Science.gov

Sample records for acid-co-glycolic acid plga

  1. Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies.

    PubMed

    Pradhan, Roshan; Poudel, Bijay Kumar; Ramasamy, Thiruganesh; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2013-08-01

    In the present study, we developed novel docetaxel (DTX)-loaded polylactic acid-co-glycolic acid (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate (SLS) and poloxamer 407, the anionic and non-ionic surfactants respectively for stabilization. The NPs were prepared by emulsification/solvent evaporation method. The combination of these surfactants at weight ratio of 1:0.5 was able to produce uniformly distributed small sized NPs and demonstrated the better stability of NP dispersion with high encapsulation efficiency (85.9 +/- 0.6%). The drug/polymer ratio and phase ratio were 2:10 and 1:10, respectively. The optimized formulation of DTX-loaded PLGA NPs had a particle size and polydispersity index of 104.2 +/- 1.5 nm and 0.152 +/- 0.006, respectively, which was further supported by TEM image. In vitro release study was carried out with dialysis membrane and showed 32% drug release in 192 h. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.481, which suggested the drug was released by anomalous or non-Fickian diffusion. In addition, DTX-loaded PLGA NPs in 72 h, displayed approximately 75% cell viability reduction at 10 microg/ml DTX concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of DTX into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.

  2. Poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) thermogel as a novel submucosal cushion for endoscopic submucosal dissection.

    PubMed

    Yu, Lin; Xu, Wei; Shen, Wenjia; Cao, Luping; Liu, Yan; Li, Zhaoshen; Ding, Jiandong

    2014-03-01

    Endoscopic submucosal dissection (ESD) is a clinical therapy for early stage neoplastic lesions in the gastrointestinal tract. It is, however, faced with a crucial problem: the high occurrence of perforation. The formation of a submucosal fluid cushion (SFC) via a fluid injection is the best way to avoid perforation, and thus an appropriate biomaterial is vital for this minimally invasive endoscopic technique. In this study, we introduced an injectable thermogel as a novel submucosal injection substance in ESD. The hydrogel synthesized by us was composed of poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymers. The polymer/water system was a low-viscosity fluid at room temperature and thus easily injected, and turned into a non-flowing gel at body temperature after injection. The submucosal injection of the thermogel to create SFCs was performed in both resected porcine stomachs and living minipigs. High mucosal elevation with a clear margin was maintained for a long duration. Accurate en bloc resection was achieved with the assistance of the thermogel. The mean procedure time was strikingly reduced. Meanwhile, no obvious bleeding, perforation and tissue damage were observed. The application of the thermogel not only facilitated the ESD procedure, but also increased the efficacy and safety of ESD. Therefore, the PLGA-PEG-PLGA thermogel provides an excellent submucosal injection system, and has great potential to improve the ESD technique significantly.

  3. Electrospun Poly(lactic acid-co-glycolic acid) Scaffolds for Skin Tissue Engineering

    PubMed Central

    Kumbar, Sangamesh G.; Nukavarapu, Syam Prasad; James, Roshan; Nair, Lakshmi S.; Laurencin, Cato T.

    2008-01-01

    Electrospun fiber matrices composed of scaffolds of varying fiber diameters were investigated for potential application of severe skin loss. Few systematic studies have been performed to examine the effect of varying fiber diameter electrospun fiber matrices for skin regeneration. The present study reports the fabrication of poly[lactic acid-co-glycolic acid] (PLAGA) matrices with fiber diameters of 150–225, 200–300, 250–467, 500–900, 600–1200, 2500–3000 and 3250–6000 nm via electrospinning. All fiber matrices found to have a tensile modulus from 39.23 ± 8.15 to 79.21 ± 13.71 MPa which falls in the range for normal human skin. Further, the porous fiber matrices have porosity between 38–60 % and average pore diameters between 10–14µm. We evaluated the efficacy of these biodegradable fiber matrices as skin substitutes by seeding them with human skin fibroblasts (hSF). Human skin fibroblasts acquired a well spread morphology and showed significant progressive growth on fiber matrices in the 350–1100 nm diameter range. Collagen type III gene expression was significantly up-regulated in hSF seeded on matrices with fiber diameters in the range of 350–1100 nm. Based on the need, the proposed fiber skin substitutes can be successfully fabricated and optimized for skin fibroblast attachment and growth. PMID:18639927

  4. Preparation and evaluation of 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) nanoparticles.

    PubMed

    Pradhan, Roshan; Poudel, Bijay Kumar; Choi, Ju Yeon; Choi, Im Soon; Shin, Beom Soo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2015-01-01

    In the present study, we developed the novel 17-allyamino-17-demethoxygeldanamycin (17-AAG)-loaded poly(lactic acid-co-glycolic acid) (PLGA) nanoparticles (NPs) using the combination of sodium lauryl sulfate and poloxamer 407 as the anionic and non-ionic surfactant for stabilization. The PLGA NPs were prepared by emulsification/solvent evaporation method. Both the drug/polymer ratio and phase ratio were 1:10 (w/w). The optimized formulation of 17-AAG-loaded PLGA NPs had a particle size and polydispersity index of 151.6 ± 2.0 and 0.152 ± 0.010 nm, respectively, which was further supported by TEM image. The encapsulation efficiency and drug loading capacity were 69.9 and 7.0%, respectively. In vitro release study showed sustained release. When in vitro release data were fitted to Korsmeyer-Peppas model, the n value was 0.468, which suggested that the drug was released by anomalous or non-Fickian diffusion. In addition, 17-AAG-loaded PLGA NPs in 72 h, displayed approximately 60% cell viability reduction at 10 µg/ml 17-AAG concentration, in MCF-7 cell lines, indicating sustained release from NPs. Therefore, our results demonstrated that incorporation of 17-AAG into PLGA NPs could provide a novel effective nanocarrier for the treatment of cancer.

  5. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    PubMed Central

    Keum, Chang-Gu; Noh, Young-Wook; Baek, Jong-Suep; Lim, Ji-Ho; Hwang, Chan-Ju; Na, Young-Guk; Shin, Sang-Chul; Cho, Cheong-Weon

    2011-01-01

    Background Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA), are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20.83%, 40.07%, and 51.5% of the docetaxel was released in 28 days from nanoparticles containing Poloxamer 188, TPGS, or polyvinyl alcohol, respectively. TPGS and Poloxamer 188 had slower release kinetics than polyvinyl alcohol. It was predicted that there was residual drug remaining on the surface from x-ray photoelectron spectroscopy. Conclusion Our research shows that the choice of surfactant is important for controlled release of

  6. High performance quasi-solid-state dye-sensitized solar cells based on poly(lactic acid-co-glycolic acid)

    NASA Astrophysics Data System (ADS)

    Kwon, Woosung; Rhee, Shi-Woo

    A stable quasi-solid-state dye-sensitized solar cell (DSC) with a novel amphiphilic polymer gel electrolyte (APGE) based on poly(lactic acid-co-glycolic acid) (PLGA) is fabricated. The APGE could be readily prepared by a simple method at low temperature of 50 °C and exhibits a quasi-solid property, high conductivity, and long-term stability. The 20 and 40 wt% APGE-based DSCs show high photovoltaic conversion efficiency of 7.5 and 7.4%, respectively, under AM 1.5 simulated sunlight, which is comparable to the liquid electrolyte-based DSC with the efficiency of 7.6%. The 40 wt% APGE-based DSC maintains 95% of the initial performance after 60 days in practical conditions. It is also noteworthy that the APGE endows with higher short-circuit current density than the liquid electrolyte. Different natures of the APGE from the typical polymer gel electrolytes have been elucidated by the I- V measurements, electrochemical impedance spectroscopy, electrophoretic measurements, and transmission electron microscopy.

  7. Controlled release of drug and better bioavailability using poly(lactic acid-co-glycolic acid) nanoparticles.

    PubMed

    Pandey, Sanjeev K; Patel, Dinesh K; Maurya, Akhilendra K; Thakur, Ravi; Mishra, Durga P; Vinayak, Manjula; Haldar, Chandana; Maiti, Pralay

    2016-08-01

    Tamoxifen (Tmx) embedded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-Tmx) is prepared to evaluate its better DNA cleavage potential, cytotoxicity using Dalton's lymphoma ascite (DLA) cells and MDA-MB231 breast cancer cells. PLGA-Tmx nanoparticles are prepared through emulsified nanoprecipitation technique with varying dimension of 17-30nm by changing the concentrations of polymer, emulsifier and drug. Nanoparticles dimension are measured through electron and atomic force microscopy. Interactions between tamoxifen and PLGA are verified through spectroscopic and calorimetric methods. PLGA-Tmx shows excellent DNA cleavage potential as compared to pure Tmx raising better bioavailability. In vitro cytotoxicity studies indicate that PLGA-Tmx reduces DLA cells viability up to ∼38% against ∼15% in pure Tmx. Hoechst stain is used to detect apoptotic DLA cells through fluorescence imaging of nuclear fragmentation and condensation exhibiting significant increase of apoptosis (70%) in PLGA-Tmx vis-à-vis pure drug (58%). Enhanced DNA cleavage potential, nuclear fragmentation and condensation in apoptotic cells confirm greater bioavailability of PLGA-Tmx as compared to pure Tmx in terms of receptor mediated endocytosis. Hence, the sustained release kinetics of PLGA-Tmx nanoparticles shows much better anticancer efficacy through enhanced DNA cleavage potential and nuclear fragmentation and, thereby, reveal a novel vehicle for the treatment of cancer. PMID:27112980

  8. Effect of l-lysine-assisted surface grafting for nano-hydroxyapatite on mechanical properties and in vitro bioactivity of poly(lactic acid-co-glycolic acid).

    PubMed

    Liuyun, Jiang; Lixin, Jiang; Chengdong, Xiong; Lijuan, Xu; Ye, Li

    2016-01-01

    It is promising and challenging to study surface modification for nano-hydroxyapatite to improve the dispersion and enhance the mechanical properties and bioactivity of poly(lactic acid-co-glycolic acid). In this paper, we designed an effective new surface grafting with the assist of l-lysine for nano-hydroxyapatite, and the nano-hydroxyapatite surface grafted with the assist of l-lysine (g-nano-hydroxyapatite) was incorporated into poly(lactic acid-co-glycolic acid) to develop a series of g-nano-hydroxyapatite/poly(lactic acid-co-glycolic acid) nano-composites. The surface modification reaction for nano-hydroxyapatite, the mechanical properties, and in vitro human osteoblast-like cell (MG-63) response were characterized and investigated by Fourier transformation infrared, thermal gravimetric analysis, dispersion test, electromechanical universal tester, differential scanning calorimeter measurements, and in vitro cells culture experiment. The results showed that the grafting amount on the surface of nano-hydroxyapatite was enhanced with the increase of l-lysine, and the dispersion of nano-hydroxyapatite was improved more, so that it brought about better promotion crystallization and more excellent mechanical enhancement effect for poly(lactic acid-co-glycolic acid), comparing with the unmodified nano-hydroxyapatite. Moreover, the cells' attachment and proliferation results confirmed that the incorporation of the g-nano-hydroxyapatite into poly(lactic acid-co-glycolic acid) exhibited better biocompatibility than poly(lactic acid-co-glycolic acid). The above results indicated that the new surface grafting with the assist of l-lysine for nano-hydroxyapatite was an ideal novel surface modification method, which brought about better mechanical enhancement effect and in vitro bioactivity for poly(lactic acid-co-glycolic acid) with adding higher g-nano-hydroxyapatite content, suggesting it had a great potential to be used as bone fracture internal fixation materials

  9. Applying Electrospun Gelatin/Poly(lactic acid-co-glycolic acid) Bilayered Nanofibers to Fabrication of Meniscal Tissue Engineering Scaffold.

    PubMed

    Li, Peng; Zhang, Weiguo; Yu, Hongquan; Zheng, Lianjie; Yang, Liang; Liu, Gang; Sheng, Chenchen; Gui, Haoran; Ni, Shuo; Li, Pengsheng; Shi, Feng

    2016-05-01

    The menisci are fibrocartilaginous tissues composed primarily of an interlacing network of collagen fibers with nanoscale diameter. Electrospinning is a suitable process of producing nanoscale fibers that mimic collagen fibers. In this study, a bilayered scaffold (group B), which consists of a gelatin nanofiber mesh and a PLGA nanofiber mesh, has been fabricated through an electrospinning method. At the same time, we electrospun pure PLGA fibrous mesh (group A) and gelatin/PLGA composite fibrous mesh (group C) as control groups. In order to compare all scaffold morphologies, the scaffolds were imaged by SEM and some parameters were measured and analyzed as following: Diameters of fibrils are from the smallest of less than average 0.14 μm for group C to the biggest of nearly average 0.38 μm for group B. The scaffolds pore diameters are from average 4.9 μm for group A to average 11.2 μm for group B. Porosity rates show that the group B has the highest porosity rate at about 91%. The scaffolds' properties were compared and analyzed, including hydrophilicity property (water contact angle) and mechanical properties (tensile strength). The results of water contact angle showed the group B is the most hydrophil among the groups. The results of tensile strength showed the tensile strength of group C is the weakest among the groups. All the results showed significant differences between the groups. Finally, in vitro, the meniscal cells derived from New Zealand white rabbits menisci were seeded in the scaffolds. We observed the cells proliferation behavior in the scaffolds. All above demonstrates that a bi-layered gelatin/PLGA scaffold reveals not only concurrent effects of mechanics and cytocompatibility in a fibrous context, but also a promising scaffold for future meniscal repair strategies. PMID:27483813

  10. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  11. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes.

  12. Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres.

    PubMed

    Gilchrist, Samuel E; Rickard, Deborah L; Letchford, Kevin; Needham, David; Burt, Helen M

    2012-05-01

    The purpose of this study was to characterize the phase separation behavior of fusidic acid (FA) and rifampicin (RIF) in poly(d,l-lactic acid-co-glycolic acid) (PLGA) using a model microsphere formulation. To accomplish this, microspheres containing 20% FA with 0%, 5%, 10%, 20%, and 30% RIF and 20% RIF with 30%, 20% 10%, 5%, and 0% FA were prepared by solvent evaporation. Drug-polymer and drug-drug compatibility and miscibility were characterized using laser confocal microscopy, Raman spectroscopy, XRPD, DSC, and real-time video recordings of single-microsphere formation. The encapsulation of FA and RIF alone, or in combination, results in a liquid-liquid phase separation of solvent-and-drug-rich microdomains that are excluded from the polymer bulk during microsphere hardening, resulting in amorphous spherical drug-rich domains within the polymer bulk and on the microsphere surface. FA and RIF phase separate from PLGA at relative droplet volumes of 0.311 ± 0.014 and 0.194 ± 0.000, respectively, predictive of the incompatibility of each drug and PLGA. When coloaded, FA and RIF phase separate in a single event at the relative droplet volume 0.251 ± 0.002, intermediate between each of the monoloaded formulations and dependent on the relative contribution of FA or RIF. The release of FA and RIF from phase-separated microspheres was characterized exclusively by a burst release and was dependent on the phase exclusion of surface drug-rich domains. Phase separation results in coalescence of drug-rich microdroplets and polymer phase exclusion, and it is dependent on the compatibility between FA and RIF and PLGA. FA and RIF are mutually miscible in all proportions as an amorphous glass, and they phase separate from the polymer as such. These drug-rich domains were excluded to the surface of the microspheres, and subsequent release of both drugs from the microspheres was rapid and reflected this surface location.

  13. Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections.

    PubMed

    Gilchrist, Samuel E; Lange, Dirk; Letchford, Kevin; Bach, Horacio; Fazli, Ladan; Burt, Helen M

    2013-08-28

    Implant-associated infections following invasive orthopedic surgery are a major clinical problem, and are one of the primary causes of joint failure following total joint arthroplasty. Current strategies using perioperative antibiotics have been met with little clinical success and have resulted in various systemic toxicities and the promotion of antibiotic resistant microorganisms. Here we report the development of a biodegradable localized delivery system using poly(D,L-lactic acid-co-glycolic acid) (PLGA) for the combinatorial release of fusidic acid (FA) (or its sodium salt; SF) and rifampicin (RIF) using electrospinning. The drug-loaded formulations showed good antibiotic encapsulation (~75%-100%), and a biphasic drug release profile. All dual-loaded formulations showed direct antimicrobial activity in vitro against Staphylococcus epidermidis, and two strains of methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, lead formulations containing 10% (w/w) FA/SF and 5% (w/w) RIF were able to prevent the adherence of MRSA to a titanium implant in an in vivo rodent model of subcutaneous implant-associated infection.

  14. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    PubMed

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. PMID:22342596

  15. Delivery of Multiple siRNAs Using Lipid-coated PLGA Nanoparticles for Treatment of Prostate Cancer

    PubMed Central

    Hasan, Warefta; Chu, Kevin; Gullapalli, Anuradha; Dunn, Stuart S.; Enlow, Elizabeth M.; Luft, J. Christopher; Tian, Shaomin; Napier, Mary E.; Pohlhaus, Patrick D.; Rolland, Jason P.; DeSimone, Joseph M.

    2012-01-01

    Nanotechnology can provide a critical advantage in developing strategies for cancer management and treatment by helping to improve the safety and efficacy of novel therapeutic delivery vehicles. This paper reports the fabrication of poly(lactic acid-co-glycolic acid)/siRNA nanoparticles coated with lipids for use as prostate cancer therapeutics made via a unique soft lithography particle molding process called PRINT (Particle Replication In Nonwetting Templates). The PRINT process enables high encapsulation efficiency of siRNA into neutral and monodisperse PLGA particles (32–46% encapsulation efficiency). Lipid-coated PLGA/siRNA PRINT particles were used to deliver therapeutic siRNA in vitro to knockdown genes relevant to prostate cancer. PMID:22165988

  16. Delivery of multiple siRNAs using lipid-coated PLGA nanoparticles for treatment of prostate cancer.

    PubMed

    Hasan, Warefta; Chu, Kevin; Gullapalli, Anuradha; Dunn, Stuart S; Enlow, Elizabeth M; Luft, J Christopher; Tian, Shaomin; Napier, Mary E; Pohlhaus, Patrick D; Rolland, Jason P; DeSimone, Joseph M

    2012-01-11

    Nanotechnology can provide a critical advantage in developing strategies for cancer management and treatment by helping to improve the safety and efficacy of novel therapeutic delivery vehicles. This paper reports the fabrication of poly(lactic acid-co-glycolic acid)/siRNA nanoparticles coated with lipids for use as prostate cancer therapeutics made via a unique soft lithography particle molding process called Particle Replication In Nonwetting Templates (PRINT). The PRINT process enables high encapsulation efficiency of siRNA into neutral and monodisperse PLGA particles (32-46% encapsulation efficiency). Lipid-coated PLGA/siRNA PRINT particles were used to deliver therapeutic siRNA in vitro to knockdown genes relevant to prostate cancer.

  17. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    PubMed

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  18. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  19. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    PubMed

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds. PMID:27376895

  20. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations.

  1. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations. PMID:27131608

  2. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    PubMed Central

    Selmin, Francesca; Puoci, Francesco; Parisi, Ortensia I.; Franzé, Silvia; Musazzi, Umberto M.; Cilurzo, Francesco

    2015-01-01

    This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C). By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. PMID:25569163

  3. In vitro characterization of micropatterned PLGA-PHBV8 blend films as temporary scaffolds for photoreceptor cells.

    PubMed

    Tezcaner, A; Hicks, D

    2008-07-01

    In developed countries the aging population faces increasing risks of blinding retinal diseases, for which there are few effective treatments available. Photoreceptor transplantation represents one approach, but generally results have been disappointing. We hypothesize that micropatterned biodegradable poly(L-lactic acid-co-glycolic acid)/poly(hydroxybutyrate-co-hydroxyvaleric acid) (PLGA-PHBV8) blend films could deliver photoreceptor cells in a more organized manner than bolus injections. Blending of PLGA and PHBV8 was used to optimize the degradation rate of the temporary template. At the end of 8 weeks, for both thin and thick films of PLGA-PHBV8 a 50% decrease of their initial weight with increasing water uptake was observed. When photoreceptor cells were seeded onto micropatterned PLGA-PHBV8 films with parallel grooves (21- and 42-microm-wide grooves and 20 microm ridge width and depth), the cells preferred laminin-deposited grooves to ridges and expressed rod- and cone-specific markers such as rhodopsin and arrestin. A loss in photoreceptor viability of 50% was observed after 7 days in culture. The effects of either retinal pigment epithelium (RPE)-derived or Muller glial cell-derived conditioned media or bFGF on the survival of photoreceptor cells seeded on PLGA-PHBV8 films were investigated. Addition of either RPE- and Muller-conditioned media increased statistically (p < 0.01) the viability of photoreceptor cells after 7 days of incubation. Our results suggest that such biodegradable micropatterned PLGA-PHBV8 blend films have a potential to deliver photoreceptor cells to the subretinal space and ensure laminar organization and maintenance of differentiation, and that incorporation of intrinsic factors within the scaffold would enhance the survival rate of transplanted cells.

  4. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  5. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier

    PubMed Central

    Makadia, Hirenkumar K.; Siegel, Steven J.

    2011-01-01

    In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release. PMID:22577513

  6. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation.

    PubMed

    Rahimi, Mehdi; Mobedi, Hamid; Behnamghader, Aliasghar

    2016-06-01

    Drug release mechanism of in situ-forming implants (ISIs) based on poly(lactic acid-co-glycolic acid) (PLGA) loaded with leuprolide acetate/β-cyclodextrin (LA/β-CD) complexes via fitting with four diffusion-based semi-empirical models were studied. The release rate constants and release exponent of ISIs were calculated. The main drug release mechanism was Fickian diffusion. The LA diffusion coefficient and release constant were decreased via increasing the portion of β-CD in complexes. The release curve was parabolic, with a higher initial slope and then consistent with the exponential. All ISIs containing LA/β-CD complexes better fitted with the Korsmeyer-Peppas, Weibull and Peppas-Sahlin models rather than first-order model. Furthermore, the effect of LA/β-CD complexation on the degradation of ISIs was studied through scanning electron microscopy (SEM). Results showed that hydrophilic nature of β-CD facilitated the surface erosion of PLGA chains, however after 18 d, ISI-1/10 had still a proper structural strength, due to no hydrolytic degradation of β-CD in this implant. PMID:27530523

  7. In situ-forming PLGA implants loaded with leuprolide acetate/β-cyclodextrin complexes: mathematical modelling and degradation.

    PubMed

    Rahimi, Mehdi; Mobedi, Hamid; Behnamghader, Aliasghar

    2016-06-01

    Drug release mechanism of in situ-forming implants (ISIs) based on poly(lactic acid-co-glycolic acid) (PLGA) loaded with leuprolide acetate/β-cyclodextrin (LA/β-CD) complexes via fitting with four diffusion-based semi-empirical models were studied. The release rate constants and release exponent of ISIs were calculated. The main drug release mechanism was Fickian diffusion. The LA diffusion coefficient and release constant were decreased via increasing the portion of β-CD in complexes. The release curve was parabolic, with a higher initial slope and then consistent with the exponential. All ISIs containing LA/β-CD complexes better fitted with the Korsmeyer-Peppas, Weibull and Peppas-Sahlin models rather than first-order model. Furthermore, the effect of LA/β-CD complexation on the degradation of ISIs was studied through scanning electron microscopy (SEM). Results showed that hydrophilic nature of β-CD facilitated the surface erosion of PLGA chains, however after 18 d, ISI-1/10 had still a proper structural strength, due to no hydrolytic degradation of β-CD in this implant.

  8. Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration.

    PubMed

    Jamuna-Thevi, Kalitheertha; Saarani, Nur Najiha; Abdul Kadir, Mohamed Rafiq; Hermawan, Hendra

    2014-10-01

    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents. PMID:25175212

  9. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure.

    PubMed

    Meyer, Florent; Wardale, John; Best, Serena; Cameron, Ruth; Rushton, Neil; Brooks, Roger

    2012-06-01

    The use of degradable composite materials in orthopedics remains a field of intense research due to their ability to support new bone formation and degrade in a controlled manner, broadening their use for orthopedic applications. Poly (lactide-co-glycolide) acid (PLGA), a degradable biopolymer, is now a popular material for different orthopedic applications and is proposed for use in tissue engineering scaffolds either alone or combined with bioactive ceramics. Interference screws composed of calcium phosphates and PLGA are readily available in the market. However, some reports highlight problems of screw migration or aseptic cyst formation following screw degradation. In order to understand these phenomena and to help to improve implant formulation, we have evaluated the effects of PLGA degradation products: lactic acid and glycolic acid on human osteoblasts in vitro. Cell proliferation, differentiation, and matrix mineralization, important for bone healing were studied. It was found that the toxicity of polymer degradation products under buffering conditions was limited to high concentrations. However, non-toxic concentrations led to a decrease in cell proliferation, rapid cell differentiation, and mineralization failure. Calcium, whilst stimulating cell proliferation was not able to overcome the negative effects of high concentrations of lactic and glycolic acids on osteoblasts. These effects help to explain recently reported clinical failures of calcium phosphate/PLGA composites, but further in vitro analyses are needed to mimic the dynamic situation which occurs in the body by, for example, culture of osteoblasts with materials that have been pre-degraded to different extents and thus be able to relate these findings to the degradation studies that have been performed previously.

  10. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor. PMID:26876867

  11. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  12. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

    PubMed

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi

    2015-03-31

    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  13. Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment.

    PubMed

    Wu, Yanping; Wang, Zhongyuan; Liu, Gan; Zeng, Xiaowei; Wang, Xusheng; Gao, Yongfeng; Jiang, Lijuan; Shi, Xiaojun; Tao, Wei; Huang, Laiqiang; Mei, Lin

    2015-07-01

    A novel nanocarrier system of cholic acid (CA) core, star-shaped polymer consisting of poly(D,L-lactide-co-glycolide) (PLGA) was developed for sustained and controlled delivery of simvastatin for chemotherapy of breast adenocarcinoma. The star-shaped polymer CA-PLGA with three branch arms was synthesized successfully through the core-first approach. The simvastatin-loaded star-shaped CA-PLGA nanoparticles were prepared through a modified nanoprecipitation method. The data showed that the fluorescence star-shaped CA-PLGA nanoparticles could be internalized into MDA-MB-231 and MDA-MB-468 human breast cancer cells. The simvastatin-loaded star-shaped CA-PLGA nanoparticles achieved significantly higher level of cytotoxicity than pristine simvastatin and simvastatin-loaded linear PLGA nanoparticles. Moreover, the expression of the cell cycle protein cyclin D1 was dramatically inhibited by simvastatin in both cells, with simvastatin-loaded star-shaped CA-PLGA nanoparticles having the greatest effect. MDA-MB-231 xenograft tumor model on BALB/c nude mice showed that simvastatin-loaded star-shaped CA-PLGA nanoformulations could effectively inhibit the growth of tumor over a longer period of time than pristine simvastatin and simvastatin-loaded linear PLGA nanoformulations at the same dose. In agreement with these, the nuclear expression of proliferation marker Ki-67 in simvastatin-loaded star-shaped CA-PLGA nanoparticles group was reduced to a most extent among four groups through tumor frozen section immunohistochemistry. In conclusion, the star-shaped CA-PLGA polymers could serve as a novel polymeric nanocarrier for breast cancer chemotherapy.

  14. Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles

    PubMed Central

    Bible, Ellen; Qutachi, Omar; Chau, David Y.S.; Alexander, Morgan R.; Shakesheff, Kevin M.; Modo, Michel

    2012-01-01

    Replacing the tissue lost after a stroke potentially provides a new neural substrate to promote recovery. However, significant neurobiological and biotechnological challenges need to be overcome to make this possibility into a reality. Human neural stem cells (hNSCs) can differentiate into mature brain cells, but require a structural support that retains them within the cavity and affords the formation of a de novo tissue. Nevertheless, in our previous work, even after a week, this primitive tissue is void of a vasculature that could sustain its long-term viability. Therefore, tissue engineering strategies are required to develop a vasculature. Vascular endothelial growth factor (VEGF) is known to promote the proliferation and migration of endothelial cells during angio- and arteriogenesis. VEGF by itself here did not affect viability or differentiation of hNSCs, whereas growing cells on poly(D,L-lactic acid-co-glycolic acid) (PLGA) microparticles, with or without VEGF, doubled astrocytic and neuronal differentiation. Secretion of a burst and a sustained delivery of VEGF from the microparticles in vivo attracted endothelial cells from the host into this primate tissue and in parts established a neovasculature, whereas in other parts endothelial cells were merely interspersed with hNSCs. There was also evidence of a hypervascularization indicating that further work will be required to establish an adequate level of vascularization. It is therefore possible to develop a putative neovasculature within de novo tissue that is forming inside a tissue cavity caused by a stroke. PMID:22818980

  15. Thermosensitive hydrogel PEG-PLGA-PEG enhances engraftment of muscle-derived stem cells and promotes healing in diabetic wound.

    PubMed

    Lee, Pui Yan; Cobain, Erin; Huard, Johnny; Huang, Leaf

    2007-06-01

    Regenerating new tissue using cell transplantation has relied on successful cell engraftment in the host; however, cell engraftment into the diabetic skin wound is not as successful as in many other tissues. We used a biodegradable and biocompatible triblock co-polymer poly(ethylene glycol-b-[DL-lactic acid-co-glycolic acid]-b-ethylene glycol) (PEG-PLGA-PEG), which forms a thermosensitive hydrogel, as a wound dressing and scaffold. We found that the thermosensitive hydrogel increased the engraftment of muscle-derived stem cells (MDSCs) by 20- to 30-fold until day 20, when the wound was completely closed in a db/db genetically diabetic mouse model. At day 9, 30% of the transplanted MDSCs were found to remain, and 15% remained at day 20 after transplantation. The increased engraftment resulted in enhanced wound healing, as indicated by the wound closure rate, epithelium migration, and collagen deposition. Using MDSCs stably expressing beta-gal and immunofluorescence, we found that 25% of MDSCs differentiated into fibroblasts, 10% into myofibroblasts, and 10% into endothelial cells. We conclude that using the thermosensitive hydrogel as a scaffold increased the engraftment of MDSCs, which leads to improved diabetic wound healing, possibly by retaining the cells at the wound site for longer. PMID:17406344

  16. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation.

    PubMed

    Shi, Gang; Ding, Yuanyuan; Zhang, Xin; Wu, Luyan; He, Fei; Ni, Caihua

    2015-01-01

    Hydrophobically modified sodium alginate, poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA), was successfully synthesized through direct one-step polymerization of sodium alginate, glycolic acid, and lactic acid. ALG-g-PLGA self-assembled to colloidal nanoparticles and subsequently hydrogel microspheres were obtained by crosslinking ALG-g-PLGA nanoparticles in the solution of calcium chloride. The modified hydrogel microspheres could be used as the drug delivery vehicles for a hydrophobic ibuprofen. Compared with sodium alginate, ALG-g-PLGA demonstrated an improved drug loading rate, encapsulation efficiency, and prolonged release speed. The products, as novel and highly promising biomaterials, have potential applications.

  17. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles.

    PubMed

    Xiong, Sijing; George, Saji; Yu, Haiyang; Damoiseaux, Robert; France, Bryan; Ng, Kee Woei; Loo, Joachim Say-Chye

    2013-06-01

    The aim of this study is to uncover the size influence of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles on their potential cytotoxicity. PLGA and TiO(2) nanoparticles of three different sizes were thoroughly characterized before in vitro cytotoxic tests which included viability, generation of reactive oxygen species (ROS), mitochondrial depolarization, integrity of plasma membrane, intracellular calcium influx and cytokine release. Size-dependent cytotoxic effect was observed in both RAW264.7 cells and BEAS-2B cells after cells were incubated with PLGA or TiO(2) nanoparticles for 24 h. Although PLGA nanoparticles did not trigger significantly lethal toxicity up to a concentration of 300 μg/ml, the TNF-α release after the stimulation of PLGA nanoparticles should not be ignored especially in clinical applications. Relatively more toxic TiO(2) nanoparticles triggered cell death, ROS generation, mitochondrial depolarization, plasma membrane damage, intracellular calcium concentration increase and size-dependent TNF-α release, especially at a concentration higher than 100 μg/ml. These cytotoxic effects could be due to the size-dependent interaction between nanoparticles and biomolecules, as smaller particles tend to adsorb more biomolecules. In summary, we demonstrated that the ability of protein adsorption could be an important paradigm to predict the in vitro cytotoxicity of nanoparticles, especially for low toxic nanomaterials such as PLGA and TiO(2) nanoparticles. PMID:22983807

  18. Potent engineered PLGA nanoparticles by virtue of exceptionally high chemotherapeutic loadings.

    PubMed

    Enlow, Elizabeth M; Luft, J Christopher; Napier, Mary E; DeSimone, Joseph M

    2011-02-01

    Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT (particle replication in nonwetting templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere.

  19. Preparation and Antibacterial Activity Evaluation of 18-β-glycyrrhetinic Acid Loaded PLGA Nanoparticles

    PubMed Central

    Darvishi, Behrad; Manoochehri, Saeed; Kamalinia, Golnaz; Samadi, Nasrin; Amini, Mohsen; Mostafavi, Seyyed Hossein; Maghazei, Shahab; Atyabi, Fatemeh; Dinarvand, Rassoul

    2015-01-01

    The aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-β-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanoparticles was examined against different gram-negative and gram-positive bacteria. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration of nanoparticles. Results demonstrated that physicochemical properties of nanoparticles were affected by the above mentioned parameters where nanoscale size particles ranging from 175 to 212 nm were achieved. The highest encapsulation efficiency (53.2 ± 2.4%) was obtained when the ratio of drug to polymer was 1:4. Zeta potential of the developed nanoparticles was fairly negative (-11±1.5). In-vitro release profile of nanoparticles showed two phases: an initial phase of burst release for 10 h followed by a slow release pattern up to the end. The antimicrobial results revealed that the nanoparticles were more effective than pure GLA against P. aeuroginosa, S. aureus and S. epidermidis. This improvement in antibacterial activity of GLA loaded nanoparticles when compared to pure GLA may be related to higher nanoparticles penetration into infected cells and a higher amount of GLA delivery in its site of action. Herein, it was shown that GLA loaded PLGA nanoparticles displayed appropriate physicochemical properties as well as an improved antimicrobial effect. PMID:25901144

  20. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

    PubMed Central

    Gentile, Piergiorgio; Chiono, Valeria; Carmagnola, Irene; Hatton, Paul V.

    2014-01-01

    Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function. PMID:24590126

  1. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  2. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  3. Cellular uptake, antioxidant and antiproliferative activity of entrapped α-tocopherol and γ-tocotrienol in poly (lactic-co-glycolic) acid (PLGA) and chitosan covered PLGA nanoparticles (PLGA-Chi).

    PubMed

    Alqahtani, Saeed; Simon, Lacey; Astete, Carlos E; Alayoubi, Alaadin; Sylvester, Paul W; Nazzal, Sami; Shen, Yixiao; Xu, Zhimin; Kaddoumi, Amal; Sabliov, Cristina M

    2015-05-01

    The aim of this study was to formulate and characterize α-tocopherol (α-T) and tocotrienol-rich fraction (TRF) entrapped in poly (lactide-co-glycolide) (PLGA) and chitosan covered PLGA (PLGA-Chi) based nanoparticles. The resultant nanoparticles were characterized and the effect of nanoparticles entrapment on the cellular uptake, antioxidant, and antiproliferative activity of α-T and TRF were tested. In vitro uptake studies in Caco2 cells showed that PLGA and PLGA-Chi nanoparticles displayed a greater enhancement in the cellular uptake of α-T and TRF when compared with the control without causing toxicity to the cells (p<0.0001). Furthermore, the cellular internalization of both PLGA and PLGA-Chi nanoparticles labeled with FITC was investigated by fluorescence microscopy; both types of nanoparticles were able to get internalized into the cells with reasonable amounts. However, PLGA-Chi nanoparticles showed significantly higher (3.5-fold) cellular uptake compared to PLGA nanoparticles. The antioxidant activity studies demonstrated that entrapment of α-T and TRF in PLGA and PLGA-Chi nanoparticles exhibited greater ability in inhibiting cholesterol oxidation at 48 h compared to the control. In vitro antiproliferative studies confirmed marked cytotoxicity of TRF on MCF-7 and MDA-MB-231 cell lines when delivered by PLGA and PLGA-Chi nanoparticles after 48 h incubation compared to control. In summary, PLGA and PLGA-Chi nanoparticles may be considered as an attractive and promising approach to enhance the bioavailability and activity of poorly water soluble compounds such as α-tocopherol and tocotrienols.

  4. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  5. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer.

  6. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.

  7. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  8. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer.

    PubMed

    Zeng, Xiaowei; Tao, Wei; Mei, Lin; Huang, Laiqiang; Tan, Chunyan; Feng, Si-Shen

    2013-08-01

    We developed a system of nanoparticles (NPs) of cholic acid functionalized, star-shaped block copolymer consisting of PLGA and vitamin E TPGS for sustained and controlled delivery of docetaxel for treatment of cervical cancer, which demonstrated superior in vitro and in vivo performance in comparison with the drug-loaded PLGA NPs and the linear PLGA-b-TPGS copolymer NPs. The star-shaped block copolymer CA-PLGA-b-TPGS of three branch arms was synthesized through the core-first approach and characterized by (1)H NMR, GPC and TGA. The drug- or coumarin 6-loaded NPs were prepared by a modified nanoprecipitation technique and then characterized in terms of size and size distribution, surface morphology and surface charge, drug encapsulation efficiency, in vitro release profile and physical state of the encapsulated drug. The CA-PLGA-b-TPGS NPs were found to have the highest cellular uptake efficiency, the highest antitumor efficacy compared with PLGA-b-TPGS NPs and PLGA NPs. The results suggest that such a star-shaped copolymer CA-PLGA-b-TPGS could be used as a new molecular biomaterial for drug delivery of high efficiency.

  9. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Cao, Long-Bin; Zeng, Sha; Zhao, Wei

    2016-06-01

    In the present study, a highly stable luteinizing-hormone-releasing hormone (LHRH)-conjugated PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles were developed for the successful treatment of prostate cancers. We have demonstrated that a unique combination of targeted drug delivery and controlled drug release is effective against prostate cancer therapy. The docetaxel (DTX)/PLGA-LHRH micelles possessed a uniform spherical shape with an average diameter of ~170 nm. The micelles exhibited a controlled drug release for up to 96 h which can minimize the non-specific systemic spread of toxic drugs during circulation while maximizing the efficiency of tumor-targeted drug delivery. The LHRH-conjugated micelles showed enhanced cellular uptake and exhibited significantly higher cytotoxicity against LNCaP cancer cells. We have showed that PLGA-LHRH induced greater caspase-3 activity indicating its superior apoptosis potential. Consistently, LHRH-conjugated micelles induced threefold and twofold higher G2/M phase arrest than compared to free DTX or PLGA NP-treated groups. Overall, results indicate that use of LHRH-conjugated nanocarriers may potentially be an effective nanocarrier to effectively treat prostate cancer.

  10. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers.

    PubMed

    Cao, Long-Bin; Zeng, Sha; Zhao, Wei

    2016-12-01

    In the present study, a highly stable luteinizing-hormone-releasing hormone (LHRH)-conjugated PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles were developed for the successful treatment of prostate cancers. We have demonstrated that a unique combination of targeted drug delivery and controlled drug release is effective against prostate cancer therapy. The docetaxel (DTX)/PLGA-LHRH micelles possessed a uniform spherical shape with an average diameter of ~170 nm. The micelles exhibited a controlled drug release for up to 96 h which can minimize the non-specific systemic spread of toxic drugs during circulation while maximizing the efficiency of tumor-targeted drug delivery. The LHRH-conjugated micelles showed enhanced cellular uptake and exhibited significantly higher cytotoxicity against LNCaP cancer cells. We have showed that PLGA-LHRH induced greater caspase-3 activity indicating its superior apoptosis potential. Consistently, LHRH-conjugated micelles induced threefold and twofold higher G2/M phase arrest than compared to free DTX or PLGA NP-treated groups. Overall, results indicate that use of LHRH-conjugated nanocarriers may potentially be an effective nanocarrier to effectively treat prostate cancer.

  11. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles

    PubMed Central

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  12. Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

    PubMed Central

    Nafissi Varcheh, Nastaran; Luginbuehl, Vera; Aboofazeli, Reza; Peter Merkle, Hans

    2011-01-01

    Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein particles (lysozyme-Zn complex as a freshly prepared suspension or a freeze-dried solid) were then loaded into PLGA (Resomer® 503H) microspheres, using a double emulsion technique and microspheres encapsulation efficiency and their sizes were determined. It was observed that salt type could significantly influence the magnitude of protein complexation. At the same conditions, zinc chloride was found to be more successful in producing pelletizable lysozyme. Generally, higher concentrations of protein solution led also to the higher yields of complexation and at the optimum conditions, the percentage of pelletizable lysozyme reached to 80%. Taking advantage of this procedure, a modified technique for preparation of protein-loaded PLGA microspheres was established, although it is also expected that this technique increases the protein drugs stabilization during the encapsulation process. PMID:24250344

  13. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    PubMed

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes.

  14. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Ghaedi, Kamran; Salehi, Hossein; Arpanaei, Ayyoob

    2015-08-01

    Aligned poly lactic-co-glycolic acid (PLGA) and PLGA/gelatin nanofibrous scaffolds embedded with mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. The mean diameters of nanofibers were 641±24 nm for the pure PLGA scaffolds vs 418±85 nm and 267±58 nm for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The contact angle measurement results (102°±6.7 for the pure PLGA scaffold vs 81°±6.8 and 18°±8.7 for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively) revealed enhanced hydrophilicity of scaffolds upon incorporation of gelatin and MSNPs. Besides, embedding the scaffolds with MSNPs resulted in improved tensile mechanical properties. Cultivation of PC12 cells on the scaffolds demonstrated that introduction of MSNPs into PLGA and PLGA/gelatin matrices leads to the improved cell attachment and proliferation as well as long cellular processes. DAPI staining results indicated that cell proliferations on the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds were strikingly (nearly 2.5 and 3 folds, respectively) higher than that on the aligned pure PLGA scaffolds. These results suggest superior properties of silica nanoparticles-incorporated PLGA/gelatin eletrospun nanofibrous scaffolds for the stem cell culture and tissue engineering applications.

  15. PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity.

    PubMed

    Carreño, Juan Manuel; Perez-Shibayama, Christian; Gil-Cruz, Cristina; Printz, Andrea; Pastelin, Rodolfo; Isibasi, Armando; Chariatte, Dominic; Tanoue, Yutaka; Lopez-Macias, Constantino; Gander, Bruno; Ludewig, Burkhard

    2016-07-29

    Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi. PMID:27372155

  16. Potent Engineered PLGA Nanoparticles by Virtue of Exceptionally High Chemotherapeutic Loadings

    PubMed Central

    Enlow, Elizabeth M.; Luft, J. Christopher; Napier, Mary E.; DeSimone, Joseph M.

    2011-01-01

    Herein we report the fabrication of engineered poly(lactic acid-co-glycolic acid) nanoparticles via the PRINT® (Particle Replication In Non-wetting Templates) process with high and efficient loadings of docetaxel, up to 40% (w/w) with encapsulation efficiencies >90%. The PRINT process enables independent control of particle properties leading to a higher degree of tailorability than traditional methods. Particles with 40% loading display better in vitro efficacy than particles with lower loadings and the clinical formulation of docetaxel, Taxotere®. PMID:21265552

  17. Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice.

    PubMed

    Chandorkar, Yashoda; Bhaskar, Nitu; Madras, Giridhar; Basu, Bikramjit

    2015-02-01

    There has been a continuous surge toward developing new biopolymers that exhibit better in vivo biocompatibility properties in terms of demonstrating a reduced foreign body response (FBR). One approach to mitigate the undesired FBR is to develop an implant capable of releasing anti-inflammatory molecules in a sustained manner over a long time period. Implants causing inflammation are also more susceptible to infection. In this article, the in vivo biocompatibility of a novel, biodegradable salicylic acid releasing polyester (SAP) has been investigated by subcutaneous implantation in a mouse model. The tissue response to SAP was compared with that of a widely used biodegradable polymer, poly(lactic acid-co-glycolic acid) (PLGA), as a control over three time points: 2, 4, and 16 weeks postimplantation. A long-term in vitro study illustrates a continuous, linear (zero order) release of salicylic acid with a cumulative mass percent release rate of 7.34 × 10(-4) h(-1) over ∼1.5-17 months. On the basis of physicochemical analysis, surface erosion for SAP and bulk erosion for PLGA have been confirmed as their dominant degradation modes in vivo. On the basis of the histomorphometrical analysis of inflammatory cell densities and collagen distribution as well as quantification of proinflammatory cytokine levels (TNF-α and IL-1β), a reduced foreign body response toward SAP with respect to that generated by PLGA has been unambiguously established. The favorable in vivo tissue response to SAP, as manifest from the uniform and well-vascularized encapsulation around the implant, is consistent with the decrease in inflammatory cell density and increase in angiogenesis with time. The above observations, together with the demonstration of long-term and sustained release of salicylic acid, establish the potential use of SAP for applications in improved matrices for tissue engineering and chronic wound healing.

  18. Enhanced Cellular Cytotoxicity and Antibacterial Activity of 18-β-Glycyrrhetinic Acid by Albumin-conjugated PLGA Nanoparticles.

    PubMed

    Darvishi, B; Manoochehri, S; Esfandyari-Manesh, M; Samadi, N; Amini, M; Atyabi, F; Dinarvand, R

    2015-12-01

    The aim of the present work was to encapsulate 18-β-Glycyrrhetinic acid (GLA) in albumin conjugated poly(lactide-co-glycolide) (PLGA) nanoparticles by a modified nanoprecipitation method. Nanoparticles (NPs) were prepared by different drug to polymer ratios, human serum albumin (HSA) content, dithiothreitol (as producer of free thiol groups) content, and acetone (as non-solvent in nanoprecipitation). NPs with a size ranging from 126 to 174 nm were achieved. The highest entrapment efficiency (89.4±4.2%) was achieved when the ratio of drug to polymer was 1:4. The zeta potential of NPs was fairly negative (-8 to -12). Fourier transform infrared spectroscopy and differential scanning calorimetry proved the conjugation of HSA to PLGA NPs. In vitro release profile of NPs showed 2 phases: an initial burst for 4 h (34-49%) followed by a slow release pattern up to the end. The antibacterial effects of NPs against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa were studied by microdilution method. The GLA-loaded NPs showed more antibacterial effect than pure GLA (2-4 times). The anticancer MTT test revealed that GLA-loaded NPs were approximately 9 times more effective than pure GLA in Hep G2 cells. PMID:25607747

  19. Hyaluronic acid as an internal phase additive to obtain ofloxacin/PLGA microsphere by double emulsion method.

    PubMed

    Wu, Gang; Chen, Long; Li, Hong; Wang, Ying-jun

    2014-01-01

    Hyaluronic acid (HA) was used as an internal phase additive to improve the loading efficiency of ofloxacin, a hydrophilic drug encapsulated by hydrophobic polylactic-co-glycolic acid (PLGA) materials, through a double emulsion (water-in-oil-in-water) solvent extraction/evaporation method. Results from laser distribution analysis show that polyelectrolyte additives have low impact on the average particle size and distribution of the microspheres. The negatively charged HA increases the drug loading efficiency as well as the amount of HA in microspheres. Burst release can be observed in the groups with the polyelectrolyte additives. The release rate decreases with the amount of HA inside the microspheres in all negatively charged polyelectrolyte-added microsphere groups.

  20. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites.

    PubMed

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  1. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment.

  2. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice.

    PubMed

    Salari, Farhad; Varasteh, Abdol-Reza; Vahedi, Fatemeh; Hashemi, Maryam; Sankian, Mojtaba

    2015-12-01

    The goal of this study was to investigate whether poly (lactic-co-glycolic) acid (PLGA) nanoparticles could enhance sublingual immunotherapy (SLIT) efficacy. BALB/c mice sensitized to rChe a 3 were treated sublingually either with soluble rChe a 3 (100μg/dose) or PLGA-encapsulated rChe a 3 (5, 25, or 50μg/dose). SLIT with PLGA-encapsulated rChe a 3 (equivalent to 25 and 50μg rChe a 3 per dose) led to significantly increased antigen-specific IgG2a, along with no effect on allergen-specific IgE and IgG1 antibody levels. In addition, interleukin 4 (IL-4) levels in restimulated splenocytes were significantly less, while interferon-γ (IFN-γ), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) levels, as well as Foxp3 expression, were significantly greater than in the control groups. Our findings suggest that PLGA nanoparticle-based vaccination may help rational development of sublingual immunotherapy through reduction of the needed allergen doses and also significantly enhanced systemic T regulatory (Treg) and T helper 1 (Th1) immune responses.

  3. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  4. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  5. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  6. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis.

    PubMed

    Lin, Ts-Ting; Gao, Dong-Yu; Liu, Ya-Chi; Sung, Yun-Chieh; Wan, Dehui; Liu, Jia-Yu; Chiang, Tsaiyu; Wang, Liying; Chen, Yunching

    2016-01-10

    Sorafenib is a tyrosine kinase inhibitor that has recently been shown to be a potential antifibrotic agent. However, a narrow therapeutic window limits the clinical use and therapeutic efficacy of sorafenib. Herein, we have developed and optimized nanoparticle (NP) formulations prepared from a mixture of poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers with poly(lactic-co-glycolic acid) (PLGA) for the systemic delivery of sorafenib into the fibrotic livers of CCl4-induced fibrosis mouse models. We characterized and compared the pharmaceutical and biological properties of two different PLGA nanoparticles (NPs)--PEG-PLGA NPs (PEG-PLGA/PLGA=10/0) and PEG-PLGA/PLGA NPs (PEG-PLGA/PLGA=5/5). Increasing the PLGA content in the PEG-PLGA/PLGA mixture led to increases in the particle size and drug encapsulation efficacy and a decrease in the drug release rate. Both PEG-PLGA and PEG-PLGA/PLGA NPs significantly prolonged the blood circulation of the cargo and increased the uptake by the fibrotic livers. The systemic administration of PEG-PLGA or PEG-PLGA/PLGA NPs containing sorafenib twice per week for a period of 4 weeks efficiently ameliorated liver fibrosis, as indicated by decreased α-smooth muscle actin (α-SMA) content and collagen production in the livers of CCl4-treated mice. Furthermore, sorafenib-loaded PLGA NPs significantly shrank the abnormal blood vessels and decreased microvascular density (MVD), leading to vessel normalization in the fibrotic livers. In conclusion, our results reflect the clinical potential of sorafenib-loaded PLGA NPs for the prevention and treatment of liver fibrosis.

  7. Accuracy of Motor Axon Regeneration Across Autograft, Single Lumen, and Multichannel Poly(lactic-co-glycolic Acid) (PLGA) Nerve Tubes

    PubMed Central

    de Ruiter, Godard C.; Spinner, Robert J.; Malessy, Martijn J. A.; Moore, Michael J.; Sorenson, Eric J.; Currier, Bradford L.; Yaszemski, Michael J.; Windebank, Anthony J.

    2012-01-01

    Objective Accuracy of motor axon regeneration becomes an important issue in the development of a nerve tube for motor nerve repair. Dispersion of regeneration across the nerve tube may lead to misdirection and polyinnervation. In this study, we present a series of methods to investigate the accuracy of regeneration, which we used to compare regeneration across autografts and single lumen poly(lactic-co-glycolic acid) (PLGA) nerve tubes. We also present the concept of the multichannel nerve tube that may limit dispersion by separately guiding groups of regenerating axons. Methods Simultaneous tracing of the tibial and peroneal nerves with fast blue (FB) and diamidino yellow (DY), 8 weeks after repair of a 1-cm nerve gap in the rat sciatic nerve, was performed to determine the percentage of double-projecting motoneurons. Sequential tracing of the peroneal nerve with DY 1 week before and FB 8 weeks after repair was performed to determine the percentage of correctly directed peroneal motoneurons. Results In the cases in which there was successful regeneration across single lumen nerve tubes, more motoneurons had double projections to both the tibial and peroneal nerve branches after single lumen nerve tube repair (21.4%) than after autograft repair (5.9%). After multichannel nerve tube repair, this percentage was slightly reduced (16.9%), although not significantly. The direction of regeneration was nonspecific after all types of repair. Conclusion Retrograde tracing techniques provide new insights into the process of regeneration across nerve tubes. The methods and data presented in this study can be used as a basis in the development of a nerve tube for motor nerve repair. PMID:18728579

  8. Possibility for the development of cosmetics with PLGA nanospheres.

    PubMed

    Ito, Fuminori; Takahashi, Tadahito; Kanamura, Kiyoshi; Kawakami, Hiroyoshi

    2013-05-01

    The optimized preparation of Poly-(lactide-co-glycolic acid) (PLGA) nanospheres containing ubiquinone (UQ) for cosmetic products was pursued. By investigating various conditions for the preparation of UQ/PLGA nanospheres such as the molecular weight of PLGA, PLGA concentration, and UQ concentration, UQ/PLGA nanospheres with increased stability and slower drug release at a higher drug loading efficiency were prepared. Permeation tests on the prepared nanospheres using iontophoresis via electric dermal administration on membrane filters (200 nm pore size) and hairless mouse skin samples were also carried out. After iontophoresis, the nanospheres choked the membrane filter and remained on the horny layer of the hairless mouse skin, even after washing. Therefore, the prepared UQ/PLGA nanospheres and the established iontophoresis technique with the PLGA nanospheres in the present study can be applied to the future development of cosmetics. PMID:22725249

  9. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  10. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles. PMID:26695149

  11. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun -Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You -Yeon

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.

  12. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.

  13. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. PMID:27207035

  14. The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions.

    PubMed

    Hoekstra, Jan Willem M; Ma, Jinling; Plachokova, Adelina S; Bronkhorst, Ewald M; Bohner, Marc; Pan, Juli; Meijer, Gert J; Jansen, John A; van den Beucken, Jeroen J J P

    2013-07-01

    Enrichment of calcium phosphate (CaP) bone substitutes with poly(lactic-co-glycolic acid) (PLGA) microspheres to create porosity overcomes the problem of poor CaP degradation. The degradation of CaP-PLGA composites can be customized by changing the physical and chemical properties of PLGA and/or CaP. However, the effect of the size of dense (solid rather than hollow) PLGA microspheres in CaP has not previously been described. The present study aimed at determining the effect of different dense (i.e. solid) PLGA microsphere sizes (small (S) ~20μm vs. large (L) ~130μm) and of CaP composition (CaP with either anhydrous dicalcium phosphate (DCP) or calcium sulphate dihydrate (CSD)) on CaP scaffold biodegradability and subsequent bone in-growth. To this end mandibular defects in minipigs were filled with pre-set CaP-PLGA implants, with autologous bone being used as a control. After 4weeks the autologous bone group outperformed all CaP-PLGA groups in terms of the amount of bone present at the defect site. On the other hand, at 12weeks substantial bone formation was observed for all CaP-PLGA groups (ranging from 47±25% to 62±15%), showing equal amounts of bone compared with the autologous bone group (82±9%), except for CaP with DCP and large PLGA microspheres (47±25%). It was concluded that in the current study design the difference in PLGA microsphere size and CaP composition led to similar results with respect to scaffold degradation and subsequent bone in-growth. Further, after 12weeks all CaP-PLGA composites proved to be effective for bone substitution.

  15. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  16. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  17. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.

    PubMed

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(d,l-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ∼500 times of enhancement compared to the simple mixture of the two drugs.

  18. Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F-18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography

    PubMed Central

    2015-01-01

    The avidin–biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [18F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [18F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([18F]NPB4) was prepared with high purity and specific activity. The attachment of the [18F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain. PMID:25322194

  19. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications.

    PubMed

    Ajalloueian, Fatemeh; Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Wickham, Abeni; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction. PMID:24689041

  20. Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications

    PubMed Central

    Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction. PMID:24689041

  1. Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs).

    PubMed

    Chen, Yin; Wang, Junping; Shen, Bo; Chan, Camie W Y; Wang, Chaoyi; Zhao, Yihua; Chan, Ho N; Tian, Qian; Chen, Yangfan; Yao, Chunlei; Hsing, I-Ming; Li, Ronald A; Wu, Hongkai

    2015-03-01

    Microgrooved thin PLGA film (≈30 μm) is successfully fabricated on a Teflon mold, which could be readily peeled off and is used for the construction of a biomimetic cardiac patch. The contraction of it is studied with optical mapping on transmembrane action potential. Our results suggest that steady-state contraction could be easily established on it under regular electrical stimuli. Besides, the biomimetic cardiac patch recapitulates the anisotropic electrophysiological feature of native cardiac tissue and is much more refractory to premature stimuli than the random one constructed with non-grooved PLGA film, as proved by the reduced incidence of arrhythmia. Considering the good biocompatibility of PLGA as demonstrated in our study and the biodegradability of it, our biomimetic cardiac patch may find applications in the treatment of myocardial infarction. Moreover, the Teflon mold could be applied in the fabrication of various scaffolds with fine features for other tissues.

  2. Optical characterization and feasibility study of multifunctional polylactic-co-glycolic acid (PLGA) nanoparticles designed for photo-thermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Xie, Hui; Smith, Jeffrey W.; McCarty, Owen

    2011-06-01

    Nanoparticles with plasmon-resonance absorption in the near-IR (NIR) optical range are of great interest in optical coherence tomography (OCT) for contrast enhancement and diagnostic interventions in molecular imaging. In this study, we characterized the optical properties of multifunctional NIR dye-loaded PLGA nanoparticles (approved by the U.S. Food and Drug Administration) to assess the feasibility of using contrast agent for photo-thermal OCT (PT-OCT) imaging. Tissue phantoms containing NIR dye-doped PLGA nanoparticles were prepared in 2% agarose solution. To study the feasibility of detecting the particles using PT-OCT, imaging was performed with a custom built PT-OCT system, and specific contrast was obtained with the prepared tissue mimicking phantoms. The excellent photo-thermal properties in combination with the positive tissue phantom results qualify the feasibility of dye-loaded PLGA particles as promising candidate for PT-OCT imaging applications.

  3. [Transport of PLGA nanoparticles across Caco-2/HT29-MTX co-cultured cells].

    PubMed

    Wen, Zhen; Li, Gang; Lin, Dong-Hai; Wang, Jun-Teng; Qin, Li-Fang; Guo, Gui-Ping

    2013-12-01

    The present study is to establish Caco-2/HT29-MTX co-cultured cells and investigate the transport capability of PLGA nanoparticles with different surface chemical properties across Caco-2/HT29-MTX co-cultured cells. PLGA-NPs, mPEG-PLGA-NPs and chitosan coated PLGA-NPs were prepared by nanoprecipitation method using poly(lactic-co-glycolic acid) as carrier material with surface modified by methoxy poly(ethylene glycol) and chitosan. The particle size and zeta potential of nanoparticles were measured by dynamic light scattering. Coumarin 6 was used as a fluorescent marker in the transport of nanoparticles investigated by confocal laser scanning microscopy. The transport of furanodiene (FDE) loaded nanoparticles was quantitively determined by high performance liquid chromatography. Colchicine and nocodazole were used in the transport study to explore the involved endocytosis mechanisms of nanoparticles. Distribution of the tight junction proteins ZO-1 was also analyzed by immunofluorescence staining. The results showed that the nanoparticles dispersed uniformly. The zeta potential of PLGA-NPs was negative, the mPEG-PLGA-NPs was close to neutral and the CS-PLGA-NPs was positive. The entrapment efficiency of FDE in all nanoparticles was higher than 75%. The transport capability of mPEG-PLGA-NPs across Caco-2/HT29-MTX co-cultured cells was higher than that of PLGA-NPs and CS-PLGA-NPs. Colchicine and nocodazole could significantly decrease the transport amount of nanoparticles. mPEG-PLGA-NPs could obviously reduce the distribution of ZO-1 protein than PLGA-NPs and CS-PLGA-NPs. The transport mechanism of PLGA-NPs and mPEG-PLGA-NPs were indicated to be a combination of endocytosis and paracellular way, while CS-PLGA-NPs mainly relied on the endocytosis way. PEG coating could shield the surface charge and enhance the hydrophilicity of PLGA nanoparticles, which leads mPEG-PLGA-NPs to possess higher anti-adhesion activity. As a result, mPEG-PLGA-NPs could penetrate the mucus

  4. PLGA-based nanoparticles as cancer drug delivery systems.

    PubMed

    Sadat Tabatabaei Mirakabad, Fatemeh; Nejati-Koshki, Kazem; Akbarzadeh, Abolfazl; Yamchi, Mohammad Rahmati; Milani, Mortaza; Zarghami, Nosratollah; Zeighamian, Vahideh; Rahimzadeh, Amirbahman; Alimohammadi, Somayeh; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most effective biodegradable polymeric nanoparticles (NPs). It has been approved by the US FDA to use in drug delivery systems due to controlled and sustained- release properties, low toxicity, and biocompatibility with tissue and cells. In the present review, the structure and properties of PLGA copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. Methods of preparation and characterization, various surface modifications, encapsulation of diverse anticancer drugs, active or passive tumor targeting and different release mechanisms of PLGA nanoparticles are discussed. Increasing experience in the application of PLGA nanoparticles has provided a promising future for use of these nanoparticles in cancer treatment, with high efficacy and few side effects. PMID:24568455

  5. Systemic delivery to central nervous system by engineered PLGA nanoparticles

    PubMed Central

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  6. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  7. Bone Regeneration from PLGA Micro-Nanoparticles.

    PubMed

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  8. Bone Regeneration from PLGA Micro-Nanoparticles

    PubMed Central

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  9. Optimized formulation of high-payload PLGA nanoparticles containing insulin-lauryl sulfate complex.

    PubMed

    Shi, Kai; Cui, Fude; Yamamoto, Hiromitsu; Kawashima, Yoshiaki

    2009-02-01

    A novel poly(lactic acid-co-glycolic acid) nanoparticle loaded with insulin-lauryl sulfate complex was prepared by spontaneous emulsion solvent diffusion method. The effects of key parameters such as agitation speed, poly(vinyl alcohol) concentration, solvent composition, polymer concentration, and the volume of external aqueous phase on the properties of the nanoparticles were investigated. To enhance the drug recovery and drug content simultaneously, a response surface methodology with five-level, two-factor central composite design was employed. The weight ratio of polymer to drug and volume ratio of external aqueous phase to solvent phase were selected as controlled factors on account of their interactions found in the monofactorial investigations. The experimental datum allowed the development of quadratic models (p < .05) describing the inter-relationships between the dependent and independent variables. By solving the regression equation, and graphic analyzing the response surface contour and plots, the optimum values of the two factors were determined as 20/1 and 10/1. The optimized conditions led to 89.6% of drug recovery and 4.57% of drug content during nanoparticle preparation.

  10. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA

    PubMed Central

    Asiri, Abdullah M; Marwani, Hadi M; Khan, Sher Bahadar; Webster, Thomas J

    2015-01-01

    Previous studies have demonstrated greater cardiomyocyte density on carbon nanofibers (CNFs) aligned (compared to randomly oriented) in poly(lactic-co-glycolic acid) (PLGA) composites. Although such studies demonstrated a closer mimicking of anisotropic electrical and mechanical properties for such aligned (compared to randomly oriented) CNFs in PLGA composites, the objective of the present in vitro study was to elucidate a deeper mechanistic understanding of how cardiomyocyte densities recognize such materials to respond more favorably. Results showed lower wettability (greater hydrophobicity) of CNFs embedded in PLGA compared to pure PLGA, thus providing evidence of selectively lower wettability in aligned CNF regions. Furthermore, the results correlated these changes in hydrophobicity with increased adsorption of fibronectin, laminin, and vitronectin (all proteins known to increase cardiomyocyte adhesion and functions) on CNFs in PLGA compared to pure PLGA, thus providing evidence of selective initial protein adsorption cues on such CNF regions to promote cardiomyocyte adhesion and growth. Lastly, results of the present in vitro study further confirmed increased cardiomyocyte functions by demonstrating greater expression of important cardiomyocyte biomarkers (such as Troponin-T, Connexin-43, and α-sarcomeric actin) when CNFs were aligned compared to randomly oriented in PLGA. In summary, this study provided evidence that cardiomyocyte functions are improved on CNFs aligned in PLGA compared to randomly oriented in PLGA since CNFs are more hydrophobic than PLGA and attract the adsorption of key proteins (fibronectin, laminin, and vironectin) that are known to promote cardiomyocyte adhesion and expression of important cardiomyocyte functions. Thus, future studies should use this knowledge to further design improved CNF:PLGA composites for numerous cardiovascular applications. PMID:25565806

  11. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    PubMed

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  12. RANKL delivery from calcium phosphate containing PLGA microspheres.

    PubMed

    Félix Lanao, Rosa P; Bosco, Ruggero; Leeuwenburgh, Sander C G; Kersten-Niessen, Monique J F; Wolke, Joop G C; van den Beucken, Jeroen J J P; Jansen, John A

    2013-11-01

    Ideally, bone substitute materials would undergo cell-mediated degradation during the remodeling process of the host bone tissue while being replaced by newly formed bone. In an attempt to exploit the capacity of Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL) to stimulate osteoclast-like cells formation, this study explored different loading methods for RANKL in injectable calcium phosphate cement (CPC) and the effect on release and biological activity. RANKL was loaded via the liquid phase of CPC by adsorption onto or incorporation into poly(lactic-co-glycolic acid) (PLGA) microspheres with two different morphologies (i.e., hollow and dense), which were subsequently embedded in CPC. As controls nonembedded PLGA-microspheres were used as well as plain CPC scaffolds with RANKL adsorbed onto the surface. RANKL release and activity were evaluated by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) and osteoclast-like cells formation in cell culture experiments. Results indicated that sustained release of active RANKL can be achieved upon RANKL adsorption to PLGA microspheres, whereas inactive RANKL was released from CPC-PLGA formulations with RANKL incorporated within the microspheres or within the liquid phase of the CPC. These results demonstrate that effective loading of RANKL in injectable CPC is only possible via adsorption to PLGA microspheres, which are subsequently embedded within the CPC-matrix.

  13. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  14. In vitro biocompatibility of polypyrrole/PLGA conductive nanofiber scaffold with cultured rat hepatocytes

    NASA Astrophysics Data System (ADS)

    Chu, Xue-Hui; Xu, Qian; Feng, Zhang-Qi; Xiao, Jiang-Qiang; Li, Qiang; Sun, Xi-Tai; Cao, Yang; Ding, Yi-Tao

    2014-09-01

    To intruduce conductive biomaterial into liver tissue engineering, a conductive nanofiber scaffold, polypyrrole/poly(lactic-co-glycolic)acid(PLGA), was designed and prepared via electro-spinning and oxidative polymerization. Effects of the scaffold on hepatocyte adhesion, viability and function were then investigated. SEM revealed pseudopodium formation and abundant extracellular matrix on the surface of PLGA membrane and polypyrrole/PLGA membrane. The adhesion rate, cellular activity, urea synthesis and albumin secretion of the hepatocytes cultured on polypyrrole/PLGA group were similar to those on the PLGA group, but were significantly higher than those on the control group. There were no significant differences in concentrations of LDH and TNF-α among three groups. These results suggested the potential application of this conductive nanofiber scaffold as a suitable substratum for hepatocyte culturing in liver tissue engineering.

  15. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer.

  16. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration.

    PubMed

    Lih, Eugene; Park, Ki Wan; Chun, So Young; Kim, Hyuncheol; Kwon, Tae Gyun; Joung, Yoon Ki; Han, Dong Keun

    2016-08-24

    Chronic kidney disease is now recognized as a major health problem, but current therapies including dialysis and renal replacement have many limitations. Consequently, biodegradable scaffolds to help repairing injured tissue are emerging as a promising approach in the field of kidney tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) is a useful biomedical material, but its insufficient biocompatibility caused a reduction in cell behavior and function. In this work, we developed the kidney-derived extracellular matrix (ECM) incorporated PLGA scaffolds as a cell supporting material for kidney tissue regeneration. Biomimetic PLGA scaffolds (PLGA/ECM) with different ECM concentrations were prepared by an ice particle leaching method, and their physicochemical and mechanical properties were characterized through various analyses. The proliferation of renal cortical epithelial cells on the PLGA/ECM scaffolds increased with an increase in ECM concentrations (0.2, 1, 5, and 10%) in scaffolds. The PLGA scaffold containing 10% of ECM has been shown to be an effective matrix for the repair and reconstitution of glomerulus and blood vessels in partially nephrectomized mice in vivo, compared with only PLGA control. These results suggest that not only can the tissue-engineering techniques be an effective alternative method for treatment of kidney diseases, but also the ECM incorporated PLGA scaffolds could be promising materials for biomedical applications including tissue engineered scaffolds and biodegradable implants. PMID:27456613

  17. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    PubMed

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles.

  18. An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease.

    PubMed

    Xie, Binbin; Jin, Ling; Luo, Zichao; Yu, Jing; Shi, Shuai; Zhang, Zhaoliang; Shen, Meixiao; Chen, Hao; Li, Xingyi; Song, Zongming

    2015-07-25

    Delivery of drugs, especially bioactive macromolecules such as proteins and nucleic acids, to the posterior segment is still a significant challenge for pharmaceutical scientists. In the present study, we developed an injectable thermosensitive polymeric hydrogel for sustained release of Avastin(®) to treat posterior segment disorders. The payload of Avastin(®) to poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel did not influence its inherent sol-gel transition behavior, but shifted the sol-gel transition to a lower temperature. The resulting Avastin(®)/PLGA-PEG-PLGA hydrogels had a porous structure (pore size, 100 ∼ 150 μm) as determined by scanning electron microcopy (SEM), facilitating sustained Avastin(®) release over a period of up to 14 days in vitro. The PLGA-PEG-PLGA hydrogel was immediately formed in the vitreous humor after intravitreal injection, followed by slow clearance over an 8 week study period. The PLGA-PEG-PLGA hydrogel exhibited no apparent toxicity against retinal tissue, as indicated by the absence of inflammation, retinal necrosis, and stress responses, using optical coherence tomography (OCT) and histological/immunochemical analyses. Electrophysiology (ERG) examination also showed that the PLGA-PEG-PLGA hydrogel did not affect retinal function. In vivo pharmacokinetic studies indicated that the use of the PLGA-PEG-PLGA hydrogel greatly extended the release of Avastin(®) over time in the vitreous humor and retina after intravitreal injection. Together, these results demonstrated that the PLGA-PEG-PLGA hydrogel was a promising candidate for ocular drug delivery of Avastin(®)via intravitreal injection.

  19. Development of Risperidone PLGA Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2014-01-01

    The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug. PMID:24616812

  20. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions

    PubMed Central

    Shin, Yong Cheol; Yang, Won Jun; Lee, Jong Ho; Oh, Jin-Woo; Kim, Tai Wan; Park, Jong-Chul; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-01-01

    This study concentrates on the development of biodegradable nanofiber membranes with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers of poly(lactic-co-glycolic acid) (PLGA) loaded with epigallocatechin-3-O-gallate (EGCG), the most bioactive polyphenolic compound in green tea, were electrospun. The physicochemical and biomechanical properties of EGCG-releasing PLGA (E-PLGA) nanofiber membranes were characterized by atomic force microscopy, EGCG release and degradation profiles, and tensile testing. In vitro antioxidant activity and hemocompatibility were evaluated by measuring scavenged reactive oxygen species levels and activated partial thromboplastin time, respectively. In vivo antiadhesion efficacy was examined on the rat peritonea with a surgical incision. The average fiber diameter of E-PLGA membranes was approximately 300–500 nm, which was almost similar to that of pure PLGA equivalents. E-PLGA membranes showed sustained EGCG release mediated by controlled diffusion and PLGA degradation over 28 days. EGCG did not adversely affect the tensile strength of PLGA membranes, whereas it significantly decreased the elastic modulus and increased the strain at break. E-PLGA membranes were significantly effective in both scavenging reactive oxygen species and extending activated partial thromboplastin time. Macroscopic observation after 1 week of surgical treatment revealed that the antiadhesion efficacy of E-PLGA nanofiber membranes was significantly superior to those of untreated controls and pure PLGA equivalents, which was comparable to that of a commercial tissue-adhesion barrier. In conclusion, the E-PLGA hybrid nanofiber can be exploited to craft strategies for the prevention of postsurgical adhesions. PMID:25187710

  1. Improving Protein Stability and Controlling Protein Release by Adding Poly (Cyclohexane-1, 4-Diyl Acetone Dimethylene Ketal) to PLGA Microspheres.

    PubMed

    Wang, Chenhui; Yu, Changhui; Yu, Kongtong; Teng, Lesheng; Liu, Jiaxin; Wang, Xuesong; Sun, Fengying; Li, Youxin

    2015-01-01

    The use of biodegradable polymers such as PLGA to encapsulate therapeutic proteins for their controlled release has received tremendous interest. However, an acidic environment caused by PLGA degradation productions leads to protein incomplete release and chemical degradation. The aim of this study was to develop novel PCADK/PLGA microspheres to improve protein stability and release behavior. Bovine serum albumin (BSA) incubated in PCADK and PLGA degradation products was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), size exclusion chromatography (SEC-HPLC), circular dichroism (CD) and fluorescence spectroscopy. Blended microspheres of PCADK/PLGA were prepared in different ratios and the release behaviors of the microspheres and the protein stability were then measured. The degradation properties of the microspheres and the pH inside the microspheres were systematically investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) to examine the mechanism of autocatalytic degradation and protein stability. BSA was more stable in the presence of PCADK monomers than it was in the presence of PLGA monomers, revealing that PCADK is highly compatible with this protein. PCADK/PLGA microspheres were successfully prepared, and 2/8 was determined to be the optimal ratio. Further, 43% of the BSA formed water-insoluble aggregates in the presence of PCADK/PLGA microspheres, compared with 57% for the PLGA microspheres, demonstrating that the BSA encapsulated in PCADK/PLGA blended microspheres was more stable than in PLGA microspheres. The PCADK/PLGA blended microspheres improved protein stability and release behavior, providing a promising protein drug delivery system.

  2. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  3. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    PubMed Central

    Figueiredo, Marxa; Esenaliev, Rinat

    2012-01-01

    This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed either of polymers (PLGA, polystyrene) or other contrast agent materials (Optison, SonoVue microbubbles). The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a) echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b) PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery. PMID:22506124

  4. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo.

    PubMed

    Lin, Zhen-Yu; Duan, Zhi-Xia; Guo, Xiao-Dong; Li, Jing-Feng; Lu, Hong-Wei; Zheng, Qi-Xin; Quan, Da-Ping; Yang, Shu-Hua

    2010-06-01

    BMP-2 is one of the most important growth factors of bone regeneration. Polylactide-co-glycolic acid (PLGA), which is used as a biodegradable scaffold for delivering therapeutic agents, has been intensively investigated. In previous studies, we synthesized a novel BMP-2-related peptide (designated P24) and found that it could enhance the osteoblastic differentiation of bone marrow stromal cells (BMSCs). The objective of this study was to construct a biomimetic composite by incorporating P24 into a modified PLGA-(PEG-ASP)n copolymer to promote bone formation. In vitro, our results demonstrated that PLGA-(PEG-ASP)n scaffolds were shown to be an efficient system for sustained release of P24. Significantly more BMSCs attached to the P24/PLGA-(PEG-ASP)n and PLGA-(PEG-ASP)n membranes than to PLGA, and the cells in the two groups subsequently proliferated more vigorously than those in the PLGA group. The expression of osteogenic markers in P24/PLGA-(PEG-ASP)n group was stronger than that in the PLGA-(PEG-ASP)n and PLGA groups. Radiographic and histological examination, Western blotting and RT-PCR showed that P24/PLGA-(PEG-ASP)n scaffold could induce more effective ectopic bone formation in vivo, as compared with PLGA-(PEG-ASP)n or gelatin sponge alone. It is concluded that the PLGA-(PEG-ASP)n copolymer is a good P24 carrier and can serve as a good scaffold for controlled release of P24. This novel P24/PLGA-(PEG-ASP)n composite promises to be an excellent biomaterial for inducing bone regeneration.

  5. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms.

    PubMed

    Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin

    2011-09-14

    The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR. PMID:21797282

  6. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    PubMed Central

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351

  7. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    PubMed

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.

  8. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the

  9. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

    PubMed Central

    2013-01-01

    Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may

  10. Measurement of PLGA-NP interaction with single smooth muscle cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Mondal, Argha; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2012-10-01

    For intervention of cardiovascular diseases, biodegradable and biocompatible, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) are emerging as agents of choice for controlled and targeted drug delivery. Therefore development of PLGA-NP with optimal physico-chemical properties will allow efficient binding and thus delivery of drug to targeted cells under various patho-physiological conditions. The force kinetics and its dependence on size of the NPs will be crucial for designing the NPs. Since optical tweezers allow non-contact, highly sensitive force measurement with high spatial and temporal resolution, we utilized it for studying interaction forces between magnetic PLGA nanoparticles with smooth muscle cells (SMC). In order to investigate effect of size, interaction force for 200 to 1100nm PLGA NP was measured. For similar interaction duration, the force was found to be higher with increase in size. The rupture force was found to depend on time of interaction of SMC with NPs.

  11. Treating cutaneous squamous cell carcinoma using ALA PLGA nanoparticle-mediated photodynamic therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen

    2015-03-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  12. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    PubMed Central

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC. PMID:25232295

  13. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-08-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  14. Gamma Irradiation of Active Self-healing PLGA Microspheres for Efficient Aqueous Encapsulation of Vaccine Antigens

    PubMed Central

    Desai, Kashappa-Goud H.; Kadous, Samer; Schwendeman, Steven P.

    2013-01-01

    Purpose To investigate the effect of γ-irradiation of poly(lactic-co-glycolic acid) (PLGA)/Al(OH)3/0 or 5 wt% diethyl phthalate (DEP) microspheres for active self-healing encapsulation of vaccine antigens. Methods Microspheres were irradiated with 60Co at 2.5 and 1.8 MRad and 0.37 and 0.20 MRad/h. Encapsulation of tetanus toxoid (TT) was achieved by mixing Al(OH)3-PLGA microspheres with TT solution at 10-38°C. Electron paramagnetic resonance (EPR) spectroscopy was used to examine free radical formation. Glass transition temperature (Tg) and molecular weight of PLGA was measured by differential scanning calorimetry and gel permeation chromatography, respectively. Loading and release of TT were examined by modified Bradford, amino acid analysis, and ELISA assays. Results EPR spectroscopy results indicated absence of free radicals in PLGA microspheres after γ-irradiation. Antigen-sorbing capacity, encapsulation efficiency, and Tg of the polymer were also not adversely affected. When DEP-loaded microspheres were irradiated at 0.2 MRad/h, some PLGA pores healed during irradiation and PLGA healing during encapsulation was suppressed. The molecular weight of PLGA was slightly reduced when DEP-loaded microspheres were irradiated at the same dose rate. These trends were not observed at 0.37 MRad/h. Gamma irradiation slightly increased TT initial burst release. Apart from the slightly higher polymer molecular weight decline caused by higher irradiation dose in case of DEP-loaded microspheres, the small increase in total irradiation dose from 1.8 to 2.5 MRad had insignificant effect on the polymer and microspheres properties analyzed. Conclusion Gamma irradiation is a plausible approach to provide a terminally sterilized, self-healing encapsulation PLGA excipient for vaccine delivery. PMID:23515830

  15. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. PMID:27245478

  16. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium

    PubMed Central

    Khanal, Shalil; Adhikari, Udhab; Rijal, Nava P.; Bhattarai, Shanta R.; Sankar, Jagannathan; Bhattarai, Narayan

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390–420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. PMID:27490577

  17. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  18. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth.

    PubMed

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  19. Mapping force of interaction between PLGA nanoparticle with cell membrane using optical tweezers

    NASA Astrophysics Data System (ADS)

    Chhajed, Suyash; Gu, Ling; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2011-03-01

    Drug delivery using magnetic (Fe 3 O4) Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles is finding increasing usage in therapeutic applications due to its biodegradability, biocompatibility and targeted localization. Since optical tweezers allow non-contact, highly sensitive force measurement, we utilized optical tweezers for studying interaction forces between the Fe 3 O4 -PLGA nanoparticles with prostate cancer PC3 cells. Presence of Fe 3 O4 within the PLGA shell allowed efficient trapping of these nanoparticles in near-IR optical tweezers. The conglomerated PLGA nanoparticles could be dispersed by use of the optical tweezers. Calibration of trapping stiffness as a function of laser beam power was carried out using equipartition theorem method, where the mean square displacement was measured with high precision using time-lapse fluorescence imaging of the nanoparticles. After the trapped PLGA nanoparticle was brought in close vicinity of the PC3 cell membrane, displacement of the nanoparticle from trap center was measured as a function of time. In short time scale (30 sec) , whiletheforceofinteractionwaswithin 0.2 pN , theforceincreasedbeyond 1 pNatlongertimescales (~ 10 min). We will present the results of the time-varying force of interactions between PLGA nanoparticles with PC3 cells using optical tweezers.

  20. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites.

    PubMed

    Savaiano, Jennifer K; Webster, Thomas J

    2004-01-01

    Chondrocyte (cartilage-synthesizing cells) cell density and synthesis of select intracellular proteins by chondrocytes were investigated on novel nanophase poly-lactic/glycolic acid (PLGA) and titania composites in the present in vitro study. Nanophase PLGA films were created by chemically treating conventional (or micron-structured) PLGA films with 10N NaOH for 1h. Titania particle dimensions in ceramic compacts were controlled by utilizing either conventional (i.e., micron) or nanometer grain size titania. Composites of either conventional or nanophase PLGA with either conventional or nanophase titania at 70/30wt% were also created. Compared to surfaces with a conventional or micron topography, results provided the first evidence of stagnant confluent cell densities on nanostructured surfaces at time points between 1 and 7 days. Moreover, compared to surfaces with a conventional topography, increased chondrocyte intracellular synthesis of alkaline phosphatase and chondrocyte expressed protein-68 (proteins that have been correlated with the functions of chondrocytes) were observed on nanophase PLGA/nanophase titania composites. The present study, thus, provided the first evidence of different chondrocyte responses to nanostructured PLGA/nanophase titania composites; in light of other reports demonstrating increased functions of bone cells on the same materials, such data indicates that further investigation of these materials at the bone-cartilage interface should be conducted.

  1. Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages.

    PubMed

    Hirota, Keiji; Hasegawa, Taizo; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi

    2011-10-15

    Our previous results on the phagocytic activity of alveolar macrophages (Mϕs) toward poly(lactic-co-glycolic) acid microspheres (PLGA MS) loaded with the anti-tuberculosis agent rifampicin (R-PLGA MS) suggest that the phagocytosis of R-PLGA MS enhances the phagocytic activity of Mϕ cells. To confirm this possibility, we examined the effect of phagocytosis of R-PLGA MS and polystyrene latex (PSL) MS on the phagocytic uptake of fluorescent PSL (F-PSL) MS by cells of the rat alveolar macrophage cell line NR8383 at 37°C. Phagocytic activity was examined in terms of the population of Mϕ cells that had phagocytosed MS (N(total)) and the total number of MS phagocytosed (n(total)) by counting the phagocytic Mϕ cells and the MS ingested in optical microscopic fields. Phagocytosis of R-PLGA MS enhanced about 1.5 times the values of N(total) and n(total) of the phagocytosis of F-PSL MS under the conditions where the phagocytosis of F-PSL MS did not attain the saturated level. In contrast, the phagocytosis of PSL MS did not enhance the phagocytic activity of Mϕ cells toward F-PSL MS. In conclusion, R-PLGA MS are favorable for drug delivery of anti-tuberculosis agents into alveolar Mϕs due to their ability to up-regulate the phagocytosis of MS. PMID:21700434

  2. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth

    PubMed Central

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  3. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium.

    PubMed

    Khanal, Shalil; Adhikari, Udhab; Rijal, Nava P; Bhattarai, Shanta R; Sankar, Jagannathan; Bhattarai, Narayan

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390-420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. PMID:27490577

  4. [Experimental research on the prevention of rabbit postoperative abdominal cavity adhesion with PLGA membrane].

    PubMed

    Pang, Xiubing; Pan, Yongming; Hua, Fei; Sun, Chaoying; Chen, Liang; Chen, Fangming; Zhu, Keyan; Xu, Jianqin; Chen, Minli

    2015-02-01

    The aim of this paper is to explore the prevention of rabbit postoperative abdominal cavity adhesion with poly (lactic-co-glycotic acid) (PLGA) membrane and the mechanism of this prevention function. Sixty-six Japanese white rabbits were randomly divided into normal control group, model control group and PLGA membrane group. The rabbits were treated with multifactor methods to establish the postoperative abdominal cavity adhesion models except for those in the normal control group. PLGA membrane was used to cover the wounds of rabbits in the PLGA membrane group and nothing covered the wounds of rabbits in the model control group. The hematologic parameters, liver and kidney functions and fibrinogen contents were detected at different time. The rabbit were sacrificed 1, 2, 4, 6, 12 weeks after the operations, respectively. The adhesions were graded blindly, and Masson staining and immunohistochemistry methods were used to observe the proliferation of collagen fiber and the expression of transforming growth factor β1 (TGF-β1) on the cecal tissues, respectively. The grade of abdominal cavity adhesion showed that the PLGA membrane-treated group was significant lower than that in the model control group, and it has no influence on liver and kidney function and hematologic parameters. But the fibrinogen content and the number of white blood cell in the PLGA membrane group were significant lower than those of model control group 1 week and 2 weeks after operation, respectively. The density of collagen fiber and optical density of TGF-β1 in the PLGA membrane group were significant lower than those of model control group. The results demonstrated that PLGA membrane could be effective in preventing the abdominal adhesions in rabbits, and it was mostly involved in the reducing of fibrinogen exudation, and inhibited the proliferation of collagen fiber and over-expression of TGF-β1.

  5. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior

    PubMed Central

    Yao, Shenglian; Liu, Huiying; Yu, Shukui; Li, Yuanyuan; Wang, Xiumei; Wang, Luning

    2016-01-01

    The development of modern therapeutics has raised the requirement for controlled drug delivery system which is able to efficiently encapsulate bioactive agents and achieve their release at a desired rate satisfying the need of the practical system. In this study, two kind of aqueous model drugs with different molecule weight, Congo red and albumin from bovine serum (BSA) were nano-encapsulated in poly (dl-lactic-co-glycolic acid) (PLGA) microspheres by emulsion electrospray. In the preparation process, the aqueous phase of drugs was added into the PLGA chloroform solution to form the emulsion solution. The emulsion was then electrosprayed to fabricate drug-nanoencapsulated PLGA microspheres. The morphology of the PLGA microspheres was affected by the volume ratio of aqueous drug phase and organic PLGA phase (Vw/Vo) and the molecule weight of model drugs. Confocal laser scanning microcopy showed the nanodroplets of drug phase were scattered in the PLGA microspheres homogenously with different distribution patterns related to Vw/Vo. With the increase of the volume ratio of aqueous drug phase, the number of nanodroplets increased forming continuous phase gradually that could accelerate drug release rate. Moreover, BSA showed a slower release rate from PLGA microspheres comparing to Congo red, which indicated the drug release rate could be affected by not only Vw/Vo but also the molecule weight of model drug. In brief, the PLGA microspheres prepared using emulsion electrospray provided an efficient and simple system to achieve controlled drug release at a desired rate satisfying the need of the practices.

  6. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer. PMID:25937384

  7. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior

    PubMed Central

    Yao, Shenglian; Liu, Huiying; Yu, Shukui; Li, Yuanyuan; Wang, Xiumei; Wang, Luning

    2016-01-01

    The development of modern therapeutics has raised the requirement for controlled drug delivery system which is able to efficiently encapsulate bioactive agents and achieve their release at a desired rate satisfying the need of the practical system. In this study, two kind of aqueous model drugs with different molecule weight, Congo red and albumin from bovine serum (BSA) were nano-encapsulated in poly (dl-lactic-co-glycolic acid) (PLGA) microspheres by emulsion electrospray. In the preparation process, the aqueous phase of drugs was added into the PLGA chloroform solution to form the emulsion solution. The emulsion was then electrosprayed to fabricate drug-nanoencapsulated PLGA microspheres. The morphology of the PLGA microspheres was affected by the volume ratio of aqueous drug phase and organic PLGA phase (Vw/Vo) and the molecule weight of model drugs. Confocal laser scanning microcopy showed the nanodroplets of drug phase were scattered in the PLGA microspheres homogenously with different distribution patterns related to Vw/Vo. With the increase of the volume ratio of aqueous drug phase, the number of nanodroplets increased forming continuous phase gradually that could accelerate drug release rate. Moreover, BSA showed a slower release rate from PLGA microspheres comparing to Congo red, which indicated the drug release rate could be affected by not only Vw/Vo but also the molecule weight of model drug. In brief, the PLGA microspheres prepared using emulsion electrospray provided an efficient and simple system to achieve controlled drug release at a desired rate satisfying the need of the practices. PMID:27699061

  8. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint.

  9. In vitro drug release behavior, mechanism and antimicrobial activity of rifampicin loaded low molecular weight PLGA-PEG-PLGA triblock copolymeric nanospheres.

    PubMed

    Gajendiran, M; Divakar, S; Raaman, N; Balasubramanian, S

    2013-12-01

    Poly (lactic-co-glycolic acid) (PLGA (92:8)) and a series of PLGA-PEG-PLGA tri block copolymers were synthesized by direct melt polycondensation. The copolymers were characterized by FTIR, and 1HNMR spectroscopic techniques, viscosity, gel permeation chromatography (GPC) and powder x-ray diffraction (XRD). The rifampicin (RIF) loaded polymeric nanospheres (NPs) were prepared by ultrasonication-W/O emulsification technique. The NPs have been characterized by field emission scanning electron microscopy (FESEM), TEM, powder X-ray diffraction (XRD), UVvisible spectroscopy and DLS measurements. The drug loaded triblock copolymeric NPs have five folds higher drug content and drug loading efficiency than that of PLGA microspheres (MPs). The in vitro drug release study shows that the drug loaded NPs showed an initial burst release after that sustained release up to 72 h. All the triblock copolymeric NPs follow anomalous drug diffusion mechanism while the PLGA MPs follow non-Fickian super case-II mechanism up to 12 h. The overall in-vitro release follows second order polynomial kinetics up to 72 h. The antimicrobial activity of the RIF loaded polymer NPs was compared with that of pure RIF and tetracycline (TA). The RIF loaded triblock copolymeric NPs inhibited the bacterial growth more effectively than the pure RIF and TA.

  10. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading.

    PubMed

    Han, Felicity Y; Thurecht, Kristofer J; Whittaker, Andrew K; Smith, Maree T

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  11. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading

    PubMed Central

    Han, Felicity Y.; Thurecht, Kristofer J.; Whittaker, Andrew K.; Smith, Maree T.

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  12. Heuristic modeling of macromolecule release from PLGA microspheres

    PubMed Central

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model. PMID:24348037

  13. Heuristic modeling of macromolecule release from PLGA microspheres.

    PubMed

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model.

  14. Impact of PEG and PEG-b-PAGE modified PLGA on nanoparticle formation, protein loading and release.

    PubMed

    Rietscher, René; Czaplewska, Justyna A; Majdanski, Tobias C; Gottschaldt, Michael; Schubert, Ulrich S; Schneider, Marc; Lehr, Claus-Michael

    2016-03-16

    The effect of modifying the well-established pharmaceutical polymer PLGA by different PEG-containing block-copolymers on the preparation of ovalbumin (OVA) loaded PLGA nanoparticles (NPs) was studied. The used polymers contained poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG) and poly(allyl glycidyl ether) (PAGE) as building blocks. The double emulsion technique yielded spherical NPs in the size range from 170 to 220 nm (PDI<0.15) for all the differently modified polymers, allowing to directly compare protein loading of and release. PEGylation is usually believed to increase the hydrophilic character of produced particles, favoring encapsulation of hydrophilic substances. However, in this study simple PEGylation of PLGA had only a slight effect on protein release. In contrast, incorporating a PAGE block between the PEG and PLGA units, also eventually enabling active targeting introducing a reactive group, led to a significantly higher loading (+25%) and release rate (+100%), compared to PLGA and PEG-b-PLGA NPs. PMID:26784983

  15. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation.

    PubMed

    Li, Ching-Wen; Pan, Wei-Ting; Ju, Jyh-Cherng; Wang, Gou-Jen

    2016-04-01

    In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation. PMID:27068738

  16. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    PubMed

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned.

  17. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  18. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.

    PubMed

    Wei, Zengjiang; Wang, Chaoyang; Liu, Hao; Zou, Shengwen; Tong, Zhen

    2012-03-01

    This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells. PMID:22088755

  19. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.

    PubMed

    Wei, Zengjiang; Wang, Chaoyang; Liu, Hao; Zou, Shengwen; Tong, Zhen

    2012-03-01

    This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells.

  20. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake. PMID:27049049

  1. PLGA, PLGA-TMC and TMC-TPP Nanoparticles Differentially Modulate the Outcome of Nasal Vaccination by Inducing Tolerance or Enhancing Humoral Immunity

    PubMed Central

    Keijzer, Chantal; Slütter, Bram; van der Zee, Ruurd; Jiskoot, Wim; van Eden, Willem; Broere, Femke

    2011-01-01

    Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4+ T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4+ T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases. PMID:22073184

  2. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity.

    PubMed

    Keijzer, Chantal; Slütter, Bram; van der Zee, Ruurd; Jiskoot, Wim; van Eden, Willem; Broere, Femke

    2011-01-01

    Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4(+) T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4(+) T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases.

  3. Antibacterial activity of clarithromycin loaded PLGA nanoparticles.

    PubMed

    Valizadeh, H; Mohammadi, G; Ehyaei, R; Milani, M; Azhdarzadeh, M; Zakeri-Milani, P; Lotfipour, F

    2012-01-01

    Novel drug delivery systems such as nanoparticles (NPs) have been proved to enhance the effectiveness of many drugs. Clarithromycin is a broad spectrum macrolide antibiotic, used in many infectious conditions like upper and lower respiratory tract infections, and skin and other soft tissue infections. This paper describes the preparation and enhanced in vitro antibacterial activities of clarithromycin loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles. A modified quasi-emulsion solvent diffusion (MQESD) method was used to prepare clarithromycin (CLR) NPs. The antibacterial activity of the NPs was evaluated using the agar well diffusion method against Escherichia coli (PTCC 1330), Haemophilus influenzae (PTCC 1623), Salmonella typhi (PTCC 1609), Staphylococcus aureus (PTCC 1112) and Streptococcus pneumoniae (PTCC 1240). The inhibition zone diameters related to each nano formulation were compared with those for untreated CLR at the same concentrations. The results indicated that the mean inhibition zone diameters of NPs against all the bacteria tested were significantly higher than those of untreated CLR, particularly in the case of S. aureus. The increased potency of CLR NPs may be related to some physicochemical properties of NPs like modified surface characteristics, lower drug degradation, and increased drug adsorption and uptake.

  4. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  5. Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

    PubMed Central

    Amjadi, Issa; Rabiee, Mohammad; Hosseini, Motahare-Sadat

    2013-01-01

    Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio and doxorubicin amounts have been tailored. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to identify the presence of doxorubicin within nanospheres. The in vitro release studies were performed to determine the initial ant net release rates over 24 h and 20 days, respectively. Furthermore, cytotoxicity assay was measured to evaluate therapeutic potency of doxorubicin-loaded nanoparticles. Spectroscopy and thermal results showed that doxorubicin was loaded into the particles successfully. It was observed that lactide/glycolide content of PLGA nanoparticles containing doxorubicin has more prominent role in tuning particle characteristics. Doxorubicin release profiles from PLGA 75 nanospheres demonstrated that the cumulative release rate increased slightly and higher initial burst was detected in comparison to PLGA 50 nanoparticles. MTT data revealed doxorubicin induced antitumor activity was enhanced by encapsulation process, and increasing drug loading and glycolide portion. The results led to the conclusion that by controlling the drug loading and the polymer hydrophilicity, we can adjust the drug targeting and blood clearance, which may play a more prominent role for application in chemotherapy. PMID:24523742

  6. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  7. Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds.

    PubMed

    Rediguieri, Carolina Fracalossi; Pinto, Terezinha de Jesus Andreoli; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; Pedrosa, Tatiana do Nascimento; Maria-Engler, Silvya Stuchi; De Bank, Paul A

    2016-04-01

    The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects. PMID:26757850

  8. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  9. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  10. Hollow superparamagnetic PLGA/Fe 3O 4 composite microspheres for lysozyme adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-01

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g-1) and high efficiency in lysozyme adsorption.

  11. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption.

    PubMed

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-28

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe(3)O(4) composite microspheres composed of an inner cavity, PLGA inner shell and Fe(3)O(4) outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe(3)O(4) nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g(-1)) and high efficiency in lysozyme adsorption. PMID:24492410

  12. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-01

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.

  13. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-01

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response. PMID:26752261

  14. Recombinant human bone morphogenetic protein-2 binding and incorporation in PLGA microsphere delivery systems.

    PubMed

    Schrier, J A; DeLuca, P P

    1999-01-01

    The objective of this research was to determine the binding capacity and kinetics, and total incorporation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in microspheres made from hydrophilic and hydrophobic poly(lactide-co-glycolide) (PLGA). Polymers were characterized by molecular weight, polydispersity, and acid number. Microspheres were produced via a water-in-oil-in-water double emulsion system and characterized for bulk density, size, specific surface area, and porosity. Protein concentrations were determined by reversed phase HPLC. Protein was loaded by soaking microspheres in a buffered solution, pH 4.5, of rhBMP-2, decanting excess liquid, and vacuum drying the wetted particles. Total loading and binding were determined by comparing protein concentration remaining to non-microsphere containing samples. Polymer acid number was the dominant polymer feature affecting the binding. Higher acid values correlated with increased rhBMP-2 binding. The amount of non-bound incorporated rhBMP-2 linearly correlated with the concentration of protein used in binding. High rhBMP-2 concentrations inhibit binding to PLGA microspheres. Binding was also inhibited by increased lactide content in the PLGA polymer. The polymer characteristics controlling rhBMP-2 binding to PLGA microspheres are acid value foremost followed by molecular weight and lactide/glycolide ratio. The total amount of rhBMP-2 incorporated depends on the bound amount and on the amount of free protein present.

  15. Effects of Microemulsion Preparation Conditions on Drug Encapsulation Efficiency of PLGA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ng, Set Hui; Ooi, Ing Hong

    2011-12-01

    Emulsion solvent evaporation technique is widely used to prepare nanoparticles of many organic polymer drug carriers. The mechanism of nanoparticle generation by this technique involves oil-in-water (O/W) microemulsion formation followed by solvent evaporation. Various microemulsion preparation conditions can affect the encapsulation efficiency of drug in the nanoparticulate carrier. In this study, emulsifying speed, emulsifying temperature, and organic-to-aqueous phase ratio were varied and the resulting encapsulation efficiency of a model drug in Poly(Lactide-co-Glycolide) (PLGA) nanoparticles was determined. The organic phase containing PLGA and a model drug dissolved in chloroform was first dispersed in an aqueous solution containing 0.5 %(w/v) Poly(vinyl alcohol) (PVA), which was then homogenized at high speeds. The resulting O/W microemulsion was subsequently subjected to stirring at room temperature for four hours during which the solvent diffused and evaporated gradually. The fine white suspension was centrifuged and freeze-dried. The model drug loading in the PLGA nanoparticles was determined using UV spectrophotometry. Results showed that the encapsulation efficiency of a model drug, salicylic acid, ranged from 8.5% to 17% depending on the microemulsion preparation conditions. Under the same temperature (15 °C) and homogenization speed (19000 rpm) conditions studied, a relatively high organic-to-aqueous phase ratio (1:5) provided salicylic acid loaded PLGA nanoparticles with significantly higher drug encapsulation efficiency. In addition, under all microemulsion preparation conditions, PLGA nanoparticles obtained after solvent evaporation and freeze drying were spherical and aggregation between the nanoparticles was not observed under a high power microscope. This indicates that PLGA nanoparticles with desirable amount of drug and with anticipated size and shape can be realized by controlling emulsification process conditions.

  16. [Development of gene delivery system using PLGA nanospheres].

    PubMed

    Tahara, Kohei; Yamamoto, Hiromitsu; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2007-10-01

    The development of nonviral vectors for the efficient and safe delivery to cells has long been awaited to facilitate gene therapy. Recently, many nonviral vectors modified with cationic lipids, cationic polymers, etc. have been reported. However, those nonviral vectors with cationic materials require improved stability, longer duration of gene expression, and reduced cytotoxicity. We successfully prepared mucoadhesive poly (lactide-co-glycolide) nanospheres (PLGA NS) by modifying the nanoparticulate surface with chitosan to improve mucosal peptide absorption after oral and pulmonary administration. Furthermore, we found that nucleic acid, which was not dispersed in the organic solvent, could be dispersed by forming a complex with cationic lipid. Using this phenomenon, polynucleic acids for gene therapy (plasmid DNA, antisense oligonucleotide, small interfering RNA, etc.) can be encapsulated into the matrix of the polymer particles with the emulsion solvent diffusion method. The advantages of this preparation method are its simple process and avoidance of an ultrasonication process for submicronization of particles. The resultant nanospheres show better cellular uptake and different gene therapeutic effects compared with conventional vectors due to their improved adherence to cells and sustained release of polynucleic acid in the cells. In conclusion, chitosan-coated PLGA NS can possibly be applied in nonviral vectors for gene therapy.

  17. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.

    PubMed

    Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

    2013-11-01

    Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. PMID:23816650

  18. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method.

    PubMed

    Choi, Seung Ho; Park, Tae Gwan

    2006-03-27

    A new formulation method was developed for preparing poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with recombinant human granulocyte colony-stimulating factor (rhG-CSF). Lyophilized rhG-CSF powder and PLGA polymer were directly co-dissolved in a single organic phase, and the resulting solution was dispersed into an aqueous solution. PLGA nanoparticles encapsulating rhG-CSF were produced by a spontaneous emulsion/solvent diffusion method. In this manner, rhG-CSF was molecularly dissolved in the polymer phase. Release profile of rhG-CSF from PLGA nanoparticles was compared with those from two kinds of PLGA microparticles which were separately prepared by either single oil-in-water (O/W) or double water-in-oil-in-water (W/O/W) emulsion technique. The sizes of rhG-CSF loaded nanoparticles, O/W microparticles, and W/O/W microparticles were about 257 nm, 4.7 microm, and 4.3 microm, respectively. For rhG-CSF nanoparticles, about 90% of encapsulated rhG-CSF was released out in a sustained manner from PLGA nanoparticles over a 1 week period, but for rhG-CSF microparticles, only about 20% of rhG-CSF could be released out during the same period. Reversed phase and size exclusion chromatograms revealed that the structural integrity of released rhG-CSF from nanoparticles was nearly intact, compared to that of native rhG-CSF.

  19. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model

    PubMed Central

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  20. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.

    PubMed

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  1. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells.

    PubMed

    Frasco, Manuela F; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria do Carmo; Coelho, Manuel A N

    2015-04-01

    The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs. PMID:25046528

  2. Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect

    PubMed Central

    Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip

    2015-01-01

    Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262

  3. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  4. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma

    PubMed Central

    Xiao, Xiaojun; Zeng, Xiaowei; Zhang, Xinxin; Ma, Li; Liu, Xiaoyu; Yu, Haiqiong; Mei, Lin; Liu, Zhigang

    2013-01-01

    Background Pollen allergy is the most common allergic disease. However, tropical pollens, such as those of Palmae, have seldom been investigated compared with the specific immunotherapy studies done on hyperallergenic birch, olive, and ragweed pollens. Although poly(lactic-co-glycolic acid) (PLGA) has been extensively applied as a biodegradable polymer in medical devices, it has rarely been utilized as a vaccine adjuvant to prevent and treat allergic disease. In this study, we investigated the immunotherapeutic effects of recombinant Caryota mitis profilin (rCmP)-loaded PLGA nanoparticles and the underlying mechanisms involved. Methods A mouse model of allergenic asthma was established for specific immunotherapy using rCmP-loaded PLGA nanoparticles as the adjuvant. The model was evaluated by determining airway hyperresponsiveness and levels of serum-specific antibodies (IgE, IgG, and IgG2a) and cytokines, and observing histologic sections of lung tissue. Results The rCmP-loaded PLGA nanoparticles effectively inhibited generation of specific IgE and secretion of the Th2 cytokine interleukin-4, facilitated generation of specific IgG2a and secretion of the Th1 cytokine interferon-gamma, converted the Th2 response to Th1, and evidently alleviated allergic symptoms. Conclusion PLGA functions more appropriately as a specific immunotherapy adjuvant for allergen vaccines than does conventional Al(OH)3 due to its superior efficacy, longer potency, and markedly fewer side effects. The rCmP-loaded PLGA nanoparticles developed herein offer a promising avenue for specific immunotherapy in allergic asthma. PMID:24376349

  5. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration.

    PubMed

    Zhang, Ershuai; Zhu, Chuanshun; Yang, Jun; Sun, Hong; Zhang, Xiaomin; Li, Suhua; Wang, Yonglan; Sun, Lu; Yao, Fanglian

    2016-01-01

    With the aim to explore a membrane system with appropriate degradation rate and excellent cell-occlusiveness for guided tissue regeneration (GTR), a series of poly(D, L-lactic acid) (PDLLA)/poly(D, L-lactic-co-glycolic acid) (PLGA) (100/0, 70/30, 50/50, 30/70, 0/100, w/w) composite membranes were fabricated via electrospinning. The fabricated membranes were evaluated by morphological characterization, water contact angle measurement and tensile test. In vitro degradation was characterized in terms of the weight loss and the morphological change. Moreover, in vitro cytologic research revealed that PDLLA/PLGA composite membranes could efficiently inhibit the infiltration of 293 T cells. Finally, subcutaneous implant test on SD rat in vivo showed that PDLLA/PLGA (70/30, 50/50) composite membranes could function well as a physical barrier to prevent cellular infiltration within 13 weeks. These results suggested that electrospun PDLLA/PLGA (50/50) composite membranes could serve as a promising barrier membrane for guided tissue regeneration due to suitable biodegradability, preferable mechanical properties and excellent cellular shielding effects. PMID:26478312

  6. Designed Stem Cell Aggregates: Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles (Adv. Healthcare Mater. 15/2016).

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    E-cadherin-modified poly(lactic-co-glycolic acid) (hE-cad-PLGA) microparticles were fabricated and then mediated the 3D cell aggregates of human mesenchymal stem cells (MSCs) on page 1949 by Jun Yang and co-workers. The hE-cad-Fc matrix and the PLGA microparticles synergistically regulate the proliferation and bioactive factors secretions of MSCs by activating EGFR, AKT and ERK1/2 signaling pathways. The hE-cad-PLGA microparticles offer a novel route to expand multipotent stem cell-based clinical applications. PMID:27511954

  7. Peptide/protein vaccine delivery system based on PLGA particles

    PubMed Central

    Allahyari, Mojgan; Mohit, Elham

    2016-01-01

    abstract Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  8. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits

    PubMed Central

    Ye, Zhuo; Ji, Yan-Li; Ma, Xiang; Wen, Jian-Guo; Wei, Wei; Huang, Shu-Man

    2015-01-01

    AIM To investigate the pharmacokinetics and distributions of bevacizumab by intravitreal injection of prepared bevacizumab-poly (L-lactic-co-glycolic acid) (PLGA) microspheres in rabbits, to provide evidence for clinical application of this kind of bevacizumab sustained release dosage form. METHODS Bevacizumab was encapsulated into PLGA microsphere via the solid-in-oil-in-hydrophilic oil (S/O/hO) method. Fifteen healthy New Zealand albino-rabbits were used in experiments. The eyes of each rabbit received an intravitreal injection. The left eyes were injected with prepared bevacizumab-PLGA microspheres and the right eyes were injected with bevacizumab solution. After intravitreal injection, rabbits were randomly selected at days 3, 7, 14, 28 and 42 respectively, three animals each day. Then we used immunofluorescence staining to observe the distribution and duration of bevacizumab in rabbit eye tissues, and used the sandwich ELISA to quantify the concentration of free bevacizumab from the rabbit aqueous humor and vitreous after intravitreal injection. RESULTS The results show that the concentration of bevacizumab in vitreous and aqueous humor after administration of PLGA formulation was higher than that of bevacizumab solution. The T1/2 of intravitreal injection of bevacizumab-PLGA microspheres is 9.6d in vitreous and 10.2d in aqueous humor, and the T1/2 of intravitreal injection of soluble bevacizumab is 3.91d in vitreous and 4.1d in aqueous humor. There were statistical significant difference for comparison the results of the bevacizumab in vitreous and aqueous humor between the left and right eyes (P<0.05). The AUC0-t of the sustained release dosage form was 1-fold higher than that of the soluble form. The relative bioavailability was raised significantly. The immunofluorescence staining of PLGA-encapsulated bevacizumab (b-PLGA) in rabbit eye tissues was still observed up to 42d. It was longer than that of the soluble form. CONCLUSION The result of this study

  9. Novel insights into appropriate encapsulation methods for bioactive compounds into polymers: a study with peptides and HDAC inhibitors.

    PubMed

    Hennig, Dorle; Schubert, Stephanie; Dargatz, Harald; Kostenis, Evi; Fahr, Alfred; Schubert, Ulrich S; Heinzel, Thorsten; Imhof, Diana

    2014-01-01

    The use of different nanoparticles (NPs) for successful encapsulation of bioactive substances is discussed. The inclusion efficiency into liposomes, acetalated dextran (Ac-Dex), and variants of poly[(lactic acid)-co-(glycolic acid)] (PLGA) NPs is analyzed after chemical degradation. Efficient inclusion of SIRT1 inhibitor Ex527 in liposomes, Ac-Dex- and PLGA-NPs is observed for all procedures used. Activity of Ex527 is demonstrated by monitoring the acetylation status of SIRT1-target p53. In contrast, small peptides are only incorporated into acid-terminated PLGA-NPs and marginally into Ac-Dex-NPs. The yield depends on peptide sequence and terminal modifications. Activity is exemplified for angiotensin II using the dynamic mass redistribution technology.

  10. Galactose decorated PLGA nanoparticles for hepatic delivery of acyclovir.

    PubMed

    Gupta, Swati; Agarwal, Abhinav; Gupta, Nishant Kumar; Saraogi, Gauravkant; Agrawal, Himanshu; Agrawal, G P

    2013-12-01

    The present study explores prospective of surface tailored nanoparticles for targeted delivery of acyclovir along with the interception of minimal side effects. Acyclovir loaded plain and galactosylated poly lectic co glycolic acid (PLGA) nanoparticles were efficiently prepared and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), size, polydispersity index, zeta potential, and entrapment efficiency. The formulations were evaluated for in vitro drug release and hemolysis. Further, biodistribution study and fluorescent microscopic studies were carried out to determine the targeting potential of formulations. SEM revealed smooth morphology and spherical shape of the nanoparticles. In vitro, the galactosylated nanoparticles were found to be least hemolytic and exhibited a sustained release pattern. In vivo studies exhibited an augmented bioavailability, increased residence time and enhanced delivery of acyclovir to the liver upon galactosylation. It may therefore be concluded that galactose conjugated PLGA nanoparticles can be used suitably as vehicles for delivery of bioactives specifically to the hepatic tissues and may be thus exploited in the effective management of various liver disorders.

  11. Composite PLGA/AgNpPGA/AscH nanospheres with combined osteoinductive, antioxidative, and antimicrobial activities.

    PubMed

    Stevanović, Magdalena; Uskoković, Vuk; Filipović, Miloš; Škapin, Srečo D; Uskoković, Dragan

    2013-09-25

    The global rise in the resistance of pathogens to conventional antibiotics has created an intensive search for alternative materials with antimicrobial properties. This study is performed with an intention to investigate the combined effects of poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) and ascorbic acid (AscH) encapsulated within freeze-dried poly(lactide-co-glycolide) (PLGA) nanospheres to obtain a nanomaterial with simultaneous osteoinductive, antioxidative, and prolonged antimicrobial properties. The influence of PLGA/AgNpPGA/AscH particles on (i) viability and superoxide production of human umbilical vein endothelial cells in vitro, (ii) morphology and expression of osteogenic markers in osteoblastic MC3T3-E1 cells in vitro, and (iii) antimicrobial activity against a Gram-positive bacterium, methicillin-resistant Staphylococcus aureus, and a Gram-negative bacterium, Escherichia coli, was investigated. PLGA/AgNpPGA/AscH nanoparticles showed a superior and extended antibacterial activity against both types of bacteria. The nanoparticles appeared to be capable of delivering ascorbate to the cells, which was evidenced by the significant decrease in the level of superoxides in human umbilical vein endothelial cells and which could have a therapeutic potential in preventing oxidative stress. PLGA/AgNpPGA/AscH nanoparticles had a positive effect on MC3T3-E1 osteoblastic cells in vitro, promoting: (i) an intimate contact with the cells and preservation of their healthy morphologies; (ii) unreduced cell viability; and (iii) multiple-fold upregulation of two osteogenic markers: osteocalcin and type I procollagen. It is concluded that PLGA/AgNpPGA/AscH nanospheres present a promising new material for the treatment of infections and use in wound dressings and other prophylactic applications.

  12. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery.

    PubMed

    Rauta, Pradipta Ranjan; Das, Niladri Mohan; Nayak, Debasis; Ashe, Sarbani; Nayak, Bismita

    2016-08-01

    Clindamycin hydrochloride (CLH) is a clinically important oral antibiotic with wide spectrum of antimicrobial activity that includes gram-positive aerobes (staphylococci, streptococci etc.), most anaerobic bacteria, Chlamydia and certain protozoa. The current study was focused to develop a stabilised clindamycin encapsulated poly lactic acid (PLA)/poly (D,L-lactide-co-glycolide) (PLGA) nano-formulation with better drug bioavailability at molecular level. Various nanoparticle (NPs) formulations of PLA and PLGA loaded with CLH were prepared by solvent evaporation method varying drug: polymer concentration (1:20, 1:10 and 1:5) and characterised (size, encapsulation efficiency, drug loading, scanning electron microscope, differential scanning calorimetry [DSC] and Fourier transform infrared [FTIR] studies). The ratio 1:10 was found to be optimal for a monodispersed and stable nano formulation for both the polymers. NP formulations demonstrated a significant controlled release profile extended up to 144 h (both CLH-PLA and CLH-PLGA). The thermal behaviour (DSC) studies confirmed the molecular dispersion of the drug within the system. The FTIR studies revealed the intactness as well as unaltered structure of drug. The CLH-PLA NPs showed enhanced antimicrobial activity against two pathogenic bacteria Streptococcus faecalis and Bacillus cereus. The results notably suggest that encapsulation of CLH into PLA/PLGA significantly increases the bioavailability of the drug and due to this enhanced drug activity; it can be widely applied for number of therapies. PMID:27463797

  13. PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens.

    PubMed

    Gilert, Ariel; Baruch, Limor; Bronshtein, Tomer; Machluf, Marcelle

    2016-04-01

    Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system's humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.

  14. Development and optimization of quercetin-loaded PLGA nanoparticles by experimental design

    PubMed Central

    TEFAS, LUCIA RUXANDRA; TOMUŢĂ, IOAN; ACHIM, MARCELA; VLASE, LAURIAN

    2015-01-01

    Background and aims Quercetin is a flavonoid with good antioxidant activity, and exhibits various important pharmacological effects. The aim of the present work was to study the influence of formulation factors on the physicochemical properties of quercetin-loaded polymeric nanoparticles in order to optimize the formulation. Materials and methods The nanoparticles were prepared by the nanoprecipitation method. A 3-factor, 3-level Box-Behnken design was employed in this study considering poly(D,L-lactic-co-glycolic) acid (PLGA) concentration, polyvinyl alcohol (PVA) concentration and the stirring speed as independent variables. The responses were particle size, polydispersity index, zeta potential and encapsulation efficiency. Results The PLGA concentration seemed to be the most important factor influencing quercetin-nanoparticle characteristics. Increasing PLGA concentration led to an increase in particle size, as well as encapsulation efficiency. On the other hand, it exhibited a negative influence on the polydispersity index and zeta potential. The PVA concentration and the stirring speed had only a slight influence on particle size and polydispersity index. However, PVA concentration had an important negative effect on the encapsulation efficiency. Based on the results obtained, an optimized formulation was prepared, and the experimental values were comparable to the predicted ones. Conclusions The overall results indicated that PLGA concentration was the main factor influencing particle size, while entrapment efficiency was predominantly affected by the PVA concentration. PMID:26528074

  15. Study of Antimicrobial Effects of Clarithromycin Loaded PLGA Nanoparticles against Clinical Strains of Helicobacter pylori.

    PubMed

    Lotfipour, F; Valizadeh, H; Milani, M; Bahrami, N; Ghotaslou, R

    2016-01-01

    Clarithromycin (CLR) formulation was prepared as PLGA nanoparticles in order to enhance the therapeutic effects using the distinctive features of a nanoparticulate delivery system. CLR loaded PLGA nanoparticles were prepared by Quasi Emulsion Solvent Diffusion (QESD) method using Poly lactic-co-Glycolic Acid (PLGA) as a biodegradable polymer. Antibacterial activity of the prepared formulations was evaluated against clinical strains of Helicobacter pylori, isolated from gastric biopsies of patients with gastritis, duodenal ulcer, peptic ulcer, and gastroesophageal reflux disease undergoing endoscopy, by using agar dilution method.Spherical nanoparticles with relatively narrow size distribution (between 200 and 800 nm) in the size range of 305 ± 138, 344 ± 148 and 362 ± 110 nm were achieved for F22, F23 and F23 respectively. CLR encapsulation percentages were measured to be 57.4 ± 4.3 to 80.2 ± 4.0%. CLR loaded PLGA nanoparticles showed equal or enhanced eradication effect against H. pylori strains according to the declined MIC values in comparison with the untreated CLR.In conclusion, the prepared CLR nanoformulation showed appropriate physicochemical properties and improved activity against H. pylori that could be a suitable candidate for oral preparations.

  16. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery.

    PubMed

    Rauta, Pradipta Ranjan; Das, Niladri Mohan; Nayak, Debasis; Ashe, Sarbani; Nayak, Bismita

    2016-08-01

    Clindamycin hydrochloride (CLH) is a clinically important oral antibiotic with wide spectrum of antimicrobial activity that includes gram-positive aerobes (staphylococci, streptococci etc.), most anaerobic bacteria, Chlamydia and certain protozoa. The current study was focused to develop a stabilised clindamycin encapsulated poly lactic acid (PLA)/poly (D,L-lactide-co-glycolide) (PLGA) nano-formulation with better drug bioavailability at molecular level. Various nanoparticle (NPs) formulations of PLA and PLGA loaded with CLH were prepared by solvent evaporation method varying drug: polymer concentration (1:20, 1:10 and 1:5) and characterised (size, encapsulation efficiency, drug loading, scanning electron microscope, differential scanning calorimetry [DSC] and Fourier transform infrared [FTIR] studies). The ratio 1:10 was found to be optimal for a monodispersed and stable nano formulation for both the polymers. NP formulations demonstrated a significant controlled release profile extended up to 144 h (both CLH-PLA and CLH-PLGA). The thermal behaviour (DSC) studies confirmed the molecular dispersion of the drug within the system. The FTIR studies revealed the intactness as well as unaltered structure of drug. The CLH-PLA NPs showed enhanced antimicrobial activity against two pathogenic bacteria Streptococcus faecalis and Bacillus cereus. The results notably suggest that encapsulation of CLH into PLA/PLGA significantly increases the bioavailability of the drug and due to this enhanced drug activity; it can be widely applied for number of therapies.

  17. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Zamani, M; Prabhakaran, M P; Bahrami, S Hajir; Ramakrishna, S

    2016-01-01

    Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core-shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core-shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases. PMID:26478340

  18. Functionalized PLGA-doped zirconium oxide ceramics for bone tissue regeneration.

    PubMed

    Lupu-Haber, Yael; Pinkas, Oded; Boehm, Stefanie; Scheper, Thomas; Kasper, Cornelia; Machluf, Marcelle

    2013-12-01

    Bone tissue engineering is an alternative approach to bone grafts. In our study we aim to develop a composite scaffold for bone regeneration made of doped zirconium oxide (ZrO2) conjugated with poly(lactic-co-glycolic acid) (PLGA) particles for the delivery of growth factors. In this composite, the PLGA microspheres are designed to release a crucial growth factor for bone formation, bone morphogenetic protein-2 (BMP2). We found that by changing the polymer's molecular weight and composition, we could control microsphere loading, release and size. The BMP2 released from PLGA microspheres retained its biological activity and increased osteoblastic marker expression in human mesenchymal stem cells (hMSCs). Uncapped PLGA microspheres were conjugated to ZrO2 scaffolds using carbodiimide chemistry, and the composite scaffold was shown to support hMSCs growth. We also demonstrated that human umbilical vein endothelial cells (HUVECs) can be co-cultured with hMSCs on the ZrO2 scaffold for future vascularization of the scaffold. The ZrO2 composite scaffold could serve as a bone substitute for bone grafting applications with the added ability of releasing different growth factors needed for bone regeneration.

  19. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use.

    PubMed

    Ricci-Júnior, Eduardo; Marchetti, Juliana Maldonado

    2006-03-01

    Sophisticated delivery systems, such as nanoparticles, represent a growing area in biomedical research. Nanoparticles (Np) were prepared using a solvent emulsion evaporation method (SEEM) to load zinc(II) phthalocyanine (ZnPc). Np were obtained using poly (D,L latic-co-glycolic acid) (PLGA). ZnPc is a second generation of photoactive agents used in photodynamic therapy. ZnPc loaded PLGA nanoparticles were prepared by SEEM, characterized and available in cellular culture. The process yield and encapsulation efficiency were 80 and 70%, respectively. The nanoparticles have a mean diameter of 285 nm, a narrow size distribution with polydispersive index of 0.12, smooth surface and spherical shape. ZnPc loaded nanoparticles maintains its photophysical behavior after encapsulation. Photosensitizer release from nanoparticles was sustained with a moderate and burst effect of 15% for 3 days. The photocytotoxicity of ZnPc loaded PLGA Np was evaluated on P388-D1 cells what were incubated with ZnPc loaded Np (5 microM) by 6h and exposed to red light (675 nm) for 120 s, and light dose of 30 J/cm(2). After 24h of incubation, the cellular viability was determined, obtaining 61% of cellular death. All the physical-chemical, photophysical and photobiological measurements performed allow us conclude that ZnPc loaded PLGA nanoparticles is a promising drug delivery system for photodynamic therapy.

  20. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Zamani, M; Prabhakaran, M P; Bahrami, S Hajir; Ramakrishna, S

    2016-01-01

    Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core-shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core-shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases.

  1. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications.

    PubMed

    Park, Jung Kyu; Yeom, Junseok; Oh, Eun Ju; Reddy, Mallikarjuna; Kim, Jong Young; Cho, Dong-Woo; Lim, Hyun Pil; Kim, Nam Sook; Park, Sang Won; Shin, Hong-In; Yang, Dong Jun; Park, Kwang Bum; Hahn, Sei Kwang

    2009-11-01

    A novel protocol for the synthesis of biocompatible and degradation controlled poly(lactic-co-glycolic acid) grafted hyaluronic acid (HA-PLGA) was successfully developed for periodontal barrier applications. HA was chemically modified with adipic acid dihydrazide (ADH) in the mixed solvent of water and ethanol, which resulted in a high degree of HA modification up to 85 mol.%. The stability of HA-ADH to enzymatic degradation by hyaluronidase increased with ADH content in HA-ADH. When the ADH content in HA-ADH was higher than 80 mol.%, HA-ADH became soluble in dimethyl sulfoxide and could be grafted to the activated PLGA with N,N'-dicyclohexyl carbodiimide and N-hydroxysuccinimide. The resulting HA-PLGA was used for the preparation of biphasic periodontal barrier membranes in chloroform. According to in vitro hydrolytic degradation tests in phosphate buffered saline, HA-PLGA/PLGA blend film with a weight ratio of 1/2 degraded relatively slowly compared to PLGA film and HA coated PLGA film. Four different samples of a control, OSSIX(TM) membrane, PLGA film, and HA-PLGA/PLGA film were assessed as periodontal barrier membranes for the calvarial critical size bone defects in SD rats. Histological and histomorphometric analyses revealed that HA-PLGA/PLGA film resulted in the most effective bone regeneration compared to other samples with a regenerated bone area of 63.1% covering the bone defect area. PMID:19477304

  2. Aptamer-modified PLGA nanoparticle delivery of triplex forming oligonucleotide for targeted prostate cancer therapy.

    PubMed

    Jiao, J; Zou, Q; Zou, M H; Guo, R M; Zhu, S; Zhang, Y

    2016-01-01

    Presented study aimed to prepare A10 aptamer-modified poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with triplex forming oligonucleotides(TFO) for targeted prostate cancer therapy. We first synthesized a PLGA-PEG-Apt copolymer. The PLGA-PEG-Apt nanoparticles (NP-Apt) were loaded with TFO using double emulsion solvent evaporation method. Carboxy-fluorescein labeled TFO-NP-Apt, TFO-NP and TFO were prepared for cellular uptake experiments. Cell counting kit-8 (CCK-8) test was used to determine the ability of TFO-NP-Apt to inhibit LNCaP cell proliferation. RT-PCR and Western blot was conducted to analyze AR gene expressing. Then, a mouse model of prostate cancer was used to evaluate the anti-cancer effect of TFO-NP-Apt in vivo. We confirmed that the PLGA-PEG-Apt conjugation was successful. The TFO encapsulation efficiency and drug loading percentage were 46.1± 3.6% and 40.8±5.3%, respectively. TFO-NP-Apt showed a more efficient cellular uptake than TFO-NP or TFO in LNCaP cells. TFO-NP-Apt was significantly more cytotoxic than TFO-NP and TFO in the CCK-8 test (p<0.001). TFO-NP-Apt silenced the AR gene better than unconjugated Apt, naked TFO, NP or saline. TFO-NP-Apt were more effective than TFO-NP, naked TFO, NP and saline at inhibiting prostate cancer growth in vivo (p<0.05). Aptamer-modified TFO-loaded PLGA nanoparticles may prove useful in targeted therapy for advanced prostate cancer. PMID:27268920

  3. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles

    SciTech Connect

    Semete, B.; Booysen, L.I.J.; Kalombo, L.; Venter, J.D.; Katata, L.; Ramalapa, B.; Verschoor, J.A.; Swai, H.

    2010-12-01

    Nanoparticulate drug delivery systems offer great promise in addressing challenges of drug toxicity, poor bioavailability and non-specificity for a number of drugs. Much progress has been reported for nano drug delivery systems for intravenous administration, however very little is known about the effects of orally administered nanoparticles. Furthermore, the development of nanoparticulate systems necessitates a thorough understanding of the biological response post exposure. This study aimed to elucidate the in vivo uptake of chitosan and polyethylene glycol (PEG) coated Poly, DL, lactic-co-glycolic Acid (PLGA) nanoparticles and the immunological response within 24 h of oral and peritoneal administration. These PLGA nanoparticles were administered orally and peritoneally to female Balb/C mice, they were taken up by macrophages of the peritoneum. When these particles were fluorescently labelled, intracellular localisation was observed. The expression of pro-inflammatory cytokines IL-2, IL-6, IL-12p70 and TNF-{alpha} in plasma and peritoneal lavage was found to remain at low concentration in PLGA nanoparticles treated mice as well as ZnO nanoparticles during the 24 hour period. However, these were significantly increased in lipopolysaccharide (LPS) treated mice. Of these pro-inflammatory cytokines, IL-6 and IL-12p70 were produced at the highest concentration in the positive control group. The anti-inflammatory cytokines IL-10 and chemokines INF-{gamma}, IL-4, IL-5 remained at normal levels in PLGA treated mice. IL-10 and INF-{gamma} were significantly increased in LPS treated mice. MCP-1 was found to be significantly produced in all groups in the first hours, except the saline treated mice. These results provide the first report to detail the induction of cytokine production by PLGA nanoparticles engineered for oral applications.

  4. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.

  5. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection

    PubMed Central

    Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  6. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres.

    PubMed

    Marquette, S; Peerboom, C; Yates, A; Denis, L; Langer, I; Amighi, K; Goole, J

    2014-08-15

    Antibodies (Abs) require the development of stable formulations and specific delivery strategies given their susceptibility to a variety of physical and chemical degradation pathways. In this study, the encapsulation of an antibody into polylactide-co-glycolide (PLGA) based microspheres was explored to obtain a controlled-release of the incorporated drug. In order to avoid stability issues, a solid-in-oil-in-water (s/o/w) method was preferred. The solid phase was made of anti-TNF alpha monoclonal antibody (MAb) spray-dried microparticles, and the PLGA microspheres were produced using two different polymers (i.e., Resomer(®) RG505 and Resomer(®) RG755S). The stability of the MAb incorporated into the microspheres was investigated under three conditions (5 ± 3°C, 25 ± 2°C/60% RH and 40 ± 2°C/75% RH) for 12 weeks. During this stability study, it was demonstrated that the MAb loaded PLGA microspheres were stable when stored at 5 ± 3°C and that the Resomer(®) RG755S, composed of 75%(w/w) lactic acid as PLGA, was preferred to preserve the stability of the system. Storage at temperatures higher than 5°C led to antibody stability issues such as aggregation, fragmentation and loss of activity. The release profiles were also altered. Physical ageing of the system associated with changes in the glass transition temperature and enthalpy of relaxation was noticed during the storage of the MAb loaded PLGA microspheres.

  7. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres.

    PubMed

    Marquette, S; Peerboom, C; Yates, A; Denis, L; Langer, I; Amighi, K; Goole, J

    2014-08-15

    Antibodies (Abs) require the development of stable formulations and specific delivery strategies given their susceptibility to a variety of physical and chemical degradation pathways. In this study, the encapsulation of an antibody into polylactide-co-glycolide (PLGA) based microspheres was explored to obtain a controlled-release of the incorporated drug. In order to avoid stability issues, a solid-in-oil-in-water (s/o/w) method was preferred. The solid phase was made of anti-TNF alpha monoclonal antibody (MAb) spray-dried microparticles, and the PLGA microspheres were produced using two different polymers (i.e., Resomer(®) RG505 and Resomer(®) RG755S). The stability of the MAb incorporated into the microspheres was investigated under three conditions (5 ± 3°C, 25 ± 2°C/60% RH and 40 ± 2°C/75% RH) for 12 weeks. During this stability study, it was demonstrated that the MAb loaded PLGA microspheres were stable when stored at 5 ± 3°C and that the Resomer(®) RG755S, composed of 75%(w/w) lactic acid as PLGA, was preferred to preserve the stability of the system. Storage at temperatures higher than 5°C led to antibody stability issues such as aggregation, fragmentation and loss of activity. The release profiles were also altered. Physical ageing of the system associated with changes in the glass transition temperature and enthalpy of relaxation was noticed during the storage of the MAb loaded PLGA microspheres. PMID:24792974

  8. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  9. The use of BMP-2 coupled - Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects.

    PubMed

    Zheng, Zhong; Yin, Wei; Zara, Janette N; Li, Weiming; Kwak, Jinny; Mamidi, Rachna; Lee, Min; Siu, Ronald K; Ngo, Richard; Wang, Joyce; Carpenter, Doug; Zhang, Xinli; Wu, Benjamin; Ting, Kang; Soo, Chia

    2010-12-01

    Healing of contaminated/infected bone defects is a significant clinical challenge. Prevalence of multi-antibiotic resistant organisms has renewed interest in the use of antiseptic silver as an effective, but less toxic antimicrobial with decreased potential for bacterial resistance. In this study, we demonstrated that metallic nanosilver particles (with a size of 20-40nm)-poly(lactic-co-glycolic acid) (PLGA) composite grafts have strong antibacterial properties. In addition, nanosilver particles-PLGA composite grafts did not inhibit adherence, proliferation, alkaline phosphatase activity, or mineralization of ongrowth MC3T3-E1 pre-osteoblasts compared to PLGA controls. Furthermore, nanosilver particles did not affect the osteoinductivity of bone morphogenetic protein 2 (BMP-2). Infected femoral defects implanted with BMP-2 coupled 2.0% nanosilver particles-PLGA composite grafts healed in 12 weeks without evidence of residual bacteria. In contrast, BMP-2 coupled PLGA control grafts failed to heal in the presence of continued bacterial colonies. Our results indicate that nanosilver of defined particle size is bactericidal without discernable in vitro and in vivo cytotoxicity or negative effects on BMP-2 osteoinductivity, making it an ideal antimicrobial for bone regeneration in infected wounds.

  10. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  11. Nile Red Loaded PLGA Nanoparticles Surface Modified with Gd-DTPA for Potential Dual-Modal Imaging.

    PubMed

    Li, Qinqin; Li, Chenglin; Tong, Weijun

    2016-06-01

    Here, a novel poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) for magnetic resonance (MR) and fluorescence imaging was developed for cell imaging. PLGA NPs loaded with fluorescent dye Nile red (NR) and surface-coated with poly(ethyleneimine) (PEI) were produced in a single step nanoprecipitation process. Diethylenetriamine pentaacetic dianhydride (DTPA) was conjugated to PLGA/NR@PEI NPs through amidation reaction between -COOH of DTPA and -NH2 of PEI, which can chelate gadolinium (Gd3+) as an MR imaging contrast agent. The PLGA/NR@PEI-DTPA-Gd NPs exhibited a uniform particle size of -200 nm and were stable in culture medium. These NPs had a high T relaxivity (R1) of 28.36 mM(-1)S(-1). They did not introduce serious cytotoxicity against A549 lung cancer cells. Furthermore, fluorescence and MR imaging studies on A549 lung cancer cells in vitro revealed that PLGA/NR@PEI-DTPA-Gd NPs can serve as an efficient fluorescence/MR dual-modality imaging nanoprobe. PMID:27427598

  12. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen.

    PubMed

    Slütter, Bram; Bal, Suzanne; Keijzer, Chantal; Mallants, Roel; Hagenaars, Niels; Que, Ivo; Kaijzel, Eric; van Eden, Willem; Augustijns, Patrick; Löwik, Clemens; Bouwstra, Joke; Broere, Femke; Jiskoot, Wim

    2010-08-31

    Nasal vaccination is a promising, needle-free alternative to classical vaccination. Nanoparticulate delivery systems have been reported to overcome the poor immunogenicity of nasally administered soluble antigens, but the characteristics of the ideal particle are unknown. This study correlates differences in physicochemical characteristics of nanoparticles to their adjuvant effect, using ovalbumin (OVA)-loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA NP), N-trimethyl chitosan (TMC) based NP (TMC NP) and TMC-coated PLGA NP (PLGA/TMC NP). PLGA NP and PLGA/TMC NP were prepared by emulsification/solvent extraction and TMC NP by ionic complexation. The NP were characterized physicochemically. Their toxicity and interaction with and stimulation of monocyte derived dendritic cells (DC) were tested in vitro. Furthermore, the residence time and the immunogenicity (serum IgG titers and secretory IgA levels in nasal washes) of the nasally applied OVA formulations were assessed in Balb/c mice. All NP were similar in size, whereas only PLGA NP carried a negative zeta potential. The NP were non-toxic to isolated nasal epithelium. Only TMC NP increased the nasal residence time of OVA compared to OVA administered in PBS and induced DC maturation. After i.m. administration all NP systems induced higher IgG titers than OVA alone, PLGA NP and TMC NP being superior to PLGA/TMC NP. Nasal immunization with the slow antigen releasing particles, PLGA NP and PLGA/TMC NP, did not induce detectable antibody titers. In contrast, nasal immunization with the positively charged, fast antigen releasing TMC NP led to high serum antibody titers and sIgA levels. In conclusion, particle charge and antigen release pattern of OVA-loaded NP has to be adapted to the intended route of administration. For nasal vaccination, TMC NP, releasing their content within several hours, being mucoadhesive and stimulating the maturation of DC, were superior to PLGA NP and PLGA/TMC NP which lacked some or all

  13. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis

    PubMed Central

    Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Chul; Jung, Moon Hee; Yu, Sun Il; Yeon, Seung Ju; Min, Seul Ki; Kwon, Yeo Seon; Hwang, Jin Ha; Shin, Hwa Sung

    2015-01-01

    Atopic dermatitis (AD) is a complex skin disease primarily characterized by psoriasis of the stratum corneum. AD drugs have usually been used in acidic and hydrophilic solvents to supply moisture and prevent lipid defects. Ceramide is a typical treatment agent to regenerate the stratum corneum and relieve symptoms of AD. However, ceramide has limitation on direct use for skin because of its low dispersion properties in hydrophilic phase and side effects at excessive treatment. In this study, ceramide imbedded PLGA nanoparticles were developed with chitosan coating (Chi-PLGA/Cer) to overcome this problem. The chitosan coating enhanced initial adherence to the skin and prevented the initial burst of ceramide, but was degraded by the weakly acidic nature of skin, resulting in controlled release of ceramide with additional driving force of the squeezed PLGA nanoparticles. Additionally, the coating kinetics of chitosan were controlled by manipulating the reaction conditions and then mathematically modeled. The Chi-PLGA/Cer was not found to be cytotoxic and ceramide release was controlled by pH, temperature, and chitosan coating. Finally, Chi-PLGA/Cer was demonstrated to be effective at stratum corneum regeneration in a rat AD model. Overall, the results presented herein indicated that Chi-PLGA/Cer is a novel nanodrug for treatment of AD. PMID:26666701

  14. Hydrolytic degradation characteristics of irradiated multi-layered PLGA films.

    PubMed

    Joachim Loo, Say Chye; Jason Tan, Wei Li; Khoa, Shu Min; Chia, Ngeow Khing; Venkatraman, Subbu; Boey, Freddy

    2008-08-01

    Poly(lactide-co-glycolide) (PLGA) has been extensively investigated for controlled drug release. Because they undergo bulk degradation, they do not allow for a good controlled-release of drugs. The objective of this study is therefore to understand if a multi-layer-cum-irradiation technique would elicit surface erosion from PLGA polymers. A linear loss of mass and film thinning from PLGA films were observed. Also, the erosion of the top layer, of this multi-layered structure, accelerates degradation of the underlying layers. It is this effect that results in the observed pseudo-surface erosion for irradiated multi-layered PLGA. PMID:18514448

  15. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer.

    PubMed

    Liu, Peifeng; Qin, Liubin; Wang, Qi; Sun, Ying; Zhu, Mingjie; Shen, Ming; Duan, Yourong

    2012-10-01

    Cyclic peptide (arginine-glycine-aspartic-glutamic-valine acid, cRGD)-modified monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) nanoparticles (mPEG-PLGA-PLL-cRGD NPs) with antitumor drug Mitoxantrone (DHAQ) or fluorescence agent Rhodamine B (Rb) encapsulated in their interior were prepared. The remarkable features of the mPEG-PLGA-PLL-cRGD NPs are the effective improvement for the cytotoxicity and uptake of the cell in vitro, and the significant enhancement of delivery ability for DHAQ or Rb in vivo. As a consequence, an excellent therapeutic efficiency for cancer is obtained, demonstrating the mPEG-PLGA-PLL-cRGD NPs play a key role in enhancing cancer therapeutic efficiency.

  16. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro

    PubMed Central

    Hung, Hsin-I; Klein, Oliver J.; Peterson, Sam W.; Rokosh, Sarah R.; Osseiran, Sam; Nowell, Nicholas H.; Evans, Conor L.

    2016-01-01

    Photodynamic therapy regimens, which use light-activated molecules known as photosensitizers, are highly selective against many malignancies and can bypass certain challenging therapeutic resistance mechanisms. Photosensitizers such as the small cationic molecule EtNBS (5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride) have proven potent against cancer cells that reside within acidic and hypoxic tumour microenvironments. At higher doses, however, these photosensitizers induce “dark toxicity” through light-independent mechanisms. In this study, we evaluated the use of nanoparticle encapsulation to overcome this limitation. Interestingly, encapsulation of the compound within poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-EtNBS) was found to significantly reduce EtNBS dark toxicity while completely retaining the molecule’s cytotoxicity in both normoxic and hypoxic conditions. This dual effect can be attributed to the mechanism of release: EtNBS remains encapsulated until external light irradiation, which stimulates an oxygen-independent, radical-mediated process that degrades the PLGA nanoparticles and releases the molecule. As these PLGA-encapsulated EtNBS nanoparticles are capable of penetrating deeply into the hypoxic and acidic cores of 3D spheroid cultures, they may enable the safe and efficacious treatment of otherwise unresponsive tumour regions. PMID:27686626

  17. PLGA nanoparticle encapsulation reduces toxicity while retaining the therapeutic efficacy of EtNBS-PDT in vitro

    NASA Astrophysics Data System (ADS)

    Hung, Hsin-I.; Klein, Oliver J.; Peterson, Sam W.; Rokosh, Sarah R.; Osseiran, Sam; Nowell, Nicholas H.; Evans, Conor L.

    2016-09-01

    Photodynamic therapy regimens, which use light-activated molecules known as photosensitizers, are highly selective against many malignancies and can bypass certain challenging therapeutic resistance mechanisms. Photosensitizers such as the small cationic molecule EtNBS (5-ethylamino-9-diethyl-aminobenzo[a]phenothiazinium chloride) have proven potent against cancer cells that reside within acidic and hypoxic tumour microenvironments. At higher doses, however, these photosensitizers induce “dark toxicity” through light-independent mechanisms. In this study, we evaluated the use of nanoparticle encapsulation to overcome this limitation. Interestingly, encapsulation of the compound within poly(lactic-co-glycolic acid) (PLGA) nanoparticles (PLGA-EtNBS) was found to significantly reduce EtNBS dark toxicity while completely retaining the molecule’s cytotoxicity in both normoxic and hypoxic conditions. This dual effect can be attributed to the mechanism of release: EtNBS remains encapsulated until external light irradiation, which stimulates an oxygen-independent, radical-mediated process that degrades the PLGA nanoparticles and releases the molecule. As these PLGA-encapsulated EtNBS nanoparticles are capable of penetrating deeply into the hypoxic and acidic cores of 3D spheroid cultures, they may enable the safe and efficacious treatment of otherwise unresponsive tumour regions.

  18. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis.

    PubMed

    Arias, José L; Unciti-Broceta, Juan D; Maceira, José; Del Castillo, Teresa; Hernández-Quero, José; Magez, Stefan; Soriano, Miguel; García-Salcedo, José A

    2015-01-10

    Targeted delivery of therapeutics is an alternative approach for the selective treatment of infectious diseases. The surface of African trypanosomes, the causative agents of African trypanosomiasis, is covered by a surface coat consisting of a single variant surface glycoprotein, termed VSG. This coat is recycled by endocytosis at a very high speed, making the trypanosome surface an excellent target for the delivery of trypanocidal drugs. Here, we report the design of a drug nanocarrier based on poly ethylen glycol (PEG) covalently attached (PEGylated) to poly(D,L-lactide-co-glycolide acid) (PLGA) to generate PEGylated PLGA nanoparticles. This nanocarrier was coupled to a single domain heavy chain antibody fragment (nanobody) that specifically recognizes the surface of the protozoan pathogen Trypanosoma brucei. Nanoparticles were loaded with pentamidine, the first-line drug for T. b. gambiense acute infection. An in vitro effectiveness assay showed a 7-fold decrease in the half-inhibitory concentration (IC50) of the formulation relative to free drug. Furthermore, in vivo therapy using a murine model of African trypanosomiasis demonstrated that the formulation cured all infected mice at a 10-fold lower dose than the minimal full curative dose of free pentamidine and 60% of mice at a 100-fold lower dose. This nanocarrier has been designed with components approved for use in humans and loaded with a drug that is currently in use to treat the disease. Moreover, this flexible nanobody-based system can be adapted to load any compound, opening a range of new potential therapies with application to other diseases.

  19. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.

    PubMed

    He, Fupo; Chen, Yan; Li, Jiyan; Lin, Bomiao; Ouyang, Yi; Yu, Bo; Xia, Yuanyou; Yu, Bo; Ye, Jiandong

    2015-04-01

    In this study, a platelet-rich plasma poly(lactic-co-glycolic acid) (PRP-PLGA)/calcium phosphate cement (CPC) composite scaffold was prepared by incorporating PRP into PLGA/CPC scaffold with unidirectional pore structure, which was fabricated by the unidirectional freeze casting of CPC slurry and the following infiltration of PLGA. The results from in vitro cell experiments and in vivo implantation in femoral defects manifested that incorporation of PRP into PLGA/CPC scaffold improved in vitro cell response (cell attachment, proliferation, and differentiation), and markedly boosted bone formation, angiogenesis and material degradation. The incorporation of PRP into scaffold showed more outstanding improvement in osteogenesis as the scaffolds were used to repair the segmental radial defects, especially at the early stage. The new bone tissues grew along the unidirectional lamellar pores of scaffold. At 12 weeks postimplantation, the segmental radial defects treated with PRP-PLGA/CPC scaffold had almost recuperated, whereas treated with the scaffold without PRP was far from healed. Taken together, the PRP-PLGA/CPC scaffold with unidirectional pore structure is a promising candidate to repair bone defects at various sites.

  20. Multifunctional SPIO/DOX-loaded A54 Homing Peptide Functionalized Dextran-g-PLGA Micelles for Tumor Therapy and MR Imaging

    PubMed Central

    Situ, Jun-Qing; Wang, Xiao-Juan; Zhu, Xiu-Liang; Xu, Xiao-Ling; Kang, Xu-Qi; Hu, Jing-Bo; Lu, Chen-Ying; Ying, Xiao-Ying; Yu, Ri-Sheng; You, Jian; Du, Yong-Zhong

    2016-01-01

    Specific delivery of chemotherapy drugs and magnetic resonance imaging (MRI) contrast agent into tumor cells is one of the issues to highly efficient tumor targeting therapy and magnetic resonance imaging. Here, A54 peptide-functionalized poly(lactic-co-glycolic acid)-grafted dextran (A54-Dex-PLGA) was synthesized. The synthesized A54-Dex-PLGA could self-assemble to form micelles with a low critical micelle concentration of 22.51 μg. mL−1 and diameter of about 50 nm. The synthetic A54-Dex-PLGA micelles can encapsulate doxorubicin (DOX) as a model anti-tumor drug and superparamagnetic iron oxide (SPIO) as a contrast agent for MRI. The drug-encapsulation efficiency was about 80% and the in vitro DOX release was prolonged to 72 hours. The DOX/SPIO-loaded micelles could specifically target BEL-7402 cell line. In vitro MRI results also proved the specific binding ability of A54-Dex-PLGA/DOX/SPIO micelles to hepatoma cell BEL-7402. The in vivo MR imaging experiments using a BEL-7402 orthotopic implantation model further validated the targeting effect of DOX/SPIO-loaded micelles. In vitro and in vivo anti-tumor activities results showed that A54-Dex-PLGA/DOX/SPIO micelles revealed better therapeutic effects compared with Dex-PLGA/DOX/SPIO micelles and reduced toxicity compared with commercial adriamycin injection. PMID:27775017

  1. Construction and evaluation of Fe₃O₄-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis.

    PubMed

    Zhou, Jun; Guo, Dajing; Zhang, Yu; Wu, Wei; Ran, Haitao; Wang, Zhigang

    2014-04-23

    Thrombotic disease is extremely harmful to human health, but early detection and treatment can help improve prognoses and reduce mortality. To date, few studies have used MR molecular imaging in the early detection of thrombi and in the dynamic monitoring of the thrombolytic efficiency. In this article, we construct Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles to use in the detection of thrombi and in targeted thrombolysis using MRI monitoring. Cyclic arginine-glycine-aspartic peptide (cRGD) was grafted onto the chitosan (CS) surface to synthesize a CS-cRGD film using carbodiimide-mediated amide bond formation. A double emulsion solvent evaporation method (water in oil in water [W/O/W]) was used to construct Fe3O4-based PLGA nanoparticles carrying recombinant tissue plasminogen activator (rtPA) (Fe3O4-PLGA-rtPA/CS-cRGD). Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles were constructed using the same W/O/W method. The results showed that the Fe3O4-based nanoparticles were constructed successfully and have a regular shape, a relatively uniform size, a high carrier rate of Fe3O4 and encapsulation efficiency of rtPA, and a relatively high activity of released rtPA. Transmission electron microscope (TEM) images revealed that the iron oxide particles were relatively uniformly distributed in the nano-spherical shell. The Fe3O4-based nanoparticles could be imaged using a clinical MRI scanner, and there were no significant differences in the transverse relaxation rate (R2*) or in the signal-to-noise ratio (SNR) values between the Fe3O4-based nanoparticles and an Fe3O4 solution with the same concentration of Fe3O4. In vitro and in vivo experiments confirmed that the Fe3O4-PLGA-rtPA/CS-cRGD nanoparticles specifically accumulated on the edge of the thrombus and that they had a significant effect on the thrombolysis compared with the Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles and with free rtPA solution. These results

  2. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  3. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration.

  4. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. PMID:26325309

  5. Sustained delivery of rhBMP-2 via PLGA microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis

    PubMed Central

    Wink, Jason D.; Gerety, Patrick A.; Sherif, Rami D.; Lim, Youngshin; A.Clarke, Nadya; Rajapakse, Chamith S.; Nah, Hyun-Duck; Taylor, Jesse A.

    2014-01-01

    Background Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. In this study, we utilize rhBMP2 encapsulated in PLGA microspheres (PLGA-rhBMP2) placed in a rabbit cranial defect model to test whether low-dose, sustained, delivery can effectively induce bone regeneration. Methods rhBMP2 was encapsulated in 15% poly (lactic-co-glycolic acid), using a double emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10mm) were created in the calvarium of New Zealand White rabbits (5-7 mos of age, M/F) and filled with a collagen scaffold containing one of four groups: 1) no implant, 2) collagen scaffold only, 3) PLGA-rhBMP2(0.1ug/implant), or 4) free rhBMP2 (0.1ug/implant). After 6 weeks, the rabbits were sacrificed and defects were analyzed by μCT, histology, and finite element analysis. Results RhBMP2 delivered via bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by μCT and histology (p=0.025, 0.025). FEA indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. Conclusions Sustained delivery via PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reduce the risk for recently reported rhBMP2 related adverse effects. Level of Evidence Animal Study PMID:24622573

  6. Effects of designed PLLA and 50:50PLGA scaffold architectures on bone formation in vivo

    PubMed Central

    Saito, Eiji; Liao, Elly E.; Hu, Wei-Wen; Krebsbach, Paul H.; Hollister, Scott J.

    2015-01-01

    Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabricated using conventional methods, such as salt leaching and phase separation, and were constructed without designed architecture. To study the effects of both designed architecture and material on bone formation, we designed and fabricated three types of porous scaffold architecture from two biodegradable materials, poly (L-lactic acid) (PLLA) and 50:50Poly (lactic-co-glycolic acid) (PLGA) using image based design and indirect solid freeform fabrication techniques, seeded them with bone morphogenic protein-7 transduced human gingival fibroblasts and implanted them subcutaneously into mice for 4 and 8 weeks. Micro-computed tomography data confirmed that the fabricated porous scaffolds replicated the designed architectures. Histological analysis revealed that the 50:50PLGA scaffolds degraded and did not maintain their architecture after 4 weeks. The PLLA scaffolds maintained their architecture at both time points and showed improved bone ingrowth which followed the internal architecture of the scaffolds. Mechanical properties of both PLLA and 50:50PLGA scaffolds decreased, but PLLA scaffolds maintained greater mechanical properties than 50:50PLGA after implantation. The increase of mineralized tissue helped to support mechanical properties of bone tissue and scaffold constructs from 4 to 8 weeks. The results indicated the importance of choice of scaffold materials and computationally designed scaffolds to control tissue formation and mechanical properties for desired bone tissue regeneration. PMID:22162220

  7. Bioburden-responsive antimicrobial PLGA ultrafine fibers for wound healing.

    PubMed

    Said, Somiraa S; El-Halfawy, Omar M; El-Gowelli, Hanan M; Aloufy, Affaf K; Boraei, Nabila A; El-Khordagui, Labiba K

    2012-01-01

    Despite innovation in the design and functionalization of polymer nanofiber wound healing materials, information on their interaction with the biochemical wound environment is lacking. In an earlier study, we have reported the interaction of fusidic acid-loaded PLGA ultrafine fibers (UFs) with wound bacteria. Massive bacterial colonization and the formation of a dense biofilm throughout the mat were demonstrated. This was associated with a marked enhancement of initial drug release at concentrations allowing eradication of planktonic bacteria and considerable suppression of biofilm. The present study aimed at extending earlier findings to gain more mechanistic insights into the potential response of the fusidic acid-laden UFs under study to controlled microbial bioburden. Initial drug release enhancement was shown to involve surface erosion of the ultrafibrous mats likely mediated by microbial esterase activity determined in the study. Release data could be correlated with microbial bioburden over the inoculum size range 10³-10⁷ CFU/ml, suggesting a bioburden-triggered drug release enhancement mechanism. Moreover, the effectiveness of fusidic acid-laden UFs in the healing of either lightly contaminated or Staphylococcus aureus heavily infected wounds in a rat model suggested in-use relevant antimicrobial release patterns. Findings indicated active participation of polymer ultrafine wound dressings in a dynamic interaction with the wound milieu, which affects their structure-function relationship. Understanding such an interaction is fundamental to the characterization and performance assessment of wound materials under biorelevant conditions and the design of polymer-based infection-responsive biomaterials.

  8. A Biomimetic Approach to Active Self-Microencapsulation of Proteins in PLGA

    PubMed Central

    Shah, Ronak B.; Schwendeman, Steven P.

    2014-01-01

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH 7. The BP-PLGA microspheres (20–63 µm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42 h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ >0.125 w/w, whereas HDS and CS bound > 80% LYZ at BP:LYZ of 0.25–1 and < 0.33, respectively. HA-PLGA microspheres were found to be not ideal for obtaining high protein loading (>2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2–7 % w/w), VEGF (~ 4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were

  9. Surface characteristics of PLA and PLGA films

    NASA Astrophysics Data System (ADS)

    Paragkumar N, Thanki; Edith, Dellacherie; Six, Jean-Luc

    2006-12-01

    Surface segregation and restructuring in polylactides (poly( D, L-lactide) and poly( L-lactide)) and poly( D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly( D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly( L-lactide) (PLLA) thin and clear films with thickness ˜15 μm undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  10. Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against enterococcus clinical isolates.

    PubMed

    Lotfipour, F; Abdollahi, S; Jelvehgari, M; Valizadeh, H; Hassan, M; Milani, M

    2014-07-01

    Researchers have demonstrated that antimicrobial agents in nanoparticle (NP) forms have better activities. Vancomycin (VCM), as a glycopeptide antibiotic with antimicrobial activity against gram positive bacteria, is poorly absorbed from the intestinal tract. Enterococcus is a genus of bacteria that became resistant to a wide range of antibiotics in last decades, and cause severe infections in hospitalized patients. This paper describes preparation of VCM--loaded poly (lactic-co-glycolic acid) (PLGA) NPs and compares the antimicrobial effects with drug solution against clinical Enterococcus isolates. VCM-loaded PLGA NPs were fabricated by W1/O/W2 solvent evaporation method. The comparison of obtained Minimum Inhibitory Concentration (MIC) values showed a significant decrease in the antimicrobial effect of VCM -loaded NPs. Results also indicated that the potency of the NPs against VCM resistant isolates of Enterococcus was less than VCM susceptible isolates. The reduced antimicrobial effect of formulated NPs in invitro condition is perhaps related to the strong electrostatic linkage between hydrophilic drug (VCM) and hydrophobic polymer (PLGA) that lead to the slow release of the antibiotic from polymeric NPs.

  11. Statistical design for formulation optimization of hydrocortisone butyrate-loaded PLGA nanoparticles.

    PubMed

    Yang, Xiaoyan; Patel, Sulabh; Sheng, Ye; Pal, Dhananjay; Mitra, Ashim K

    2014-06-01

    The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design modules. Experimental designs were used to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett-Burman design for independent variables was first conducted to prescreen various formulation and process variables during the development of NP. Selected primary variables were further optimized by central composite design. This process leads to an optimum formulation with desired EE, particle size, and DL. Contour plots and response surface curves display visual diagrammatic relationships between the experimental responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication time were the critical factors influencing the responses analyzed. Optimized formulation showed EE of 90.6%, particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design methodology can optimize the formulation and process variables to achieve favorable responses for HB-loaded NP.

  12. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli.

    PubMed

    Nazarian, Shahram; Gargari, Seyed Latif Mousavi; Rasooli, Iraj; Hasannia, Sadegh; Pirooznia, Nazanin

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of diarrhea among children. Colonization factors and enterotoxins are the major ETEC candidate vaccines. Since protection against ETEC mostly occurs by induction of IgA antibodies, much effort is focused on the development of oral vaccines. In this study oral immunogenicity of a poly(lactic-co-glycolic acid) (PLGA) encapsulated chimeric protein containing CfaB, CstH, CotA and LTB (Heat-labile B subunit) was investigated. The protein was encapsulated in PLGA by double emulsion method and nanoparticles were characterized physicochemically. Immunogenicity was assessed by evaluating IgG1, IgG2 and IgA titers after BALB/c mice vaccination. Non aggregated nanoparticles had a spherical shape with an average particle size of 252.7±23 nm and 91.96±4.4% of encapsulation efficiency. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein. Oral immunization of mice induced serum IgG and fecal IgA antibody responses. Immunization induced protection against ETEC binding to Caco-2 cells. The effect of LT toxin on fluid accumulation in ileal loops was neutralized by inhibition of enterotoxin binding to GM1-ganglosides. Delivery of the chimeric protein in PLGA elicited both systemic and mucosal immune responses. The findings could be exploited to development of oral multi-component ETEC prophylactic measures. PMID:23906742

  13. Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study

    NASA Astrophysics Data System (ADS)

    Gomes, Anderson De Jesus; Nain Lunardi, Claure; Henrique Caetano, Flávio; Orive Lunardi, Laurelúcia; da Hora Machado, Antonio Eduardo

    2006-07-01

    With the purpose of enhancing the efficacy of microparticle-encapsulated therapeutic agents, in this study we evaluated the phagocytic ability of rat peritoneal exudate cells and the preferential location of poly(D,L-lactide-co-glycolic acid) (PLGA) microparticles inside these cells. The microparticles used were produced by a solvent evaporation method and were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Size distribution analysis using DLS and SEM showed that the particles were spherical, with diameters falling between 0.5 and 1.5 [mu]m. Results from cell adhesion by SEM assay, indicated that the PLGA microparticles are not toxic to cells and do not cause any distinct damage to them as confirmed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Among the large variety of cell populations found in the peritoneal exudates (neutrophils, eosinophils, monocytes, and macrophages), TEM showed that only the latter phagocytosed PLGA microparticles, in a time-dependent manner. The results obtained indicate that the microparticles studied show merits as possible carriers of drugs for intracellular delivery.

  14. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

    PubMed

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei; Tao, Xiaojun; Zhang, Zhihua; Sun, Xiaomin; Zhang, Qiqing

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration.

  15. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

    PubMed

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei; Tao, Xiaojun; Zhang, Zhihua; Sun, Xiaomin; Zhang, Qiqing

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. PMID:26838900

  16. Injectable PLGA based Colloidal Gels for Zero-order Dexamethasone Release in Cranial Defects

    PubMed Central

    Wang, Qun; Wang, Jinxi; Lu, Qinghua; Detamore, Michael S.; Berkland, Cory

    2010-01-01

    Bone fillers have emerged as an alternative to the invasive surgery often required to repair skeletal defects. Achieving controlled release from these materials is desired for accelerating healing. Here, oppositely-charged Poly (d,l-lactic-co-glycolic acid) (PLGA) nanoparticles were used to create a cohesive colloidal gel as an injectable drug-loaded filler to promote healing in bone defects. The colloid self-assembled through electrostatic forces resulting in a stable 3-D network that may be extruded or molded to the desired shape. The colloidal gel demonstrated shear-thinning behavior due to the disruption of interparticle interactions as the applied shear force was increased. Once the external force was removed, the cohesive property of the colloidal gel was recovered. Similar reversibility and shear-thinning behavior were also observed in colloidal gels loaded with dexamethasone. Near zero-order dexamethasone release was observed over two months when the drug was encapsulated in PLGA nanoparticles and simply blending the drug with the colloidal gel showed similar kinetics for one month. Surgical placement was facilitated by the pseudoplastic material properties and in vivo observations demonstrated that the PLGA colloidal gels stimulated osteoconductive bone formation in rat cranial bone defects. PMID:20303585

  17. Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles

    PubMed Central

    Goel, Surbhi; Kundu, Bishwajit; Mishra, Prashant; Fnu, Ashish

    2015-01-01

    Small molecule based therapeutic intervention of amyloids has been limited by their low solubility and poor pharmacokinetic characteristics. We report here, the use of water soluble poly lactic-co-glycolic acid (PLGA)-encapsulated curcumin and emetine nanoparticles (Cm-NPs and Em-NPs, respectively), as potential modulators of gelsolin amyloidogenesis. Using the amyloid-specific dye Thioflavin T (ThT) as an indicator along with electron microscopic imaging we show that the presence of Cm-NPs augmented amyloid formation in gelsolin by skipping the pre-fibrillar assemblies, while Em-NPs induced non-fibrillar aggregates. These two types of aggregates differed in their morphologies, surface hydrophobicity and secondary structural signatures, confirming that they followed distinct pathways. In spite of differences, both these aggregates displayed reduced toxicity against SH-SY5Y human neuroblastoma cells as compared to control gelsolin amyloids. We conclude that the cytotoxicity of gelsolin amyloids can be reduced by either stalling or accelerating its fibrillation process. In addition, Cm-NPs increased the fibrillar bulk while Em-NPs defibrillated the pre-formed gelsolin amyloids. Moreover, amyloid modulation happened at a much lower concentration and at a faster rate by the PLGA encapsulated compounds as compared to their free forms. Thus, besides improving pharmacokinetic and biocompatible properties of curcumin and emetine, PLGA conjugation elevates the therapeutic potential of both small molecules against amyloid fibrillation and toxicity. PMID:25996685

  18. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    PubMed

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. PMID:27612772

  19. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  20. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors

    PubMed Central

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm3) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  1. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors.

    PubMed

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm(3)) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects.

  2. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors.

    PubMed

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm(3)) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  3. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    PubMed

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration. PMID:25958546

  4. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.

    PubMed

    Ruggiero, Maria R; Crich, Simonetta Geninatti; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-15

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications. PMID:27265726

  5. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  6. Formation of post-confluence structure in human parotid gland acinar cells on PLGA through regulation of E-cadherin.

    PubMed

    Chan, Yen-Hui; Huang, Tsung-Wei; Chou, Ya-Shuan; Hsu, Sheng-Hao; Su, Wei-Fang; Lou, Pei-Jen; Young, Tai-Horng

    2012-01-01

    As a potential solution for patients to retrieve their lost salivary gland functions, tissue engineering of an auto-secretory device is profoundly needed. Under serum-free environment, primary human parotid gland acinar (PGAC) cells can be obtained. After reaching confluence, PGAC cells spontaneously form three-dimension (3D) cell aggregations, termed post-confluence structure (PCS), and change their behaviors. Poly (lactic-co-glycolic acid) (PLGA) has been widely used in the field of biomedical applications because of its biodegradable properties for desired functions. Nonetheless, the role of PLGA in facilitating PGAC cells to form PCS has seldom been explored to recover epithelial characteristics. In this study, PGAC cells were found to have a greater tendency to form PCS on PLGA than on tissue culture polystyrene (TCPS). By tracing cell migration paths and modulating E-cadherin activity with specific inhibitor or antibody, we demonstrated that the static force of homophilic interaction on surfaces of individual cells, but not the dynamics of cell migration, played a more important role in PCS formation. Thus, PLGA was successfully confirmed to support PGAC cells to form more PCS through the effects on enhancing E-cadherin expression, which is associated with FAK/ILK/Snail expression in PGAC cells. This result indicates that selective appropriate biomaterials may be potentially useful in generating 3D PCS on two-dimension (2D) substrate without fabricating a complex 3D scaffold.

  7. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15–20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  8. The Effect of Topography on Differentiation Fates of Matrigel-Coated Mouse Embryonic Stem Cells Cultured on PLGA Nanofibrous Scaffolds

    PubMed Central

    Abasi, Mozhgan; Babaloo, Hamideh; Terraf, Panieh; Safi, Mojtaba; Saeed, Mahdi; Barzin, Jalal; Zandi, Mojgan; Soleimani, Masoud

    2012-01-01

    Due to pluripotency of embryonic stem (ES) cells, these cells are an invaluable in vitro model that investigates the influence of different physical and chemical cues on differentiation/development pathway of specialized cells. We sought the effect of roughness and alignment, as topomorpholocial properties of scaffolds on differentiation of green fluorescent protein-expressing ES (GFP-ES) cells into three germ layers derivates simultaneously. Furthermore, the effect of Matrigel as a natural extracellular matrix in combination with poly(lactic-co-glycolic acid) (PLGA) nanofibrous scaffolds on differentiation of mouse ES cells has been investigated. The PLGA nanofibrous scaffolds with different height and distribution of roughness and alignments were fabricated. Then, the different cell differentiation fats of GFP-ES cells plated on PLGA and PLGA/Matrigel scaffolds were analyzed by gene expression profiling. The findings demonstrated that distinct ranges of roughness, height, and distribution can support/promote a specific cell differentiation fate on scaffolds. Coating of scaffolds with Matrigel has a synergistic effect in differentiation of mesoderm-derived cells and germ cells from ES cells, whereas it inhibits the derivation of endodermal cell lineages. It was concluded that the topomorpholocial cues such as roughness and alignment should be considered in addition to other scaffolds properties to design an efficient electrospun scaffold for specific tissue engineering. PMID:21981309

  9. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits.

    PubMed

    Zhu, Songsong; Zhang, Bi; Man, Cheng; Ma, Yongqing; Liu, Xianwen; Hu, Jing

    2014-04-01

    In cartilage tissue engineering using stem cells, it is important to stimulate proliferation and control the differentiation of stem cells to specific lineages. Here we reported a combined technique for articular cartilage repair, consisting of bone marrow mesenchymal stem cells (BMMSCs) transfected with connective tissue growth factor (CTGF) gene and NaOH-treated poly(lactic-co-glycolic) acid (PLGA) scaffolds. In the present study, BMMSCs or CTGF-modified BMMSCs seeded on PLGA or NaOH-treated PLGA scaffolds were incubated in vitro and NaOH-treated PLGA significantly stimulated proliferation of BMMSCs, while CTGF gene transfer promoted chondrogenic differentiation. The effects of the composite on the repair of cartilage defects were evaluated in rabbit knee joints in vivo. Full-thickness cartilage defects (diameter: 5 mm; depth: 3 mm) were created unilaterally in the patellar groove. Defects were either left empty (n = 18) or implanted with BMMSCs/PLGA (n = 18), BMMSCs/NaOH-treated PLGA (n = 18), or CTGF-modified BMMSCs/NaOH-treated PLGA (n = 18). The defect area was examined grossly, histologically, and mechanically at 6, 12, and 24 weeks postoperatively. Implanted cells were tracked using adeno-LacZ labeling at 6 weeks after implantation. Overall, the CTGF-modified BMMSCs/NaOH-treated PLGA group showed successful hyaline-like cartilage regeneration similar to normal cartilage, which was superior to the other groups using gross examination, qualitative and quantitative histology, and mechanical assessment. The in vivo viability of the implanted cells was demonstrated by their retention for 6 weeks after implantation. These findings suggested that a combination of CTGF-modified BMMSCs and NaOH-treated PLGA may be an alternative treatment for large osteochondral defects in high-loading sites.

  10. A Novel High Mechanical Property PLGA Composite Matrix Loaded with Nanodiamond-Phospholipid Compound for Bone Tissue Engineering.

    PubMed

    Zhang, Fan; Song, Qingxin; Huang, Xuan; Li, Fengning; Wang, Kun; Tang, Yixing; Hou, Canglong; Shen, Hongxing

    2016-01-20

    A potential bone tissue engineering material was produced from a biodegradable polymer, poly(lactic-co-glycolic acid) (PLGA), loaded with nanodiamond phospholipid compound (NDPC) via physical mixing. On the basis of hydrophobic effects and physical absorption, we modified the original hydrophilic surface of the nanodiamond (NDs) with phospholipids to be amphipathic, forming a typical core-shell structure. The ND-phospholipid weight ratio was optimized to generate sample NDPC50 (i.e., ND-phospholipid weight ratio of 100:50), and NDPC50 was able to be dispersed in a PLGA matrix at up to 20 wt %. Compared to a pure PLGA matrix, the introduction of 10 wt % of NDPC (i.e., sample NDPC50-PF10) resulted in a significant improvement in the material's mechanical and surface properties, including a decrease in the water contact angle from 80 to 55°, an approximately 100% increase in the Young's modulus, and an approximate 550% increase in hardness, thus closely resembling that of human cortical bone. As a novel matrix supporting human osteoblast (hFOB1.19) growth, NDPC50-PFs with different amounts of NDPC50 demonstrated no negative effects on cell proliferation and osteogenic differentiation. Furthermore, we focused on the behaviors of NDPC-PFs implanted into mice for 8 weeks and found that NDPC-PFs induced acceptable immune response and can reduce the rapid biodegradation of PLGA matrix. Our results represent the first in vivo research on ND (or NDPC) as nanofillers in a polymer matrix for bone tissue engineering. The high mechanical properties, good in vitro and in vivo biocompatibility, and increased mineralization capability suggest that biodegradable PLGA composite matrices loaded with NDPC may potentially be useful for a variety of biomedical applications, especially bone tissue engineering.

  11. Mechanistic Studies on the Self-Assembly of PLGA Patchy Particles and Their Potential Applications in Biomedical Imaging.

    PubMed

    Salvador-Morales, C; Brahmbhatt, Binal; Márquez-Miranda, V; Araya-Duran, I; Canan, J; Gonzalez-Nilo, F; Vilos, C; Cebral, J; Mut, F; Lohner, R; Leong, B; Sundaresan, G; Zweit, J

    2016-08-01

    Currently, several challenges prevent poly(lactic-co-glycolic acid) (PLGA) particles from reaching clinical settings. Among these is a lack of understanding of the molecular mechanisms involved in the formation of these particles. We have been studying in depth the formation of patchy polymeric particles. These particles are made of PLGA and lipid-polymer functional groups. They have unique patch-core-shell structural features: hollow or solid hydrophobic cores and a patchy surface. Previously, we identified the shear stress as the most important parameter in a patchy particle's formation. Here, we investigated in detail the role of shear stress in the patchy particle's internal and external structure using an integrative experimental and computational approach. By cross-sectioning the multipatch particles, we found lipid-based structures embedded in the entire PLGA matrix, which represents a unique finding in the PLGA field. By developing novel computational fluid dynamics and molecular dynamics simulations, we found that the shear stress determines the internal structure of the patchy particles. Equally important, we discovered that these particles emit a photoacoustic (PA) signal in the optical clinical imaging window. Our results show that particles with multiple patches emit a higher PA signal than single-patch particles. This phenomenon most likely is due to the fact that multipatchy particles absorb more heat than single-patchy particles as shown by differential scanning calorimetry analysis. Furthermore, we demonstrated the use of patchy polymeric particles as photoacoustic molecular probes both in vitro and in vivo studies. The fundamental studies described here will help us to design more effective PLGA carriers for a number of medical applications as well as to accelerate their medical translation.

  12. Mechanistic Studies on the Self-Assembly of PLGA Patchy Particles and Their Potential Applications in Biomedical Imaging.

    PubMed

    Salvador-Morales, C; Brahmbhatt, Binal; Márquez-Miranda, V; Araya-Duran, I; Canan, J; Gonzalez-Nilo, F; Vilos, C; Cebral, J; Mut, F; Lohner, R; Leong, B; Sundaresan, G; Zweit, J

    2016-08-01

    Currently, several challenges prevent poly(lactic-co-glycolic acid) (PLGA) particles from reaching clinical settings. Among these is a lack of understanding of the molecular mechanisms involved in the formation of these particles. We have been studying in depth the formation of patchy polymeric particles. These particles are made of PLGA and lipid-polymer functional groups. They have unique patch-core-shell structural features: hollow or solid hydrophobic cores and a patchy surface. Previously, we identified the shear stress as the most important parameter in a patchy particle's formation. Here, we investigated in detail the role of shear stress in the patchy particle's internal and external structure using an integrative experimental and computational approach. By cross-sectioning the multipatch particles, we found lipid-based structures embedded in the entire PLGA matrix, which represents a unique finding in the PLGA field. By developing novel computational fluid dynamics and molecular dynamics simulations, we found that the shear stress determines the internal structure of the patchy particles. Equally important, we discovered that these particles emit a photoacoustic (PA) signal in the optical clinical imaging window. Our results show that particles with multiple patches emit a higher PA signal than single-patch particles. This phenomenon most likely is due to the fact that multipatchy particles absorb more heat than single-patchy particles as shown by differential scanning calorimetry analysis. Furthermore, we demonstrated the use of patchy polymeric particles as photoacoustic molecular probes both in vitro and in vivo studies. The fundamental studies described here will help us to design more effective PLGA carriers for a number of medical applications as well as to accelerate their medical translation. PMID:27468612

  13. Antimicrobial PLGA ultrafine fibers: interaction with wound bacteria.

    PubMed

    Said, Somiraa S; Aloufy, Affaf K; El-Halfawy, Omar M; Boraei, Nabila A; El-Khordagui, Labiba K

    2011-09-01

    The structure and functions of polymer nanofibers as wound dressing materials have been well investigated over the last few years. However, during the healing process, nanofibrous mats are inevitably involved in dynamic interactions with the wound environment, an aspect not explored yet. Potential active participation of ultrafine fibers as wound dressing material in a dynamic interaction with wound bacteria has been examined using three wound bacterial strains and antimicrobial fusidic acid (FA)-loaded electrospun PLGA ultrafine fibers (UFs). These were developed and characterized for morphology and in-use pharmaceutical attributes. In vitro microbiological studies showed fast bacterial colonization of UFs and formation of a dense biofilm. Interestingly, bacterial stacks on UFs resulted in a remarkable enhancement of drug release, which was associated with detrimental changes in morphology of UFs in addition to a decrease in pH of their aqueous incubation medium. In turn, UFs by allowing progressively faster release of bioactive FA eradicated planktonic bacteria and considerably suppressed biofilm. Findings point out the risk of wound reinfection and microbial resistance upon using non-medicated or inadequately medicated bioresorbable fibrous wound dressings. Equally important, data strongly draw attention to the importance of characterizing drug delivery systems and establishing material-function relationships for biomedical applications under biorelevant conditions.

  14. Increased osteoblast function on PLGA composites containing nanophase titania.

    PubMed

    Webster, Thomas J; Smith, Tyler A

    2005-09-15

    Nanotechnology creates materials that potentially outperform, at several boundaries, existing materials in terms of mechanical, electrical, catalytic, and optical properties. However, despite their promise to mimic the surface roughness cells experience in vivo, the use of nanophase materials in biological applications remains to date largely unexplored. The objective of the present in vitro study was, therefore, to determine whether when added to a polymer scaffold, nanophase compared to conventional ceramics enhance functions of osteoblasts (or bone-forming cells). Results from this study provided the first evidence that functions (specifically, adhesion, synthesis of alkaline phosphatase, and deposition of calcium-containing mineral) of osteoblasts increased on poly-lactic-co-glycolic acid (PLGA) scaffolds containing nanophase compared to conventional grain size titania with greater weight percentage (from 10-30 wt %). Because the chemistry, material phase, porosity (%), and pore size of the composites were similar, this study implies that the surface features created by adding nanophase compared to conventional titania was a key parameter that enhanced functions of osteoblasts. In this manner, the study adds another novel property of nanophase ceramics: their ability to promote osteoblast functions in vitro when added to a polymer scaffold. For this reason, nanophase ceramics (and nanomaterials in general) deserve further attention as orthopedic tissue engineering materials.

  15. Stem Cells Grown in Osteogenic Medium on PLGA, PLGA/HA, and Titanium Scaffolds for Surgical Applications

    PubMed Central

    Asti, Annalia; Gastaldi, Giulia; Dorati, Rossella; Saino, Enrica; Conti, Bice; Visai, Livia; Benazzo, Francesco

    2010-01-01

    Pluripotent adipose tissue-derived stem cells (hASCs) can differentiate into various mesodermal cell types such as osteoblasts, chondroblasts, and myoblasts. We isolated hASCs from subcutaneous adipose tissue during orthopaedic surgery and induced the osteogenic differentiation for 28 days on three different synthetic scaffolds such as polylactide-co-glycolide (PLGA), polylactide-co-glycolide/hydroxyapatite (PLGA/HA), and trabecular titanium scaffolds (Ti6Al4V). Pore size can influence certain criteria such as cell attachment, infiltration, and vascularization. The aim of this study was to investigate the performance of PLGA and PLGA/HA scaffolds with a higher porosity, ranging between 75% and 84%, with respect to Ti scaffolds but with smaller pore size, seeded with hASCs to develop a model that could be used in the treatment of bone defects and fractures. Osteogenesis was assessed by ELISA quantitation of extracellular matrix protein expression, von Kossa staining, X-ray microanalysis, and scanning electron microscopy. The higher amount of protein matrix on the Ti scaffold with respect to PLGA and PLGA/HA leads to the conclusion that not only the type of material but the structure significantly affects cell proliferation. PMID:21234383

  16. Thermal property and assessment of biocompatibility of poly(lactic-co-glycolic) acid/graphene nanocomposites

    SciTech Connect

    Adhikari, Ananta R.; Rusakova, Irene; Chu, Wei-Kan; Haleh, Ardebili; Luisi, Jonathan; Panova, Neli I.; Laezza, Fernanda

    2014-02-07

    Polymer-matrix nanocomposites based on Poly(lactic-co-glycolic) acid (PLGA) and Graphene platelets (GNPs) were studied. GNPs, nanomaterials with a 2D flat surface, were chosen with or without chemical modification in PLGA/GNP nanocomposites and their microstructure, thermal property, and their compatibility as scaffolds for cell growth were investigated. PLGA/GNP nanocomposites (0, 1, and 5 wt. % of GNPs) were prepared using a solution based technique. Transmission electron microscopy, X-ray diffraction, Differential scanning calorimeter, and Thermogravimetric analyzer were used to analyze morphology and thermal properties. This work demonstrated the role of GNPs flat surface to provide a favorable platform resulting in an enhanced PLGA crystallization. Functionalized GNPs suppress both the thermal stability and the crystallization of PLGA. Finally, to determine the potential usefulness of these scaffolds for biomedical applications, mammalian cells were cultured on various PLGA/GNP nanocomposites (0, 1, and 5 wt. % GNPs). 1 wt. % PLGA/GNP nanocomposites showed better biocompatibility for cell growth with/without graphenes functionalization compared to pure PLGA and 5 wt. % PLGA/GNP. The function of GNPs in PLGA/GNPs (1 wt. %) composites is to provide a stage for PLGA crystallization where cell growth is favored. These results provide strong evidence for a new class of materials that could be important for biomedical applications.

  17. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    PubMed

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7 kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25 kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7 kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25 kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  18. A Novel Method for Preparing Surface-Modified Fluocinolone Acetonide Loaded PLGA Nanoparticles for Ocular Use: In Vitro and In Vivo Evaluations.

    PubMed

    Salama, Alaa H; Mahmoud, Azza A; Kamel, Rabab

    2016-10-01

    Our objective was to prepare nanoparticulate system using a simple yet attractive innovated method as an ophthalmic delivery system for fluocinolone acetonide to improve its ocular bioavailability. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by adopting thin film hydration method using PLGA/poloxamer 407 in weight ratios of 1:5 and 1:10. PLGA was used in 75/25 and 50/50 copolymer molar ratio of DL-lactide/glycolide. Results revealed that using PLGA with lower glycolic acid monomer ratio exhibited high particle size (PS), zeta potential (ZP) and drug encapsulation efficiency (EE) values with slow drug release pattern. Also, doubling the drug concentration during nanoparticles preparation ameliorated its EE to reach almost 100%. Furthermore, studies for separating the un-entrapped drug in nanoparticles using centrifugation method at 20,000 rpm for 30 min showed that the separated clear supernatant contained nanoparticles encapsulating an important drug amount. Therefore, separation of un-entrapped drug was carried out by filtrating the preparation using 20-25 μm pore size filter paper to avoid drug loss. Aiming to increase the PLGA nanoparticles mucoadhesion ability, surface modification of selected formulation was done using different amount of stearylamine and chitosan HCl. Nanoparticles coated with 0.1% w/v chitosan HCl attained most suitable results of PS, ZP and EE values as well as high drug release properties. Transmission electron microphotographs illustrated the deposition of chitosan molecules on the nanoparticles surfaces. Pharmacokinetic studies on Albino rabbit's eyes using HPLC indicated that the prepared novel chitosan-coated PLGA nanoparticles subjected to separation by filtration showed rapid and extended drug delivery to the eye.

  19. Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

    2013-09-01

    Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy.Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. Electronic supplementary information (ESI) available: Synthesis and characterization of compounds, dynamic time sweep, H

  20. Optical tweezers based measurement of PLGA-NP interaction with prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Blesener, Thea; Mondal, Argha; Menon, Jyothi U.; Nguyen, Kytai T.; Mohanty, Samarendra

    2013-02-01

    In order to quantify the binding capacities of polymeric, biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), conjugated with either R11 peptides or Folic Acid, the strength by detach from prostate cancer cells (PCCs) was measured via optical tweezers based measurements. Specific nanoparticle drug delivery eliminates the previously used diffuse, full-body application of potent cancer drugs by localizing drug delivery to malignant cells. Precise monitoring of NP position in the trap near the PCC membrane using a fluorescence imaging based method enabled calibration of the trap stiffness and subsequent force measurements. By defining the force with which the many diverse conjugates and coatings of different types of NPs bind the vast array of cancer cell types, chemotherapeutic drugs can be delivered in a specific manner with the optimal particle and corresponding conjugates. Further, and most significantly, the rupture force measurements will reveal whether or not targeted nanoparticles can overcome the force of blood attempting to pull the particle from designated cells. Our preliminary study revealed that the binding between PLGA-NPs and prostate cancer cells is enhanced by coating with folic acid or R11 peptides. These conjugates increase the force required to detach the particle thus allowing particles to overcome drag force of the blood in prostate capillary systems.

  1. Epigallocatechin-3-O-Gallate-Loaded Poly(lactic-co-glycolic acid) Fibrous Sheets as Anti-Adhesion Barriers.

    PubMed

    Lee, Jong Ho; Shin, Yong Cheol; Yang, Won Jun; Park, Jong-chul; Hyon, Suong-hyu; Han, Dong-wook

    2015-08-01

    Epigallocatechin-3-O-gallate (EGCG), the main polyphenolic component of green tea, has a wide range of pharmacological activities, including antioxidant, anti-inflammatory, and anti-fibrotic effects. In this study, EGCG-loaded poly(lactic-co-glycolic acid) (PLGA) sheets were prepared by electrospinning nanofibers and evaluating their potential as tissue-adhesion barriers. EGCG-loaded PLGA (E-PLGA) fibrous sheets were electrospun from a PLGA solution containing 8% (w/v) EGCG. The average diameter of E-PLGA fibers was 397 ± 159 nm, which was comparable to that of pure PLGA fibers (459 ± 154 nm). EGCG was uniformly dispersed in E-PLGA sheets without direct chemical interactions. E-PLGA fibrous sheets showed sustained release of EGCG by controlled diffusion and PLGA degradation. The attachment and proliferation of L-929 fibroblastic cells were significantly (p < 0.05) suppressed in E-PLGA sheets. Furthermore, E-PLGA fibrous sheets did not induce any inflammatory response to J774A.1 macrophages. The anti-adhesion efficacy of E-PLGA fibrous sheets was evaluated in the intraperitoneal adhesion model in rats. Two weeks after surgical treatment, macroscopic adhesion (extent and severity) scores and histopathological tissue responses of E-PLGA fibrous sheets were significantly lower than those of non-treated controls and pure PLGA sheets. The results suggest that the scores are comparable, and in some cases superior, to those of other commercialized tissue-adhesion barriers. In conclusion, our study findings suggest that E-PLGA fibrous sheets may be exploited as potential tissue-adhesion barriers for the prevention of post-surgical adhesion formation. PMID:26295146

  2. Controlled release of simvastatin-loaded thermo-sensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics.

    PubMed

    Yan, Qi; Xiao, Li-Qun; Tan, Lei; Sun, Wei; Wu, Tao; Chen, Liang-Wen; Mei, Yan; Shi, Bin

    2015-11-01

    Reports on the local delivery of drug loaded injectable hydrogels for bone regeneration are currently limited. This study assessed the effect of controlled simvastatin (SIM) release from a thermo-sensitive hydrogel in vitro and in vivo. We successfully manufactured and evaluated thermo-sensitive poly(d,l-lactide-co-glycolide)-poly(ethylene glycol)-poly(d,l-lactide-co-glycolide) triblock copolymers (PLGA-PEG-PLGA) loaded with SIM. The osteogenic effect of this hydrogel was tested in vitro and in vivo. MC-3T3 E1 cells proliferation and osteoblastic differentiation was analyzed after cultivation with the hydrogel extracts. Cells co-cultured with SIM/PLGA-PEG-PLGA extracts showed an increase in mineralization and osteogenic gene expression compared to the other two groups. Additionally, the characteristics of this composite in vivo were demonstrated using a rat bone defect model. The bone defects injected with SIM/PLGA-PEG-PLGA hydrogel showed increased new bone formation compared to samples treated with PLGA-PEG-PLGA and control samples. The results of this study suggest that SIM/PLGA-PEG-PLGA might provide potential therapeutic value for bone healing.

  3. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

    PubMed

    Chopra, Deepti; Ray, Lipika; Dwivedi, Ashish; Tiwari, Shashi Kant; Singh, Jyoti; Singh, Krishna P; Kushwaha, Hari Narayan; Jahan, Sadaf; Pandey, Ankita; Gupta, Shailendra K; Chaturvedi, Rajnish Kumar; Pant, Aditya Bhushan; Ray, Ratan Singh; Gupta, Kailash Chand

    2016-04-01

    Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products. PMID:26803409

  4. PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration.

    PubMed

    Norouzi, Mohammad; Shabani, Iman; Ahvaz, Hana H; Soleimani, Masoud

    2015-07-01

    The novel strategies of skin regenerative treatment are aimed at the development of biologically responsive scaffolds capable of delivering multiple bioactive agents and cells to the target tissues. In this study, nanofibers of poly(lactic-co-glycolic acid) (PLGA) and gelatin were electrospun and the effect of parameters viz polymer concentration, acid concentration, flow rate and voltage on the morphology of the fibers were investigated. PLGA nanofibers encapsulating epidermal growth factor were also prepared through emulsion electrospinning. The core-sheath structure of the nanofibers was verified by transmission electron microscopy. The hemostatic attributes and the biocompatibility of the scaffolds for human fibroblast cell were scrutinized. Furthermore, gene expression of collagen type I and type III by the cells on the scaffolds was quantified using real-time reverse transcriptase polymerase chain reaction. The results indicated desirable bioactivity and hemostasis of the scaffolds with the capability of encapsulation and controlled release of the protein which can be served as skin tissue engineering scaffolds and wound dressings. PMID:25345387

  5. Effect of Polymer Porosity on Aqueous Self-Healing Encapsulation of Proteins in PLGA Microspheres

    PubMed Central

    Reinhold, Samuel E.

    2014-01-01

    Self-healing (SH) poly(lactic-co-glycolic acid) (PLGA) microspheres are a unique class of functional biomaterials capable of microencapsulating process-sensitive proteins by simple mixing and heating the drug-free polymer in aqueous protein solution. Drug-free SH microspheres of PLGA 50/50 with percolating pore networks of varying porosity (ε = 0.49–73) encapsulate increasing lysozyme (~1–10% w/w) with increasing ε, with typically ~20–25% pores estimated assessible to entry by the enzyme from the external solution. Release kinetics of lysozyme under physiological conditions is continuous over > 2 weeks and most strongly influenced by ε and protein loading before reaching a lag phase until 28 days at the study completion. Recovered enzyme after release is typically predominantly monomeric and active. Formulations containing acid-neutralizing MgCO3 at >4.3% exhibit >97% monomeric and active protein after the release with full mass balance recovery. Hence, control of SH polymer ε is a key parameter to development of this new class of biomaterials. PMID:24285573

  6. PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization.

    PubMed

    Manca, Maria-Letizia; Mourtas, Spyridon; Dracopoulos, Vassileios; Fadda, Anna Maria; Antimisiaris, Sophia G

    2008-04-01

    Various types of rifampicin (RIF)-loaded microparticles were compared for their stability during nebulization. Poly(lactide-co-glycolide) (PLGA), chitosan (CHT) and PLGA/CHT microparticles (MPs) were prepared by emulsion or precipitation techniques. MPs ability to be nebulized (NE%) as well as stability during freeze-drying or/and nebulization (NEED%), were evaluated after RIF extraction from MPs and determination by light spectroscopy. MP mean diameters and zeta-potential values were measured by dynamic light scattering, morphology was assessed by SEM, cytotoxicity by MTT method and mucoadhesive properties by mucin association. In all cases, freeze-drying prior to nebulization did not affect EE%, NE or NEED%. In CHT, MPs RIF encapsulation efficiency (EE%) decreased with increasing CHT concentration (viscosity) and CHT-MP NEED% was higher when the polymer was crosslinked by glutaraldehyde. PLGA MPs, exhibited both higher RIF EE% and also higher nebulization ability and NEED%, compared to CHT ones, but also higher cytotoxicity. However, when the two polymers were combined in the PLGA/CHT MPs, EE%, NE% and NEED% increased with increasing MP CHT-content. PLGA/CHT MPs with 0.50% or 0.75% CHT exhibited highest EE% for RIF and also best nebulization ability and stability, compared to all other MP formulations studied. Additionally they had good mucoadhesive properties and comparably low cytotoxicity.

  7. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.

    PubMed

    Ungaro, Francesca; d'Angelo, Ivana; Coletta, Ciro; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Perfetto, Brunella; Tufano, Maria Antonietta; Miro, Agnese; La Rotonda, Maria Immacolata; Quaglia, Fabiana

    2012-01-10

    Although few experimental studies have been handled so far to exploit the potential of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in the production of dry powders for antibiotic inhalation, there has been no comprehensive study on the role played by NP composition. In this work, we try to shed light on this aspect by designing and developing a pulmonary delivery system for antibiotics, such as tobramycin (Tb), based on PLGA NPs embedded in an inert microcarrier made of lactose, referred to as nano-embedded micro-particles (NEM). At nanosize level, helper hydrophilic polymers were used to impart the desired surface, bulk and release properties to PLGA NPs prepared by a modified emulsion-solvent diffusion technique. Results showed that poly(vinyl alcohol) (PVA) and chitosan (CS) are essential to optimise the size and modulate the surface properties of Tb-loaded PLGA NPs, whereas the use of alginate (Alg) allows efficient Tb entrapment within NPs and its release up to one month. Optimized formulations display good in vitro antimicrobial activity against P. aeruginosa planktonic cells. Furthermore, spray-drying of the NPs with lactose yielded NEM with peculiar but promising flow and aerosolization properties, while preserving the peculiar NP features. Nonetheless, in vivo biodistribution studies showed that PVA-modified Alg/PLGA NPs reached the deep lung, while CS-modified NPs were found in great amounts in the upper airways, lining lung epithelial surfaces. In conclusion, PLGA NP composition appears to play a crucial role in determining not only the technological features of NPs but, once processed in the form of NEM, also their in vitro/in vivo deposition pattern.

  8. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs

    PubMed Central

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B.; Jiang, X.; Lee, Chang Won; Renukaradhya, Gourapura J.

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs. PMID:27093541

  9. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    PubMed

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs. PMID:27093541

  10. Microencapsulation of curcumin in PLGA microcapsules by coaxial flow focusing

    NASA Astrophysics Data System (ADS)

    Lei, Fan; Si, Ting; Luo, Xisheng; Xu, Ronald X.

    2014-03-01

    Curcumin-loaded PLGA microcapsules are fabricated by a liquid-driving coaxial flow focusing device. In the process, a stable coaxial cone-jet configuration is formed under the action of a coflowing liquid stream and the coaxial liquid jet eventually breaks up into microcapsules because of flow instability. This process can be well controlled by adjusting the flow rates of three phases including the driving PVA water solution, the outer PLGA ethyl acetate solution and the inner curcumin propylene glycol solution. Confocal and SEM imaging methods clearly indicate the core-shell structure of the resultant microcapsules. The encapsulation rate of curcumin in PLGA is measured to be more than 70%, which is much higher than the tranditional methods such as emulsion. The size distribution of resultant microcapsules under different conditions is presented and compared. An in vitro release simulation platform is further developed to verify the feasibility and reliability of the method.

  11. Unraveling the cytotoxic potential of Temozolomide loaded into PLGA nanoparticles

    PubMed Central

    2014-01-01

    Background Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells. Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry. Results PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility. Conclusion PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity. PMID:24410831

  12. Controlled release of a heterogeneous human placental matrix from PLGA microparticles to modulate angiogenesis.

    PubMed

    Tonello, Sarah; Moore, Marc C; Sharma, Blanka; Dobson, Jon; McFetridge, Peter S

    2016-04-01

    A significant hurdle limiting musculoskeletal tissue regeneration is the inability to develop effective vascular networks to support cellular development within engineered constructs. Due to the inherent complexity of angiogenesis, where multiple biochemical pathways induce and control vessel formation, our laboratory has taken an alternate approach using a matrix material containing angiogenic and osteogenic proteins derived from human placental tissues. Single bolus administrations of the human placental matrix (hPM) have been shown to initiate angiogenesis but vascular networks deteriorated over time. Controlled/sustained delivery was therefore hypothesized to stabilize and extend network formation. To test this hypothesis, hPM was encapsulated in degradable poly(lactic-co-glycolic acid) (PLGA) microparticles to extend the release period. Microparticle preparation including loading, size, encapsulation efficiency, and release profile was optimized for hPM. The angiogenic cellular response to the hPM/PLGA-loaded microparticles was assessed in 3D alginate hydrogel matrices seeded with primary human endothelial cells. Results show an average microparticle diameter of 91.82 ± 2.92 μm, with an encapsulation efficiency of 75%, and a release profile extending over 30 days. Three-dimensional angiogenic assays with hPM-loaded PLGA microparticles showed initial stimulation of angiogenic tubules after 14 days and further defined network formations after 21 days of culture. Although additional optimization is necessary, these studies confirm the effectiveness of a novel controlled multi-protein release approach to induce and maintain capillary networks within alginate tissue scaffolds. PMID:26864696

  13. Design of smart GE11-PLGA/PEG-PLGA blend nanoparticulate platforms for parenteral administration of hydrophilic macromolecular drugs: synthesis, preparation and in vitro/ex vivo characterization.

    PubMed

    Colzani, Barbara; Speranza, Giovanna; Dorati, Rossella; Conti, Bice; Modena, Tiziana; Bruni, Giovanna; Zagato, Elisa; Vermeulen, Lotte; Dakwar, George R; Braeckmans, Kevin; Genta, Ida

    2016-09-25

    Active drug targeting and controlled release of hydrophilic macromolecular drugs represent crucial points in designing efficient polymeric drug delivery nanoplatforms. In the present work EGFR-targeted polylactide-co-glycolide (PLGA) nanoparticles were made by a blend of two different PLGA-based polymers. The first, GE11-PLGA, in which PLGA was functionalized with GE11, a small peptide and EGFR allosteric ligand, able to give nanoparticles selective targeting features. The second polymer was a PEGylated PLGA (PEG-PLGA) aimed at improving nanoparticles hydrophilicity and stealth features. GE11 and GE11-PLGA were custom synthetized through a simple and inexpensive method. The nanoprecipitation technique was exploited for the preparation of polymeric nanoparticles composed by a 1:1weight ratio between GE11-PLGA and PEG-PLGA, obtaining smart nanoplatforms with proper size for parenteral administration (143.9±5.0nm). In vitro cellular uptake in EGFR-overexpressing cell line (A549) demonstrated an active internalization of GE11-functionalized nanoparticles. GE11-PLGA/PEG-PLGA blend nanoparticles were loaded with Myoglobin, a model hydrophilic macromolecule, reaching a good loading (2.42% respect to the theoretical 4.00% w/w) and a prolonged release over 60days. GE11-PLGA/PEG-PLGA blend nanoparticles showed good in vitro stability for 30days in physiological saline solution at 4°C and for 24h in pH 7.4 or pH 5.0 buffer at 37°C respectively, giving indications about potential storage and administration conditions. Furthermore ex vivo stability study in human plasma using fluorescence Single Particle Tracking (fSPT) assessed good GE11-PLGA/PEG-PLGA nanoparticles dimensional stability after 1 and 4h. Thanks to the versatility in polymeric composition and relative tunable nanoparticles features in terms of drug incorporation and release, GE11-PLGA/PEG-PLGA blend NPs can be considered highly promising as smart nanoparticulate platforms for the treatment of diseases

  14. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    SciTech Connect

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-10-15

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA

  15. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.

    PubMed

    Park, Ju-Hwan; Lee, Jae-Young; Termsarasab, Ubonvan; Yoon, In-Soo; Ko, Seung-Hak; Shim, Jae-Seong; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-10-01

    A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system.

  16. Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery.

    PubMed

    Park, Ju-Hwan; Lee, Jae-Young; Termsarasab, Ubonvan; Yoon, In-Soo; Ko, Seung-Hak; Shim, Jae-Seong; Cho, Hyun-Jong; Kim, Dae-Duk

    2014-10-01

    A hyaluronic acid-ceramide (HACE) nanostructure embedded with docetaxel (DCT)-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) was fabricated for tumor-targeted drug delivery. NPs with a narrow size distribution and negative zeta potential were prepared by embedding DCT-loaded PLGA NPs into a HACE nanostructure (DCT/PLGA/HACE). DCT-loaded PLGA and DCT/PLGA/HACE NPs were characterized by solid-state techniques, including Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD). A sustained drug release pattern from the NPs developed was observed and negligible cytotoxicity was seen in NIH3T3 cells (normal fibroblast, CD44 receptor negative) and MDA-MB-231 cells (breast cancer cells, CD44 receptor positive). PLGA/HACE NPs containing coumarin 6, used as a fluorescent dye, exhibited improved cellular uptake efficiency, based on the HA-CD44 receptor interaction, compared to plain PLGA NPs. Cyanine 5.5 (Cy5.5)-labeled PLGA/HACE NPs were injected intravenously into a MDA-MB-231 tumor xenograft mouse model and demonstrated enhanced tumor targetability, compared with Cy5.5-PLGA NPs, according to a near-infrared fluorescence (NIRF) imaging study. Considering these experimental results, the DCT/PLGA/HACE NPs developed may be useful as a tumor-targeted drug delivery system. PMID:25079433

  17. Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions.

    PubMed

    Kahn, Cyril J F; Ziani, Kahina; Zhang, Ye Min; Liu, Jian; Tran, Nguyen; Babin, Jérôme; de Isla, Natalia; Six, Jean-Luc; Wang, Xiong

    2013-01-01

    This study aims to investigate the in vitro degradation of a poly(L-lactic-co-glycolic acid)-poly(L-lactic-co-ϵ-caprolactone) (PLGA-PLCL) composite scaffold's mechanical properties under static culture condition and 2 h period per day of traction-torsion cyclic culture conditions of simultaneous 10% uniaxial strain and 90° of torsion cycles at 0.33 Hz. Scaffolds were cultured in static conditions, during 28 days, with or without cell seeded or under dynamic conditions during 14 days in a bioreactor. Scaffolds' biocompatibility and proliferation were investigated with Alamar Blue tests and cell nuclei staining. Scaffolds' mechanical properties were tested during degradation by uniaxial traction test. The PLGA-PLCL composite scaffold showed a good cytocompatibility and a high degree of colonization in static conditions. Mechanical tests showed a competition between two process of degradation which have been associated to hydrolytic and enzymatic degradation for the reinforce yarn in poly(L-lactic-co-glycolic acid) (PLGA). The enzymatic degradation led to a decrease effect on mechanical properties of cell-seeded scaffolds during the 21st days, but the hydrolytic degradation was preponderant at day 28. In conclusion, the structure of this scaffold is adapted to culture in terms of biocompatibility and cell orientation (microfiber) but must be improved by delaying the degradation of it reinforce structure in PLGA.

  18. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(D,L)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia.

    PubMed

    Piazza, Justin; Hoare, Todd; Molinaro, Luke; Terpstra, Kristen; Bhandari, Jayant; Selvaganapathy, P Ravi; Gupta, Bhagwati; Mishra, Ram K

    2014-05-01

    Lectin-functionalized, polyethylene glycol-block-poly-(D,L)-lactic-co-glycolic acid nanoparticles loaded with haloperidol were prepared with narrow size distributions and sizes <135nm. The nanoparticles exhibited high Solanum tuberosum lectin (STL) conjugation efficiencies, encapsulation efficiencies, and drug loading capacities. The in vitro release of haloperidol was 6-8% of the loaded amount in endo-lysosomal conditions over 96h, demonstrating minimal drug leakage and the potential for the efficient drug transport to the targeted brain tissue. The haloperidol released upon erosion was successful in displacing [(3)H] N-propylnorapomorphine and binding to bovine striatal dopamine D2 receptors. Both haloperidol-loaded nanoparticle formulations were found to be highly effective at inducing catalepsy. Intranasal administration of STL-functionalized nanoparticles increased the brain tissue haloperidol concentrations by 1.5-3-fold compared to non-STL-functionalized particles and other routes of administration. This formulation demonstrates promise in the reduction of the drug dose necessary to produce a therapeutic effect with antipsychotic drugs for the treatment of schizophrenia.

  19. Development of a methacrylate-terminated PLGA copolymer for potential use in craniomaxillofacial fracture plates.

    PubMed

    Upson, Sarah J; Partridge, Simon W; Tcacencu, Ion; Fulton, David A; Corbett, Ian; German, Matthew J; Dalgarno, Kenneth W

    2016-12-01

    We synthesised methacrylate-terminated PLGA (HT-PLGA, 85:15 LA:GA, 169kDa), for potential use as an adhesively attached craniomaxillofacial fracture fixation plate. The in vitro degradation of molecular weight, pH and flexural modulus were measured over 6weeks storage in PBS at 37°C, with commercially available high (225kDa, H-PLGA) and low (116kDa, L-PLGA) molecular weight 85:15 PLGAs used as comparators. Molecular weights of the materials reduced over 6weeks, HT-PLGA by 48%, H-PLGA by 23% and L-PLGA by 81%. HT-PLGA and H-PLGA exhibited a near constant pH (7.35) and had average flexural moduli in excess of 6GPa when produced, similar to that of the mandible. After 1week storage both exhibited a significant reduction in average modulus, however, from weeks 1-6 no further significant changes were observed, the average modulus never dropped significantly below 5.5GPa. In contrast, the L-PLGA caused a pH drop to below 7.3 by week 6 and an average modulus drop to 0.6 from an initial 4.6GPa. Cell culture using rat bone marrow stromal cells, revealed all materials were cytocompatible and exhibited no osteogenic potential. We conclude that our functionalised PLGA retains mechanical properties which are suitable for use in craniofacial fixation plates. PMID:27612737

  20. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I.

    PubMed

    Qian, Yunzhu; Chen, Hanbang; Xu, Yang; Yang, Jianxin; Zhou, Xuefeng; Zhang, Feimin; Gu, Ning

    2016-01-01

    Constructing biomimetic structure and incorporating bioactive molecules is an effective strategy to achieve a more favorable cell response. To explore the effect of electrospinning (ES) nanofibrous architecture and collagen I (COL I)-incorporated modification on tuning osteoblast response, a resorbable membrane composed of poly(lactic-co-glycolic acid)/poly(caprolactone) (PLGA/PCL; 7:3 w/w) was developed via ES. COL I was blended into PLGA/PCL solution to prepare composite ES membrane. Notably, relatively better cell response was delivered by the bioactive ES-based membrane which was fabricated by modification of 3,4-dihydroxyphenylalanine and COL I. After investigation by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurement, and mechanical test, polyporous three-dimensional nanofibrous structure with low tensile force and the successful integration of COL I was obtained by the ES method. Compared with traditional PLGA/PCL membrane, the surface hydrophilicity of collagen-incorporated membranes was largely enhanced. The behavior of mouse preosteoblast MC3T3-E1 cell infiltration and proliferation on membranes was studied at 24 and 48 hours. The negative control was fabricated by solvent casting. Evaluation of cell adhesion and morphology demonstrated that all the ES membranes were more favorable for promoting the cell adhesion and spreading than the casting membrane. Cell Counting Kit-8 assays revealed that biomimetic architecture, surface topography, and bioactive properties of membranes were favorable for cell growth. Analysis of β1 integrin expression level by immunofluorescence indicated that such biomimetic architecture, especially COL I-grafted surface, plays a key role in cell adhesion and proliferation. The real-time polymerase chain reaction suggested that both surface topography and bioactive properties could facilitate the cell adhesion. The combined effect of biomimetic architecture with enhanced

  1. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I

    PubMed Central

    Qian, Yunzhu; Chen, Hanbang; Xu, Yang; Yang, Jianxin; Zhou, Xuefeng; Zhang, Feimin; Gu, Ning

    2016-01-01

    Constructing biomimetic structure and incorporating bioactive molecules is an effective strategy to achieve a more favorable cell response. To explore the effect of electrospinning (ES) nanofibrous architecture and collagen I (COL I)-incorporated modification on tuning osteoblast response, a resorbable membrane composed of poly(lactic-co-glycolic acid)/poly(caprolactone) (PLGA/PCL; 7:3 w/w) was developed via ES. COL I was blended into PLGA/PCL solution to prepare composite ES membrane. Notably, relatively better cell response was delivered by the bioactive ES-based membrane which was fabricated by modification of 3,4-dihydroxyphenylalanine and COL I. After investigation by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurement, and mechanical test, polyporous three-dimensional nanofibrous structure with low tensile force and the successful integration of COL I was obtained by the ES method. Compared with traditional PLGA/PCL membrane, the surface hydrophilicity of collagen-incorporated membranes was largely enhanced. The behavior of mouse preosteoblast MC3T3-E1 cell infiltration and proliferation on membranes was studied at 24 and 48 hours. The negative control was fabricated by solvent casting. Evaluation of cell adhesion and morphology demonstrated that all the ES membranes were more favorable for promoting the cell adhesion and spreading than the casting membrane. Cell Counting Kit-8 assays revealed that biomimetic architecture, surface topography, and bioactive properties of membranes were favorable for cell growth. Analysis of β1 integrin expression level by immunofluorescence indicated that such biomimetic architecture, especially COL I-grafted surface, plays a key role in cell adhesion and proliferation. The real-time polymerase chain reaction suggested that both surface topography and bioactive properties could facilitate the cell adhesion. The combined effect of biomimetic architecture with enhanced

  2. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I

    PubMed Central

    Qian, Yunzhu; Chen, Hanbang; Xu, Yang; Yang, Jianxin; Zhou, Xuefeng; Zhang, Feimin; Gu, Ning

    2016-01-01

    Constructing biomimetic structure and incorporating bioactive molecules is an effective strategy to achieve a more favorable cell response. To explore the effect of electrospinning (ES) nanofibrous architecture and collagen I (COL I)-incorporated modification on tuning osteoblast response, a resorbable membrane composed of poly(lactic-co-glycolic acid)/poly(caprolactone) (PLGA/PCL; 7:3 w/w) was developed via ES. COL I was blended into PLGA/PCL solution to prepare composite ES membrane. Notably, relatively better cell response was delivered by the bioactive ES-based membrane which was fabricated by modification of 3,4-dihydroxyphenylalanine and COL I. After investigation by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurement, and mechanical test, polyporous three-dimensional nanofibrous structure with low tensile force and the successful integration of COL I was obtained by the ES method. Compared with traditional PLGA/PCL membrane, the surface hydrophilicity of collagen-incorporated membranes was largely enhanced. The behavior of mouse preosteoblast MC3T3-E1 cell infiltration and proliferation on membranes was studied at 24 and 48 hours. The negative control was fabricated by solvent casting. Evaluation of cell adhesion and morphology demonstrated that all the ES membranes were more favorable for promoting the cell adhesion and spreading than the casting membrane. Cell Counting Kit-8 assays revealed that biomimetic architecture, surface topography, and bioactive properties of membranes were favorable for cell growth. Analysis of β1 integrin expression level by immunofluorescence indicated that such biomimetic architecture, especially COL I-grafted surface, plays a key role in cell adhesion and proliferation. The real-time polymerase chain reaction suggested that both surface topography and bioactive properties could facilitate the cell adhesion. The combined effect of biomimetic architecture with enhanced

  3. Cytotoxicity and intracellular fate of PLGA and chitosan-coated PLGA nanoparticles in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells.

    PubMed

    Trif, Mihaela; Florian, Paula E; Roseanu, Anca; Moisei, Magdalena; Craciunescu, Oana; Astete, Carlos E; Sabliov, Cristina M

    2015-11-01

    Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 μg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015.

  4. Interactions of PLGA nanoparticles with blood components: protein adsorption, coagulation, activation of the complement system and hemolysis studies

    NASA Astrophysics Data System (ADS)

    Fornaguera, Cristina; Calderó, Gabriela; Mitjans, Montserrat; Vinardell, Maria Pilar; Solans, Conxita; Vauthier, Christine

    2015-03-01

    The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising alternative for delivery of drugs to specific cells. However, studies on their interaction with diverse blood components using different techniques are still lacking. Therefore, in the present work, the interaction of PLGA nanoparticles with blood components was described using different complementary techniques. The influence of different encapsulated compounds/functionalizing agents on these interactions was also reported. It is worth noting that all these techniques can be simply performed, without the need for highly sophisticated apparatus or skills. Moreover, their transference to industries and application of quality control could be easily performed. Serum albumin was adsorbed onto all types of tested nanoparticles. The saturation concentration was dependent on the nanoparticle size. In contrast, fibrinogen aggregation was dependent on nanoparticle surface charge. The complement activation was also influenced by the nanoparticle functionalization; the presence of a functionalizing agent increased complement activation, while the addition of an encapsulated compound only caused a slight increase. None of the nanoparticles influenced the coagulation cascade at low concentrations. However, at high concentrations, cationized nanoparticles did activate the coagulation cascade. Interactions of nanoparticles with erythrocytes did not reveal any hemolysis. Interactions of PLGA nanoparticles with blood proteins depended both on the nanoparticle properties and the protein studied. Independent of their loading/surface functionalization, PLGA nanoparticles did not influence the coagulation cascade and did not induce hemolysis of erythrocytes; they could be defined as safe concerning induction of embolization and cell lysis.The intravenous administration of poly(lactic-co-glycolic) acid (PLGA) nanoparticles has been widely reported as a promising

  5. Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system.

    PubMed

    Guo, Liting; Zhang, Haijun; Wang, Fei; Liu, Ping; Wang, Yonglu; Xia, Guohua; Liu, Ran; Li, Xueming; Yin, Haixiang; Jiang, Hulin; Chen, Baoan

    2015-01-01

    The study investigated the reversal of multidrug resistance (MDR) and the biodistribution of nanoparticles (NPs) that target leukemia cells in a nude mice model via a surface-bound transferrin (Tf). The cytotoxic cargo of daunorubicin (DNR) and tetrandrine (Tet) was protected in the NPs by an outer coat composed of polyethylene glycol (PEG)-poly-L-lysine (PLL)-poly(lactic-co-glycolic acid) (PLGA) NPs. Injection of DNR-Tet-Tf-PEG-PLL-PLGA NPs into nude mice bearing MDR leukemia cell K562/A02 xenografts was shown to inhibit tumor growth, and contemporaneous immunohistochemical analysis of tumor tissue showed the targeted NPs induced apoptosis in tumor cells. Targeted tumor cells exhibited a marked increase in Tf receptor expression, with noticeable decreases in P-glycoprotein, MDR protein, and nuclear factor κB, as assessed by quantitative real-time polymerase chain reaction and Western blot analysis. Moreover, the concentration of DNR was shown to increase in plasma, tumor tissue, and major organs. Flow cytometry analysis with a near-infrared fluorescent (NIRF) dye, NIR797, was used to study the effectiveness of Tf as a targeting group for leukemia cells, a finding that was supported by NIRF imaging in tumor-bearing nude mice. In summary, our studies show that DNR-Tet-Tf-PEG-PLL-PLGA NPs provide a specific and effective means to target cytotoxic drugs to MDR tumor cells.

  6. Topical delivery of urea encapsulated in biodegradable PLGA microparticles: O/W and W/O creams.

    PubMed

    Haddadi, Azita; Aboofazeli, Reza; Erfan, Mohammad; Farboud, Effat Sadat

    2008-09-01

    This study describes the formulation and characterization of O/W and W/O creams containing urea-loaded microparticles prepared with poly (D, L-lactic-co-glycolic acid) (PLGA) in order to encapsulate and stabilize urea. The solvent evaporation method was used for preparing PLGA microparticles containing urea. The microparticles size was evaluated by laser light diffractometry. The resulting microparticles were then incorporated in O/W and W/O creams and stability and the release pattern from the creams was evaluated by UV-spectrophotometry. The particle size of PLGA microparticles was in the range of 1-5 microm and most microparticles had a particle size smaller than 3 microm. The encapsulation efficiency was calculated as 40.5% +/- 3.4. This study also examined release pattern of urea which varied among different formulations. The results showed that the release from O/W creams followed Higuchi kinetics while the release from W/O creams showed the zero order kinetics and the creams containing microparticulated urea had slower release than free urea creams.

  7. Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles

    PubMed Central

    Jahan, Sheikh Tasnim; Haddadi, Azita

    2015-01-01

    The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(d, l-lactide co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to target dendritic cells (DCs). In brief, emulsification solvent evaporation technique was adapted to design NP formulations using two different viscosity grades (low and high) of both ester and carboxylic acid terminated PLGA. Incorporation of ligand was achieved following physical adsorption or chemical conjugation processes. The physicochemical characterizations of formulations were executed to assess the effects of different solvents (chloroform and ethyl acetate), stabilizer percentage, polymer types, polymer viscosities, ligand-NP bonding types, cross-linkers, and cryoprotectants (sucrose and trehalose). Modification of any of these parameters shows significant improvement of physicochemical properties of NPs. Ethyl acetate was the solvent of choice for the formulations to ensure better emulsion formation. Infrared spectroscopy confirmed the presence of anti-CD205 antibody in the NP formulation. Finally, cytotoxicity assay confirmed the safety profile of the NPs for DCs. Thus, ligand modified structurally concealed PLGA NPs is a promising delivery tool for targeting DCs in vivo. PMID:26677326

  8. Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system.

    PubMed

    Guo, Liting; Zhang, Haijun; Wang, Fei; Liu, Ping; Wang, Yonglu; Xia, Guohua; Liu, Ran; Li, Xueming; Yin, Haixiang; Jiang, Hulin; Chen, Baoan

    2015-01-01

    The study investigated the reversal of multidrug resistance (MDR) and the biodistribution of nanoparticles (NPs) that target leukemia cells in a nude mice model via a surface-bound transferrin (Tf). The cytotoxic cargo of daunorubicin (DNR) and tetrandrine (Tet) was protected in the NPs by an outer coat composed of polyethylene glycol (PEG)-poly-L-lysine (PLL)-poly(lactic-co-glycolic acid) (PLGA) NPs. Injection of DNR-Tet-Tf-PEG-PLL-PLGA NPs into nude mice bearing MDR leukemia cell K562/A02 xenografts was shown to inhibit tumor growth, and contemporaneous immunohistochemical analysis of tumor tissue showed the targeted NPs induced apoptosis in tumor cells. Targeted tumor cells exhibited a marked increase in Tf receptor expression, with noticeable decreases in P-glycoprotein, MDR protein, and nuclear factor κB, as assessed by quantitative real-time polymerase chain reaction and Western blot analysis. Moreover, the concentration of DNR was shown to increase in plasma, tumor tissue, and major organs. Flow cytometry analysis with a near-infrared fluorescent (NIRF) dye, NIR797, was used to study the effectiveness of Tf as a targeting group for leukemia cells, a finding that was supported by NIRF imaging in tumor-bearing nude mice. In summary, our studies show that DNR-Tet-Tf-PEG-PLL-PLGA NPs provide a specific and effective means to target cytotoxic drugs to MDR tumor cells. PMID:26213467

  9. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo.

    PubMed

    Frede, Annika; Neuhaus, Bernhard; Klopfleisch, Robert; Walker, Catherine; Buer, Jan; Müller, Werner; Epple, Matthias; Westendorf, Astrid M

    2016-01-28

    Cytokines and chemokines are predominant players in the progression of inflammatory bowel diseases. While systemic neutralization of these players with antibodies works well in some patients, serious contraindications and side effects have been reported. Therefore, the local interference of cytokine signaling mediated by siRNA-loaded nanoparticles might be a promising new therapeutic approach. In this study, we produced multi-shell nanoparticles consisting of a calcium phosphate (CaP) core coated with siRNA directed against pro-inflammatory mediators, encapsulated into poly(d,l-lactide-co-glycolide acid) (PLGA), and coated with a final outer layer of polyethyleneimine (PEI), for the local therapeutic treatment of colonic inflammation. In cell culture, siRNA-loaded CaP/PLGA nanoparticles exhibited a rapid cellular uptake, almost no toxicity, and an excellent in vitro gene silencing efficiency. Importantly, intrarectal application of these nanoparticles loaded with siRNA directed against TNF-α, KC or IP-10 to mice suffering from dextran sulfate sodium (DSS)-induced colonic inflammation led to a significant decrease of the target genes in colonic biopsies and mesenteric lymph nodes which was accompanied with a distinct amelioration of intestinal inflammation. Thus, this study provides evidence that the specific and local modulation of the inflammatory response by CaP/PLGA nanoparticle-mediated siRNA delivery could be a promising approach for the treatment of intestinal inflammation. PMID:26699423

  10. Targeted multidrug-resistance reversal in tumor based on PEG-PLL-PLGA polymer nano drug delivery system

    PubMed Central

    Guo, Liting; Zhang, Haijun; Wang, Fei; Liu, Ping; Wang, Yonglu; Xia, Guohua; Liu, Ran; Li, Xueming; Yin, Haixiang; Jiang, Hulin; Chen, Baoan

    2015-01-01

    The study investigated the reversal of multidrug resistance (MDR) and the biodistribution of nanoparticles (NPs) that target leukemia cells in a nude mice model via a surface-bound transferrin (Tf). The cytotoxic cargo of daunorubicin (DNR) and tetrandrine (Tet) was protected in the NPs by an outer coat composed of polyethylene glycol (PEG)-poly-l-lysine (PLL)-poly(lactic-co-glycolic acid) (PLGA) NPs. Injection of DNR-Tet-Tf-PEG-PLL-PLGA NPs into nude mice bearing MDR leukemia cell K562/A02 xenografts was shown to inhibit tumor growth, and contemporaneous immunohistochemical analysis of tumor tissue showed the targeted NPs induced apoptosis in tumor cells. Targeted tumor cells exhibited a marked increase in Tf receptor expression, with noticeable decreases in P-glycoprotein, MDR protein, and nuclear factor κB, as assessed by quantitative real-time polymerase chain reaction and Western blot analysis. Moreover, the concentration of DNR was shown to increase in plasma, tumor tissue, and major organs. Flow cytometry analysis with a near-infrared fluorescent (NIRF) dye, NIR797, was used to study the effectiveness of Tf as a targeting group for leukemia cells, a finding that was supported by NIRF imaging in tumor-bearing nude mice. In summary, our studies show that DNR-Tet-Tf-PEG-PLL-PLGA NPs provide a specific and effective means to target cytotoxic drugs to MDR tumor cells. PMID:26213467

  11. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    PubMed Central

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  12. Investigation and optimization of formulation parameters on preparation of targeted anti-CD205 tailored PLGA nanoparticles.

    PubMed

    Jahan, Sheikh Tasnim; Haddadi, Azita

    2015-01-01

    The purpose of this study was to assess the effect of various formulation parameters on anti-CD205 antibody decorated poly(d, l-lactide co-glycolide) (PLGA) nanoparticles (NPs) in terms of their ability to target dendritic cells (DCs). In brief, emulsification solvent evaporation technique was adapted to design NP formulations using two different viscosity grades (low and high) of both ester and carboxylic acid terminated PLGA. Incorporation of ligand was achieved following physical adsorption or chemical conjugation processes. The physicochemical characterizations of formulations were executed to assess the effects of different solvents (chloroform and ethyl acetate), stabilizer percentage, polymer types, polymer viscosities, ligand-NP bonding types, cross-linkers, and cryoprotectants (sucrose and trehalose). Modification of any of these parameters shows significant improvement of physicochemical properties of NPs. Ethyl acetate was the solvent of choice for the formulations to ensure better emulsion formation. Infrared spectroscopy confirmed the presence of anti-CD205 antibody in the NP formulation. Finally, cytotoxicity assay confirmed the safety profile of the NPs for DCs. Thus, ligand modified structurally concealed PLGA NPs is a promising delivery tool for targeting DCs in vivo. PMID:26677326

  13. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo.

    PubMed

    Frede, Annika; Neuhaus, Bernhard; Klopfleisch, Robert; Walker, Catherine; Buer, Jan; Müller, Werner; Epple, Matthias; Westendorf, Astrid M

    2016-01-28

    Cytokines and chemokines are predominant players in the progression of inflammatory bowel diseases. While systemic neutralization of these players with antibodies works well in some patients, serious contraindications and side effects have been reported. Therefore, the local interference of cytokine signaling mediated by siRNA-loaded nanoparticles might be a promising new therapeutic approach. In this study, we produced multi-shell nanoparticles consisting of a calcium phosphate (CaP) core coated with siRNA directed against pro-inflammatory mediators, encapsulated into poly(d,l-lactide-co-glycolide acid) (PLGA), and coated with a final outer layer of polyethyleneimine (PEI), for the local therapeutic treatment of colonic inflammation. In cell culture, siRNA-loaded CaP/PLGA nanoparticles exhibited a rapid cellular uptake, almost no toxicity, and an excellent in vitro gene silencing efficiency. Importantly, intrarectal application of these nanoparticles loaded with siRNA directed against TNF-α, KC or IP-10 to mice suffering from dextran sulfate sodium (DSS)-induced colonic inflammation led to a significant decrease of the target genes in colonic biopsies and mesenteric lymph nodes which was accompanied with a distinct amelioration of intestinal inflammation. Thus, this study provides evidence that the specific and local modulation of the inflammatory response by CaP/PLGA nanoparticle-mediated siRNA delivery could be a promising approach for the treatment of intestinal inflammation.

  14. Electrically stimulated osteogenesis on Ti-PPy/PLGA constructs prepared by laser-assisted processes.

    PubMed

    Paun, Irina Alexandra; Stokker-Cheregi, Flavian; Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Ion, Valentin; Zamfirescu, Marian; Mustaciosu, Cosmin Catalin; Mihailescu, Mona; Dinescu, Maria

    2015-10-01

    This work describes a versatile laser-based protocol for fabricating micro-patterned, electrically conductive titanium-polypyrrole/poly(lactic-co-glycolic)acid (Ti-PPy/PLGA) constructs for electrically stimulated (ES) osteogenesis. Ti supports were patterned using fs laser ablation in order to create high spatial resolution microstructures meant to provide mechanical resistance and physical cues for cell growth. Matrix Assisted Pulsed Laser Evaporation (MAPLE) was used to coat the patterned Ti supports with PPy/PLGA layers acting as biocompatible surfaces having chemical and electrical properties suitable for cell differentiation and mineralization. In vitro biological assays on osteoblast-like MG63 cells showed that the constructs maintained cell viability without cytotoxicity. At 24 h after cell seeding, electrical stimulation with currents of 200 μA was applied for 4 h. This treatment was shown to promote earlier onset of osteogenesis. More specifically, the alkaline phosphatase activity of the stimulated cultures reached the maximum before that of the non-stimulated ones, i.e. controls, indicating faster cell differentiation. Moreover, mineralization was found to occur at an earlier stage in the stimulated cultures, as compared to the controls, starting with Day 6 of cell culture. At later stages, calcium levels in the stimulated cultures were higher than those in control samples by about 70%, with Ca/P ratios similar to those of natural bone. In all, the laser-based protocol emerges as an efficient alternative to existing fabrication technologies. PMID:26117739

  15. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  16. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro

    PubMed Central

    Li, Yu-Hua; Wang, Zhen-Dong; Wang, Wei; Ding, Chang-Wei; Zhang, Hao-Xuan

    2015-01-01

    The composite of poly-lactic-co-glycolic acid (PLGA) and calcium phosphate cements (CPC) are currently widely used in bone tissue engineering. However, the properties and biocompatibility of the alendronate-loaded PLGA/CPC (APC) porous scaffolds have not been characterized. APC scaffolds were prepared by a solid/oil/water emulsion solvent evaporation method. The morphology, porosity, and mechanical strength of the scaffolds were characterized. Bone marrow mesenchymal stem cells (BMSCs) from rabbit were cultured, expanded and seeded on the scaffolds, and the cell morphology, adhesion, proliferation, cell cycle and osteogenic differentiation of BMSCs were determined. The results showed that the APC scaffolds had a porosity of 67.43 ± 4.2% and pore size of 213 ± 95 µm. The compressive strength for APC was 5.79 ± 1.21 MPa, which was close to human cancellous bone. The scanning electron microscopy, cell counting kit-8 assay, flow cytometry and ALP activity revealed that the APC scaffolds had osteogenic potential on the BMSCs in vitro and exhibited excellent biocompatibility with engineered bone tissue. APC scaffolds exhibited excellent biocompatibility and osteogenesis potential and can potentially be used for bone tissue engineering. PMID:25877763

  17. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  18. Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo.

    PubMed

    Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T

    2015-09-01

    Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363

  19. PLGA microsphere-mediated growth hormone release hormone expression induces intergenerational growth.

    PubMed

    Ren, Xiao-Hui; Zhang, Yong-Liang; Luo, Hu-Ying; Li, Hong-Yi; Liu, Song-Cai; Zhang, Ming-Jun; Ouyang, Song-Ying; Xi, Qian-Yun; Jiang, Qing-Yan

    2009-01-01

    To improve animal growth, growth hormone-releasing hormone (GHRH) expression vectors that maintain constant GHRH expression can be directly injected into muscles. To deliver the GHRH expression vectors, biodegradable microspheres have been used as a sustained release system. Although administering GHRH through microspheres is a common practice, the intergenerational effects of this delivery system are unknown. To investigate the intergenerational effects of polylactic-co-glycolic acid (PLGA) encapsulated plasmid-mediated GHRH supplements, pCMV-Rep-GHRH microspheres were injected into pregnant mice. Growth and expression of GHRH were measured in the offspring. RT-PCR and immunohistochemistry reveal GHRH expression 3-21 days post-injection. The proportion of GH-positive cells in the GHRH treated offspring was 48.2% higher than in the control group (P < 0.01). The GHRH treated offspring were 6.15% (P < 0.05) larger than the control offspring. At day 49 post-injection, IGF-I serum levels were significantly higher in the treatment group than in the control group. This study confirms that intramuscular expression of GHRH mediated by PLGA microspheres significantly enhances intergenerational growth.

  20. Electrically stimulated osteogenesis on Ti-PPy/PLGA constructs prepared by laser-assisted processes.

    PubMed

    Paun, Irina Alexandra; Stokker-Cheregi, Flavian; Luculescu, Catalin Romeo; Acasandrei, Adriana Maria; Ion, Valentin; Zamfirescu, Marian; Mustaciosu, Cosmin Catalin; Mihailescu, Mona; Dinescu, Maria

    2015-10-01

    This work describes a versatile laser-based protocol for fabricating micro-patterned, electrically conductive titanium-polypyrrole/poly(lactic-co-glycolic)acid (Ti-PPy/PLGA) constructs for electrically stimulated (ES) osteogenesis. Ti supports were patterned using fs laser ablation in order to create high spatial resolution microstructures meant to provide mechanical resistance and physical cues for cell growth. Matrix Assisted Pulsed Laser Evaporation (MAPLE) was used to coat the patterned Ti supports with PPy/PLGA layers acting as biocompatible surfaces having chemical and electrical properties suitable for cell differentiation and mineralization. In vitro biological assays on osteoblast-like MG63 cells showed that the constructs maintained cell viability without cytotoxicity. At 24 h after cell seeding, electrical stimulation with currents of 200 μA was applied for 4 h. This treatment was shown to promote earlier onset of osteogenesis. More specifically, the alkaline phosphatase activity of the stimulated cultures reached the maximum before that of the non-stimulated ones, i.e. controls, indicating faster cell differentiation. Moreover, mineralization was found to occur at an earlier stage in the stimulated cultures, as compared to the controls, starting with Day 6 of cell culture. At later stages, calcium levels in the stimulated cultures were higher than those in control samples by about 70%, with Ca/P ratios similar to those of natural bone. In all, the laser-based protocol emerges as an efficient alternative to existing fabrication technologies.

  1. Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo

    PubMed Central

    Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T

    2015-01-01

    Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363

  2. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs).

    PubMed

    Lee, Young Sook; Lim, Kwang Suk; Oh, Jung-Eun; Yoon, A-Rum; Joo, Wan Seok; Kim, Hyun Soo; Yun, Chae-Ok; Kim, Sung Wan

    2015-05-10

    Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290μm and an average pore size of 14.3μm, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than non-porous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications. PMID:25575866

  3. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol.

    PubMed

    Guan, Qingxia; Sun, Shuang; Li, Xiuyan; Lv, Shaowa; Xu, Ting; Sun, Jialin; Feng, Wenjing; Zhang, Liang; Li, Yongji

    2016-02-01

    This study investigated the therapeutic efficiency of monomethoxy polyethylene glycol-poly(lactic-co-glycolic acid) (mPEG-PLGA) co-loaded with syringopicroside and hydroxytyrosol as a drug with effective targeting and loading capacity as well as persistent circulation in vivo. The nanoparticles were prepared using a nanoprecipitation method with mPEG-PLGA as nano-carrier co-loaded with syringopicroside and hydroxytyrosol (SH-NPs). The parameters like in vivo pharmacokinetics, biodistribution in vivo, fluorescence in vivo endomicroscopy, and cellular uptake of SH-NPs were investigated. Results showed that the total encapsulation efficiency was 32.38 ± 2.76 %. Total drug loading was 12.01 ± 0.42 %, particle size was 91.70 ± 2.11 nm, polydispersity index was 0.22 ± 0.01, and zeta potential was -24.5 ± 1.16 mV for the optimized SH-NPs. The nanoparticle morphology was characterized using transmission electron microscopy, which indicated that the particles of SH-NPs were in uniformity within the nanosize range and of spherical core shell morphology. Drug release followed Higuchi kinetics. Compared with syringopicroside and hydroxytyrosol mixture (SH), SH-NPs produced drug concentrations that persisted for a significantly longer time in plasma following second-order kinetics. The nanoparticles moved gradually into the cell, thereby increasing the quantity. ALT, AST, and MDA levels were significantly lower on exposure to SH-NPs than in controls. SH-NPs could inhibit the proliferation of HepG2.2.15 cells and could be taken up by HepG2.2.15 cells. The results confirmed that syringopicroside and hydroxytyrosol can be loaded simultaneously into mPEG-PLGA nanoparticles. Using mPEG-PLGA as nano-carrier, sustained release, high distribution in the liver, and protective effects against hepatic injury were observed in comparison to SH. PMID:26704541

  4. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs).

    PubMed

    Lee, Young Sook; Lim, Kwang Suk; Oh, Jung-Eun; Yoon, A-Rum; Joo, Wan Seok; Kim, Hyun Soo; Yun, Chae-Ok; Kim, Sung Wan

    2015-05-10

    Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290μm and an average pore size of 14.3μm, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than non-porous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications.

  5. Synthesis, characterization and mechanistic-insight into the anti-proliferative potential of PLGA-gemcitabine conjugate.

    PubMed

    Khare, Vaibhav; Kour, Smit; Alam, Noor; Dubey, Ravindra Dharr; Saneja, Ankit; Koul, Mytre; Gupta, Ajai Prakash; Singh, Deepika; Singh, Shashank K; Saxena, Ajit K; Gupta, Prem N

    2014-08-15

    Gemcitabine, a nucleoside analogue, is used in the treatment of various solid tumors, however, its efficacy is limited by rapid metabolism by cytidine deaminase and fast kidney excretion. In this study, a polymeric conjugate of gemcitabine was prepared by covalent coupling with poly(lactic-co-glycolic) acid (PLGA), in order to improve anticancer efficacy of the drug. The prepared conjugate was characterized by various analytical techniques including FTIR, NMR and mass spectroscopic analysis. The stability study indicated that the polymeric conjugate was more stable in plasma as compared to native gemcitabine. Further, in vitro cytotoxicity determined in a panel of cell lines including pancreatic cancer (MIAPaCa-2), breast cancer (MCF-7) and colon cancer (HCT-116), indicated that the cytotoxic activity of gemcitabine was retained following conjugation with polymeric carrier. In the nucleoside transportation inhibition assay, it was found that the prepared conjugate was not dependent on nucleoside transporter for entering into the cells and this, in turn, reflecting potential implication of this conjugate in the therapy of transporter- deficient resistance cancer. Further, the cell cycle analysis showed that the sub-G1 (G0) apoptotic population was 46.6% and 60.6% for gemcitabine and PLGA gemcitabine conjugate, respectively. The conjugate produced remarkable decrease in mitochondrial membrane potential, a marker of apoptosis. In addition, there was a marked increase in PARP cleavage and P-H2AX expression with PLGA gemcitabine conjugate as compared to native gemcitabine indicating improved apoptotic activity. The findings demonstrated the potential of PLGA gemcitabine conjugate to improve clinical outcome of gemcitabine based chemotherapy of cancer. PMID:24810239

  6. Preparation, in vitro and in vivo evaluation of mPEG-PLGA nanoparticles co-loaded with syringopicroside and hydroxytyrosol.

    PubMed

    Guan, Qingxia; Sun, Shuang; Li, Xiuyan; Lv, Shaowa; Xu, Ting; Sun, Jialin; Feng, Wenjing; Zhang, Liang; Li, Yongji

    2016-02-01

    This study investigated the therapeutic efficiency of monomethoxy polyethylene glycol-poly(lactic-co-glycolic acid) (mPEG-PLGA) co-loaded with syringopicroside and hydroxytyrosol as a drug with effective targeting and loading capacity as well as persistent circulation in vivo. The nanoparticles were prepared using a nanoprecipitation method with mPEG-PLGA as nano-carrier co-loaded with syringopicroside and hydroxytyrosol (SH-NPs). The parameters like in vivo pharmacokinetics, biodistribution in vivo, fluorescence in vivo endomicroscopy, and cellular uptake of SH-NPs were investigated. Results showed that the total encapsulation efficiency was 32.38 ± 2.76 %. Total drug loading was 12.01 ± 0.42 %, particle size was 91.70 ± 2.11 nm, polydispersity index was 0.22 ± 0.01, and zeta potential was -24.5 ± 1.16 mV for the optimized SH-NPs. The nanoparticle morphology was characterized using transmission electron microscopy, which indicated that the particles of SH-NPs were in uniformity within the nanosize range and of spherical core shell morphology. Drug release followed Higuchi kinetics. Compared with syringopicroside and hydroxytyrosol mixture (SH), SH-NPs produced drug concentrations that persisted for a significantly longer time in plasma following second-order kinetics. The nanoparticles moved gradually into the cell, thereby increasing the quantity. ALT, AST, and MDA levels were significantly lower on exposure to SH-NPs than in controls. SH-NPs could inhibit the proliferation of HepG2.2.15 cells and could be taken up by HepG2.2.15 cells. The results confirmed that syringopicroside and hydroxytyrosol can be loaded simultaneously into mPEG-PLGA nanoparticles. Using mPEG-PLGA as nano-carrier, sustained release, high distribution in the liver, and protective effects against hepatic injury were observed in comparison to SH.

  7. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  8. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    PubMed Central

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-01-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations. PMID:27279329

  9. PLGA Nanoparticles and Their Versatile Role in Anticancer Drug Delivery.

    PubMed

    Khan, Iliyas; Gothwal, Avinash; Sharma, Ashok Kumar; Kesharwani, Prashant; Gupta, Lokesh; Iyer, Arun K; Gupta, Umesh

    2016-01-01

    Nanotechnological advancement has become a key standard for the diagnosis and treatment of several complex disorders such as cancer by utilizing the enhanced permeability and retention effect and tumor-specific targeting. Synthesis and designing the formulation of active agents in terms of their efficient delivery is of prime importance for healthcare. The use of nanocarriers has resolved the undesirable characteristics of anticancer drugs such as low solubility and poor permeability in cells. Several types of nanoparticles (NPs) have been designed with the use of various polymers along or devoid of surface engineering for targeting tumor cells. All NPs include polymers in their framework and, of these, polylactide-co-glycolide (PLGA) is biodegradable and Food and Drug Administration approved for human use. PLGA has been used extensively in the development of NPs for anticancer drug delivery. The extensive use of PLGA NPs is promising for cancer therapy, with higher efficiency and less adverse effects. The present review focused on recent developments regarding PLGA NPs, the methods used for their preparation, their characterization, and their utility in the delivery of chemotherapeutic agents. PMID:27651101

  10. Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma.

    PubMed

    Arshad, Azeem; Yang, Bin; Bienemann, Alison S; Barua, Neil U; Wyatt, Marcella J; Woolley, Max; Johnson, Dave E; Edler, Karen J; Gill, Steven S

    2015-01-01

    We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires intermittent infusions due to rapid clearance of carboplatin from the brain. In this study, carboplatin was encapsulated in lactic acid-glycolic acid copolymer (PLGA) to develop a novel drug delivery system. Neuronal and tumour cytotoxicity were assessed in primary neuronal and glioblastoma cell cultures. Distribution, tissue clearance and toxicity of carboplatin nanoparticles following CED was assessed in rat and porcine models. Carboplatin nanoparticles conferred greater tumour cytotoxicity, reduced neuronal toxicity and prolonged tissue half-life. In conclusion, this drug delivery system has the potential to improve the prognosis for patients with glioblastomas.

  11. Poly-lactic-glycolic-acid surface nanotopographies selectively decrease breast adenocarcinoma cell functions

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Webster, Thomas J.

    2012-04-01

    The ability of poly(lactic-co-glycolic acid) (PLGA, 50:50 PLG/PGA, wt%) nanotopographies to decrease lung epithelial carcinoma cell functions (including adhesion, proliferation, apoptosis and vascular endothelial growth factor (VEGF) secretion) has been previously reported. Specifically, results demonstrated decreased lung epithelial carcinoma cell VEGF synthesis on 23 nm surface-featured PLGA compared to traditional nanosmooth PLGA. However, clearly, different cell lines could have different behaviors on similar biomaterials. Thus, to investigate the universality of nanopatterned PLGA substrates to inhibit numerous cancer cell functions, here, breast epithelial adenocarcinoma cell (MCF-7) adhesion, proliferation, apoptosis and VEGF secretion were determined on different PLGA nanometer surface topographies. To isolate surface nanotopographical effects from all other surface properties, PLGA surfaces with various nanotopographies but similar chemistry and hydrophobicity were fabricated here. Atomic force microscopy (AFM) verified the varied nanotopographies on the PLGA surfaces prepared in this study. Importantly, results demonstrated for the first time significantly decreased breast adenocarcinoma cell functions (including decreased proliferation rate, increased apoptosis and decreased VEGF synthesis) on 23 nm featured PLGA surfaces compared to all other PLGA surface topographies fabricated (specifically, nanosmooth, 300 and 400 nm surface-featured PLGA surfaces). In contrast, healthy breast epithelial cells proliferated more (24%) on the 23 nm featured PLGA surfaces compared to all other PLGA samples. In summary, these results provided further insights into understanding the role PLGA surface nanotopographies can have on cancer cell functions and, more importantly, open the possibility of using polymer nanotopographies for a wide range of anticancer regenerative medicine applications (without resorting to the use of chemotherapeutics).

  12. Targeting delivery of etoposide to inhibit the growth of human glioblastoma multiforme using lactoferrin- and folic acid-grafted poly(lactide-co-glycolide) nanoparticles.

    PubMed

    Kuo, Yung-Chih; Chen, Yu-Chun

    2015-02-01

    Lactoferrin (Lf) and folic acid (FA) were crosslinked on poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for transporting etoposide across the blood-brain barrier (BBB) and treating human brain malignant glioblastoma. Lf- and FA-grafted PLGA NPs (Lf/FA/PLGA NPs) were employed to permeate the monolayer of human brain-microvascular endothelial cells (HBMECs) regulated by human astrocytes and to inhibit the multiplication of U87MG cells. Lf/FA/PLGA NPs showed a satisfactory entrapment efficiency of etoposide and characteristics of sustained drug release. When compared with PLGA NPs, the permeability coefficient for etoposide across the BBB using Lf/FA/PLGA NPs increased about twofold. The antiproliferative efficacy against the growth of U87MG cells was in the following order: Lf/FA/PLGA NPs>FA/PLGA NPs>PLGA NPs>free etoposide solution. In addition, the targeting ability of Lf/FA/PLGA NPs was evidenced by immunostaining of Lf receptor on HBMECs and folate receptor on U87MG cells during endocytosis. Lf/FA/PLGA NPs with loaded etoposide can be a promising anticancer pharmacotherapy to enhance the delivery of etoposide to malignant brain tumors for preclinical trials.

  13. Comparison of intracellular accumulation and cytotoxicity of free mTHPC and mTHPC-loaded PLGA nanoparticles in human colon carcinoma cells

    NASA Astrophysics Data System (ADS)

    Löw, Karin; Knobloch, Thomas; Wagner, Sylvia; Wiehe, Arno; Engel, Andrea; Langer, Klaus; von Briesen, Hagen

    2011-06-01

    The second generation photosensitizer mTHPC was approved by the European Medicines Agency (EMA) for the palliative treatment of advanced head and neck cancer in October 2001. It is known that mTHPC possesses a significant phototoxicity against a variety of human cancer cells in vitro but also exhibits dark toxicity and can cause adverse effects (especially skin photosensitization). Due to its poor water solubility, the administration of hydrophobic photosensitizer still presents several difficulties. To overcome the administration problems, the use of nanoparticles as drug carrier systems is much investigated. Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) have been extensively studied as delivery systems into tumours due to their biocompatibility and biodegradability. The goal of this study was the comparison of free mTHPC and mTHPC-loaded PLGA nanoparticles concerning cytotoxicity and intracellular accumulation in human colon carcinoma cells (HT29). The nanoparticles delivered the photosensitizer to the colon carcinoma cells and enabled drug release without losing its activity. The cytotoxicity assays showed a time- and concentration-dependent decrease in cell proliferation and viability after illumination. However, first and foremost mTHPC lost its dark toxic effects using the PLGA nanoparticles as a drug carrier system. Therefore, PLGA nanoparticles are a promising drug carrier system for the hydrophobic photosensitizer mTHPC.

  14. Biodegradable nanoparticles of mPEG-PLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing.

    PubMed

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing.

  15. Biodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing

    PubMed Central

    Du, Jing; Sun, Ying; Shi, Qiu-Sheng; Liu, Pei-Feng; Zhu, Ming-Jie; Wang, Chun-Hui; Du, Lian-Fang; Duan, You-Rong

    2012-01-01

    Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers. Various physicochemical properties of mPEG-PLGA-PLL NPs, including morphology, size, surface charge, siRNA encapsulation efficiency, and in vitro release profile of siRNA from NPs, were characterized by scanning electron microscope, particle size and zeta potential analyzer, and high performance liquid chromatography. The levels of siRNA uptake and targeted gene inhibition were detected in human lung cancer SPC-A1-GFP cells stably expressing green fluorescent protein. Examination of the cultured SPC-A1-GFP cells with fluorescent microscope and flow cytometry showed NPs loading Cy3-labeled siRNA had much higher intracellular siRNA delivery efficiencies than siRNA alone and Lipofectamine-siRNA complexes. The gene silencing efficiency of mPEG-PLGA-PLL NPs was higher than that of commercially available transfecting agent Lipofectamine while showing no cytotoxicity. Thus, the current study demonstrates that biodegradable NPs of mPEG-PLGA-PLL triblock copolymers can be potentially applied as novel non-viral vectors for improving siRNA delivery and gene silencing. PMID:22312268

  16. The effect of timing of mechanical stimulation on proliferation and differentiation of goat bone marrow stem cells cultured on braided PLGA scaffolds.

    PubMed

    van Eijk, Floor; Saris, Daniel B F; Creemers, Laura B; Riesle, Jens; Willems, W Jaap; van Blitterswijk, Clemens A; Verbout, Abraham J; Dhert, Wouter J A

    2008-08-01

    Bone marrow stromal cells (BMSCs) have been shown to proliferate and produce matrix when seeded onto braided poly(L-lactide/glycolide) acid (PLGA) scaffolds. Mechanical stimulation may be applied to stimulate tissue formation during ligament tissue engineering. This study describes for the first time the effect of constant load on BMSCs seeded onto a braided PLGA scaffold. The seeded scaffolds were subjected to four different loading regimes: Scaffolds were unloaded, loaded during seeding, immediately after seeding, or 2 days after seeding. During the first 5 days, changing the mechanical environment seemed to inhibit proliferation, because cells on scaffolds loaded immediately after seeding or after a 2-day delay, contained fewer cells than on unloaded scaffolds or scaffolds loaded during seeding (p<0.01 for scaffolds loaded after 2 days). During this period, differentiation increased with the period of load applied. After day 5, differences in cell content and collagen production leveled off. After day 11, cell number decreased, whereas collagen production continued to increase. Cell number and differentiation at day 23 were independent of the timing of the mechanical stimulation applied. In conclusion, static load applied to BMSCs cultured on PLGA scaffolds allows for proliferation and differentiation, with loading during seeding yielding the most rapid response. Future research should be aimed at elucidating the biomechanical and biochemical characteristics of tissue formed by BMSCs on PLGA under mechanical stimulation.

  17. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals.

    PubMed

    Mo, Yunfei; Guo, Rui; Liu, Jianghui; Lan, Yong; Zhang, Yi; Xue, Wei; Zhang, Yuanming

    2015-08-01

    Although extensively used in the fields of drug-carrier and tissue engineering, the biocompatibility and mechanical properties of polylactide-polyglycolide (PLGA) nanofiber membranes still limit their applications. The objective of this study was to improve their utility by introducing cellulose nanocrystals (CNCs) into PLGA nanofiber membranes. PLGA and PLGA/CNC composite nanofiber membranes were prepared via electrospinning, and the morphology and thermodynamic and mechanical properties of these nanofiber membranes were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). The cytocompatibility and cellular responses of the nanofiber membranes were also studied by WST-1 assay, SEM, and confocal laser scanning microscopy (CLSM). Incorporation of CNCs (1, 3, 5, and 7 wt.%) increased the average fiber diameter of the prepared nanofiber membranes from 100 nm (neat PLGA) to ∼400 nm (PLGA/7 wt.% CNC) and improved the thermal stability of the nanofiber membranes. Among the PLGA/CNC composite nanofiber membranes, those loaded with 7 wt.% CNC nanofiber membranes had the best mechanical properties, which were similar to those of human skin. Cell culture results showed that the PLGA/CNC composite nanofiber membranes had better cytocompatibility and facilitated fibroblast adhesion, spreading, and proliferation compared with neat PLGA nanofiber membranes. These preliminary results suggest that PLGA/CNC composite nanofiber membranes are promising new materials for the field of skin tissue engineering. PMID:26047881

  18. Development of sulfadiazine-decorated PLGA nanoparticles loaded with 5-fluorouracil and cell viability.

    PubMed

    Guimarães, Pedro Pires Goulart; Oliveira, Sheila Rodrigues; de Castro Rodrigues, Gabrielle; Gontijo, Savio Morato Lacerda; Lula, Ivana Silva; Cortés, Maria Esperanza; Denadai, Ângelo Márcio Leite; Sinisterra, Rubén Dario

    2015-01-01

    The aim of this work was to synthesize sulfadiazine-poly(lactide-co-glycolide) (SUL-PLGA) nanoparticles (NPs) for the efficient delivery of 5-fluorouracil to cancer cells. The SUL-PLGA conjugation was assessed using FTIR, 1H-NMR, 13C-NMR, elemental analysis and TG and DTA analysis. The SUL-PLGA NPs were characterized using transmission and scanning electron microscopy and dynamic light scattering. Additionally, the zeta potential, drug content, and in vitro 5-FU release were evaluated. We found that for the SUL-PLGA NPs, Dh = 114.0 nm, ZP = -32.1 mV and the encapsulation efficiency was 49%. The 5-FU was released for up to 7 days from the NPs. Cytotoxicity evaluations of 5-FU-loaded NPs (5-FU-SUL-PLGA and 5-FU-PLGA) on two cancer cell lines (Caco-2, A431) and two normal cell lines (fibroblast, osteoblast) were compared. Higher cytotoxicity of 5-FU-SUL-PLGA NPs were found to both cancer cell lines when compared to normal cell lines, demonstrating that the presence of SUL could significantly enhance the cytotoxicity of the 5-FU-SUL-PLGA NPs when compared with 5-FU-PLGA NPs. Thus, the development of 5-FU-SUL-PLGA NPs to cancer cells is a promising strategy for the 5-FU antitumor formulation in the future. PMID:25580685

  19. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes

    PubMed Central

    Chen, Yipei; Li, Yuzhuo; Shen, Wenjia; Li, Kun; Yu, Lin; Chen, Qinghua; Ding, Jiandong

    2016-01-01

    In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide. PMID:27531588

  20. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes.

    PubMed

    Chen, Yipei; Li, Yuzhuo; Shen, Wenjia; Li, Kun; Yu, Lin; Chen, Qinghua; Ding, Jiandong

    2016-01-01

    In treatment of diabetes, it is much desired in clinics and challenging in pharmaceutics and material science to set up a long-acting drug delivery system. This study was aimed at constructing a new delivery system using thermogelling PEG/polyester copolymers. Liraglutide, a fatty acid-modified antidiabetic polypeptide, was selected as the model drug. The thermogelling polymers were presented by poly(ε-caprolactone-co-glycolic acid)-poly(ethylene glycol)-poly(ε-caprolactone-co-glycolic acid) (PCGA-PEG-PCGA) and poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA). Both the copolymers were soluble in water, and their concentrated solutions underwent temperature-induced sol-gel transitions. The drug-loaded polymer solutions were injectable at room temperature and gelled in situ at body temperature. Particularly, the liraglutide-loaded PCGA-PEG-PCGA thermogel formulation exhibited a sustained drug release manner over one week in both in vitro and in vivo tests. This feature was attributed to the combined effects of an appropriate drug/polymer interaction and a high chain mobility of the carrier polymer, which facilitated the sustained diffusion of drug out of the thermogel. Finally, a single subcutaneous injection of this formulation showed a remarkably improved glucose tolerance of mice for one week. Hence, the present study not only developed a promising long-acting antidiabetic formulation, but also put forward a combined strategy for controlled delivery of polypeptide. PMID:27531588

  1. Transient aggregation of chitosan-modified poly(d,l-lactic-co-glycolic) acid nanoparticles in the blood stream and improved lung targeting efficiency.

    PubMed

    Lee, Song Yi; Jung, Eunjae; Park, Ju-Hwan; Park, Jin Woo; Shim, Chang-Koo; Kim, Dae-Duk; Yoon, In-Soo; Cho, Hyun-Jong

    2016-10-15

    Chitosan (CS)-modified poly(d,l-lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) were prepared and their lung targetability after intravenous administration was elucidated. PLGA NPs (mean diameter: 225nm; polydispersity index: 0.11; zeta potential: -15mV), 0.2% (w/v) CS-coated PLGA NPs (CS02-PLGA NPs, mean diameter: 264nm; polydispersity index: 0.17; zeta potential: -7mV), and 0.5% (w/v) CS-coated PLGA NPs (CS05-PLGA NPs, mean diameter: 338nm; polydispersity index: 0.23; zeta potential: 12mV) were fabricated by a modified solvent evaporation method. PLGA NPs maintained their initial particle size in different media, such as human serum albumin (HSA) solution, rat plasma, and distilled water (DW), while CS05-PLGA NPs exhibited the formation of aggregates in early incubation time and disassembly of those into the NPs in late incubation time (at 24h). According to the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, the binding affinity of CS05-PLGA NPs with HSA and rat plasma was higher than that of PLGA NPs. By a near-infrared fluorescence (NIRF) imaging test in the mouse, the selective accumulation of CS05-PLGA NPs, rather than PLGA NPs, in lung tissue was demonstrated. These findings suggest that CS05-PLGA NPs can form transient aggregates in the blood stream after intravenous administration and markedly improve lung targeting efficiency, compared with PLGA NPs. PMID:27421112

  2. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    PubMed

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system.

  3. Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering.

    PubMed

    Zhao, Wen; Li, Jiaojiao; Jin, Kaixiang; Liu, Wenlong; Qiu, Xuefeng; Li, Chenrui

    2016-02-01

    Electrospun PLGA-based scaffolds have been applied extensively in biomedical engineering, such as tissue engineering and drug delivery system. Due to lack of the recognition sites on cells, hydropholicity and single-function, the applications of PLGA fibrous scaffolds are limited. In order to tackle these issues, many works have been done to obtain functional PLGA-based scaffolds, including surface modifications, the fabrication of PLGA-based composite scaffolds and drug-loaded scaffolds. The functional PLGA-based scaffolds have significantly improved cell adhesion, attachment and proliferation. Moreover, the current study has summarized the applications of functional PLGA-based scaffolds in wound dressing, vascular and bone tissue engineering area as well as drug delivery system. PMID:26652474

  4. Noninvasive Characterization of the Effect of Varying PLGA Molecular Weight Blends on In Situ Forming Implant Behavior Using Ultrasound Imaging

    PubMed Central

    Solorio, Luis; Olear, Alexander M.; Hamilton, Jesse I.; Patel, Ravi B.; Beiswenger, Ashlei C.; Wallace, Jon E.; Zhou, Haoyan; Exner, Agata A.

    2012-01-01

    In situ forming implants (ISFIs) have shown promise in drug delivery applications due to their simple manufacturing and minimally invasive administration. Precise, reproducible control of drug release from ISFIs is essential to their successful clinical application. This study investigated the effect of varying the molar ratio of different molecular weight (Mw) poly(D,L-lactic-co-glycolic acid) (PLGA) polymers within a single implant on the release of a small Mw mock drug (sodium fluorescein) both in vitro and in vivo. Implants were formulated by dissolving three different PLGA Mw (15, 29, and 53kDa), as well as three 1:1 molar ratio combinations of each PLGA Mw in 1-methyl-2-pyrrolidinone (NMP) with the mock drug fluorescein. Since implant morphology and microstructure during ISFI formation and degradation is a crucial determinant of implant performance, and the rate of phase inversion has been shown to have an effect on the implant microstructure, diagnostic ultrasound was used to noninvasively quantify the extent of phase inversion and swelling behavior in both environments. Implant erosion, degradation, as well as the in vitro and in vivo release profiles were also measured using standard techniques. A non-linear mathematical model was used to correlate the drug release behavior with polymer phase inversion, with all formulations yielding an R2 value greater than 0.95. Ultrasound was also used to create a 3D image reconstruction of an implant over a 12 day span. In this study, swelling and phase inversion were shown to be inversely related to the polymer Mw with 53kDa polymer implants increasing at an average rate of 9.4%/day compared with 18.6%/day in the case of the 15 kDa PLGA. Additionally the onset of erosion, complete phase inversion, and degradation facilitated release required 9 d for 53 kDa implants, while these same processes began 3 d after injection into PBS with the 15 kDa implants. It was also observed that PLGA blends generally had intermediate

  5. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues.

    PubMed

    Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

    2016-03-01

    Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area.

  6. Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues

    PubMed Central

    Ignjatović, Nenad; Wu, Victoria; Ajduković, Zorica; Mihajilov-Krstev, Tatjana; Uskoković, Vuk; Uskoković, Dragan

    2016-01-01

    Composite biomaterials comprising nanostructured hydroxyapatite (HAp) have an enormous potential for natural bone tissue reparation, filling and augmentation. Chitosan (Ch) as a naturally derived polymer has many physicochemical and biological properties that make it an attractive material for use in bone tissue engineering. On the other hand, poly-D,L-lactide-co-glycolide (PLGA) is a synthetic polymer with a long history of use in sustained drug delivery and tissue engineering. However, while chitosan can disrupt the cell membrane integrity and may induce blood thrombosis, PLGA releases acidic byproducts that may cause tissue inflammation and interfere with the healing process. One of the strategies to improve the biocompatibility of Ch and PLGA is to combine them with compounds that exhibit complementary properties. In this study we present the synthesis and characterization, as well as in vitro and in vivo analyses of a nanoparticulate form of HAp coated with two different polymeric systems: (a) Ch and (b) a Ch-PLGA polymer blend. Solvent/non-solvent precipitation and freeze-drying were used for synthesis and processing, respectively, whereas thermogravimetry coupled with mass spectrometry was used for phase identification purposes in the coating process. HAp/Ch composite particles exhibited the highest antimicrobial activity against all four microbial strains tested in this work, but after the reconstruction of the bone defect they also caused inflammatory reactions in the newly formed tissue where the defect had lain. Coating HAp with a polymeric blend composed of Ch and PLGA led to a decrease in the reactivity and antimicrobial activity of the composite particles, but also to an increase in the quality of the newly formed bone tissue in the reconstructed defect area. PMID:26706541

  7. Nanomedical system for nucleic acid drugs created with the biodegradable nanoparticle platform.

    PubMed

    Yamamoto, Hiromitsu; Tahara, Kohei; Kawashima, Yoshiaki

    2012-01-01

    Nanomedical applications of biodegradable poly(DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) developed are discussed in this review. A surface-functionalized PLGA NP platform for drug delivery was established to encapsulate a number of macromolecular drugs such as peptides and nucleic acids as well as low-molecular-weight drugs by the emulsion solvent diffusion method. The interaction of PLGA NPs with cells and tissues could be controlled by changing the surface properties of NPs, suggesting their potential utility for the intracellular drug delivery of nucleic acid-based drugs. Furthermore, orally administered NF-κB decoy oligonucleotide-loaded CS-PLGA NPs are also useful in treating experimental colitis. These approaches using surface-modified PLGA NPs could be able to open new possibilities for nucleic acid-based drug delivery via noninvasive administration method.

  8. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid)

    PubMed Central

    Chen, Yongxia; Yang, Ziying; Liu, Chao; Wang, Cuiwei; Zhao, Shunxin; Yang, Jing; Sun, Hongfan; Zhang, Zhengpu; Kong, Deling; Song, Cunxian

    2013-01-01

    Background Star-shaped polymers provide more terminal groups, and are promising for application in drug-delivery systems. Methods A new series of six-arm star-shaped poly(lactic-co-glycolic acid) (6-s-PLGA) was synthesized by ring-opening polymerization. The structure and properties of the 6-s-PLGA were characterized by carbon-13 nuclear magnetic resonance spectroscopy, infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry. Then, paclitaxel-loaded six-arm star-shaped poly(lactic-co-glycolic acid) nanoparticles (6-s-PLGA-PTX-NPs) were prepared under the conditions optimized by the orthogonal testing. High-performance liquid chromatography was used to analyze the nanoparticles’ encapsulation efficiency and drug-loading capacity, dynamic light scattering was used to determine their size and size distribution, and transmission electron microscopy was used to evaluate their morphology. The release performance of the 6-s-PLGA-PTX-NPs in vitro and the cytostatic effect of 6-s-PLGA-PTX-NPs were investigated in comparison with paclitaxel-loaded linear poly(lactic-co-glycolic acid) nanoparticles (L-PLGA-PTX-NPs). Results The results of carbon-13 nuclear magnetic resonance spectroscopy and infrared spectroscopy suggest that the polymerization was successfully initiated by inositol and confirm the structure of 6-s-PLGA. The molecular weights of a series of 6-s-PLGAs had a ratio corresponding to the molar ratio of raw materials to initiator. Differential scanning calorimetry revealed that the 6-s-PLGA had a low glass transition temperature of 40°C–50°C. The 6-s-PLGA-PTX-NPs were monodispersed with an average diameter of 240.4±6.9 nm in water, which was further confirmed by transmission electron microscopy. The encapsulation efficiency of the 6-s-PLGA-PTX-NPs was higher than that of the L-PLGA-PTX-NPs. In terms of the in vitro release of nanoparticles, paclitaxel (PTX) was released more slowly and more steadily from 6-s-PLGA than from

  9. Initial Development and Characterization of PLGA Nanospheres Containing Ropivacaine

    PubMed Central

    Moraes, Carolina Morales; de Matos, Angélica Prado; de Lima, Renata; Rosa, André Henrique; de Paula, Eneida

    2008-01-01

    Local anesthetics are able to induce pain relief by binding to the sodium channels of excitable membranes, blocking the influx of sodium ions and the propagation of the nervous impulse. Ropivacaine (RVC) is an amino amide, enantiomerically pure, local anesthetic largely used in surgical procedures, which present physico-chemical and therapeutic properties similar to those of bupivacaine but decreased toxicity and motor blockade. The present work focuses on the preparation and characterization of nanospheres containing RVC; 0.25% and 0.50% RVC were incorporated in poly(d,l-lactide-co-glycolide (PLGA) 50:50) nanospheres (PLGA-NS), prepared by the nanoprecipitation method. Characterization of the nanospheres was conducted through the measurement of pH, particle size, and zeta potential. The pH of the nanoparticle system with RVC was 6.58. The average diameters of the RVC-containing nanospheres was 162.7 ± 1.5 nm, and their zeta potentials were negative, with values of about −10.81 ± 1.16 mV, which promoted good stabilization of the particles in solution. The cytotoxicity experiments show that RVC-loaded PLGA-NS generate a less toxic formulation as compared with plain RVC. Since this polymer drug-delivery system can effectively generate an even less toxic RVC formulation, this study is fundamental due to its characterization of a potentially novel pharmaceutical form for the treatment of pain with RVC. PMID:19669531

  10. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model

    PubMed Central

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Zhao, Feng; Luan, Hansen; Wang, Xiuli

    2015-01-01

    Background Squamous cell carcinoma (SCC) is a common skin cancer, and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted 5-aminolevulinic acid (ALA) delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Materials and methods Ultraviolet-induced cutaneous SCCs were established in hairless mice. ALA-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NP-induced protoporphyrin IX fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results PLGA NPs enhanced protoporphyrin IX production in SCC. ALA PLGA NP-mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC. PMID:25609949

  11. In vitro degradation and release characteristics of spin coated thin films of PLGA with a "breath figure" morphology.

    PubMed

    Ponnusamy, Thiruselvam; Lawson, Louise B; Freytag, Lucy C; Blake, Diane A; Ayyala, Ramesh S; John, Vijay T

    2012-01-01

    Poly (lactic-co-glycolic acid) (PLGA) coatings on implant materials are widely used in controlled drug delivery applications. Typically, such coatings are made with non-porous films. Here, we have synthesized a thin PLGA film coating with a highly ordered microporous structure using a simple and inexpensive water templating "breath figure" technique. A single stage process combining spin coating and breath figure process was used to obtain drug incorporated porous thin films. The films were characterized by scanning electron microscope (SEM) to observe the surface and bulk features of porosity and also, degradation pattern of the films. Moreover, the effect of addition of small amount of poly (ethylene glycol) (PEG) into PLGA was characterized. SEM analysis revealed an ordered array of ~2 µm sized pores on the surface with the average film thickness measured to be 20 µm. The incorporation of hydrophilic poly (ethylene glycol) (PEG) enhances pore structure uniformity and facilitates ingress of water into the structure. A five week in vitro degradation study showed a gradual deterioration of the breath figure pores. During the course of degradation, the surface pore structure deteriorates to initially flatten the surface. This is followed by the formation of new pinprick pores that eventually grow into a macroporous film prior to film breakup. Salicylic acid (highly water soluble) and Ibuprofen (sparingly water soluble) were chosen as model drug compounds to characterize release rates, which are higher in films of the breath figure morphology rather than in non-porous films. The results are of significance in the design of biodegradable films used as coatings to modulate delivery.

  12. Nerve Growth Factor-Immobilized Electrically Conducting Fibrous Scaffolds for Potential Use in Neural Engineering Applications

    PubMed Central

    Lee, Jae Y.; Bashur, Chris A.; Milroy, Craig A.; Forciniti, Leandro; Goldstein, Aaron S.

    2015-01-01

    Engineered scaffolds simultaneously exhibiting multiple cues are highly desirable for neural tissue regeneration. To this end, we developed a neural tissue engineering scaffold that displays submicrometer-scale features, electrical conductivity, and neurotrophic activity. Specifically, electrospun poly(lactic acid-co-glycolic acid) (PLGA) nanofibers were layered with a nanometer thick coating of electrically conducting polypyrrole (PPy) presenting carboxylic groups. Then, nerve growth factor (NGF) was chemically immobilized onto the surface of the fibers. These NGF-immobilized PPy-coated PLGA (NGF-PPyPLGA) fibers supported PC12 neurite formation (28.0±3.0% of the cells) and neurite outgrowth (14.2 µm median length), which were comparable to that observed with NGF (50 ng/mL) in culture medium (29.0±1.3%, 14.4 µm). Electrical stimulation of PC12 cells on NGF-immobilized PPyPLGA fiber scaffolds was found to further improve neurite development and neurite length by 18% and 17%, respectively, compared to unstimulated cells on the NGF-immobilized fibers. Hence, submicrometer-scale fibrous scaffolds that incorporate neurotrophic and electroconducting activities may serve as promising neural tissue engineering scaffolds such as nerve guidance conduits. PMID:21712166

  13. Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma

    PubMed Central

    Hrynyk, Michael; Ellis, Jordon P; Haxho, Fiona; Allison, Stephanie; Steele, Joseph AM; Abdulkhalek, Samar; Neufeld, Ronald J; Szewczuk, Myron R

    2015-01-01

    Poly (lactic-co-glycolic acid) (PLGA) copolymers have been extensively used in cancer research. PLGA can be chemically engineered for conjugation or encapsulation of drugs in a particle formulation. We reported that oseltamivir phosphate (OP) treatment of human pancreatic tumor-bearing mice disrupted the tumor vasculature with daily injections. Here, the controlled release of OP from a biodegradable PLGA cylinder (PLGA-OP) implanted at tumor site was investigated for its role in limiting tumor neovascularization, growth, and metastasis. PLGA-OP cylinders over 30 days in vitro indicated 20%–25% release profiles within 48 hours followed by a continuous metronomic low dose release of 30%–50% OP for an additional 16 days. All OP was released by day 30. Surgically implanted PLGA-OP containing 20 mg OP and blank PLGA cylinders at the tumor site of heterotopic xenografts of human pancreatic PANC1 tumors in RAGxCγ double mutant mice impeded tumor neovascularization, growth rate, and spread to the liver and lungs compared with the untreated cohort. Xenograft tumors from PLGA and PLGA-OP-treated cohorts expressed significant higher levels of human E-cadherin with concomitant reduced N-cadherin and host CD31+ endothelial cells compared with the untreated cohort. These results clearly indicate that OP delivered from PLGA cylinders surgically implanted at the site of the solid tumor show promise as an effective treatment therapy for cancer. PMID:26309402

  14. PLGA/liposome hybrid nanoparticles for short-chain ceramide delivery

    PubMed Central

    Zou, Peng; Stern, Stephan T.; Sun, Duxin

    2014-01-01

    Purpose Rapid premature release of lipophilic drugs from liposomal lipid bilayer to plasma proteins and biological membranes is a challenge for targeted drug delivery. The purpose of this study is to reduce premature release of lipophilic short-chain ceramides by encapsulating ceramides into liposomal aqueous interior with the aid of poly( lactic-coglycolicacid) (PLGA). Methods BODIPY FL labeled ceramide (FL-ceramide) and BODIPY-TR labeled ceramide (TR-ceramide) were encapsulated into carboxy-terminated PLGA nanoparticles. The negatively charged PLGA nanoparticles were then encapsulated into cationic liposomes to obtain PLGA/liposome hybrids. As a control, FL-ceramide and/or TR ceramide co-loaded liposomes without PLGA were prepared. The release of ceramides from PLGA/liposome hybrids and liposomes in rat plasma, cultured MDA-MB-231 cells, and rat blood circulation was compared using fluorescence resonance energy transfer (FRET) between FL-ceramide (donor) and TR-ceramide (acceptor). Results FRET analysis showed that FL-ceramide and TR-ceramide in liposomal lipid bilayer were rapidly released during incubation with rat plasma. In contrast, the FL-ceramide and TR-ceramide in PLGA/liposome hybrids showed extended release. FRET images of cells revealed that ceramides in liposomal bilayer were rapidly transferred to cell membranes. In contrast, ceramides in PLGA/liposome hybrids were internalized into cells with nanoparticles simultaneously. Upon intravenous administration to rats, ceramides encapsulated in liposomal bilayer were completely released in 2 minutes. In contrast, ceramides encapsulated in the PLGA core were retained in PLGA/liposome hybrids for 4 hours. Conclusions The PLGA/liposome hybrid nanoparticles reduced in vitro and in vivo premature release of ceramides and offer a viable platform for targeted delivery of lipophilic drugs. PMID:24065591

  15. Preparation, characterization and optimization of sildenafil citrate loaded PLGA nanoparticles by statistical factorial design

    PubMed Central

    2013-01-01

    Background and the aim of the study The objective of the present study was to formulate and optimize nanoparticles (NPs) of sildenafil-loaded poly (lactic-co-glycolic acid) (PLGA) by double emulsion solvent evaporation (DESE) method. The relationship between design factors and experimental data was evaluated using response surface methodology. Method A Box-Behnken design was made considering the mass ratio of drug to polymer (D/P), the volumetric proportion of the water to oil phase (W/O) and the concentration of polyvinyl alcohol (PVA) as the independent agents. PLGA-NPs were successfully prepared and the size (nm), entrapment efficiency (EE), drug loading (DL) and cumulative release of drug from NPs post 1 and 8 hrs were assessed as the responses. Results The NPs were prepared in a spherical shape and the sizes range of 240 to 316 nm. The polydispersity index of size was lower than 0.5 and the EE (%) and DL (%) varied between 14-62% and 2-6%, respectively. The optimized formulation with a desirability factor of 0.9 was selected and characterized. This formulation demonstrated the particle size of 270 nm, EE of 55%, DL of 3.9% and cumulative drug release of 79% after 12 hrs. In vitro release studies showed a burst release at the initial stage followed by a sustained release of sildenafil from NPs up to 12 hrs. The release kinetic of the optimized formulation was fitted to Higuchi model. Conclusions Sildenafil citrate NPs with small particle size, lipophilic feature, high entrapment efficiency and good loading capacity is produced by this method. Characterization of optimum formulation, provided by an evaluation of experimental data, showed no significant difference between calculated and measured data. PMID:24355133

  16. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats.

    PubMed

    Dhall, Sandeep; Silva, João P; Liu, Yan; Hrynyk, Michael; Garcia, Monika; Chan, Alex; Lyubovitsky, Julia; Neufeld, Ronald J; Martins-Green, Manuela

    2015-12-01

    Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischaemia, inflammation and infection costing $7.5 billion/year in the U.S.A. alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA [poly(D,L-lactic-co-glycolic acid)] microparticles that provides a sustained release of bioactive insulin for >20 days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring healing. Using heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04 mg insulin/cm(2) every 3 days for 9 days have faster closure, a higher rate of disintegration of dead tissue and decreased oxidative stress. In addition, in insulin-treated wounds, the pattern of neutrophil inflammatory response suggests faster clearing of the burned dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibres organized more like a basket weave (normal skin) than aligned and cross-linked (scar tissue). In summary, application of ASD-containing insulin-loaded PLGA particles on burns every 3 days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function. PMID:26310669

  17. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells.

    PubMed

    Liu, Ping; Zhang, Haijun; Wu, Xue; Guo, Liting; Wang, Fei; Xia, Guohua; Chen, Baoan; Yin, HaiXiang; Wang, Yonglu; Li, Xueming

    2016-01-01

    Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment.

  18. Release of insulin from PLGA-alginate dressing stimulates regenerative healing of burn wounds in rats.

    PubMed

    Dhall, Sandeep; Silva, João P; Liu, Yan; Hrynyk, Michael; Garcia, Monika; Chan, Alex; Lyubovitsky, Julia; Neufeld, Ronald J; Martins-Green, Manuela

    2015-12-01

    Burn wound healing involves a complex set of overlapping processes in an environment conducive to ischaemia, inflammation and infection costing $7.5 billion/year in the U.S.A. alone, in addition to the morbidity and mortality that occur when the burns are extensive. We previously showed that insulin, when topically applied to skin excision wounds, accelerates re-epithelialization and stimulates angiogenesis. More recently, we developed an alginate sponge dressing (ASD) containing insulin encapsulated in PLGA [poly(D,L-lactic-co-glycolic acid)] microparticles that provides a sustained release of bioactive insulin for >20 days in a moist and protective environment. We hypothesized that insulin-containing ASD accelerates burn healing and stimulates a more regenerative, less scarring healing. Using heat-induced burn injury in rats, we show that burns treated with dressings containing 0.04 mg insulin/cm(2) every 3 days for 9 days have faster closure, a higher rate of disintegration of dead tissue and decreased oxidative stress. In addition, in insulin-treated wounds, the pattern of neutrophil inflammatory response suggests faster clearing of the burned dead tissue. We also observe faster resolution of the pro-inflammatory macrophages. We also found that insulin stimulates collagen deposition and maturation with the fibres organized more like a basket weave (normal skin) than aligned and cross-linked (scar tissue). In summary, application of ASD-containing insulin-loaded PLGA particles on burns every 3 days stimulates faster and more regenerative healing. These results suggest insulin as a potential therapeutic agent in burn healing and, because of its long history of safe use in humans, insulin could become one of the treatments of choice when repair and regeneration are critical for proper tissue function.

  19. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  20. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells.

    PubMed

    Liu, Ping; Zhang, Haijun; Wu, Xue; Guo, Liting; Wang, Fei; Xia, Guohua; Chen, Baoan; Yin, HaiXiang; Wang, Yonglu; Li, Xueming

    2016-01-01

    Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment. PMID:27574446

  1. Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters.

    PubMed

    Soscia, David A; Sequeira, Sharon J; Schramm, Robert A; Jayarathanam, Kavitha; Cantara, Shraddha I; Larsen, Melinda; Castracane, James

    2013-09-01

    There is a need for an artificial salivary gland as a long-term remedy for patients suffering from salivary hypofunction, a leading cause of chronic xerostomia (dry mouth). Current salivary gland tissue engineering approaches are limited in that they either lack sufficient physical cues and surface area needed to facilitate epithelial cell differentiation, or they fail to provide a mechanism for assembling an interconnected branched network of cells. We have developed highly-ordered arrays of curved hemispherical "craters" in polydimethylsiloxane (PDMS) using wafer-level integrated circuit (IC) fabrication processes, and lined them with electrospun poly-lactic-co-glycolic acid (PLGA) nanofibers, designed to mimic the three-dimensional (3-D) in vivo architecture of the basement membrane surrounding spherical acini of salivary gland epithelial cells. These micropatterned scaffolds provide a method for engineering increased surface area and were additionally investigated for their ability to promote cell polarization. Two immortalized salivary gland cell lines (SIMS, ductal and Par-C10, acinar) were cultured on fibrous crater arrays of various radii and compared with those grown on flat PLGA nanofiber substrates, and in 3-D Matrigel. It was found that by increasing crater curvature, the average height of the cell monolayer of SIMS cells and to a lesser extent, Par-C10 cells, increased to a maximum similar to that seen in cells grown in 3-D Matrigel. Increasing curvature resulted in higher expression levels of tight junction protein occludin in both cell lines, but did not induce a change in expression of adherens junction protein E-cadherin. Additionally, increasing curvature promoted polarity of both cell lines, as a greater apical localization of occludin was seen in cells on substrates of higher curvature. Lastly, substrate curvature increased expression of the water channel protein aquaporin-5 (Aqp-5) in Par-C10 cells, suggesting that curved nanofiber substrates

  2. Tf-PEG-PLL-PLGA nanoparticles enhanced chemosensitivity for hypoxia-responsive tumor cells

    PubMed Central

    Liu, Ping; Zhang, Haijun; Wu, Xue; Guo, Liting; Wang, Fei; Xia, Guohua; Chen, Baoan; Yin, HaiXiang; Wang, Yonglu; Li, Xueming

    2016-01-01

    Hypoxia is an inseparable component of the solid tumor as well as the bone marrow microenvironment. In this study, we investigated the effect of the novel polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid (PLGA) based nanoparticles (NPs) modified by transferrin (Tf) loaded with daunorubicin (DNR) (DNR-Tf-PEG-PLL-PLGA-NPs, abbreviated as DNR-Tf-NPs) on leukemia cells (K562) under hypoxia. In vitro and in vivo tests to determine the effect of the enhanced chemosensitivity were evaluated using the immunofluorescence, flow cytometry, 3,-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazoliumbromide assay, Western blot analysis, histopathological examination, and immunohistochemistry analysis. Under hypoxia, K562 cells were hypoxia-responsive with the inhibitory concentration 50% (IC50) of DNR increased, resulting in chemotherapy insensitivity. By targeting the transferrin receptor (TfR) on the surface of K562 cells, DNR-Tf-NPs led to an increased intracellular DNR level, enhancing drug sensitivity of K562 cells to DNR with a decreased IC50, even under hypoxia. We further detected the protein levels of hypoxia-inducible factor-1α (HIF-1α), Bcl-2, Bax, and caspase-3 in K562 cells. The results indicated that DNR-Tf-NPs downregulated HIF-1α and induced apoptosis to overcome hypoxia. In the xenograft model, injection of DNR-Tf-NPs significantly suppressed tumor growth, and the immunosignals of Ki67 in DNR-Tf-NPs group was significantly lower than the other groups. It was therefore concluded that DNR-Tf-NPs could be a promising candidate for enhancing drug sensitivity under hypoxia in tumor treatment. PMID:27574446

  3. Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles.

    PubMed

    Vilos, Cristian; Velasquez, Luis A; Rodas, Paula I; Zepeda, Katherine; Bong, Soung-Jae; Herrera, Natalia; Cantin, Mario; Simon, Felipe; Constandil, Luis

    2015-01-01

    Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5-2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry.

  4. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  5. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction

    PubMed Central

    Aina, Adeyinka; Gupta, Manish; Boukari, Yamina; Morris, Andrew; Billa, Nashiru; Doughty, Stephen

    2015-01-01

    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture. PMID:27013917

  6. Preclinical Development and In Vivo Efficacy of Ceftiofur-PLGA Microparticles

    PubMed Central

    Vilos, Cristian; Velasquez, Luis A.; Rodas, Paula I.; Zepeda, Katherine; Bong, Soung-Jae; Herrera, Natalia; Cantin, Mario; Simon, Felipe; Constandil, Luis

    2015-01-01

    Drug delivery systems based on polymeric microparticles represent an interesting field of development for the treatment of several infectious diseases for humans and animals. In this work, we developed PLGA microparticles loaded with ceftiofur (PLGA-cef), a third- generation cephalosporin that is used exclusively used in animals. PLGA-cef was prepared by the double emulsion w/o/w method, and exhibited a diameter in the range of 1.5–2.2 μm, and a negative ζ potential in the range of -35 to -55 mV. The loading yield of PLGA-cef was ~7% and encapsulation efficiency was approximately 40%. The pharmacokinetic study demonstrated a sustained release profile of ceftiofur for 20 days. PLGA-cef administrated in a single dose was more effective than ceftiofur non-encapsulated in rats challenged with S. Typhimurium. The in vivo toxicological evaluation showed that PLGA-cef did not affect the blood biochemical, hematological and hemostasis parameters. Overall, the PLGA-cef showed slow in vivo release profile, high antibacterial efficacy, and low toxicity. The results obtained supports the safe application of PLGA-cef as sustained release platform in the veterinary industry. PMID:25915043

  7. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model.

    PubMed

    Kojima, Ryo; Yoshida, Takatsune; Tasaki, Hiroaki; Umejima, Hiroyuki; Maeda, Masashi; Higashi, Yasuyuki; Watanabe, Shunsuke; Oku, Naoto

    2015-08-15

    The objective of this study was to elucidate the release and absorption mechanisms of tacrolimus loaded into microspheres composed of poly(lactic-co-glycolic acid) (PLGA) and/or polylactic acid (PLA). Tacrolimus-loaded microspheres were prepared by the o/w emulsion solvent evaporation method. The entrapment efficiency correlated with the molecular weight of PLGA, and the glass transition temperature of PLGA microspheres was not decreased by the addition of tacrolimus. These results indicate that intermolecular interaction between tacrolimus and the polymer would affect the entrapment of tacrolimus in the microspheres. Tacrolimus was released with weight loss of the microspheres, and the dominant release mechanism of tacrolimus was considered to be erosion of the polymer rather than diffusion of the drug. The whole-blood concentration of tacrolimus in rats was maintained for at least 2 weeks after a single subcutaneous administration of the microspheres. The pharmacokinetic profile of tacrolimus following subcutaneous administration was similar to that following intramuscular administration, suggesting that the release and dissolution of tacrolimus, rather than the absorption of the dissolved tacrolimus, were rate-limiting steps. Graft-survival time in a heart transplantation rat model was prolonged by the administration of tacrolimus-loaded microspheres. The microsphere formulation of tacrolimus would be expected to precisely control the blood concentration while maintaining the immunosuppressive effect of the drug.

  8. Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres.

    PubMed

    Sandor, Maryellen; Riechel, Alex; Kaplan, Ian; Mathiowitz, Edith

    2002-02-15

    A model enzyme, carbonic anhydrase, was encapsulated and released from poly(lactide-co-glycolide) (PLGA) microspheres (1-3 microm) made by a novel phase inversion technique. Lecithin was used as a surfactant in the encapsulation process and was incorporated in either the organic phase, aqueous phase, both phases, or not at all. Additional microspheres were also made with lecithin incorporated in the aqueous phase and a basic salt, MgCO3, in the polymeric phase. Released carbonic anhydrase, protein extracted from microspheres, or enzyme incubated with lecithin and PLGA were analyzed via HPLC and activity assay to determine the effect of these additives on protein integrity and activity. Lecithin in the aqueous phase appeared to increase the fraction of enzyme in monomeric form as well as its activity for both extracted protein and released protein as compared to the other formulations without MgCO3. Incubation of enzyme with PLGA degradation products indicated that the acidic environment within the microspheres aids in the irreversible inactivation of the encapsulated protein. Addition of MgCO3 further increased the amount of monomer in both the extracted and released protein by decreasing the amount of acid-induced cleavage and noncovalent aggregation, but still greatly decreased the activity of the enzyme. PMID:11960690

  9. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin

    PubMed Central

    Nan, Kaihui; Ma, Feiyan; Hou, Huiyuan; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2014-01-01

    A water-soluble anthracycline antibiotic drug (daunorubicin, DNR) was loaded into oxidized porous silicon (pSiO2) microparticles and then encapsulated with a layer of polymer (poly lactide-co-glycolide, PLGA) to investigate their synergistic effects in control of DNR release. Similarly fabricated PLGA-DNR microspheres without pSiO2, and pSiO2 microparticles without PLGA were used as control particles. The composite microparticles synthesized by a solid-in-oil-in-water (S/O/W) emulsion method have mean diameters of 52.33±16.37 μm for PLGA-pSiO2_21/40-DNR and the mean diameter of 49.31±8.87 μm for PLGA-pSiO2_6/20-DNR. The mean size, 26.00±8 μm, of PLGA-DNR was significantly smaller, compared with the other two (p<0.0001). Optical microscopy revealed that PLGA-pSiO2-DNR microsphere contained multiple pSiO2 particles. In vitro release experiments determined that control PLGA-DNR microspheres completely released DNR within 38 days and control pSiO2-DNR microparticles (with no PLGA coating) released DNR within 14 days, while the PLGA-pSiO2-DNR microspheres released DNR for 74 days. Temporal release profiles of DNR from PLGA-pSiO2 composite particles indicated that both PLGA and pSiO2 contribute to the sustained release of the payload. The PLGA-pSiO2 composite displayed a more constant rate of DNR release than the pSiO2 control formulation, and it displayed a significantly slower release of DNR than either the PLGA or pSiO2 formulations. We conclude that this system may be useful in managing unwanted ocular proliferation when formulated with anti-proliferation compounds such as DNR. PMID:24793657

  10. The Effect of Polymer Composition on the Gelation Behavior of PLGA-g-PEG Biodegradable Thermoreversible Gels

    SciTech Connect

    Tarasevich, Barbara J.; Gutowska, Anna; Li, Xiaohong S.; Jeong, Byeongmoon

    2009-04-01

    Graft copolymers consisting of a poly(DL-lactic acid–co–glycolic acid) backbone grafted with polyethyelene glycol (PLGA-g-PEG) side chains were synthesized and formed thermoreversible gels in aqueous solutions which exhibited solution behavior at low temperature and sol-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid (LA), glycolic acid (GA), and ethylene glycol (EG) could be varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15°C to 34°C by increasing the concentration of PEG in the graft copolymer. The gelation temperature decreased with increasing polymer molecular weight and decreasing polymer concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery.

  11. PLGA-PEG-supported Pd Nanoparticles as Efficient Catalysts for Suzuki-Miyaura Coupling Reactions in Water.

    PubMed

    Dumas, Anaëlle; Peramo, Arnaud; Desmaële, Didier; Couvreur, Patrick

    2016-01-01

    Chemical transformations that can be performed selectively under physiological conditions are highly desirable tools to track biomolecules and manipulate complex biological processes. Here, we report a new nanocatalyst consisting of small palladium nanoparticles stabilized on the surface of PLGA-PEG nanoparticles that show excellent catalytic activity for the modification of biological building blocks through Suzuki-Miyaura cross-coupling reactions in water. Brominated or iodinated amino acids were coupled with aryl boronic acids in phosphate buffer in good yields. Interestingly, up to 98% conversion into the coupled amino acid could be achieved in 2 h at 37 °C using the stable, water-soluble cyclic triolborate as organometallic partner in the presence of only 1 mol% of palladium. These results pave the way for the modification of biomolecules in complex biological systems such as the intracellular space.

  12. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Moioli, Eduardo K; Hong, Liu; Guardado, Jesse; Clark, Paul A; Mao, Jeremy J

    2006-03-01

    Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p < 0.05). Control-released TGFbeta3 bioactivity was further confirmed by lack of significant differences in alkaline phosphatase upon direct addition of 1.35 ng/mL TGFbeta3 to cell culture (p > 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications.

  13. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Moioli, Eduardo K; Hong, Liu; Guardado, Jesse; Clark, Paul A; Mao, Jeremy J

    2006-03-01

    Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p < 0.05). Control-released TGFbeta3 bioactivity was further confirmed by lack of significant differences in alkaline phosphatase upon direct addition of 1.35 ng/mL TGFbeta3 to cell culture (p > 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications. PMID:16579687

  14. Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres.

    PubMed

    Bao, Min; Zhou, Qihui; Dong, Wen; Lou, Xiangxin; Zhang, Yanzhong

    2013-06-10

    Minimally invasive implants and/or scaffolds integrated with multiple functionalities are of interest in the clinical settings. In this paper, chitosan (CTS) functionalized poly(lactic-co-glycolic acid) (PLGA) microspheres containing a model payload, lysozyme (Lyz), were prepared by a water-in-oil-in-water emulsion method, from which cylindrical shaped rod (5 mm in diameter) was fabricated by sintering the composite microspheres in a mold. High-intensity focused ultrasound (HIFU) was then employed as a unique technique to enable shape memory and payload release effects of the three-dimensional (3-D) structure. It was found that incorporation of CTS into PLGA microspheres could regulate the transition temperature Ttrans of the microsphere from 45 to 50 °C and affect shape memory ratio of the fabricated cylindrical rod to some extent. Shape memory test and drug release assay proved that HIFU could modulate the shape recovery process and synchronize the release kinetics of the encapsulated Lyz in the rod in a switchable manner. Moreover, the two processes could be manipulated by varying the acoustic power and insonation duration. Mechanical tests of the microspheres-based rod before and after ultrasound irradiation revealed its compressive properties in the range of trabecular bone. Examination of the degradation behavior indicated that the introduction of CTS into the PLGA microspheres also alleviated acidic degradation characteristic of the PLGA-dominant cylindrical rod. With HIFU, this study thus demonstrated the desired capabilities of shape recovery and payload release effects integrated in one microspheres-based biodegradable cylindrical structure. PMID:23675980

  15. Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs.

    PubMed

    Gaspar, Vítor M; Moreira, André F; Costa, Elisabete C; Queiroz, João A; Sousa, Fani; Pichon, Chantal; Correia, Ilídio J

    2015-10-01

    Drug-DNA combination therapies are receiving an ever growing focus due to their potential for improving cancer treatment. However, such approaches are still limited by the lack of multipurpose delivery systems that encapsulate drugs and condense DNA simultaneously. In this study, we describe the successful formulation of gas-generating pH-responsive D-α-tocopherol PEG succinate-poly(D,L-lactic-co-glycolic acid) (TPGS-PLGA) hollow microspheres loaded with both Doxorubicin (Dox) and minicircle DNA (mcDNA) nanoparticles as a strategy to co-deliver these therapeutics. For this study mcDNA vectors were chosen due to their increased therapeutic efficiency in comparison to standard plasmid DNA. The results demonstrate that TPGS-PLGA microcarriers can encapsulate Dox and chitosan nanoparticles completely condense mcDNA. The loading of mcDNA-nanoparticles into microspheres was confirmed by 3D confocal microscopy and co-localization analysis. The resulting TPGS-PLGA-Dox-mcDNA nanoparticle-in-microsphere hybrid carriers exhibit a well-defined spherical shape and neutral surface charge. Microcarriers incubation in acidic pH produced a gas-mediated Dox release, corroborating the microcarriers stimuli-responsive character. Also, the dual-loaded TPGS-PLGA particles achieved 5.2-fold higher cellular internalization in comparison with non-pegylated microspheres. This increased intracellular concentration resulted in a higher cytotoxic effect. Successful transgene expression was obtained after nanoparticle-mcDNA co-delivery in the microspheres. Overall these findings support the concept of using nanoparticle-microsphere multipart systems to achieve efficient co-delivery of various drug-mcDNA combinations.

  16. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery.

    PubMed

    Xu, Weikang; Wei, Xinmiao; Wei, Kun; Cao, Xiaodong; Zhong, Shizhen

    2014-12-10

    In this study, drug delivery systems for controlling release of hydrophobic anti-tuberculosis (TB) drug-rifampicin (RIF) or hydrophilic anti-TB drug-isoniazid (INH) from mesoporous silica (MS) were fabricated. The drug was first filled into the mesopores of MS particles, and then the drug-laden MS constructs were incorporated into the bulk of poly-(DL-lactic-co-glycolic) acid (PLGA) microspheres. In comparison with mono-component construct (drug-laden MS and drug-laden PLGA), this multi-component system significantly improved the release time of RIF and INH. For drug-laden MS, about 100% INH was released after 15 h, and about 70% RIF was released after 50 h. For drug-laden PLGA, about 100% INH and RIF were released after 30 and 40 days, respectively. After 60 days, the total RIF and INH release from MS/PLGA had only reached around only 48% and 57%, respectively. This MS/PLGA system could significantly prolong RIF or INH release compared to MS and PLGA. CCK-8 assay demonstrated that this MS/PLGA system had no cytotoxicity. And there has not been study of documenting the controlled release of anti-TB drugs such as RIF or INH from MS/PLGA. Considering the long time release of RIF and INH from MS/PLGA, a new door to bone TB would be opened.

  17. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration

    PubMed Central

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  18. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    PubMed

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration. PMID:26082632

  19. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.

    PubMed

    Chen, Shijie; Jian, Zhiyuan; Huang, Linsheng; Xu, Wei; Liu, Shaohua; Song, Dajiang; Wan, Zongmiao; Vaughn, Amanda; Zhan, Ruisen; Zhang, Chaoyue; Wu, Song; Hu, Minghua; Li, Jinsong

    2015-01-01

    A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.

  20. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide.

    PubMed

    Zhang, Ying; Wischke, Christian; Mittal, Sachin; Mitra, Amitava; Schwendeman, Steven P

    2016-08-01

    Fenretinide, a chemotherapeutic agent for cancer, is water-insoluble and has a very low oral bioavailability. Hence, the objective was to deliver it as an injectable depot and improve the drug solubility and release behavior from poly(lactide-co-glycolide) (PLGA) microspheres by incorporating nonionic surfactants with fenretinide. Enhancement of drug solubilization was observed with Brij 35 or 98, Tween 20, and Pluronic F127, but not Pluronic F68. Co-incorporation of Brij 98 with fenretinide significantly changed the microsphere morphology and improved the fenretinide release profile. The most optimal microsphere formulation, with 20% Brij 98 as excipient, showed an initial in vitro burst around 20% and a sustained release over 28 days in a solubilizing release medium at 37 °C. The effect of addition of MgCO3, drug loading, and polymer blending on the release of fenretinide from PLGA microspheres was also investigated and observed to enhance the drug release. Two sustained release formulations, one incorporating 20% Brij 98 and the other incorporating 3% MgCO3 in the oil phase, were selected for dosing in Sprague-Dawley rats and compared to a single injection of an equivalent dose of fenretinide drug suspension. These two formulations were chosen due to their high encapsulation efficiency, high cumulative release, and desirable in vitro release profile. The drug suspension resulted in a higher initial release in rats compared to the polymeric formulations, however, sustained release was also observed beyond 2 weeks, which may be attributed to the physiological disposition of the drug in vivo. The two PLGA based test formulations provided the desired low initial burst of fenretinide followed by 4 weeks of in vivo sustained release. PMID:27144450

  1. Preparation and in vivo evaluation of PCADK/PLGA microspheres for improving stability and efficacy of rhGH.

    PubMed

    Wang, Chenhui; Yu, Changhui; Liu, Jiaxin; Teng, Lesheng; Sun, Fengying; Li, Youxin

    2015-11-30

    The goal of this research is to prepare poly(cyclohexane-1,4 diyl acetone dimethylene ketal) (PCADK)/poly(D,L-lactide-co-glycolide) (PLGA) blend microspheres loaded with recombinant human growth hormone (rhGH). The effect of PCADK degradation products on the structural integrity, secondary and tertiary structure and pharmacodynamics of rhGH was evaluated by native-polyacrylamide gel electrophoresis (Native-PAGE), size-exclusion high performance liquid chromatography (SEC-HPLC), circular dichroism (CD), fluorescence spectroscopy and in hypophysectomized rat models. Compared with PLGA degradation products, rhGH was found to be more stable in the presence of PCADK degradation products. PCADK/PLGA blend microspheres were then prepared and the morphology, encapsulation efficiency, release behavior and rhGH stability were investigated. PCADK/PLGA microspheres had regular shapes and smooth surfaces when the proportion of PCADK was less than 50%. The late-releasable amount of rhGH in PCADK/PLGA microspheres was greater than that in PLGA microspheres. In addition, the PCADK/PLGA microspheres showed larger AUC and improved therapeutic effects on rats than PLGA microspheres. Furthermore, the pH inside the microspheres was detected by CLSM to explain the improved rhGH stability in the PCADK/PLGA microspheres. In conclusion, PCADK/PLGA blend microspheres showed potential to improve rhGH stability and the efficacy of sustained-release of rhGH compared with PLGA microspheres.

  2. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide

    NASA Astrophysics Data System (ADS)

    Taha, Murtada A.; Singh, Shree R.; Dennis, Vida A.

    2012-08-01

    Development of a Chlamydia trachomatis vaccine has been a formidable task partly because of an ineffective delivery system. Our laboratory has generated a recombinant peptide of C. trachomatis major outer membrane protein (MOMP) (rMOMP-187) and demonstrated that it induced at 20 μg ml-1 maximal interleukin (IL)-6 and IL-12p40 Th1 cytokines in mouse J774 macrophages. In a continuous pursuit of a C. trachomatis effective vaccine-delivery system, we encapsulated rMOMP-187 in poly(d,l-lactic-co-glycolic acid) (PLGA, 85:15 PLA/PGA ratio) to serve as a nanovaccine candidate. Physiochemical characterizations were assessed by Fourier transform-infrared spectroscopy, atomic force microscopy, Zetasizer, Zeta potential, transmission electron microcopy and differential scanning calorimetry. The encapsulated rMOMP-187 was small (˜200 nm) with an apparently smooth uniform oval structure, thermally stable (54 °C), negatively charged ( - 27.00 mV) and exhibited minimal toxicity at concentrations <250 μg ml -1 to eukaryotic cells (>95% viable cells) over a 24-72 h period. We achieved a high encapsulation efficiency of rMOMP-187 (˜98%) in PLGA, a loading peptide capacity of 2.7% and a slow release of the encapsulated peptide. Stimulation of J774 macrophages with a concentration as low as 1 μg ml -1 of encapsulated rMOMP-187 evoked high production levels of the Th1 cytokines IL-6 (874 pg ml-1) and IL-12p40 (674 pg ml-1) as well as nitric oxide (8 μM) at 24 h post-stimulation, and in a dose-response and time-kinetics manner. Our data indicate the successful encapsulation and characterization of rMOMP-187 in PLGA and, more importantly, that PLGA enhanced the capacity of the peptide to induce Th1 cytokines and NO in vitro. These findings make this nanovaccine an attractive candidate in pursuit of an efficacious vaccine against C. trachomatis.

  3. Intracellular trafficking and cellular uptake mechanism of mPEG-PLGA-PLL and mPEG-PLGA-PLL-Gal nanoparticles for targeted delivery to hepatomas.

    PubMed

    Liu, Peifeng; Sun, Yanming; Wang, Qi; Sun, Ying; Li, He; Duan, Yourong

    2014-01-01

    The lysosomal escape of nanoparticles is crucial to enhancing their delivery and therapeutic efficiency. Here, we report the cellular uptake mechanism, lysosomal escape, and organelle morphology effect of monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) (mPEG-PLGA-PLL, PEAL) and 4-O-beta-D-Galactopyranosyl-D-gluconic acid (Gal)-modified PEAL (PEAL-Gal) for intracellular delivery to HepG2, Huh7, and PLC hepatoma cells. These results indicate that PEAL is taken up by clathrin-mediated endocytosis of HepG2, Huh7 and PLC cells. For PEAL-Gal, sialic acid receptor-mediated endocytosis and clathrin-mediated endocytosis are the primary uptake pathways in HepG2 cells, respectively, whereas PEAL-Gal is internalized by sag vesicle- and clathrin-mediated endocytosis in Huh7 cells. In the case of PLC cells, clathrin-mediated endocytosis and sialic acid receptor play a primary role in the uptake of PEAL-Gal. TEM results verify that PEAL and PEAL-Gal lead to a different influence on organelle morphology of HepG2, Huh7 and PLC cells. In addition, the results of intracellular distribution reveal that PEAL and PEAL-Gal are less entrapped in the lysosomes of HepG2 and Huh7 cells, demonstrating that they effectively escape from lysosomes and contribute to enhance the efficiency of intracellular delivery and tumor therapy. In vivo tumor targeting image results demonstrate that PEAL-Gal specifically delivers Rhodamine B (Rb) to the tumor tissue of mice with HepG2, Huh7, and PLC hepatomas and remains at a high concentration in tumor tissue until 48 h, properties that will greatly contribute to enhanced antitumor efficiency.

  4. Hydrogels composed of cyclodextrin inclusion complexes with PLGA-PEG-PLGA triblock copolymers as drug delivery systems.

    PubMed

    Khodaverdi, Elham; Mirzazadeh Tekie, Farnaz Sadat; Hadizadeh, Farzin; Esmaeel, Haydar; Mohajeri, Seyed Ahmad; Sajadi Tabassi, Sayyed A; Zohuri, Gholamhossein

    2014-02-01

    Although conventional pharmaceuticals have many drug dosage forms on the market, the development of new therapeutic molecules and the low efficacy of instant release formulations for the treatment of some chronic diseases and specific conditions encourage scientists to invent different delivery systems. To this purpose, a supramolecular hydrogel consisting of the tri-block copolymer PLGA-PEGPLGA and α-cyclodextrin was fabricated for the first time and characterised in terms of rheological, morphological, and structural properties. Naltrexone hydrochloride and vitamin B12 were loaded, and their release profiles were determined.

  5. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins.

    PubMed

    Tafaghodi, M; Eskandari, M; Kharazizadeh, M; Khamesipour, A; Jaafari, M R

    2010-12-01

    Immune responses against the Leishmania antigens are not sufficient to protect against a leishmania challenge. Therefore these antigens need to be potentiated by various adjuvants and delivery systems. In this study, Poly (d,l-lactide-co-glycolide (PLGA) nanospheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter for nanospheres loaded with ALM+QS was 294 ± 106 nm. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded nanospheres [(ALM+QS)PLGA], ALM encapsulated with PLGA nanospheres [(ALM)PLGA], (ALM)PLGA + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)PLGA. The (ALM+QS)PLGA group showed the least protection and highest swelling, while the (ALM)PLGA+QS, ALM+QS and ALM showed an intermediate protection with no significant difference. The mice immunized with ALM and ALM+QS showed the highest IgG2a/IgG1 ratio (P < 0.01), followed by (ALM)PLGA+QS. The highest IFN-γ and lowest IL-4 production was seen in (ALM)PLGA+QS, ALM+QS groups. The highest parasite burden was observed in (ALM)PLGA+QS and (ALM+QS)PLGA groups. It is concluded that PLGA nanospheres as a vaccine delivery system could increase the protective immune responses, but QS adjuvant has a reverse effect on protective immune responses and the least protective responses were seen in the presence of this adjuvant.

  6. Preparation of spherical macroporous poly(lactic-co-glycolic acid) for bone tissue regeneration.

    PubMed

    Bian, Chunhui; Lin, Huiming; Li, Xiaofeng; Ma, Jie; Jiang, Pingping; Qu, Fengyu

    2015-02-01

    Spherical macroporous poly(lactic-co-glycolic acid) (PLGA) has been synthesised using an emulsion method. Polyvinyl alcohol and Pluronic F127 have been used as dispersing and porogen agent, respectively. The diameter of the spherical PLGA is about 20 μm and the pore size of the PLGA macroporous is about 2-2.5 μm observed by scanning electron microscopy. After immersing in simulated body fluid, the PLGA materials can induce the formation of hydroxyapatite (HAP) on their surface. The HAP-PLGA has been obtained and used as the host for drug release. Furthermore, the drug-loaded samples possess the various drug release performance by adjusting the thickness of the HAP layer. This highly satisfied composite material is expected to be promising in the applications in tissue regeneration engineering.

  7. Electrospun PLGA-silk fibroin-collagen nanofibrous scaffolds for nerve tissue engineering.

    PubMed

    Wang, Guanglin; Hu, Xudong; Lin, Wei; Dong, Changchao; Wu, Hui

    2011-03-01

    Electrospun nanofibrous scaffolds varying different materials are fabricated for tissue engineering. PLGA, silk fibroin, and collagen-derived scaffolds have been proved on good biocompatibility with neurons. However, no systematic studies have been performed to examine the PLGA-silk fibroin-collagen (PLGA-SF-COL) biocomposite fiber matrices for nerve tissue engineering. In this study, different weight ratio PLGA-SF-COL (50:25:25, 30:35:35) scaffolds were produced via electrospinning. The physical and mechanical properties were tested. The average fiber diameter ranged from 280 + 26 to 168 + 21 nm with high porosity and hydrophilicity; the tensile strength was 1.76 ± 0.32 and 1.25 ± 0.20 Mpa, respectively. The results demonstrated that electrospinning polymer blending is a simple and effective approach for fabricating novel biocomposite nanofibrous scaffolds. The properties of the scaffolds can be strongly influenced by the concentration of collagen and silk fibroin in the biocomposite. To assay the cytocompatibility, Schwann cells were seeded on the scaffolds; cell attachment, growth morphology, and proliferation were studied. SEM and MTT results confirmed that PLGA-SF-COL scaffolds particularly the one that contains 50% PLGA, 25% silk fibroin, and 25% collagen is more suitable for nerve tissue engineering compared to PLGA nanofibrous scaffolds. PMID:21181450

  8. Cationic PLGA/Eudragit RL nanoparticles for increasing retention time in synovial cavity after intra-articular injection in knee joint

    PubMed Central

    Kim, Sung Rae; Ho, Myoung Jin; Lee, Eugene; Lee, Joon Woo; Choi, Young Wook; Kang, Myung Joo

    2015-01-01

    Positively surface-charged poly(lactide-co-glycolide) (PLGA)/Eudragit RL nanoparticles (NPs) were designed to increase retention time and sustain release profile in joints after intra-articular injection, by forming micrometer-sized electrostatic aggregates with hyaluronic acid, an endogenous anionic polysaccharide found in high amounts in synovial fluid. The cationic NPs consisting of PLGA, Eudragit RL, and polyvinyl alcohol were fabricated by solvent evaporation technique. The NPs were 170.1 nm in size, with a zeta potential of 21.3 mV in phosphate-buffered saline. Hyperspectral imaging (CytoViva®) revealed the formation of the micrometer-sized filamentous aggregates upon admixing, due to electrostatic interaction between NPs and the polysaccharides. NPs loaded with a fluorescent probe (1,1′-dioctadecyl-3,3,3′,3′ tetramethylindotricarbocyanine iodide, DiR) displayed a significantly improved retention time in the knee joint, with over 50% preservation of the fluorescent signal 28 days after injection. When DiR solution was injected intra-articularly, the fluorescence levels rapidly decreased to 30% of the initial concentration within 3 days in mice. From these findings, we suggest that PLGA-based cationic NPs could be a promising tool for prolonged delivery of therapeutic agents in joints selectively. PMID:26345227

  9. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells

    PubMed Central

    Xie, Qiao; Jia, Lie-ni; Xu, Hong-yu; Hu, Xiang-gang; Wang, Wei; Jia, Jun

    2016-01-01

    Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency. PMID:27313626

  10. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability.

    PubMed

    Qi, Feng; Wu, Jie; Fan, Qingze; He, Fan; Tian, Guifang; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2013-12-01

    Exenatide-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres hold great potential as a drug delivery system to treat type 2 diabetes mellitus (T2DM) because they can overcome the shortcoming of exenatide's short half-life and realize sustained efficacy. However, conventional preparation methods often lead to microspheres with a broad size distribution, which in turn would cause poor preparation repeatability, drug efficacy and so forth. In this study, we used Shirasu Porous Glass (SPG) premix membrane emulsification technique characterized with high trans-membrane flux and size controllability to prepare uniform-sized PLGA microspheres. By optimizing trans-membrane pressure and PVA concentration in external aqueous phase, uniform-sized PLGA microspheres with large size (around 20μm) were successfully obtained. To achieve high encapsulation efficiency (EE) and improve in vitro release behavior, we have carefully examined the process parameters. Our results show that using ultrasonication to form primary emulsion, microspheres with high EE were easily obtained, but the rate of in vitro release was very slow. Instead, high EE and appropriate in vitro release were achieved when homogenization with optimized time and speed were employed. Besides, we also systematically investigated the effect of formulations on loading efficiency (LE) as well as the relationship between the resultant size of the microspheres and pore size of the membrane. Finally, through RP-HPLC and CD spectra analysis, we have demonstrated that the bio-stability of exenatide in microspheres was preserved during the preparation process.

  11. Fabrication of Core-Shell PEI/pBMP2-PLGA Electrospun Scaffold for Gene Delivery to Periodontal Ligament Stem Cells.

    PubMed

    Xie, Qiao; Jia, Lie-Ni; Xu, Hong-Yu; Hu, Xiang-Gang; Wang, Wei; Jia, Jun

    2016-01-01

    Bone tissue engineering is the most promising technology for enhancing bone regeneration. Scaffolds loaded with osteogenic factors improve the therapeutic effect. In this study, the bioactive PEI (polyethylenimine)/pBMP2- (bone morphogenetic protein-2 plasmid-) PLGA (poly(D, L-lactic-co-glycolic acid)) core-shell scaffolds were prepared using coaxial electrospinning for a controlled gene delivery to hPDLSCs (human periodontal ligament stem cells). The pBMP2 was encapsulated in the PEI phase as a core and PLGA was employed to control pBMP2 release as a shell. First, the scaffold characterization and mechanical properties were evaluated. Then the gene release behavior was analyzed. Our results showed that pBMP2 was released at high levels in the first few days, with a continuous release behavior in the next 28 days. At the same time, PEI/pBMP2 showed high transfection efficiency. Moreover, the core-shell electrospun scaffold showed BMP2 expression for a much longer time (more than 28 days) compared with the single axial electrospun scaffold, as evaluated by qRT-PCR and western blot after culturing with hPDLSCs. These results suggested that the core-shell PEI/pBMP2-PLGA scaffold fabricated by coaxial electrospinning had a good gene release behavior and showed a prolonged expression time with a high transfection efficiency. PMID:27313626

  12. Osteointegration of PLGA implants with nanostructured or microsized β-TCP particles in a minipig model.

    PubMed

    Kulkova, Julia; Moritz, Niko; Suokas, Esa O; Strandberg, Niko; Leino, Kari A; Laitio, Timo T; Aro, Hannu T

    2014-12-01

    Bioresorbable suture anchors and interference screws have certain benefits over equivalent titanium-alloy implants. However, there is a need for compositional improvement of currently used bioresorbable implants. We hypothesized that implants made of poly(l-lactide-co-glycolide) (PLGA) compounded with nanostructured particles of beta-tricalcium phosphate (β-TCP) would induce stronger osteointegration than implants made of PLGA compounded with microsized β-TCP particles. The experimental nanostructured self-reinforced PLGA (85L:15G)/β-TCP composite was made by high-energy ball-milling. Self-reinforced microsized PLGA (95L:5G)/β-TCP composite was prepared by melt-compounding. The composites were characterized by gas chromatography, Ubbelohde viscometry, scanning electron microscopy, laser diffractometry, and standard mechanical tests. Four groups of implants were prepared for the controlled laboratory study employing a minipig animal model. Implants in the first two groups were prepared from nanostructured and microsized PLGA/β-TCP composites respectively. Microroughened titanium-alloy (Ti6Al4V) implants served as positive intra-animal control, and pure PLGA implants as negative control. Cone-shaped implants were inserted in a random order unilaterally in the anterior cortex of the femoral shaft. Eight weeks after surgery, the mechanical strength of osteointegration of the implants was measured by a push-out test. The quality of new bone surrounding the implant was assessed by microcomputed tomography and histology. Implants made of nanostructured PLGA/β-TCP composite did not show improved mechanical osteointegration compared with the implants made of microsized PLGA/β-TCP composite. In the intra-animal comparison, the push-out force of two PLGA/β-TCP composites was 35-60% of that obtained with Ti6Al4V implants. The implant materials did not result in distinct differences in quality of new bone surrounding the implant.

  13. Co-Delivery of Atorvastatin Nanocrystals in PLGA based in situ Gel for Anti-Hyperlipidemic Efficacy.

    PubMed

    Kurakula, Mallesh; Ahmed, Tarek A

    2016-01-01

    The objective was to develop chitosan atorvastatin (ATR) nanocrystals loaded into Poly (lactic-co-glycolic) acid (PLGA) injectable in situ gel (ISG) system that can minimize initial drug burst and enhance hypolipidemic effect. ATR nanocrystals were successfully characterized for size, morphology, crystallinity and drug-excipients interaction. The effects of varied polymer concentration and gelling solvents were evaluated for initial burst release and in vivo efficacy. Short term stability study was also conducted for the promising formulation. Nanocrystals of size 254 nm were prepared using low molecular weight chitosan and were of smooth surface with multiple scaffolds like structures. X-ray powder diffraction revealed the crystalline structure of the prepared nanocrystals while no drug-excipients interactions were observed. Addition of nanocrystals did not significantly alter gelation property of the ISG system that showed acceptable syringeability. The promising ISG formulation was achieved with 45% PLGA in N-methyl pyrrolidone: benzyl benzoate (1:3). In-vitro dissolution study illustrated lower initial ATR burst and prolonged drug release from nanocrystal based ISG when compared to plain ATR ISG. The pharmacokinetic and hypolipidemic biochemical parameters were comparable in the two formulations. The promising formulation exhibited minimum drug degradation at 4 °C and so could be considered as an ideal ISG delivery system. PMID:26549039

  14. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion

    PubMed Central

    Hong, Xiaoyun; Wei, Liangming; Ma, Liuqing; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future. PMID:23882140

  15. Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix

    PubMed Central

    2011-01-01

    We fabricated a novel vascular endothelial growth factor (VEGF)-loaded poly(lactic-co-glycolic acid) (PLGA)-nanoparticles (NPs)-embedded thermo-sensitive hydrogel in porcine bladder acellular matrix allograft (BAMA) system, which is designed for achieving a sustained release of VEGF protein, and embedding the protein carrier into the BAMA. We identified and optimized various formulations and process parameters to get the preferred particle size, entrapment, and polydispersibility of the VEGF-NPs, and incorporated the VEGF-NPs into the (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (Pluronic®) F127 to achieve the preferred VEGF-NPs thermo-sensitive gel system. Then the thermal behavior of the system was proven by in vitro and in vivo study, and the kinetic-sustained release profile of the system embedded in porcine bladder acellular matrix was investigated. Results indicated that the bioactivity of the encapsulated VEGF released from the NPs was reserved, and the VEGF-NPs thermo-sensitive gel system can achieve sol-gel transmission successfully at appropriate temperature. Furthermore, the system can create a satisfactory tissue-compatible environment and an effective VEGF-sustained release approach. In conclusion, a novel VEGF-loaded PLGA NPs-embedded thermo-sensitive hydrogel in porcine BAMA system is successfully prepared, to provide a promising way for deficient bladder reconstruction therapy. PMID:21711840

  16. Chrysin-loaded PLGA-PEG nanoparticles designed for enhanced effect on the breast cancer cell line.

    PubMed

    Anari, Elham; Akbarzadeh, Abolfazl; Zarghami, Nosratollah

    2016-09-01

    The development of nanotherapy has presented a new method of drug delivery targeted directly to the neoplasmic tissues, to maximize the action with fewer dose requirements. In the past two decades, poly(lactic-co-glycolic acid) (PLGA) has frequently been investigated by many researchers and is a popular polymeric candidate, due to its biocompatibility and biodegradability, exhibition of a wide range of erosion times, tunable mechanical properties, and most notably, because it is a FDA-approved polymer. Chrysin is a natural flavonoid which has been reported to have some significant biological effects on the processes of chemical defense, nitrogen fixation, inflammation, and oxidation. However, the low solubility in water decreases its bioavailability and consequently disrupts the biomedical benefits. Being loaded with PLGA-PEG increases chrysin solubility and drug tolerance, and decreases the discordant effects of the drug. The well-structured chrysin efficiently accumulates in the breast cancer cell line (T47D). In the present study, the structure and chrysin loading were delineated using proton nuclear magnetic resonance (HNMR), Fourier-transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM), and the in vitro cytotoxicity of pure and nanochrysin was studied by the MTT assay. Next, the RNA was exploited and the cytotoxic effects of chrysin were studied by real-time PCR. In conclusion, the nanochrysin therapy developed is a novel method that could increase cytotoxicity to cancer cells without damaging the normal cells, and would be promising in breast cancer therapy. PMID:26148177

  17. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses.

    PubMed

    Salvador, Aiala; Sandgren, Kerrie J; Liang, Frank; Thompson, Elizabeth A; Koup, Richard A; Pedraz, José Luis; Hernandez, Rosa Maria; Loré, Karin; Igartua, Manoli

    2015-12-30

    Designing strategies for targeting antigens to dendritic cells is a major goal in vaccinology. Here, PLGA (poly lactic-co-glycolic acid) microspheres and with several surface modifications that affect to their uptake by human blood primary dendritic cells and monocytes have been evaluated. Higher uptake was found by all the cell types when cationic microspheres (PLGA modified with polyethylene imine) were used. These cationic particles were in vivo evaluated in mice. In addition, MPLA(1) or poly(I:C)(2) and α-GalCer(3) were also encapsulated to address their adjuvant effect. All the microspheres were able to produce humoral immune responses, albeit they were higher for cationic microspheres. Moreover, surface charge seemed to have a role on biasing the immune response; cationic microspheres induced higher IFN-γ levels, indicative of Th1 activation, while unmodified ones mainly triggered IL4 and IL17A release, showing Th2 activation. Thus, we have shown here the potential and versatility of these MS, which may be tailored to needs.

  18. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion.

    PubMed

    Hong, Xiaoyun; Wei, Liangming; Ma, Liuqing; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future.

  19. Design of nanosuspensions and freeze-dried PLGA nanoparticles as a novel approach for ophthalmic delivery of pranoprofen.

    PubMed

    Abrego, Guadalupe; Alvarado, Helen L; Egea, Maria A; Gonzalez-Mira, Elizabeth; Calpena, Ana C; Garcia, Maria L

    2014-10-01

    Pranoprofen (PF)-loaded poly (lactic-co-glycolic) acid (PLGA) nanoparticles (NPs) were optimized and characterized as a means of exploring novel formulations to improve the biopharmaceutical profile of this drug. These systems were prepared using the solvent displacement technique, with polyvinyl alcohol (PVA) as a stabilizer. A factorial design was applied to study the influence of several factors (the pH of the aqueous phase and the stabilizer, polymer and drug concentrations) on the physicochemical properties of the NPs. After optimization, the study was performed at two different aqueous phase pH values (4.50 and 5.50), two concentrations of PF (1.00 and 1.50 mg/mL), three of PVA (5, 10, and 25 mg/mL), and two of PLGA (9.00 and 9.50 mg/mL). These conditions produced NPs of a size appropriate particle size for ocular administration (around 350 nm) and high entrapment efficiency (80%). To improve their stability, the optimized NPs were lyophilized. X-ray, FTIR, and differential scanning calorimetry analysis confirmed the drug was dispersed inside the particles. The release profiles of PF from the primary nanosuspensions and rehydrated freeze-dried NPs were similar and exhibited a sustained drug delivery pattern. The ocular tolerance was assessed by an HET-CAM test. No signs of ocular irritancy were detected (score 0). PMID:25091511

  20. Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres.

    PubMed

    Selek, H; Sahin, S; Ercan, M T; Sargon, M; Hincal, A A; Kas, H S

    2003-01-01

    Terbutaline sulphate (TBS) is widely used in the treatment of bronchial asthma, chronic bronchitis and emphysema. Because of its short biological half life and dosing schedule, a long acting TBS formulation is required to improve patient compliance. The objective of this study was to develop a TBS containing biodegradable microsphere formulation. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactic acid) (L-PLA) were chosen as matrix materials. A solvent evaporation method was used for preparation of microspheres. Surface morphology, particle size distribution and encapsulation efficiency were investigated. In vitro release studies were performed in pH 7.4 phosphate buffer. In vitro distribution of microspheres were studied in the Swiss albino male mice. All microspheres were spherical in shape and had a porous surface with mean diameters of 9-21 microm. The encapsulation efficiency was influenced by the polymer type, but not the molecular weight. About 90% of the initial amount was trapped in PLGA microspheres, and the remainder was on the surface. In the case of L-PLA, 50% of the total drug was associated with the surface of microspheres. The In vitro release pattern was biphasic characterized by an initial burst phase followed by a slower phase. The L-PLA microspheres released approximately 92% of the initial payload in 72 h. On the other hand, TBS release was increased with an increase in the molecular weight of PLGA. Biodistribution of L-PLA microspheres was characterized by an initially high uptake (35%) by the lungs. All these results suggest that L-PLA and PLGA microspheres have the potential to be used for passive lung targeting. PMID:12554379

  1. Gene Expression Profiling of Peri-Implant Healing of PLGA-Li+ Implants Suggests an Activated Wnt Signaling Pathway In Vivo

    PubMed Central

    Thorfve, Anna; Bergstrand, Anna; Ekström, Karin; Lindahl, Anders; Thomsen, Peter; Larsson, Anette; Tengvall, Pentti

    2014-01-01

    Bone development and regeneration is associated with the Wnt signaling pathway that, according to literature, can be modulated by lithium ions (Li+). The aim of this study was to evaluate the gene expression profile during peri-implant healing of poly(lactic-co-glycolic acid) (PLGA) implants with incorporated Li+, while PLGA without Li+ was used as control, and a special attention was then paid to the Wnt signaling pathway. The implants were inserted in rat tibia for 7 or 28 days and the gene expression profile was investigated using a genome-wide microarray analysis. The results were verified by qPCR and immunohistochemistry. Histomorphometry was used to evaluate the possible effect of Li+ on bone regeneration. The microarray analysis revealed a large number of significantly differentially regulated genes over time within the two implant groups. The Wnt signaling pathway was significantly affected by Li+, with approximately 34% of all Wnt-related markers regulated over time, compared to 22% for non-Li+ containing (control; Ctrl) implants. Functional cluster analysis indicated skeletal system morphogenesis, cartilage development and condensation as related to Li+. The downstream Wnt target gene, FOSL1, and the extracellular protein-encoding gene, ASPN, were significantly upregulated by Li+ compared with Ctrl. The presence of β-catenin, FOSL1 and ASPN positive cells was confirmed around implants of both groups. Interestingly, a significantly reduced bone area was observed over time around both implant groups. The presence of periostin and calcitonin receptor-positive cells was observed at both time points. This study is to the best of the authors' knowledge the first report evaluating the effect of a local release of Li+ from PLGA at the fracture site. The present study shows that during the current time frame and with the present dose of Li+ in PLGA implants, Li+ is not an enhancer of early bone growth, although it affects the Wnt signaling pathway. PMID:25047349

  2. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood-brain barrier.

    PubMed

    Fornaguera, C; Dols-Perez, A; Calderó, G; García-Celma, M J; Camarasa, J; Solans, C

    2015-08-10

    Neurodegenerative diseases have an increased prevalence and incidence nowadays, mainly due to aging of the population. In addition, current treatments lack efficacy, mostly due to the presence of the blood-brain barrier (BBB) that limits the penetration of the drugs to the central nervous system. Therefore, novel drug delivery systems are required. Polymeric nanoparticles have been reported to be appropriate for this purpose. Specifically, the use of poly-(lactic-co-glycolic acid) (PLGA) seems to be advantageous due to its biocompatibility and biodegradability that ensure safe therapies. In this work, a novel approximation to develop loperamide-loaded nanoparticles is presented: their preparation by nano-emulsion templating using a low-energy method (the phase inversion composition, PIC, method). This nano-emulsification approach is a simple and very versatile technology, which allows a precise size control and it can be performed at mild process conditions. Drug-loaded PLGA nanoparticles were obtained using safe components by solvent evaporation of template nano-emulsions. Characterization of PLGA nanoparticles was performed, together with the study of the BBB crossing. The in vivo results of measuring the analgesic effect using the hot-plate test evidenced that the designed PLGA loperamide-loaded nanoparticles are able to efficiently cross the BBB, with high crossing efficiencies when their surface is functionalized with an active targeting moiety (a monoclonal antibody against the transferrin receptor). These results, together with the nanoparticle characterization performed here are expected to provide sufficient evidences to end up to clinical trials in the near future.

  3. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis.

    PubMed

    Dai, Zhaoxing; Yu, Xiaobo; Hong, Jiaxu; Liu, Xi; Sun, Jianguo; Sun, Xinghuai

    2016-09-01

    The formation of a scar after glaucoma surgery often leads to unsuccessful control of intraocular pressure, and should be prevented by using a variety of methods. We designed and developed a novel drug delivery system (DDS) comprising cyclosporine A (CsA) and poly(lactic-co-glycolic acid) (PLGA) based on a glaucoma drainage device (GDD) that can continuously release CsA to prevent postoperative fibrosis following glaucoma surgery. The CsA@PLGA@GDD DDS was observed by field emission scanning electron microscopy and revealed an asymmetric pore structure. Thermogravimetric analysis was performed to measure the weight loss and evaluate the thermal stability of the CsA@PLGA@GDD DDS. The in vitro drug release profile of the DDS was studied using high performance liquid chromatography, which confirmed that the DDS released CsA at a stable rate and maintained adequate CsA concentrations for a relatively long time. The biocompatibility of the DDS and the inhibitory effects on the postoperative fibrosis were investigated in vitro using rabbit Tenon's fibroblasts. The in vivo safety and efficacy of the DDS were examined by implanting the DDS into Tenon's capsules in New Zealand rabbits. Bleb morphology, intraocular pressure, anterior chamber reactions, and anterior chamber angiography were studied at a series of set times. The DDS kept the filtration pathway unblocked for a longer time compared with the control GDD. The results indicate that the CsA@PLGA@GDD DDS represents a safe and effective strategy for preventing scar formation after glaucoma surgery. PMID:27207056

  4. Targeted delivery of tanshinone IIA-conjugated mPEG-PLGA-PLL-cRGD nanoparticles to hepatocellular carcinoma.

    PubMed

    Wang, Yan; Song, Daqian; Costanza, Frankie; Ji, Guang; Fan, Zhongze; Cai, Jianfeng; Li, Qi

    2014-11-01

    Tanshinone IIA (TSIIA) is an active constituent of the traditional Chinese medicinal plant Salvia miltiorrhiza that is known to have anti-tumor properties. In order to increase the selectivity of TSIIA's anti-tumor activity, the current study evaluated the tumor-targeting efficacy of TSIIA incorporated into nanoparticles (NPs). TSIIA was loaded into mPEG-PLGA-PLL-cRGD (methoxy polyethylene glycol, polylactic-co-glycolic acid, poly-L-lysine, cyclic arginine-glycine-aspartic acid) nanoparticles (TNPs) and used to treat hepatocellular carcinoma in vitro and in vivo. Our data demonstrate that TNPs were stable and had an even size distribution as well as an extended TSIIA releasing time, and improved tumor-targeting activity. As a novel drug carrier system, TNPs significantly inhibited the development of liver cancer both in vitro and in vivo, proving to be a novel promising targeted treatment for liver cancer.

  5. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites.

    PubMed

    Liu, Huinan; Slamovich, Elliott B; Webster, Thomas J

    2005-07-01

    The design of nanophase titania/poly-lactic-co-glycolic acid (PLGA) composites offers an exciting approach to combine the advantages of a degradable polymer with nano-size ceramic grains to optimize physical and biological properties for bone regeneration. Importantly, nanophase titania mimics the size scale of constituent components of bone since it is a nanostructured composite composed of nanometre dimensioned hydroxyapatite well dispersed in a mostly collagen matrix. For these reasons, the objective of the present in vitro study was to investigate osteoblast (bone-forming cell) adhesion and long-term functions on nanophase titania/PLGA composites. Since nanophase titania tended to significantly agglomerate when added to polymers, different sonication output powers were applied in this study to improve titania dispersion. Results demonstrated that the dispersion of titania in PLGA was enhanced by increasing the intensity of sonication and that greater osteoblast adhesion correlated with improved nanophase titania dispersion in PLGA. Moreover, results correlated better osteoblast long-term functions, such as alkaline phosphatase activity and calcium-containing mineral deposition, on nanophase titania/PLGA composites compared to plain PLGA. In fact, the greatest collagen production by osteoblasts occurred when cultured on nanophase titania sonicated in PLGA at the highest powers. In this manner, the present study demonstrates that PLGA composites with well dispersed nanophase titania can enhance osteoblast functions necessary for improved bone tissue engineering applications.

  6. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid)

    NASA Astrophysics Data System (ADS)

    Aslan, Seyma; Loebick, Codruta Zoican; Kang, Seoktae; Elimelech, Menachem; Pfefferle, Lisa D.; van Tassel, Paul R.

    2010-09-01

    Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (<2% by weight). Up to 98% of bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial.Biomaterials that inactivate microbes are needed to eliminate medical device infections. We investigate here the antimicrobial nature of single-walled carbon nanotubes (SWNTs) incorporated within the biomedical polymer poly(lactic-co-glycolic acid) (PLGA). We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration (<2% by weight). Up to 98% of bacteria die within one hour on SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNTs are more toxic, possibly due to increased density of open tube ends. This study demonstrates the potential usefulness of SWNT-PLGA as an antimicrobial biomaterial. Electronic supplementary information (ESI) available: Raman spectra before and after SWNT cutting via cyclodextrins, and sample images from viability and metabolic activity assays are included. See DOI: 10.1039/c0nr00329h

  7. Mechanism of drug release from double-walled PDLLA(PLGA) microspheres

    PubMed Central

    Xu, Qingxing; Chin, Shi En; Wang, Chi-Hwa; Pack, Daniel W.

    2013-01-01

    The drug release and degradation behavior of two double-walled microsphere formulations consisting of a doxorubicin loaded poly(D,L-lactic-co-glycolic acid) (PLGA) core (~46 kDa) surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer (~55 and 116 kDa) were examined. It was postulated that different molecular weights of the shell layer could modulate the erosion of the outer coating and limit the occurrence of water penetration into the inner drug-loaded core on various time scales, and therefore control the drug release from the microspheres. For both microsphere formulations, the drug release profiles were observed to be similar. The degradation of the microspheres was monitored for a period of about nine weeks and analyzed using scanning electron microscopy, laser scanning confocal microscopy, and gel permeation chromatography. Interestingly, both microsphere formulations exhibited occurrence of bulk erosion of PDLLA on a similar time scale despite different PDLLA molecular weights forming the shell layer. The shell layer of the double-walled microspheres served as an effective diffusion barrier during the initial lag phase period and controlled the release rate of the hydrophilic drug independent of the molecular weight of the shell layer. PMID:23453059

  8. Physicochemical Properties and Applications of Poly(lactic-co-glycolic acid) for Use in Bone Regeneration

    PubMed Central

    Félix Lanao, Rosa P.; Jonker, Anika M.; Wolke, Joop G.C.; Jansen, John A.; van Hest, Jan C.M.

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements. PMID:23350707

  9. CDDP supramolecular micelles fabricated from adamantine terminated mPEG and β-cyclodextrin based seven-armed poly (L-glutamic acid)/CDDP complexes.

    PubMed

    Yong, Dawei; Luo, Yu; Du, Fang; Huang, Jin; Lu, Wei; Dai, Zhaoyun; Yu, Jiahui; Liu, Shiyuan

    2013-05-01

    This research is aimed to develop a nano-sized supramolecular micelle delivery system of cis-dichlorodiammine platinum (II) (CDDP) in order to achieve the passive tumor targeting. Firstly, star-shaped poly (γ-benzyl-L-glutamate) was synthesized by the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxyanhydride initiated with per-6-amino-β-cyclodextrin. After removal of benzyl groups, β-cyclodextrin based seven-armed poly (L-glutamic acid) (β-CD-7PLGA) was obtained. β-CD-7PLGA/CDDP complexes were prepared by the complex reaction between the carboxylic groups of β-CD-7PLGA and CDDP. Further inclusion of β-CD-7PLGA/CDDP complexes with adamantine terminated mPEG (mPEG-Ad) gave CDDP supramolecular micelles (mPEG-Ad@β-CD-7PLGA/CDDP). The formation of mPEG-Ad@β-CD-7PLGA/CDDP supramolecular micelles was confirmed by fluorescence spectrophotoscopy and particle size measurements. All the micelles showed spherical shape, and their sizes increased from 100 to 135 nm with the increase of PLGA arm molecular weight. mPEG-Ad@CD-7PLGA/CDDP micelles showed sustained drug release profiles over 50h in PBS. Compared with CDDP, mPEG-Ad@β-CD-7PLGA/CDDP supramolecular micelles showed essential decreased cytotoxicity to KB cells, suggesting their great potential as the delivery carriers of CDDP.

  10. Biocompatibility Assessment of Polyethylene Glycol-Poly L-Lysine-Poly Lactic-Co-Glycolic Acid Nanoparticles In Vitro and In Vivo.

    PubMed

    Guo, Liting; Chen, Baoan; Liu, Ran; Xia, Guohua; Wang, Yonglu; Li, Xueming; Wei, Chen; Wang, Xuemei; Jiang, Hulin

    2015-05-01

    The present study was designed to evaluate the biocompatibility of nanoparticles polyethylene glycol (PEG)-poly L-lysine (PLL)-poly lactic-co-glycolic acid copolymer (PLGA) (PEG-PLL-PLGA) before clinical application. We applied some tests to assess the safety of PEG-PLL-PLGA nanoparticles (NPs). There was low cytotoxicity of PEG-PLL-PLGA NPs in vitro as detected by MTT assay. Cell apoptosis and intracellular accumulation of PEG-PLL-PLGA were determined by FCM assay. The apoptotic rate induced by nanoparticles and the fluorescence intensity of intracellular daunorubicin (DNR) demonstrated that DNR-PEG-PLL-PLGA could be taken up by the mouse fibroblast cells (L929 cells). Hemolysis test and micronucleus (MN) assay demonstrated that the nanoparticles have no obviously blood toxicity and genotoxicity. DNR-PEG-PLL-PLGA NPs were injected into mice through tail vein to calculate the median lethal dose (LD50), the results showed that they had a wide safe scale. Blood was taken by removing the eyeball of mice to study the influence of DNR-PEG-PLL-PLGA in hepatic and renal functions. The results revealed that there was no significant difference as compared with the control group. Interestingly, the pathologic changes of heart, liver, spleen, lung and kidney were observed in nanoparticles treated mice. Thus, this study demonstrates that PEG-PLL-PLGA NPs appear to be highly biocompatible and safe nanoparticles that can be suitable for further application in the treatment of tumor.

  11. Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds.

    PubMed

    Lee, Yujung; Kwon, Jeongil; Khang, Gilson; Lee, Dongwon

    2012-10-01

    Vanillin is one of the major components of vanilla, a commonly used flavoring agent and preservative and is known to exert potent antioxidant and anti-inflammatory activities. In this work, vanillin-incorporated poly(lactic-co-glycolic acid) (PLGA) films and scaffolds were fabricated to evaluate the effects of vanillin on the inflammatory responses and extracellular matrix (ECM) formation in vitro and in vivo. The incorporation of vanillin to PLGA films induced hydrophilic nature, resulting in the higher cell attachment and proliferation than the pure PLGA film. Vanillin also reduced the generation of reactive oxygen species (ROS) in cells cultured on the pure PLGA film and significantly inhibited the PLGA-induced inflammatory responses in vivo, evidenced by the reduced accumulation of inflammatory cells and thinner fibrous capsules. The effects of vanillin on the ECM formation were evaluated using annulus fibrous (AF) cell-seeded porous PLGA/vanillin scaffolds. PLGA/vanillin scaffolds elicited the more production of glycosaminoglycan and collagen than the pure PLGA scaffold, in a concentration-dependent manner. Based on the low level of inflammatory responses and enhanced ECM formation, vanillin-incorporated PLGA constructs make them promising candidates in the future biomedical applications.

  12. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

    PubMed

    Jiang, Tao; Khan, Yusuf; Nair, Lakshmi S; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-06-01

    Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications. PMID:19777575

  13. Co-delivery of docetaxel and Poloxamer 235 by PLGA-TPGS nanoparticles for breast cancer treatment.

    PubMed

    Tang, Xiaolong; Liang, Yong; Feng, Xiaojun; Zhang, Rongbo; Jin, Xu; Sun, Leilei

    2015-04-01

    Multidrug resistance (MDR) is a major hurdle to the success of cancer chemotherapy. Poloxamers have been shown to reverse MDR by inhibiting the P-glycoprotein (P-gp) pump. The objective of this research is to test the feasibility of docetaxel-loaded PLGA-TPGS/Poloxamer 235 nanoparticles to overcome MDR in docetaxel-resistant human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by a modified nanoprecipitation method using PLGA-TPGS and PLGA-TPGS/Poloxamer 235 mixture, respectively. The PLGA-TPGS/Poloxamer 235 nanoparticles were of spherical shape and have a rough and porous surface. The docetaxel-loaded PLGA-TPGS/Poloxamer 235 porous nanoparticles which had an average size of around 180nm with a narrow size distribution were stable, showing almost no change in particle size and surface charge during the 3-month storage period. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PLGA-TPGS/Poloxamer 235 porous nanoparticles (PPNPs) in docetaxel-resistant human breast cancer cell line, MCF-7/TXT, in comparison with PLGA-TPGS nanoparticles (PTNPs). The PLGA-TPGS/Poloxamer 235 porous nanoparticles produced significantly higher level of toxicity than both of PLGA-TPGS nanoparticle formulation and Taxotere® both in vitro and in vivo, indicating docetaxel-loaded PLGA-TPGS/Poloxamer 235 porous nanoparticles have significant potential for the treatment of breast cancer.

  14. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells.

    PubMed

    Mayol, Laura; Serri, Carla; Menale, Ciro; Crispi, Stefania; Piccolo, Maria Teresa; Mita, Luigi; Giarra, Simona; Forte, Maurizio; Saija, Antonina; Biondi, Marco; Mita, Damiano Gustavo

    2015-06-01

    The pharmacological potential of curcumin (CURC) is severely restricted because of its low water solubility/absorption, short half-life and poor bioavailability. To overcome these issues, CURC-loaded nanoparticles (NPs) were produced by a double emulsion technique. In particular, NPs were made up of an amphiphilic blend of poloxamers and PLGA to confer stealth properties to the NPs to take advantage of the enhanced permeability and retention (EPR) effect. Different surface properties of NPs made up of bare PLGA and PLGA/poloxamer blend were confirmed by the different interactions of these NPs with serum proteins and also by their ability to be internalized by mesothelioma cell line. The uptake of PLGA/poloxamer NPs induces a persistent block in G0/G1 phase of the cell cycle up to 72 h, thus overcoming the drug tolerance phenomenon, normally evidenced with free CURC.

  15. Curcumin loaded PLGA-poloxamer blend nanoparticles induce cell cycle arrest in mesothelioma cells.

    PubMed

    Mayol, Laura; Serri, Carla; Menale, Ciro; Crispi, Stefania; Piccolo, Maria Teresa; Mita, Luigi; Giarra, Simona; Forte, Maurizio; Saija, Antonina; Biondi, Marco; Mita, Damiano Gustavo

    2015-06-01

    The pharmacological potential of curcumin (CURC) is severely restricted because of its low water solubility/absorption, short half-life and poor bioavailability. To overcome these issues, CURC-loaded nanoparticles (NPs) were produced by a double emulsion technique. In particular, NPs were made up of an amphiphilic blend of poloxamers and PLGA to confer stealth properties to the NPs to take advantage of the enhanced permeability and retention (EPR) effect. Different surface properties of NPs made up of bare PLGA and PLGA/poloxamer blend were confirmed by the different interactions of these NPs with serum proteins and also by their ability to be internalized by mesothelioma cell line. The uptake of PLGA/poloxamer NPs induces a persistent block in G0/G1 phase of the cell cycle up to 72 h, thus overcoming the drug tolerance phenomenon, normally evidenced with free CURC. PMID:25794477

  16. Cellular distribution of injected PLGA-nanoparticles in the liver.

    PubMed

    Park, Jin-Kyu; Utsumi, Teruo; Seo, Young-Eun; Deng, Yang; Satoh, Ayano; Saltzman, William Mark; Iwakiri, Yasuko

    2016-07-01

    The cellular fate of nanoparticles in the liver is not fully understood. Because the effectiveness and safety of nanoparticles in liver therapy depends on targeting nanoparticles to the right cell populations, this study aimed to determine a relative distribution of PLGA-nanoparticles (sizes 271±1.4 nm) among liver cells in vivo. We found that Kupffer cells were the major cells that took up nanoparticles, followed by liver sinusoidal endothelial cells and hepatic stellate cells. Nanoparticles were found in only 7% of hepatocytes. Depletion of Kupffer cells by clodronate liposomes increased nanoparticle retention in liver sinusoidal endothelial cells and hepatic stellate cells, but not in hepatocytes. It is importantly suggested that studies of drug-loaded nanoparticle delivery to the liver have to demonstrate not only uptake of nanoparticles by the target cell type but also non-uptake by other cell types to assess their effect as well as ensure their safety.

  17. Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds

    PubMed Central

    Haider, Adnan; Gupta, Kailash Chandra; Kang, Inn-Kyu

    2014-01-01

    Tissue engineering is faced with an uphill challenge to design a platform with appropriate topography and suitable surface chemistry, which could encourage desired cellular activities and guide bone tissue regeneration. To develop such scaffolds, composite nanofiber scaffolds of nHA and sHA with PLGA were fabricated using electrospinning technique. nHA was synthesized using precipitation method, whereas sHA was purchased. The nHA and sHA were suspended in PLGA solution separately and electrospun at optimized electrospinning parameters. The composite nanofiber scaffolds were characterized by FE-SEM, EDX analysis, TEM, XRD analysis, FTIR, and X-ray photoelectron. The potential of the HA/PLGA composite nanofiber as bone scaffolds in terms of their bioactivity and biocompatibility was assessed by culturing the osteoblastic cells onto the composite nanofiber scaffolds. The results from in vitro studies revealed that the nHA/PLGA composite nanofiber scaffolds showed higher cellular adhesion, proliferation, and enhanced osteogenesis performance, along with increased Ca+2 ions release compared to the sHA/PLGA composite nanofiber scaffolds and pristine PLGA nanofiber scaffold. The results show that the structural dependent property of HA might affect its potential as bone scaffold and implantable materials in regenerative medicine and clinical tissue engineering. PMID:24719853

  18. Anticancer activity of bicalutamide-loaded PLGA nanoparticles in prostate cancers

    PubMed Central

    GUO, JUN; WU, SHU-HONG; REN, WEI-GUO; WANG, XIN-LI; YANG, AI-QING

    2015-01-01

    Prostate cancer is the most commonly diagnosed non-cutaneous malignancy in men in western and most developing countries. Bicalutamide (BLT) is an antineoplastic hormonal agent primarily used in the treatment of locally advanced and metastatic prostate cancers. In the present study, the aim was to develop a nanotechnology-based delivery system to target prostate cancer cells. This involved the development of a BLT-loaded poly(D,L-lactide-co-glycolide) PLGA (PLGA-BLT) nanoparticulate system in an attempt to improve the therapeutic efficacy of BLT in prostate cancer and to mitigate its toxicity. Nanosized particles with a uniform size distribution and spherical shape were developed. PLGA-BLT showed a pronounced cytotoxic effect on LNCaP and C4-2 cancer cells. The superior cell-killing effect of the nanoparticles may be attributable to their sustained drug-release characteristics and high cellular internalization. PLGA-BLT was also found to significantly inhibit colony formation in the two cell lines. Furthermore, the caspase-3 activity of PLGA-BLT treated cancer cells was enhanced, indicating the cell apoptosis-inducing potential of PLGA-BLT. Overall, these results suggest that nanotechnology-based formulations of BLT exhibit superior anticancer activity and have enormous potential in the treatment of prostate cancers. PMID:26668633

  19. Effect of excipients on PLGA film degradation and the stability of an incorporated peptide.

    PubMed

    Houchin, M L; Neuenswander, S A; Topp, E M

    2007-02-26

    The effect of pH modifying excipients on the chemical stability of a model peptide (VYPNGA) and the degradation of poly(dl-lactide-co-glycolide)(PLGA) was studied in PLGA films under accelerated storage conditions. pH modifiers included a basic amine (proton sponge), a basic salt (magnesium hydroxide) and two pH buffers (ammonium acetate and magnesium acetate). Changes in film pH were monitored using (13)C NMR, peptide degradation products were quantified by LC/MS/MS and PLGA degradation was analyzed by TGA, DSC and SEC. Inclusion of pH modifiers had little impact on PLGA degradation. The proton sponge affected an initial decrease in pH but reduced peptide deamidation and chain cleavage relative to an unbuffered control. Magnesium hydroxide produced an initial increase in pH but also showed increased peptide deamidation. Ammonium acetate decreased pH and increased peptide chain cleavage, presumably due to increased PLGA hydrolysis. Magnesium acetate buffer increased the initial pH but resulted in increased peptide loss. The extent of peptide acylation increased in all formulations, most notably in the proton sponge modified films. The effectiveness of pH modifiers in PLGA formulations under storage conditions is dependant on both the mechanism of pH alteration and the peptide degradation reaction of interest. PMID:17207882

  20. Morphological effects of HA on the cell compatibility of electrospun HA/PLGA composite nanofiber scaffolds.

    PubMed

    Haider, Adnan; Gupta, Kailash Chandra; Kang, Inn-Kyu

    2014-01-01

    Tissue engineering is faced with an uphill challenge to design a platform with appropriate topography and suitable surface chemistry, which could encourage desired cellular activities and guide bone tissue regeneration. To develop such scaffolds, composite nanofiber scaffolds of nHA and sHA with PLGA were fabricated using electrospinning technique. nHA was synthesized using precipitation method, whereas sHA was purchased. The nHA and sHA were suspended in PLGA solution separately and electrospun at optimized electrospinning parameters. The composite nanofiber scaffolds were characterized by FE-SEM, EDX analysis, TEM, XRD analysis, FTIR, and X-ray photoelectron. The potential of the HA/PLGA composite nanofiber as bone scaffolds in terms of their bioactivity and biocompatibility was assessed by culturing the osteoblastic cells onto the composite nanofiber scaffolds. The results from in vitro studies revealed that the nHA/PLGA composite nanofiber scaffolds showed higher cellular adhesion, proliferation, and enhanced osteogenesis performance, along with increased Ca(+2) ions release compared to the sHA/PLGA composite nanofiber scaffolds and pristine PLGA nanofiber scaffold. The results show that the structural dependent property of HA might affect its potential as bone scaffold and implantable materials in regenerative medicine and clinical tissue engineering. PMID:24719853

  1. Overexpression of GRF encapsulated in PLGA microspheres in animal skeletal muscle induces body weight gain.

    PubMed

    Zhang, Yong-liang; Ren, Xiao-hui; Liu, Song-cai; Dai, Jian-wei; Hao, Lin-lin; Jiang, Qing-yan

    2007-01-01

    Biodegradable nanospheres or microspheres have been widely used as a sustained release system for the delivery of bioagents. In the present study, injectable sustained-release growth hormone-releasing factor (GRF) (1-32) microspheres were prepared by a double emulsion-in liquid evaporation process using biodegradable polylactic-co-glycolic acid (PLGA) as the carrier. The entrapment efficiency was 89.79% and the mean particle size was 4.41 mum. The microspheres were injected into mouse tibialis muscle. After 30 days, mice injected with GRF (1-32) microspheres (group I) gained significantly more weight than any other treatment group, including mice injected with the naked plasmid (group II) (10.26 +/- 0.13 vs. 9.09 +/- 0.56; P < 0.05), a mixture of microspheres and plasmid (group III) (10.26 +/- 0.13 vs. 8.57 +/- 0.02; P < 0.05), or saline (IV) (10.26 +/- 0.13 vs. 6.47 +/- 0.26; P < 0.05). In addition, mice treated with the GRF (1-32) microspheres exhibited the highest expression levels of GRF as detected by PCR, RT-PCR, and ELISA (mean 2.56 +/- 0.40, P < 0.05, overall comparison of treatment with groups II, III, and IV). Additionally, rabbits were injected in the tibialis muscle with the same treatments described above. After 30 days, the group treated with GRF (1-32) microspheres gained the most weight. At day 30 postinjection, weight gain in group I was 63.93% higher than group II (plasmid) (877.10 +/- 24.42 vs. 535.05 +/- 26.38; P < 0.05), 108.59% higher than group III (blank MS) (877.10 +/- 24.42 vs. 420.50 +/- 19.39; P < 0.05), and 93.94% higher than group IV (saline) (877.10 +/- 24.42 vs. 452.25 +/- 27.38; P < 0.05). Furthermore, IGF-1 levels in the serum from GRF microsphere-treated group were elevated relative to all other groups. The present results suggest that encapsulation of GRF with PLGA increases GRF gene expression in muscle after local plasmid delivery, and stimulates significantly more weight gain than delivery of the naked plasmid alone.

  2. Neuroprotective effect of estradiol-loaded poly(lactic-co-glycolic acid) nanoparticles on glutamate-induced excitotoxic neuronal death.

    PubMed

    Kim, Jeong Hwan; Kim, Gyu Hyun; Jeong, Ji Heun; Lee, In Ho; Lee, Ye Ji; Lee, Nam Seob; Jeong, Young Gil; Lee, Je Hun; Yu, Kwang Sik; Lee, Shin Hye; Hong, Seul Ki; Kang, Seong Hee; Kang, Bo Sun; Kim, Do Kyung; Han, Seung Yun

    2014-11-01

    Different concentrations of estradiol (E2)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (E2-PLGA-NPs) were synthesized using the emulsion-diffusion method. Transmission electron microscopy results showed that the average particle size of E2-PLGA-NPs was 98 ± 1.9 nm when stabilized with polyvinyl alcohol and 103 ± 4.9 nm when stabilized with Tween-80. Fourier transform-infrared spectroscopy with diamond attenuated total reflectance was used to identify the presence or absence of E2 molecules in PLGA nanocapsules. Cell proliferation was assessed after treating SH-SY5Y neuroblastoma cells with 1 nM-1 μM of E2 and E2-PLGA-NPs. The neuroprotective efficacy against glutamate-induced excitotoxicity was also investigated in SH-SY5Y neuroblastoma cells. Neuroprotection was greater in E2-PLGA-NP-treated cells than in cells treated with the same concentration of E2. Furthermore, E2- and E2-PLGA-NP-treated cells expressed more p-ERK1/2 and p-CREB than cells treated with glutamate only. Moreover, the expression of p-ERK1/2 was higher than that of p-CREB. In this study, p-ERK1/2 had a greater influence on the neuroprotective effect of E2 and E2-PLGA-NPs than p-CREB. PMID:25958534

  3. The biocompatibility evaluation of mPEG-PLGA-PLL copolymer and different LA/GA ratio effects for biocompatibility.

    PubMed

    He, Zelai; Wang, Qi; Sun, Ying; Shen, Ming; Zhu, Mingjie; Gu, Malin; Wang, Yi; Duan, Yourong

    2014-01-01

    Biomaterial poly(lactic-co-glycolic acid) (PLGA), a FDA-approved material for clinical application, showed broad prospects in the past, but gradually can no longer meet present clinical developments and requirements, which we synthesized monomethoxy(polyethylene glycol)-poly(D,L-lactic-co-glycolic acid)-poly(L-lysine) (mPEG-PLGA-PLL) (PEAL) and have had some relevant reports. But studies on biocompatibility and the impacts of LA and GA ratio (LA/GA=60/40, 70/30, and 80/20) in main material have not yet been reported. Hemolysis experiment indicates that the hemolysis rate of PEAL extraction medium is less than 5%. Whole blood clotting time (CT), plasma recalcification time, activated partial thromboplastin time, prothrombin time evaluations, and dynamic CT assay show that the anticoagulant time of PEAL copolymer for blood is longer than that under negative and positive control. Protein adsorption assay indicates that PEAL films adsorb less protein than PLGA films (p<0.01); but comparing with expanded polytetrafluoroethylene, the aforementioned difference is not significant (p>0.05). Complement activation test shows that PEAL surface does not induce complement activation. CCK8 measurement shows that the relative growth rates of Huh7, L02, and L929 cells co-incubated with PEAL nanoparticles (NPs) are more than 90%. PEAL NPs co-incubated with 5% foetal bovine serum or 2% bovine serum albumin, through dynamic light scattering assay, remain stable. Different concentrations of PEAL NPs co-incubated with zebrafish embryos at 6-72 h post fertilization show that comparing with negative control, 10, 100, or 500 μM of NPs for embryos development has no significant effects (p>0.05), only 1000 or 2000 μM of NPs has some effects (p<0.05). It is concluded that the PEAL copolymer, with excellent biocompatibility, proves to be a high-safety dose as drug carrier and implant candidate in vivo.

  4. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.

    PubMed

    Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A

    2013-12-01

    The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. PMID:24044995

  5. Critical attributes of formulation and of elaboration process of PLGA-protein microparticles.

    PubMed

    Martín-Sabroso, C; Fraguas-Sánchez, A I; Aparicio-Blanco, J; Cano-Abad, M F; Torres-Suárez, A I

    2015-03-01

    Low drug loading, burst effect during release and drug inactivation account for the main drawbacks of protein microencapsulation in poly(d,l-lactic-co-glycolic) acid (PLGA) matrix by the water-in oil-in water (W/O/W) solvent evaporation method. Thus, the current study was set to invest the critical attributes of formulation and of elaboration process which determine protein loading into microparticles as well as its further release, using albumin as protein model. NaCl concentration in the external aqueous phase, poly(vinyl alcohol) (PVA) concentration and mostly viscosity of both the internal aqueous phase and the organic phase were critical attributes for improving drug loading, with polymer molecular weight and hydrophobicity likewise directly related to albumin loading. In such a way, when using 0.5% PVA as internal aqueous phase the highest albumin loading was achieved. Optimized microparticles exhibited a sustained in vitro release of albumin over 130 days. The influence of the microencapsulation process on albumin stability and biological activity was evaluated by carrying out cell proliferation assays on PC12 cells with albumin released from microparticles. Such assay demonstrated that the microencapsulation procedure optimized in this study did not affect the biological stability of the microencapsulated protein. PMID:25578370

  6. Externally Controlled Triggered-Release of Drug from PLGA Micro and Nanoparticles

    PubMed Central

    Hua, Xin; Tan, Shengnan; Bandara, H. M. H. N.; Fu, Yujie; Liu, Siguo; Smyth, Hugh D. C.

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release. PMID:25479357

  7. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Bayir, Yasin; Halici, Zekai; Karakus, Emre; Aydin, Ali; Cadirci, Elif; Albayrak, Abdulmecit; Demirci, Elif; Karaman, Adem; Ayan, Arif Kursat; Gundogdu, Cemal; Sahin, Fikrettin

    2014-11-01

    Scaffold-based bone defect reconstructions still face many challenges due to their inadequate osteoinductive and osteoconductive properties. Various biocompatible and biodegradable scaffolds, combined with proper cell type and biochemical signal molecules, have attracted significant interest in hard tissue engineering approaches. In the present study, we have evaluated the effects of boron incorporation into poly-(lactide-co-glycolide-acid) (PLGA) scaffolds, with or without rat adipose-derived stem cells (rADSCs), on bone healing in vitro and in vivo. The results revealed that boron containing scaffolds increased in vitro proliferation, attachment and calcium mineralization of rADSCs. In addition, boron containing scaffold application resulted in increased bone regeneration by enhancing osteocalcin, VEGF and collagen type I protein levels in a femur defect model. Bone mineralization density (BMD) and computed tomography (CT) analysis proved that boron incorporated scaffold administration increased the healing rate of bone defects. Transplanting stem cells into boron containing scaffolds was found to further improve bone-related outcomes compared to control groups. Additional studies are highly warranted for the investigation of the mechanical properties of these scaffolds in order to address their potential use in clinics. The study proposes that boron serves as a promising innovative approach in manufacturing scaffold systems for functional bone tissue engineering.

  8. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration.

    PubMed

    Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Parra, Alexander; Calpena, Ana; Garcia, María Luisa

    2015-09-01

    Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels.

  9. Preparation, Characterization, In Vitro Release and Degradation of Cathelicidin-BF-30-PLGA Microspheres

    PubMed Central

    Li, Hongli; Yuan, Mingwei; Yuan, Minglong

    2014-01-01

    Cathelicidin-BF-30 (BF-30), a water-soluble peptide isolated from the snake venom of Bungarus fasciatus containing 30 amino acid residues, was incorporated in poly(D,L-lactide-co-glycolide) (PLGA) 75∶25 microspheres (MS) prepared by a water in oil in water W/O/W emulsification solvent extraction method. The aim of this work was to investigate the stability of BF-30 after encapsulation. D-trehalose was used as an excipient to stabilize the peptide. The MS obtained were mostly under 2 µm in size and the encapsulation efficiency was 88.50±1.29%. The secondary structure of the peptide released in vitro was determined to be nearly the same as the native peptide using Circular Dichroism (CD). The ability of BF-30 to inhibit the growth of Escherichia coli was also maintained. The cellular relative growth and hemolysis rates were 92.16±3.55% and 3.52±0.45% respectively. PMID:24963652

  10. Preparation, characterization, in vitro release and degradation of cathelicidin-BF-30-PLGA microspheres.

    PubMed

    Li, Lili; Wang, Qifeng; Li, Hongli; Yuan, Mingwei; Yuan, Minglong

    2014-01-01

    Cathelicidin-BF-30 (BF-30), a water-soluble peptide isolated from the snake venom of Bungarus fasciatus containing 30 amino acid residues, was incorporated in poly(D,L-lactide-co-glycolide) (PLGA) 75∶25 microspheres (MS) prepared by a water in oil in water W/O/W emulsification solvent extraction method. The aim of this work was to investigate the stability of BF-30 after encapsulation. D-trehalose was used as an excipient to stabilize the peptide. The MS obtained were mostly under 2 µm in size and the encapsulation efficiency was 88.50±1.29%. The secondary structure of the peptide released in vitro was determined to be nearly the same as the native peptide using Circular Dichroism (CD). The ability of BF-30 to inhibit the growth of Escherichia coli was also maintained. The cellular relative growth and hemolysis rates were 92.16±3.55% and 3.52±0.45% respectively. PMID:24963652

  11. Externally controlled triggered-release of drug from PLGA micro and nanoparticles.

    PubMed

    Hua, Xin; Tan, Shengnan; Bandara, H M H N; Fu, Yujie; Liu, Siguo; Smyth, Hugh D C

    2014-01-01

    Biofilm infections are extremely hard to eradicate and controlled, triggered and controlled drug release properties may prolong drug release time. In this study, the ability to externally control drug release from micro and nanoparticles was investigated. We prepared micro/nanoparticles containing ciprofloxacin (CIP) and magnetic nanoparticles encapsulated in poly (lactic-co-glycolic acid) PLGA. Both micro/nanoparticles were observed to have narrow size distributions. We investigated and compared their passive and externally triggered drug release properties based on their different encapsulation structures for the nano and micro systems. In passive release studies, CIP demonstrated a fast rate of release in first 2 days which then slowed and sustained release for approximately 4 weeks. Significantly, magnetic nanoparticles containing systems all showed ability to have triggered drug release when exposed to an external oscillating magnetic field (OMF). An experiment where the OMF was turned on and off also confirmed the ability to control the drug release in a pulsatile manner. The magnetically triggered release resulted in a 2-fold drug release increase compared with normal passive release. To confirm drug integrity following release, the antibacterial activity of released drug was evaluated in Pseudomonas aeruginosa biofilms in vitro. CIP maintained its antimicrobial activity after encapsulation and triggered release.

  12. Improved in vitro and in vivo cutaneous delivery of protoporphyrin IX from PLGA-based nanoparticles.

    PubMed

    da Silva, Carolina L; Del Ciampo, José O; Rossetti, Fábia C; Bentley, Maria V L B; Pierre, Maria B R

    2013-01-01

    We report the development of D, L lactic co-glycolic acid) (PLGA)-based nanoparticles (NPs) for topical delivery of protoporphyrin IX (PpIX), a photosensitizer (PS), in treatments like photodynamic therapy (PDT) of skin cancers. PpIX-NPs were obtained in ~75.0% yield, encapsulation efficiency of 67.7%, drug content of 50.3 μg mg(-1), average diameter of 290 nm maintained up to 30 days and a zeta potential of 32.3 mV. Sustained in vitro release of PpIX through artificial membranes following Higuchi kinetics was kept up to 10 days. In vitro retentions of PpIX both in stratum corneum (SC) and epidermis + dermis ([EP + D]) were higher from NPs (23.0 and 10.0 times, respectively) compared to control solutions at all times. Quantification of PpIX by extraction, after in vivo skin application of NPs-PpIX on hairless mice, showed higher retention of the PS both in SC and in [EP + D] (3.0 and 2.0 times, respectively) compared to control solutions. Taken together, the results indicate that NPs are suitable for PpIX encapsulation showing minimal permeation through the skin and a localized effect, characteristics of a potential and promising delivery system for PDT-associated treatments of skin cancers, photodiagnosis and their off-label uses.

  13. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration.

    PubMed

    Abrego, Guadalupe; Alvarado, Helen; Souto, Eliana B; Guevara, Bessy; Bellowa, Lyda Halbaut; Parra, Alexander; Calpena, Ana; Garcia, María Luisa

    2015-09-01

    Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels. PMID:25681744

  14. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes.

    PubMed

    Sadeghi, A R; Nokhasteh, S; Molavi, A M; Khorsand-Ghayeni, M; Naderi-Meshkin, H; Mahdizadeh, A

    2016-09-01

    In skin tissue engineering, surface feature of the scaffolds plays an important role in cell adhesion and proliferation. In this study, non-woven fibrous substrate based on poly (lactic-co-glycolic acid) (PLGA) (75/25) were hydrolyzed in various concentrations of NaOH (0.05N, 0.1N, 0.3N) to increase carboxyl and hydroxyl groups on the fiber surfaces. These functional groups were activated by EDC/NHS to create chemical bonding with collagen. To improve bioactivity, the activated substrates were coated with a collagen solution (2mg/ml) and cross-linking was carried out using the EDC/NHS in MES buffer. The effectiveness of the method was evaluated by contact angle measurements, porosimetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile and degradation tests as well as in vitro cell attachment and cytotoxicity assays. Cell culture results of human dermal fibroblasts (HDF) and keratinocytes cell line (HaCat) revealed that the cells could attach to the scaffold. Further investigation with MTT assay showed that the cell proliferation of HaCat significantly increases with collagen coating. It seems that sufficient stability of collagen on the surface due to proper chemical bonding and cross-linking has increased the bioactivity of surface remarkably which can be promising for bioengineered skin applications. PMID:27207046

  15. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    PubMed

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. PMID:26803601

  16. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy.

    PubMed

    Zhang, Jinxie; Tao, Wei; Chen, Yuhan; Chang, Danfeng; Wang, Teng; Zhang, Xudong; Mei, Lin; Zeng, Xiaowei; Huang, Laiqiang

    2015-04-01

    A doxorubicin-loaded mannitol-functionalized poly(lactide-co-glycolide)-b-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles (DOX-loaded M-PLGA-b-TPGS NPs) were prepared by a modified nanoprecipitation method. The NPs were characterized by the particle size, surface morphology, particle stability, in vitro drug release and cellular uptake efficiency. The NPs were near-spherical with narrow size distribution. The size of M-PLGA-b-TPGS NPs was ~110.9 nm (much smaller than ~143.7 nm of PLGA NPs) and the zeta potential was -35.8 mV (higher than -42.6 mV of PLGA NPs). The NPs exhibited a good redispersion since the particle size and surface charge hardly changed during 3-month storage period. In the release medium (phosphate buffer solution vs. fetal bovine serum), the cumulative drug release of DOX-loaded M-PLGA-b-TPGS, PLGA-b-TPGS, and PLGA NPs were 76.41 versus 83.11 %, 58.94 versus 73.44 % and 45.14 versus 53.12 %, respectively. Compared with PLGA-b-TPGS NPs and PLGA NPs, the M-PLGA-b-TPGS NPs possessed the highest cellular uptake efficiency in A549 and H1975 cells (lung cancer cells). Ultimately, both in vitro and in vivo antitumor activities were evaluated. The results showed that M-PLGA-b-TPGS NPs could achieve a significantly higher level of cytotoxicity in cancer cells and a better antitumor efficiency on xenograft BALB/c nude mice tumor model than free DOX. In conclusion, the DOX-loaded M-PLGA-b-TPGS could be used as a potential DOX-loaded nanoformulation in lung cancer chemotherapy.

  17. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN.

    PubMed

    Tafaghodi, Mohsen; Khamesipour, Ali; Jaafari, Mahmoud R

    2011-05-01

    Various adjuvants and delivery systems have been evaluated for increasing the protective immune responses against leishmaniasis and mostly have been shown not to be effective enough. In this study, poly(D,L-lactide-co-glycolide) (PLGA) nanospheres as an antigen delivery system and CpG-ODN as an immunoadjuvant have been used for the first time to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter of ALM + CpG-ODN-loaded nanospheres was 300 ± 128 nm. BALB/c mice were immunized three times in 3-week intervals using ALM plus CpG-ODN-loaded nanospheres [(ALM + CpG-ODN)(PLGA)], ALM encapsulated PLGA nanospheres [(ALM)(PLGA)], (ALM)(PLGA) + CpG, ALM + CpG, ALM alone, or phosphate buffer solution (PBS). The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P<0.05) smaller footpad, was observed in mice immunized with (ALM + CpG-ODN)(PLGA). The (ALM)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG were also showed a significantly (P<0.05) smaller footpad swelling compared to the groups received either PBS or ALM alone. The mice immunized with (ALM + CpG-ODN)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG showed the highest IgG2a/IgG1 ratio, interferon-γ production, and lowest interleukin-4 production compared to the other groups. It is concluded that when both PLGA nanospheres and CpG-ODN adjuvants were used simultaneously, it induce stronger immune response and enhance protection rate against Leishmania infection.

  18. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    NASA Astrophysics Data System (ADS)

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2014-10-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ~70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.Reports of molecular and cellular imaging using

  19. [Preparation and characterization of tetrandrine-loaded PLGA nanocomposite particles by premix membrane emulsification coupled with spray-drying method].

    PubMed

    Hu, Tao; Zhu, Hua-Xu; Guo, Li-Wei; Pan, Lin-Mei; Li, Bo; Shi, Fei-Yan; Lu, Jin

    2014-11-01

    For effective inhalable dry-powder drug delivery, tetrandrine-PLGA (polylactic-co-glycolic acid) nanocomposite particles have been developed to overcome the disadvantages of nanoparticles and microparticles. The primary nanoparticles were prepared by using premix membrane emulsification method. To prepare second particles, they were spray dried. The final particles were characterized by scanning electron microscopy (SEM), dry laser particle size analysis, high performance liquid chromatography (HPLC), X-ray diffraction (XRD), differential scanning calorimetry (DSC), infrared analysis (IR) and confocal laser scanning microscope (CLSM). The average size of the primary particles was (337.5 ± 6.2) nm, while that second particles was (3.675 ± 0.16) μm which can be decomposed into primary nanoparticles in water. And the second particles were solid sphere-like with the drug dispersed as armorphous form in them. It is a reference for components delivery to lung in a new form. PMID:25757290

  20. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  1. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. PMID:25809455

  2. PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses

    PubMed Central

    Ma, Wenxue; Chen, Mingshui; Kaushal, Sharmeela; McElroy, Michele; Zhang, Yu; Ozkan, Cengiz; Bouvet, Michael; Kruse, Carol; Grotjahn, Douglas; Ichim, Thomas; Minev, Boris

    2012-01-01

    The peptide vaccine clinical trials encountered limited success because of difficulties associated with stability and delivery, resulting in inefficient antigen presentation and low response rates in patients with cancer. The purpose of this study was to develop a novel delivery approach for tumor antigenic peptides in order to elicit enhanced immune responses using poly(DL-lactide-co-glycolide) nanoparticles (PLGA-NPs) encapsulating tumor antigenic peptides. PLGA-NPs were made using the double emulsion-solvent evaporation method. Artificial antigen-presenting cells were generated by human dendritic cells (DCs) loaded with PLGA-NPs encapsulating tumor antigenic peptide(s). The efficiency of the antigen presentation was measured by interferon-γ ELISpot assay (Vector Laboratories, Burlingame, CA). Antigen-specific cytotoxic T lymphocytes (CTLs) were generated and evaluated by CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, Fitchburg, WI). The efficiency of the peptide delivery was compared between the methods of emulsification in incomplete Freund’s adjuvant and encapsulation in PLGA-NPs. Our results showed that most of the PLGA-NPs were from 150 nm to 500 nm in diameter, and were negatively charged at pH 7.4 with a mean zeta potential of −15.53 ± 0.71 mV; the PLGA-NPs could be colocalized in human DCs in 30 minutes of incubation. Human DCs loaded with PLGA-NPs encapsulating peptide induced significantly stronger CTL cytotoxicity than those pulsed with free peptide, while human DCs loaded with PLGA-NPs encapsulating a three-peptide cocktail induced a significantly greater CTL response than those encapsulating a two-peptide cocktail. Most importantly, the peptide dose encapsulated in PLGA-NPs was 63 times less than that emulsified in incomplete Freund’s adjuvant, but it induced a more powerful CTL response in vivo. These results demonstrate that the delivery of peptides encapsulated in PLGA-NPs is a promising approach to induce effective antitumor

  3. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography

    PubMed Central

    Swy, Eric R.; Schwartz-Duval, Aaron S.; Shuboni, Dorela D.; Latourette, Matthew T.; Mallet, Christiane L.; Parys, Maciej; Cormode, David P.; Shapiro, Erik M.

    2015-01-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼ 70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging. PMID:25248645

  4. Dual-modality, fluorescent, PLGA encapsulated bismuth nanoparticles for molecular and cellular fluorescence imaging and computed tomography.

    PubMed

    Swy, Eric R; Schwartz-Duval, Aaron S; Shuboni, Dorela D; Latourette, Matthew T; Mallet, Christiane L; Parys, Maciej; Cormode, David P; Shapiro, Erik M

    2014-11-01

    Reports of molecular and cellular imaging using computed tomography (CT) are rapidly increasing. Many of these reports use gold nanoparticles. Bismuth has similar CT contrast properties to gold while being approximately 1000-fold less expensive. Herein we report the design, fabrication, characterization, and CT and fluorescence imaging properties of a novel, dual modality, fluorescent, polymer encapsulated bismuth nanoparticle construct for computed tomography and fluorescence imaging. We also report on cellular internalization and preliminary in vitro and in vivo toxicity effects of these constructs. 40 nm bismuth(0) nanocrystals were synthesized and encapsulated within 120 nm Poly(dl-lactic-co-glycolic acid) (PLGA) nanoparticles by oil-in-water emulsion methodologies. Coumarin-6 was co-encapsulated to impart fluorescence. High encapsulation efficiency was achieved ∼70% bismuth w/w. Particles were shown to internalize within cells following incubation in culture. Bismuth nanocrystals and PLGA encapsulated bismuth nanoparticles exhibited >90% and >70% degradation, respectively, within 24 hours in acidic, lysosomal environment mimicking media and both remained nearly 100% stable in cytosolic/extracellular fluid mimicking media. μCT and clinical CT imaging was performed at multiple X-ray tube voltages to measure concentration dependent attenuation rates as well as to establish the ability to detect the nanoparticles in an ex vivo biological sample. Dual fluorescence and CT imaging is demonstrated as well. In vivo toxicity studies in rats revealed neither clinically apparent side effects nor major alterations in serum chemistry and hematology parameters. Calculations on minimal detection requirements for in vivo targeted imaging using these nanoparticles are presented. Indeed, our results indicate that these nanoparticles may serve as a platform for sensitive and specific targeted molecular CT and fluorescence imaging.

  5. Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells

    PubMed Central

    Mitra, Moutushy; Misra, Ranjita; Harilal, Anju; Sahoo, Sanjeeb K

    2011-01-01

    Background To specifically deliver paclitaxel (PTX) to retinoblastoma (RB) cells, the anionic surface-charged poly(lactic-co-glycolic acid) (PLGA) NPs loaded with paclitaxel were conjugated with epithelial cell adhesion molecule (EpCAM) antibody for enhancing site-specific intracellular delivery of paclitaxel against EpCAM overexpressing RB cells. Methods PTX-loaded PLGA NPs were prepared by the oil-in-water single emulsion solvent evaporation method, and the PTX content in NPs was estimated by the reverse phase isocratic mode of high performance liquid chromatography. Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide chemistry was employed for the covalent attachment of monoclonal EpCAM antibody onto the NP surface. In vitro cytotoxicity of native PTX, unconjugated PTX-loaded NPs (PTX-NPs), and EpCAM antibody-conjugated PTX-loaded nanoparticles (PTX-NP-EpCAM) were evaluated on a Y79 RB cell line by a dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, while cellular apoptosis, cysteinyl-aspartic acid protease (caspase)-3 activation, Poly (adenosine diphosphate-ribose) polymerase (PARP) cleavage, and cell-cycle arrest were quantified by flow cytometry. By employing flow cytometry and fluorescence image analyses, the extent of cellular uptake was comparatively evaluated. Results PTX-NP-EpCAM had superior antiproliferation activity, increased arrested cell population at the G2-M phase, and increased activation of caspase-3, followed by PARP cleavage in parallel with the induction of apoptosis. Increased uptake of PTX-Np-EpCAM by the cells suggests that they were mainly taken up through EpCAM mediated endocytosis. Conclusions EpCAM antibody-functionalized biodegradable NPs for tumor-selective drug delivery and overcoming drug resistance could be an efficient therapeutic strategy for retinoblastoma treatment. PMID:22065926

  6. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.

    PubMed

    Liu, Peifeng; Yu, Hui; Sun, Ying; Zhu, Mingjie; Duan, Yourong

    2012-06-01

    A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer was used to prepare nanoparticles (NPs) that were then loaded with either the anti-cancer drug adriamycin or small interfering RNA-negative (siRNA) using a double emulsion method. MTT assays used to study the in vitro cytotoxicity of mPEG-PLGA-b-PLL NPs showed that these particles were not toxic in huh-7 hepatic carcinoma cells. Confocal laser scanning microscopy (CLSM) and flow cytometer analysis results demonstrated efficient mPEG-PLGA-b-PLL NPs-mediated delivery of both adriamycin and siRNA into the cells. In vivo the targeting delivery of adriamycin or siRNA mediated by mPEG-PLGA-b-PLL NPs in the huh-7 hepatic carcinoma-bearing mice was evaluated using a fluorescence imaging system. The targeting delivery results and froze section analysis confirmed that drug or siRNA is deliver to tumor more efficiently by mPEG-PLGA-b-PLL NPs than free drug or Lipofectamine™2000. The high efficiency delivery of mPEG-PLGA-b-PLL NPs mainly due to the enhancement of cellular uptake. These results imply that mPEG-PLGA-b-PLL NPs have a great potential to be used as an effective carriers for adriamycin or siRNA.

  7. Biocompatibility and enhanced osteogenic differentiation of human mesenchymal stem cells in response to surface engineered poly(D,L-lactic-co-glycolic acid) microparticles.

    PubMed

    Rogers, Catherine M; Deehan, David J; Knuth, Callie A; Rose, Felicity R A J; Shakesheff, Kevin M; Oldershaw, Rachel A

    2014-11-01

    Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time. The surfaces of both types of microparticles were functionalized by plasma polymerization with allylamine to increase hydrophilicity and promote cell attachment. HF-hMSCs attached to and spread along the surface of both forms of PLGA microparticle. The osteogenic response of HF-hMSCs was enhanced when cultured with PLGA compared with control cultures differentiated on tissue culture plastic and this was independent of the type of polymer used. We have demonstrated that surface engineered PLGA microparticles are an appropriate biomaterial for combining with HF-hMSCs and the selection of PLGA is relevant only when considering the biodegradation time for each biomedical application.

  8. Aeromonas hydrophila OmpW PLGA Nanoparticle Oral Vaccine Shows a Dose-Dependent Protective Immunity in Rohu (Labeo rohita)

    PubMed Central

    Dubey, Saurabh; Avadhani, Kiran; Mutalik, Srinivas; Sivadasan, Sangeetha Madambithara; Maiti, Biswajit; Paul, Joydeb; Girisha, Shivani Kallappa; Venugopal, Moleyur Nagarajappa; Mutoloki, Stephen; Evensen, Øystein; Karunasagar, Indrani; Munang’andu, Hetron Mweemba

    2016-01-01

    Aeromonas hydrophila is a Gram-negative bacterium that causes high mortality in different fish species and at different growth stages. Although vaccination has significantly contributed to the decline of disease outbreaks in aquaculture, the use of oral vaccines has lagged behind the injectable vaccines due to lack of proven efficacy, that being from primary immunization or by use of boost protocols. In this study, the outer membrane protein W (OmpW) of A. hydrophila was cloned, purified, and encapsulated in poly d,l-lactide-co-glycolic acid (PLGA) nanoparticles (NPs) for oral vaccination of rohu (Labeo rohita Hamilton). The physical properties of PLGA NPs encapsulating the recombinant OmpW (rOmpW) was characterized as having a diameter of 370–375 nm, encapsulation efficiency of 53% and −19.3 mV zeta potential. In vitro release of rOmpW was estimated at 34% within 48 h of incubation in phosphate-buffered saline. To evaluate the efficacy of the NP-rOmpW oral vaccine, two antigen doses were orally administered in rohu with a high antigen (HiAg) dose that had twice the amount of antigens compared to the low antigen (LoAg) dose. Antibody levels obtained after vaccination showed an antigen dose dependency in which fish from the HiAg group had higher antibody levels than those from the LoAg group. The antibody levels corresponded with post challenge survival proportions (PCSPs) and relative percent survival (RPS) in which the HiAg group had a higher PCSP and RPS than the LoAg group. Likewise, the ability to inhibit A. hydrophila growth on trypticase soy agar (TSA) by sera obtained from the HiAg group was higher than that from the LoAg group. Overall, data presented here shows that OmpW orally administered using PLGA NPs is protective against A. hydrophila infection with the level of protective immunity induced by oral vaccination being antigen dose-dependent. Future studies should seek to optimize the antigen dose and duration of oral immunization in rohu in order to

  9. PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway.

    PubMed

    Bao, Wen; Liu, Ran; Wang, Yonglu; Wang, Fei; Xia, Guohua; Zhang, Haijun; Li, Xueming; Yin, Haixiang; Chen, Baoan

    2015-01-01

    Chemotherapy offers a systemic cancer treatment; however, it is limited in clinical administration due to its serious side effects. In cancer medicine, the use of nanoparticles (NPs) drug delivery system (DDS) can sustainedly release anticancer drug at the specific site and reduce the incidence of toxicity in normal tissues. In the present study, we aimed to evaluate the benefit of a novel chemotherapeutic DDS and its underlying mechanisms. Daunorubicin (DNR) was loaded into poly (lactic-co-glycolic acid) (PLGA)-poly-L-lysine (PLL)-polyethylene glycol (PEG)-transferrin (Tf) NPs to construct DNR-PLGA-PLL-PEG-Tf-NPs (DNR-loaded NPs) as a DDS. After incubating with PLGA-PLL-PEG-Tf-NPs, DNR, and DNR-loaded NPs, the leukemia K562 cells were collected and the intracellular concentration of DNR was detected by flow cytometry, respectively. Furthermore, the effect of drugs on the growth of tumors in K562 xenografts was observed and the relevant toxicity of therapeutic drugs on organs was investigated in vivo. Meanwhile, cell apoptosis in the excised xenografts was measured by transferase-mediated dUTP nick-end labeling assay, and the expression of apoptosis-related proteins, including Bcl-2, Bax, Caspase-9, Caspase-3, and cleaved-PARP, was determined by Western blotting analysis. Results showed that DNR-loaded NPs increased intracellular concentration of DNR in K562 cells in vitro and induced a remarkable improvement in anticancer activity in the xenografts in vivo. The expression of Bcl-2 protein was downregulated and that of Bax, Caspase-9, Caspase-3, and cleaved-PARP proteins were obviously upregulated in the DNR-loaded NPs group than that in other ones. Interestingly, pathological assessment showed no apparent damage to the main organs. In summary, the results obtained from this study showed that the novel NPs DDS could improve the efficacy of DNR in the treatment of leukemia and induce apoptosis via intrinsic pathway. Thus, it can be inferred that the new drug

  10. Aeromonas hydrophila OmpW PLGA Nanoparticle Oral Vaccine Shows a Dose-Dependent Protective Immunity in Rohu (Labeo rohita).

    PubMed

    Dubey, Saurabh; Avadhani, Kiran; Mutalik, Srinivas; Sivadasan, Sangeetha Madambithara; Maiti, Biswajit; Paul, Joydeb; Girisha, Shivani Kallappa; Venugopal, Moleyur Nagarajappa; Mutoloki, Stephen; Evensen, Øystein; Karunasagar, Indrani; Munang'andu, Hetron Mweemba

    2016-01-01

    Aeromonas hydrophila is a Gram-negative bacterium that causes high mortality in different fish species and at different growth stages. Although vaccination has significantly contributed to the decline of disease outbreaks in aquaculture, the use of oral vaccines has lagged behind the injectable vaccines due to lack of proven efficacy, that being from primary immunization or by use of boost protocols. In this study, the outer membrane protein W (OmpW) of A. hydrophila was cloned, purified, and encapsulated in poly d,l-lactide-co-glycolic acid (PLGA) nanoparticles (NPs) for oral vaccination of rohu (Labeo rohita Hamilton). The physical properties of PLGA NPs encapsulating the recombinant OmpW (rOmpW) was characterized as having a diameter of 370-375 nm, encapsulation efficiency of 53% and -19.3 mV zeta potential. In vitro release of rOmpW was estimated at 34% within 48 h of incubation in phosphate-buffered saline. To evaluate the efficacy of the NP-rOmpW oral vaccine, two antigen doses were orally administered in rohu with a high antigen (HiAg) dose that had twice the amount of antigens compared to the low antigen (LoAg) dose. Antibody levels obtained after vaccination showed an antigen dose dependency in which fish from the HiAg group had higher antibody levels than those from the LoAg group. The antibody levels corresponded with post challenge survival proportions (PCSPs) and relative percent survival (RPS) in which the HiAg group had a higher PCSP and RPS than the LoAg group. Likewise, the ability to inhibit A. hydrophila growth on trypticase soy agar (TSA) by sera obtained from the HiAg group was higher than that from the LoAg group. Overall, data presented here shows that OmpW orally administered using PLGA NPs is protective against A. hydrophila infection with the level of protective immunity induced by oral vaccination being antigen dose-dependent. Future studies should seek to optimize the antigen dose and duration of oral immunization in rohu in order to

  11. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA.

    PubMed

    Lin, Liulan; Gao, Haitao; Dong, Yangyang

    2015-01-01

    To reveal the latent capacity of the growth factor-like low-molecular-weight material OIC-A006 in tissue regeneration, it is essential to design a porous scaffold in order to concurrently accommodate cells and drug release in a controlled manner. Consequently, we fabricated poly (L-lactide-co-glycolide) (PLGA)-based microspheres with an OIC-A006-loaded gradient-structured β-TCP/PLGA scaffold by freeze-drying which could then be used for drug delivery and bone regeneration. The OIC-A006-loaded β-TCP/PLGA scaffold consisted of two parts which loaded different doses of OIC-A006 (6.25 μM, outside; 12.5 μM, inside). The porosity, compressive strength, SEM, degradation, and cumulative amount of drug release in vitro were characterized. Furthermore, we confirmed the incorporation of OIC-A006 into the PLGA-based microspheres within the scaffolds using UV-spectrophotometry, and the amount of drug remaining in the scaffold was maintained by 10 % for up to 28 days. The drug release was slower in the normal-structured drug-loaded scaffold. The OIC-A006 released action from the OIC-A006-loaded β-TCP/PLGA scaffold with ideal therapeutic prospects in tissue regeneration. In vitro cell culture results showed that this gradient-structured composite scaffold can induce the adhesion and proliferation of rat bone marrow stromal cells towards osteoblasts. These results showed that the newly developed OIC-A006-loaded scaffolds with gradient structure can be potentially applied to bone regeneration in clinical applications. PMID:25577209

  12. Retinal pigment epithelium cell culture on thin biodegradable poly(DL-lactic-co-glycolic acid) films.

    PubMed

    Lu, L; Garcia, C A; Mikos, A G

    1998-01-01

    Thin films of 50:50 and 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) were manufactured with a controlled thickness of less than 10 microm. The effect of PLGA copolymer ratio on in vitro cell attachment, proliferation, morphology, and tight junction formation was evaluated using a human D407 retinal pigment epithelium (RPE) cell line. Almost complete cell attachment was achieved on both PLGA films after 8 h of cell seeding, which was comparable to that on tissue culture polystyrene (TCPS) controls. The initial cell seeding density affected attachment, and the optimal value for 50:50 PLGA was 25000 cells cm(-2). After 7 days of in vitro culture, cell density on 50:50 and 75:25 PLGA films increased 45 and 40 folds, respectively, and a 34-fold increase was observed on TCPS. The RPE cells cultured on PLGA films at confluence had a characteristic cobblestone morphology. Confluent RPE cells also developed normal tight junctions in vitro which were concentrated mainly at the apical surfaces of cell-cell junctions. These results demonstrated that thin biodegradable PLGA films can provide suitable substrates for human RPE cell culture, and may serve as temporary carriers for subretinal implantation of organized sheets of RPE.

  13. Poly(lactic-co-glycolic acid) matrix incorporated with nisin as a novel antimicrobial biomaterial.

    PubMed

    Correia, Rafaela Coelho; Jozala, Angela Faustino; Martins, Kelly Fernanda; Penna, Thereza Christina Vessoni; Duek, Eliana Aparecida de Rezende; Rangel-Yagui, Carlota de Oliveira; Lopes, André Moreni

    2015-04-01

    The use of poly(lactic-co-glycolic acid) (PLGA) matrix as a biomolecule carrier has been receiving great attention due to its potential therapeutic application. In this context, we investigated the PLGA matrix capacity to incorporate nisin, an antimicrobial peptide capable of inhibiting the growth of Gram-positive bacteria and bacterial spores germination. Nisin-incorporated PLGA matrices were evaluated based on the inhibitory effect against the nisin-bioindicator Lactobacillus sakei. Additionally, the PLGA-nisin matrix stability over an 8-months period was investigated, as well as the nisin release profile. For the incorporation conditions, we observed that a 5 h incorporation time, at 30 °C, with 250 μg/mL nisin solution in PBS buffer pH 4.5, resulted in the highest inhibitory activity of 2.70 logAU/mL. The PLGA-nisin matrix was found to be relatively stable and showed sustained drug delivery, with continuous release of nisin for 2 weeks. Therefore, PLGA-nisin matrix is could be used as a novel antimicrobial delivery system and an alternative to antibiotics incorporated into PLGA matrices.

  14. Endocytosis of Nanomedicines: The Case of Glycopeptide Engineered PLGA Nanoparticles

    PubMed Central

    Vilella, Antonietta; Ruozi, Barbara; Belletti, Daniela; Pederzoli, Francesca; Galliani, Marianna; Semeghini, Valentina; Forni, Flavio; Zoli, Michele; Vandelli, Maria Angela; Tosi, Giovanni

    2015-01-01

    The success of nanomedicine as a new strategy for drug delivery and targeting prompted the interest in developing approaches toward basic and clinical neuroscience. Despite enormous advances on brain research, central nervous system (CNS) disorders remain the world’s leading cause of disability, in part due to the inability of the majority of drugs to reach the brain parenchyma. Many attempts to use nanomedicines as CNS drug delivery systems (DDS) were made; among the various non-invasive approaches, nanoparticulate carriers and, particularly, polymeric nanoparticles (NPs) seem to be the most interesting strategies. In particular, the ability of poly-lactide-co-glycolide NPs (PLGA-NPs) specifically engineered with a glycopeptide (g7), conferring to NPs’ ability to cross the blood brain barrier (BBB) in rodents at a concentration of up to 10% of the injected dose, was demonstrated in previous studies using different routes of administrations. Most of the evidence on NP uptake mechanisms reported in the literature about intracellular pathways and processes of cell entry is based on in vitro studies. Therefore, beside the particular attention devoted to increasing the knowledge of the rate of in vivo BBB crossing of nanocarriers, the subsequent exocytosis in the brain compartments, their fate and trafficking in the brain surely represent major topics in this field. PMID:26102358

  15. Spectral and spatial characterization of protein loaded PLGA nanoparticles.

    PubMed

    Zidan, Ahmed S; Rahman, Ziyaur; Habib, Muhammad J; Khan, Mansoor A

    2010-03-01

    The objective of this study was to evaluate near infrared (NIR) spectroscopy and imaging as approaches to assess drug contents in poly(dl-lactide-co-glycolide) (PLGA) based nanoparticles of a model protein, cyclosporine A (CyA). A 6-factors 12-runs designed set of experiments with Plackett-Burman (PB) screening was applied in order to examine the effects of drug loading (X(1)), polymer loading (X(2)), emulsifier concentration (X(3)), stirring rate (X(4)), type of organic solvent (X(5)), and ratio of organic to aqueous phases' volumes (X(6)), on drug entrapment efficiency (EFF). After omitting the factors with nonsignificant influences on EFF, a reduced mathematical relationship, EFF = 48.34 + 7.3X(1) - 29.95X(3), was obtained to explain the effect of the significant factors on EFF. Using two different sets for calibration and validation, the developed NIR calibration model was able to assess CyA contents within the 12 PB formulations. NIR spectral imaging was capable of clearly distinguishing the 12 formulations, both qualitatively and quantitatively. A good correlation with a coefficient of 0.9727 was obtained for constructing a quantile-quantile plot for the actual drug loading percentage and the % standard deviation obtained for the drug loading prediction using the hyperspectral images. PMID:19774658

  16. Effects of hesperidin loaded poly(lactic-co-glycolic acid) scaffolds on growth behavior of costal cartilage cells in vitro and in vivo.

    PubMed

    Cho, Sun Ah; Cha, Se Rom; Park, Sang Mi; Kim, Kyoung Hee; Lee, Hyun Gu; Kim, Eun Young; Lee, Dongwon; Khang, Gilson

    2014-01-01

    It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells. Biodegradable synthetic polymer poly(lactic-co-glycolic acid) (PLGA) was approved by Food and Drug Administration. Hesperidin has antifungal, antiviral, antioxidant, anti-inflammatory, and anticarcinogenic properties. Hesperidin loaded (0, 3, 5, and 10 wt.%) PLGA scaffolds were prepared and in vitro and in vivo properties were characterized. Scaffolds were seeded with CCs isolated from rabbit, which were kept in culture to harvest for histological analysis. Hesperidin/PLGA scaffolds were also implanted in nude mice for 7 and 28 days. Assays of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfo-phenyl)-2H-tetrazolium, monosodium salt (WST), and scanning electron microscope were carried out to evaluate attachment and proliferation of CCs in hesperidin/PLGA scaffolds. Glycosaminoglycan assay was performed to confirm the effects of hesperidin on extracellular matrix formation. Reverse-transcriptase polymerase chain reaction was carried out to confirm the expression of the specific genes for CCs. In these results, we demonstrated that cell attachment and proliferation on hesperidin/PLGA scaffolds were more excellent compared with on PLGA scaffold. Specially, 5 wt.% hesperidin/PLGA scaffold represented the best results among other scaffolds. Thus, 5 wt.% hesperidin/PLGA scaffold will be applicable to tissue engineering cartilage. PMID:24588773

  17. Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells.

    PubMed

    Grabowski, Nadège; Hillaireau, Hervé; Vergnaud, Juliette; Santiago, Letícia Aragão; Kerdine-Romer, Saadia; Pallardy, Marc; Tsapis, Nicolas; Fattal, Elias

    2013-10-01

    In vitro cytotoxicity and inflammatory response following exposure to nanoparticles (NPs) made of poly(lactide-co-glycolide) (PLGA) have been investigated on A549 human lung epithelial cells. Three different PLGA NPs (230 nm) were obtained using different stabilizers (polyvinyl alcohol, chitosan, or Pluronic(®) F68) to form respectively neutral, positively or negatively charged NPs. Polystyrene NPs were used as polymeric but non-biodegradable NPs, and titanium dioxide (anatase and rutile) as inorganic NPs, for comparison. Cytotoxicity was evaluated through mitochondrial activity as well as membrane integrity (lactate dehydrogenase release, trypan blue exclusion, propidium iodide staining). The cytotoxicity of PLGA-based and polystyrene NPs was lower or equivalent to the one observed after exposure to titanium dioxide NPs. The inflammatory response, evaluated through the release of the IL-6, IL-8, MCP-1, TNF-α cytokines, was low for all NPs. However, some differences were observed, especially for negative PLGA NPs that led to a higher inflammatory response, which can be correlated to a higher uptake of these NPs. Taken together, these results show that both coating of PLGA NPs and the nature of the core play a key role in cell response.

  18. Preformulation Studies of Bee Venom for the Preparation of Bee Venom-Loaded PLGA Particles.

    PubMed

    Park, Min-Ho; Kim, Ju-Heon; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Cho, Cheong-Weon

    2015-01-01

    It is known that allergic people was potentially vulnerable to bee venom (BV), which can induce an anaphylactic shock, eventually leading to death. Up until recently, this kind of allergy was treated only by venom immunotherapy (VIT) and its efficacy has been recognized worldwide. This treatment is practiced by subcutaneous injections that gradually increase the doses of the allergen. This is inconvenient for patients due to frequent injections. Poly (D,L-lactide-co-glycolide) (PLGA) has been broadly studied as a carrier for drug delivery systems (DDS) of proteins and peptides. PLGA particles usually induce a sustained release. In this study, the physicochemical properties of BV were examined prior to the preparation of BV-loaded PLGA nanoparticles NPs). The content of melittin, the main component of BV, was 53.3%. When protected from the light BV was stable at 4 °C in distilled water, during 8 weeks. BV-loaded PLGA particles were prepared using dichloromethane as the most suitable organic solvent and two min of ultrasonic emulsification time. This study has characterized the physicochemical properties of BV for the preparation BV-loaded PLGA NPs in order to design and optimize a suitable sustained release system in the future. PMID:26295219

  19. Bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles as novel tumor targeting carriers.

    PubMed

    Ding, Hong; Yong, Ken-Tye; Roy, Indrajit; Hu, Rui; Wu, Fang; Zhao, Lingling; Law, Wing-Cheung; Zhao, Weiwei; Ji, Wei; Liu, Liwei; Bergey, Earl J; Prasad, Paras N

    2011-04-22

    In this study, we have developed a novel carrier, micelle-type bioconjugated PLGA-4-arm-PEG branched polymeric nanoparticles (NPs), for the detection and treatment of pancreatic cancer. These NPs contained 4-arm-PEG as corona, and PLGA as core, the particle surface was conjugated with cyclo(arginine-glycine-aspartate) (cRGD) as ligand for in vivo tumor targeting. The hydrodynamic size of the NPs was determined to be 150-180 nm and the critical micellar concentration (CMC) was estimated to be 10.5 mg l( - 1). Our in vitro study shows that these NPs by themselves had negligible cytotoxicity to human pancreatic cancer (Panc-1) and human glioblastoma (U87) cell lines. Near infrared (NIR) microscopy and flow cytometry demonstrated that the cRGD conjugated PLGA-4-arm-PEG polymeric NPs were taken up more efficiently by U87MG glioma cells, over-expressing the α(v)β(3) integrin, when compared with the non-targeted NPs. Whole body imaging showed that the cRGD conjugated PLGA-4-arm-PEG branched polymeric NPs had the highest accumulation in the pancreatic tumor site of mice at 48 h post-injection. Physical, hematological, and pathological assays indicated low in vivo toxicity of this NP formulation. These studies on the ability of these bioconjugated PLGA-4-arm-PEG polymeric NPs suggest that the prepared polymeric NPs may serve as a promising platform for detection and targeted drug delivery for pancreatic cancer.

  20. Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering

    PubMed Central

    Gritsch, Kerstin; Salles, Vincent; Attik, Ghania N.; Grosgogeat, Brigitte

    2014-01-01

    Abstract Nowadays, the challenge in the tissue engineering field consists in the development of biomaterials designed to regenerate ad integrum damaged tissues. Despite the current use of bioresorbable polyesters such as poly(l-lactide) (PLA), poly(d,l-lactide-co-glycolide) (PLGA), and poly-ɛ-caprolactone in soft tissue regeneration researches, their hydrophobic properties negatively influence the cell adhesion. Here, to overcome it, we have developed a fibronectin (FN)-functionalized electrospun PLGA scaffold for periodontal ligament regeneration. Functionalization of electrospun PLGA scaffolds was performed by alkaline hydrolysis (0.1 or 0.01 M NaOH). Then, hydrolyzed scaffolds were coated by simple deposition of an FN layer (10 μg/mL). FN coating was evidenced by X-ray photoelectron analysis. A decrease of contact angle and greater cell adhesion to hydrolyzed, FN-coated PLGA scaffolds were noticed. Suitable degradation behavior without pH variations was observed for all samples up to 28 days. All treated materials presented strong shrinkage, fiber orientation loss, and collapsed fibers. However, functionalization process using 0.01 M NaOH concentration resulted in unchanged scaffold porosity, preserved chemical composition, and similar mechanical properties compared with untreated scaffolds. The proposed simplified method to functionalize electrospun PLGA fibers is an efficient route to make polyester scaffolds more biocompatible and shows potential for tissue engineering. PMID:24940563

  1. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations.

    PubMed

    Chen, Jie; Zhang, Chi; Liu, Qingfeng; Shao, Xiayan; Feng, Chengcheng; Shen, Yehong; Zhang, Qizhi; Jiang, Xinguo

    2012-02-01

    Solanum tuberosum lectin (STL) conjugated poly (DL-lactic-co- glycolic acid) (PLGA) nanoparticle (STL-NP) was constructed in this paper as a novel biodegradable nose-to-brain drug delivery system. The in vitro uptake study showed markedly enhanced endocytosis of STL-NP compared to unmodified PLGA nanoparticles (NP) in Calu-3 cells and significant inhibition of uptake in the presence of inhibitor sugar (chitin hydrolysate). Following intranasal administration, coumarin-6 carried by STL-NP was rapidly absorbed into blood and brain. The AUC((0→12 h)) of coumarin-6 in blood, olfactory bulb, cerebrum and cerebellum were about 0.77-, 1.48-, 1.89- and 1.45-fold of those of NP, respectively (p < 0.05). STL-NP demonstrated 1.89-2.45 times (p < 0.01) higher brain targeting efficiency in different brain tissues than unmodified NP. Enhanced accumulation of STL-NP in the brain was also observed by near infrared fluorescence probe image following intranasal administration. The fluorescence signal of STL-NP appeared in olfactory bulb, cerebrum and brainstem early at 0.25 h. The signal in olfactory bulb decreased gradually after 2 h, while the obvious signal in brainstem, cerebrum and cerebellum lasted for more than 8 h. The STL-NP safety experiments showed mild cytotoxicity and negligible cilia irritation. These intriguing in vitro and in vivo results suggest that STL-NP might serve as a promising brain drug delivery system.

  2. Doxorubicin-loaded poly(lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor.

    PubMed

    Choi, Jin Woo; Park, Ju-Hwan; Baek, Song Yi; Kim, Dae-Duk; Kim, Hyo-Cheol; Cho, Hyun-Jong

    2015-08-01

    Doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) were fabricated using the solid-in-oil-in-water (S/O/W) emulsification method for transarterial chemoembolization (TACE) of a liver tumor. DOX-loaded PLGA MSs with a mean diameter of 26 μm and a spherical shape were prepared. The biodegradation of PLGA MSs was observed in serum using a scanning electron microscope (SEM). Drug release from the PLGA MSs was accelerated at an acidic pH (pH 5.5) compared to a normal physiological pH (pH 7.4). According to the results of a pharmacokinetic study in rats, the area under the curve (AUC) value of a drug, which indicates the systemic exposure extent of the drug, of the PLGA MSs group was 29.9% of that of a hepatic arterial injection (HAI) group. The DOX concentration ratio for liver tumors compared to normal livers was significantly higher in the PLGA MSs group than that of the HAI group (p<0.05). After the TACE procedure was performed with DOX-PLGA MSs in a rat hepatoma model, the mean size increment of tumor in DOX-PLGA MSs group was found to be lower than that of the HAI group, and the viable portion of the DOX-PLGA MSs group was less than the other groups (p<0.05). All these findings suggested that the developed DOX-loaded PLGA MSs fabricated with the S/O/W method can be used as a promising drug delivery system in TACE for liver tumors.

  3. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  4. Injectable PLGA/Hydroxyapatite/Chitosan Microcapsules Produced by Supercritical Emulsion Extraction Technology: An In Vitro Study on Teriparatide/Gentamicin Controlled Release.

    PubMed

    Della Porta, Giovanna; Campardelli, Roberta; Cricchio, Vincenzo; Oliva, Francesco; Maffulli, Nicola; Reverchon, Ernesto

    2016-07-01

    Supercritical emulsion extraction (SEE) is proposed as a green and effective strategy for the fabrication of chitosan-covered poly-lactic-co-glycolic acid (chi-PLGA) injectable microcapsules for the controlled release of teriparatide (THA) and teriparatide/gentamicin sulfate (THA/Gen). These formulations can be used for locally bone pathologies treatment or in complex fracture healing of aged patients. Several oil-water (o-w) and water-oil-water (w-o-w) emulsions were processed by SEE to produce multifunctional microcapsules containing hydroxyapatite (HA) within a poly-lactic-co-glycolic acid (PLGA) matrix (up to 24 mg/g) and with both THA (0.45 mg/g) and Gen (up to 9 mg/g). Chitosan coating was also successfully added, as external layer (0.4 μm). SEE-fabricated microcapsules showed good encapsulation efficiency (up to 90%) for all the drugs tested and a mean size ranging between 1.4 (±0.4) μm and 2.2 (±0.5) μm. Different drug amounts loaded and microcapsules compositions assured a controlled drug release over a wide range of times and concentrations, as in vitro monitored in PBS medium at 37°C for 15/20 days. HA embedded into the biopolymer structure delayed the THA release profile; chitosan coating strongly reduced the initial drug "burst" release. In addition, the coencapsulation of both THA and Gen, which have very different water solubility, accelerated the release profile of the less water-soluble drug. No drugs degradation was also monitored after the SEE manufacturing. Apparent drug diffusivities (D) were calculated by fitting of the release profiles. In the case of Gen, D ranged between 2.9 × 10(-8) and 1.6 × 10(-9) cm(2)s(-1) if the drug was entrapped in simple PLGA or in the chitosan-coated microcapsules, respectively. In the case of THA, the calculated values ranged between 8.1 × 10(-9) and 7.4 × 10(-10) cm(2)s(-1) when the drug was entrapped in PLGA/HA microcapsules or in the chitosan-coated ones, respectively. These mass transfer values

  5. PLGA-chitosan/PLGA-alginate Nanoparticle Blends as Biodegradable Colloidal Gels for Seeding Human Umbilical Cord Mesenchymal Stem Cells

    PubMed Central

    Wang, Qun; Jamal, Syed; Detamore, Michael S.; Berkland, Cory

    2010-01-01

    The natural polymers chitosan and alginate represent an attractive material choice for biodegradable inplants. These were used as coating materials to make positively and negatively charged PLGA nanoparticles, respectively. After blending at total solids concentration >10% wt/vol, these oppositely charged nanoparticles yielded a cohesive colloidal gel. Electrostatic forces between oppositely charged nanoparticles produced a stable 3-D porous network that may be extruded or molded to the desired shape. This high concentration colloidal system demonstrated shear-thinning behavior due to the disruption of interparticle interactions. Once the external force was removed, the cohesive property of the colloidal gel was recovered. Scanning electron micrographs of dried colloidal networks revealed an organized, 3-D microporous structure. Rheological studies were employed to probe the differences in plasticity and shear sensitivity of colloidal gels. Viability tests of hUCMSCs seeded on the colloidal gels also demonstrated the negligible cytotoxicity of the materials. All the results indicated the potential application of the biodegradable colloidal gels as an injectable scaffold in tissue engineering and drug release. PMID:21254383

  6. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα.

    PubMed

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling.

  7. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα

    PubMed Central

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin’s mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  8. PLGA-Curcumin Attenuates Opioid-Induced Hyperalgesia and Inhibits Spinal CaMKIIα.

    PubMed

    Hu, Xiaoyu; Huang, Fang; Szymusiak, Magdalena; Tian, Xuebi; Liu, Ying; Wang, Zaijie Jim

    2016-01-01

    Opioid-induced hyperalgesia (OIH) is one of the major problems associated with prolonged use of opioids for the treatment of chronic pain. Effective treatment for OIH is lacking. In this study, we examined the efficacy and preliminary mechanism of curcumin in attenuating OIH. We employed a newly developed PLGA-curcumin nanoformulation (PLGA-curcumin) in order to improve the solubility of curcumin, which has been a major obstacle in properly characterizing curcumin's mechanism of action and efficacy. We found that curcumin administered intrathecally or orally significantly attenuated hyperalgesia in mice with morphine-induced OIH. Furthermore, we demonstrated that the effects of curcumin on OIH correlated with the suppression of chronic morphine-induced CaMKIIα activation in the superficial laminae of the spinal dorsal horn. These data suggest that PLGA-curcumin may reverse OIH possibly by inhibiting CaMKIIα and its downstream signaling. PMID:26744842

  9. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    PubMed

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-01

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering. PMID:26414083

  10. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    PubMed

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-01

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering.

  11. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Li, Mengmeng; Liu, Wenwen; Sun, Jiashu; Xianyu, Yunlei; Wang, Jidong; Zhang, Wei; Zheng, Wenfu; Huang, Deyong; Di, Shiyu; Long, Yun-Ze; Jiang, Xingyu

    2013-07-10

    In this work, we fabricated polymeric fibrous scaffolds for bone tissue engineering using primary human osteoblasts (HOB) as the model cell. By employing one simple approach, electrospinning, we produced poly(lactic-co-glycolic acid) (PLGA) scaffolds with different topographies including microspheres, beaded fibers, and uniform fibers, as well as the PLGA/nanohydroxyapatite (nano-HA) composite scaffold. The bone-bonding ability of electrospun scaffolds was investigated by using simulated body fluid (SBF) solution, and the nano-HA in PLGA/nano-HA composite scaffold can significantly enhance the formation of the bonelike apatites. Furthermore, we carried out in vitro experiments to test the performance of electrospun scaffolds by utilizing both mouse preosteoblast cell line (MC 3T3 E1) and HOB. Results including cell viability, alkaline phosphatase (ALP) activity, and osteocalcin concentration demonstrated that the PLGA/nano-HA fibers can promote the proliferation of HOB efficiently, indicating that it is a promising scaffold for human bone repair.

  12. Polylactic-co-glycolic acid mesh coated with fibrin or collagen and biological adhesive substance as a prefabricated, degradable, biocompatible, and functional scaffold for regeneration of the urinary bladder wall.

    PubMed

    Salem, Salah Abood; Hwei, Ng Min; Bin Saim, Aminuddin; Ho, Christopher C K; Sagap, Ismail; Singh, Rajesh; Yusof, Mohd Reusmaazran; Md Zainuddin, Zulkifili; Idrus, Ruszymah Bt Hj

    2013-08-01

    The chief obstacle for reconstructing the bladder is the absence of a biomaterial, either permanent or biodegradable, that will function as a suitable scaffold for the natural process of regeneration. In this study, polylactic-co-glycolic acid (PLGA) plus collagen or fibrin was evaluated for its suitability as a scaffold for urinary bladder construct. Human adipose-derived stem cells (HADSCs) were cultured, followed by incubation in smooth muscle cells differentiation media. Differentiated HADSCs were then seeded onto PLGA mesh supported with collagen or fibrin. Evaluation of cell-seeded PLGA composite immersed in culture medium was performed under a light and scanning microscope. To determine if the composite is compatible with the urodynamic properties of urinary bladder, porosity and leaking test was performed. The PLGA samples were subjected to tensile testing was pulled until PLGA fibers break. The results showed that the PLGA composite is biocompatible to differentiated HADSCs. PLGA-collagen mesh appeared to be optimal as a cell carrier while the three-layered PLGA-fibrin composite is better in relation to its leaking/ porosity property. A biomechanical test was also performed for three-layered PLGA with biological adhesive and three-layered PLGA alone. The tensile stress at failure was 30.82 ± 3.80 (MPa) and 34.36 ± 2.57 (MPa), respectively. Maximum tensile strain at failure was 19.42 ± 2.24 (mm) and 23.06 ± 2.47 (mm), respectively. Young's modulus was 0.035 ± 0.0083 and 0.043 ± 0.012, respectively. The maximum load at break was 58.55 ± 7.90 (N) and 65.29 ± 4.89 (N), respectively. In conclusion, PLGA-Fibrin fulfils the criteria as a scaffold for urinary bladder reconstruction.

  13. Synthesis and characterization of PLGA nanoparticles containing mixture of curcuminoids for optimization of photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Suzuki, Isabella L.; Inada, Natália M.; Marangoni, Valéria S.; Corrêa, Thaila Q.; Zucolotto, Valtencir; Kurachi, Cristina; Bagnato, Vanderlei S.

    2016-03-01

    Because of excessive use of antibiotics there is a growth in the number of resistant strains. Due to this growth of multiresistant bacteria, the number of searches looking for alternatives antibacterial therapeutic has increased, and among them is the antimicrobial photodynamic therapy (aPDT) or photodynamic inactivation (PDI). The photodynamic inactivation involves the action of a photosensitizer (PS), activated by a specific wavelength, in the present of oxygen, resulting in cytotoxic effect. Natural curcumin, consists of a mixture of three curcuminoids: curcumin, demethoxycurcumin and bis-demethoxycurcumin. Curcumin has various pharmacological properties, however, has extremely low solubility in aqueous solutions, which difficult the use as therapeutic agent. The present study aims to develop polymeric PLGA nanoparticles containing curcuminoids to improve water solubility, increase bioavailability providing protection from degradation (chemistry and physics), and to verify the efficacy in photodynamic inactivation of microorganisms. The PLGA-CURC were synthesized by nanoprecipitation, resulting in two different systems, with an average size of 172 nm and 70% encapsulation efficiency for PLGA-CURC1, and 215 nm and 80% for PLGA-CURC2. Stability tests showed the polymer protected the curcuminoids against premature degradation. Microbiological tests in vitro with curcuminoids water solution and both suspension of PLGA-CURC were efficient in Gram-positive bacterium and fungus. However, the solution presented dark toxicity at high concentrations, unlike the nanoparticles. Thus, it was concluded that it was possible to let curcuminoids water soluble by encapsulation in PLGA nanoparticles, to ensure improved stability in aqueous medium (storage), and to inactivate bacteria and fungus.

  14. Silver ion beam irradiation effects on poly(lactide-co-glycolide) (PLGA)/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Kaur, Manpreet; Singh, Surinder; Mehta, Rajeev

    2014-12-01

    Swift heavy ions induced modification of thin films of blends of poly(lactide-co-glycolide) (PLGA) (50:50) with organically modified nanoclay (Cloisite® 30B) has been studied, using optical, structural and surface morphological analysis. Presence of nanoclay is found to enhance the properties of this degradable copolymer by reducing the rate of degradation even at high irradiation fluence. Optical and structural analysis of the polymer nanocomposites suggests that both the cross-linking and chain scission phenomenon are caused by swift heavy ion irradiation. XRD measurements show intercalation of PLGA in the clay galleries. Surface morphology of a nanocomposite indicates significant changes after irradiation at various fluences.

  15. Fabrication of biodegradable polymer (PLGA) microstructures and applications in controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Ren; Chen, Tianning; Chen, Hualing; Wang, Wanjun

    2003-12-01

    Using biodegradable polymers for implantable drug delivery purposes has been a very important research area and industry for many years. Polymers, such as PLGA, have been the most attractive one because it does not require removal after the drug has been released. We report a research effort to microfabricate high aspect ratio microstructures of PLGA and its potential applications in implantable drug delivery. The prototypes of packaged cells with dyes have also been made and currently under test for linear release of sample dyes.

  16. Fabrication of biodegradable polymer (PLGA) microstructures and applications in controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Yang, Ren; Chen, Tianning; Chen, Hualing; Wang, Wanjun

    2004-01-01

    Using biodegradable polymers for implantable drug delivery purposes has been a very important research area and industry for many years. Polymers, such as PLGA, have been the most attractive one because it does not require removal after the drug has been released. We report a research effort to microfabricate high aspect ratio microstructures of PLGA and its potential applications in implantable drug delivery. The prototypes of packaged cells with dyes have also been made and currently under test for linear release of sample dyes.

  17. Osteogenic activity of cyclodextrin-encapsulated doxycycline in a calcium phosphate PCL and PLGA composite.

    PubMed

    Trajano, V C C; Costa, K J R; Lanza, C R M; Sinisterra, R D; Cortés, M E

    2016-07-01

    Composites of biodegradable polymers and calcium phosphate are bioactive and flexible, and have been proposed for use in tissue engineering and bone regeneration. When associated with the broad-spectrum antibiotic doxycycline (DOX), they could favor antimicrobial action and enhance the action of osteogenic composites. Composites of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and a bioceramic of biphasic calcium phosphate Osteosynt® (BCP) were loaded with DOX encapsulated in β-cyclodextrin (βCD) and were evaluated for effects on osteoblastic cell cultures. The DOX/βCD composite was prepared with a double mixing method. Osteoblast viability was assessed with methyl tetrazolium (MTT) assays after 1day, 7day, and 14days of composite exposure; alkaline phosphatase (AP) activity and collagen production were evaluated after 7days and 14days, and mineral nodule formation after 14days. Composite structures were evaluated by scanning electron microscopy (SEM). Osteoblasts exposed to the composite containing 25μg/mL DOX/βCD had increased cell proliferation (p<0.05) compared to control osteoblast cultures at all experimental time points, reaching a maximum in the second week. AP activity and collagen secretion levels were also elevated in osteoblasts exposed to the DOX/βCD composite (p<0.05 vs. controls) and reached a maximum after 14days. These results were corroborated by Von Kossa test results, which showed strong formation of mineralization nodules during the same time period. SEM of the composite material revealed a surface topography with pore sizes suitable for growing osteoblasts. Together, these results suggest that osteoblasts are viable, proliferative, and osteogenic in the presence of a DOX/βCD-containing BCP ceramic composite.

  18. Targeting hepatocellular carcinoma with aptamer-functionalized PLGA/PLA-PEG nanoparticles

    NASA Astrophysics Data System (ADS)

    Weigum, Shannon E.; Sutton, Melissa; Barnes, Eugenia; Miller, Sarah; Betancourt, Tania

    2014-08-01

    Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide, particularly in regions where chronic Hepatitis B and C infections are common. Nanoparticle assemblies that incorporate high-affinity aptamers which specifically bind malignant hepatocellular carcinoma cells could be useful for targeted drug delivery or enhancing contrast with existing ablation therapies. The in vitro interactions of a tumor-specific aptamer, TLS11a, were characterized in a hepatoma cell line via live-cell fluorescence imaging, SDS-PAGE and Western Blotting techniques. Cell surface binding of the aptamer-AlexaFluor®546 conjugate was found to occur within 20 minutes of initial exposure, followed by internalization and localization to late endosomes or lysosomes using a pH-sensitive LysoSensor™ Green dye and confocal microscopy. Aptamer-functionalized polymer nanoparticles containing poly(lactic-co-glycolic acid) (PLGA) and poly(lactide)-b-poly(ethylene glycol) (PLA-PEG) were then prepared by nanoprecipitation and passively loaded with the chemotherapeutic agent, doxorubicin, yielding spherical nanoparticles approximately 50 nm in diameter. Targeted drug delivery and cytotoxicity was assessed using live/dead fluorescent dyes and a MTT colorimetric viability assay with elevated levels of cell death found in cultures treated with either the aptamer-coated and uncoated polymer nanoparticles. Identification and characterization of the cell surface protein epitope(s) recognized by the TLS11a aptamer are ongoing along with nanoparticle optimization, but these preliminary studies support continued investigation of this aptamer and functionalized nanoparticle conjugates for targeted labeling and drug delivery within malignant hepatocellular carcinomas.

  19. Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy.

    PubMed

    Tao, Wei; Zeng, Xiaowei; Liu, Ting; Wang, Zhongyuan; Xiong, Qingqing; Ouyang, Chunping; Huang, Laiqiang; Mei, Lin

    2013-11-01

    A star-shaped biodegradable polymer, mannitol-core poly(d,l-lactide-co-glycolide)-d-α-tocopheryl polyethylene glycol 1000 succinate (M-PLGA-TPGS), was synthesized in order to provide a novel nanoformulation for breast cancer chemotherapy. This novel copolymer was prepared by a core-first approach via three stages of chemical reaction, and was characterized by nuclear magnetic resonance, gel permeation chromatography and thermogravimetric analysis. The docetaxel-loaded M-PLGA-TPGS nanoparticles (NPs), prepared by a modified nanoprecipitation method, were observed to be near-spherical shape with narrow size distribution. Confocal laser scanning microscopy showed that the uptake level of M-PLGA-TPGS NPs was higher than that of PLGA NPs and PLGA-TPGS NPs in MCF-7 cells. A significantly higher level of cytotoxicity was achieved with docetaxel-loaded M-PLGA-TPGS NPs than with commercial Taxotere®, docetaxel-loaded PLGA-TPGS and PLGA NPs. Examination of the drug loading and encapsulation efficiency proved that star-shaped M-PLGA-TPGS could carry higher levels of drug than linear polymer. The in vivo experiment showed docetaxel-loaded M-PLGA-TPGS NPs to have the highest anti-tumor efficacy. In conclusion, the star-like M-PLGA-TPGS copolymer shows potential as a promising drug-loaded biomaterial that can be applied in developing novel nanoformulations for breast cancer therapy.

  20. Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth.

    PubMed

    Binder, Carmen; Milleret, Vincent; Hall, Heike; Eberli, Daniel; Lühmann, Tessa

    2013-10-01

    For successful peripheral nerve regeneration, a complex interplay of growth factors, topographical guidance structure by cells and extracellular matrix proteins, are needed. Aligned fibrous biomaterials with a wide variety in fiber diameter have been used successfully to support neuronal guidance. To better understand the importance of size of the topographical features, we investigated the directionality of neuronal migration of sensory ND7/23 cells on aligned electrospun poly(lactic-glycolic acid) PLGA fibers in the range of micrometer and submicrometer diameters by time-lapse microscopy. Cell trajectories of single ND7/23 cells were found to significantly follow topographies of PLGA fibers with micrometer dimensions in contrast to PLGA fibers within the submicrometer range, where cell body movement was observed to be independent of fibrous structures. Moreover, neurite alignment of ND7/23 cells on various topographies was assessed. PLGA fibers with micrometer dimensions significantly aligned 83.3% of all neurites after 1 day of differentiation compared to similar submicrometer structures, which orientated 25.8% of all neurites. Interestingly, after 7 days of differentiation ND7/23 cells on submicrometer PLGA fibers increased their alignment of neurites to 52.5%. Together, aligned PLGA fibers with micrometer dimensions showed a superior influence on directionality of neuronal migration and neurite outgrowth of sensory ND7/23 cells, indicating that electrospun micro-PLGA fibers might represent a potential material to induce directionality of neuronal growth in engineering applications for sensory nerve regeneration.

  1. Functionalized Poly(lactic-co-glycolic acid) Enhances Drug Delivery and Provides Chemical Moieties for Surface Engineering while Preserving Biocompatibility

    PubMed Central

    Bertram, James P.; Jay, Steven M.; Hynes, Sara R.; Robinson, Rebecca; Criscione, Jason M.; Lavik, Erin B.

    2009-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is one of the more widely used polymers for biomedical applications. Nonetheless, PLGA lacks chemical moieties that facilitate cellular interactions and surfac