminal CaSR dileucine-based motif, whose disruption also decreased intracellular signaling. Thus, our results identify a new role for AP2 in extracellular calcium homeostasis.

  8. Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch.

    PubMed

    Kelly, Bernard T; Graham, Stephen C; Liska, Nicole; Dannhauser, Philip N; Höning, Stefan; Ungewickell, Ernst J; Owen, David J

    2014-07-25

    Clathrin-mediated endocytosis (CME) is vital for the internalization of most cell-surface proteins. In CME, plasma membrane-binding clathrin adaptors recruit and polymerize clathrin to form clathrin-coated pits into which cargo is sorted. Assembly polypeptide 2 (AP2) is the most abundant adaptor and is pivotal to CME. Here, we determined a structure of AP2 that includes the clathrin-binding β2 hinge and developed an AP2-dependent budding assay. Our findings suggest that an autoinhibitory mechanism prevents clathrin recruitment by cytosolic AP2. A large-scale conformational change driven by the plasma membrane phosphoinositide phosphatidylinositol 4,5-bisphosphate and cargo relieves this autoinhibition, triggering clathrin recruitment and hence clathrin-coated bud formation. This molecular switching mechanism can couple AP2's membrane recruitment to its key functions of cargo and clathrin binding.

  9. Transcriptional activation by Myc is under negative control by the transcription factor AP-2.

    PubMed Central

    Gaubatz, S; Imhof, A; Dosch, R; Werner, O; Mitchell, P; Buettner, R; Eilers, M

    1995-01-01

    The Myc protein binds to and transactivates the expression of genes via E-box elements containing a central CAC(G/A)TG sequence. The transcriptional activation function of Myc is required for its ability to induce cell cycle progression, cellular transformation and apoptosis. Here we show that transactivation by Myc is under negative control by the transcription factor AP-2. AP-2 inhibits transactivation by Myc via two distinct mechanisms. First, high affinity binding sites for AP-2 overlap Myc-response elements in two bona fide target genes of Myc, prothymosin-alpha and ornithine decarboxylase. On these sites, AP-2 competes for binding of either Myc/Max heterodimers or Max/Max homodimers. The second mechanism involves a specific interaction between C-terminal domains of AP-2 and the BR/HLH/LZ domain of Myc, but not Max or Mad. Binding of AP-2 to Myc does not preclude association of Myc with Max, but impairs DNA binding of the Myc/Max complex and inhibits transactivation by Myc even in the absence of an overlapping AP-2 binding site. Taken together, our data suggest that AP-2 acts as a negative regulator of transactivation by Myc. Images PMID:7729426

  10. An Updated AP2 Beamline TURTLE Model

    SciTech Connect

    Gormley, M.; O'Day, S.

    1991-08-23

    This note describes a TURTLE model of the AP2 beamline. This model was created by D. Johnson and improved by J. Hangst. The authors of this note have made additional improvements which reflect recent element and magnet setting changes. The magnet characteristics measurements and survey data compiled to update the model will be presented. A printout of the actual TURTLE deck may be found in appendix A.

  11. Transient Fcho1/2⋅Eps15/R⋅AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding.

    PubMed

    Ma, Li; Umasankar, Perunthottathu K; Wrobel, Antoni G; Lymar, Anastasia; McCoy, Airlie J; Holkar, Sachin S; Jha, Anupma; Pradhan-Sundd, Tirthadipa; Watkins, Simon C; Owen, David J; Traub, Linton M

    2016-06-01

    Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially decoded by other endocytic pioneers Fcho1/2 and AP-2. The structure of an Eps15/R⋅Fcho1 μ-homology domain complex reveals a spacing-dependent DPF triad, bound in a mechanistically distinct way from the mode of single DPF binding to AP-2. Using cells lacking FCHO1/2 and with Eps15 sequestered from the plasma membrane, we establish that without these two endocytic pioneers, AP-2 assemblies are fleeting and endocytosis stalls. Thus, distinct DPF-based codes within the unstructured Eps15/R C terminus direct the assembly of temporary Fcho1/2⋅Eps15/R⋅AP-2 ternary complexes to facilitate conformational activation of AP-2 by the Fcho1/2 interdomain linker to promote AP-2 cargo engagement.

  12. Transient Fcho1/2⋅Eps15/R⋅AP-2 Nanoclusters Prime the AP-2 Clathrin Adaptor for Cargo Binding.

    PubMed

    Ma, Li; Umasankar, Perunthottathu K; Wrobel, Antoni G; Lymar, Anastasia; McCoy, Airlie J; Holkar, Sachin S; Jha, Anupma; Pradhan-Sundd, Tirthadipa; Watkins, Simon C; Owen, David J; Traub, Linton M

    2016-06-01

    Clathrin-coated vesicles form by rapid assembly of discrete coat constituents into a cargo-sorting lattice. How the sequential phases of coat construction are choreographed is unclear, but transient protein-protein interactions mediated by short interaction motifs are pivotal. We show that arrayed Asp-Pro-Phe (DPF) motifs within the early-arriving endocytic pioneers Eps15/R are differentially decoded by other endocytic pioneers Fcho1/2 and AP-2. The structure of an Eps15/R⋅Fcho1 μ-homology domain complex reveals a spacing-dependent DPF triad, bound in a mechanistically distinct way from the mode of single DPF binding to AP-2. Using cells lacking FCHO1/2 and with Eps15 sequestered from the plasma membrane, we establish that without these two endocytic pioneers, AP-2 assemblies are fleeting and endocytosis stalls. Thus, distinct DPF-based codes within the unstructured Eps15/R C terminus direct the assembly of temporary Fcho1/2⋅Eps15/R⋅AP-2 ternary complexes to facilitate conformational activation of AP-2 by the Fcho1/2 interdomain linker to promote AP-2 cargo engagement. PMID:27237791

  13. AP-2-mediated regulation of human NAD(P)H: quinone oxidoreductase 1 (NQO1) gene expression.

    PubMed

    Xie, T; Jaiswal, A K

    1996-03-22

    NAD(P)H:quinone oxidoreductase 1 (NQO1) is a flavoprotein that catalyzes two-electron reduction and detoxification of quinones. We have shown previously that twenty-four base pairs of the human Antioxidant Response Element (hARE) mediate basal and xenobiotic-induced expression of the NQO1 gene [Li and Jaiswal, J Biol Chem 267: 15097-15104, 1992]. In the present report, we have characterized a second cis-element, AP-2, at nucleotide position -157 of the human NQO1 gene promotor that regulates basal and cAMP-induced transcription of the NQO1 gene. The NQO1 gene AP-2 mediated expression of the chloramphenicol acetyl transferase (CAT) gene and the binding of nuclear proteins to the AP-2 element were observed in HeLa (AP-2 positive) cells but not in human hepatoblastoma Hep-G2 (AP-2 deficient) cells, indicating the involvement of transcription factors AP-2 in the regulation of NQO1 gene expression. Affinity purification of nuclear protein that binds to the NQO1 gene AP-2 DNA element and western analysis revealed that AP-2 indeed binds to the NQO1 gene AP-2 element and regulates its expression HeLa cells. The involvement of AP-2 in the regulation of NQO1 gene expression was confirmed by the observation that cDNA-derived AP-2 protein in Hep-G2 cells increased in NQO1 gene AP-2 but not mutant AP-2 mediated expression of CAT gene in Hep-G2 cells. PMID:8602872

  14. Ectopic expression of transcription factor AP-2δ in developing retina: effect on PSA-NCAM and axon routing.

    PubMed

    Li, Xiaodong; Monckton, Elizabeth A; Godbout, Roseline

    2014-04-01

    Retinal ganglion cells transmit the visual signal from the retina to the brain. We have previously shown that the activator protein 2 (AP-2)δ (TFAP2D) transcription factor is expressed in one third of ganglion cells in developing retina suggesting a specialized role for these AP-2δ-expressing cells. Here, we address the role of AP-2δ in retina by in ovo electroporation of RCAS/AP-2δ retroviral constructs into the eyes of chick embryos at day 2 of gestation. Ectopic expression of AP-2δ does not affect lineage differentiation in the developing retina. However, immunostaining of retinal tissue with markers associated with axonal growth such as growth-associated protein 43 and polysialic acid-neural cell adhesion molecule (PSA-NCAM) demonstrates axonal misrouting and abnormal axonal bundling. Treatment of AP-2δ-misexpressing retinal cell cultures with endoneuraminidase, an enzyme that removes PSA from NCAM, decreases AP-2δ-induced axonal bundling. Our data suggest a role for AP-2δ in polysialylation of NCAM, with ectopic expression of AP-2δ resulting in premature bundling of emerging axons and misrouting of axons. We propose that expression of AP-2δ in a subset of ganglion cells contributes to the fine-tuning of axonal growth in the developing retina. PMID:24188130

  15. AP2γ regulates neural and epidermal development downstream of the BMP pathway at early stages of ectodermal patterning

    PubMed Central

    Qiao, Yunbo; Zhu, Yue; Sheng, Nengyin; Chen, Jun; Tao, Ran; Zhu, Qingqing; Zhang, Ting; Qian, Cheng; Jing, Naihe

    2012-01-01

    Bone morphogenetic protein (BMP) inhibits neural specification and induces epidermal differentiation during ectodermal patterning. However, the mechanism of this process is not well understood. Here we show that AP2γ, a transcription factor activator protein (AP)-2 family member, is upregulated by BMP4 during neural differentiation of pluripotent stem cells. Knockdown of AP2γ facilitates mouse embryonic stem cell (ESC) neural fate determination and impairs epidermal differentiation, whereas AP2γ overexpression inhibits neural conversion and promotes epidermal commitment. In the early chick embryo, AP2γ is expressed in the entire epiblast before HH stage 3 and gradually shifts to the putative epidermal ectoderm during HH stage 4. In the future neural plate AP2γ inhibits excessive neural expansion and it also promotes epidermal development in the surface ectoderm. Moreover, AP2γ knockdown in ESCs and chick embryos partially rescued the neural inhibition and epidermal induction effects of BMP4. Mechanistic studies showed that BMP4 directly regulates AP2γ expression through Smad1 binding to the AP2γ promoter. Taken together, we propose that during the early stages of ectodermal patterning in the chick embryo, AP2γ acts downstream of the BMP pathway to restrict precocious neural expansion in the prospective neural plate and initiates epidermal differentiation in the future epidermal ectoderm. PMID:22945355

  16. THE INTEGRITY OF THE α-HELICAL DOMAIN OF INTESTINAL FATTY ACID BINDING PROTEIN IS ESSENTIAL FOR THE COLLISION-MEDIATED TRANSFER OF FATTY ACIDS TO PHOSPHOLIPID MEMBRANES

    PubMed Central

    Franchini, G. R.; Storch, J.; Corsico, B.

    2015-01-01

    Summary Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane-collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structural differences between IFABP and LFABP which underlie their large functional differences in ligand transport. In particular, we addressed the role of the αI-helix domain in the unique transport properties of intestinal FABP. A chimeric protein was engineered with the ‘body’ (ligand binding domain) of IFABP and the αI-helix of LFABP (α(I)LβIFABP), and the fatty acid transfer properties of the chimeric FABP were examined using a fluorescence resonance energy transfer assay. The results showed a significant decrease in the absolute rate of FA transfer from α(I)LβIFABP compared to IFABP. The results indicate that the αI-helix is crucial for IFABP collisional FA transfer, and further indicate the participation of the αII-helix in the formation of a protein-membrane “collisional complex”. Photo-crosslinking experiments with a photoactivable reagent demonstrated the direct interaction of IFABP with membranes and further supports the importance of the αI helix of IFABP in its physical interaction with membranes. PMID:18284926

  17. A novel approach for measuring sphingosine-1-phosphate and lysophosphatidic acid binding to carrier proteins using monoclonal antibodies and the Kinetic Exclusion Assay.

    PubMed

    Fleming, Jonathan K; Glass, Thomas R; Lackie, Steve J; Wojciak, Jonathan M

    2016-09-01

    Sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are bioactive signaling lysophospholipids that activate specific G protein-coupled receptors on the cell surface triggering numerous biological events. In circulation, S1P and LPA associate with specific carrier proteins or chaperones; serum albumin binds both S1P and LPA while HDL shuttles S1P via interactions with apoM. We used a series of kinetic exclusion assays in which monoclonal anti-S1P and anti-LPA antibodies competed with carrier protein for the lysophospholipid to measure the equilibrium dissociation constants (Kd) for these carrier proteins binding S1P and the major LPA species. Fatty acid-free (FAF)-BSA binds these lysophospholipids with the following Kd values: LPA(16:0), 68 nM; LPA(18:1), 130 nM; LPA(18:2), 350 nM; LPA(20:4), 2.2 μM; and S1P, 41 μM. FAF human serum albumin binds each lysophospholipid with comparable affinities. By measuring the apoM concentration and expanding the model to include endogenous ligand, we were able to resolve the Kd values for S1P binding apoM in the context of human HDL and LDL particles (21 nM and 2.4 nM, respectively). The novel competitive assay and analysis described herein enables measurement of Kd values of completely unmodified lysophospholipids binding unmodified carrier proteins in solution, and thus provide insights into S1P and LPA storage in the circulation system and may be useful in understanding chaperone-dependent receptor activation and signaling. PMID:27444045

  18. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain.

    PubMed

    Pedersen, L B; Birkelund, S; Holm, A; Ostergaard, S; Christiansen, G

    1996-02-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may, in part, be due to Hc1-mediated alterations of DNA topology. To locate putative functional domains within Hc1, polypeptides Hc1(2-57) and Hc1(53-125), corresponding to the N- and C-terminal parts of Hc1, respectively, were generated. By chemical cross-linking with ethylene glycol-bis (succinic acid N-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect the DNA-binding properties of Hc1. PMID:8576073

  19. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain.

    PubMed

    Penes, Mihai C; Li, Xinbo; Nagy, James I

    2005-07-01

    The PDZ domain-containing protein zonula occludens-1 (ZO-1) interacts with several members of the connexin (Cx) family of gap junction-forming proteins and has been localized to gap junctions, including those containing Cx47 in oligodendrocytes. We now provide evidence for ZO-1 expression in astrocytes in vivo and association with astrocytic connexins by confocal immunofluorescence demonstration of ZO-1 colocalization with astrocytic Cx30 and Cx43, and by ZO-1 coimmunoprecipitation with Cx30 and Cx43. Evidence for direct interaction of Cx30 with ZO-1 was obtained by pull-down assays that indicated binding of Cx30 to the second of the three PDZ domains in ZO-1. Further, we investigated mouse Y-box transcription factor MsY3, the canine ortholog of which has been termed ZO-1-associated nucleic acid-binding protein (ZONAB) and previously reported to interact with ZO-1. By immunofluorescence using specific antimouse ZONAB antibody, ZONAB was found to be associated with oligodendrocytes throughout mouse brain and spinal cord, and to be colocalized with oligodendrocytic Cx47 and Cx32 as well as with astrocytic Cx43. Our results extend the CNS cell types that express the multifunctional protein ZO-1, demonstrate an additional connexin (Cx30) that directly interacts with ZO-1, and show for the first time the association of a transcription factor (ZONAB) with ZO-1 localized to oligodendrocyte and astrocyte gap junctions. Given previous observations that ZONAB and ZO-1 in combination regulate gene expression, our results suggest roles of glial gap junction-mediated anchoring of signalling molecules in a wide variety of glial homeostatic processes. PMID:16045494

  20. Identification of okadaic acid binding protein 2 in reconstituted sponge cell clusters from Halichondria okadai and its contribution to the detoxification of okadaic acid.

    PubMed

    Konoki, Keiichi; Okada, Kayo; Kohama, Mami; Matsuura, Hiroki; Saito, Kaori; Cho, Yuko; Nishitani, Goh; Miyamoto, Tomofumi; Fukuzawa, Seketsu; Tachibana, Kazuo; Yotsu-Yamashita, Mari

    2015-12-15

    Okadaic acid (OA) and OA binding protein 2 (OABP2) were previously isolated from the marine sponge Halichondria okadai. Because the amino acid sequence of OABP2 is completely different from that of protein phosphatase 2A, a well-known target of OA, we have been investigating the production and function of OABP2. In the present study, we hypothesized that OABP2 plays a role in the detoxification of OA in H. okadai and that the OA concentrations are in proportional to the OABP2 concentrations in the sponge specimens. Based on the OA concentrations and the OABP2 concentrations in the sponge specimens collected in various places and in different seasons, however, we could not determine a positive correlation between OA and OABP2. We then attempted to determine distribution of OA and OABP2 in the sponge specimen. When the mixture of dissociated sponge cells and symbiotic species were separated with various pore-sized nylon meshes, most of the OA and OABP2 was detected from the same 0-10 μm fraction. Next, when sponge cell clusters were prepared from a mixture of dissociated sponge cells and symbiotic species in the presence of penicillin and streptomycin, we identified the 18S rDNA of H. okadai and the gene of OABP2 in the analysis of genomic DNA but could not detect OA by LC-MS/MS. We thus concluded that the sponge cells express OABP2, and that OA was not apparently present in the sponge cells but could be colocalized with OABP2 in the sponge cells at a concentration less than the limit of detection.

  1. Functional analysis of a dietary recombinant fatty acid binding protein 10 (FABP10) on the Epinephelus coioides in response to acute low temperature challenge.

    PubMed

    Luo, Sheng-Wei; Cai, Luo; Liu, Yuan; Wang, Wei-Na

    2014-02-01

    The effect of Ec-FABP10 (Epinephelus coiodes-FABP10) on growth performance, enzyme activity, respiratory burst, MDA level, ATP content, immune-related gene expression of juvenile orange-spotted grouper (E. coioides). The commercial diet supplemented with FABP10 protein was feed to orange-spotted grouper for six weeks. No significant difference was observed in the specific growth rates, while the survival rate in the FABP10 additive group was significantly higher. After the feeding trial, the groupers were exposed to acute low temperature challenge. The decreased level of respiratory burst activity was observed in the FABP10 additive group after the exposure to the acute low temperature stress, while the blood cell count increased significantly at 15 °C and a significant increase of ATP content was observed at 10 °C. Higher enzymatic activities of CAT and SOD were observed at 20 °C and 15 °C, respectively. Meanwhile, the lower level of MDA was observed after the exposure to acute low temperature challenge by comparing with the controls. Further transcript expression analyses of FABP10, SOD2, GPX4, HSPA4 and LIPC in liver by quantitative real-time PCR demonstrated that the up-regulated transcript expression of FABP10, SOD2, HSPA4 and LIPC was observed in FABP10 additive group at 15 °C, while the transcript expression of GPX4 increased significantly at 20 °C. Western blotting analysis confirmed that FABP10 protein expression strongly increased at 15 ± 0.5 °C in FABP10 additive group. These results showed that FABP10 additive diet could moderate the metabolic and immune abilities mainly via ROS pathway in the orange-spotted grouper.

  2. Functional analysis of a dietary recombinant fatty acid binding protein 10 (FABP10) on the Epinephelus coioides in response to acute low temperature challenge.

    PubMed

    Luo, Sheng-Wei; Cai, Luo; Liu, Yuan; Wang, Wei-Na

    2014-02-01

    The effect of Ec-FABP10 (Epinephelus coiodes-FABP10) on growth performance, enzyme activity, respiratory burst, MDA level, ATP content, immune-related gene expression of juvenile orange-spotted grouper (E. coioides). The commercial diet supplemented with FABP10 protein was feed to orange-spotted grouper for six weeks. No significant difference was observed in the specific growth rates, while the survival rate in the FABP10 additive group was significantly higher. After the feeding trial, the groupers were exposed to acute low temperature challenge. The decreased level of respiratory burst activity was observed in the FABP10 additive group after the exposure to the acute low temperature stress, while the blood cell count increased significantly at 15 °C and a significant increase of ATP content was observed at 10 °C. Higher enzymatic activities of CAT and SOD were observed at 20 °C and 15 °C, respectively. Meanwhile, the lower level of MDA was observed after the exposure to acute low temperature challenge by comparing with the controls. Further transcript expression analyses of FABP10, SOD2, GPX4, HSPA4 and LIPC in liver by quantitative real-time PCR demonstrated that the up-regulated transcript expression of FABP10, SOD2, HSPA4 and LIPC was observed in FABP10 additive group at 15 °C, while the transcript expression of GPX4 increased significantly at 20 °C. Western blotting analysis confirmed that FABP10 protein expression strongly increased at 15 ± 0.5 °C in FABP10 additive group. These results showed that FABP10 additive diet could moderate the metabolic and immune abilities mainly via ROS pathway in the orange-spotted grouper. PMID:24412164

  3. Evaluation of cellular retinoic acid binding protein 2 gene expression through the retinoic acid pathway by co-incubation of Blastocystis ST-1 with HT29 cells in vitro.

    PubMed

    Liao, Chen-Chieh; Song, Eing-Ju; Chang, Tsuey-Yu; Lin, Wei-Chen; Liu, Hsiao-Sheng; Chen, Lih-Ren; Huang, Lynn L H; Shin, Jyh-Wei

    2016-05-01

    Blastocystis is a parasitic protist with a worldwide distribution that is commonly found in patients with colon and gastrointestinal pathological symptoms. Blastocystis infection has also commonly been reported in colorectal cancer and HIV/AIDS patients with gastrointestinal symptoms. To understand the pathway networks of gene regulation and the probable mechanisms influencing functions of HT-29 host cells in response to parasite infection, we examined the expression of 163 human oncogenes and kinases in human colon adenocarcinoma HT-29 cells co-incubated with Blastocystis by in-house cDNA microarray and PCR analysis. At least 10 genes were shown to be modified following Blastocystis co-incubation, including those with immunological, tumorigenesis, and antitumorigenesis functions. The expression of genes encoding cellular retinoic acid binding protein 2 (CRABP2) and proliferating cell nuclear antigen (PCNA) was markedly upregulated and downregulated, respectively. Reverse transcriptase-PCR validated the modified transcript expression of CRABP2 and other associated genes such as retinoic acid (RA)-related nuclear-receptor (RARα). Together, our data indicate that CRABP2, RARα, and PCNA expressions are involved in RA signaling regulatory networks that affect the growth, proliferation, and inflammation of HT-29 cells. PMID:26911149

  4. Influence of liposomes rich in unsaturated or saturated fatty acids on the growth of human xenotransplanted mammary carcinomas and on the levels of heart type fatty acid binding protein.

    PubMed

    Naundorf, H; Zschiesche, W; Reszka, R; Fichtner, I

    1995-01-01

    A panel of 4 human mammary carcinomas passaged in nude mice were subjected to intraperitoneal application of cholesterol-free liposomes enriched with linoleic (unsaturated fatty acid) or stearic acid (saturated fatty acid). The liposomes were examined with regard to their influence on the tumor growth and level of heart type fatty acid binding protein (FABP). Liposomes with different fatty acid composition influenced the growth of mammary carcinomas 3366, BO, 4000 and 4151 in distinct ways. Liposomes with a high content of stearic acid significantly inhibited the growth of mammary carcinomas 3366 and BO, whereas mammary carcinomas 4000 and 4151 were not affected. The growth of mammary carcinoma 3366 was moderately increased after supplementation of liposomes rich in linoleic acid, the tumor BO was significantly inhibited and the growth of MaCa 4000 and 4151 was unchanged. Liposome treatment led to a significant increase in heart type FABP in mammary carcinomas 3366 and BO regardless of whether the animals were treated with liposomes rich in stearic or linoleic acid. Such significant changes of FABP level could not be observed in mammary carcinomas 4000 or 4151. We suggest that the lipid-mediated growth modulation seems to be dependent on an increase of heart type FABPs in these tumor models. PMID:8562891

  5. Ala54Thr Fatty Acid-Binding Protein 2 (FABP2) Polymorphism in Recurrent Depression: Associations with Fatty Acid Concentrations and Waist Circumference

    PubMed Central

    Assies, Johanna; Koeter, Maarten W. J.; Visser, Ieke; Ruhé, Henricus G.; Bockting, Claudi L. H.; Schene, Aart H.

    2013-01-01

    Background Fatty acid (FA)-alterations may mediate the mutual association between Major Depressive Disorder (MDD) and cardiovascular disease (CVD). However, etiology of observed FA-alterations in MDD and CVD remains largely unclear. An interesting candidate may be a mutation in the fatty acid–binding protein 2 (FABP2)-gene, because it regulates dietary FA-uptake. Therefore, we aimed to test the hypotheses that in MDD-patients the FABP2 Ala54Thr-polymorphism would be (I) more prevalent than in sex- and age-matched controls, (II) associated with observed alterations in FA-metabolism, and (III) associated with CVD-risk factor waist circumference. Methods We measured concentrations of 29 different erythrocyte FAs, FABP2-genotype, and waist circumference in recurrent MDD-patients and matched never-depressed controls. Results FABP2-genotype distribution did not significantly differ between the 137 MDD-patients and 73 matched controls. However, patients with the Ala54Thr-polymorphism had (I) higher concentrations of especially eicosadienoic acid (C20:2ω6; P=.009) and other 20-carbon FAs, and associated (II) lower waist circumference (P=.019). In addition, FABP2-genotype effects on waist circumference in patients seemed (I) mediated by its effect on C20:2ω6, and (II) different from controls. Conclusions Although Ala54Thr-polymorphism distribution was not associated with recurrent MDD, our results indicate that FABP2 may play a role in the explanation of observed FA-alterations in MDD. For Ala54Thr-polymorphism patients, potentially adaptive conversion of increased bioavailable dietary precursors into eicosadienoic acid instead of arachidonic acid might be related to a low waist circumference. Because this is the first investigation of these associations, replication is warranted, preferably by nutrigenetic studies applying lipidomics and detailed dietary assessment. PMID:24340071

  6. The mAb against adipocyte fatty acid-binding protein 2E4 attenuates the inflammation in the mouse model of high-fat diet-induced obesity via toll-like receptor 4 pathway.

    PubMed

    Miao, Xiaoliang; Wang, Ying; Wang, Wang; Lv, Xiaobo; Wang, Min; Yin, Hongping

    2015-03-01

    Adipocyte fatty acid-binding protein (A-FABP) plays an important role in fatty acid-mediated processes and related metabolic and inflammatory responses. In this study, we prepared a novel monoclonal antibody against A-FABP, designated 2E4. Our data showed that 2E4 specifically binded to the recombinant A-FABP and native A-FABP of mice adipose tissue. Furthermore, we investigated the effect of 2E4 on metabolic and inflammatory responses in C57BL/6J obese mice fed on a high fat diet. 2E4 administration improved glucose response in high-fat-diet induced obese mice. The 2E4 treated groups exhibited lower free fatty acids, cholesterol, and triglycerides in a concentration-dependent manner. These changes were accompanied by down-regulated expression of pro-inflammatory cytokines in adipose tissue, including tumor necrosis factor α, monocyte chemotactic protein-1, and interleukin-6. Meanwhile, our data demonstrated that 2E4 significantly decreased the mRNA and protein levels of A-FABP in adipose tissue of mice. Further experiments showed that 2E4 notably suppressed the phosphorylation of IκBα and jun-N-terminal kinase through toll-like receptor 4 signaling pathway. Taken together, 2E4 is an effective monoclonal antibody against A-FABP, which attenuated the inflammatory responses induced in the high-fat-diet mice. These findings may provide scientific insight into the treatment of chronic low-grade inflammation in obesity.

  7. Genome-wide investigation and expression analysis of AP2-ERF gene family in salt tolerant common bean

    PubMed Central

    Kavas, Musa; Kizildogan, Aslihan; Gökdemir, Gökhan; Baloglu, Mehmet Cengiz

    2015-01-01

    Apetala2-ethylene-responsive element binding factor (AP2-ERF) superfamily with common AP2-DNA binding domain have developmentally and physiologically important roles in plants. Since common bean genome project has been completed recently, it is possible to identify all of the AP2-ERF genes in the common bean genome. In this study, a comprehensive genome-wide in silico analysis identified 180 AP2-ERF superfamily genes in common bean (Phaseolus vulgaris). Based on the amino acid alignment and phylogenetic analyses, superfamily members were classified into four subfamilies: DREB (54), ERF (95), AP2 (27) and RAV (3), as well as one soloist. The physical and chemical characteristics of amino acids, interaction between AP2-ERF proteins, cis elements of promoter region of AP2-ERF genes and phylogenetic trees were predicted and analyzed. Additionally, expression levels of AP2-ERF genes were evaluated by in silico and qRT-PCR analyses. In silico micro-RNA target transcript analyses identified nearly all PvAP2-ERF genes as targets of by 44 different plant species' miRNAs were identified in this study. The most abundant target genes were PvAP2/ERF-20-25-62-78-113-173. miR156, miR172 and miR838 were the most important miRNAs found in targeting and BLAST analyses. Interactome analysis revealed that the transcription factor PvAP2-ERF78, an ortholog of Arabidopsis At2G28550, was potentially interacted with at least 15 proteins, indicating that it was very important in transcriptional regulation. Here we present the first study to identify and characterize the AP2-ERF transcription factors in common bean using whole-genome analysis, and the findings may serve as a references for future functional research on the transcription factors in common bean. PMID:27152109

  8. Structural Determinants of DNA Binding by a P. falciparum ApiAP2 Transcriptional Regulator

    SciTech Connect

    Lindner, Scott E.; De Silva, Erandi K.; Keck, James L.; Llinás, Manuel

    2010-11-05

    Putative transcription factors have only recently been identified in the Plasmodium spp., with the major family of regulators comprising the Apicomplexan Apetala2 (AP2) proteins. To better understand the DNA-binding mechanisms of these transcriptional regulators, we characterized the structure and in vitro function of an AP2 DNA-binding domain from a prototypical Apicomplexan AP2 protein, PF14{_}0633 from Plasmodium falciparum. The X-ray crystal structure of the PF14{_}0633 AP2 domain bound to DNA reveals a {beta}-sheet fold that binds the DNA major groove through base-specific and backbone contacts; a prominent {alpha}-helix supports the {beta}-sheet structure. Substitution of predicted DNA-binding residues with alanine weakened or eliminated DNA binding in solution. In contrast to plant AP2 domains, the PF14{_}0633 AP2 domain dimerizes upon binding to DNA through a domain-swapping mechanism in which the {alpha}-helices of the AP2 domains pack against the {beta}-sheets of the dimer mates. DNA-induced dimerization of PF14{_}0633 may be important for tethering two distal DNA loci together in the nucleus and/or for inducing functional rearrangements of its domains to facilitate transcriptional regulation. Consistent with a multisite binding mode, at least two copies of the consensus sequence recognized by PF14{_}0633 are present upstream of a previously identified group of sporozoite-stage genes. Taken together, these findings illustrate how Plasmodium has adapted the AP2 DNA-binding domain for genome-wide transcriptional regulation.

  9. Transcriptomics profiling study of breast cancer from Kingdom of Saudi Arabia revealed altered expression of Adiponectin and Fatty Acid Binding Protein4: Is lipid metabolism associated with breast cancer?

    PubMed Central

    2015-01-01

    Background Breast cancer incidence rates are increasing at an alarming rate among Saudi Arabian females. Most molecular genetic discoveries on breast cancer and other cancers have arisen from studies examining European and American patients. However, possibility of specific changes in molecular signature among cancer patients of diverse ethnic groups remains largely unexplored. We performed transcriptomic profiling of surgically-resected breast tumors from 45 patients based in the Western region of Saudi Arabia using Affymetrix Gene 1.0 ST chip. Pathway and biological function-based clustering was apparent across the tissue samples. Results Pathway analysis revealed canonical pathways that had not been previously implicated in breast cancer. Biological network analysis of differentially regulated genes revealed that Fatty acid binding protein 4, adipocyte (FABP4), adiponectin (ADIPOQ), and retinol binding protein 4 (RBP4) were most down regulated genes, sharing strong connection with the other molecules of lipid metabolism pathway. The marked biological difference in the signatures uncovered between the USA and Saudi samples underpins the importance of this study. Connectivity Map identified compounds that could reverse an observed gene expression signature Conclusions This study describes, to our knowledge, the first genome-wide profiling of breast cancer from Saudi ethnic females. We demonstrate the involvement of the lipid metabolism pathway in the pathogenesis of breast cancer from this region. This finding also highlights the need for strategies to curb the increasing rates of incidence of this disease by educating the public about life-style risk factors such as unhealthy diet and obesity. PMID:25923423

  10. The human liver fatty acid binding protein (FABP1) gene is activated by FOXA1 and PPARα; and repressed by C/EBPα: Implications in FABP1 down-regulation in nonalcoholic fatty liver disease.

    PubMed

    Guzmán, Carla; Benet, Marta; Pisonero-Vaquero, Sandra; Moya, Marta; García-Mediavilla, M Victoria; Martínez-Chantar, M Luz; González-Gallego, Javier; Castell, José Vicente; Sánchez-Campos, Sonia; Jover, Ramiro

    2013-04-01

    Liver fatty acid binding protein (FABP1) prevents lipotoxicity of free fatty acids and regulates fatty acid trafficking and partition. Our objective is to investigate the transcription factors controlling the human FABP1 gene and their regulation in nonalcoholic fatty liver disease (NAFLD). Adenovirus-mediated expression of multiple transcription factors in HepG2 cells and cultured human hepatocytes demonstrated that FOXA1 and PPARα are among the most effective activators of human FABP1, whereas C/EBPα is a major dominant repressor. Moreover, FOXA1 and PPARα induced re-distribution of FABP1 protein and increased cytoplasmic expression. Reporter assays demonstrated that the major basal activity of the human FABP1 promoter locates between -96 and -229bp, where C/EBPα binds to a composite DR1-C/EBP element. Mutation of this element at -123bp diminished basal reporter activity, abolished repression by C/EBPα and reduced transactivation by HNF4α. Moreover, HNF4α gene silencing by shRNA in HepG2 cells caused a significant down-regulation of FABP1 mRNA expression. FOXA1 activated the FABP1 promoter through binding to a cluster of elements between -229 and -592bp, whereas PPARα operated through a conserved proximal element at -59bp. Finally, FABP1, FOXA1 and PPARα were concomitantly repressed in animal models of NAFLD and in human nonalcoholic fatty livers, whereas C/EBPα was induced or did not change. We conclude that human FABP1 has a complex mechanism of regulation where C/EBPα displaces HNF4α and hampers activation by FOXA1 and PPARα. Alteration of expression of these transcription factors in NAFLD leads to FABP1 gen repression and could exacerbate lipotoxicity and disease progression. PMID:23318274

  11. Conformational transitions in human translin enable nucleic acid binding

    PubMed Central

    Pérez-Cano, Laura; Eliahoo, Elad; Lasker, Keren; Wolfson, Haim J.; Glaser, Fabian; Manor, Haim; Bernadó, Pau; Fernández-Recio, Juan

    2013-01-01

    Translin is a highly conserved RNA- and DNA-binding protein that plays essential roles in eukaryotic cells. Human translin functions as an octamer, but in the octameric crystallographic structure, the residues responsible for nucleic acid binding are not accessible. Moreover, electron microscopy data reveal very different octameric configurations. Consequently, the functional assembly and the mechanism of nucleic acid binding by the protein remain unclear. Here, we present an integrative study combining small-angle X-ray scattering (SAXS), site-directed mutagenesis, biochemical analysis and computational techniques to address these questions. Our data indicate a significant conformational heterogeneity for translin in solution, formed by a lesser-populated compact octameric state resembling the previously solved X-ray structure, and a highly populated open octameric state that had not been previously identified. On the other hand, our SAXS data and computational analyses of translin in complex with the RNA oligonucleotide (GU)12 show that the internal cavity found in the octameric assemblies can accommodate different nucleic acid conformations. According to this model, the nucleic acid binding residues become accessible for binding, which facilitates the entrance of the nucleic acids into the cavity. Our data thus provide a structural basis for the functions that translin performs in RNA metabolism and transport. PMID:23980029

  12. AP-2γ promotes proliferation in breast tumour cells by direct repression of the CDKN1A gene

    PubMed Central

    Williams, Christopher M J; Scibetta, Angelo G; Friedrich, J Karsten; Canosa, Monica; Berlato, Chiara; Moss, Charlotte H; Hurst, Helen C

    2009-01-01

    Overexpression of the activator protein (AP)-2γ transcription factor in breast tumours has been identified as an independent predictor of poor outcome and failure of hormone therapy. To understand further the function of AP-2γ in breast carcinoma, we have used an RNA interference and gene expression profiling strategy with the MCF-7 cell line as a model. Gene expression changes between control and silenced cells implicate AP-2γ in the control of cell cycle progression and developmental signalling. A function for AP-2γ in cell cycle control was verified using flow cytometry: AP-2γ silencing led to a partial G1/S arrest and induction of the cyclin-dependent kinase inhibitor, p21cip/CDKN1A. Reporter and chromatin immunoprecipitation assays demonstrated a direct, functional interaction by AP-2γ at the CDKN1A proximal promoter. AP-2γ silencing coincided with acquisition of an active chromatin conformation at the CDKN1A locus and increased gene expression. These data provide a mechanism whereby AP-2γ overexpression can promote breast epithelial proliferation and, coupled with previously published data, suggest how loss of oestrogen regulation of AP-2γ may contribute to the failure of hormone therapy in patients. PMID:19798054

  13. Comparison of a qualitative measurement of heart-type fatty acid-binding protein with other cardiac markers as an early diagnostic marker in the diagnosis of non-ST - segment elevation myocardial infarction

    PubMed Central

    Gerede, Demet Menekşe; Güleç, Sadi; Kılıçkap, Mustafa; Kaya, Cansın Tulunay; Vurgun, Veysel Kutay; Özcan, Özgür Ulaş; Göksülük, Hüseyin; Erol, Çetin

    2015-01-01

    Summary Objective: Heart-type fatty acid-binding protein (H-FABP) is a novel cardiac marker used in the early diagnosis of acute myocardial infarction (AMI), which shows myocyte injury. Our study aimed to compare bedside H-FABP measurements with routine creatine kinase-MB (CK-MB) and troponin I (TnI) tests for the early diagnosis of non-ST-elevation MI (NSTEMI), as well as for determining its exclusion capacity. Methods A total of 48 patients admitted to the emergency room within the first 12 hours of onset of ischaemic-type chest pain lasting more than 30 minutes and who did not have ST-segment elevation on electrocardiography (ECG) were included in the study. Definite diagnoses of NSTEMI were made in 24 patients as a result of 24-hour follow up, and the remaining 24 patients did not develop MI. Results When various subgroups were analysed according to admission times, H-FABP was found to be a better diagnostic marker compared to CK-MB and TnI (accuracy index 85%), with a high sensitivity (79%) and specificity (93%) for early diagnosis (≤ six hours). The respective sensitivities of bedside H-FABP and TnI tests were 89 vs 33% (p < 0.05) for patients presenting within three hours of onset of symptoms. Conclusion Bedside H-FABP measurements may contribute to correct early diagnoses, as its levels are elevated soon following MI, and measurement is easy, with a rapid result. PMID:26212703

  14. A newly developed kit for the measurement of urinary liver-type fatty acid-binding protein as a biomarker for acute kidney injury in patients with critical care.

    PubMed

    Sato, Ryo; Suzuki, Yasushi; Takahashi, Gaku; Kojika, Masahiro; Inoue, Yoshihiro; Endo, Shigeatsu

    2015-03-01

    In recent years, it has been reported that the urinary level of Liver-type fatty acid-binding protein (L-FABP) serves as a useful biomarker for diagnosing acute kidney injury (AKI) or sepsis complicated by AKI. However, because the urinary level of L-FABP is currently measured by enzyme-linked immunosorbent assay (ELISA), several days may elapse before the results of the measurement become available. We have newly developed a simplified kit, the Dip-test, for measuring the urinary level of L-FABP. The Dip-test was measured at 80 measurement points (22 points in noninfectious disease, 13 points in SIRS, 20 points in infectious disease, and 25 points in sepsis) in 20 patients. The urinary L-FABP levels as determined by ELISA in relation to the results of the Dip-test were as follows: 10.10 ± 12.85 ng/ml in patients with a negative Dip-test ([-] group), 41.93 ± 50.51 ng/ml in patients with a ± test ([±] group), 70.36 ± 73.70 ng/ml in patients with a positive test ([+] group), 1048.96 ± 2117.68 ng/ml in patients with a 2 + test ([2+] group), and 23,571.55 ± 21,737.45 ng/ml in patients with a 3 + test ([3+] group). The following tendency was noted: the stronger the positive Dip-test reaction, the higher the urinary L-FABP level. Multigroup comparison revealed a significant differences in the urinary L-FABP levels between the Dip-test (-) group and each of the other groups. In this study, the usefulness of the Dip-test, our newly developed simplified kit for measuring the urinary L-FABP level, is suggested. PMID:25499195

  15. A single-nucleotide polymorphism in the 3'-UTR region of the adipocyte fatty acid binding protein 4 gene is associated with prognosis of triple-negative breast cancer.

    PubMed

    Wang, Wenmiao; Yuan, Peng; Yu, Dianke; Du, Feng; Zhu, Anjie; Li, Qing; Zhang, Pin; Lin, Dongxin; Xu, Binghe

    2016-04-01

    Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor prognosis and high heterogeneity. The aim of this study was to screen patients for single-nucleotide polymorphisms (SNPs) associated with the prognosis of TNBC. Database-derived SNPs (NextBio, Ensembl, NCBI and MirSNP) located in the 3'-untranslated regions (3'-UTRs) of genes that are differentially expressed in breast cancer were selected. The possible associations between 111 SNPs and progression risk among 323 TNBC patients were investigated using a two-step case-control study with a discovery cohort (n=162) and a validation cohort (n=161). We identified the rs1054135 SNP in the adipocyte fatty acid binding protein 4 (FABP4) gene as a predictor of TNBC recurrence. The G allele of rs1054135 was associated with a reduced risk of disease progression as well as a prolonged disease-free survival time (DFS), with a hazard ratio (HR) for recurrence in the combined sample of 0.269 [95%CI: 0.098-0.735;P=0.001]. Notably, for individuals having the rs1054135 SNP with the AA/AG genotype, the magnitude of increased tumour recurrence risk for overweight patients (BMI≥25kg/m2) was significantly elevated (HR2.53; 95%CI: 1.06-6.03). Immunohistochemical staining of adipocytes adjacent to TNBC tissues showed that the expression level of FABP4 was statistically significantly lower in patients with the rs1054135-GG genotype and those in the disease-free group (P=0.0004 and P=0.0091, respectively). These results suggested that the expression of a lipid metabolism-related gene and an important SNP in the 3'-UTR of FABP4 are associated with TNBC prognosis, which may aid in the screening of high-risk patients with TNBC recurrence and the development of novel chemotherapeutic agents.

  16. A newly developed kit for the measurement of urinary liver-type fatty acid-binding protein as a biomarker for acute kidney injury in patients with critical care.

    PubMed

    Sato, Ryo; Suzuki, Yasushi; Takahashi, Gaku; Kojika, Masahiro; Inoue, Yoshihiro; Endo, Shigeatsu

    2015-03-01

    In recent years, it has been reported that the urinary level of Liver-type fatty acid-binding protein (L-FABP) serves as a useful biomarker for diagnosing acute kidney injury (AKI) or sepsis complicated by AKI. However, because the urinary level of L-FABP is currently measured by enzyme-linked immunosorbent assay (ELISA), several days may elapse before the results of the measurement become available. We have newly developed a simplified kit, the Dip-test, for measuring the urinary level of L-FABP. The Dip-test was measured at 80 measurement points (22 points in noninfectious disease, 13 points in SIRS, 20 points in infectious disease, and 25 points in sepsis) in 20 patients. The urinary L-FABP levels as determined by ELISA in relation to the results of the Dip-test were as follows: 10.10 ± 12.85 ng/ml in patients with a negative Dip-test ([-] group), 41.93 ± 50.51 ng/ml in patients with a ± test ([±] group), 70.36 ± 73.70 ng/ml in patients with a positive test ([+] group), 1048.96 ± 2117.68 ng/ml in patients with a 2 + test ([2+] group), and 23,571.55 ± 21,737.45 ng/ml in patients with a 3 + test ([3+] group). The following tendency was noted: the stronger the positive Dip-test reaction, the higher the urinary L-FABP level. Multigroup comparison revealed a significant differences in the urinary L-FABP levels between the Dip-test (-) group and each of the other groups. In this study, the usefulness of the Dip-test, our newly developed simplified kit for measuring the urinary L-FABP level, is suggested.

  17. AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment

    PubMed Central

    Lei, Ming; Li, Zhi-Ying; Wang, Jia-Bin; Fu, Yun-Liu; Ao, Meng-Fei; Xu, Li

    2016-01-01

    The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata. PMID:26927090

  18. AfAP2-1, An Age-Dependent Gene of Aechmea fasciata, Responds to Exogenous Ethylene Treatment.

    PubMed

    Lei, Ming; Li, Zhi-Ying; Wang, Jia-Bin; Fu, Yun-Liu; Ao, Meng-Fei; Xu, Li

    2016-01-01

    The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata. PMID:26927090

  19. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis)

    PubMed Central

    2013-01-01

    Background Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide, which has experienced thousands of years in cultivation and artificial selection. The entire Chinese cabbage genome sequence, and more than forty thousand proteins have been obtained to date. The genome has undergone triplication events since its divergence from Arabidopsis thaliana (13 to 17 Mya), however a high degree of sequence similarity and conserved genome structure remain between the two species. Arabidopsis is therefore a viable reference species for comparative genomics studies. Variation in the number of members in gene families due to genome triplication may contribute to the broad range of phenotypic plasticity, and increased tolerance to environmental extremes observed in Brassica species. Transcription factors are important regulators involved in plant developmental and physiological processes. The AP2/ERF proteins, one of the most important families of transcriptional regulators, play a crucial role in plant growth, and in response to biotic and abiotic stressors. Our analysis will provide resources for understanding the tolerance mechanisms in Brassica rapa ssp. pekinensis. Results In the present study, 291 putative AP2/ERF transcription factor proteins were identified from the Chinese cabbage genome database, and compared with proteins from 15 additional species. The Chinese cabbage AP2/ERF superfamily was classified into four families, including AP2, ERF, RAV, and Soloist. The ERF family was further divided into DREB and ERF subfamilies. The AP2/ERF superfamily was subsequently divided into 15 groups. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns, and interaction networks of the AP2/ERF transcription factor superfamily were predicted and analyzed. Distribution mapping results showed AP2/ERF superfamily genes were

  20. Level of urinary liver-type fatty acid-binding protein is associated with cardiac markers and electrocardiographic abnormalities in type-2 diabetes with chronic kidney disease stage G1 and G2.

    PubMed

    Maeda, Yoshiteru; Suzuki, Atsushi; Ishii, Junnichi; Sekiguchi-Ueda, Sahoko; Shibata, Megumi; Yoshino, Yasumasa; Asano, Shogo; Hayakawa, Nobuki; Nakamura, Kazuhiro; Akiyama, Yasukazu; Kitagawa, Fumihiko; Sakuishi, Toshiaki; Fujita, Takashi; Hashimoto, Shuji; Ozaki, Yukio; Itoh, Mitsuyasu

    2015-05-01

    Urinary liver-type fatty acid-binding protein (L-FABP) reflects the degree of stress in proximal tubules of the kidney. We examined the level of L-FABP in type-2 diabetes mellitus (T2DM) patients with chronic kidney disease (CKD) stage G1 and G2, and its relationship with cardiac markers and electrocardiographic (ECG) abnormalities. T2DM patients whose estimated glomerular filtration rate (eGFR) was ≥60 mL/min/1.73 m(2) were recruited [n = 276 (165 males), mean age 64 years]. The median level of urinary L-FABP was 6.6 μg/gCr. Urinary L-FABP showed significant correlation with urinary albumin-to-creatinine ratio (ACR) (r = 0.51, p < 0.0001). Median (25th-75th percentile) eGFR was 82 (72-95) mL/min/1.73 m2. We divided patients into four subgroups (group 1, L-FABP ≤8.4 μg/gCr and ACR ≤30 mg/gCr; group 2, L-FABP ≤8.4 μg/gCr and ACR >30 mg/gCr; group 3, L-FABP >8.4 μg/gCr and ACR ≤30 mg/gCr; group 4, L-FABP >8.4 μg/gCr and ACR >30 mg/gCr). Compared with group 1, group 4 was significantly higher in systolic blood pressure, and eGFR using standardized serum cystatin C, high-sensitivity troponin T, and N-terminal pro-brain natriuretic peptide (NT-proBNP). Group 4 had significantly higher level of NT-proBNP than group 3. Groups 2, 3 and 4 showed more ECG abnormalities than group 1. These findings suggest that simultaneous measurement of urinary L-FABP and ACR should be useful to assess cardiovascular damage reflecting on the elevation of cardiac markers and ECG abnormalities in T2DM with CKD G1 and G2.

  1. NECAP 1 Regulates AP-2 Interactions to Control Vesicle Size, Number, and Cargo During Clathrin-Mediated Endocytosis

    PubMed Central

    Ritter, Brigitte; Murphy, Sebastian; Dokainish, Hatem; Girard, Martine; Gudheti, Manasa V.; Kozlov, Guennadi; Halin, Marilene; Philie, Jacynthe; Jorgensen, Erik M.; Gehring, Kalle; McPherson, Peter S.

    2013-01-01

    AP-2 is the core-organizing element in clathrin-mediated endocytosis. During the formation of clathrin-coated vesicles, clathrin and endocytic accessory proteins interact with AP-2 in a temporally and spatially controlled manner, yet it remains elusive as to how these interactions are regulated. Here, we demonstrate that the endocytic protein NECAP 1, which binds to the α-ear of AP-2 through a C-terminal WxxF motif, uses an N-terminal PH-like domain to compete with clathrin for access to the AP-2 β2-linker, revealing a means to allow AP-2–mediated coordination of accessory protein recruitment and clathrin polymerization at sites of vesicle formation. Knockdown and functional rescue studies demonstrate that through these interactions, NECAP 1 and AP-2 cooperate to increase the probability of clathrin-coated vesicle formation and to control the number, size, and cargo content of the vesicles. Together, our data demonstrate that NECAP 1 modulates the AP-2 interactome and reveal a new layer of organizational control within the endocytic machinery. PMID:24130457

  2. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    SciTech Connect

    Mitchell, Darrion L.; DiMario, Joseph X.

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  3. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  4. MAPK Phosphatase AP2C3 Induces Ectopic Proliferation of Epidermal Cells Leading to Stomata Development in Arabidopsis

    PubMed Central

    Kazanaviciute, Vaiva; Magyar, Zoltan; Ayatollahi, Zahra; Unterwurzacher, Verena; Choopayak, Chonnanit; Boniecka, Justyna; Murray, James A. H.; Bogre, Laszlo; Meskiene, Irute

    2010-01-01

    In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells. PMID:21203456

  5. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein

    PubMed Central

    Alqahtani, Mashael F.; Smith, Craig M.; Weiss, Scott L.; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S.

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004–0.174, 13), day 2 (0.020, 0.002–0.109, 10), and day 3 (0.018, 0.003–0.058, 23) compared with febrile (0.705, 0.187–1.778, 22) and healthy (0.7, 0.4–1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2–54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3–20.6, 11). MMP-9/TIMP-1 ratios

  6. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein.

    PubMed

    Alqahtani, Mashael F; Smith, Craig M; Weiss, Scott L; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004-0.174, 13), day 2 (0.020, 0.002-0.109, 10), and day 3 (0.018, 0.003-0.058, 23) compared with febrile (0.705, 0.187-1.778, 22) and healthy (0.7, 0.4-1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2-54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3-20.6, 11). MMP-9/TIMP-1 ratios were

  7. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein.

    PubMed

    Alqahtani, Mashael F; Smith, Craig M; Weiss, Scott L; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004-0.174, 13), day 2 (0.020, 0.002-0.109, 10), and day 3 (0.018, 0.003-0.058, 23) compared with febrile (0.705, 0.187-1.778, 22) and healthy (0.7, 0.4-1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2-54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3-20.6, 11). MMP-9/TIMP-1 ratios were

  8. Characterization and free radical scavenging activity of rapeseed meal polysaccharides WPS-1 and APS-2.

    PubMed

    Zhu, Jianfei; Wu, Moucheng

    2009-02-11

    Two major polysaccharide fractions, WPS-1 and APS-2, were isolated from water-soluble and alkali-soluble extracts of Huaza No. 4 rapeseed meal with a stepwise procedure of D3520 macroporous adsorption resin column chromatography, ethanol precipitation, and DE-52 cellulose column chromatography. Physicochemical properties of the polysaccharides were determined by chemical methods, high -performance liquid chromatography (HPLC), gel permeation chromatography (GPC), and Fourier transform infrared spectrometry (FT-IR). The chemiluminescence (CL) method was used to investigate the free radical scavenging activity of the polysaccharide fractions. The polysaccharides were primarily polymers of arabinose, galactose, and glucose, associated with protein portions consisting of 13 different amino acids. The average molecular masses of WPS-1 and APS-2 were 7.20 x 10(5) and 1.61 x 10(5) Da, respectively. Compared with APS-2, WPS-1 was more effective at scavenging superoxide radical (O(2)(*-)) and hydroxyl radical (HO(*)), but less effective at scavenging hydrogen peroxide (H(2)O(2)). In decreasing order, the free radical scavenging activity of WPS-1 and APS-2 toward reactive oxygen species (ROS) was H(2)O(2) > HO(*) > O(2)(*-).

  9. AP2 hemicomplexes contribute independently to synaptic vesicle endocytosis

    PubMed Central

    Gu, Mingyu; Liu, Qiang; Watanabe, Shigeki; Sun, Lin; Hollopeter, Gunther; Grant, Barth D; Jorgensen, Erik M

    2013-01-01

    The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining μ2/β hemicomplex retains some function. Conversely, in μ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-μ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or μ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and μ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI: http://dx.doi.org/10.7554/eLife.00190.001 PMID:23482940

  10. Nucleic acid binding property of the gene products of rice stripe virus.

    PubMed

    Liang, Delin; Ma, Xiangqiang; Qu, Zhicai; Hull, Roger

    2005-10-01

    GST fusion proteins of the six gene products from RNAs 2,3 and 4 of the tenuivirus, Rice stripe virus (RSV), were used to study the nucleic acid binding activities in vitro. Three of the proteins, p3, pc3 and pc4, bound both single- and double-stranded cDNA of RSV RNA4 and also RNA3 transcribed from its cDNA clone, while p2, pc2-N (the N-terminal part of pc2) nor p4 bound the cDNA or RNA transcript. The binding activity of p3 is located in the carboxyl-terminus amino acid 154-194, which contains basic amino acid rich beta-sheets. The acidic amino acid-rich amino-terminus (amino acids 1-100) of p3 did not have nucleic acid binding activity. The related analogous gene product of the tenuivirus, Rice hoja blanca virus, is a suppressor of gene silencing and the possibility of the nucleic acid binding ability of RSV p3 being associated with this property is discussed. The C-terminal part of the RSV nucleocapsid protein, which also contains a basic region, binds nucleic acids, which is consistent with its function. The central and C-terminal regions of pc4 bind nucleic acid. It has been suggested that this protein is a cell-to-cell movement protein and nucleic acid binding would be in accord with this function. PMID:16025246

  11. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress.

    PubMed

    Li, Meng-Yao; Xu, Zhi-Sheng; Huang, Ying; Tian, Chang; Wang, Feng; Xiong, Ai-Sheng

    2015-12-01

    AP2/ERF is a large transcription factor family that regulates plant physiological processes, such as plant development and stress response. Carrot (Daucus carota L.) is an important economical crop with a genome size of 480 Mb; the draft genome sequencing of this crop has been completed by our group. However, little is known about the AP2/ERF factors in carrot. In this study, a total of 267 putative AP2/ERF factors were identified from the whole-genome sequence of carrot. These AP2/ERF proteins were phylogenetically clustered into five subfamilies based on their similarity to the amino acid sequences from Arabidopsis. The distribution and comparative genome analysis of the AP2/ERF factors among plants showed the AP2/ERF factors had expansion during the evolutionary process, and the AP2 domain was highly conserved during evolution. The number of AP2/ERF factors in land plants expanded during their evolution. A total of 60 orthologous and 145 coorthologous AP2/ERF gene pairs between carrot and Arabidopsis were identified, and the interaction network of orthologous genes was constructed. The expression patterns of eight AP2/ERF family genes from each subfamily (DREB, ERF, AP2, and RAV) were related to abiotic stresses. Yeast one-hybrid and β-galactosidase activity assays confirmed the DRE and GCC box-binding activities of DREB subfamily genes. This study is the first to identify and characterize the AP2/ERF transcription factors in carrot using whole-genome analysis, and the findings may serve as references for future functional research on the transcription factors in carrot.

  12. Genome-wide analysis of AP2/ERF transcription factors in carrot (Daucus carota L.) reveals evolution and expression profiles under abiotic stress.

    PubMed

    Li, Meng-Yao; Xu, Zhi-Sheng; Huang, Ying; Tian, Chang; Wang, Feng; Xiong, Ai-Sheng

    2015-12-01

    AP2/ERF is a large transcription factor family that regulates plant physiological processes, such as plant development and stress response. Carrot (Daucus carota L.) is an important economical crop with a genome size of 480 Mb; the draft genome sequencing of this crop has been completed by our group. However, little is known about the AP2/ERF factors in carrot. In this study, a total of 267 putative AP2/ERF factors were identified from the whole-genome sequence of carrot. These AP2/ERF proteins were phylogenetically clustered into five subfamilies based on their similarity to the amino acid sequences from Arabidopsis. The distribution and comparative genome analysis of the AP2/ERF factors among plants showed the AP2/ERF factors had expansion during the evolutionary process, and the AP2 domain was highly conserved during evolution. The number of AP2/ERF factors in land plants expanded during their evolution. A total of 60 orthologous and 145 coorthologous AP2/ERF gene pairs between carrot and Arabidopsis were identified, and the interaction network of orthologous genes was constructed. The expression patterns of eight AP2/ERF family genes from each subfamily (DREB, ERF, AP2, and RAV) were related to abiotic stresses. Yeast one-hybrid and β-galactosidase activity assays confirmed the DRE and GCC box-binding activities of DREB subfamily genes. This study is the first to identify and characterize the AP2/ERF transcription factors in carrot using whole-genome analysis, and the findings may serve as references for future functional research on the transcription factors in carrot. PMID:25971861

  13. Genome-Wide Analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) Gene Family in Barley (Hordeum vulgare L.)

    PubMed Central

    Lin, Shen; Luan, Haiye; Lv, Chao; Zhang, Xinzhong; Song, Xiyun; Xu, Rugen

    2016-01-01

    APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is plant specific transcription factor. It plays critical roles in development process, tolerance to biotic and abiotic stresses, and responses to plant hormones. However, limited data are available on the contributions of AP2/ERF gene family in barley (Hordeum vulgare L.). In the present study, 121 HvAP2/ERF genes in barley were identified by using bioinformatics methods. A total of 118 HvAP2/ERF (97.5%) genes were located on seven chromosomes. According to phylogenetic classification of AP2/ERF family in Arabidopsis, HvAP2/ERF proteins were divided into AP2 (APETALA2), RAV (Related to ABI3/VP), DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and soloist sub families. The analysis of duplication events indicated that tandem repeat and segmental duplication contributed to the expansion of the AP2/ERF family in barley. HvDREB1s/2s genes displayed various expression patterns under abiotic stress and phytohormone. Taken together, the data generated in this study will be useful for genome-wide analysis to determine the precise role of the HvAP2/ERF gene during barley development, abiotic stress and phytohormone responses with the ultimate goal of improving crop production. PMID:27598245

  14. Genome-Wide Analysis of APETALA2/Ethylene-Responsive Factor (AP2/ERF) Gene Family in Barley (Hordeum vulgare L.).

    PubMed

    Guo, Baojian; Wei, Yafeng; Xu, Ruibin; Lin, Shen; Luan, Haiye; Lv, Chao; Zhang, Xinzhong; Song, Xiyun; Xu, Rugen

    2016-01-01

    APETALA2/Ethylene-Responsive Factor (AP2/ERF) gene family is plant specific transcription factor. It plays critical roles in development process, tolerance to biotic and abiotic stresses, and responses to plant hormones. However, limited data are available on the contributions of AP2/ERF gene family in barley (Hordeum vulgare L.). In the present study, 121 HvAP2/ERF genes in barley were identified by using bioinformatics methods. A total of 118 HvAP2/ERF (97.5%) genes were located on seven chromosomes. According to phylogenetic classification of AP2/ERF family in Arabidopsis, HvAP2/ERF proteins were divided into AP2 (APETALA2), RAV (Related to ABI3/VP), DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and soloist sub families. The analysis of duplication events indicated that tandem repeat and segmental duplication contributed to the expansion of the AP2/ERF family in barley. HvDREB1s/2s genes displayed various expression patterns under abiotic stress and phytohormone. Taken together, the data generated in this study will be useful for genome-wide analysis to determine the precise role of the HvAP2/ERF gene during barley development, abiotic stress and phytohormone responses with the ultimate goal of improving crop production. PMID:27598245

  15. Genome-wide identification and phylogenetic analysis of the AP2/ERF gene superfamily in sweet orange (Citrus sinensis).

    PubMed

    Ito, T M; Polido, P B; Rampim, M C; Kaschuk, G; Souza, S G H

    2014-09-26

    Sweet orange (Citrus sinensis) plays an important role in the economy of more than 140 countries, but it is grown in areas with intermittent stressful soil and climatic conditions. The stress tolerance could be addressed by manipulating the ethylene response factor (ERF) transcription factors because they orchestrate plant responses to environmental stress. We performed an in silico study on the ERFs in the expressed sequence tag database of C. sinensis to identify potential genes that regulate plant responses to stress. We identified 108 putative genes encoding protein sequences of the AP2/ERF superfamily distributed within 10 groups of amino acid sequences. Ninety-one genes were assembled from the ERF family containing only one AP2/ERF domain, 13 genes were assembled from the AP2 family containing two AP2/ERF domains, and four other genes were assembled from the RAV family containing one AP2/ERF domain and a B3 domain. Some conserved domains of the ERF family genes were disrupted into a few segments by introns. This irregular distribution of genes in the AP2/ERF superfamily in different plant species could be a result of genomic losses or duplication events in a common ancestor. The in silico gene expression revealed that 67% of AP2/ERF genes are expressed in tissues with usual plant development, and 14% were expressed in stressed tissues. Because the AP2/ERF superfamily is expressed in an orchestrated way, it is possible that the manipulation of only one gene may result in changes in the whole plant function, which could result in more tolerant crops.

  16. EgAP2-1, an AINTEGUMENTA-like (AIL) gene expressed in meristematic and proliferating tissues of embryos in oil palm.

    PubMed

    Morcillo, F; Gallard, A; Pillot, M; Jouannic, S; Aberlenc-Bertossi, F; Collin, M; Verdeil, J L; Tregear, J W

    2007-11-01

    In order to better understand the developmental processes that govern the formation of somatic embryos in oil palm (Elaeis guineensis Jacq.), we investigated the transcription factor genes expressed during embryogenesis in this species. The AP2/EREBP transcription factor family includes the AP2 subgroup, which contains several proteins that play important roles in plant development. We identified and characterized EgAP2-1, which codes for a protein that contains two AP2 domains similar to those of the transcription factor BABYBOOM (BBM) and more generally AINTEGUMENTA-like (AIL) proteins of the AP2 subgroup. In a similar way to related genes from eudicots, ectopic expression of EgAP2-1 in transgenic Arabidopsis plants alters leaf morphology and enhances regeneration capacity. In oil palm, EgAP2-1 transcripts accumulate to the greatest extent in zygotic embryos. This expression pattern was investigated in more detail by in-situ hybridization, revealing that in both zygotic and somatic embryos, EgAP2-1 expression is concentrated in proliferating tissues associated with the early development of leaf primordia, root initials and provascular tissues. PMID:17628826

  17. AP-2-complex-mediated endocytosis of Drosophila Crumbs regulates polarity by antagonizing Stardust.

    PubMed

    Lin, Ya-Huei; Currinn, Heather; Pocha, Shirin Meher; Rothnie, Alice; Wassmer, Thomas; Knust, Elisabeth

    2015-12-15

    Maintenance of epithelial polarity depends on the correct localization and levels of polarity determinants. The evolutionarily conserved transmembrane protein Crumbs is crucial for the size and identity of the apical membrane, yet little is known about the molecular mechanisms controlling the amount of Crumbs at the surface. Here, we show that Crumbs levels on the apical membrane depend on a well-balanced state of endocytosis and stabilization. The adaptor protein 2 (AP-2) complex binds to a motif in the cytoplasmic tail of Crumbs that overlaps with the binding site of Stardust, a protein known to stabilize Crumbs on the surface. Preventing endocytosis by mutation of AP-2 causes expansion of the Crumbs-positive plasma membrane domain and polarity defects, which can be partially rescued by removing one copy of crumbs. Strikingly, knocking down both AP-2 and Stardust leads to the retention of Crumbs on the membrane. This study provides evidence for a molecular mechanism, based on stabilization and endocytosis, to adjust surface levels of Crumbs, which are essential for maintaining epithelial polarity.

  18. Distinct Temporal Regulation of RET Isoform Internalization: Roles of Clathrin and AP2.

    PubMed

    Crupi, Mathieu J F; Yoganathan, Piriya; Bone, Leslie N; Lian, Eric; Fetz, Andrew; Antonescu, Costin N; Mulligan, Lois M

    2015-11-01

    The RET receptor tyrosine kinase (RTK) contributes to kidney and nervous system development, and is implicated in a number of human cancers. RET is expressed as two protein isoforms, RET9 and RET51, with distinct interactions and signaling properties that contribute to these processes. RET isoforms are internalized from the cell surface into endosomal compartments in response to glial cell line-derived neurotropic factor (GDNF) ligand stimulation but the specific mechanisms of RET trafficking remain to be elucidated. Here, we used total internal reflection fluorescence (TIRF) microscopy to demonstrate that RET internalization occurs primarily through clathrin coated pits (CCPs). Activated RET receptors colocalize with clathrin, but not caveolin. The RET51 isoform is rapidly and robustly recruited to CCPs upon GDNF stimulation, while RET9 recruitment occurs more slowly and is less pronounced. We showed that the clathrin-associated adaptor protein complex 2 (AP2) interacts directly with each RET isoform through its AP2 μ subunit, and is important for RET internalization. Our data establish that interactions with the AP2 complex promote RET receptor internalization via clathrin-mediated endocytosis but that RET9 and RET51 have distinct internalization kinetics that may contribute to differences in their biological functions. PMID:26304132

  19. Isolation and Characterization of Six AP2/ERF Transcription Factor Genes in Chrysanthemum nankingense

    PubMed Central

    Gao, Chunyan; Li, Peiling; Song, Aiping; Wang, Haibin; Wang, Yinjie; Ren, Liping; Qi, Xiangyu; Chen, Fadi; Jiang, Jiafu; Chen, Sumei

    2015-01-01

    The AP2/ERF family of plant transcription factors (TFs) regulate a variety of developmental and physiological processes. Here, we report the isolation of six AP2/ERF TF family genes from Chrysanthemum nankingense. On the basis of sequence similarity, one of these belonged to the Ethylene Responsive Factor (ERF) subfamily and the other five to the Dehydration Responsive Element Binding protein (DREB) subfamily. A transient expression experiment showed that all six AP2/ERF proteins localized to the nucleus. A yeast-one hybrid assay demonstrated that CnDREB1-1, 1-2 and 1-3 all function as transactivators, while CnERF1, CnDREB3-1 and 3-2 have no transcriptional activation ability. The transcription response of the six TFs in response to wounding, salinity and low temperature stress and treatment with abscisic acid (ABA), salicylic acid (SA) and jasmonic acid (JA) showed that CnERF1 was up-regulated by wounding and low temperature stress but suppressed by salinity stress. The transcription of CnDREB1-1, 1-2 and 1-3 was down-regulated by ABA and JA to varying degrees. CnDREB3-1 and 3-2 was moderately increased or decreased by wounding and SA treatment, suppressed by salinity stress and JA treatment, and enhanced by low temperature stress and ABA treatment. PMID:25607731

  20. Probing heterobivalent binding to the endocytic AP-2 adaptor complex by DNA-based spatial screening.

    PubMed

    Diezmann, F; von Kleist, L; Haucke, V; Seitz, O

    2015-08-01

    The double helical DNA scaffold offers a unique set of properties, which are particularly useful for studies of multivalency in biomolecular interactions: (i) multivalent ligand displays can be formed upon nucleic acid hybridization in a self-assembly process, which facilitates spatial screening (ii) valency and spatial arrangement of the ligand display can be precisely controlled and (iii) the flexibility of the ligand display can be adjusted by integrating nick sites and unpaired template regions. Herein we describe the use of DNA-based spatial screening for the characterization of the adaptor complex 2 (AP-2), a central interaction hub within the endocytic protein network in clathrin-mediated endocytosis. AP-2 is comprised of a core domain and two, so-called appendage domains, the α- and the β2-ear, which associate with cytoplasmatic proteins required for the formation or maturation of clathrin/AP-2 coated pits. Each appendage domain has two binding grooves which recognize distinct peptide motives with micromolar affinity. This provides opportunities for enhanced interactions with protein molecules that contain two (or more) different peptide motives. To determine whether a particular, spatial arrangement of binding motifs is required for high affinity binding we probed the distance-affinity relationships by means of DNA-programmed spatial screening with self-assembled peptide-DNA complexes. By using trimolecular and tetramolecular assemblies two different peptides were positioned in 2-22 nucleotide distance. The binding data obtained with both recombinant protein in well-defined buffer systems and native AP-2 in brain extract suggests that the two binding sites of the AP-2 α-appendage can cooperate to provide up to 40-fold enhancement of affinity compared to the monovalent interaction. The distance between the two recognized peptide motives was less important provided that the DNA duplex segments were connected by flexible, single strand segments. By

  1. Altered splicing of ATP6AP2 causes X-linked parkinsonism with spasticity (XPDS)

    PubMed Central

    Korvatska, Olena; Strand, Nicholas S.; Berndt, Jason D.; Strovas, Tim; Chen, Dong-Hui; Leverenz, James B.; Kiianitsa, Konstantin; Mata, Ignacio F.; Karakoc, Emre; Greenup, J. Lynne; Bonkowski, Emily; Chuang, Joseph; Moon, Randall T.; Eichler, Evan E.; Nickerson, Deborah A.; Zabetian, Cyrus P.; Kraemer, Brian C.; Bird, Thomas D.; Raskind, Wendy H.

    2013-01-01

    We report a novel gene for a parkinsonian disorder. X-linked parkinsonism with spasticity (XPDS) presents either as typical adult onset Parkinson's disease or earlier onset spasticity followed by parkinsonism. We previously mapped the XPDS gene to a 28 Mb region on Xp11.2–X13.3. Exome sequencing of one affected individual identified five rare variants in this region, of which none was missense, nonsense or frame shift. Using patient-derived cells, we tested the effect of these variants on expression/splicing of the relevant genes. A synonymous variant in ATP6AP2, c.345C>T (p.S115S), markedly increased exon 4 skipping, resulting in the overexpression of a minor splice isoform that produces a protein with internal deletion of 32 amino acids in up to 50% of the total pool, with concomitant reduction of isoforms containing exon 4. ATP6AP2 is an essential accessory component of the vacuolar ATPase required for lysosomal degradative functions and autophagy, a pathway frequently affected in Parkinson's disease. Reduction of the full-size ATP6AP2 transcript in XPDS cells and decreased level of ATP6AP2 protein in XPDS brain may compromise V-ATPase function, as seen with siRNA knockdown in HEK293 cells, and may ultimately be responsible for the pathology. Another synonymous mutation in the same exon, c.321C>T (p.D107D), has a similar molecular defect of exon inclusion and causes X-linked mental retardation Hedera type (MRXSH). Mutations in XPDS and MRXSH alter binding sites for different splicing factors, which may explain the marked differences in age of onset and manifestations. PMID:23595882

  2. Using selenomethionyl derivatives to assign sequence in low-resolution structures of the AP2 clathrin adaptor

    PubMed Central

    Kelly, Bernard T.; Graham, Stephen C.; Owen, David J.

    2016-01-01

    Selenomethionine incorporation is a powerful technique for assigning sequence to regions of electron density at low resolution. Genetic introduction of methionine point mutations and the subsequent preparation and crystallization of selenomethionyl derivatives permits unambiguous sequence assignment by enabling the placement of the anomalous scatterers (Se atoms) thus introduced. Here, the use of this approach in the assignment of sequence in a part of the AP2 clathrin adaptor complex that is responsible for clathrin binding is described. AP2 plays a pivotal role in clathrin-mediated endocytosis, a tightly regulated process in which cell-surface transmembrane proteins are internalized from the plasma membrane by incorporation into lipid-enclosed transport vesicles. AP2 binds cargo destined for internalization and recruits clathrin, a large trimeric protein that helps to deform the membrane to produce the transport vesicle. By selenomethionine labelling of point mutants, it was shown that the clathrin-binding site is buried within a deep cleft of the AP2 complex. A membrane-stimulated conformational change in AP2 releases the clathrin-binding site from autoinhibition, thereby linking clathrin recruitment to membrane localization. PMID:26960121

  3. MiR-193a-5p Targets the Coding Region of AP-2α mRNA and Induces Cisplatin Resistance in Bladder Cancers

    PubMed Central

    Zhou, Ji; Duan, Huaxin; Xie, Yu; Ning, Yichong; Zhang, Xing; Hui, Na; Wang, Chunqing; Zhang, Jian; Zhou, Jianlin

    2016-01-01

    Transcription factor AP-2 alpha (AP-2α or TFAP2A) is a newly identified prognostic marker of chemotherapy; its expression is positively correlated with chemosensitivity and survival of cancer patients. Using computational programs, we predicted that the coding region of AP-2α gene contains a potential miRNA response element (MRE) of miR-193a-5p, and the single nucleotide polymorphism (SNP) site (c.497A>G, rs111681798) resides within the predicted MRE. The results of luciferase assays and Western blot analysis demonstrated that miR-193a-5p negatively regulated the expression of AP-2α proteins, but have no influence on the mutant AP-2α (c.497A>G). Infection with lentiviral AP-2α gene or miR-193a-5p inhibitor in the bladder cancer cells decreased migration and cisplatin resistance, while knockdown of AP-2α gene or overexpression of miR-193a-5p in the urothelial cell line SV-HUC-1 increased migration and cisplatin resistances. We concluded that miR-193a-5p induced cisplatin resistance by repressing AP-2α expression in bladder cancer cells. PMID:27698912

  4. MiR-193a-5p Targets the Coding Region of AP-2α mRNA and Induces Cisplatin Resistance in Bladder Cancers

    PubMed Central

    Zhou, Ji; Duan, Huaxin; Xie, Yu; Ning, Yichong; Zhang, Xing; Hui, Na; Wang, Chunqing; Zhang, Jian; Zhou, Jianlin

    2016-01-01

    Transcription factor AP-2 alpha (AP-2α or TFAP2A) is a newly identified prognostic marker of chemotherapy; its expression is positively correlated with chemosensitivity and survival of cancer patients. Using computational programs, we predicted that the coding region of AP-2α gene contains a potential miRNA response element (MRE) of miR-193a-5p, and the single nucleotide polymorphism (SNP) site (c.497A>G, rs111681798) resides within the predicted MRE. The results of luciferase assays and Western blot analysis demonstrated that miR-193a-5p negatively regulated the expression of AP-2α proteins, but have no influence on the mutant AP-2α (c.497A>G). Infection with lentiviral AP-2α gene or miR-193a-5p inhibitor in the bladder cancer cells decreased migration and cisplatin resistance, while knockdown of AP-2α gene or overexpression of miR-193a-5p in the urothelial cell line SV-HUC-1 increased migration and cisplatin resistances. We concluded that miR-193a-5p induced cisplatin resistance by repressing AP-2α expression in bladder cancer cells.

  5. ApiAP2 Factors as Candidate Regulators of Stochastic Commitment to Merozoite Production in Theileria annulata

    PubMed Central

    Pieszko, Marta; Weir, William; Goodhead, Ian; Kinnaird, Jane; Shiels, Brian

    2015-01-01

    Background Differentiation of one life-cycle stage to the next is critical for survival and transmission of apicomplexan parasites. A number of studies have shown that stage differentiation is a stochastic process and is associated with a point that commits the cell to a change over in the pattern of gene expression. Studies on differentiation to merozoite production (merogony) in T. annulata postulated that commitment involves a concentration threshold of DNA binding proteins and an auto-regulatory loop. Principal Findings In this study ApiAP2 DNA binding proteins that show changes in expression level during merogony of T. annulata have been identified. DNA motifs bound by orthologous domains in Plasmodium were found to be enriched in upstream regions of stage-regulated T. annulata genes and validated as targets for the T. annulata AP2 domains by electrophoretic mobility shift assay (EMSA). Two findings were of particular note: the gene in T. annulata encoding the orthologue of the ApiAP2 domain in the AP2-G factor that commits Plasmodium to gametocyte production, has an expression profile indicating involvement in transmission of T. annulata to the tick vector; genes encoding related domains that bind, or are predicted to bind, sequence motifs of the type 5'-(A)CACAC(A) are implicated in differential regulation of gene expression, with one gene (TA11145) likely to be preferentially up-regulated via auto-regulation as the cell progresses to merogony. Conclusions We postulate that the Theileria factor possessing the AP2 domain orthologous to that of Plasmodium AP2-G may regulate gametocytogenesis in a similar manner to AP2-G. In addition, paralogous ApiAP2 factors that recognise 5'-(A)CACAC(A) type motifs could operate in a competitive manner to promote reversible progression towards the point that commits the cell to undergo merogony. Factors possessing AP2 domains that bind (or are predicted to bind) this motif are present in the vector-borne genera Theileria

  6. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2.

    PubMed

    Höning, Stefan; Ricotta, Doris; Krauss, Michael; Späte, Kira; Spolaore, Barbara; Motley, Alison; Robinson, Margaret; Robinson, Carol; Haucke, Volker; Owen, David J

    2005-05-27

    The alpha,beta2,mu2,sigma2 heterotetrameric AP2 complex is recruited exclusively to the phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2))-rich plasma membrane where, amongst other roles, it selects motif-containing cargo proteins for incorporation into clathrin-coated vesicles. Unphosphorylated and mu2Thr156-monophosphorylated AP2 mutated in their alphaPtdIns4,5P(2), mu2PtdIns4,5P(2), and mu2Yxxvarphi binding sites were produced, and their interactions with membranes of different phospholipid and cargo composition were measured by surface plasmon resonance. We demonstrate that recognition of Yxxvarphi and acidic dileucine motifs is dependent on corecognition with PtdIns4,5P(2), explaining the selective recruitment of AP2 to the plasma membrane. The interaction of AP2 with PtdIns4,5P(2)/Yxxvarphi-containing membranes is two step: initial recruitment via the alphaPtdIns4,5P(2) site and then stabilization through the binding of mu2Yxxvarphi and mu2PtdIns4,5P(2) sites to their ligands. The second step is facilitated by a conformational change favored by mu2Thr156 phosphorylation. The binding of AP2 to acidic-dileucine motifs occurs at a different site from Yxxvarphi binding and is not enhanced by mu2Thr156 phosphorylation.

  7. The AP-2 Adaptor β2 Appendage Scaffolds Alternate Cargo Endocytosis

    PubMed Central

    Keyel, Peter A.; Thieman, James R.; Roth, Robyn; Erkan, Elif; Everett, Eric T.; Watkins, Simon C.; Heuser, John E.

    2008-01-01

    The independently folded appendages of the large α and β2 subunits of the endocytic adaptor protein (AP)-2 complex coordinate proper assembly and operation of endocytic components during clathrin-mediated endocytosis. The β2 subunit appendage contains a common binding site for β-arrestin or the autosomal recessive hypercholesterolemia (ARH) protein. To determine the importance of this interaction surface in living cells, we used small interfering RNA-based gene silencing. The effect of extinguishing β2 subunit expression on the internalization of transferrin is considerably weaker than an AP-2 α subunit knockdown. We show the mild sorting defect is due to fortuitous substitution of the β2 chain with the closely related endogenous β1 subunit of the AP-1 adaptor complex. Simultaneous silencing of both β1 and β2 subunit transcripts recapitulates the strong α subunit RNA interference (RNAi) phenotype and results in loss of ARH from endocytic clathrin coats. An RNAi-insensitive β2-yellow fluorescent protein (YFP) expressed in the β1 + β2-silenced background restores cellular AP-2 levels, robust transferrin internalization, and ARH colocalization with cell surface clathrin. The importance of the β appendage platform subdomain over clathrin for precise deposition of ARH at clathrin assembly zones is revealed by a β2-YFP with a disrupted ARH binding interface, which does not restore ARH colocalization with clathrin. We also show a β-arrestin 1 mutant, which engages coated structures in the absence of any G protein-coupled receptor stimulation, colocalizes with β2-YFP and clathrin even in the absence of an operational clathrin binding sequence. These findings argue against ARH and β-arrestin binding to a site upon the β2 appendage platform that is later obstructed by polymerized clathrin. We conclude that ARH and β-arrestin depend on a privileged β2 appendage site for proper cargo recruitment to clathrin bud sites. PMID:18843039

  8. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  9. Regulation of expression of N-methylpurine DNA glycosylase in human mammary epithelial cells: role of transcription factor AP-2.

    PubMed

    Cerda, S R; Chu, S S; Garcia, P; Chung, J; Grumet, J D; Thimmapaya, B; Weitzman, S A

    1999-11-01

    The DNA repair enzyme, N-methylpurine DNA glyclosylase (MPG), is overexpressed in breast cancer as compared with its expression in normal breast epithelial cells. In an effort to determine the mechanism responsible for this difference in expression, we studied rates and regulation of transcription of the MPG gene in normal (HMEC), spontaneously immortalized (MCF10A), and malignant (T47D) mammary epithelial cells. Steady state levels of MPG mRNA are 3-4-fold greater in T47D cells than in MCF10A cells. Nuclear "run-off" transcription measurements revealed MPG transcription rates to be approximately 3-fold greater in the tumor cells than in normal cells. Characterization of the MPG promoter by deletion analysis and transient transfection experiments revealed that all basal promoter activity resided between nucleotides -227 and -81 upstream from the ATG translation start site. Constructs containing this region were expressed at 4-fold greater levels when transfected into malignant T47D cells (56 x baseline) than in MCF10A cells (14 x baseline). Computer database analysis of the region of nucleotides -227 to -81 revealed multiple overlapping Sp1 consensus binding sites and two overlapping consensus AP-2 binding sites located between bases -181 and -169. Electrophoretic mobility shift assays indicated that while Sp1 bound this region of the promoter, nuclear extracts from both cell types contained equal Sp1 binding activity. In contrast, AP-2 binding activity was significantly greater in T47D cells, and Western blots confirmed increased AP-2 protein levels in these cells. Cotransfection into MCF10A cells of the MPG promoter construct and an AP-2 expression plasmid increased MPG promoter activity 2.1-fold. Cotransfection of a dominant negative mutant of AP-2 into T47D cells reduced the extent of MPG promoter-driven transcription by 50%. To investigate the functional significance of the two overlapping AP-2 consensus binding sites, each site was mutated separately

  10. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 1.

    PubMed

    Cheruvallath, Zacharia; Tang, Mingnam; McBride, Christopher; Komandla, Mallareddy; Miura, Joanne; Ton-Nu, Thu; Erikson, Phil; Feng, Jun; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris

    2016-06-15

    Methionine aminopeptidase 2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. Pre-clinical and clinical studies suggest that MetAP2 inhibitors could be used as a novel treatment for obesity. Herein we describe our use of fragment screening methods and structural biology to quickly identify and elaborate an indazole fragment into a series of reversible MetAP2 inhibitors with <10nM potency, excellent selectivity, and favorable in vitro safety profiles. PMID:27155900

  11. PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco.

    PubMed

    Mishra, Sonal; Phukan, Ujjal J; Tripathi, Vineeta; Singh, Dhananjay K; Luqman, Suaib; Shukla, Rakesh Kumar

    2015-09-01

    The AP2/ERFs are one of the most important family of transcription factors which regulate multiple responses like stress, metabolism and development in plants. We isolated PsAP2 a novel AP2/ERF from Papaver somniferum which was highly upregulated in response to wounding followed by ethylene, methyl jasmonate and ABA treatment. PsAP2 showed specific binding with both DRE and GCC box elements and it was able to transactivate the reporter genes in yeast. PsAP2 overexpressing transgenic tobacco plants exhibited enhanced tolerance towards both abiotic and biotic stresses . Real time transcript expression analysis showed constitutive upregulation of tobacco Alternative oxidase1a and Myo-inositol-1-phosphate synthase in PsAP2 overexpressing tobacco plants. Further, PsAP2 showed interaction with NtAOX1a promoter in vitro, it also specifically activated the NtAOX1a promoter in yeast and tobacco BY2 cells. The silencing of PsAP2 using VIGS lead to significant reduction in the AOX1 level in P. somniferum. Taken together PsAP2 can directly bind and transcriptionally activate NtAOX1a and its overexpression in tobacco imparted increased tolerance towards both abiotic and biotic stress.

  12. PsAP2 an AP2/ERF family transcription factor from Papaver somniferum enhances abiotic and biotic stress tolerance in transgenic tobacco.

    PubMed

    Mishra, Sonal; Phukan, Ujjal J; Tripathi, Vineeta; Singh, Dhananjay K; Luqman, Suaib; Shukla, Rakesh Kumar

    2015-09-01

    The AP2/ERFs are one of the most important family of transcription factors which regulate multiple responses like stress, metabolism and development in plants. We isolated PsAP2 a novel AP2/ERF from Papaver somniferum which was highly upregulated in response to wounding followed by ethylene, methyl jasmonate and ABA treatment. PsAP2 showed specific binding with both DRE and GCC box elements and it was able to transactivate the reporter genes in yeast. PsAP2 overexpressing transgenic tobacco plants exhibited enhanced tolerance towards both abiotic and biotic stresses . Real time transcript expression analysis showed constitutive upregulation of tobacco Alternative oxidase1a and Myo-inositol-1-phosphate synthase in PsAP2 overexpressing tobacco plants. Further, PsAP2 showed interaction with NtAOX1a promoter in vitro, it also specifically activated the NtAOX1a promoter in yeast and tobacco BY2 cells. The silencing of PsAP2 using VIGS lead to significant reduction in the AOX1 level in P. somniferum. Taken together PsAP2 can directly bind and transcriptionally activate NtAOX1a and its overexpression in tobacco imparted increased tolerance towards both abiotic and biotic stress. PMID:26319514

  13. Mechanism of regulation of the 422(aP2) gene by cAMP during preadipocyte differentiation.

    PubMed Central

    Yang, V W; Christy, R J; Cook, J S; Kelly, T J; Lane, M D

    1989-01-01

    During differentiation of 3T3-L1 preadipocytes into adipocytes, expression of the gene encoding adipocyte 422(aP2) protein is activated. We have shown that the first 248 base pairs of the 422(aP2) gene promoter (which lacks a consensus cAMP response element) are sufficient to confer inducibility of a reporter gene by cAMP in preadipocytes. We now demonstrate by deletion analysis that this DNA segment contains overlapping negative and positive regulatory elements. The positive regulatory element contains a consensus activator protein 1 (AP-1) binding sequence. The effect of the negative regulatory element is observed in preadipocytes but not in fully differentiated adipocytes, suggesting that it is an important component of the regulatory mechanism governing expression of the 422(aP2) gene during differentiation. cAMP activates the 422(aP2) promoter in confluent preadipocytes but not in proliferating preadipocytes or fully differentiated adipocytes. The stimulatory effect of cAMP is abolished by deletions that enter the negative element, suggesting that cAMP increases expression by relieving the inhibitory effect of the negative regulatory element. PMID:2542943

  14. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains

    PubMed Central

    Balaji, S.; Babu, M. Madan; Iyer, Lakshminarayan M.; Aravind, L.

    2005-01-01

    The comparative genomics of apicomplexans, such as the malarial parasite Plasmodium, the cattle parasite Theileria and the emerging human parasite Cryptosporidium, have suggested an unexpected paucity of specific transcription factors (TFs) with DNA binding domains that are closely related to those found in the major families of TFs from other eukaryotes. This apparent lack of specific TFs is paradoxical, given that the apicomplexans show a complex developmental cycle in one or more hosts and a reproducible pattern of differential gene expression in course of this cycle. Using sensitive sequence profile searches, we show that the apicomplexans possess a lineage-specific expansion of a novel family of proteins with a version of the AP2 (Apetala2)-integrase DNA binding domain, which is present in numerous plant TFs. About 20–27 members of this apicomplexan AP2 (ApiAP2) family are encoded in different apicomplexan genomes, with each protein containing one to four copies of the AP2 DNA binding domain. Using gene expression data from Plasmodium falciparum, we show that guilds of ApiAP2 genes are expressed in different stages of intraerythrocytic development. By analogy to the plant AP2 proteins and based on the expression patterns, we predict that the ApiAP2 proteins are likely to function as previously unknown specific TFs in the apicomplexans and regulate the progression of their developmental cycle. In addition to the ApiAP2 family, we also identified two other novel families of AP2 DNA binding domains in bacteria and transposons. Using structure similarity searches, we also identified divergent versions of the AP2-integrase DNA binding domain fold in the DNA binding region of the PI-SceI homing endonuclease and the C-terminal domain of the pleckstrin homology (PH) domain-like modules of eukaryotes. Integrating these findings, we present a reconstruction of the evolutionary scenario of the AP2-integrase DNA binding domain fold, which suggests that it underwent

  15. Determination of the solution-bound conformation of an amino acid binding protein by NMR paramagnetic relaxation enhancement: use of a single flexible paramagnetic probe with improved estimation of its sampling space.

    PubMed

    Bermejo, Guillermo A; Strub, Marie-Paule; Ho, Chien; Tjandra, Nico

    2009-07-15

    We demonstrate the feasibility of elucidating the bound ("closed") conformation of a periplasmic binding protein, the glutamine-binding protein (GlnBP), in solution, using paramagnetic relaxation enhancements (PREs) arising from a single paramagnetic group. GlnBP consists of two globular domains connected by a hinge. Using the ligand-free ("open") conformation as a starting point, conjoined rigid-body/torsion-angle simulated annealing calculations were performed using backbone (1)H(N)-PREs as a major source of distance information. Paramagnetic probe flexibility was accounted for via a multiple-conformer representation. A conventional approach where the entire PRE data set is enforced at once during simulated annealing yielded poor results due to inappropriate conformational sampling of the probe. On the other hand, significant improvements in coordinate accuracy were obtained by estimating the probe sampling space prior to structure calculation. Such sampling is achieved by refining the ensemble of probe conformers with intradomain PREs only, keeping the protein backbone fixed in the open form. Subsequently, while constraining the probe to the previously found conformations, the domains are allowed to move relative to each other under the influence of the non-intradomain PREs, giving the hinge region torsional degrees of freedom. Thus, by partitioning the protocol into "probe sampling" and "backbone sampling" stages, structures significantly closer to the X-ray structure of ligand-bound GlnBP were obtained.

  16. Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly

    PubMed Central

    Traub, Linton M.; Downs, Maureen A.; Westrich, Jennifer L.; Fremont, Daved H.

    1999-01-01

    AP-2 adaptors regulate clathrin-bud formation at the cell surface by recruiting clathrin trimers to the plasma membrane and by selecting certain membrane proteins for inclusion within the developing clathrin-coat structure. These functions are performed by discrete subunits of the adaptor heterotetramer. The carboxyl-terminal appendage of the AP-2 α subunit appears to regulate the translocation of several endocytic accessory proteins to the bud site. We have determined the crystal structure of the α appendage at 1.4-Å resolution by multiwavelength anomalous diffraction phasing. It is composed of two distinct structural modules, a β-sandwich domain and a mixed α–β platform domain. Structure-based mutagenesis shows that alterations to the molecular surface of a highly conserved region on the platform domain differentially affect associations of the appendage with amphiphysin, eps15, epsin, and AP180, revealing a common protein-binding interface. PMID:10430869

  17. Induction of Epstein-Barr Virus Oncoprotein LMP1 by Transcription Factors AP-2 and Early B Cell Factor

    PubMed Central

    Noda, Chieko; Narita, Yohei; Watanabe, Takahiro; Yoshida, Masahiro; Ashio, Keiji; Sato, Yoshitaka; Goshima, Fumi; Kanda, Teru; Yoshiyama, Hironori; Tsurumi, Tatsuya; Kimura, Hiroshi

    2016-01-01

    ABSTRACT Latent membrane protein 1 (LMP1) is a major oncogene essential for primary B cell transformation by Epstein-Barr virus (EBV). Previous studies suggested that some transcription factors, such as PU.1, RBP-Jκ, NF-κB, and STAT, are involved in this expression, but the underlying mechanism is unclear. Here, we identified binding sites for PAX5, AP-2, and EBF in the proximal LMP1 promoter (ED-L1p). We first confirmed the significance of PU.1 and POU domain transcription factor binding for activation of the promoter in latency III. We then focused on the transcription factors AP-2 and early B cell factor (EBF). Interestingly, among the three AP-2-binding sites in the LMP1 promoter, two motifs were also bound by EBF. Overexpression, knockdown, and mutagenesis in the context of the viral genome indicated that AP-2 plays an important role in LMP1 expression in latency II in epithelial cells. In latency III B cells, on the other hand, the B cell-specific transcription factor EBF binds to the ED-L1p and activates LMP1 transcription from the promoter. IMPORTANCE Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is crucial for B cell transformation and oncogenesis of other EBV-related malignancies, such as nasopharyngeal carcinoma and T/NK lymphoma. Its expression is largely dependent on the cell type or condition, and some transcription factors have been implicated in its regulation. However, these previous reports evaluated the significance of specific factors mostly by reporter assay. In this study, we prepared point-mutated EBV at the binding sites of such transcription factors and confirmed the importance of AP-2, EBF, PU.1, and POU domain factors. Our results will provide insight into the transcriptional regulation of the major oncogene LMP1. PMID:26819314

  18. Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins

    SciTech Connect

    Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

    2009-06-02

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  19. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis

    PubMed Central

    Sidonskaya, Ekaterina; Schweighofer, Alois; Shubchynskyy, Volodymyr; Kammerhofer, Nina; Hofmann, Julia; Wieczorek, Krzysztof; Meskiene, Irute

    2016-01-01

    Plant-parasitic cyst nematodes infect plants and form highly sophisticated feeding sites in roots. It is not known which plant cell signalling mechanisms trigger plant defence during the early stages of nematode parasitism. Mitogen-activated protein kinases (MAPKs) are central components of protein phosphorylation cascades transducing extracellular signals to plant defence responses. MAPK phosphatases control kinase activities and the signalling outcome. The involvement and the role of MPK3 and MPK6, as well as the MAPK phosphatase AP2C1, is demonstrated during parasitism of the beet cyst nematode Heterodera schachtii in Arabidopsis. Our data reveal notable activation patterns of plant MAPKs and the induction of AP2C1 suggesting the attenuation of defence signalling in plant cells during early nematode infection. It is demonstrated that the ap2c1 mutant that is lacking AP2C1 is more attractive but less susceptible to nematodes compared with the AP2C1-overexpressing line. This implies that the function of AP2C1 is a negative regulator of nematode-induced defence. By contrast, the enhanced susceptibility of mpk3 and mpk6 plants indicates a positive role of stress-activated MAPKs in plant immunity against nematodes. Evidence is provided that phosphatase AP2C1, as well as AP2C1-targeted MPK3 and MPK6, are important regulators of plant–nematode interaction, where the co-ordinated action of these signalling components ensures the timely activation of plant defence. PMID:26438412

  20. Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing

    PubMed Central

    2013-01-01

    Background Rubber tree (Hevea brasiliensis) laticifers are the source of natural rubber. Rubber production depends on endogenous and exogenous ethylene (ethephon). AP2/ERF transcription factors, and especially Ethylene-Response Factors, play a crucial role in plant development and response to biotic and abiotic stresses. This study set out to sequence transcript expressed in various tissues using next-generation sequencing and to identify AP2/ERF superfamily in the rubber tree. Results The 454 sequencing technique was used to produce five tissue-type transcript libraries (leaf, bark, latex, embryogenic tissues and root). Reads from all libraries were pooled and reassembled to improve mRNA lengths and produce a global library. One hundred and seventy-three AP2/ERF contigs were identified by in silico analysis based on the amino acid sequence of the conserved AP2 domain from the global library. The 142 contigs with the full AP2 domain were classified into three main families (20 AP2 members, 115 ERF members divided into 11 groups, and 4 RAV members) and 3 soloist members. Fifty-nine AP2/ERF transcripts were found in latex. Alongside the microRNA172 already described in plants, eleven additional microRNAs were predicted to inhibit Hevea AP2/ERF transcripts. Conclusions Hevea has a similar number of AP2/ERF genes to that of other dicot species. We adapted the alignment and classification methods to data from next-generation sequencing techniques to provide reliable information. We observed several specific features for the ERF family. Three HbSoloist members form a group in Hevea. Several AP2/ERF genes highly expressed in latex suggest they have a specific function in Hevea. The analysis of AP2/ERF transcripts in Hevea presented here provides the basis for studying the molecular regulation of latex production in response to abiotic stresses and latex cell differentiation. PMID:23324139

  1. Molecular Dynamic Simulations Reveal the Structural Determinants of Fatty Acid Binding to Oxy-Myoglobin

    PubMed Central

    Chintapalli, Sree V.; Bhardwaj, Gaurav; Patel, Reema; Shah, Natasha; Patterson, Randen L.; van Rossum, Damian B.; Anishkin, Andriy; Adams, Sean H.

    2015-01-01

    The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state. PMID:26030763

  2. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  3. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2015-12-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  4. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance.

    PubMed

    Sun, Zhan-Min; Zhou, Mei-Liang; Xiao, Xing-Guo; Tang, Yi-Xiong; Wu, Yan-Min

    2014-09-01

    Lotus corniculatus is used in agriculture as a main forage plant. Members of the Apetala2/ethylene response factor (AP2/ERF) family play important roles in regulating gene expression in response to many forms of stress, including drought and salt. Here, starting from database of the L. corniculatus var. japonicus genome, we identified 127 AP2/ERF genes by insilico cloning method. The phylogeny, gene structures, and putative conserved motifs in L. corniculatus var. japonicus ERF proteins were analyzed. Based on the number of AP2/ERF domains and the function of the genes, 127 AP2/ERF genes from L. corniculatus var. japonicus were classified into five subfamilies named the AP2, dehydration-responsive element binding factor (DREB), ERF, RAV, and a soloist. Outside the AP2/ERF domain, many L. corniculatus var. japonicus-specific conserved motifs were detected. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including LcERF054 (KJ004728), were significantly induced by salt stress. The results showed that the LcERF054 gene encodes a nuclear transcription activator. Overexpression of LcERF054 in Arabidopsis enhanced the tolerances to salt stress, showed higher germination ratio of seeds, and had elevated levels of relative moisture contents, soluble sugars, proline, and lower levels of malondialdehyde under stress conditions compared to wild-type plants. The expression of hyperosmotic salinity response genes COR15A, LEA4-5, P5CS1, and RD29A was found to be elevated in the LcERF054-overexpressing Arabidopsis plants compared to wild type. These results revealed that the LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus cv Leo or other crops. PMID:24777608

  5. Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance.

    PubMed

    Sun, Zhan-Min; Zhou, Mei-Liang; Xiao, Xing-Guo; Tang, Yi-Xiong; Wu, Yan-Min

    2014-09-01

    Lotus corniculatus is used in agriculture as a main forage plant. Members of the Apetala2/ethylene response factor (AP2/ERF) family play important roles in regulating gene expression in response to many forms of stress, including drought and salt. Here, starting from database of the L. corniculatus var. japonicus genome, we identified 127 AP2/ERF genes by insilico cloning method. The phylogeny, gene structures, and putative conserved motifs in L. corniculatus var. japonicus ERF proteins were analyzed. Based on the number of AP2/ERF domains and the function of the genes, 127 AP2/ERF genes from L. corniculatus var. japonicus were classified into five subfamilies named the AP2, dehydration-responsive element binding factor (DREB), ERF, RAV, and a soloist. Outside the AP2/ERF domain, many L. corniculatus var. japonicus-specific conserved motifs were detected. Expression profile analysis of AP2/ERF genes by quantitative real-time PCR revealed that 19 LcERF genes, including LcERF054 (KJ004728), were significantly induced by salt stress. The results showed that the LcERF054 gene encodes a nuclear transcription activator. Overexpression of LcERF054 in Arabidopsis enhanced the tolerances to salt stress, showed higher germination ratio of seeds, and had elevated levels of relative moisture contents, soluble sugars, proline, and lower levels of malondialdehyde under stress conditions compared to wild-type plants. The expression of hyperosmotic salinity response genes COR15A, LEA4-5, P5CS1, and RD29A was found to be elevated in the LcERF054-overexpressing Arabidopsis plants compared to wild type. These results revealed that the LcERF genes play important roles in L. corniculatus cv Leo under salt stress and that LcERFs are attractive engineering targets in applied efforts to improve abiotic stress tolerances in L. corniculatus cv Leo or other crops.

  6. Analysis of Brassica rapa ESTs: gene discovery and expression patterns of AP2/ERF family genes.

    PubMed

    Zhuang, Jing; Xiong, Ai-Sheng; Peng, Ri-He; Gao, Feng; Zhu, Bo; Zhang, Jian; Fu, Xiao-Yan; Jin, Xiao-Feng; Chen, Jian-Min; Zhang, Zhen; Qiao, Yu-Shan; Yao, Quan-Hong

    2010-06-01

    Chinese cabbage (Brassica rapa subsp. pekinensis) is among the most important vegetables and is widely cultivated in world. Genes in the AP2/ERF family encode transcriptional regulators that serve a variety of functions in the plants. Expressed sequence tags (ESTs) are created by partially sequencing randomly isolated gene transcripts and have proved valuable in molecular biology. Starting from the database with 142 947 ESTs of B. rapa, 62 putative AP2/ERF family genes were identified by in silico cloning using the conserved AP2/ERF domain amino acid sequence of Arabidopsis thaliana as a probe. Based on the number of AP2/ERF domains and functions of the genes, the AP2/ERF transcription factors from B. rapa were classified into four subfamilies (DREB, ERF, AP2 and RAV). Using large-scale available EST information as a source of expression data for digital expression profiling, differentially detected genes were identified among diverse plant tissues. Roots contained the largest number of transcripts of the AP2/ERF family genes, followed by leaves and seeds. Only a few of the 62 AP2/ERF family genes were detected in all tissues: most were detected only in some tissues but not in others. The maximum detected was that of BraERF-B2-5, and it was recorded from seed tissue.

  7. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns

    NASA Technical Reports Server (NTRS)

    Meulemans, Daniel; Bronner-Fraser, Marianne

    2002-01-01

    The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.

  8. Glutathione peroxidase-1 inhibits UVA-induced AP-2{alpha} expression in human keratinocytes

    SciTech Connect

    Yu Lei; Venkataraman, Sujatha; Coleman, Mitchell C.; Spitz, Douglas R.; Wertz, Philip W.; Domann, Frederick E. . E-mail: frederick-domann@uiowa.edu

    2006-12-29

    In this study, we found a role for H{sub 2}O{sub 2} in UVA-induced AP-2{alpha} expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2{alpha}, but also caused accumulation of H{sub 2}O{sub 2} in the cell culture media, and H{sub 2}O{sub 2} by itself could induce the expression of AP-2{alpha}. By catalyzing the removal of H{sub 2}O{sub 2} from cells through over-expression of GPx-1, induction of AP-2{alpha} expression by UVA was abolished. Induction of transcription factor AP-2{alpha} by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H{sub 2}O{sub 2} by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2{alpha} signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2{alpha} expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2{alpha} expression by suppressing the accumulation of H{sub 2}O{sub 2}.

  9. Glutathione peroxidase-1 inhibits UVA-induced AP-2alpha expression in human keratinocytes.

    PubMed

    Yu, Lei; Venkataraman, Sujatha; Coleman, Mitchell C; Spitz, Douglas R; Wertz, Philip W; Domann, Frederick E

    2006-12-29

    In this study, we found a role for H(2)O(2) in UVA-induced AP-2alpha expression in the HaCaT human keratinocyte cell line. UVA irradiation not only increased AP-2alpha, but also caused accumulation of H(2)O(2) in the cell culture media, and H(2)O(2) by itself could induce the expression of AP-2alpha. By catalyzing the removal of H(2)O(2) from cells through over-expression of GPx-1, induction of AP-2alpha expression by UVA was abolished. Induction of transcription factor AP-2alpha by UVA had been previously shown to be mediated through the second messenger ceramide. We found that not only UVA irradiation, but also H(2)O(2) by itself caused increases of ceramide in HaCaT cells, and C2-ceramide added to cells induced the AP-2alpha signaling pathway. Finally, forced expression of GPx-1 eliminated UVA-induced ceramide accumulation as well as AP-2alpha expression. Taken together, these findings suggest that GPx-1 inhibits UVA-induced AP-2alpha expression by suppressing the accumulation of H(2)O(2).

  10. Folic acid binds DNA and RNA at different locations.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2015-03-01

    We located multiple binding sites for folic acid on DNA and tRNA at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods and molecular modeling. Structural analysis revealed that folic acid binds DNA and tRNA at multiple sites via hydrophilic, hydrophobic and H-bonding contacts with overall binding constants of Kfolic acid-DNA=1.1 (±0.3)×10(4) M(-1) and Kfolic acid-tRNA=6.4 (±0.5)×10(3) M(-1). Molecular modeling showed the participation of several nucleobases in folic acid complexes with DNA and tRNA, stabilized by H-bonding network. Two types of complexes were located for folic acid-tRNA adducts, one at the major groove and the other with TΨC loop, while acid binding occurs at major and minor grooves of DNA duplex. Folic acid complexation induced more alterations of DNA structure than tRNA.

  11. Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea.

    PubMed

    Agarwal, Gaurav; Garg, Vanika; Kudapa, Himabindu; Doddamani, Dadakhalandar; Pazhamala, Lekha T; Khan, Aamir W; Thudi, Mahendar; Lee, Suk-Ha; Varshney, Rajeev K

    2016-07-01

    APETALA2/ethylene response factor (AP2/ERF) and heat-shock protein 90 (HSP90) are two significant classes of transcription factor and molecular chaperone proteins which are known to be implicated under abiotic and biotic stresses. Comprehensive survey identified a total of 147 AP2/ERF genes in chickpea, 176 in pigeonpea, 131 in Medicago, 179 in common bean and 140 in Lotus, whereas the number of HSP90 genes ranged from 5 to 7 in five legumes. Sequence alignment and phylogenetic analyses distinguished AP2, ERF, DREB, RAV and soloist proteins, while HSP90 proteins segregated on the basis of their cellular localization. Deeper insights into the gene structure allowed ERF proteins to be classified into AP2s based on DNA-binding domains, intron arrangements and phylogenetic grouping. RNA-seq and quantitative real-time PCR (qRT-PCR) analyses in heat-stressed chickpea as well as Fusarium wilt (FW)- and sterility mosaic disease (SMD)-stressed pigeonpea provided insights into the modus operandi of AP2/ERF and HSP90 genes. This study identified potential candidate genes in response to heat stress in chickpea while for FW and SMD stresses in pigeonpea. For instance, two DREB genes (Ca_02170 and Ca_16631) and three HSP90 genes (Ca_23016, Ca_09743 and Ca_25602) in chickpea can be targeted as potential candidate genes. Similarly, in pigeonpea, a HSP90 gene, C.cajan_27949, was highly responsive to SMD in the resistant genotype ICPL 20096, can be recommended for further functional validation. Also, two DREB genes, C.cajan_41905 and C.cajan_41951, were identified as leads for further investigation in response to FW stress in pigeonpea. PMID:26800652

  12. Biological characterization of liver fatty acid binding gene from miniature pig liver cDNA library.

    PubMed

    Gao, Y H; Wang, K F; Zhang, S; Fan, Y N; Guan, W J; Ma, Y H

    2015-01-01

    Liver fatty acid binding proteins (L-FABP) are a family of small, highly conserved, cytoplasmic proteins that bind to long-chain fatty acids and other hydrophobic ligands. In this study, a full-length enriched cDNA library was successfully constructed from Wuzhishan miniature pig, and then the L-FABP gene was cloned from this cDNA library and an expression vector (pEGFP-N3-L-FABP) was constructed in vitro. This vector was transfected into hepatocytes to test its function. The results of western blotting analysis demonstrated that the L-FABP gene from our full-length enriched cDNA library regulated downstream genes, including the peroxisome proliferator-activated receptor family in hepatocytes. This study provides a theoretical basis and experimental evidence for the application of L-FABP for the treatment of liver injury. PMID:26345909

  13. Biological characterization of liver fatty acid binding gene from miniature pig liver cDNA library.

    PubMed

    Gao, Y H; Wang, K F; Zhang, S; Fan, Y N; Guan, W J; Ma, Y H

    2015-01-01

    Liver fatty acid binding proteins (L-FABP) are a family of small, highly conserved, cytoplasmic proteins that bind to long-chain fatty acids and other hydrophobic ligands. In this study, a full-length enriched cDNA library was successfully constructed from Wuzhishan miniature pig, and then the L-FABP gene was cloned from this cDNA library and an expression vector (pEGFP-N3-L-FABP) was constructed in vitro. This vector was transfected into hepatocytes to test its function. The results of western blotting analysis demonstrated that the L-FABP gene from our full-length enriched cDNA library regulated downstream genes, including the peroxisome proliferator-activated receptor family in hepatocytes. This study provides a theoretical basis and experimental evidence for the application of L-FABP for the treatment of liver injury.

  14. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis. PMID:27606346

  15. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 2.

    PubMed

    McBride, Christopher; Cheruvallath, Zacharia; Komandla, Mallareddy; Tang, Mingnam; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris

    2016-06-15

    Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally.

  16. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 2.

    PubMed

    McBride, Christopher; Cheruvallath, Zacharia; Komandla, Mallareddy; Tang, Mingnam; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris

    2016-06-15

    Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally. PMID:27136719

  17. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus.

    PubMed

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  18. The development of MetAP-2 inhibitors in cancer treatment.

    PubMed

    Yin, S-Q; Wang, J-J; Zhang, C-M; Liu, Z-P

    2012-01-01

    Methionine aminopeptidases (MetAPs), which remove methionine residue from newly synthesized polypeptide chains, are a class of metalloproteases ubiquitously distributed in both eukaryotes and prokaryotes. MetAP-2 inhibition can induce G1 cell cycle arrest, cytostasis in tumor cells in vitro and inhibition of tumor growth in vivo. The discovery of fumagillin with potent antiangiogenic and antiproliferative activities promoted the development of fumagillin analogues as a novel class of anticancer agents. Early drug discovery efforts have focused on analogs of fumagillin, which irreversibly inhibit MetAP-2 through covalent modification of an epoxide. Several fumagillin analogs, like CKD-732, TNP-470 and PPI-2458, were found to be potent selective inhibitors of MetAP-2 (proteolytic activity) and endothelial cell proliferation. Further, they have entered in clinical trials for the treatment of different types of tumors. Recently, attention has been paid to reversible human MetAP-2 inhibitors, such as bengamides, 2-hydroxy-3-aminoamides, anthranilic acid sulfonamides and triazole analogs, which have demonstrated their potential to inhibit angiogenesis and tumor growth in vivo as well. This review article mainly discussed the development of MetAP-2 inhibitors in cancer therapy and also summarized their structure-activity relationships. PMID:22229417

  19. Origination, Expansion, Evolutionary Trajectory, and Expression Bias of AP2/ERF Superfamily in Brassica napus

    PubMed Central

    Song, Xiaoming; Wang, Jinpeng; Ma, Xiao; Li, Yuxian; Lei, Tianyu; Wang, Li; Ge, Weina; Guo, Di; Wang, Zhenyi; Li, Chunjin; Zhao, Jianjun; Wang, Xiyin

    2016-01-01

    The AP2/ERF superfamily, one of the most important transcription factor families, plays crucial roles in response to biotic and abiotic stresses. So far, a comprehensive evolutionary inference of its origination and expansion has not been available. Here, we identified 515 AP2/ERF genes in B. napus, a neo-tetraploid forming ~7500 years ago, and found that 82.14% of them were duplicated in the tetraploidization. A prominent subgenome bias was revealed in gene expression, tissue-specific, and gene conversion. Moreover, a large-scale analysis across plants and alga suggested that this superfamily could have been originated from AP2 family, expanding to form other families (ERF, and RAV). This process was accompanied by duplicating and/or alternative deleting AP2 domain, intragenic domain sequence conversion, and/or by acquiring other domains, resulting in copy number variations, alternatively contributing to functional innovation. We found that significant positive selection occurred at certain critical nodes during the evolution of land plants, possibly responding to changing environment. In conclusion, the present research revealed origination, functional innovation, and evolutionary trajectory of the AP2/ERF superfamily, contributing to understanding their roles in plant stress tolerance. PMID:27570529

  20. Crystal Structure of Species D Adenovirus Fiber Knobs and Their Sialic Acid Binding Sites

    PubMed Central

    Burmeister, Wim P.; Guilligay, Delphine; Cusack, Stephen; Wadell, Göran; Arnberg, Niklas

    2004-01-01

    Adenovirus serotype 37 (Ad37) belongs to species D and can cause epidemic keratoconjunctivitis, whereas the closely related Ad19p does not. Primary cell attachment by adenoviruses is mediated through receptor binding of the knob domain of the fiber protein. The knobs of Ad37 and Ad19p differ at only two positions, Lys240Glu and Asn340Asp. We report the high-resolution crystal structures of the Ad37 and Ad19p knobs, both native and in complex with sialic acid, which has been proposed as a receptor for Ad37. Overall, the Ad37 and Ad19p knobs are very similar to previously reported knob structures, especially to that of Ad5, which binds the coxsackievirus-adenovirus receptor (CAR). Ad37 and Ad19p knobs are structurally identical with the exception of the changed side chains and are structurally most similar to CAR-binding knobs (e.g., that of Ad5) rather than non-CAR-binding knobs (e.g., that of Ad3). The two mutations in Ad19p result in a partial loss of the exceptionally high positive surface charge of the Ad37 knob but do not affect sialic acid binding. This site is located on the top of the trimer and binds both α(2,3) and α(2,6)-linked sialyl-lactose, although only the sialic acid residue makes direct contact. Amino acid alignment suggests that the sialic acid binding site is conserved in several species D serotypes. Our results show that the altered viral tropism and cell binding of Ad19p relative to those of Ad37 are not explained by a different binding ability toward sialyl-lactose. PMID:15220447

  1. Identification and molecular characterization of the switchgrass AP2/ERF transcription factor superfamily, and overexpression of PvERF001 for improvement of biomass characteristics for biofuel

    SciTech Connect

    Wuddineh, Wegi A.; Mazarei, Mitra; Turner, Geoffry B.; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.; C. Neal Stewart, Jr.

    2015-07-20

    The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. The ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Furthermore, overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with

  2. Identification and molecular characterization of the switchgrass AP2/ERF transcription factor superfamily, and overexpression of PvERF001 for improvement of biomass characteristics for biofuel

    DOE PAGES

    Wuddineh, Wegi A.; Mazarei, Mitra; Turner, Geoffry B.; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.; C. Neal Stewart, Jr.

    2015-07-20

    The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. Themore » ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Furthermore, overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with

  3. Identification and Molecular Characterization of the Switchgrass AP2/ERF Transcription Factor Superfamily, and Overexpression of PvERF001 for Improvement of Biomass Characteristics for Biofuel

    PubMed Central

    Wuddineh, Wegi A.; Mazarei, Mitra; Turner, Geoffrey B.; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.; Stewart, C. Neal

    2015-01-01

    The APETALA2/ethylene response factor (AP2/ERF) superfamily of transcription factors (TFs) plays essential roles in the regulation of various growth and developmental programs including stress responses. Members of these TFs in other plant species have been implicated to play a role in the regulation of cell wall biosynthesis. Here, we identified a total of 207 AP2/ERF TF genes in the switchgrass genome and grouped into four gene families comprised of 25 AP2-, 121 ERF-, 55 DREB (dehydration responsive element binding)-, and 5 RAV (related to API3/VP) genes, as well as a singleton gene not fitting any of the above families. The ERF and DREB subfamilies comprised seven and four distinct groups, respectively. Analysis of exon/intron structures of switchgrass AP2/ERF genes showed high diversity in the distribution of introns in AP2 genes versus a single or no intron in most genes in the ERF and RAV families. The majority of the subfamilies or groups within it were characterized by the presence of one or more specific conserved protein motifs. In silico functional analysis revealed that many genes in these families might be associated with the regulation of responses to environmental stimuli via transcriptional regulation of the response genes. Moreover, these genes had diverse endogenous expression patterns in switchgrass during seed germination, vegetative growth, flower development, and seed formation. Interestingly, several members of the ERF and DREB families were found to be highly expressed in plant tissues where active lignification occurs. These results provide vital resources to select candidate genes to potentially impart tolerance to environmental stress as well as reduced recalcitrance. Overexpression of one of the ERF genes (PvERF001) in switchgrass was associated with increased biomass yield and sugar release efficiency in transgenic lines, exemplifying the potential of these TFs in the development of lignocellulosic feedstocks with improved biomass

  4. Evolution of the chalcone-isomerase fold from fatty-acid binding to stereospecific catalysis.

    PubMed

    Ngaki, Micheline N; Louie, Gordon V; Philippe, Ryan N; Manning, Gerard; Pojer, Florence; Bowman, Marianne E; Li, Ling; Larsen, Elise; Wurtele, Eve Syrkin; Noel, Joseph P

    2012-05-24

    Specialized metabolic enzymes biosynthesize chemicals of ecological importance, often sharing a pedigree with primary metabolic enzymes. However, the lineage of the enzyme chalcone isomerase (CHI) remained unknown. In vascular plants, CHI-catalysed conversion of chalcones to chiral (S)-flavanones is a committed step in the production of plant flavonoids, compounds that contribute to attraction, defence and development. CHI operates near the diffusion limit with stereospecific control. Although associated primarily with plants, the CHI fold occurs in several other eukaryotic lineages and in some bacteria. Here we report crystal structures, ligand-binding properties and in vivo functional characterization of a non-catalytic CHI-fold family from plants. Arabidopsis thaliana contains five actively transcribed genes encoding CHI-fold proteins, three of which additionally encode amino-terminal chloroplast-transit sequences. These three CHI-fold proteins localize to plastids, the site of de novo fatty-acid biosynthesis in plant cells. Furthermore, their expression profiles correlate with those of core fatty-acid biosynthetic enzymes, with maximal expression occurring in seeds and coinciding with increased fatty-acid storage in the developing embryo. In vitro, these proteins are fatty-acid-binding proteins (FAPs). FAP knockout A. thaliana plants show elevated α-linolenic acid levels and marked reproductive defects, including aberrant seed formation. Notably, the FAP discovery defines the adaptive evolution of a stereospecific and catalytically 'perfected' enzyme from a non-enzymatic ancestor over a defined period of plant evolution.

  5. Transcriptome-based discovery of AP2/ERF transcription factors related to temperature stress in tea plant (Camellia sinensis).

    PubMed

    Wu, Zhi-Jun; Li, Xing-Hui; Liu, Zhi-Wei; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2015-11-01

    Tea plant (Camellia sinensis) is an important natural resource for the global supply of non-alcoholic beverage production. The extension of tea plant cultivation is challenged by biotic and abiotic stresses. Transcription factors (TFs) of the APETALA 2 (AP2)/ethylene-responsive factor (ERF) family are involved in growth and anti-stresses through multifaceted transcriptional regulation in plants. This study comprehensively analyzed AP2/ERF family TFs from C. sinensis on the basis of the transcriptome sequencing data of four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. A total of 89 putative AP2/ERF transcription factors with full-length AP2 domain were identified from C. sinensis and classified into five subfamilies, namely, AP2, dehydration-responsive-element-binding (DREB), ERF, related to ABI3/VP (RAV), and Soloist. All identified CsAP2/ERF genes presented relatively stable expression levels in the four tea plant cultivars. Many groups also showed cultivar specificity. Five CsAP2/ERF genes from each AP2/ERF subfamily (DREB, ERF, AP2, and RAV) were related to temperature stresses; these results indicated that AP2/ERF TFs may play important roles in abnormal temperature stress response in C. sinensis.

  6. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis.

    PubMed

    Li, Ai; Zhou, Yanan; Jin, Chuan; Song, Wenqin; Chen, Chengbin; Wang, Chunguo

    2013-11-01

    In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors.

  7. LaAP2L1, a heterosis-associated AP2/EREBP transcription factor of Larix, increases organ size and final biomass by affecting cell proliferation in Arabidopsis.

    PubMed

    Li, Ai; Zhou, Yanan; Jin, Chuan; Song, Wenqin; Chen, Chengbin; Wang, Chunguo

    2013-11-01

    In Larix and in some crops, heterosis is prevalent and has been widely used in breeding to produce excellent varieties. However, the molecular basis of heterosis in Larix remains ambiguous. LaAP2L1, a member of the AP2/EREBP transcription factor family, has been suggested to be involved in heterosis in Larix hybrids. Here, the function and regulation of LaAP2L1 were further explored. Overexpression of LaAP2L1 led to markedly enlarged organs and heterosis-like traits in Arabidopsis. Fresh weight of leaves was almost twice as great as in vector controls. Likewise, seed yield of 35S::LaAP2L1 individual plants was >200% greater than that of control plants. The enlarged organs and heterosis-like traits displayed by 35S::LaAP2L1 plants were mainly due to enhanced cell proliferation and prolonged growth duration. At the molecular level, LaAP2L1 upregulated the expression of ANT, EBP1, and CycD3;1 and inhibited the expression of ARGOS in 35S::LaAP2L1 plants, suggesting an important molecular role of LaAP2L1 in regulating plant organ development. These findings provide new insights into the formation of heterosis in woody plants and suggest that LaAP2L1 has potential applications in breeding high-yielding crops and energy plants. In addition, 50 AP2/EREBP transcription factors, including LaAP2L1, in Larix were identified by transcriptome sequencing, and phylogenetic analysis was conducted. This provided information that will be important in further revealing the functions of these transcription factors. PMID:24009335

  8. RBscore&NBench: a high-level web server for nucleic acid binding residues prediction with a large-scale benchmarking database.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2016-07-01

    RBscore&NBench combines a web server, RBscore and a database, NBench. RBscore predicts RNA-/DNA-binding residues in proteins and visualizes the prediction scores and features on protein structures. The scoring scheme of RBscore directly links feature values to nucleic acid binding probabilities and illustrates the nucleic acid binding energy funnel on the protein surface. To avoid dataset, binding site definition and assessment metric biases, we compared RBscore with 18 web servers and 3 stand-alone programs on 41 datasets, which demonstrated the high and stable accuracy of RBscore. A comprehensive comparison led us to develop a benchmark database named NBench. The web server is available on: http://ahsoka.u-strasbg.fr/rbscorenbench/. PMID:27084939

  9. RBscore&NBench: a high-level web server for nucleic acid binding residues prediction with a large-scale benchmarking database.

    PubMed

    Miao, Zhichao; Westhof, Eric

    2016-07-01

    RBscore&NBench combines a web server, RBscore and a database, NBench. RBscore predicts RNA-/DNA-binding residues in proteins and visualizes the prediction scores and features on protein structures. The scoring scheme of RBscore directly links feature values to nucleic acid binding probabilities and illustrates the nucleic acid binding energy funnel on the protein surface. To avoid dataset, binding site definition and assessment metric biases, we compared RBscore with 18 web servers and 3 stand-alone programs on 41 datasets, which demonstrated the high and stable accuracy of RBscore. A comprehensive comparison led us to develop a benchmark database named NBench. The web server is available on: http://ahsoka.u-strasbg.fr/rbscorenbench/.

  10. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site.

    PubMed Central

    Weaver, T.; Lees, M.; Banaszak, L.

    1997-01-01

    Two mutant forms of fumarase C from E. coli have been made using PCR and recombinant DNA. The recombinant form of the protein included a histidine arm on the C-terminal facilitating purification. Based on earlier studies, two different carboxylic acid binding sites, labeled A- and B-, were observed in crystal structures of the wild type and inhibited forms of the enzyme. A histidine at each of the sites was mutated to an asparagine. H188N at the A-site resulted in a large decrease in specific activity, while the H129N mutation at the B-site had essentially no effect. From the results, we conclude that the A-site is indeed the active site, and a dual role for H188 as a potential catalytic base is proposed. Crystal structures of the two mutant proteins produced some unexpected results. Both mutations reduced the affinity for the carboxylic acids at their respective sites. The H129N mutant should be particularly useful in future kinetic studies because it sterically blocks the B-site with the carboxyamide of asparagine assuming the position of the ligand's carboxylate. In the H188N mutation at the active site, the new asparagine side chain still interacts with an active site water that appears to have moved slightly as a result of the mutation. PMID:9098893

  11. System for expression of microsporidian methionine amino peptidase type 2 (MetAP2) in the yeast Saccharomyces cerevisiae.

    PubMed

    Upadhya, Rajendra; Zhang, Hong Shan; Weiss, Louis M

    2006-10-01

    Microsporidia are parasitic protists of all classes of vertebrates and most invertebrates. They recently emerged as important infections in various immunosuppressed and immunocompetent patient populations. They are also important veterinary and agricultural pathogens. Current therapies for microsporidiosis include benzimidazoles, which bind tubulin-inhibiting microtubule assembly, and fumagillin and its derivatives, which bind and inhibit methionine amino peptidase type 2 (MetAP2). Benzimidazoles are not active against Enterocytozoon bieneusi, the most common cause of human microsporidiosis. Fumagillin is active against most microsporidia, including E. bieneusi, but thrombocytopenia has been a problem in clinical trials. There is a pressing need for more-specific microsporidian MetAP2 inhibitors. To expedite and facilitate the discovery of safe and effective MetAP2 inhibitors, we have engineered Saccharomyces cerevisiae to be dependent on Encephalitozoon cuniculi MetAP2 (EcMetAP2) for its growth, where EcMetAP2 is harbored on an episomal uracil-selectable tetracycline-regulated plasmid. We have also constructed a leucine-selectable tetracycline-regulated expression plasmid into which any MetAP2 gene can be cloned. By utilizing a 5-fluoroorotic acid-mediated plasmid shuffle in the EcMetAP2 yeast strain, a yeast strain can be generated whose growth is dependent on MetAP2 from any organism. The level of heterologous MetAP2 gene expression can be controlled by the addition of tetracycline to the growth medium. These yeast strains should permit high-throughput screening for the identification of new inhibitors with high specificity and activity toward microsporidian MetAP2.

  12. Colocalization of the (Pro)renin Receptor/Atp6ap2 with H+-ATPases in Mouse Kidney but Prorenin Does Not Acutely Regulate Intercalated Cell H+-ATPase Activity

    PubMed Central

    Daryadel, Arezoo; Bourgeois, Soline; Figueiredo, Marta F. L.; Gomes Moreira, Ana; Kampik, Nicole B.; Oberli, Lisa; Mohebbi, Nilufar; Lu, Xifeng; Meima, Marcel E.; Danser, A. H. Jan; Wagner, Carsten A.

    2016-01-01

    The (Pro)renin receptor (P)RR/Atp6ap2 is a cell surface protein capable of binding and non-proteolytically activate prorenin. Additionally, (P)RR is associated with H+-ATPases and alternative functions in H+-ATPase regulation as well as in Wnt signalling have been reported. Kidneys express very high levels of H+-ATPases which are involved in multiple functions such as endocytosis, membrane protein recycling as well as urinary acidification, bicarbonate reabsorption, and salt absorption. Here, we wanted to localize the (P)RR/Atp6ap2 along the murine nephron, exmaine whether the (P)RR/Atp6ap2 is coregulated with other H+-ATPase subunits, and whether acute stimulation of the (P)RR/Atp6ap2 with prorenin regulates H+-ATPase activity in intercalated cells in freshly isolated collecting ducts. We localized (P)PR/Atp6ap2 along the murine nephron by qPCR and immunohistochemistry. (P)RR/Atp6ap2 mRNA was detected in all nephron segments with highest levels in the collecting system coinciding with H+-ATPases. Further experiments demonstrated expression at the brush border membrane of proximal tubules and in all types of intercalated cells colocalizing with H+-ATPases. In mice treated with NH4Cl, NaHCO3, KHCO3, NaCl, or the mineralocorticoid DOCA for 7 days, (P)RR/Atp6ap2 and H+-ATPase subunits were regulated but not co-regulated at protein and mRNA levels. Immunolocalization in kidneys from control, NH4Cl or NaHCO3 treated mice demonstrated always colocalization of PRR/Atp6ap2 with H+-ATPase subunits at the brush border membrane of proximal tubules, the apical pole of type A intercalated cells, and at basolateral and/or apical membranes of non-type A intercalated cells. Microperfusion of isolated cortical collecting ducts and luminal application of prorenin did not acutely stimulate H+-ATPase activity. However, incubation of isolated collecting ducts with prorenin non-significantly increased ERK1/2 phosphorylation. Our results suggest that the PRR/Atp6ap2 may form a complex

  13. Regulation of Aggression by Obesity-Linked Genes TfAP-2 and Twz Through Octopamine Signaling in Drosophila

    PubMed Central

    Williams, Michael J.; Goergen, Philip; Rajendran, Jayasimman; Klockars, Anica; Kasagiannis, Anna; Fredriksson, Robert; Schiöth, Helgi B.

    2014-01-01

    In Drosophila, the monoamine octopamine, through mechanisms that are not completely understood, regulates both aggression and mating behavior. Interestingly, our study demonstrates that the Drosophila obesity-linked homologs Transcription factor AP-2 (TfAP-2; TFAP2B in humans) and Tiwaz (Twz; KCTD15 in humans) interact to modify male behavior by controlling the expression of Tyramine β-hydroxylase and Vesicular monanime transporter, genes necessary for octopamine production and secretion. Furthermore, we reveal that octopamine in turn regulates aggression through the Drosophila cholecystokinin satiation hormone homolog Drosulfakinin (Dsk). Finally, we establish that TfAP-2 is expressed in octopaminergic neurons known to control aggressive behavior and that TfAP-2 requires functional Twz for its activity. We conclude that genetically manipulating the obesity-linked homologs TfAP-2 and Twz is sufficient to affect octopamine signaling, which in turn modulates Drosophila male behavior through the regulation of the satiation hormone Dsk. PMID:24142897

  14. Unexpected severe consequences of Pikfyve deletion by aP2- or Aq-promoter-driven Cre expression for glucose homeostasis and mammary gland development.

    PubMed

    Ikonomov, Ognian C; Sbrissa, Diego; Delvecchio, Khortnal; Rillema, James A; Shisheva, Assia

    2016-06-01

    Systemic deficiency of PIKfyve, the evolutionarily conserved phosphoinositide kinase synthesizing cellular PtdIns5P and PtdIns(3,5)P2 and implicated in insulin signaling, causes early embryonic death in mice. In contrast, mice with muscle-specific Pikfyve disruption have normal lifespan but exhibit early-age whole-body glucose intolerance and muscle insulin resistance, thus establishing the key role of muscle PIKfyve in glucose homeostasis. Fat and muscle tissues control postprandial glucose clearance through different mechanisms, raising questions as to whether adipose Pikfyve disruption will also trigger whole-body metabolic abnormalities, and if so, what the mechanism might be. To clarify these issues, here we have characterized two new mouse models with adipose tissue disruption of Pikfyve through Cre recombinase expression driven by adipose-specific aP2- or adiponectin (Aq) promoters. Whereas both mouse lines were ostensibly normal until adulthood, their glucose homeostasis and systemic insulin sensitivity were severely dysregulated. These abnormalities stemmed in part from accelerated fat-cell lipolysis and elevated serum FFA Intriguingly, aP2-Cre-PIKfyve(fl/fl) but not Aq-Cre-PIKfyve(fl/fl) females had severely impaired pregnancy-induced mammary gland differentiation and lactogenesis, consistent with aP2-Cre-mediated Pikfyve excision in nonadipogenic tissues underlying this defect. Intriguingly, whereas mammary glands from postpartum control and Aq-Cre-PIKfyve(fl/fl) mice or ex vivo mammary gland explants showed profound upregulation of PIKfyve protein levels subsequent to prolactin receptor activation, such increases were not apparent in aP2-Cre-PIKfyve(fl/fl) females. Collectively, our data identify for the first time that adipose tissue Pikfyve plays a key role in the mechanisms regulating glucose homeostasis and that the PIKfyve pathway is critical in mammary epithelial differentiation during pregnancy and lactogenesis downstream of prolactin receptor

  15. Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties

    PubMed Central

    Mitra, Mithun; Hercík, Kamil; Byeon, In-Ja L.; Ahn, Jinwoo; Hill, Shawn; Hinchee-Rodriguez, Kathyrn; Singer, Dustin; Byeon, Chang-Hyeock; Charlton, Lisa M.; Nam, Gabriel; Heidecker, Gisela; Gronenborn, Angela M.; Levin, Judith G.

    2014-01-01

    Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A’s deaminase and nucleic acid binding activities. We find that A3A binds ssRNA, but the RNA and DNA binding interfaces differ and no deamination of ssRNA is detected. Surprisingly, with only one exception (G105A), alanine substitution mutants with changes in residues affected by specific ssDNA binding retain deaminase activity. Furthermore, A3A binds and deaminates ssDNA in a length-dependent manner. Using catalytically active and inactive A3A mutants, we show that the determinants of A3A deaminase activity and anti-LINE-1 activity are not the same. Finally, we demonstrate A3A’s potential to mutate genomic DNA during transient strand separation and show that this process could be counteracted by ssDNA binding proteins. Taken together, our studies provide new insights into the molecular properties of A3A and its role in multiple cellular and antiviral functions. PMID:24163103

  16. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation.

    PubMed Central

    Gille, J; Swerlick, R A; Caughman, S W

    1997-01-01

    The endothelial cell-specific mitogen vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) represents a central regulator of cutaneous angiogenesis. Increased VPF/VEGF expression has recently been reported in psoriatic skin and healing wounds, both conditions in which transforming growth factor-alpha (TGF alpha) and its ligand, the epidermal growth factor receptor, are markedly up-regulated. Since TGF alpha strongly induces VPF/VEGF synthesis in keratinocytes, TGF alpha-mediated VPF/VEGF expression is likely to play a significant role in the initiation and maintenance of increased vascular hyperpermeability and hyperproliferation in skin biology. The objectives of the present studies were to determine the molecular mechanisms responsible for TGF alpha-induced transcriptional activation of the VPF/VEGF gene. We have identified a GC-rich TGF alpha-responsive region between -88 bp and -65 bp of the VPF/VEGF promoter that is necessary for constitutive and TGF alpha-inducible transcriptional activation. In electrophoretic mobility shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional TGF alpha-inducible protein complex that is distinct from Sp1 protein. Both AP-2 and Egr-1 transcription factors were detected as components of the TGF alpha-inducible protein complex in supershift EMSA studies. In co-transfection studies, an AP-2 but not an Egr-1 expression vector activated VPF/VEGF transcription, thus indicating that AP-2 protein is functionally important in TGF alpha-induced VPF/VEGF gene expression. By clarifying regulatory mechanisms that are critical for angiogenic processes in the skin, these studies may form the basis for new therapeutic strategies to modulate VPF/VEGF expression in cutaneous inflammation and wound healing. PMID:9049304

  17. Low expressions of ARS2 and CASP8AP2 predict relapse and poor prognosis in pediatric acute lymphoblastic leukemia patients treated on China CCLG-ALL 2008 protocol.

    PubMed

    Cui, Lei; Gao, Chao; Zhang, Rui-Dong; Jiao, Ying; Li, Wei-Jing; Zhao, Xiao-Xi; Liu, Shu-Guang; Yue, Zhi-Xia; Zheng, Hu-Yong; Deng, Guo-Ren; Wu, Min-Yuan; Li, Zhi-Gang; Jia, Hong-Ti

    2015-02-01

    ARS2 protein is important to early development and cell proliferation, in which ARS2-CASP8AP2 interaction is implicated. However, the predictive significance of ARS2 in childhood acute lymphoblastic leukemia (ALL) is unknown. Here we evaluate the predictive values of ARS2 expression and combined ARS2 and CASP8AP2 expression in relapse. We showed that ARS2 expression in ALL bone marrow samples at initial diagnosis was markedly lower than that in complete remission (CR). Likewise, the levels of ARS2 expression in the patients suffering from relapse were significantly lower than that of patients in continuous CR. Furthermore, low expression of ARS2 was closely correlated to poor treatment response including poor prednisone response and high minimal residual disease (MRD), and the patients with high MRD (≥10(-4)) and low ARS2 were more subject to relapse. The multivariate analyses for relapse free survival and event free survival revealed that ARS2 expression remained an independent prognostic factor after adjusting other risk factors. In addition, combined assessment of ARS2 and CASP8AP2 expression was more accurate to predict relapse, based on which an algorithm composed of ARS2 and CASP8AP2 expression, prednisone response and MRD (day 78) was proposed. Together, ARS2 and CASP8AP2 expressions can precisely predict high-risk of relapse and ALL prognosis.

  18. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco.

    PubMed

    Guo, Ze-Jian; Chen, Xu-Jun; Wu, Xue-Long; Ling, Jian-Qun; Xu, Ping

    2004-07-01

    Osmotin promoter binding protein 1 (OPBP1), an AP2/EREBP-like transcription factor of tobacco (Nicotiana tabacum), was isolated using a yeast one-hybrid system. RNA gel blot analysis indicated that expression of the OPBP1 gene was induced by elicitor cryptogein, NaCl, ethephon, methyl jasmonate, as well as cycloheximide. Transient expression analysis using an OPBP1-eGFP fusion gene in onion epidermal cells revealed that the OPBP1 protein was targeted to the nuclear. Further, electrophoretic mobility shift assays demonstrated that the recombinant OPBP1 protein could bind to an oligonucleotide containing the GCC-box cis element. Transgenic tobacco plants with an over expression of the OPBP1 gene accumulated high levels of PR-1a and PR-5d genes and exhibited enhanced resistance to infection by Pseudomonas syringae pv tabaci and Phytophthora parasitica var nicotianae pathogens. They also exhibited increased tolerance to salt stress. These results suggest that OPBP1 might be a transcriptional regulator capable of regulating expression in sets of stress-related genes. PMID:15604704

  19. Genome-wide investigation and expression profiling of AP2/ERF transcription factor superfamily in foxtail millet (Setaria italica L.).

    PubMed

    Lata, Charu; Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Khan, Yusuf; Prasad, Manoj

    2014-01-01

    The APETALA2/ethylene-responsive element binding factor (AP2/ERF) family is one of the largest transcription factor (TF) families in plants that includes four major sub-families, namely AP2, DREB (dehydration responsive element binding), ERF (ethylene responsive factors) and RAV (Related to ABI3/VP). AP2/ERFs are known to play significant roles in various plant processes including growth and development and biotic and abiotic stress responses. Considering this, a comprehensive genome-wide study was conducted in foxtail millet (Setaria italica L.). A total of 171 AP2/ERF genes were identified by systematic sequence analysis and were physically mapped onto nine chromosomes. Phylogenetic analysis grouped AP2/ERF genes into six classes (I to VI). Duplication analysis revealed that 12 (∼7%) SiAP2/ERF genes were tandem repeated and 22 (∼13%) were segmentally duplicated. Comparative physical mapping between foxtail millet AP2/ERF genes and its orthologs of sorghum (18 genes), maize (14 genes), rice (9 genes) and Brachypodium (6 genes) showed the evolutionary insights of AP2/ERF gene family and also the decrease in orthology with increase in phylogenetic distance. The evolutionary significance in terms of gene-duplication and divergence was analyzed by estimating synonymous and non-synonymous substitution rates. Expression profiling of candidate AP2/ERF genes against drought, salt and phytohormones revealed insights into their precise and/or overlapping expression patterns which could be responsible for their functional divergence in foxtail millet. The study showed that the genes SiAP2/ERF-069, SiAP2/ERF-103 and SiAP2/ERF-120 may be considered as potential candidate genes for further functional validation as well for utilization in crop improvement programs for stress resistance since these genes were up-regulated under drought and salinity stresses in ABA dependent manner. Altogether the present study provides new insights into evolution, divergence and systematic

  20. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice.

    PubMed

    Matsumoto, Kenji; Yokoyama, Shin-ichiro; Gato, Nobuki

    2010-02-01

    The hypolipidemic effects and bile acid-binding properties of young persimmon (Diospyros kaki) fruit were examined. In an animal experiment, male C57BL/6.Cr mice (n = 5) were fed an AIN-76-modified high fat diet supplemented with 2% or 5% (w/w) dried young persimmon fruit (YP) for 10 weeks. The intake of YP significantly enhanced fecal bile acid excretion and lowered the concentration of hepatic lipids and plasma cholesterol. Analysis of gene expression in liver tissue showed that 2% or 5% YP up-regulated the expression of the sterol regulatory element-binding protein-2 gene. In the 5% group, there were increased expressions of the genes for cholesterol 7alpha-hydroxylase and the low-density lipoprotein receptor. Next, the bile acid-binding ability of YP was analysed in vitro using cholic acid (CA). In 100-2000 microM CA solutions, 1% (w/v) YP adsorbed approximately 60% of CA, while dried mature persimmon fruit adsorbed approximately 20% of CA. The positive control, cholestyramine, adsorbed approximately 80% of CA in the 100-2000 microM CA solutions. A crude tannin extract from YP, which contained 54.7% condensed tannins, adsorbed approximately 78% of CA in the 2000 microM CA solutions. These results suggest that the ability of YP to bind bile acid contributes to its hypolipidemic effect in mice. PMID:19585467

  1. Identification of a nucleic acid-binding region within the largest subunit of Drosophila melanogaster RNA polymerase II.

    PubMed Central

    Kontermann, R. E.; Kobor, M.; Bautz, E. K.

    1993-01-01

    The largest and the second-largest subunit of the multisubunit eukaryotic RNA polymerases are involved in interaction with the DNA template and the nascent RNA chain. Using Southwestern DNA-binding techniques and nitrocellulose filter binding assays of bacterially expressed fusion proteins, we have identified a region of the largest, 215-kDa, subunit of Drosophila RNA polymerase II that has the potential to bind nucleic acids nonspecifically. This nucleic acid-binding region is located between amino acid residues 309-384 and is highly conserved within the largest subunits of eukaryotic and bacterial RNA polymerases. A homology to a region of the DNA-binding cleft of Escherichia coli DNA polymerase I involved in binding of the newly synthesized DNA duplex provides indirect evidence that the nucleic acid-binding region of the largest subunit participates in interaction with double-stranded nucleic acids during transcription. The nonspecific DNA-binding behavior of the region is similar to that observed for the native enzyme in nitrocellulose filter binding assays and that of the separated largest subunit in Southwestern assays. A high content of basic amino acid residues is consistent with the electrostatic nature of nonspecific DNA binding by RNA polymerases. PMID:8443600

  2. Bile acid-binding activity of young persimmon (Diospyros kaki) fruit and its hypolipidemic effect in mice.

    PubMed

    Matsumoto, Kenji; Yokoyama, Shin-ichiro; Gato, Nobuki

    2010-02-01

    The hypolipidemic effects and bile acid-binding properties of young persimmon (Diospyros kaki) fruit were examined. In an animal experiment, male C57BL/6.Cr mice (n = 5) were fed an AIN-76-modified high fat diet supplemented with 2% or 5% (w/w) dried young persimmon fruit (YP) for 10 weeks. The intake of YP significantly enhanced fecal bile acid excretion and lowered the concentration of hepatic lipids and plasma cholesterol. Analysis of gene expression in liver tissue showed that 2% or 5% YP up-regulated the expression of the sterol regulatory element-binding protein-2 gene. In the 5% group, there were increased expressions of the genes for cholesterol 7alpha-hydroxylase and the low-density lipoprotein receptor. Next, the bile acid-binding ability of YP was analysed in vitro using cholic acid (CA). In 100-2000 microM CA solutions, 1% (w/v) YP adsorbed approximately 60% of CA, while dried mature persimmon fruit adsorbed approximately 20% of CA. The positive control, cholestyramine, adsorbed approximately 80% of CA in the 100-2000 microM CA solutions. A crude tannin extract from YP, which contained 54.7% condensed tannins, adsorbed approximately 78% of CA in the 2000 microM CA solutions. These results suggest that the ability of YP to bind bile acid contributes to its hypolipidemic effect in mice.

  3. Analysis of POU5F1, c-Kit, PLAP, AP2γ and SALL4 in gonocytes of patients with cryptorchidism.

    PubMed

    Vigueras-Villaseñor, Rosa María; Cortés-Trujillo, Lucero; Chávez-Saldaña, Margarita; Vázquez, Francisco García; Carrasco-Daza, Daniel; Cuevas-Alpuche, Osvaldo; Rojas-Castañeda, Julio César

    2015-10-01

    Cryptorchidism is a risk factor for the development of testicular germ cell tumors (TGCTs). The most common type of TGCT in cryptorchidism is seminoma. The intratubular germ cell neoplasia unclassified (ITGCNU) is a histological pattern preceding the development of seminomas and non-seminomas. It was suggested that in patients with cryptorchidism, the gonocytes remained undifferentiated with pluripotent abilities expressing proteins like POU domain class 5 transcription factor 1 (POU5F1), tyrosine kinase receptor c-Kit, placental-like alkaline phosphatase (PLAP), the transcription factor AP2γ and sal-like protein 4 (SALL4) that confer to the gonocytes this ability and therefore make them susceptible to develop ITGCNU. The aim of the present study was to determine if the gonocytes of patients with cryptorchidism express POU5F1, c-Kit, PLAP, AP2γ and SALL4 proteins after their differentiation period. Based on this, we evaluated samples of testicular tissue from newborns to 16-year old subjects with or without cryptorchidism in search of POU5F1, c-Kit, PLAP, AP2γ and SALL4 using immunocytochemical method, the results of which were validated by RT-PCR. The results showed that control subjects witnessed a down-regulation in the expression of these five proteins in the first year of life, which eventually disappeared. On the other hand, it was determined that 21.6% (8/37) of the patients with cryptorchidism continued to express, at least, one of the proteins analyzed in this study after the second year of life. And only 5.4% (2/37) of the patients were positive to the five markers. These data sustain the proposed hypothesis that in cryptorchid patients, ITGCNU arises from gonocytes that fail in their differentiation process to spermatogonia with conservation of the proteins (POU5F1, c-Kit, PLAP, AP2γ and SALL4) that maintain pluripotency and undifferentiated characteristics and which are responsible for making the gonocytes susceptible to malignancy. However, we

  4. A New AP2/ERF Transcription Factor from the Oil Plant Jatropha curcas Confers Salt and Drought Tolerance to Transgenic Tobacco.

    PubMed

    Wang, Xuehua; Han, Haiyang; Yan, Jun; Chen, Fang; Wei, Wei

    2015-05-01

    Jatropha curcas L. is a drought and salt-tolerant oil plant widely used for various purposes and has considerable potential as a diesel/kerosene substitute or extender. Understanding the molecular mechanisms underlie that the response to various biotic and abiotic stresses of this plant could be important to crop improvement efforts. Here, a new AP2/ERF-type transcription factor gene, named JcERF2, was isolated from the leaves of J. curcas. Sequence analysis showed that the JcERF2 gene contains a 759-bp open reading frame encoding a polypeptide of 252 amino acids. The predicted JcERF2 protein contained a conserved DNA-binding domain (the AP2/ERF domain) with 58 amino acids. The JcERF2 protein is highly homologous with other ERFs. JcERF2 was localized in the nucleus by analysis with a JcERF2-green fluorescent protein (GFP) fusion protein. Quantitative polymerase chain reaction (qPCR) analysis showed that JcERF2 was induced by drought, salt, abscisic acid, and ethylene. Overexpression of JcERF2 in transgenic tobacco plants enhanced the expression of biotic and abiotic stress-related genes, increased the accumulation of free proline and soluble carbohydrates, and conferred tolerance to drought and salt stresses compared to the wild type (WT). Taken together, the JcERF2 gene is a novel AP2/ERF transcription factor involved in plant response to environmental factors, which can be used as a potential candidate gene for genetic engineering of crops. PMID:25935218

  5. Regulation of DEK expression by AP-2α and methylation level of DEK promoter in hepatocellular carcinoma.

    PubMed

    Qiao, Ming-Xu; Li, Chun; Zhang, Ai-Qun; Hou, Ling-Ling; Yang, Juan; Hu, Hong-Gang

    2016-10-01

    DEK is overexpressed in multiple invasive tumors. However, the transcriptional regulatory mechanism of DEK remains unclear. In the present study, progressive-type truncation assay indicated that CpG2-2 (-167 bp/+35 bp) was the DEK core promoter, whose methylation inhibited DEK expression. Bisulfite genomic sequencing analysis indicated that the methylation levels of the DEK promoter in normal hepatic cells and tissues were higher than those in hepatocellular carcinoma (HCC) cells. TFSEARCH result revealed transcription factor binding sites in CpG2-2. Among the sites, the AP-2α binding site showed the most significant methylation difference; hence, AP-2α is a key transcription factor that regulates DEK expression. Point or deletion mutation of the AP-2α binding site significantly reduced the promoter activity. Chromatin immunoprecipitation assay demonstrated the binding of AP-2α to the core promoter. Furthermore, knock down of endogenous AP-2α downregulated DEK expression, whereas overexpression of AP-2α upregulated DEK expression. Thus, AP-2α is an important transcription factor of DEK expression, which is correlated with the methylation level of the DEK core promoter in HCC.

  6. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  7. Comparison of the Folding Mechanism of Highly Homologous Proteins in the Lipid-binding Protein Family

    EPA Science Inventory

    The folding mechanism of two closely related proteins in the intracellular lipid binding protein family, human bile acid binding protein (hBABP) and rat bile acid binding protein (rBABP) were examined. These proteins are 77% identical (93% similar) in sequence Both of these singl...

  8. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2.

    PubMed

    De Franceschi, Nicola; Arjonen, Antti; Elkhatib, Nadia; Denessiouk, Konstantin; Wrobel, Antoni G; Wilson, Thomas A; Pouwels, Jeroen; Montagnac, Guillaume; Owen, David J; Ivaska, Johanna

    2016-02-01

    Integrins are heterodimeric cell-surface adhesion molecules comprising one of 18 possible α-chains and one of eight possible β-chains. They control a range of cell functions in a matrix- and ligand-specific manner. Integrins can be internalized by clathrin-mediated endocytosis (CME) through β subunit-based motifs found in all integrin heterodimers. However, whether specific integrin heterodimers can be selectively endocytosed was unknown. Here, we found that a subset of α subunits contain an evolutionarily conserved and functional YxxΦ motif directing integrins to selective internalization by the most abundant endocytic clathrin adaptor, AP2. We determined the structure of the human integrin α4-tail motif in complex with the AP2 C-μ2 subunit and confirmed the interaction by isothermal titration calorimetry. Mutagenesis of the motif impaired selective heterodimer endocytosis and attenuated integrin-mediated cell migration. We propose that integrins evolved to enable selective integrin-receptor turnover in response to changing matrix conditions.

  9. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis

    PubMed Central

    Budirahardja, Yemima; Tan, Pei Yi; Weisdepp, Peter; Zaidel-Bar, Ronen

    2016-01-01

    The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. PMID:27176626

  10. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution.

    PubMed

    Lakhwani, Deepika; Pandey, Ashutosh; Dhar, Yogeshwar Vikram; Bag, Sumit Kumar; Trivedi, Prabodh Kumar; Asif, Mehar Hasan

    2016-01-01

    AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening. PMID:26733055

  11. Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution

    PubMed Central

    Lakhwani, Deepika; Pandey, Ashutosh; Dhar, Yogeshwar Vikram; Bag, Sumit Kumar; Trivedi, Prabodh Kumar; Asif, Mehar Hasan

    2016-01-01

    AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening. PMID:26733055

  12. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis.

    PubMed

    Budirahardja, Yemima; Tan, Pei Yi; Doan, Thang; Weisdepp, Peter; Zaidel-Bar, Ronen

    2016-05-01

    The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. PMID:27176626

  13. Structural Analysis of the Interaction between Dishevelled2 and Clathrin AP-2 Adaptor, A Critical Step in Noncanonical Wnt Signaling

    SciTech Connect

    Yu, Anan; Xing, Yi; Harrison, Stephen C.; Kirchhausen, Tomas

    2010-10-14

    Wnt association with its receptor, Frizzled (Fz), and recruitment by the latter of an adaptor, Dishevelled (Dvl), initiates signaling through at least two distinct pathways (canonical and noncanonical). Endocytosis and compartmentalization help determine the signaling outcome. Our previous work has shown that Dvl2 links at least one Frizzled family member (Fz4) to clathrin-mediated endocytosis by interacting with the {mu}2 subunit of the AP-2 clathrin adaptor, through both a classical endocytic tyrosine motif and a so-called DEP domain. We report here the crystal structure of a chimeric protein that mimics the Dvl2-{mu}2 complex. The DEP domain binds at one end of the elongated, C-terminal domain of {mu}2. This domain:domain interface shows that parts of the {mu}2 surface distinct from the tyrosine-motif site can help recruit specific receptors or adaptors into a clathrin coated pit. Mutation of residues at the DEP-{mu}2 contact or in the tyrosine motif reduce affinity of Dvl2 for {mu}2 and block efficient internalization of Fz4 in response to ligation by Wnt5a. The crystal structure has thus allowed us to identify the specific interaction that leads to Frizzled uptake and to downstream, noncanonical signaling events.

  14. EBE, an AP2/ERF Transcription Factor Highly Expressed in Proliferating Cells, Affects Shoot Architecture in Arabidopsis[W

    PubMed Central

    Mehrnia, Mohammad; Balazadeh, Salma; Zanor, María-Inés; Mueller-Roeber, Bernd

    2013-01-01

    We report about ERF BUD ENHANCER (EBE; At5g61890), a transcription factor that affects cell proliferation as well as axillary bud outgrowth and shoot branching in Arabidopsis (Arabidopsis thaliana). EBE encodes a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor superfamily; the gene is strongly expressed in proliferating cells and is rapidly and transiently up-regulated in axillary meristems upon main stem decapitation. Overexpression of EBE promotes cell proliferation in growing calli, while the opposite is observed in EBE-RNAi lines. EBE overexpression also stimulates axillary bud formation and outgrowth, while repressing it results in inhibition of bud growth. Global transcriptome analysis of estradiol-inducible EBE overexpression lines revealed 48 EBE early-responsive genes, of which 14 were up-regulated and 34 were down-regulated. EBE activates several genes involved in cell cycle regulation and dormancy breaking, including D-type cyclin CYCD3;3, transcription regulator DPa, and BRCA1-ASSOCIATED RING DOMAIN1. Among the down-regulated genes were DORMANCY-ASSOCIATED PROTEIN1 (AtDRM1), AtDRM1 homolog, MEDIATOR OF ABA-REGULATED DORMANCY1, and ZINC FINGER HOMEODOMAIN5. Our data indicate that the effect of EBE on shoot branching likely results from an activation of genes involved in cell cycle regulation and dormancy breaking. PMID:23616605

  15. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants.

    PubMed

    Zhou, Ying; Xia, Hui; Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling.

  16. In Vitro bile acid binding of kale, mustard greens, broccoli, cabbage and green bell pepper improves with microwave cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid binding potential of foods and food fractions has been related to lowering the risk of heart disease and that of cancer. Sautéing or steam cooking has been observed to significantly improve bile acid binding of green/leafy vegetables. It was hypothesized that microwave cooking could impr...

  17. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.).

    PubMed

    Du, Chunfang; Hu, Kaining; Xian, Shuanshi; Liu, Chunqing; Fan, Jianchun; Tu, Jinxing; Fu, Tingdong

    2016-06-01

    The APETALA2/ethylene response factor (AP2/ERF) transcription factor (TF) superfamily plays an important regulatory role in signal transduction of the plant responses to various stresses including low temperature. Significant progress has been made in understanding the mechanism of cold resistance in Brassica napus, an important oilseed crop. However, comprehensive studies on the induction and activity of these TFs under low temperature have been lacking. In this study, 132 AP2/ERF genes were identified by transcriptome sequencing of rapeseed leaves exposed to 0, 2, 6, 12, and 24 h of low (4 °C) temperature stress. The genes were classified into 4 subfamilies (AP2, DREB, ERF, and RAV) and 13 subgroups, among which the DREB subfamily and ERF subfamily contained 114 genes, no genes were assigned to soloist or DREB A3 subgroups. One hundred and eighteen genes were located on chromosomes A1 to C9. GO functional analysis and promoter sequence analysis revealed that these genes are involved in many molecular pathways that may enhance cold resistance in plants, such as the low-temperature responsiveness, methyl jasmonate, abscisic acid, and ethylene-responsiveness pathways. Their expression patterns revealed dynamic control at different times following initiation of cold stress; the RAV and DREB subfamilies were expressed at the early stage of cold stress, whereas the AP2 subfamily was expressed later. Quantitative PCR analyses of 13 cold-induced AP2/ERF TFs confirmed the accuracy of above results. This study is the first dynamic analysis of the AP2/ERF TFs responsible for cold stress in rapeseed. These findings will serve as a reference for future functional research on transcription in rapeseed. PMID:26728151

  18. Lysine Acetyltransferase GCN5b Interacts with AP2 Factors and Is Required for Toxoplasma gondii Proliferation

    PubMed Central

    Wang, Jiachen; Dixon, Stacy E.; Ting, Li-Min; Liu, Ting-Kai; Jeffers, Victoria; Croken, Matthew M.; Calloway, Myrasol; Cannella, Dominique; Ali Hakimi, Mohamed; Kim, Kami; Sullivan, William J.

    2014-01-01

    Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged dominant-negative form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). Proteomics studies revealed that GCN5b interacts with AP2-domain proteins, apicomplexan plant-like transcription factors, as well as a “core complex” that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the

  19. Transcription factor AP-2γ induces early Cdx2 expression and represses HIPPO signaling to specify the trophectoderm lineage

    PubMed Central

    Cao, Zubing; Carey, Timothy S.; Ganguly, Avishek; Wilson, Catherine A.; Paul, Soumen; Knott, Jason G.

    2015-01-01

    Cell fate decisions are fundamental to the development of multicellular organisms. In mammals the first cell fate decision involves segregation of the pluripotent inner cell mass and the trophectoderm, a process regulated by cell polarity proteins, HIPPO signaling and lineage-specific transcription factors such as CDX2. However, the regulatory mechanisms that operate upstream to specify the trophectoderm lineage have not been established. Here we report that transcription factor AP-2γ (TFAP2C) functions as a novel upstream regulator of Cdx2 expression and position-dependent HIPPO signaling in mice. Loss- and gain-of-function studies and promoter analysis revealed that TFAP2C binding to an intronic enhancer is required for activation of Cdx2 expression during early development. During the 8-cell to morula transition TFAP2C potentiates cell polarity to suppress HIPPO signaling in the outside blastomeres. TFAP2C depletion triggered downregulation of PARD6B, loss of apical cell polarity, disorganization of F-actin, and activation of HIPPO signaling in the outside blastomeres. Rescue experiments using Pard6b mRNA restored cell polarity but only partially corrected position-dependent HIPPO signaling, suggesting that TFAP2C negatively regulates HIPPO signaling via multiple pathways. Several genes involved in regulation of the actin cytoskeleton (including Rock1, Rock2) were downregulated in TFAP2C-depleted embryos. Inhibition of ROCK1 and ROCK2 activity during the 8-cell to morula transition phenocopied TFAP2C knockdown, triggering a loss of position-dependent HIPPO signaling and decrease in Cdx2 expression. Altogether, these results demonstrate that TFAP2C facilitates trophectoderm lineage specification by functioning as a key regulator of Cdx2 transcription, cell polarity and position-dependent HIPPO signaling. PMID:25858457

  20. Characterization of fatty acid binding and transfer from Δ98Δ, a functional all-β abridged form of IFABP.

    PubMed

    Sawicki, Luciana Rodriguez; Guerbi, María Ximena; Falomir Lockhart, Lisandro Jorge; Curto, Lucrecia María; Delfino, José María; Córsico, Betina; Franchini, Gisela Raquel

    2014-12-01

    Intestinal fatty acid binding protein (IFABP) is an intracellular lipid binding protein whose specific functions within the cell are still uncertain. An abbreviated version of IFABP encompassing residues 29-126, dubbed Δ98Δ is a stable product of limited proteolysis with clostripain of holo-IFABP. Cumulative evidence shows that Δ98Δ adopts a stable, monomeric and functional fold, with compact core and loose periphery. In agreement with previous results, this abridged variant indicates that the helical domain is-not necessary to preserve the general topology of IFABP's β-barrel and that the helix-turn-helix motif is a fundamental element of the portal region involved in ligand binding and protein-membrane interactions. Results presented here suggest that Δ98Δ binds fatty acids with affinities lower than IFABP but higher than those shown by previous helix-less variants, shows a 'diffusional' fatty acid transfer mechanism and it interacts with artificial membranes. This work highlights the importance of the β-barrel of IFABP for its specific functions. PMID:25311169

  1. A novel sialic acid binding lectin with anti-bacterial activity from the Hong Kong oyster (Crassostrea hongkongensis).

    PubMed

    He, Xiaocui; Zhang, Yang; Yu, Feng; Yu, Ziniu

    2011-12-01

    Lectins play an important role in immune recognition and host defense. In the present study, a full-length cDNA encoding a novel sialic acid binding lectin was cloned from Crassostrea hongkongensis (designated Ch-salectin) by rapid amplification of cDNA ends (RACE). It is 531 bp in length, containing a 21 bp 5' UTR, a 39 bp 3' UTR and a 468 bp ORF coding for 156 amino acids. The Ch-salectin protein contains a signal peptide and a conserved complement component C1q domain. The purified recombinant MBP-tagged Ch-salectin protein can bind to a sialic acid containing protein fetuin and significantly inhibit the growth of both Gram-negative and Gram-positive bacteria. Furthermore, the transcription of Ch-salectin was inducible and significantly up-regulated during Vibrio alginolyticus infection. Thus, these results highlight the essential roles of Ch-salectin in immune recognition and host defense against bacterial infection in C. hongkongensis.

  2. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration.

    PubMed

    Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A W; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G; Humeau, Yann; Schenck, Annette; Herault, Yann

    2015-12-01

    ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863

  3. Conditional depletion of intellectual disability and Parkinsonism candidate gene ATP6AP2 in fly and mouse induces cognitive impairment and neurodegeneration

    PubMed Central

    Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A.W.; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M.; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J.; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G.; Humeau, Yann; Schenck, Annette; Herault, Yann

    2015-01-01

    ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863

  4. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcas.

    PubMed

    Tang, Mingjuan; Sun, Jingwen; Liu, Yun; Chen, Fan; Shen, Shihua

    2007-02-01

    A cDNA clone, named JcERF, was isolated from Jatropha curcas seedlings (a woody oil plant). It was classified as an ERF subfamily member based on multiple sequence alignment and phylogenetic characterization. The deduced amino acid sequences of the JcERF clone showed no significant sequence similarity with other known ERF proteins except for the conserved AP2/EREBP DNA-binding domain. Expression of the JcERF gene was rapidly induced upon salinity, drought, ethylene and mechanical wounding treatments. No significant changes in the JcERF expression were observed under ABA stress. Gel retardation assay revealed that the JcERF protein could bind specifically to the GCC box as well as to the C/DRE motif. Also it can be inferred from the gel-shift that there is a possibility that the near sequence of the GCC box has an important effect on the DNA-binding activity. In yeast, the JcERF protein specifically bound to the DRE sequence and activated the transcription of two reporter genes His3 and LacZ driven by the DRE sequence. When fused to the LexA DNA-binding domain, the full-length JcERF functioned effectively as a trans-activator in the yeast one-hybrid assay. Overexpression of JcERF cDNA in transgenic Arabidopsis enhanced the salt and freezing tolerance. Meanwhile the seed germination of JcERF transgenic plants was not affected by various concentrations ABA in MS medium. Taken together, the results showed that JcERF functioned as a novel transcription factor and it exhibited a mechanism of plant response to environmental factors like the other AP2/EREBP regulons that also exist in tropical woody plants.

  5. Mobile chemical detector (AP2C+SP4E) as an aid for medical decision making in the battlefield.

    PubMed

    Eisenkraft, Arik; Markel, Gal; Simovich, Shirley; Layish, Ido; Hoffman, Azik; Finkelstein, Arseny; Rotman, Eran; Dushnitsky, Tsvika; Krivoy, Amir

    2007-09-01

    The combination of the AP2C unit with the SP4E kit composes a lightweight mobile detector of chemical warfare agents (CWA), such as nerve and mustard agents, with both vapor- and liquid-sampling capabilities. This apparatus was recently introduced into our military medical units as an aid for detection of CWA on casualties. Importantly, critical information regarding the applicability in the battlefield was absent. In view of the serious consequences that might follow a proclamation of CWA recognition in battlefield, a high false-positive rate positions the utilization of this apparatus as a medical decision tool in question. We have therefore conducted a field experiment to test the false-positive rate as well as analyze possible factors leading to false-positive readings with this device. The experiment was carried out before and after a 4-day army field exercise, using a standard AP2C device, a SP4E surface sampling kit, and a specially designed medical sampling kit for casualties, intended for medical teams. Soldiers were examined at rest, after mild exercise, and after 4 days in the field. The readings with AP2C alone were compared to the combination of AP2C and SP4E and to the medical sampling kit. Various body fluids served as negative controls. Remarkably, we found a false-positive rate of 57% at rest and after mild exercise, and an even higher rate of 64% after the 4-day field exercise with the AP2C detector alone, as compared to almost no false-positive readings with the combination of AP2C and SP4E. Strikingly, the medical sampling kit has yielded numerous false-positive readings, even in normal body fluids such as blood, urine, and saliva. We therefore see no place for using the medical sampling kit due to an unaccepted high rate of false-positive readings. Finally, we have designed an algorithm that uses the entire apparatus of AP2C and SP4E as a reliable validation tool for medical triage in the setting of exposure to nerve agents in the battlefield.

  6. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors

    PubMed Central

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  7. Two Arginine Residues of Streptococcus gordonii Sialic Acid-Binding Adhesin Hsa Are Essential for Interaction to Host Cell Receptors.

    PubMed

    Urano-Tashiro, Yumiko; Takahashi, Yukihiro; Oguchi, Riyo; Konishi, Kiyoshi

    2016-01-01

    Hsa is a large, serine-rich protein of Streptococcus gordonii DL1 that mediates binding to α2-3-linked sialic acid termini of glycoproteins, including platelet glycoprotein Ibα, and erythrocyte membrane protein glycophorin A, and band 3. The binding of Hsa to platelet glycoprotein Ibα contributes to the pathogenesis of infective endocarditis. This interaction appears to be mediated by a second non-repetitive region (NR2) of Hsa. However, the molecular details of the interaction between the Hsa NR2 region and these glycoproteins are not well understood. In the present study, we identified the amino acid residues of the Hsa NR2 region that are involved in sialic acid recognition. To identify the sialic acid-binding site of Hsa NR2 region, we prepared various mutants of Hsa NR2 fused with glutathione transferase. Fusion proteins harboring Arg340 to Asn (R340N) or Arg365 to Asn (R365N) substitutions in the NR2 domain exhibited significantly reduced binding to human erythrocytes and platelets. A sugar-binding assay showed that these mutant proteins abolished binding to α2-3-linked sialic acid. Furthermore, we established S. gordonii DL1 derivatives that encoded the corresponding Hsa mutant protein. In whole-cell assays, these mutant strains showed significant reductions in hemagglutination, in platelet aggregation, and in adhesion to human leukocytes. These results indicate that the Arg340 and Arg365 residues of Hsa play an important role in the binding of Hsa to α2-3-linked sialic acid-containing glycoproteins. PMID:27101147

  8. CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in 'Newhall' orange.

    PubMed

    Shen, Shu-Ling; Yin, Xue-Ren; Zhang, Bo; Xie, Xiu-Lan; Jiang, Qian; Grierson, Donald; Chen, Kun-Song

    2016-07-01

    Aroma is a vital characteristic that determines the quality and commercial value of citrus fruits, and characteristic volatiles have been analyzed in different citrus species. In sweet orange, Citrus sinensis, the sesquiterpene (+)-valencene is a key volatile compound in the fruit peel. Valencene synthesis is catalyzed by the terpene synthase CsTPS1, but the transcriptional mechanisms controlling its gene expression are unknown. Here, the AP2/ERF (APETALA2/ethylene response factor) transcription factor, CitAP2.10, is characterized as a regulator of (+)-valencene synthesis. The expression pattern of CitAP2.10 was positively correlated with (+)-valencene content and CsTPS1 expression. Dual-luciferase assays indicated that CitAP2.10 could trans-activate the CsTPS1 promoter. Ethylene enhanced expression of CitAP2.10 and this effect was abolished by the ethylene antagonist 1-methylcyclopropene. The role and function of CitAP2.10 in (+)-valencene biosynthesis were confirmed using the Arabidopsis homolog (AtWRI1), which also transiently activated the CsTPS1 promoter. Furthermore, transient over-expression of CitAP2.10 triggered (+)-valencene biosynthesis in sweet orange fruit. These results indicate that CitAP2.10 regulates (+)-valencene synthesis via induction of CsTPS1 mRNA accumulation.

  9. Combinatorial signal integration by APETALA2/Ethylene Response Factor (ERF)-transcription factors and the involvement of AP2-2 in starvation response.

    PubMed

    Vogel, Marc Oliver; Gomez-Perez, Deborah; Probst, Nina; Dietz, Karl-Josef

    2012-01-01

    Transcription factors of the APETALA 2/Ethylene Response Factor (AP2/ERF)- family have been implicated in diverse processes during development, stress acclimation and retrograde signaling. Fifty-three leaf-expressed AP2/ERFs were screened for their transcriptional response to abscisic acid (ABA), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), methylviologen (MV), sucrose and high or low light, respectively, and revealed high reactivity to these effectors. Six of them (AP2-2, ARF14, CEJ1, ERF8, ERF11, RAP2.5) were selected for combinatorial response analysis to ABA, DCMU and high light. Additive, synergistic and antagonistic effects demonstrated that these transcription factors are components of multiple signaling pathways. AP2-2 (At1g79700) was subjected to an in depth study. AP2-2 transcripts were high under conditions linked to limited carbohydrate availability and stress and down-regulated in extended light phase, high light or in the presence of sugar. ap2-2 knock out plants had unchanged metabolite profiles and transcript levels of co-expressed genes in extended darkness. However, ap2-2 revealed more efficient germination and faster early growth under high sugar, osmotic or salinity stress, but the difference was abolished in the absence of sugar or during subsequent growth. It is suggested that AP2-2 is involved in mediating starvation-related and hormonal signals.

  10. Recent Advances in Nucleic Acid Binding Aspects of Berberine Analogs and Implications for Drug Design.

    PubMed

    Bhowmik, Debipreeta; Kumar, Gopinatha Suresh

    2016-01-01

    Berberine is one of the most widely known alkaloids belonging to the protoberberine group exhibiting myriad therapeutic properties. The anticancer potency of berberine appears to derive from its multiple actions including strong interaction with nucleic acids exhibiting adenine-thymine base pair specificity, inhibition of the enzymes topoisomerases and telomerases, and stabilizing the quadruplex structures. It was realized that the development of berberine as a potential anticancer agent necessitates enhancing its nucleic acid binding efficacy through appropriate structural modifications. More recently a number of such approaches have been attempted in various laboratories with great success. Several derivatives have been synthesized mostly with substitutions at the 8, 9 and 13 positions of the isoquinoline chromophore, and studied for enhanced nucleic acid binding activity. In this article, we present an up to date review of the details of the interaction of berberine and several of its important synthetic 8, 9 and 13 substituted derivatives with various nucleic acid structures reported recently. These studies provide interesting knowledge on the mode, mechanism, sequence and structural specificity of the binding of berberine derivatives and correlate structural and energetic aspects of the interaction providing better understanding of the structure- activity relations for designing and development of berberine based therapeutic agents with higher efficacy and therapeutic potential.

  11. Crystallization and preliminary X-ray diffraction analysis of the sialic acid-binding domain (VP8*) of porcine rotavirus strain CRW-8

    SciTech Connect

    Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.; Szyczew, Alex J.; Kiefel, Milton J.; Itzstein, Mark von; Blanchard, Helen

    2005-06-01

    The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by the virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.

  12. Overexpression of the Jatropha curcas JcERF1 gene coding an AP2/ERF-type transcription factor increases tolerance to salt in transgenic tobacco.

    PubMed

    Yang, Hua; Yu, Chuan; Yan, Jun; Wang, Xuehua; Chen, Fang; Zhao, Yun; Wei, Wei

    2014-11-01

    The JcERF1 gene, which is related to the ERF family (ethylene responsive factor coding genes), was isolated and characterized from the oil tree Jatropha curcas. The JcERF1 protein contains conserved an AP2/EREBP DNA-binding domain of 58 amino acid residues. The JcERF1 gene could be induced by abscisic acid, high salinity, hormones, and osmotic stress, suggesting that JcERF1 is regulated by certain components of the stress-signaling pathway. The full-length and C-terminus of JcERF1 driven by the GAL4 promoter functioned effectively as a transactivator in yeast, while its N-terminus was completely inactive. Transient expression analysis using a JcERF1-mGFP fusion gene in onion epidermal cells revealed that the JcERF1 protein is targeted to the nucleus. Transgenic tobacco plants carrying CaMV35S::JcERF1 fragments were shown to be much more salt tolerant compared to wild-type plants. Our results indicate that JcERF1 is a new member of the ERF transcription factors family that may play an important role in tolerance to environmental stress. PMID:25540008

  13. Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis

    PubMed Central

    Praefcke, Gerrit J K; Ford, Marijn G J; Schmid, Eva M; Olesen, Lene E; Gallop, Jennifer L; Peak-Chew, Sew-Yeu; Vallis, Yvonne; Babu, M Madan; Mills, Ian G; McMahon, Harvey T

    2004-01-01

    Clathrin-mediated endocytosis involves the assembly of a network of proteins that select cargo, modify membrane shape and drive invagination, vesicle scission and uncoating. This network is initially assembled around adaptor protein (AP) appendage domains, which are protein interaction hubs. Using crystallography, we show that FxDxF and WVxF peptide motifs from synaptojanin bind to distinct subdomains on α-appendages, called ‘top' and ‘side' sites. Appendages use both these sites to interact with their binding partners in vitro and in vivo. Occupation of both sites simultaneously results in high-affinity reversible interactions with lone appendages (e.g. eps15 and epsin1). Proteins with multiple copies of only one type of motif bind multiple appendages and so will aid adaptor clustering. These clustered α(appendage)-hubs have altered properties where they can sample many different binding partners, which in turn can interact with each other and indirectly with clathrin. In the final coated vesicle, most appendage binding partners are absent and thus the functional status of the appendage domain as an interaction hub is temporal and transitory giving directionality to vesicle assembly. PMID:15496985

  14. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway.

    PubMed

    Aya, Koichiro; Hobo, Tokunori; Sato-Izawa, Kanna; Ueguchi-Tanaka, Miyako; Kitano, Hidemi; Matsuoka, Makoto

    2014-05-01

    The organ size of flowering plants is determined by two post-embryonic developmental events: cell proliferation and cell expansion. In this study, we identified a new rice loss-of-function mutant, small organ size1 (smos1), that decreases the final size of various organs due to decreased cell size and abnormal microtubule orientation. SMOS1 encodes an unusual APETALA2 (AP2)-type transcription factor with an imperfect AP2 domain, and its product belongs to the basal AINTEGUMENTA (ANT) lineage, including WRINKLED1 (WRI1) and ADAP. SMOS1 expression was induced by exogenous auxin treatment, and the auxin response element (AuxRE) of the SMOS1 promoter acts as a cis-motif through interaction with auxin response factor (ARF). Furthermore, a functional fluorophore-tagged SMOS1 was localized to the nucleus, supporting the role of SMOS1 as a transcriptional regulator for organ size control. Microarray analysis showed that the smos1 mutation represses expression of several genes involved in microtubule-based movement and DNA replication. Among the down-regulated genes, we demonstrated by gel-shift and chromatin immunoprecipitation (ChIP) experiments that OsPHI-1, which is involved in cell expansion, is a target of SMOS1. SMOS1 homologs in early-diverged land plants partially rescued the smos1 phenotype of rice. We propose that SMOS1 acts as an auxin-dependent regulator for cell expansion during organ size control, and that its function is conserved among land plants.

  15. Genome-wide analysis of p63 binding sites identifies AP-2 factors as co-regulators of epidermal differentiation

    PubMed Central

    McDade, Simon S.; Henry, Alexandra E.; Pivato, Geraldine P.; Kozarewa, Iwanka; Mitsopoulos, Constantinos; Fenwick, Kerry; Assiotis, Ioannis; Hakas, Jarle; Zvelebil, Marketa; Orr, Nicholas; Lord, Christopher J.; Patel, Daksha; Ashworth, Alan; McCance, Dennis J.

    2012-01-01

    The p63 transcription factor (TP63) is critical in development, growth and differentiation of stratifying epithelia. This is highlighted by the severity of congenital abnormalities caused by TP63 mutations in humans, the dramatic phenotypes in knockout mice and de-regulation of TP63 expression in neoplasia altering the tumour suppressive roles of the TP53 family. In order to define the normal role played by TP63 and provide the basis for better understanding how this network is perturbed in disease, we used chromatin immunoprecipitation combined with massively parallel sequencing (ChIP-seq) to identify >7500 high-confidence TP63-binding regions across the entire genome, in primary human neonatal foreskin keratinocytes (HFKs). Using integrative strategies, we demonstrate that only a subset of these sites are bound by TP53 in response to DNA damage. We identify a role for TP63 in transcriptional regulation of multiple genes genetically linked to cleft palate and identify AP-2alpha (TFAP2A) as a co-regulator of a subset of these genes. We further demonstrate that AP-2gamma (TFAP2C) can bind a subset of these regions and that acute depletion of either TFAP2A or TFAP2C alone is sufficient to reduce terminal differentiation of organotypic epidermal skin equivalents, indicating overlapping physiological functions with TP63. PMID:22573176

  16. Steam Cooking Significantly Improves in Vitro Bile Acid Binding of Beets, Eggplant, Asparagus, Carrots, Green Beans and Cauliflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relative healthful potential of cooked beets, okra, eggplant, asparagus, carrots, green beans, cauliflower and turnips was evaluated by determining their in vitro bile acid binding using a mixture of bile acids secreted in human bile at a duodenal physiological pH of 6.3. Six treatments and two...

  17. Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensis.

    PubMed

    Liu, Zhenning; Kong, Lijun; Zhang, Mei; Lv, Yanxia; Liu, Yapei; Zou, Minghau; Lu, Gang; Cao, Jiashu; Yu, Xiaolin

    2013-01-01

    The AP2/ERF transcription factor family is one of the largest families involved in growth and development, hormone responses, and biotic or abiotic stress responses in plants. In this study, 281 AP2/ERF transcription factor unigenes were identified in Chinese cabbage. These superfamily members were classified into three families (AP2, ERF, and RAV). The ERF family was subdivided into the DREB subfamily and the ERF subfamily with 13 groups (I- XI) based on sequence similarity. Duplication, evolution and divergence of the AP2/ERF genes in B. rapa and Arabidopsis thaliana were investigated and estimated. Cytokinin response factors (CRFs), as a subclade of the AP2/ERF family, are important transcription factors that define a branch point in the cytokinin two-component signal (TCS) transduction pathway. Up to 21 CRFs with a conserved CRF domain were retrieved and designated as BrCRFs. The amino acid sequences, conserved regions and motifs, phylogenetic relationships, and promoter regions of the 21 BrCRFs were analyzed in detail. The BrCRFs broadly expressed in various tissues and organs. The transcripts of BrCRFs were regulated by factors such as drought, high salinity, and exogenous 6-BA, NAA, and ABA, suggesting their involvement in abiotic stress conditions and regulatory mechanisms of plant hormone homeostasis. These results provide new insight into the divergence, variation, and evolution of AP2/ERF genes at the genome-level in Chinese cabbage.

  18. Genome-wide identification, phylogeny, evolution and expression patterns of AP2/ERF genes and cytokinin response factors in Brassica rapa ssp. pekinensis.

    PubMed

    Liu, Zhenning; Kong, Lijun; Zhang, Mei; Lv, Yanxia; Liu, Yapei; Zou, Minghau; Lu, Gang; Cao, Jiashu; Yu, Xiaolin

    2013-01-01

    The AP2/ERF transcription factor family is one of the largest families involved in growth and development, hormone responses, and biotic or abiotic stress responses in plants. In this study, 281 AP2/ERF transcription factor unigenes were identified in Chinese cabbage. These superfamily members were classified into three families (AP2, ERF, and RAV). The ERF family was subdivided into the DREB subfamily and the ERF subfamily with 13 groups (I- XI) based on sequence similarity. Duplication, evolution and divergence of the AP2/ERF genes in B. rapa and Arabidopsis thaliana were investigated and estimated. Cytokinin response factors (CRFs), as a subclade of the AP2/ERF family, are important transcription factors that define a branch point in the cytokinin two-component signal (TCS) transduction pathway. Up to 21 CRFs with a conserved CRF domain were retrieved and designated as BrCRFs. The amino acid sequences, conserved regions and motifs, phylogenetic relationships, and promoter regions of the 21 BrCRFs were analyzed in detail. The BrCRFs broadly expressed in various tissues and organs. The transcripts of BrCRFs were regulated by factors such as drought, high salinity, and exogenous 6-BA, NAA, and ABA, suggesting their involvement in abiotic stress conditions and regulatory mechanisms of plant hormone homeostasis. These results provide new insight into the divergence, variation, and evolution of AP2/ERF genes at the genome-level in Chinese cabbage. PMID:24386201

  19. Genome-Wide Identification, Phylogeny, Evolution and Expression Patterns of AP2/ERF Genes and Cytokinin Response Factors in Brassica rapa ssp. pekinensis

    PubMed Central

    Liu, Zhenning; Kong, Lijun; Zhang, Mei; Lv, Yanxia; Liu, Yapei; Zou, Minghau; Lu, Gang; Cao, Jiashu; Yu, Xiaolin

    2013-01-01

    The AP2/ERF transcription factor family is one of the largest families involved in growth and development, hormone responses, and biotic or abiotic stress responses in plants. In this study, 281 AP2/ERF transcription factor unigenes were identified in Chinese cabbage. These superfamily members were classified into three families (AP2, ERF, and RAV). The ERF family was subdivided into the DREB subfamily and the ERF subfamily with 13 groups (I– XI) based on sequence similarity. Duplication, evolution and divergence of the AP2/ERF genes in B. rapa and Arabidopsis thaliana were investigated and estimated. Cytokinin response factors (CRFs), as a subclade of the AP2/ERF family, are important transcription factors that define a branch point in the cytokinin two-component signal (TCS) transduction pathway. Up to 21 CRFs with a conserved CRF domain were retrieved and designated as BrCRFs. The amino acid sequences, conserved regions and motifs, phylogenetic relationships, and promoter regions of the 21 BrCRFs were analyzed in detail. The BrCRFs broadly expressed in various tissues and organs. The transcripts of BrCRFs were regulated by factors such as drought, high salinity, and exogenous 6-BA, NAA, and ABA, suggesting their involvement in abiotic stress conditions and regulatory mechanisms of plant hormone homeostasis. These results provide new insight into the divergence, variation, and evolution of AP2/ERF genes at the genome-level in Chinese cabbage. PMID:24386201

  20. Relationship between hyaluronic acid binding assay and outcome in ART: a pilot study.

    PubMed

    Nijs, Martine; Creemers, E; Cox, A; Janssen, M; Vanheusden, E; Van der Elst, J; Ombelet, W

    2010-10-01

    The sperm-hyaluronan binding assay (HBA) is a diagnostic kit for assessing sperm maturity, function and fertility. The aim of this prospective cohort pilot study was to evaluate the relationship between HBA and WHO sperm parameters (motility, concentration and detailed morphology) and possible influence of sperm processing on hyaluronic acid binding. A cohort of 68 patients undergoing a first combo in vitro fertilisation/intracytoplasmic sperm injection treatment after failure of three or more intrauterine insemination cycles were included in the study. Outcome measures studied were fertilisation rate, embryo quality, ongoing pregnancy rate and cumulative pregnancy rate. HBA outcome improved after sperm preparation and culture, but was not correlated to detailed sperm morphology, concentration or motility. HBA did not provide additional information for identifying patients with poor or absent fertilisation, although the latter had more immature sperm cells and cells with cytoplasmic retention present in their semen. HBA outcome in the neat sample was significantly correlated with embryo quality, with miscarriage rates and ongoing pregnancy rates in the fresh cycles, but not with the cumulative ongoing pregnancy rate. No threshold value for HBA and outcome in combo IVF/ICSI treatment could be established. The clinical value for HBA in addition to routine semen analysis for this patient population seems limited.

  1. Polar solvent effects on tartaric acid binding by aromatic oligoamide foldamer capsules.

    PubMed

    Chandramouli, Nagula; El-Behairy, Mohammed Farrag; Lautrette, Guillaume; Ferrand, Yann; Huc, Ivan

    2016-02-28

    Aromatic oligoamide sequences able to fold into single helical capsules were functionalized with two types of side chains to make them soluble in various solvents such as chloroform, methanol or water and their propensity to recognize tartaric acid was evaluated. The binding affinities to tartaric acid and binding thermodynamics in different media were investigated by variable temperature (1)H NMR and ITC experiments, the two methods giving consistent results. We show that tartaric acid binding mainly rests on enthalpically favourable polar interactions that were found to be sufficiently strong to be effective in the presence of a polar aprotic solvent (DMSO) and even in pure methanol. Binding in water was very weak. The stronger binding interactions were found to be more susceptible to the effect of competitive solvents and compensated by unfavourable entropic effects. Thus, the best host in a less polar medium eventually was found to be the worst host in protic solvents. An interesting case of entropically driven binding was evidenced in methanol.

  2. Adenovirus carrying gene encoding Haliotis discus discus sialic acid binding lectin induces cancer cell apoptosis.

    PubMed

    Yang, Xinyan; Wu, Liqin; Duan, Xuemei; Cui, Lianzhen; Luo, Jingjing; Li, Gongchu

    2014-06-30

    Lectins exist widely in marine bioresources such as bacteria, algae, invertebrate animals and fishes. Some purified marine lectins have been found to elicit cytotoxicity to cancer cells. However, there are few reports describing the cytotoxic effect of marine lectins on cancer cells through virus-mediated gene delivery. We show here that a replication-deficient adenovirus-carrying gene encoding Haliotis discus discus sialic acid binding lectin (Ad.FLAG-HddSBL) suppressed cancer cell proliferation by inducing apoptosis, as compared to the control virus Ad.FLAG. A down-regulated level of anti-apoptosis factor Bcl-2 was suggested to be responsible for the apoptosis induced by Ad.FLAG-HddSBL infection. Further subcellular localization studies revealed that HddSBL distributed in cell membrane, ER, and the nucleus, but not in mitochondria and Golgi apparatus. In contrast, a previously reported mannose-binding lectin Pinellia pedatisecta agglutinin entered the nucleus as well, but did not distribute in inner membrane systems, suggesting differed intracellular sialylation and mannosylation, which may provide different targets for lectin binding. Further cancer-specific controlling of HddSBL expression and animal studies may help to provide insights into a novel way of anti-cancer marine lectin gene therapy. Lectins may provide a reservoir of anti-cancer genes.

  3. BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways.

    PubMed

    Marsch-Martinez, Nayelli; Greco, Raffaella; Becker, Jörg D; Dixit, Shital; Bergervoet, Jan H W; Karaba, Aarati; de Folter, Stefan; Pereira, Andy

    2006-12-01

    The BOLITA (BOL) gene, an AP2/ERF transcription factor, was characterized with the help of an activation tag mutant and overexpression lines in Arabidopsis and tobacco. The leaf size of plants overexpressing BOL was smaller than wild type plants due to a reduction in both cell size and cell number. Moreover, severe overexpressors showed ectopic callus formation in roots. Accordingly, global gene expression analysis using the overexpression mutant reflected the alterations in cell proliferation, differentiation and growth through expression changes in RBR, CYCD, and TCP genes, as well as genes involved in cell expansion (i.e. expansins and the actin remodeling factor ADF5). Furthermore, the expression of hormone signaling (i.e. auxin and cytokinin), biosynthesis (i.e. ethylene and jasmonic acid) and regulatory genes was found to be perturbed in bol-D mutant leaves. PMID:17096212

  4. Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula

    PubMed Central

    Shu, Yongjun; Liu, Ying; Zhang, Jun; Song, Lili; Guo, Changhong

    2016-01-01

    The AP2/ERF superfamily is a large, plant-specific transcription factor family that is involved in many important processes, including plant growth, development, and stress responses. Using Medicago truncatula genome information, we identified and characterized 123 putative AP2/ERF genes, which were named as MtERF1–123. These genes were classified into four families based on phylogenetic analysis, which is consistent with the results of other plant species. MtERF genes are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem and segmental duplication. Using transcriptome, high-throughput sequencing data, and qRT-PCR analysis, we assessed the expression patterns of the MtERF genes in tissues during development and under abiotic stresses. In total, 87 MtERF genes were expressed in plant tissues, most of which were expressed in specific tissues during development or under specific abiotic stress treatments. These results support the notion that MtERF genes are involved in developmental regulation and environmental responses in M. truncatula. Furthermore, a cluster of DREB subfamily members on chromosome 6 was induced by both cold and freezing stress, representing a positive gene regulatory response under low temperature stress, which suggests that these genes might contribute to freezing tolerance to M. truncatula. In summary, our genome-wide characterization, evolutionary analysis, and expression pattern analysis of MtERF genes in M. truncatula provides valuable information for characterizing the molecular functions of these genes and utilizing them to improve stress tolerance in plants. PMID:26834762

  5. Expression Patterns of GmAP2/EREB-Like Transcription Factors Involved in Soybean Responses to Water Deficit

    PubMed Central

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Oliveira, Maria Cristina Neves; Farias, Jose Renato Bouças; Neumaier, Norman; Abdelnoor, Ricardo Vilela; Marcelino-Guimarães, Francismar Corrêa; Nepomuceno, Alexandre Lima

    2013-01-01

    Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms. Here, we analyzed the expression patterns of ten APETALA2/Ethylene Responsive Element Binding-like (AP2/EREB-like) transcription factors in two soybean genotypes (BR16: drought-sensitive; and Embrapa 48: drought-tolerant). According to phylogenetic and domain analyses, these genes can be included in the DREB and ERF subfamilies. We also analyzed a GmDRIP-like gene that encodes a DREB negative regulator. We detected the up-regulation of 9 GmAP2/EREB-like genes and identified transcriptional differences that were dependent on the levels of the stress applied and the tissue type analyzed (the expression of the GmDREB1F-like gene, for example, was four times higher in roots than in leaves). The GmDRIP-like gene was not induced by water deficit in BR16 during the longest periods of stress, but was significantly induced in Embrapa 48; this suggests a possible genetic/molecular difference between the responses of these cultivars to water deficit stress. Additionally, RNAseq gene expression analysis over a 24-h time course indicates that the expression patterns of several GmDREB-like genes are subject to oscillation over the course of the day, indicating a possible circadian regulation. PMID:23667465

  6. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins.

    PubMed

    Linnartz-Gerlach, B; Mathews, M; Neumann, H

    2014-09-01

    Sialic acid binding immunoglobulin-like lectins (Siglecs) are cell surface receptors of microglia and oligodendrocytes that recognize the sialic acid cap of healthy neurons and neighboring glial cells. Upon ligand binding, Siglecs typically signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) to keep the cell in a homeostatic status and support healthy neighboring cells. Siglecs can be divided into two groups; the first, being conserved among different species. The conserved Siglec-4/myelin-associated glycoprotein is expressed on oligodendrocytes and Schwann cells. Siglec-4 protects neurons from acute toxicity via interaction with sialic acids bound to neuronal gangliosides. The second group of Siglecs, named CD33-related Siglecs, is almost exclusively expressed on immune cells and is highly variable among different species. Microglial expression of Siglec-11 is human lineage-specific and prevents neurotoxicity via interaction with α2.8-linked sialic acid oligomers exposed on the neuronal glycocalyx. Microglial Siglec-E is a mouse CD33-related Siglec member that prevents microglial phagocytosis and the associated oxidative burst. Mouse Siglec-E of microglia binds to α2.8- and α2.3-linked sialic acid residues of the healthy glycocalyx of neuronal and glial cells. Recently, polymorphisms of the human Siglec-3/CD33 were linked to late onset Alzheimer's disease by genome-wide association studies. Human Siglec-3 is expressed on microglia and produces inhibitory signaling that decreases uptake of particular molecules such as amyloid-β aggregates. Thus, glial ITIM-signaling Siglecs recognize the intact glycocalyx of neurons and are involved in the modulation of neuron-glia interaction in healthy and diseased brain.

  7. Structure and nucleic acid binding activity of the nucleoporin Nup157

    PubMed Central

    Seo, Hyuk-Soo; Blus, Bartlomiej J.; Janković, Nina Z.; Blobel, Günter

    2013-01-01

    At the center of the nuclear pore complex (NPC) is a uniquely versatile central transport channel. Structural analyses of distinct segments (“protomers”) of the three “channel” nucleoporins yielded a model for how this channel is constructed. Its principal feature is a midplane ring that can undergo regulated diameter changes of as much as an estimated 30 nm. To better understand how a family of “adaptor” nucleoporins—concentrically surrounding this channel—might cushion these huge structural changes, we determined the crystal structure of one adaptor nucleoporin, Nup157. Here, we show that a recombinant Saccharomyces cerevisiae Nup157 protomer, representing two-thirds of Nup157 (residues 70–893), folds into a seven-bladed β-propeller followed by an α-helical domain, which together form a C-shaped architecture. Notably, the structure contains a large patch of positively charged residues, most of which are evolutionarily conserved. Consistent with this surface feature, we found that Nup15770–893 binds to nucleic acids, although in a sequence-independent manner. Nevertheless, this interaction supports a previously reported role of Nup157, and its paralogue Nup170, in chromatin organization. Based on its nucleic acid binding capacity, we propose a dual location and function of Nup157. Finally, modeling the remaining C-terminal portion of Nup157 shows that it projects as a superhelical stack from the compact C-shaped portion of the molecule. The predicted four hinge regions indicate an intrinsic flexibility of Nup157, which could contribute to structural plasticity within the NPC. PMID:24062435

  8. Pressurized water extraction of β-glucan enriched fractions with bile acids-binding capacities obtained from edible mushrooms.

    PubMed

    Palanisamy, Marimuthu; Aldars-García, Laila; Gil-Ramírez, Alicia; Ruiz-Rodríguez, Alejandro; Marín, Francisco R; Reglero, Guillermo; Soler-Rivas, Cristina

    2014-01-01

    A pressurized water extraction (PWE) method was developed in order to extract β-glucans with bile acids-binding capacities from cultivated mushrooms (Agaricus bisporus, Lentinula edodes, and Pleurotus ostreatus) to be used as supplements to design novel foods with hypocholesterolemic properties. Extraction yields were higher in individual than sequential extractions being the optimal extraction parameters: 200°C, 5 cycles of 5 min each at 10.3 MPa. The crude polysaccharide (PSC) fractions, isolated from the PWE extracts contained mainly β-glucans (including chitooligosaccharides deriving from chitin hydrolysis), α-glucans, and other PSCs (hetero-/proteo-glucans) depending on the extraction temperature and mushroom strain considered. The observed bile acids-binding capacities of some extracts were similar to a β-glucan enriched fraction obtained from cereals. PMID:24399760

  9. The 'helix clamp' in HIV-1 reverse transcriptase: a new nucleic acid binding motif common in nucleic acid polymerases.

    PubMed Central

    Hermann, T; Meier, T; Götte, M; Heumann, H

    1994-01-01

    Amino acid sequences homologous to 259KLVGKL (X)16KLLR284 of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) are conserved in several nucleotide polymerizing enzymes. This amino acid motif has been identified in the crystal structure model as an element of the enzyme's nucleic acid binding apparatus. It is part of the helix-turn-helix structure, alpha H-turn-alpha I, within the 'thumb' region of HIV-1 RT. The motif grasps the complexed nucleic acid at one side. Molecular modeling studies on HIV-1 RT in complex with a nucleic acid fragment suggest that the motif has binding function in the p66 subunit as well as in the p51 subunit, acting as a kind of 'helix clamp'. Given its wide distribution within the nucleic acid polymerases, the helix clamp motif is assumed to be a structure of general significance for nucleic acid binding. Images PMID:7527138

  10. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life

    PubMed Central

    Austin, James A.; Wright, Gareth S. A.; Watanabe, Seiji; Grossmann, J. Günter; Antonyuk, Svetlana V.; Yamanaka, Koji; Hasnain, S. Samar

    2014-01-01

    Over the last two decades many secrets of the age-related human neural proteinopathies have been revealed. A common feature of these diseases is abnormal, and possibly pathogenic, aggregation of specific proteins in the effected tissue often resulting from inherent or decreased structural stability. An archetype example of this is superoxide dismutase-1, the first genetic factor to be linked with amyotrophic lateral sclerosis (ALS). Mutant or posttranslationally modified TAR DNA binding protein-32 (TDP-43) is also strongly associated with ALS and an increasingly large number of other neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). Cytoplasmic mislocalization and elevated half-life is a characteristic of mutant TDP-43. Furthermore, patient age at the onset of disease symptoms shows a good inverse correlation with mutant TDP-43 half-life. Here we show that ALS and FTLD-associated TDP-43 mutations in the central nucleic acid binding domains lead to elevated half-life and this is commensurate with increased thermal stability and inhibition of aggregation. It is achieved without impact on secondary, tertiary, or quaternary structure. We propose that tighter structural cohesion contributes to reduced protein turnover, increasingly abnormal proteostasis and, ultimately, faster onset of disease symptoms. These results contrast our perception of neurodegenerative diseases as misfolded proteinopathies and delineate a novel path from the molecular characteristics of mutant TDP-43 to aberrant cellular effects and patient phenotype. PMID:24591609

  11. Steam cooking significantly improves in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage.

    PubMed

    Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H

    2008-06-01

    Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the ris