Science.gov

Sample records for acid-functionalized single-walled carbon

  1. Assembly of acid-functionalized single-walled carbon nanotubes at oil/water interfaces.

    PubMed

    Feng, Tao; Hoagland, David A; Russell, Thomas P

    2014-02-01

    The efficient segregation of water-soluble, acid-functionalized, single-walled carbon nanotubes (SWCNTs) at the oil/water interface was induced by dissolving low-molecular-weight amine-terminated polystyrene (PS-NH2) in the oil phase. Salt-bridge interactions between carboxylic acid groups of SWCNTs and amine groups of PS drove the assembly of SWCNTs at the interface, monitored by pendant drop tensiometry and laser scanning confocal microscopy. The impact of PS end-group functionality, PS and SWCNT concentrations, and the degree of SWCNT acid modification on the interfacial activity was assessed, and a sharp drop in interfacial tension was observed above a critical SWCNT concentration. Interfacial tensions were low enough to support stable oil/water emulsions. Further experiments, including potentiometric titrations and the replacement of SWCNTs by other carboxyl-containing species, demonstrated that the interfacial tension drop reflects the loss of SWCNT charge as the pH falls near/below the intrinsic carboxyl dissociation constant; species lacking multivalent carboxylic acid groups are inactive. The trapped SWCNTs appear to be neither ordered nor oriented. PMID:24443769

  2. Hyaluronic acid-functionalized single-walled carbon nanotubes as tumor-targeting MRI contrast agent

    PubMed Central

    Hou, Lin; Zhang, Huijuan; Wang, Yating; Wang, Lili; Yang, Xiaomin; Zhang, Zhenzhong

    2015-01-01

    A tumor-targeting carrier, hyaluronic acid (HA)-functionalized single-walled carbon nanotubes (SWCNTs), was explored to deliver magnetic resonance imaging (MRI) contrast agents (CAs) targeting to the tumor cells specifically. In this system, HA surface modification for SWCNTs was simply accomplished by amidation process and could make this nanomaterial highly hydrophilic. Cellular uptake was performed to evaluate the intracellular transport capabilities of HA-SWCNTs for tumor cells and the uptake rank was HA-SWCNTs> SWCNTs owing to the presence of HA, which was also evidenced by flow cytometry. The safety evaluation of this MRI CAs was investigated in vitro and in vivo. It revealed that HA-SWCNTs could stand as a biocompatible nanocarrier and gadolinium (Gd)/HA-SWCNTs demonstrated almost no toxicity compared with free GdCl3. Moreover, GdCl3 bearing HA-SWCNTs could significantly increase the circulation time for MRI. Finally, to investigate the MRI contrast enhancing capabilities of Gd/HA-SWCNTs, T1-weighted MR images of tumor-bearing mice were acquired. The results suggested Gd/HA-SWCNTs had the highest tumor-targeting efficiency and T1-relaxivity enhancement, indicating HA-SWCNTs could be developed as a tumor-targeting carrier to deliver the CAs, GdCl3, for the identifiable diagnosis of tumor. PMID:26213465

  3. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes

    PubMed Central

    2013-01-01

    Carbon nanotubes (CNT) are extremely sensitive to environmental gases. However, detection of mixture gas is still a challenge. Here, we report that 10 ppm of carbon monoxide (CO) and ammonia (NH3) can be electrically detected using a carboxylic acid-functionalized single-walled carbon nanotubes (C-SWCNT). CO and NH3 gases were mixed carefully with the same concentrations of 10 ppm. Our sensor showed faster response to the CO gas than the NH3 gas. The sensing properties and effect of carboxylic acid group were demonstrated, and C-SWCNT sensors with good repeatability and fast responses over a range of concentrations may be used as a simple and effective detection method of CO and NH3 mixture gas. PMID:23286690

  4. Interfacial activity of acid functionalized single-walled carbon nanotubes (SWCNTs) at the fluid-fluid interface

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Russell, Thomas; Hoagland, David

    2013-03-01

    Interfacial assembly of acid-functionalized single-walled carbon nanotubes at the oil/water interface is achieved by the addition of low molecular weight (MW) amino-terminated polystyrene in the oil phase. The surface activity of carboxylated SWCNTs is strongly influenced by the end-group chemistry and molecular weight of the polystyrene component, the concentrations of this component and the SWCNTs, along with the degree of functionalization of the SWCNTs. The prerequisites for interfacial trapping are amino termini on chains with MW less than 5K and 6 hours or longer incubation of pristine SWCNTs to achieve their carboxylation. Plummets in interfacial tension resembling those for surfactants were observed at critical bulk concentrations of both SWCNTs and PS-NH2. In dried droplets, SWCNTs densely packed with associated PS-NH2 form a bird nest-like interfacial structure, with the SWCNTs preferentially oriented perpendicular to the original interface. Advisor

  5. ACID FUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES ENHANCE CARDIAC ISCHEMIC/REPERFUSIOIN INJURY

    EPA Science Inventory

    Engineered carbon nanotubes are being intensively developed for wide applications. Because of their unique light properties, nanotubes can impose some potentially toxic effects, particularly if they have been modified to express functionally reactive chemical groups on their sur...

  6. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    PubMed Central

    Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

    2014-01-01

    Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)—polyethylene and SWNT—polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

  7. Highly sensitive electrochemical sensor based on β-cyclodextrin-gold@3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin.

    PubMed

    Ran, Xin; Yang, Long; Zhang, Jianqiang; Deng, Guogang; Li, Yucong; Xie, Xiaoguang; Zhao, Hui; Li, Can-Peng

    2015-09-10

    The application of macrocyclic hosts for construction of different electrochemical devices and separation matrices has attracted much attentions due to their benign biocompatibility and simplicity of synthesis. Myricetin and rutin are considered two of the most bioactive flavonoids, which have been proved to exhibit various physiological functions. This work reports a simple and facile approach for the synthesis of β-cyclodextrin-gold@3, 4, 9, 10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns (β-CD-Au@PTCA-SWCNHs) nanohybrids. The simultaneous electrochemical determination of myricetin and rutin using a β-CD-Au@PTCA-SWCNHs-modified glassy carbon electrode was established. The results show that the β-CD-Au@PTCA-SWCNHs-modified electrode displayed electrochemical signal superior to those of Au@PTCA-;SWCNHs and SWCNHs towards myricetin and rutin. The proposed modified electrode has a linear response range of 0.01-10.00 μM both for myricetin and rutin with relatively low detection limits of 0.0038 μM for myricetin and 0.0044 μM (S/N = 3) for rutin, respectively. The excellent performance of the sensing platform is considered to be the synergic effects of the SWCNHs (e.g. their good electrochemical properties and large surface area) and β-CD (e.g. a hydrophilic external surface, a high supramolecular recognition, and a good enrichment capability). PMID:26388478

  8. Reaction of folic acid with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ellison, Mark D.; Chorney, Matthew

    2016-10-01

    The oxygen-containing functional groups on oxidized single-walled carbon nanotubes (SWNTs) are used to covalently bond folic acid molecules to the SWNTs. Infrared spectroscopy confirms intact molecular binding to the SWNTs through the formation of an amide bond between a carboxylic acid group on an SWNT and the primary amine group of folic acid. The folic acid-functionalized SWNTs are readily dispersible in water and phosphate-buffered saline, and the dispersions are stable for a period of two weeks or longer. These folic acid-functionalized SWNTs offer potential for use as biocompatible SWNTs.

  9. Scalable dielectrophoresis of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fitzhugh, William A.

    Single Walled Carbon Nanotubes (SWNTs) have attracted much attention as a candidate material for future nano-scale 'beyond silicon' devices. However industrial scale operations have been impeded by difficulties in separating the metallic and semiconducting species. This paper addresses the use of highly inhomogeneous alternating electric fields, dielectrophoresis, to isolate SWNT species in scaled systems. Both numerical and experimental methods will be discussed.

  10. Cutting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ziegler, Kirk J.; Gu, Zhenning; Shaver, Jonah; Chen, Zheyi; Flor, Erica L.; Schmidt, Daniel J.; Chan, Candace; Hauge, Robert H.; Smalley, Richard E.

    2005-07-01

    A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solutions have shown the ability to exploit the damage sites and etch SWNTs in a controlled manner. Despite the aggressive nature of these oxidizing solutions, the etch rate for SWNTs is relatively slow and almost no new sidewall damage is introduced. Carbon-carbon bond breakage can be introduced through fluorination to ~C2F, and subsequent etching using piranha solutions has been shown to be very effective in cutting nanotubes. The final average length of the nanotubes is approximately 100 nm with carbon yields as high as 70-80%.

  11. Single Walled Carbon Nanotube/Silicon Heterojunctions

    NASA Astrophysics Data System (ADS)

    Wu, Zhuangchun

    2005-11-01

    Characterization of the electrical heterojunction between single walled carbon nanotubes (SWNTs) and semiconductors is important for an array of potential applications. Thin, homogeneous, transparent, films of 100% SWNTs exhibiting good electrical conductivity [1] have already been demonstrated as the hole injection electrode in GaN light emitting diodes [2]. The simultaneous transparency and high electrical conductivity of these films makes them similarly promising for the light transmissive electrode in photovoltaic devices. SWNTs have moreover long been proposed as on-chip, device interconnects. To understand the electrical coupling between the nanotubes and semiconductors, likely to have relevance in such devices, we have begun a systematic exploration of the electrical properties of SWNT/silicon hetrojunctions. We will discuss findings as well as a novel test method made possible by the unique morphology of the nanotubes. 1. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 305, 1273 (2004) 2. K. Lee, Z. Wu, Z. Chen, F. Ren, S. J. Pearton, A. G. Rinzler, Nano Lett. 4, 911 (2004)

  12. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  13. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  14. Chemical Sensing with Polyaniline Coated Single-Walled Carbon Nanotubes

    SciTech Connect

    Ding, Mengning; Tang, Yifan; Gou, Pingping; Reber, Michael J; Star, Alexander

    2011-01-25

    Single-walled carbon nanotube/polyaniline (SWNT/PAni) nanocomposite with controlled core/shell morphology was synthesized by a noncovalent functionalization approach. Unique electron interactions between the SWNT core and the PAni shell were studied electrochemically and spectroscopically, and superior sensor performance to chemical gases and vapors was demonstrated.

  15. Ion adsorption mechanism of bundled single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yoshida, Y.; Tsutsui, M.; Al-zubaidi, A.; Ishii, Y.; Kawasaki, S.

    2016-07-01

    In order to elucidate ion adsorption mechanism of bundled single-walled carbon nanotubes (SWCNTs), in situ synchrotron XRD measurements of SWCNT electrode in alkali halide aqueous electrolyte at several applied potentials were performed. It was found that the surface inside SWCNT is the important ion adsorption site.

  16. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  17. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  18. Chromatographic size separation of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S.

    The efficient purification of single-wall carbon nanotubes (SWNTs) is reported. Carbon nanospheres, metal particles, and amorphous carbon could be successfully removed by size exclusion chromatography (SEC) applied to surfactant stabilised dispersions of SWNT raw material. In addition, length separation of the tubes was achieved. The SWNTs obtained can be adsorbed in high densities onto chemically modified substrates. As determined by AFM investigations, the purified material consists of about equal fractions of both individual SWNTS and ropes of SWNTs.

  19. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  20. Structure of single-wall carbon nanotubes: a graphene helix.

    PubMed

    Lee, Jae-Kap; Lee, Sohyung; Kim, Jin-Gyu; Min, Bong-Ki; Kim, Yong-Il; Lee, Kyung-Il; An, Kay Hyeok; John, Phillip

    2014-08-27

    Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes. PMID:24838196

  1. Metallic single-walled carbon nanotubes for conductive nanocomposites.

    PubMed

    Wang, Wei; Fernando, K A Shiral; Lin, Yi; Meziani, Mohammed J; Veca, L Monica; Cao, Li; Zhang, Puyu; Kimani, Martin M; Sun, Ya-Ping

    2008-01-30

    This article reports an unambiguous demonstration that bulk-separated metallic single-walled carbon nanotubes offer superior performance (consistently and substantially better than the as-produced nanotube sample) in conductive composites with poly(3-hexylthiophene) and also in transparent conductive coatings based on PEDOT:PSS. The results serve as a validation on the widely held view that the carbon nanotubes are competitive in various technologies currently dominated by conductive inorganic materials (such as indium tin oxide). PMID:18173271

  2. Synthesis of Single-Wall Carbon Nanotubes from Diesel Soot

    NASA Astrophysics Data System (ADS)

    Uchida, Takashi; Ohashi, Ouji; Kawamoto, Hironori; Yoshimura, Hirofumi; Kobayashi, Ken-ichi; Tanimura, Makoto; Fujikawa, Naohiro; Nishimoto, Tetsuro; Awata, Kazuhiko; Tachibana, Masaru; Kojima, Kenichi

    2006-10-01

    We show that diesel soot can be recycled as a carbon source for the synthesis of single-wall carbon nanotubes (SWNTs). The synthesis of SWNTs was carried out by the laser vaporization of diesel soot. The presence of SWNTs was confirmed by Raman spectroscopy and transmission electron microscopy. SWNTs produced in this way should provide economic benefits and also contribute to a cleaner environment.

  3. Production of single-walled carbon nanotube grids

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  4. Assessing the pulmonary toxicity of single-walled carbon nanohorns

    SciTech Connect

    Lynch, Rachel M; Voy, Brynn H; Glass-Mattie, Dana F; Mahurin, Shannon Mark; Saxton, Arnold; Donnel, Robert L.; Cheng, Mengdawn

    2007-01-01

    Previous studies have suggested that single-walled carbon nanotubes (SWCNTs) may pose a pulmonary hazard. We investigated the pulmonary toxicity of single-walled carbon nanohorns (SWCNHs), a relatively new carbon-based nanomaterial that is structurally similar to SWCNTs. Mice were exposed to 30 {micro}g of surfactant-suspended SWCNHs or an equal volume of vehicle control by pharyngeal aspiration and sacrificed 24 hours or 7 days post-exposure. Total and differential cell counts and cytokine analysis of bronchoalveolar lavage fluid demonstrated a mild inflammatory response which was mitigated by day 7 post-exposure. Whole lung microarray analysis demonstrated that SWCNH-exposure did not lead to robust changes in gene expression. Finally, histological analysis showed no evidence of granuloma formation or fibrosis following SWCNH aspiration. These combined results suggest that SWCNH is a relatively innocuous nanomaterial when delivered to mice in vivo using aspiration as a delivery mechanism.

  5. Noise characteristics of single-walled carbon nanotube network transistors

    NASA Astrophysics Data System (ADS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

  6. Noise characteristics of single-walled carbon nanotube network transistors.

    PubMed

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-16

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors. PMID:21828739

  7. Quantitative optical imaging of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Herman, Lihong H.

    The development and application of optical imaging tools and probing techniques have been the subject of exciting research. These tools and techniques allow for non-invasive, simple sample preparation and relatively fast measurement of electronic and optical properties. They also provided crucial information on optoelectronic device application and development. As the field of nanostructure research emerged, they were modified and employed to understand various properties of these structures at the diffraction limit of light. Carbon nanotubes, up to hundreds of micrometers long and several nanometers thin, are perfect for testing and demonstrating newly-developed optical measurement platforms for individual nanostructures, due to their heterogeneous nature. By employing two quantitative imaging techniques, wide-field on-chip Rayleigh scattering spectroscopy and spatial modulation confocal absorption microscopy, we investigate the optical properties of single-walled carbon nanotubes. These techniques allow us to obtain the Rayleigh scattering intensity, absolute absorption cross section, spatial resolution, and spectral information of single-walled carbon nanotubes. By probing the optical resonance of hundreds of single-walled carbon nanotubes in a single measurement, the first technique utilizes Rayleigh scattering mechanism to obtain the chirality of carbon nanotubes. The second technique, by using high numerical aperture oil immersion objective lenses, we measure the absolute absorption cross section of a single-walled carbon nanotube. Combining all the quantitative values obtained from these techniques, we observe various interesting and recently discovered physical behaviors, such as long range optical coupling and universal optical conductivity on resonance, and demonstrate the possibility of accurate quantitative absorption measurement for individual structures at nanometer scale.

  8. Reinforcement of Epoxies Using Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Krishnamoorti, Ramanan; Sharma, Jitendra; Chatterjee, Tirtha

    2008-03-01

    The reinforcement of bisphenol-A and bisphenol-F epoxies using single walled carbon nanotubes has been approached experimentally by understanding the nature of interactions between the matrices and nanotubes. Unassisted dispersions of single walled carbon nanotubes in epoxies were studied by a combination of radiation scattering (elastic small angle scattering and inelastic scattering), DSC based glass transition determination, melt rheology and solid-state mechanical testing in order to understand and correlate changes in local and global dynamics to the tailoring of composite mechanical properties. Significant changes in the glass transition temperature of the matrix can successfully account for changes in the viscoelastic properties of the epoxy dispersions for concentrations below the percolation threshold, while above the percolation threshold the network superstructure formed by the nanotubes controls the viscoelastic properties.

  9. Reversible separation of single-walled carbon nanotubes in bundles

    SciTech Connect

    Sahoo, Sangeeta; Lastella, Sarah; Maranganti, Ravi; Sharma, Pradeep; Mallick, Govind; Karna, Shashi; Ajayan, Pulickel M.

    2008-08-25

    We show that electrostatic charging of nanotubes and the consequent repulsion can lead to reversible separation of individual single-walled carbon nanotubes in bundles. Low-energy electron beam irradiation leads to this completely reversible phenomenon. A simple semianalytical model is used to explain the observed separation mechanism. The reversibility of the separation process is attributed to discharging and thermal-fluctuation induced motion of the nanotubes in ambient air. Further, the separation impacts the electrical conductance of small nanotube bundled devices.

  10. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  11. Titanium dioxide, single-walled carbon nanotube composites

    DOEpatents

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  12. Dynamic terahertz polarization in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, X. L.; Parkinson, P.; Chuang, K.-C.; Johnston, M. B.; Nicholas, R. J.; Herz, L. M.

    2010-08-01

    We have investigated the anisotropic dynamic dielectric response of aligned and well-isolated single-walled carbon nanotubes using optical-pump terahertz (THz)-probe techniques. The polarization anisotropy measurements demonstrate that the THz radiation interacts only with radiation polarized parallel to the nanotubes which have been selectively excited by a polarized pump pulse thus allowing controlled THz polarization to be achieved from unaligned nanotubes.

  13. Improvements in Production of Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to

  14. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  15. Optical Characterization and Applications of Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Strano, Michael S.

    2005-03-01

    Recent advances in the dispersion and separation of single walled carbon nanotubes have led to new methods of optical characterization and some novel applications. We find that Raman spectroscopy can be used to probe the aggregation state of single-walled carbon nanotubes in solution or as solids with a range of varying morphologies. Carbon nanotubes experience an orthogonal electronic dispersion when in electrical contact that broadens (from 40 meV to roughly 80 meV) and shifts the interband transition to lower energy (by 60 meV). We show that the magnitude of this shift is dependent on the extent of bundle organization and the inter-nanotube contact area. In the Raman spectrum, aggregation shifts the effective excitation profile and causes peaks to increase or decrease, depending on where the transition lies, relative to the excitation wavelength. The findings are particularly relevant for evaluating nanotube separation processes, where relative peak changes in the Raman spectrum can be confused for selective enrichment. We have also used gel electrophoresis and column chromatography conducted on individually dispersed, ultrasonicated single-walled carbon nanotubes to yield simultaneous separation by tube length and diameter. Electroelution after electrophoresis is shown to produce highly resolved fractions of nanotubes with average lengths between 92 and 435 nm. Separation by diameter is concomitant with length fractionation, and nanotubes that have been cut shortest also possess the greatest relative enrichments of large-diameter species. The relative quantum yield decreases nonlinearly as the nanotube length becomes shorter. These findings enable new applications of nanotubes as sensors and biomarkers. Particularly, molecular detection using near infrared (n-IR) light between 0.9 and 1.3 eV has important biomedical applications because of greater tissue penetration and reduced auto-fluorescent background in thick tissue or whole blood media. Carbon nanotubes

  16. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  17. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  18. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  19. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  20. A Facile High-speed Vibration Milling Method to Water-disperse Single- walled Carbon Nanohorns

    SciTech Connect

    Shu, Chunying; Zhang, Jianfei; Sim, Jae Hyun; Burke, Brian; Williams, Keith A; Rylander, Nichole M; Campbell, Tom; Puretzky, Alexander A; Rouleau, Christopher M; Geohegan, David B; More, Karren Leslie; Esker, Alan R; Gibson, Harry W; Dorn, Harry C

    2010-01-01

    A high-speed vibration milling (HSVM) method was applied to synthesize water dispersible single- walled carbon nanohorns (SWNHs). Highly reactive free radicals (HOOCCH2CH2 ) produced from an acyl peroxide under HSVM conditions react with hydrophobic SWNHs to produce a highly water dispersible derivative (f-SWNHs), which has been characterized in detail by spectroscopic and microscopic techniques together with thermogravimetric analysis (TGA) and dynamic light scatter- ing (DLS). The carboxylic acid functionalized, water-dispersible SWNHs material are versatile precursors that have potential applications in the biomedical area.

  1. Single-Walled Carbon Nanotube/PMMA Composites

    NASA Astrophysics Data System (ADS)

    Du, Fangming; Fisher, John; Winey, Karen

    2003-03-01

    Single-walled carbon nanotubes (SWNTs) have demonstrated unique mechanical, thermal and electrical properties. Similar properties are expected for polymer/SWNT nanocomposites. A new processing method has been used to produce PMMA/SWNT composites, which provides better dispersion of SWNT in the polymer matrix. Optical microscopy of the samples show improved dispersion of SWNT in the PMMA matrix, which is the key factor of the composite performance. Aligned and unaligned composite samples have been made for both purified SWNT and functionalized SWNT with different SWNT loadings. The tensile, thermal conductivity, and electroconductivity measurements of these samples will be performed.

  2. Phonon Density of States of Single-Wall Carbon Nanotubes

    SciTech Connect

    Rols, S.; Benes, Z.; Anglaret, E.; Sauvajol, J. L.; Papanek, P.; Fischer, J. E.; Coddens, G.; Schober, H.; Dianoux, A. J.

    2000-12-11

    The vibrational density of states of single-wall carbon nanotubes (SWNT) was obtained from inelastic neutron scattering data from 0 to 225meV. The spectrum is similar to that of graphite above 40meV, while intratube features are clearly observed at 22 and 36meV. An unusual energy dependence below 10meV is assigned to contributions from intertube modes in the 2D triangular lattice of SWNT bundles, and from intertube coupling to intratube excitations. Good agreement between experiment and a calculated density of states for the SWNT lattice is found over the entire energy range.

  3. Charge-induced strains in single-walled carbon nanotubes.

    PubMed

    Li, Chun-Yu; Chou, Tsu-Wei

    2006-09-28

    This paper investigates the electromechanical coupling in single-walled carbon nanotubes. In the model system, the extra electric charge of the nanotube is assumed to be uniformly distributed on carbon atoms. The electrostatic interactions between charged carbon atoms are calculated using the Coulomb law. The deformation of the charged nanotube is obtained by using the molecular structural mechanics method and considering the electrostatic interactions as an external loading acting on carbon atoms. The axial strain is found to be a symmetric function of applied charge, and our predictions are in very good agreement with those from ab initio calculations. The present results indicate that the nanotube aspect ratio has a strong effect on the axial strain when the ratio is less than 10 and the general trend is that the strain increases with the aspect ratio. The peak axial and radial strains occur at nanotube diameters of around 1.2-1.5 nm. PMID:21727586

  4. Structure-Controlled Synthesis of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Yan

    Single-walled carbon nanotubes (SWNTs) present structure-determined outstanding properties and SWNTs with a single (n, m) type are needed in many advanced applications. However, the chirality-specific growth of SWNTs is always a great challenge. Carbon nanotubes and their caps or catalysts can all act as the structural templates to guide the formation of SWNTs with a specified chirality. SWNT growth via a catalyzed chemical vapor deposition CVD process is normally more efficient and therefore of great interest. We developed a new family of catalyst, tungsten-based intermetallic nanocrystals, to grow SWNTs with specified chiral structures. Such intermetallic nanocrystals present unique structure and atomic arrangements, which are distinctly different from the normal alloy nanoparticles or simple metal nanocrystals, therefore can act as the template to grow SWNTs with designed (n, m) structures. Using W6Co7 catalysts, we realized the selective growth of (12, 6), (16, 0), (14, 4) and other chiralities. By the cooperation of thermodynamic and kinetic factors, SWNTs with high chirality purity can be obtained. . Structure-Controlled Synthesis of Single-Walled Carbon Nanotubes.

  5. Characterization of single-walled carbon nanotubes for environmental implications

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Adsorption capacities of N2 and various organic vapors (methyl-ethyl ketone (MEK), toluene, and cyclohexane) on select electric-arc and HiPco produced single walled carbon nanotubes (SWNT) were measured at 77 and 298 K, respectively. The amount of N2 adsorbed on a SWNT sample depended on the sample purity, methodology, and on the sample age. Adsorption capacities of organic vapors (100-1000 ppm vol) on SWNT in humid conditions were much higher than those for microporous activated carbons. These results established a foundation for additional studies related to potential environmental applications of SWNT. The MEK adsorption capacities of samples EA95 and CVD80 and mesoporous tire-derived activated carbon in humid conditions were lower than in dry conditions. This is an abstract of a paper presented at the AIChE Annual Meeting (Austin, TX 11/7-12/2004).

  6. Center for Applications of Single-Walled Carbon Nanotubes

    SciTech Connect

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  7. Single Wall Carbon Nano Tube Films and Coatings

    NASA Astrophysics Data System (ADS)

    Sreekumar, T. V.; Kumar, Satish; Ericson, Lars M.; Smalley, Richard E.

    2002-03-01

    Purified single wall carbon nano tubes (SWNTs) produced from the high-pressure carbon monoxide (HiPCO) process have been dissolved /dispersed in oleum. These solutions /dispersions were optically homogeneous and have been used to form stand-alone SWNT films. The washed, dried, and heat-treated films are isotropic. The scanning electron micrographs of the film surface shows that the nanotube ropes (or fibrils) of about 20 nm diameters are arranged just like macroscopic fibers in a non-woven fabric. Polarized Raman spectroscopy of the SWNT film confirms the isotropic nature of these films. The films are being characterized for their thermal, mechanical as well electrical properties. Thin nano tube coatings, including optically transparent coatings, have also been made on a variety of substrates such as glass, polyethylene, polystyrene, polypropylene, silicon wafer, as well as stainless steel.

  8. Storage of Hydrogen in Single-Walled Carbon Nanotubes

    SciTech Connect

    Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J.

    1997-03-27

    Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectroscopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

  9. Individual single-wall carbon nanotubes as quantum wires

    NASA Astrophysics Data System (ADS)

    Tans, Sander J.; Devoret, Michel H.; Dai, Hongjie; Thess, Andreas; Smalley, Richard E.; Geerligs, L. J.; Dekker, Cees

    1997-04-01

    Carbon nanotubes have been regarded since their discovery1 as potential molecular quantum wires. In the case of multi-wall nanotubes, where many tubes are arranged in a coaxial fashion, the electrical properties of individual tubes have been shown to vary strongly from tube to tube2,3, and to be characterized by disorder and localization4. Single-wall nanotubes5,6 (SWNTs) have recently been obtained with high yields and structural uniformity7. Particular varieties of these highly symmetric structures have been predicted to be metallic, with electrical conduction occurring through only two electronic modes8-10. Because of the structural symmetry and stiffness of SWNTs, their molecular wavefunctions may extend over the entire tube. Here we report electrical transport measurements on individual single-wall nanotubes that confirm these theoretical predictions. We find that SWNTs indeed act as genuine quantum wires. Electrical conduction seems to occur through well separated, discrete electron states that are quantum-mechanically coherent over long distance, that is at least from contact to contact (140nm). Data in a magnetic field indicate shifting of these states due to the Zeeman effect.

  10. Single wall carbon nanotubes: Separation and applications to biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Sang Nyon

    Single wall carbon nanotubes uniquely exhibit one-dimensional quantum confined properties by being either semiconducting (sem-) or metallic (met-) depending on their atomic arrangements. The stochastic nature of SWNT growth renders met-:sem- ratio being 1:2 and diameter range being distributed in 0.4-2nm with a close-packed bundle configuration. For many high-performance devices using SWNTs, acquiring well-separated and/or isolated single-diameter, metallicity and/or chirality nanotubes is greatly in demand. Recently, the bulk separation and/or enrichment of single wall carbon nanotubes (SWNTs) according to type (or otherwise termed "metallicity") and diameter (dt) has become possible. This thesis presents a route to probe mechanisms in diameter and metallicity dependent separation of SWNTs. A systematic analysis tool, that enables the quantitative examination of resonance Raman spectra, is established from nanotube samples that have been separated according to metallicity and d t via an octadecylamine mediated protocol. This protocol uses the relative changes in the integrated intensities of the radial-breathing mode region for the quantitative evaluation. By further establishing the physicochemical properties of charge-stabilized SWNT dispersions in polar aprotic media (i.e. N,N-dimethylformide) a more detailed description of the underlying separation mechanism is given. Here, I use resonance Raman spectroscopy (RRS) as a tool to probe SWNT redox chemistry. The Gibbs free energy, modeled by calculating the charge-loss from the (n,m)-dependent integrated density of states across the corresponding jump in the redox potential, is utilized to support the separation mechanism. Additionally, the evaluation of SWNT forest platforms for amperometric protein immunoassays is presented. Horseradish peroxidase is used as the label and the sensing signals are acquired from electrochemical reduction of hydrogen peroxide. Specific studies on human serum albumin and prostate

  11. Diameter-dependent solubility of single-walled carbon nanotubes.

    PubMed

    Duque, Juan G; Parra-Vasquez, A Nicholas G; Behabtu, Natnael; Green, Micah J; Higginbotham, Amanda L; Price, B Katherine; Leonard, Ashley D; Schmidt, Howard K; Lounis, Brahim; Tour, James M; Doorn, Stephen K; Cognet, Laurent; Pasquali, Matteo

    2010-06-22

    We study the solubility and dispersibility of as-produced and purified HiPco single-walled carbon nanotubes (SWNTs). Variation in specific operating conditions of the HiPco process are found to lead to significant differences in the respective SWNT solubilities in oleum and surfactant suspensions. The diameter distributions of SWNTs dispersed in surfactant solutions are batch-dependent, as evidenced by luminescence and Raman spectroscopies, but are identical for metallic and semiconducting SWNTs within a batch. We thus find that small diameter SWNTs disperse at higher concentration in aqueous surfactants and dissolve at higher concentration in oleum than do large-diameter SWNTs. These results highlight the importance of controlling SWNT synthesis methods in order to optimize processes dependent on solubility, including macroscopic processing such as fiber spinning, material reinforcement, and films production, as well as for fundamental research in type selective chemistry, optoelectronics, and nanophotonics. PMID:20521799

  12. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  13. Magnetic Fractionation and Alignment of Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Yodh, A. G.; Kikkawa, J. M.

    2004-03-01

    We study mechanisms of single wall carbon nanotube (SWNT) alignment in a magnetic field. Through magnetic fractionation, we create SWNT suspensions with varying quantities of magnetic catalyst particles. The degree of tube alignment in magnetic fields up to 9 Tesla is quantified using polarized optical absorbance anisotropy. Continuous measurements of the nematic order parameter of these suspensions in variable magnetic fields provides a way to identify the origin of magnetic torques giving rise to nanotube alignment. Initial data suggests a transition from catalyst-driven to nanotube-anisotropy driven orientation as the catalyst fraction is reduced. We relate these results to observations of nanotube aggregation. This work has been supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  14. Phonon sidebands of photoluminescence in single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Guili; Liang, Qifeng; Jia, Yonglei; Dong, Jinming

    2010-01-01

    The multiphonon-assisted photoluminescence (PL) of the single wall carbon nanotubes (SWNTs) have been studied by solving the Schrödinger equation, showing a set of phonon sidebands, both the Stokes and anti-Stokes lines, which are induced by the longitudinal optical phonon and radial breathing mode phonon. All the calculated results are in a good agreement with the recent experimental PL spectra of the SWNTs [F. Plentz, H. B. Ribeiro, A. Jorio, M. S. Strano, and M. A. Pimenta, Phys. Rev. Lett. 95, 247401 (2005)] and J. Lefebvre and P. Finnie, Phys. Rev. Lett. 98, 167406 (2007)]. In addition, it is very interesting to find in the calculated PL several additional phonon sidebands with rather weak intensities, which are caused by the exciton's coupling with two kinds of phonons, and expected to be observed in future experiments.

  15. Laser ablation process for single-walled carbon nanotube production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2004-01-01

    Different types of lasers are now routinely used to prepare single-walled carbon nanotubes. The original method developed by researchers at Rice University used a "double-pulse laser oven" process. Several researchers have used variations of the lasers to include one-laser pulse (green or infrared), different pulse widths (ns to micros as well as continuous wave), and different laser wavelengths (e.g., CO2, or free electron lasers in the near to far infrared). Some of these variations are tried with different combinations and concentrations of metal catalysts, buffer gases (e.g., helium), oven temperatures, flow conditions, and even different porosities of the graphite targets. This article is an attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  16. Structural anisotropy of magnetically aligned single wall carbon nanotube films

    SciTech Connect

    Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E.

    2000-07-31

    Thick films of aligned single wall carbon nanotubes and ropes have been produced by filtration/deposition from suspension in strong magnetic fields. We measured mosaic distributions of rope orientations in the film plane, for samples of different thicknesses. For an {approx}1 {mu}m film the full width at half maximum (FWHM) derived from electron diffraction is 25 degree sign -28 degree sign . The FWHM of a thicker film ({approx}7 {mu}m) measured by x-ray diffraction is slightly broader, 35{+-}3 degree sign . Aligned films are denser than ordinary filter-deposited ones, and much denser than as-grown material. Optimization of the process is expected to yield smaller FWHMs and higher densities. (c) 2000 American Institute of Physics.

  17. Single-Wall Carbon Nanotubes as Transparent Electrodes for Photovoltaics

    SciTech Connect

    Weeks, C.; Peltola, J.; Levitsky, I.; Glatkowski, P.; van de Lagemaat, J.; Rumbles, G.; Barnes, T.; Coutts, T.

    2006-01-01

    Transparent and electrically conductive coatings and films have a variety of uses in the fast-growing field of optoelectronic applications. Transparent electrodes typically include semiconductive metal oxides such as indium tin oxide (ITO), and conducting polymers such as poly(3,4-ethylenedioxythiophene), doped and stabilized with poly(styrenesulfonate) (PEDOT/PSS). In recent years, Eikos, Inc. has conceived and developed technologies to deliver novel alternatives using single-wall carbon nanotubes (SWNT). These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. Additional benefits include ease of ambient processing and patterning capability. This paper reports our recent findings on achieving 2.6% and 1.4% efficiencies on nonoptimized organic photovoltaic cells employing SWNT as a transparent electrode.

  18. Resonance Raman Spectroscopy of Armchair Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Haroz, Erik; Rice, William; Lu, Benjamin; Hauge, Robert; Magana, Donny; Doorn, Stephen; Nikolaev, Pasha; Arepalli, Sivaram; Kono, Junichiro

    2009-03-01

    We performed resonance Raman spectroscopy studies of metallic single-walled carbon nanotubes (SWNTs), including armchair SWNTs from (6,6) through (10,10). The measurements were carried out with excitation of 440-850 nm on aqueous ensemble samples of SWNTs enriched in metallic species. From this, we generated Raman excitation profiles (REPs) of the radial breathing mode and compare the REPs of armchairs and other metallic species. Additionally, we measured REPs of the G-band mode and observed how the Breit-Wigner-Fano line shape of the G^- peak evolves in peak position, width and intensity relative to the G^+ peak as different metallic nanotubes are excited. By combining these studies with absorption and photoluminescence excitation spectroscopy studies, we present a comprehensive examination of the optical signatures of metallic SWNTs.

  19. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    PubMed Central

    Rodriguez, Kenneth R.; Nanney, Warren A.; A. Maddux, Cassandra J.; Martínez, Hernán L.

    2014-01-01

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n

  20. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    SciTech Connect

    Rodriguez, Kenneth R. Nanney, Warren A.; Maddux, Cassandra J.A.; Martínez, Hernán L.; Malone, Marvin A.; Coe, James V.

    2014-12-15

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n

  1. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Kenneth R.; Malone, Marvin A.; Nanney, Warren A.; A. Maddux, Cassandra J.; Coe, James V.; Martínez, Hernán L.

    2014-12-01

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n

  2. Finely dispersed single-walled carbon nanotubes for polysaccharide hydrogels.

    PubMed

    Yan, Liang Yu; Chen, Hailan; Li, Peng; Kim, Dong-Hwan; Chan-Park, Mary B

    2012-09-26

    Here we demonstrate a polysaccharide hydrogel reinforced with finely dispersed single-walled carbon nanotubes (SWNTs) using biocompatible dispersants O-carboxymethylchitosan (OC) and chondroitin sulfate A (CS-A) as a structural support. Both of the dispersants can disperse SWNTs in aqueous solutions and hydrogel matrix as individual tubes or small bundles. Additionally, we have found that compressive modulus and strain of the hydrogels reinforced with SWNTs were enhanced as much as two times by the addition of a few weight percent of SWNTs. Moreover, the SWNT-incorporated hydrogels exhibited lower impedance and higher charge capacity than the alginate/dispersant hydrogel without SWNTs. The OC and the CS-A demonstrated much higher reinforcing enhancement than a commercially available dispersant, sodium dodecyl sulfate. Combined with the experimental data on the mechanical and electrical properties, the biocompatibility of OC and CS-A can provide the possibility of biomedical application of the SWNT-reinforced hydrogels. PMID:22909447

  3. Molecular Imaging with Single-Walled Carbon Nanotubes

    PubMed Central

    Hong, Hao; Gao, Ting; Cai, Weibo

    2011-01-01

    Nanoparticle-based molecular imaging has emerged as an interdisciplinary field which involves physics, chemistry, engineering, biology, and medicine. Single-walled carbon nanotubes (SWCNTs) have unique properties which make them suitable for applications in a variety of imaging modalities, such as magnetic resonance, near-infrared fluorescence, Raman spectroscopy, photoacoustic tomography, and radionuclide-based imaging. In this review, we will summarize the current state-of-the-art of SWCNTs in molecular imaging applications. Multifunctionality is the key advantage of nanoparticles over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoparticle to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. A multifunctional, SWCNT-based nanoplatform holds great potential for clinical applications in the future. PMID:21754949

  4. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  5. Single Wall Carbon Nanotube-Based Structural Health Sensing Materials

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.

    2004-01-01

    Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.

  6. Selective bundling of zigzag single-walled carbon nanotubes.

    PubMed

    Blum, Carolin; Stürzl, Ninette; Hennrich, Frank; Lebedkin, Sergei; Heeg, Sebastian; Dumlich, Heiko; Reich, Stephanie; Kappes, Manfred M

    2011-04-26

    A simple, high throughput fractionation procedure for aqueous/SDS (sodium dodecyl sulfate) suspensions of single-walled carbon nanotubes (SWNTs) is presented, which yields thin bundles of semiconducting-SWNTs with small chiral angles. To demonstrate this we show the photoluminescence signatures of nanotube suspensions that contain almost exclusively zigzag and near-zigzag tubes. Starting suspensions and resulting fractions were characterized using optical absorption, resonance Raman and photoluminescence spectroscopies as well as scanning force microscopy. Taken together with literature observations, our findings suggest that near zigzag edge tubes of similar diameters in a bundle are harder to separate from each other than for other chiral index combinations. We discuss the implications of these observations for SWNT growth and dispersion. PMID:21410134

  7. Extracellular entrapment and degradation of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farrera, Consol; Bhattacharya, Kunal; Lazzaretto, Beatrice; Andón, Fernando T.; Hultenby, Kjell; Kotchey, Gregg P.; Star, Alexander; Fadeel, Bengt

    2014-05-01

    Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials. Electronic supplementary information (ESI) available: Suppl. Fig. 1 - length distribution of SWCNTs; suppl. Fig. 2 - characterization of pristine vs. oxidized SWCNTs; suppl. Fig. 3 - endotoxin evaluation; suppl. Fig. 4 - NET characterization; suppl. Fig. 5 - UV-Vis/NIR analysis of biodegradation of oxidized SWCNTs; suppl. Fig. 6 - cytotoxicity of partially degraded SWCNTs. See DOI: 10.1039/c3nr06047k

  8. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  9. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  10. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  11. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  12. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon

    EPA Science Inventory

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applicatio...

  13. MINIMAL INFLAMMOGENICITY OF PRISTINE SINGLE-WALL CARBON NANOTUBES

    PubMed Central

    TOYOKUNI, SHINYA; JIANG, LI; KITAURA, RYO; SHINOHARA, HISANORI

    2015-01-01

    ABSTRACT Carbon nanotubes (CNTs) are a novel synthetic material comprising only carbon atoms. Based on its rigidity, its electrical and heat conductivity and its applicability to surface manufacturing, this material is expected to have numerous applications in industry. However, due to the material’s dimensional similarity to asbestos fibers, its carcinogenicity was hypothesized during the last decade, and indeed, we have shown that multi-wall CNTs (MWCNTs) of 50 nm in diameter are potently carcinogenic to mesothelial cells after intraperitoneal injection. Additionally, we suggested that inflammogenicity after intraperitoneal injection can predict mesothelial carcinogenesis. However, few data have been published on the intraperitoneal inflammogenicity of single-wall CNTs (SWCNTs). Here, we conducted a series of studies on SWCNTs using both intraperitoneal injection into rats and MeT5A mesothelial cells. Intraperitoneal injection of 10 mg SWCNTs caused no remarkable inflammation in the abdominal cavity, and the exposure of MeT5A cells to up to 25 μg/cm2 SWCNTs did not alter proliferation. MWCNTs of 50 nm in diameter were used as a positive control, and tangled MWCNTs of 15 nm in diameter were used as a negative control. The results suggest that SWCNTs are a low-risk material with respect to mesothelial carcinogenesis. PMID:25797984

  14. Third Harmonic Generation from Aligned Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Morris, Darius T., Jr.

    Optical properties of single-wall carbon nanotubes (SWCNTs) have been extensively studied during the last decade, and much basic knowledge has been accumulated on how light emission, scattering, and absorption occur in the realm of linear optics. However, their nonlinear optical properties remain largely unexplored. Here, we have observed strong third harmonic generation from highly aligned SWCNTs with intense mid-infrared radiation. Through power dependent experiments, we have determined the absolute value of the third-order nonlinear optical susceptibility, chi(3), of our SWCNT film to be 6.92 x 10--12 esu, which is three orders of magnitude larger than that of the fused silica reference sample we used. Furthermore, through polarization-dependent third harmonic generation experiments, all the nonzero tensor elements of chi(3) have also been extracted. The contribution of the weaker tensor elements to the overall chi (3) signal has been calculated to be approximately 1/6 of that of the dominant c3z zzz component. These results open up new possibilities for application of carbon nanotubes in optoelectronics.

  15. Single-wall carbon nanotube chemical attachment at platinum electrodes

    NASA Astrophysics Data System (ADS)

    Rosario-Castro, Belinda I.; Contés-de-Jesús, Enid J.; Lebrón-Colón, Marisabel; Meador, Michael A.; Scibioh, M. Aulice; Cabrera, Carlos R.

    2010-11-01

    Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.

  16. Optical properties of armchair (7, 7) single walled carbon nanotubes

    SciTech Connect

    Gharbavi, K.; Badehian, H.

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.

  17. Single-Walled Carbon Nanotube Transporter for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Ke, Pu-Chun

    2005-03-01

    Recent studies have shown great promises in integrating nanomaterials in biomedicine. To explore the feasibility of using single-walled carbon nanotubes (SWNTs) as transporters for gene delivery, we have investigated the binding of SWNTs and RNA polymer poly(rU), and the diffusion and the translocation of the SWNT-poly(rU) complexes. Through single-molecule fluorescence imaging, we have found that the pi- stacking dominates the hydrophobic interactions between the carbon rings on tubes and the nitrogenous bases of RNA. Our diffusion study has further demonstrated the feasibility of tracking the motion of water soluble SWNT-poly(rU) complexes. The uptake of SWNT-poly(rU) by breast cancer cells MCF7 was observed using confocal scanning fluorescence microscopy. It was evident that the complexes could penetrate through cell membrane into cytoplasm and cell nucleus. Our cell culture, MTS assay, and radioisotope labeling showed the negligible cytotoxicity of surface modified SWNTs with RNA polymer and amino acids in cell growth medium. These studies have paved the way for gene transfection using SWNTs as transporters.

  18. Synthesis, assembly, and applications of single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ryu, Koungmin

    This dissertation presents the synthesis and assembly of aligned carbon nanotubes, and their applications in both nano-electronics such as transistor and integrated circuits and macro-electronics in energy conversion devices as transparent conducting electrodes. Also, the high performance chemical sensor using metal oxide nanowire has been demonstrated. Chapter 1 presents a brief introduction of carbon nanotube, followed by discussion of a new synthesis technique using nanosphere lithography to grow highly aligned single-walled carbon nanotubes atop quartz and sapphire substrates. This method offers great potential to produce carbon nanotube arrays with simultaneous control over the nanotube orientation, position, density, diameter and even chirality. Chapter 3 introduces the wafer-scale integration and assembly of aligned carbon nanotubes, including full-wafer scale synthesis and transfer of massively aligned carbon nanotube arrays, and nanotube device fabrication on 4 inch Si/SiO2 wafer to yield submicron channel transistors with high on-current density ˜ 20 muA/mum and good on/off ratio and CMOS integrated circuits. In addition, various chemical doping methods for n-type nanotube transistors are studied to fabricate CMOS integrated nanotube circuits such as inverter, NAND and NOR logic devices. Furthermore, defect-tolerant circuit design for NAND and NOR is proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. Carbon nanotube flexible electronics and smart textiles for ubiquitous computing and sensing are demonstrated in chapter 4. A facile transfer printing technique has been introduced to transfer massively aligned single-walled carbon nanotubes from the original sapphire/quartz substrates to virtually any other substrates, including glass, silicon, polymer sheets, and even fabrics. The characterization of transferred nanotubes reveals that the transferred

  19. Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors.

    PubMed

    Penzo, Erika; Palma, Matteo; Chenet, Daniel A; Ao, Geyou; Zheng, Ming; Hone, James C; Wind, Shalom J

    2016-02-23

    The outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated. We have developed a technique for assembling length sorted and chirality monodisperse DNA-wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate. Placement of individual SWCNT segments at predetermined locations was achieved with nanometer accuracy. Three terminal electronic devices, consisting of a single SWCNT segment placed either beneath or on top of metallic source/drain electrodes were fabricated. Devices made with semiconducting nanotubes behaved as typical p-type field effect transistors (FETs), whereas devices made with metallic nanotubes had a finite resistance with little or no gate modulation. This scalable, high resolution approach represents an important step forward toward the potential implementation of complex SWCNT devices and circuits. PMID:26807948

  20. Fabrication of stretchable single-walled carbon nanotube logic devices.

    PubMed

    Yoon, Jangyeol; Shin, Gunchul; Kim, Joonsung; Moon, Young Sun; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2014-07-23

    The fabrication of a stretchable single-walled carbon nanotube (SWCNT) complementary metal oxide semiconductor (CMOS) inverter array and ring oscillators is reported. The SWCNT CMOS inverter exhibits static voltage transfer characteristics with a maximum gain of 8.9 at a supply voltage of 5 V. The fabricated devices show stable electrical performance under the maximum strain of 30% via forming wavy configurations. In addition, the 3-stage ring oscillator demonstrates a stable oscillator frequency of ∼3.5 kHz at a supply voltage of 10 V and the oscillating waveforms are maintained without any distortion under cycles of pre-strain and release. The strains applied to the device upon deformation are also analyzed by using the classical lamination theory, estimating the local strain of less than 0.6% in the SWCNT channel and Pd electrode regions which is small enough to keep the device performance stable under the pre-strain up to 30%. This work demonstrates the potential application of stretchable SWCNT logic circuit devices in future wearable electronics. PMID:24700788

  1. Sorting centimetre-long single-walled carbon nanotubes.

    PubMed

    Yu, Woo Jong; Chae, Sang Hoon; Vu, Quoc An; Lee, Young Hee

    2016-01-01

    While several approaches have been developed for sorting metallic (m) or semiconducting (s) single-walled carbon nanotubes (SWCNTs), the length of SWCNTs is limited within a micrometer, which restricts excellent electrical performances of SWCNTs for macro-scale applications. Here, we demonstrate a simple sorting method of centimetre-long aligned m- and s-SWCNTs. Ni particles were selectively and uniformly coated along the 1-cm-long m-SWCNTs by applying positive gate bias during electrochemical deposition with continuous electrolyte injection. To sort s-SWCNTs, the Ni coating was oxidized to form insulator outer for blocking of current flow through inner m-SWCNTs. Sorting of m-SWCNTs were demonstrated by selective etching of s-SWCNTs via oxygen plasma, while the protected m-SWCNTs by Ni coating remained intact. The series of source-drain pairs were patterned along the 1-cm-long sorted SWCNTs, which confirmed high on/off ratio of 10(4)-10(8) for s-SWCNTs and nearly 1 for m-SWCNTs. PMID:27476909

  2. Coarse-grained potentials of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Wang, Lifeng; Guo, Wanlin; Rabczuk, Timon

    2014-11-01

    We develop the coarse-grained (CG) potentials of single-walled carbon nanotubes (SWCNTs) in CNT bundles and buckypaper for the study of the static and dynamic behaviors. The explicit expressions of the CG stretching, bending and torsion potentials for the nanotubes are obtained by the stick-spiral and the beam models, respectively. The non-bonded CG potentials between two different CG beads are derived from analytical results based on the cohesive energy between two parallel and crossing SWCNTs from the van der Waals interactions. We show that the CG model is applicable to large deformations of complex CNT systems by combining the bonded potentials with non-bonded potentials. Checking against full atom molecular dynamics calculations and our analytical results shows that the present CG potentials have high accuracy. The established CG potentials are used to study the mechanical properties of the CNT bundles and buckypaper efficiently at minor computational cost, which shows great potential for the design of micro- and nanomechanical devices and systems.

  3. Reinforced thermoplastic polyimide with dispersed functionalized single wall carbon nanotubes.

    PubMed

    Lebrón-Colón, Marisabel; Meador, Michael A; Gaier, James R; Solá, Francisco; Scheiman, Daniel A; McCorkle, Linda S

    2010-03-01

    Molecular pi-complexes were formed from pristine HiPCO single- wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4-N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the T(g) of the polyimide increased from 169 to 197 degrees C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(-4) Scm(-1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed. PMID:20356267

  4. Single-walled carbon nanotube based molecular switch tunnel junctions.

    PubMed

    Diehl, Michael R; Steuerman, David W; Tseng, Hsian-Rong; Vignon, Scott A; Star, Alexander; Celestre, Paul C; Stoddart, J Fraser; Heath, James R

    2003-12-15

    This article describes two-terminal molecular switch tunnel junctions (MSTJs) which incorporate a semiconducting, single-walled carbon nanotube (SWNT) as the bottom electrode. The nanotube interacts noncovalently with a monolayer of bistable, nondegenerate [2]catenane tetracations, self-organized by their supporting amphiphilic dimyristoylphosphatidyl anions which shield the mechanically switchable tetracations from a two-micrometer wide metallic top electrode. The resulting 0.002 micron 2 area tunnel junction addresses a nanometer wide row of approximately 2000 molecules. Active and remnant current-voltage measurements demonstrated that these devices can be reconfigurably switched and repeatedly cycled between high and low current states under ambient conditions. Control compounds, including a degenerate [2]catenane, were explored in support of the mechanical origin of the switching signature. These SWNT-based MSTJs operate like previously reported silicon-based MSTJs, but differently from similar devices incorporating bottom metal electrodes. The relevance of these results with respect to the choice of electrode materials for molecular electronics devices is discussed. PMID:14714382

  5. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes.

    PubMed

    Nagy, Péter R; Koltai, János; Surján, Péter R; Kürti, Jenő; Szabados, Ágnes

    2016-07-21

    Resonance (vibrational) Raman Optical Activity (ROA) spectra of six chiral single-walled carbon nanotubes (SWCNTs) are studied by theoretical means. Calculations are performed imposing line group symmetry. Polarizability tensors, computed at the π-electron level, are differentiated with respect to DFT normal modes to generate spectral intensities. This computational protocol yields a ROA spectrum in good agreement with the only experiment on SWCNT, available at present. In addition to the conventional periodic electric dipole operator we introduce magnetic dipole and electric quadrupole operators, suitable for conventional k-space calculations. Consequences of the complex nature of the wave function on the scattering cross section are discussed in detail. The resonance phenomenon is accounted for by the short time approximation. Involvement of fundamental vibrations in the region of the intermediate frequency modes is found to be more notable in ROA than in Raman spectra. Calculations indicate exceptionally strong resonance enhancement of SWCNT ROA signals. Resonance ROA profile of the (6,5) tube shows an interesting sign change that may be exploited experimentally for SWCNT identification. PMID:27315548

  6. Potassium-Decorated, Single-Wall Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Rao, A. M.; Richter, E.; Menon, M.; Subbaswamy, K. R.; Eklund, P. C.; Thess, A.; Smalley, R. E.

    1997-03-01

    Crystalline ropes of single-wall carbon nanotubes have been reacted in sealed glass tubes with potassium vapor and Raman scattering has been used to monitor the vibrational modes as a function of reaction time. An overall broadening and downshifting of the Raman bands is observed. For example, huge downshifts (40 cm-1) in the high frequency tangential modes observed near 1593 cm-1 in the pristine tubes are detected. These downshifts are attributed to significant charge transfer of K 4s electrons into antibonding pz states of the nanotube which should expand the tube diameter and soften the lattice. Presumably, the potassium ions are chemisorbed onto the walls of the nanotubes, rather than inside the nanotube, although no structural information to support this model has yet been collected. Theoretical results on electron doped armchair symmetry nanotubes using the Generalized Tight Binding Molecular Dynamics model will also be presented to help explain experimental results. The Kentucky group was supported by the University of Kentucky Center for Applied Energy Research and NSF Grant No. OSR-94-52895 and DOE Contract No. DE-F22-90PC90029. The work at Rice was supported by the Office of Naval Research Contract N0014-91-J1794.

  7. Single-wall carbon nanotubes and peapods investigated by EPR.

    PubMed

    Corzilius, B; Dinse, K-P; Hata, K

    2007-12-14

    Single-wall carbon nanotubes (SWNT) prepared by the "super growth" method developed recently exhibit electron paramagnetic resonance (EPR) signals, which can be attributed to itinerant spins. EPR results indicate very low defect and catalyst concentrations in this superior material. Under these conditions EPR can be used to study details of charge transport properties over a wide temperature range, although the material is still very "heterogeneous" with respect to tube diameter and chirality. Non-resonant microwave absorption in the temperature range below 20 K is indicative for the opening of a small gap at the Fermi energy for tubes of metallic character, which is indicative for a transition into a superconducting state. Using SWNT filled partially with an endohedral spin probe like N@C(60), such "peapods" can be investigated "from the inside". Continuous-wave (cw) and pulsed EPR was used to investigate localization dynamics within the tubes or to check for interaction with itinerant electrons. Using SWNT grown by different methods, the dominant influence of tube diameter on fullerene dynamics was revealed by temperature dependent pulsed EPR experiments. These differences can be correlated with the interactions between the endohedral observer spin and spins on the SWNT. PMID:18167581

  8. Low-temperature growth of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kim, S.-M.; Zhang, Y.; Wang, X.; Teo, K. B. K.; Gangloff, L.; Milne, W. I.; Wu, J.; Eastman, M.; Jiao, J.

    2007-12-01

    The low-temperature synthesis (450-560 °C) of single-walled carbon nanotubes (SWCNTs) on a triple-layered catalyst, Al/Fe/Mo, was performed using aromatic hydrocarbon radicals which were produced from the pyrolysis of C2H2. Two approaches were used; in the first, these hydrocarbon radicals were produced using a high-temperature heater (830 °C), but the substrate where the SWCNTs were grown was placed on a thermal insulator above it such that the substrate was at a much lower temperature. In the second approach, a heated nozzle system operating at 830 °C was used to introduce the hydrocarbon radicals onto the substrate which was located a few centimetres below it. Both these approaches rely on the thermal dissociation and recombination of C2H2 for the formation of complex high-order radicals, i.e. C6H9, C5H9, C6H13, whose presence was confirmed by in situ mass spectroscopy. The density of SWCNTs deposited could be correlated directly with the concentration of these precursors.

  9. Single walled carbon nanotube composites for bone tissue engineering.

    PubMed

    Gupta, Ashim; Woods, Mia D; Illingworth, Kenneth David; Niemeier, Ryan; Schafer, Isaac; Cady, Craig; Filip, Peter; El-Amin, Saadiq F

    2013-09-01

    The purpose of this study was to develop single walled carbon nanotubes (SWCNT) and poly lactic-co-glycolic acid (PLAGA) composites for orthopedic applications and to evaluate the interaction of human stem cells (hBMSCs) and osteoblasts (MC3T3-E1 cells) via cell growth, proliferation, gene expression, extracellular matrix production and mineralization. PLAGA and SWCNT/PLAGA composites were fabricated with various amounts of SWCNT (5, 10, 20, 40, and 100 mg), characterized and degradation studies were performed. Cells were seeded and cell adhesion/morphology, growth/survival, proliferation and gene expression analysis were performed to evaluate biocompatibility. Imaging studies demonstrated uniform incorporation of SWCNT into the PLAGA matrix and addition of SWCNT did not affect the degradation rate. Imaging studies revealed that MC3T3-E1 and hBMSCs cells exhibited normal, non-stressed morphology on the composites and all were biocompatible. Composites with 10 mg SWCNT resulted in highest rate of cell proliferation (p < 0.05) among all composites. Gene expression of alkaline phosphatase, collagen I, osteocalcin, osteopontin, Runx-2, and Bone Sialoprotein was observed on all composites. In conclusion, SWCNT/PLAGA composites imparted beneficial cellular growth capabilities and gene expression, and mineralization abilities were well established. These results demonstrate the potential of SWCNT/PLAGA composites for musculoskeletal regeneration and bone tissue engineering (BTE) and are promising for orthopedic applications. PMID:23629922

  10. Hypergolic fuel detection using individual single walled carbon nanotube networks

    SciTech Connect

    Desai, S. C.; Willitsford, A. H.; Sumanasekera, G. U.; Yu, M.; Jayanthi, C. S.; Wu, S. Y.; Tian, W. Q.

    2010-06-15

    Accurate and reliable detection of hypergolic fuels such as hydrazine (N{sub 2}H{sub 4}) and its derivatives is vital to missile defense, aviation, homeland security, and the chemical industry. More importantly these sensors need to be capable of operation at low temperatures (below room temperature) as most of the widely used chemical sensors operate at high temperatures (above 300 deg. C). In this research a simple and highly sensitive single walled carbon nanotube (SWNT) network sensor was developed for real time monitoring of hydrazine leaks to concentrations at parts per million levels. Upon exposure to hydrazine vapor, the resistance of the air exposed nanotubes (p-type) is observed to increase rapidly while that of the vacuum-degassed nanotubes (n-type) is observed to decrease. It was found that the resistance of the sample can be recovered through vacuum pumping and exposure to ultraviolet light. The experimental results support the electrochemical charge transfer mechanism between the oxygen redox couple of the ambient and the Fermi level of the SWNT. Theoretical results of the hydrazine-SWNT interaction are compared with the experimental observations. It was found that a monolayer of water molecules on the SWNT is necessary to induce strong interactions between hydrazine and the SWNT by way of introducing new occupied states near the bottom of the conduction band of the SWNT.

  11. Sorting centimetre-long single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Woo Jong; Chae, Sang Hoon; Vu, Quoc An; Lee, Young Hee

    2016-08-01

    While several approaches have been developed for sorting metallic (m) or semiconducting (s) single-walled carbon nanotubes (SWCNTs), the length of SWCNTs is limited within a micrometer, which restricts excellent electrical performances of SWCNTs for macro-scale applications. Here, we demonstrate a simple sorting method of centimetre-long aligned m- and s-SWCNTs. Ni particles were selectively and uniformly coated along the 1-cm-long m-SWCNTs by applying positive gate bias during electrochemical deposition with continuous electrolyte injection. To sort s-SWCNTs, the Ni coating was oxidized to form insulator outer for blocking of current flow through inner m-SWCNTs. Sorting of m-SWCNTs were demonstrated by selective etching of s-SWCNTs via oxygen plasma, while the protected m-SWCNTs by Ni coating remained intact. The series of source-drain pairs were patterned along the 1-cm-long sorted SWCNTs, which confirmed high on/off ratio of 104–108 for s-SWCNTs and nearly 1 for m-SWCNTs.

  12. Endohedral Volume Control for Improved Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Campo, Jochen; Fagan, Jeffrey

    Liquid-phase processing of single-wall carbon nanotubes (SWCNTs) generally results in the exposure of their core volumes to the environment (opening) due to energy input necessary for purification and solubilization. For aqueous processing this results in SWCNTs routinely getting filled with water, which is detrimental to several properties. Importantly, water filling leads to significant redshifts to, and inhomogeneous broadening of, the electronic transitions of the SWCNTs, as well as a substantial decrease to their fluorescence quantum efficiency. Selection of (remaining) empty (end-capped) SWCNTs to avoid these adverse effects is possible by means of ultracentrifugation, but is a natively low yield process. In this work, SWCNTs are prefilled with linear alkanes or similar organic compounds, serving as a passive, highly homogeneous spacer, blocking the ingestion of water and hence preventing the detrimental consequences. Moreover, the low dielectric nature of the alkane core only weakly affects the local electronic wavefunction of the SWCNTs, effectively simulating empty core conditions and hence yielding much more resolved optical spectra with blue shifted peak positions compared to water filled SWCNTs. It is demonstrated that a wide variety of linear as well as cyclic alkanes can be applied for this purpose, in combination with various SWCNT materials.

  13. Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase

    PubMed Central

    Andón, Fernando T.; Kapralov, Alexandr A.; Yanamala, Naveena; Feng, Weihong; Baygan, Arjang; Chambers, Benedict J.; Hultenby, Kjell; Ye, Fei; Toprak, Muhammet S.; Brandner, Birgit D.; Fornara, Andrea; Klein-Seetharaman, Judith; Kotchey, Gregg P.; Star, Alexander; Shvedova, Anna A.

    2014-01-01

    Eosinophil peroxidase (EPO) is one of the major oxidant-producing enzymes during inflammatory states in the human lung. The degradation of single-walled carbon nanotubes (SWCNTs) upon incubation with human EPO and H2O2 is reported. Biodegradation of SWCNTs is higher in the presence of NaBr, but neither EPO alone nor H2O2 alone caused the degradation of nanotubes. Molecular modeling reveals two binding sites for SWCNTs on EPO, one located at the proximal side (same side as the catalytic site) and the other on the distal side of EPO. The oxidized groups on SWCNTs in both cases are stabilized by electrostatic interactions with positively charged residues. Biodegradation of SWCNTs can also be executed in an ex vivo culture system using primary murine eosinophils stimulated to undergo degranulation. Biodegradation is proven by a range of methods including transmission electron microscopy, UV-visible-NIR spectroscopy, Raman spectroscopy, and confocal Raman imaging. Thus, human EPO (in vitro) and ex vivo activated eosinophils mediate biodegradation of SWCNTs: an observation that is relevant to pulmonary responses to these materials. PMID:23447468

  14. Buckling of single-walled carbon nanotubes using two criteria

    NASA Astrophysics Data System (ADS)

    Gupta, Shakti S.; Agrawal, Pranav; Batra, Romesh C.

    2016-06-01

    We use molecular mechanics simulations with the MM3 potential to study instabilities in clamped-clamped single-walled carbon nanotubes (SWCNTs) deformed in torsion and axial compression. The following are the two criteria employed to find the critical buckling strain: (i) a sudden drop in the potential energy and (ii) an eigenvalue of the mass weighted Hessian of the deformed configuration becoming zero. The instability under axial compression is investigated for zigzag and armchair SWCNTs, and that under torsional deformations is also studied for chiral tubes. In general, values of critical strains from the 2nd criterion are found to be substantially less than those from the 1st criterion. For chiral SWCNTs, the critical strains from the 2nd criterion and the potential energies at the onset of instability markedly depend upon the twisting direction. Values of buckling strains predicted from the column and the shell buckling theories are found to agree well with those obtained using the 2nd criterion.

  15. Bulk Mechanical Properties of Single Walled Carbon Nanotube Electrodes

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Landi, Brian; Cress, Cory; Raffaelle, Ryne

    2007-03-01

    The unique properties of single walled carbon nanotubes (SWNTs) make them especially well suited for use as electrodes in power devices such as lithium ion batteries, hydrogen fuel cells, solar cells, and supercapacitors. The performances of such devices are expected to be influenced, at least in part, by the mechanical properties of the SWNTs used in composites or in stand alone ``papers.'' Therefore, the elastic moduli and ultimate tensile strengths of SWNT papers were measured as functions of temperature, SWNT purity, SWNT length, and SWNT bundling. The SWNTs used to produce the papers were synthesized in an alexandrite laser vaporization reactor at 1100^oC and purified using conventional acid-reflux conditions. Characterization of the SWNTs was performed using SEM, BET, TGA, and optical and Raman spectroscopy. The purified material was filtered and dried to yield papers of bundled SWNTs which were analyzed using dynamic mechanical analysis (DMA). It was observed that the mechanical properties of acid-refluxed SWNT papers were significantly improved by controlled thermal oxidation and strain-hardening. Elastic moduli of SWNT papers were measured between 3 and 6 GPa. Ultimate (breaking) tensile stresses were measured between 45 and 90 MPa at 1-3% strain. These results and their implications in regard to potential applications in power devices will be discussed.

  16. On the Stability and Abundance of Single Walled Carbon Nanotubes

    PubMed Central

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J.

    2015-01-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth. PMID:26581125

  17. A Single-Walled Carbon Nanotube Network Gas Sensing Device

    PubMed Central

    Wang, Li-Chun; Tang, Kea-Tiong; Teng, I-Ju; Kuo, Cheng-Tzu; Ho, Cheng-Long; Kuo, Han-Wen; Su, Tseng-Hsiung; Yang, Shang-Ren; Shi, Gia-Nan; Chang, Chang-Ping

    2011-01-01

    The goal of this research was to develop a chemical gas sensing device based on single-walled carbon nanotube (SWCNT) networks. The SWCNT networks are synthesized on Al2O3-deposted SiO2/Si substrates with 10 nm-thick Fe as the catalyst precursor layer using microwave plasma chemical vapor deposition (MPCVD). The development of interconnected SWCNT networks can be exploited to recognize the identities of different chemical gases by the strength of their particular surface adsorptive and desorptive responses to various types of chemical vapors. The physical responses on the surface of the SWCNT networks cause superficial changes in the electric charge that can be converted into electronic signals for identification. In this study, we tested NO2 and NH3 vapors at ppm levels at room temperature with our self-made gas sensing device, which was able to obtain responses to sensitivity changes with a concentration of 10 ppm for NO2 and 24 ppm for NH3. PMID:22164044

  18. Tuning Thermoelectric Properties of Chirality Selected Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yanagi, Kazuhiro; Oshima, Yuki; Kitamura, Yoshimasa; Maniwa, Yutaka

    Thermoelectrics are a very important technology for efficiently converting waste heat into electric power. Hicks and Dresselhaus proposed an important approach to innovate the performance of thermoelectric devices, which involves using one-dimensional materials and properly tuning their Fermi level (PRB 1993). Therefore, understanding the relationship between the thermoelectric performance and the Fermi level of one-dimensional materials is of great importance to maximize their thermoelectric performance. Single wall carbon nanotube (SWCNT) is an ideal model for one-dimensional materials. Previously we reported continuous p-type and n-type control over the Seebeck coefficients of semiconducting SWCNT networks with diameter of 1.4 nm through an electric double layer transistor setup using an ionic liquid as the electrolyte (Yanagi et al., Nano Lett. 14, 6437 2014). We clarified the thermoelectric properties of semiconducting SWCNTs with diameter of 1.4 nm as a function of Fermi level. In this study, we investigated how the chiralities or electronic structures of SWCNTs influence on the thermoelectric properties. We found the significant difference in the line-shape of Seebeck coefficient as a function of gate voltage between the different electronic structures of SWCNTs.

  19. Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions

    NASA Technical Reports Server (NTRS)

    Han, Jie; Anantram, M. P.; Jaffe, R. L.; Kong, J.; Dai, H.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Single wall carbon nanotube (SWNT) bends, with diameters from approx. 1.0 to 2.5 nm and bend angles from 18 deg. to 34 deg., are observed in catalytic decomposition of hydrocarbons at 600 - 1200 C. An algorithm using molecular dynamics simulation (MD) techniques is developed to model these structures that are considered to be SWNT junctions formed by topological defects (i.e. pentagon-heptagon pairs). The algorithm is used to predict the tube helicities and defect configurations for bend junctions using the observed tube diameters and bend angles. The number and arrangement of the defects at the junction interfaces are found to depend on the tube helicities and bend angle. The structural and energetic calculations using the Brenner potential show a number of stable junction configurations for each bend angle with the 34 deg. bends being more stable than the others. Tight binding calculations for local density of state (LDOS) and transmission coefficients are carried out to investigate electrical properties of the bend junctions.

  20. Sorting centimetre-long single-walled carbon nanotubes

    PubMed Central

    Yu, Woo Jong; Chae, Sang Hoon; Vu, Quoc An; Lee, Young Hee

    2016-01-01

    While several approaches have been developed for sorting metallic (m) or semiconducting (s) single-walled carbon nanotubes (SWCNTs), the length of SWCNTs is limited within a micrometer, which restricts excellent electrical performances of SWCNTs for macro-scale applications. Here, we demonstrate a simple sorting method of centimetre-long aligned m- and s-SWCNTs. Ni particles were selectively and uniformly coated along the 1-cm-long m-SWCNTs by applying positive gate bias during electrochemical deposition with continuous electrolyte injection. To sort s-SWCNTs, the Ni coating was oxidized to form insulator outer for blocking of current flow through inner m-SWCNTs. Sorting of m-SWCNTs were demonstrated by selective etching of s-SWCNTs via oxygen plasma, while the protected m-SWCNTs by Ni coating remained intact. The series of source-drain pairs were patterned along the 1-cm-long sorted SWCNTs, which confirmed high on/off ratio of 104–108 for s-SWCNTs and nearly 1 for m-SWCNTs. PMID:27476909

  1. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  2. Nonlinear resonances of a single-wall carbon nanotube cantilever

    NASA Astrophysics Data System (ADS)

    Kim, I. K.; Lee, S. I.

    2015-03-01

    The dynamics of an electrostatically actuated carbon nanotube (CNT) cantilever are discussed by theoretical and numerical approaches. Electrostatic and intermolecular forces between the single-walled CNT and a graphene electrode are considered. The CNT cantilever is analyzed by the Euler-Bernoulli beam theory, including its geometric and inertial nonlinearities, and a one-mode projection based on the Galerkin approximation and numerical integration. Static pull-in and pull-out behaviors are adequately represented by an asymmetric two-well potential with the total potential energy consisting of the CNT elastic energy, electrostatic energy, and the Lennard-Jones potential energy. Nonlinear dynamics of the cantilever are simulated under DC and AC voltage excitations and examined in the frequency and time domains. Under AC-only excitation, a superharmonic resonance of order 2 occurs near half of the primary frequency. Under both DC and AC loads, the cantilever exhibits linear and nonlinear primary and secondary resonances depending on the strength of the excitation voltages. In addition, the cantilever has dynamic instabilities such as periodic or chaotic tapping motions, with a variation of excitation frequency at the resonance branches. High electrostatic excitation leads to complex nonlinear responses such as softening, multiple stability changes at saddle nodes, or period-doubling bifurcation points in the primary and secondary resonance branches.

  3. Chirality Characterization of Dispersed Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Williams, Phillip A.; Mayweather, Candis D.; Wincheski, Buzz; Park, Cheol; Namkung, Juock S.

    2005-01-01

    Raman scattering and optical absorption spectroscopy are used for the chirality characterization of HiPco single wall carbon nanotubes (SWNTs) dispersed in aqueous solution with the surfactant sodium dodecylbenzene sulfonate. Radial breathing mode (RBM) Raman peaks for semiconducting and metallic SWNTs are identified by directly comparing the Raman spectra with the Kataura plot. The SWNT diameters are calculated from these resonant peak positions. Next, a list of (n, m) pairs, yielding the SWNT diameters within a few percent of that obtained from each resonant peak position, is established. The interband transition energies for the list of SWNT (n, m) pairs are calculated based on the tight binding energy expression for each list of the (n, m) pairs, and the pairs yielding the closest values to the corresponding experimental optical absorption peaks are selected. The results reveal that (1, 11), (4, 11), and (0, 11) as the most probable chiralities of the semiconducting nanotubes. The results also reveal that (4, 16), (6, 12) and (8, 8) are the most probable chiralities for the metallic nanotubes. Directly relating the Raman scattering data to the optical absorption spectra, the present method is considered the simplest technique currently available. Another advantage of this technique is the use of the E(sup 8)(sub 11) peaks in the optical absorption spectrum in the analysis to enhance the accuracy in the results.

  4. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures.

    PubMed

    Fakher, Sundes; Nejm, Razan; Ayesh, Ahmad; Al-Ghaferi, Amal; Zeze, Dagou; Mabrook, Mohammed

    2016-01-01

    The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs), metal-insulator-semiconductor (MIS) and thin film transistor (TFT) structures, using poly(methyl methacrylate) (PMMA) as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance-voltage (C-V) for MIS structures, as well as output and transfer characteristics for transistors). Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses), the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states. PMID:27598112

  5. Hypergolic fuel detection using individual single walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Desai, S. C.; Willitsford, A. H.; Sumanasekera, G. U.; Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2010-06-01

    Accurate and reliable detection of hypergolic fuels such as hydrazine (N2H4) and its derivatives is vital to missile defense, aviation, homeland security, and the chemical industry. More importantly these sensors need to be capable of operation at low temperatures (below room temperature) as most of the widely used chemical sensors operate at high temperatures (above 300 °C). In this research a simple and highly sensitive single walled carbon nanotube (SWNT) network sensor was developed for real time monitoring of hydrazine leaks to concentrations at parts per million levels. Upon exposure to hydrazine vapor, the resistance of the air exposed nanotubes (p-type) is observed to increase rapidly while that of the vacuum-degassed nanotubes (n-type) is observed to decrease. It was found that the resistance of the sample can be recovered through vacuum pumping and exposure to ultraviolet light. The experimental results support the electrochemical charge transfer mechanism between the oxygen redox couple of the ambient and the Fermi level of the SWNT. Theoretical results of the hydrazine-SWNT interaction are compared with the experimental observations. It was found that a monolayer of water molecules on the SWNT is necessary to induce strong interactions between hydrazine and the SWNT by way of introducing new occupied states near the bottom of the conduction band of the SWNT.

  6. Electrical characterization of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Berliocchi, Marco; Brunetti, Francesca; Di Carlo, Aldo; Lugli, Paolo; Orlanducci, Silvia; Terranova, Maria Letizia

    2003-04-01

    Single Wall Carbon Nanotubes (SWCNTs) based nanotechnology appears to be promising for future nanoelectronics. The SWCNT may be either metallic or semiconducting and both metallic and semiconducting types of SWCNTs have been observed experimentally. This gives rise to intriguing possibilities to put together semiconductor-semiconductor and semiconductor-metal junctions for diodes and transistors. The potential for nanotubes in nanoelectronics devices, displays and nanosensors is enormous. However, in order to realize the potential of SWCNTs, it is critical to understand the properties of charge transport and to control phase purity, elicity and arrangement according to specific architectures. We have investigated the electrical properties of various SWCNTs samples whit different organization: bundles of SWCNTs, SWCNT fibres and different membranes and tablets obtained using SWCNTs purified and characterized. Electrical characterizations were carried out by a 4155B Agilent Semiconductor Parameter Analyser. In order to give a mechanical stability to SWCNTs fibres and bundles we have used a nafion matrix coating, so an electrical characterization has been performed on samples with and without this layer. I-V measurements were performed in vacuum and in air using aluminium interdigitated coplanar-electrodes (width=20mm or 40mm) on glass substrates. The behaviour observed is generally supralinear with currents of the order of mA in vacuum and lower values in air with the exception of the tablet samples where the behaviour is ohmic, the currents are higher and similar values of current are detected in air and vacuum.

  7. Ultrathin single-walled carbon nanotube network framed graphene hybrids.

    PubMed

    Wang, Rui; Hong, Tu; Xu, Ya-Qiong

    2015-03-11

    Graphene and single-walled carbon nanotubes (SWNTs) have shown superior potential in electronics and optoelectronics because of their excellent thermal, mechanical, electronic, and optical properties. Here, a simple method is developed to synthesize ultrathin SWNT-graphene films through chemical vapor deposition. These novel two-dimensional hybrids show enhanced mechanical strength that allows them to float on water without polymer supporting layers. Characterizations by Raman spectroscopy and transmission electron microscopy indicate that SWNTs can interlace as a concrete backbone for the subsequent growth of monolayer graphene. Optical and electrical transport measurements further show that SWNT-graphene hybrids inherit high optical transparency and superior electrical conductivity from monolayer graphene. We also explore the local optoelectronic properties of SWNT-graphene hybrids through spatially resolved photocurrent microscopy and find that the interactions between SWNTs and graphene can induce a strong photocurrent response in the areas where SWNTs link different graphene domains together. These fundamental studies may open a door for engineering optoelectronic properties of SWNT-graphene hybrids by controlling the morphologies of the SWNT frames. PMID:25686199

  8. On the Stability and Abundance of Single Walled Carbon Nanotubes.

    PubMed

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J

    2015-01-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product's relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth. PMID:26581125

  9. On the Stability and Abundance of Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J.

    2015-11-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth.

  10. Spectroscopy-Based Characterization of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Namkung, Juock S.; Wincheski, Russell A.; Seo, J.; Park, Cheol

    2003-01-01

    We present the initial results of our combined investigation of Raman scattering and optical absorption spectroscopy in a batch of single wall carbon nanotubes (SWNTs). The SWNT diameters are first estimated from the four radial breathing mode (RBM) peaks using a simple relation of omega(sub RBM) = 248/cm nm/d(sub t)(nm). The calculated diameter values are related to the optical absorption peaks through the expressions of first interband transition energies, i.e., E(sup S)(sub 11) = 2a gamma/d(sub t) for semiconducting and E(sup S)(sub 11) = 6a gamma/d(sub t) for metallic SWNTs, respectively, where a is the carbon-carbon bond length (0.144 nm) and gamma is the energy of overlapping electrons from nearest neighbor atoms, which is 2.9 eV for a SWNT. This analysis indicates that three RBM peaks are from semiconducting tubes, and the remaining one is from metallic tubes. The detailed analysis in the present study is focused on these three peaks of the first absorption band by determining the values of the representative (n,m) pairs. The first step of analysis is to construct a list of possible (n,m) pairs from the diameters calculated from the positions of the RBM peaks. The second step is to compute the first interband transition energy, E(sub 11), by substituting the constructed list of (n,m) into the expression of Reich and Thomsen, and Saito et al. Finally, the pairs with the energies closest to the experimental values are selected.

  11. Attachment of functionalized single-walled carbon nanotubes (SWNTs) to silicon surfaces.

    PubMed

    Zeng, Liling; Pattyn, Nancy; Barron, Andrew R

    2008-03-01

    Single-walled carbon nanotubes (SWNTs) were functionalized by direct fluorination and subsequent reaction with 6-aminohexanoic acid for water-soluble carboxylic acid functionalized SWNTs (AHA-SWNTs). Both of the compounds were used as precursors to attach SWNTs to APTES coated silicon surfaces. AHA-SWNTs in aqueous solution were reacted with APTES self-assembled monolayers (SAMs) with coupling reagents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS). The surface coverage is a function of concentration of AHA-SWNTs, solvent and coupling method. While for the fluorinated SWNTs (F-SWNTs), direct addition of F-SWNTs to preformed APTES SAMs at 90 degrees C shows essentially no reaction, in contrast to the one-pot reaction of F-SWNTs with APTES molecules in the presence of SWNTs on a silicon substrate. This reaction route provides a convenient method to attach SWNTs to silicon surfaces. PMID:18468188

  12. Single-walled carbon nanotube-induced mitotic disruption⋆

    PubMed Central

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.; Shvedova, A.A.; Reynolds, S.H.

    2015-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm2 single-walled carbon nanotubes (SWCNT). To investigate mitotic spindle aberrations at concentrations anticipated in exposed workers, primary and immortalized human airway epithelial cells were exposed to SWCNT for 24–72 h at doses equivalent to 20 weeks of exposure at the Permissible Exposure Limit for particulates not otherwise regulated. We have now demonstrated fragmented centrosomes, disrupted mitotic spindles and aneuploid chromosome number at those doses. The data further demonstrated multipolar mitotic spindles comprised 95% of the disrupted mitoses. The increased multipolar mitotic spindles were associated with an increased number of cells in the G2 phase of mitosis, indicating a mitotic checkpoint response. Nanotubes were observed in association with mitotic spindle microtubules, the centrosomes and condensed chromatin in cells exposed to 0.024, 0.24, 2.4 and 24 μg/cm2 SWCNT. Three-dimensional reconstructions showed carbon nanotubes within the centrosome structure. The lower doses did not cause cytotoxicity or reduction in colony formation after 24 h; however, after three days, significant cytotoxicity was observed in the SWCNT-exposed cells. Colony formation assays showed an increased proliferation seven days after exposure. Our results show significant disruption of the mitotic spindle by SWCNT at occupationally relevant doses. The increased proliferation that was observed in carbon nanotube-exposed cells indicates a greater potential to pass the genetic damage to daughter

  13. Elastomer Filled With Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Forest, Craig R.

    2004-01-01

    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.

  14. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    DOEpatents

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  15. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    ERIC Educational Resources Information Center

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  16. Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles

    NASA Technical Reports Server (NTRS)

    Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We investigate energetics and structure of circular and polygonal single wall carbon nanotubes (SWNTs) using large scale molecular simulations on NAS SP2, motivated by their unusual electronic and magnetic properties. The circular tori are formed by bending tube (no net whereas the polygonal tori are constructed by turning the joint of two tubes of (n, n), (n+1, n-1) and (n+2, n-2) with topological pentagon-heptagon defect, in which n =5, 8 and 10. The strain energy of circular tori relative to straight tube decreases by I/D(sup 2) where D is torus diameter. As D increases, these tori change from buckling to an energetically stable state. The stable tori are perfect circular in both toroidal and tubular geometry with strain less than 0. 03 eV/atom when D greater than 10, 20 and 40 nm for torus (5,5), (8,8) and (10, 10). Polygonal tori, whose strain is proportional to the number of defects and I/D are energetically stable even for D less than 10 nm. However, their strain is higher than that of perfect circular tori. In addition, the local maximum strain of polygonal tori is much higher than that of perfect circular tori. It is approx. 0.03 eV/atom or less for perfect circular torus (5,5), but 0.13 and 0.21 eV/atom for polygonal tori (6,4)/(5,5) and (7,3)/(5,5). Therefore, we conclude that the circular tori with no topological defects are more energetically stable and kinetically accessible than the polygonal tori containing the pentagon-heptagon defects for the laser-grown SWNTs and Fullerene crop circles.

  17. Single-walled carbon nanotube networks in conductive composite materials.

    PubMed

    Bârsan, Oana A; Hoffmann, Günter G; van der Ven, Leo G J; de With, G Bert

    2014-01-01

    Electrically conductive composite materials can be used for a wide range of applications because they combine the advantages of a specific polymeric material (e.g., thermal and mechanical properties) with the electrical properties of conductive filler particles. However, the overall electrical behaviour of these composite materials is usually much below the potential of the conductive fillers, mainly because by mixing two different components, new interfaces and interphases are created, changing the properties and behaviours of both. Our goal is to characterize and understand the nature and influence of these interfaces on the electrical properties of composite materials. We have improved a technique based on the use of sodium carboxymethyl cellulose (CMC) to disperse single-walled carbon nanotubes (SWCNTs) in water, followed by coating glass substrates, and drying and removing the CMC with a nitric acid treatment. We used electron microscopy and atomic force microscopy techniques to characterize the SWCNT films, and developed an in situ resistance measurement technique to analyse the influence of both the individual components and the mixture of an epoxy/amine system on the electrical behaviour of the SWCNTs. The results showed that impregnating a SWCNT network with a polymer is not the only factor that affects the film resistance; air exposure, temperature, physical and chemical properties of the individual polymer components, and also the formation of a polymeric network, can all have an influence on the macroscopic electrical properties of the initial SWCNT network. These results emphasize the importance of understanding the effects that each of the components can have on each other before trying to prepare an efficient polymer composite material. PMID:25430670

  18. Superemission in vertically-aligned single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir

    2016-09-01

    Presently we used two samples of vertically aligned single-wall carbon nanotubes (VA SWCNTs) with parallelepiped geometry, sized 0.02 cm × 0.2 cm × 1.0 cm and 0.2 cm × 0.2 cm × 1.0 cm. We report absorption and emission properties of the VA SWCNTs, including strong anisotropy in both their absorption and emission spectra. We found that the emission spectra extend from the middle-IR range to the near-IR range, with such extended spectra being reported for the first time. Pumping the VA SWCNTs in the direction normal to their axis, superemission (SE) was observed in the direction along their axis. The SE band maximum is located at 7206 ± 0.4 cm-1. The energy and the power density of the superemission were estimated, along with the diffraction-limited divergence. At the pumping energy of 3 mJ/pulse, the SE energy measured by the detector was 0.74 mJ/pulse, corresponding to the total SE energy of 1.48 mJ/pulse, with the energy density of 18.5 mJ cm-2/pulse and the SE power density of 1.2 × 105 W cm-2/pulse. We report that a bundle of VA SWCNTs is an emitter with a relatively small divergence, not exceeding 3.9 × 10-3 rad. We developed a theoretical approach to explain such absorption and emission spectra. The developed theory is based on the earlier proposed SSH theory, which we extended to include the exchange interactions between the closest SWCNT neighbors. The developed theoretical ideas were implemented in a homemade FORTRAN code. This code was successfully used to calculate and reproduce the experimental spectra and to determine the SWCNT species that originate the respective absorption bands, with acceptable agreement between theory and experiment.

  19. Self-assembling Functionalized Single-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Gao, Yan

    Single-walled carbon nanotubes (SWCNTs) are promising bottom-up building materials due to their superior properties. However, the lack of an effective method to arrange large quantities of SWCNTs poses an obstacle toward their applications. Existing studies to functionalize, disperse, position, and assemble SWCNTs provide a broad understandings regarding SWCNTs behavior, especially in aqueous electrolyte solution. Inspired by ionic polymer metal composite (IPMC) materials, this dissertation envisions fabrication of orderly SWCNTs network structure via their ionic clustering-mediated self-assembly. SWCNTs tend to bundle together due to inter-nanotube VDW attractions, which increase with nanotube length. The author seeks short SWCNTs with long chain molecules bearing ionic termini to facilitate debundling and self-assembly in aqueous electrolyte solution through end-clustering. First, a simple model was applied based on essential physical factors. The results indicated that SWCNTs must be shorter than ˜100 nm to achieve stable network structures. Experiments were then carried out based upon the results. Short SWCNTs (50-100 nm) were end-functionalized with hexaethylene glycol (HEG) linkers bearing terminal carboxylate anions. Both 2D and 3D network structures were observed after placing the functionalized SWCNTs in aqueous electrolyte (sodium ion). The network structures were characterized by microscopic and spectroscopic methods. A novel approach was applied via electron tomography to study the 3D structures of SWCNTs structure in aqueous electrolyte. Free energy analysis of the SWCNTs network structure was implemented with the assistance of both analytical tools and molecular simulations. The results indicate that, when a cluster is formed by three functionalized SWCNTs ends, the resulting network structure is most stable. Indeed, 72% of the clusters/joints were formed by three nanotubes, as observed in experiments. Finally, Monte Carlo simulations of coarse

  20. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been

  1. Flame Synthesis Of Single-Walled Carbon Nanotubes And Nanofibers

    NASA Technical Reports Server (NTRS)

    Wal, Randy L. Vander; Berger, Gordon M.; Ticich, Thomas M.

    2003-01-01

    Carbon nanotubes are widely sought for a variety of applications including gas storage, intercalation media, catalyst support and composite reinforcing material [1]. Each of these applications will require large scale quantities of CNTs. A second consideration is that some of these applications may require redispersal of the collected CNTs and attachment to a support structure. If the CNTs could be synthesized directly upon the support to be used in the end application, a tremendous savings in post-synthesis processing could be realized. Therein we have pursued both aerosol and supported catalyst synthesis of CNTs. Given space limitations, only the aerosol portion of the work is outlined here though results from both thrusts will be presented during the talk. Aerosol methods of SWNT, MWNT or nanofiber synthesis hold promise of large-scale production to supply the tonnage quantities these applications will require. Aerosol methods may potentially permit control of the catalyst particle size, offer continuous processing, provide highest product purity and most importantly, are scaleable. Only via economy of scale will the cost of CNTs be sufficient to realize the large-scale structural and power applications on both earth and in space. Present aerosol methods for SWNT synthesis include laser ablation of composite metalgraphite targets or thermal decomposition/pyrolysis of a sublimed or vaporized organometallic [2]. Both approaches, conducted within a high temperature furnace, have produced single-walled nanotubes (SWNTs). The former method requires sophisticated hardware and is inherently limited by the energy deposition that can be realized using pulsed laser light. The latter method, using expensive organometallics is difficult to control for SWNT synthesis given a range of gasparticle mixing conditions along variable temperature gradients; multi-walled nanotubes (MWNTs) are a far more likely end products. Both approaches require large energy expenditures and

  2. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  3. Single Walled Carbon Nanohorns as Photothermal Cancer Agents

    SciTech Connect

    Whitney, John; Sarkar, Saugata; Zhang, Jianfei; Do, Thao; Manson, Mary kyle; Campbell, Tom; Puretzky, Alexander A; Rouleau, Christopher M; More, Karren Leslie; Geohegan, David B; Rylander, Christopher; Dorn, Harry C; Rylander, Nichole M

    2011-01-01

    Nanoparticles have significant potential as selective photo-absorbing agents for laser based cancer treatment. This study investigates the use of single walled carbon nanohorns (SWNHs) as thermal enhancers when excited by near infrared (NIR) light for tumor cell destruction. Absorption spectra of SWNHs in deionized water at concentrations of 0, 0.01, 0.025, 0.05, 0.085, and 0.1 mg/ml were measured using a spectrophotometer for the wavelength range of 200-1,400 nm. Mass attenuation coefficients were calculated using spectrophotometer transmittance data. Cell culture media containing 0, 0.01, 0.085, and 0.333 mg/ml SWNHs was laser irradiated at 1,064 nm wavelength with an irradiance of 40 W/cm{sup 2} for 0-5 minutes. Temperature elevations of these solutions during laser irradiation were measured with a thermocouple 8 mm away from the incident laser beam. Cell viability of murine kidney cancer cells (RENCA) was measured 24 hours following laser treatment with the previously mentioned laser parameters alone or with SWNHs. Cell viability as a function of radial position was determined qualitatively using trypan blue staining and bright field microscopy for samples exposed to heating durations of 2 and 6 minutes alone or with 0.085 mg/ml SWNHs. A Beckman Coulter Vi-Cell instrument quantified cell viability of samples treated with varying SWNH concentration (0, 0.01, 0.085, and 0.333 mg/ml) and heating durations of 0-6 minutes. Spectrophotometer measurements indicated inclusion of SWNHs increased light absorption and attenuation across all wavelengths. Utilizing SWNHs with laser irradiation increased temperature elevation compared to laser heating alone. Greater absorption and higher temperature elevations were observed with increasing SWNH concentration. No inherent toxicity was observed with SWNH inclusion. A more rapid and substantial viability decline was observed over time in samples exposed to SWNHs with laser treatment compared with samples experiencing laser

  4. Structural characterization of macroscopic single-walled carbon nanotube materials

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    In this thesis, we studied the structural properties of macroscopic materials of single-walled carbon nanotubes (SWNTs) in the form of fibers, films and suspensions. We characterized the preferred orientations in partially aligned SWNT fibers and films, combining x-ray fiber diagram and polarized Raman scattering. Our texture model consists of an aligned fraction, characterized by the angular distribution width of tube axes, plus a completely unaligned fraction. For neat fibers extruded from SWNT/superacid suspensions through a small orifice, the distribution width and the aligned fraction both improve with decreasing orifice diameter. For magnetic field-aligned SWNT films deposited from surfactant suspensions, the aligning effects of deposition and external magnetic field force in the film plane are additive, the out-of-plane mosaic being narrower than the in-plane one. SWNTs dispersed in superacid or aqueous surfactant solutions are precursors for many applications. In oleum, SWNTs can be charged and protonated by H 2SO4 molecules. X-ray scattering indicates that H2SO 4 molecules align along nanotube axes to form cylindrical shells wrapped around nanotubes. This finding establishes the validity of a long-standing important but still debated physical chemistry concept, "structured solvent shells surrounding dissolved ions". Differential scanning calorimetry confirms that the partly ordered H2SO4 molecules are a new phase, with distinct freezing/melting behavior. X-ray scattering at low temperature further shows that crystallization of the bulk-like acid surrounding the structured shells is templated by the SWNTs. The specific orientation of the acid crystallites provides solid evidence for direct protonation of SWNT. We studied the morphologies of SWNT suspensions using small-angle neutron scattering. We observed rigid rod behavior from SWNTs dispersed in water using sodium dodecylbenzene sulfonate surfactant, suggesting that SWNTs exist mainly as individual tube

  5. Antimicrobial Biomaterials based on Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Aslan, Seyma

    Biomaterials that inactivate bacteria are needed to eliminate medical device infections. We investigate the antimicrobial nature of single-walled carbon nanotubes (SWNT) incorporated within biomedical polymers. In the first part, we focus on SWNT dispersed in the common biomedical polymer poly(lactic-co-glycolic acid) (PLGA) as a potential antimicrobial biomaterial. We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration. Up to 98 % of bacteria die within one hour of SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNT are found to be more toxic, possibly due to an increased density of open tube ends. In the second part, we investigate the antimicrobial activity of SWNT layer-by-layer (LbL) assembled with the polyelectrolytes poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA). The dispersibility of SWNT in aqueous solution is significantly improved via the biocompatible nonionic surfactant polyoxyethylene(20)sorbitan monolaurate (Tween 20) and the amphiphilic polymer phospholipid-poly(ethylene glycol) (PL-PEG). Absorbance spectroscopy and transmission electron microscopy (TEM) show SWNT with either Tween 20 or PL-PEG in aqueous solution to be well dispersed. Quartz crystal microgravimetry with dissipation (QCMD) measurements show both SWNT-Tween and SWNT-PL-PEG to LbL assemble with PLL and PGA into multilayer films, with the PL-PEG system yielding the greater final SWNT content. Bacterial inactivation rates are significantly higher (up to 90%) upon 24 hour incubation with SWNT containing films, compared to control films (ca. 20%). In the third part, we study the influence of bundling on the LbL assembly of SWNT with charged polymers, and on the antimicrobial properties of the assembled film. QCMD measurements show the bundled SWNT system to adsorb in an unusually strong fashion—to an extent three times greater than that

  6. Single-walled carbon nanotubes as a multimodal — thermoacoustic and photoacoustic — contrast agent

    PubMed Central

    Pramanik, Manojit; Swierczewska, Magdalena; Green, Danielle; Sitharaman, Balaji; Wang, Lihong V.

    2009-01-01

    We have developed a novel carbon nanotube-based contrast agent for both thermoacoustic and photoacoustic tomography. In comparison with de-ionized water, single-walled carbon nanotubes exhibited more than two-fold signal enhancement for thermoacoustic tomography at 3 GHz. In comparison with blood, they exhibited more than six-fold signal enhancement for photoacoustic tomography at 1064 nm wavelength. The large contrast enhancement of single-walled carbon nanotubes was further corroborated by tissue phantom imaging studies. PMID:19566311

  7. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor

    PubMed Central

    Liu, Lei; Yang, Chun; Zhao, Kai; Li, Jingyuan; Wu, Hai-Chen

    2013-01-01

    An important issue in nanopore sensing is to construct stable and versatile sensors that can discriminate analytes with minute differences. Here we report a means of creating nanopores that comprise ultrashort single-walled carbon nanotubes inserted into a lipid bilayer. We investigate the ion transport and DNA translocation through single-walled carbon nanotube nanopores and find that our results are fundamentally different from previous studies using much longer single-walled carbon nanotubes. Furthermore, we utilize the new single-walled carbon nanotube nanopores to selectively detect modified 5-hydroxymethylcytosine in single-stranded DNA, which may have implications in screening specific genomic DNA sequences. This new nanopore platform can be integrated with many unique properties of carbon nanotubes and might be useful in molecular sensing such as DNA-damage detection, nanopore DNA sequencing and other nanopore-based applications. PMID:24352224

  8. Evidence for substitutional boron in doped single-walled carbon nanotubes

    SciTech Connect

    Ayala, P.; Pichler, T.; Reppert, J.; Rao, A. M.; Grobosch, M.; Knupfer, M.

    2010-05-03

    Precise determination of acceptors in the laser ablation grown B doped single-walled carbon nanotubes (SWCNTs) has been elusive. Photoemission spectroscopy finds evidence for subpercent substitutional B in this material, which leads to superconductivity in thin film SWNT samples.

  9. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    NASA Astrophysics Data System (ADS)

    Iyer, Ajai; Kaskela, Antti; Johansson, Leena-Sisko; Liu, Xuwen; Kauppinen, Esko I.; Koskinen, Jari

    2015-06-01

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp3 bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  10. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    SciTech Connect

    Iyer, Ajai Liu, Xuwen; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Johansson, Leena-Sisko

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  11. Collision-induced fusion of two single-walled carbon nanotubes: A quantitative study

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Fei; Meng, Xiang-Rui; Wang, Dong-Qi; Zhang, Feng-Shou

    2016-07-01

    The coalescence processes of two (6, 0) single-walled carbon nanotubes are investigated via coaxial collision based on the self-consistent-charge density-functional tight-binding molecular dynamics method. According to the structure characteristics of the nanotubes, five impact cases are studied to explore the coalescence processes of the nanotubes. The simulation shows that various kinds of carbon nanomaterials, such as graphene sheets, graphene nanoribbons, and single-walled carbon nanotubes with larger diameters, are created after collision. Moreover, some defects formed in the carbon nanomaterials can be eliminated, and even the final configurations which are originally fragmented can almost become intact structures by properly quenching and annealing.

  12. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  13. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  14. Single-walled carbon nanotube incorporated novel three phase carbon/epoxy composite with enhanced properties.

    PubMed

    Rana, Sohel; Alagirusamy, Ramasamy; Joshi, Mangala

    2011-08-01

    In the present work, single-walled carbon nanotubes were dispersed within the matrix of carbon fabric reinforced epoxy composites in order to develop novel three phase carbon/epoxy/single-walled carbon nanotube composites. A combination of ultrasonication and high speed mechanical stirring at 2000 rpm was used to uniformly disperse carbon nanotubes in the epoxy resin. The state of carbon nanotube dispersion in the epoxy resin and within the nanocomposites was characterized with the help of optical microscopy and atomic force microscopy. Pure carbon/epoxy and three phase composites were characterized for mechanical properties (tensile and compressive) as well as for thermal and electrical conductivity. Fracture surfaces of composites after tensile test were also studied in order to investigate the effect of dispersed carbon nanotubes on the failure behavior of composites. Dispersion of only 0.1 wt% nanotubes in the matrix led to improvements of 95% in Young's modulus, 31% in tensile strength, 76% in compressive modulus and 41% in compressive strength of carbon/epoxy composites. In addition to that, electrical and thermal conductivity also improved significantly with addition of carbon nanotubes. PMID:22103118

  15. Analysis of Stress Responsive Genes Induced by Single-Walled Carbon Nanotubes in BJ Foreskin Cells

    PubMed Central

    Sarkar, Shubhashish; Sharma, Chidananda; Yog, Rajeshwari; Periakaruppan, Adaikkappan; Jejelowo, Olufisayo; Thomas, Renard; Barrera, Enrique V.; Rice-Ficht, Allison C.; Wilson, Bobby L.; Ramesh, Govindarajan T.

    2009-01-01

    Nanotechnology is finding its use as a potential technology in consumer products, defense, electronics, and medical applications by exploiting the properties of nanomaterials. Single-walled carbon nanotubes are novel forms of these nanomaterials with potential for large applications. However, the toxicity studies on this material are not explored in detail and therefore limiting its use. It has been earlier reported that single-walled carbon nanotubes induces oxidative stress and also dictates activation of specific signaling pathway in keratinocytes. The present study explores the effect of single-walled carbon nanotubes on stress genes in human BJ Foreskin cells. The results show induction of oxidative stress in BJ Foreskin cells by single-walled carbon nanotubes and increase in stress responsive genes. The genes included inducible genes like HMOX1, HMOX2, and Cyp1B1. In addition we validated increase for four genes by SWCNT, namely ATM, CCNC, DNAJB4, and GADD45A by RT-PCR. Moreover results of the altered stress related genes have been discussed and that partially explains some of the toxic responses induced by single-walled carbon nanotubes. PMID:17450800

  16. Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants.

    PubMed

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. -4.4 eV and ca. -5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  17. Molecular dynamics study of electron-irradiation effects in single-walled carbon nanotubes

    SciTech Connect

    Yasuda, Masaaki; Kimoto, Yoshihisa; Tada, Kazuhiro; Mori, Hideki; Akita, Seiji; Hirai, Yoshihiko; Nakayama, Yoshikazu

    2007-05-15

    Molecular dynamics studies are carried out to investigate electron-irradiation effects in single-walled carbon nanotubes. We have proposed a simulation model which includes the interaction between a high-energy incident electron and a carbon atom, based on Monte Carlo method using the elastic-scattering cross section. The atomic level behavior of a single-walled carbon nanotube under electron irradiation is demonstrated in nanosecond time scale. The incident electron energy, tube diameter, and tube temperature dependences of electron-irradiation effects are studied with the simulation.

  18. Heat-induced transformations in coronene-single-walled carbon nanotube systems

    NASA Astrophysics Data System (ADS)

    Chernov, Alexander I.; Fedotov, Pavel V.; Krylov, Alexander S.; Vtyurin, Alexander N.; Obraztsova, Elena D.

    2016-03-01

    Coronene molecules are used as filler for single-walled carbon nanotubes. Variation of the synthesis temperature regimes leads to formation of different types of carbon nanostructures inside the nanotubes. Accurate determination of the structures by optical spectroscopy methods remains an important issue in composite materials. Clear distinction between adsorbed organic molecules on the surface of the tubes and filled structures may be accessed by Raman and photoluminescence spectroscopies. We perform additional heat treatment after the initial synthesis procedure and show the evolution of the optical spectral features corresponding to the filled structures and adsorbed materials on the surface of single-walled carbon nanotubes.

  19. Temperature threshold and water role in CVD growth of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Geng, Junfeng; Motta, Marcelo; Angels, Volker; Luo, Jikui; Johnson, Brian

    2016-02-01

    An in-depth understanding of the growth process of single walled carbon nanotubes is of vital importance to the control of the yield of the material and its carbon structure. Using a nickel/silica (Ni/SiOx) catalyst we have conducted a series of growth experiments with a chemical vapour deposition (CVD) system. We find that there is a temperature threshold in the CVD process, and if the reaction temperature sets above this threshold there will be no growth of the nanotubes. In association with this temperature effect, water plays an important role in the promotion or termination of the growth of single walled carbon nanotubes.

  20. Dissolution of single-walled carbon nanotubes in alkanol-cholic acid mixtures

    NASA Astrophysics Data System (ADS)

    Dyshin, A. A.; Eliseeva, O. V.; Bondarenko, G. V.; Kiselev, M. G.

    2015-09-01

    A procedure for dispersing the single-walled carbon nanotubes (SWCNTs) for preparing stable suspensions with high concentrations of individual nanotubes in various alcohols was described. The obtained suspensions were studied by Raman spectroscopy. The solubility of the single-walled carbon nanotubes in alcohols was found to depend on the concentration of cholic acid. The ethanol-surfactant mixture was shown to be the best solvent for all alkanol-cholic acid mixtures (0.018 mol/kg) under study used for preparing time-stable suspensions of single-walled carbon nanotubes. The dissolving ability of aliphatic alcohols was found to decrease in the series: ethanol-isopropanol- tert-butanol-butanol-propanol.

  1. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure

    SciTech Connect

    Mu, Weihua E-mail: muwh@itp.ac.cn; Cao, Jianshu; Ou-Yang, Zhong-can

    2014-01-28

    Single walled carbon nanotube's (SWCNT's) cross section can be flattened under hydrostatic pressure. One example is the cross section of a single walled carbon nanotube successively deforms from the original round shape to oval shape, then to peanut-like shape. At the transition point of reversible deformation between convex shape and concave shape, the side wall of nanotube is flattest. This flattest tube has many attractive properties. In the present work, an approximate approach is developed to determine the equilibrium shape of this unstrained flattest tube and the curvature distribution of this tube. Our results are in good agreement with recent numerical results, and can be applied to the study of pressure controlled electric properties of single walled carbon nanotubes. The present method can also be used to study other deformed inorganic and organic tube-like structures.

  2. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution

    PubMed Central

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I.; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6]3− precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance. PMID:27025784

  3. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth

    NASA Astrophysics Data System (ADS)

    He, Maoshuai; Amara, Hakim; Jiang, Hua; Hassinen, Jukka; Bichara, Christophe; Ras, Robin H. A.; Lehtonen, Juha; Kauppinen, Esko I.; Loiseau, Annick

    2015-11-01

    Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible.Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible. Electronic supplementary information (ESI

  4. Investigation on vibration of single-walled carbon nanotubes by variational iteration method

    NASA Astrophysics Data System (ADS)

    Ahmadi Asoor, A. A.; Valipour, P.; Ghasemi, S. E.

    2016-02-01

    In this paper, the variational iteration method (VIM) has been used to investigate the non-linear vibration of single-walled carbon nanotubes (SWCNTs) based on the nonlocal Timoshenko beam theory. The accuracy of results is examined by the fourth-order Runge-Kutta numerical method. Comparison between VIM solutions with numerical results leads to highly accurate solutions. Also, the behavior of deflection and frequency in vibrations of SWCNTs are studied. The results show that frequency of single walled carbon nanotube versus amplitude increases by increasing the values of B.

  5. Free vibration analysis of fluid-conveying single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Reddy, C. D.; Lu, C.; Rajendran, S.; Liew, K. M.

    2007-03-01

    The effect of fluid flow on the free vibration and instability of fluid-conveying single-walled carbon nanotubes is studied. The possibility of developing a technique to measure the mass flow rate of fluid is examined. Atomistic simulations and the continuum beam model are used. Simulations are performed to quantify the inertial, stiffness, Coriolis, and centrifugal forces generated by flow during the free vibration. A numerical expression is developed to measure the mass flow rate of the fluid velocities up to 40% of the critical flow velocity. This observation is useful to quantify the mass flow measurement of fluid conveying single-walled carbon nanotubes.

  6. Bolometric detector on the basis of single-wall carbon nanotube/polymer composite

    NASA Astrophysics Data System (ADS)

    Aliev, Ali E.

    2008-10-01

    Infrared imaging sensors that operate without cryogenic cooling have the potential to provide the military or civilian users with infrared vision capabilities packaged in a camera of extremely small size, weight and power consumption. We present here the uncooled bolometric sensor on the basis of single-walled carbon nanotubes (SWNTs) polymer composite with enhanced sensitivity. The voltage responsivity of device working at room temperatures exceeds 150 V/W. The absorption coefficient of single-wall carbon nanotubes was increased by involving Forster type energy transfer from polymer film to dispersed SWNT. The temperature gradient of resistivity was substantially improved by chemical functionalization of SWNT.

  7. Limits of the PECVD process for single wall carbon nanotubes growth

    NASA Astrophysics Data System (ADS)

    Gohier, A.; Minea, T. M.; Djouadi, A. M.; Granier, A.; Dubosc, M.

    2006-04-01

    This Letter explores the capabilities of plasma enhanced chemical vapor deposition to grow vertical oriented single wall, double wall or multi walled carbon nanotubes (CNTs). Our dual process uses high-density low-pressure plasma excited by electron cyclotron resonance using acetylene diluted in ammonia. The early stages of CNTs synthesis have been probed taking advantage of the low growth rate of our process. Two antagonist effects have been shown up: the formation of catalyzed carbon nanotubes against ion assisted bonds breaking. The limits of plasma single wall CNTs growth are discussed and transitory stages have been revealed for the first time.

  8. Process for separating metallic from semiconducting single-walled carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  9. Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension

    NASA Astrophysics Data System (ADS)

    Setaro, A.; Popeney, C. S.; Trappmann, B.; Datsyuk, V.; Haag, R.; Reich, S.

    2010-06-01

    Inspired by the commercially available SDS surfactant, a new polyglycerol-derived amphiphile has been synthesized for functionalizing carbon nanotubes. SDS' sulphate group was replaced by a polyglycerol dendron. The steric hindrance offered by the dendrons makes the compound much more efficient than SDS in isolating and stabilizing nanotubes in solution. Further amphiphiles have been synthesized by adding small aromatic moieties between head and tail groups. We show that this addition leads to selective interaction between surfactants and carbon nanotubes. Excitation photoluminescence and optical absorption spectroscopy analysis confirm the change in the distribution of nanotubes' chiralities in suspension, depending on the amphiphile.

  10. Tunable assembly of carbon nanospheres on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Qu, Liangti; Zhang, Han; Zhu, Jia; Dai, Liming

    2010-07-01

    We have developed a process for spontaneous assembly of carbon nanospheres on aligned or nonaligned single-walled carbon nanotubes (SWNTs) by virtue of plasma-enhanced chemical vapor deposition (PECVD). The formation of carbon nanospheres with a uniform size of 30-60 nm is a catalyst-free process and strongly dependent on the applied plasma power and other factors. Both co-deposition and post-deposition approaches have been developed for effective assembly of carbon nanospheres on SWNTs. Furthermore, the method developed here also allows us to tailor the density and size of carbon nanospheres along nanotubes in a controllable way. The heterojunction structure based on different types of carbon demonstrated in this study represents a new hybrid manner for building complex systems which are promising for various applications.

  11. Tunable assembly of carbon nanospheres on single-walled carbon nanotubes.

    PubMed

    Qu, Liangti; Zhang, Han; Zhu, Jia; Dai, Liming

    2010-07-30

    We have developed a process for spontaneous assembly of carbon nanospheres on aligned or nonaligned single-walled carbon nanotubes (SWNTs) by virtue of plasma-enhanced chemical vapor deposition (PECVD). The formation of carbon nanospheres with a uniform size of 30-60 nm is a catalyst-free process and strongly dependent on the applied plasma power and other factors. Both co-deposition and post-deposition approaches have been developed for effective assembly of carbon nanospheres on SWNTs. Furthermore, the method developed here also allows us to tailor the density and size of carbon nanospheres along nanotubes in a controllable way. The heterojunction structure based on different types of carbon demonstrated in this study represents a new hybrid manner for building complex systems which are promising for various applications. PMID:20603535

  12. Gas detection mechanism for single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Boyd, Anthony; Dube, Isha; Fedorov, Georgy; Paranjape, Makarand; Barbara, Paola; Georgetown/RRC Kurchatov Collaboration

    2011-03-01

    We study field-effect transistors fabricated with carbon nanotube (CNT) networks to determine whether the gas sensing mechanism is due to molecules adsorbed on the nanotubes, or changes at the interface between the nanotubes and the contacts. Our previous work showed that in devices made with isolated CNT, the response to nitrogen dioxide was mainly due to the contact interfaces. Here, we focus on CNT networks and use SU-8 layers patterned with e-beam lithography to passivate the contact interfaces, while leaving the network exposed. We look to investigate possible differences in sensing mechanism for devices made with isolated tubes versus networks. Work funded by NSF, DMR 1008242.

  13. Random telegraph noise in metallic single-walled carbon nanotubes

    SciTech Connect

    Chung, Hyun-Jong; Woo Uhm, Tae; Won Kim, Sung; Gyu You, Young; Wook Lee, Sang; Ho Jhang, Sung; Campbell, Eleanor E. B.; Woo Park, Yung

    2014-05-12

    We have investigated random telegraph noise (RTN) observed in individual metallic carbon nanotubes (CNTs). Mean lifetimes in high- and low-current states, τ{sub high} and τ{sub low}, have been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the statistics and features of the RTN, we suggest that this noise is due to the random transition of defects between two metastable states, activated by inelastic scattering with conduction electrons. Our results indicate an important role of defect motions in the 1/f noise in CNTs.

  14. Thermal transpiration through single walled carbon nanotubes and graphene channels

    SciTech Connect

    Thekkethala, Joe Francis; Sathian, Sarith P.

    2013-11-07

    Thermal transpiration through carbon nanotubes (CNTs) and graphene channels is studied using molecular dynamics (MD) simulations. The system consists of two reservoirs connected by a CNT. It is observed that a flow is developed inside the CNT from the low temperature reservoir to the high temperature reservoir when the two reservoirs are maintained at different temperatures. The influence of channel size and temperature gradient on the mean velocity is analysed by varying the CNT diameter and the temperature of one of the reservoirs. Larger flow rate is observed in the smaller diameter CNTs showing an increase in the mean velocity with increase in the temperature gradient. For the flow developed inside the CNTs, slip boundaries occur and the slip length is calculated using the velocity profile. We examine the effect of fluid-wall interaction strength (ε{sub fw}), diffusivity (D), and viscosity of the fluid (μ) on the temperature induced fluid transport through the CNTs. Similar investigations are also carried out by replacing the CNT with a graphene channel. Results show that the mean velocity of the fluid atoms in the graphene channel is lower than that through the CNTs. This can be attributed to the higher degree of confinement observed in the CNTs.

  15. Filtration Patterning of Single Walled Carbon Nanotube Films

    NASA Astrophysics Data System (ADS)

    Daly, David A.; Wu, Zhuangchun; Rinzler, Andrew G.

    2006-03-01

    Carbon nanotubes are increasingly being explored for applications exploiting the bulk electrical conductivity of aggregate nanotubes in the form of fibers and films. Attractive in this regard are electrical conductivities orders of magnitude greater than those of conducting polymers, while retaining many of the useful features of polymers, e.g. flexibility, transparency (in thin films) and alternative device fabrication strategies. Here we describe a novel, non-lithographic patterning technique that should also be applicable to other nano-materials. The technique is based on our method for forming thin, pure nanotube films on the surface of a filtration membrane followed by transfer of the film to the desired substrate.^1 To generate patterned films we block the pores of the filtration membrane in the inverse of the ultimately desired film pattern, prior to film formation on the surface of the membrane. The nanotubes only accumulate in the membrane regions that are not occluded, resulting in the desired pattern. Blocking of the membrane pores is accomplished with use of a commercial printer. Implementation and limitations of the technique will be discussed. 1. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 305, 1273 (2004).

  16. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  17. Single-walled carbon nanotube growth from ion implanted Fe catalyst

    SciTech Connect

    Choi, Yongho; Sippel-Oakley, Jennifer; Ural, Ant

    2006-10-09

    The authors present experimental evidence that single-walled carbon nanotubes can be grown by chemical vapor deposition from ion implanted iron catalyst. They systematically characterize the effect of ion implantation dose and energy on the catalyst nanoparticles and nanotubes formed at 900 deg. C. They also fabricate a micromachined silicon grid for direct transmission electron microscopy characterization of the as-grown nanotubes. This work opens up the possibility of controlling the origin of single-walled nanotubes at the nanometer scale and of integrating them into nonplanar three-dimensional device structures with precise dose control.

  18. Aqueous-phase synthesis of monodisperse plasmonic gold nanocrystals using shortened single-walled carbon nanotubes.

    PubMed

    Kim, Jin-Woo; Moon, Hyung-Mo; Benamara, Mourad; Sakon, Joshua; Salamo, Gregory J; Zharov, Vladimir P

    2010-10-14

    Monodisperse gold nanocrystals with unique near-infrared optical properties were synthesized by simple mixing of highly shortened and well disperse single-walled carbon nanotubes and chloroauric acid in water at ambient conditions with a step-wise increase of gold ion concentration. PMID:20737105

  19. Chirality sensitive binding of tryptophan enantiomers with pristine single wall carbon nanotubes.

    PubMed

    Bhattacharyya, Tamoghna; Roy, Sarita; Dasgupta, Anjan Kr

    2014-07-28

    We report the differential binding nature of pristine single wall carbon nanotubes (SWNTs) with tryptophan enantiomers. The differential co-operative response between the pristine SWNTs (topologically chiral) and L- and D-tryptophan (geometrically chiral) provides the insight that geometrical chirality itself manifests with topological chirality in a complex way. PMID:24921981

  20. One-step synthesis of fluorescently labelled, single-walled carbon nanotubes.

    PubMed

    Guaragno, Michelle L; Gottardi, Riccardo; Fedorchak, Morgan V; Roy, Abhijit; Kumta, Prashant N; Little, Steven R

    2015-12-18

    Single-walled carbon nanotubes (SWNTs) can be labelled with functional moieties that endow them with a number of unique characteristics, which can be applicable to biomedical applications such as imaging. Herein we describe a facile, one-step esterification process to functionalize SWNT with fluorescein. PMID:26458421

  1. MICROWAVE-INDUCED RAPID CHEMICAL FUNCTIONALIZATION OF SINGLE-WALLED CARBON NANOTUBES (R830901)

    EPA Science Inventory


    Abstract

    The microwave-induced chemical functionalization of single-walled carbon nanotubes (SWNTs) is reported. The major advantage of this high-energy procedure is that it reduced the reaction time to the order of minutes and the number of steps in the reac...

  2. Aggregation Kinetics and Transport of Single-Walled CarbonNanotubes at Low Surfactant Concentrations

    EPA Science Inventory

    Little is known about how low levels of surfactants can affect the colloidal stability of single-walled carbon nanotubes (SWNTs) and how surfactant-wrapping of SWNTs can impact ecological exposures in aqueous systems. In this study, SWNTs were suspended in water with sodium ...

  3. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    EPA Science Inventory

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  4. On the Likelihood of Single-Walled Carbon Nanotubes Causing Adverse Marine Ecological Effects

    EPA Science Inventory

    This brief article discusses the ecological effects of single-walled carbon nanotubes (SWNTs)in the marine environment. Based on new research and a review of the scientific literature, the paper concludes that SWNTs are unlikely to cause adverse ecological effects in the marine ...

  5. Engineered Carbohydrate-Binding Module (CBM) Protein-Suspended Single-Walled Carbon Nanotubes in Water

    SciTech Connect

    Xu,Q.; Song, Q.; Ai, X.; McDonald, T. J.; Long, H.; Ding. S. Y.; Himmel, M. E.; Rumbles, G.

    2009-01-01

    Engineered protein, CtCBM4, the first carbohydrate-binding module (CBM) protein is successfully used to debundle and suspend single-walled carbon nanotubes (SWNTs) effectively in aqueous solution, which opens up a new avenue in further functionalizing and potential selectively fractionating SWNTs for diverse biology- and/or energy-related applications.

  6. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  7. Single Wall Carbon Nanotube Alignment Mechanisms for Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Hong, Seunghun

    2002-01-01

    As proposed in our original proposal, we developed a new innovative method to assemble millions of single wall carbon nanotube (SWCNT)-based circuit components as fast as conventional microfabrication processes. This method is based on surface template assembly strategy. The new method solves one of the major bottlenecks in carbon nanotube based electrical applications and, potentially, may allow us to mass produce a large number of SWCNT-based integrated devices of critical interests to NASA.

  8. Doping of single-walled carbon nanotubes controlled via chemical transformation of encapsulated nickelocene.

    PubMed

    Kharlamova, Marianna V; Sauer, Markus; Saito, Takeshi; Sato, Yuta; Suenaga, Kazu; Pichler, Thomas; Shiozawa, Hidetsugu

    2015-01-28

    Controlled doping of carbon nanotubes is elemental for their electronic applications. Here we report an approach to tune the polarity and degree of doping of single-walled carbon nanotubes via filling with nickelocene followed by encapsulated reactions. Using Raman, photoemission spectroscopy and transmission electron microscopy, we show that nickelocene molecules transform into nickel carbides, nickel and inner carbon nanotubes with reaction temperatures as low as 250 °C. The doping efficiency is determined for each chemical component. Synchronous charge transfer among the molecular components allows bipolar doping of the carbon nanotubes to be achieved in a broad range of ±0.0012 e(-) per carbon. PMID:25503929

  9. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-01-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed.

  10. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    PubMed

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  11. Single-Walled Carbon Nanotubes as Fluorescence Biosensors for Pathogen Recognition in Water Systems

    DOE PAGESBeta

    Upadhyayula, Venkata K. K.; Ghoshroy, Soumitra; Nair, Vinod S.; Smith, Geoffrey B.; Mitchell, Martha C.; Deng, Shuguang

    2008-01-01

    Tmore » he possibility of using single-walled carbon nanotubes (SWCNTs) aggregates as fluorescence sensors for pathogen recognition in drinking water treatment applications has been studied. Batch adsorption study is conducted to adsorb large concentrations of Staphylococcus aureus aureus SH 1000 and Escherichia coli pKV-11 on single-walled carbon nanotubes. Subsequently the immobilized bacteria are detected with confocal microscopy by coating the nanotubes with fluorescence emitting antibodies.he Freundlich adsorption equilibrium constant ( k ) for S.aureus and E.coli determined from batch adsorption study was found to be 9 × 10 8 and 2 × 10 8  ml/g, respectively.he visualization of bacterial cells adsorbed on fluorescently modified carbon nanotubes is also clearly seen.he results indicate that hydrophobic single-walled carbon nanotubes have excellent bacterial adsorption capacity and fluorescent detection capability.his is an important advancement in designing fluorescence biosensors for pathogen recognition in water systems.« less

  12. Synthesis of Single Wall Carbon Nanotubes by Plasma Arc: Role of Plasma Parameters

    NASA Technical Reports Server (NTRS)

    Farhart, Samir; Scott, Carl D.

    2000-01-01

    Single wall carbon nanotubes (SWNT) are porous objects on the molecular scale and have a low density, which gives them potential applications as adsorbent for molecular hydrogen. Their H2 absorption capacity published in the literature varies from 4 to 10% by mass according to the purity of the materials and storage conditions. Optimization of production methods of SWNTs should permit improving these new materials for storage of hydrogen. In this article, we show the potential of using SWNTs in hydrogen storage. In particular, we pose problems associated with synthesis, purification, and opening up of the nanotubes. We present an electric arc process currently used at laboratory scale to produce single wall carbon nanotubes. We discuss, in particular, operating conditions that permit growth of nanotubes and some plasma parameters that assure control of the material. Analysis of the process is carried out with the aid of local measurements of temperature and scanning and transmission electron microscopy of the materials.

  13. Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Clauss, W.; Bergeron, D. J.; Freitag, M.; Kane, C. L.; Mele, E. J.; Johnson, A. T.

    1999-09-01

    Single-wall carbon nanotubes, seamless cylindrical molecules formed from a graphene sheet, are either conducting or semiconducting, depending on the particular "wrapping vector" that defines the waist of the tube. Scanning tunneling microscopy experiments have tested this idea by simultaneously measuring a tube's lattice structure and electronic properties. Here we present a series of STM images of single-wall carbon nanotubes with a strikingly rich set of superstructures. The observed patterns can be understood as due to interference between propagating electron waves that are reflected from defects on the tube walls and ends, or as intrinsic to states propagating on semiconducting tubes. The measured broken symmetries can be used to directly probe electronic backscattering on the tube and provide a key element in the understanding of low-energy electron transport on these structures.

  14. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2–200 μm). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  15. Regular chemisorption of hydrogen on achiral single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bogdanova, D. A.; Bulyarskii, S. V.

    2016-07-01

    Regular chemisorption of hydrogen on achiral single-walled carbon nanotubes has been investigated with the use of AM1 quantum-chemical semiempirical method. It has been found that regular hydrogen chemisorption deforms nanotubes, in some cases leading to stable prismatic modifications. The dependence of the adsorption energy on the density of hydrogen coverage has been found. A procedure for determining the adsorption energy by the spectra of thermally stimulated desorption has been proposed.

  16. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE PAGESBeta

    Márquez, Francisco; López, Vicente; Morant, Carmen; Roque-Malherbe, Rolando; Domingo, Concepción; Elizalde, Eduardo; Zamora, Félix

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800°C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  17. Wrinkling and strain softening in single-wall carbon nanotube membranes.

    PubMed

    Hobbie, E K; Simien, D O; Fagan, J A; Huh, J Y; Chung, J Y; Hudson, S D; Obrzut, J; Douglas, J F; Stafford, C M

    2010-03-26

    The nonlinear elasticity of thin supported membranes assembled from length purified single-wall carbon nanotubes is analyzed through the wrinkling instability that develops under uniaxial compression. In contrast with thin polymer films, pristine nanotube membranes exhibit strong softening under finite strain associated with bond slip and network fracture. We model the response as a shift in percolation threshold generated by strain-induced nanotube alignment in accordance with theoretical predictions. PMID:20366547

  18. Fabrication of Discrete Nanosized Cobalt Particles Encapsulated Inside Single-Walled Carbon Nanotubes

    SciTech Connect

    Zoican Loebick, C.; Majewska, M; Ren, F; Haller, G; Pfefferle, L

    2010-01-01

    Single-walled carbon nanotubes (SWNT) with encapsulated nanosized cobalt particles have been synthesized by a facile and scalable method. In this approach, SWNT were filled with a cobalt acetylacetonate solution in dichloromethane by ultrasonication. In a second step, exposure to hydrogen at different temperatures released discrete cobalt particles of controllable size inside the SWNT cavity. The SWNT-Co particles systems were characterized by transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, and thermal gravimetric analysis.

  19. Transport properties of a potassium-doped single-wall carbon nanotube rope

    SciTech Connect

    Lee, R. S.; Kim, H. J.; Fischer, J. E.; Lefebvre, J.; Radosavljevic, M.; Hone, J.; Johnson, A. T.

    2000-02-15

    Four-probe resistance vs temperature and gate voltage are reported for an individual single-wall carbon nanotube rope before and after doping in situ with potassium. All the features in R(T) from unoriented bulk material, before and after doping, are qualitatively reproduced by the rope data. The 5.3 K conductance of the pristine rope decreases with positive gate voltage, while G vs V{sub g} becomes featureless after K doping. (c) 2000 The American Physical Society.

  20. Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone)

    SciTech Connect

    Mitchell,C.; Krishnamoorti, R.

    2007-01-01

    The dispersion of single-walled carbon nanotubes (SWNT) in poly({var_epsilon}-caprolactone) with the aid of a zwitterionic surfactant is reported. Melt rheology and electrical conductivity measurements indicate geometrical percolation and electrical percolation for nanocomposites with {approx}0.08 wt % SWNT, implying an effective anisotropy for the nanotubes of at least 600. Spectroscopic measurements and comparison of dispersion using other surfactants established that the excellent dispersion is a result of the compatibilizing effect of the zwitterionic surfactant.

  1. Tutorial: Linear surface conductivity of an achiral single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Nemilentsau, Andrei M.

    2011-01-01

    Theoretical consideration of electromagnetic scattering by single-wall carbon nanotubes (SWNTs) and SWNT arrays requires knowledge of the linear surface conductivity of an SWNT. An expression for the surface conductivity of an infinitely long SWNT was derived by Slepyan et al. [Phys. Rev. B 60, 17136-17149 (1999)]. The twin purposes of this tutorial are to succinctly discuss the derivation using the density matrix formalism and to provide ready-to-use expressions.

  2. Dispersionless propagation of electron wavepackets in single-walled carbon nanotubes

    SciTech Connect

    Rosati, Roberto; Rossi, Fausto; Dolcini, Fabrizio

    2015-06-15

    We investigate the propagation of electron wavepackets in single-walled carbon nanotubes via a Lindblad-based density-matrix approach that enables us to account for both dissipation and decoherence effects induced by various phonon modes. We show that, while in semiconducting nanotubes the wavepacket experiences the typical dispersion of conventional materials, in metallic nanotubes its shape remains essentially unaltered, even in the presence of the electron-phonon coupling, up to micron distances at room temperature.

  3. Below-gap excitation of semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Soavi, G.; Grupp, A.; Budweg, A.; Scotognella, F.; Hefner, T.; Hertel, T.; Lanzani, G.; Leitenstorfer, A.; Cerullo, G.; Brida, D.

    2015-10-01

    We investigate the optoelectronic properties of the semiconducting (6,5) species of single-walled carbon nanotubes by measuring ultrafast transient transmission changes with 20 fs time resolution. We demonstrate that photons with energy below the lowest exciton resonance efficiently lead to linear excitation of electronic states. This finding challenges the established picture of a vanishing optical absorption below the fundamental excitonic resonance. Our result points towards below-gap electronic states as an intrinsic property of semiconducting nanotubes.

  4. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  5. Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs.

    PubMed

    Qu, Liangti; Du, Feng; Dai, Liming

    2008-09-01

    We have combined fast heating with plasma enhanced chemical vapor deposition (PECVD) for preferential growth of semiconducting vertically aligned single-walled carbon nanotubes (VA-SWNTs). Raman spectroscopic estimation indicated a high yield of up to 96% semiconducting SWNTs in the VA-SWNT array. The as-synthesized semiconducting SWNTs can be used directly for fabricating FET devices without the need for any postsynthesis purification or separation. PMID:18665651

  6. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization.

    PubMed

    Farmer, Damon B; Gordon, Roy G

    2006-04-01

    Alternating exposures of nitrogen dioxide gas and trimethylaluminum vapor are shown to functionalize the surfaces of single-walled carbon nanotubes with a self-limited monolayer. Functionalized nanotube surfaces are susceptible to atomic layer deposition of continuous, radially isotropic material. This allows for the creation of coaxial nanotube structures of multiple materials with precisely controlled diameters. Functionalization involves only weak physical bonding, avoiding covalent modification, which should preserve the unique optical, electrical, and mechanical properties of the nanotubes. PMID:16608267

  7. Bridged single-walled carbon nanotube-based atomic-scale mass sensors

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, H. R.; Shaat, M.; Abdelkefi, A.

    2016-08-01

    The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler-Bernoulli beam with von Kármán type geometric nonlinearity. Eringen's nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

  8. Observation of elastic deformations in single-walled carbon nanotubes by Scanning Tunneling Microscopy

    SciTech Connect

    Clauss, Wilfried; Bergeron, David J.; Johnson, Alan T.

    1998-08-11

    Scanning Tunneling Microscopy is used to obtain atomically resolved images of single-walled carbon nanotubes, in ropes of several tens to hundreds of tubes. The images confirm that in this environment strong elastic deformations of the tube lattice occur frequently. In particular, bent and twisted tubes have been identified. The observed distortions could play an important role in explaining the electronic transport properties of nanotubes.

  9. Chirality-dependent boron-mediated growth of nitrogen-doped single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wiltshire, Joseph G.; Li, Lain-Jong; Herz, Laura M.; Nicholas, Robin J.; Glerup, Marianne; Sauvajol, Jean-Louis; Khlobystov, Andrei N.

    2005-11-01

    A change in the relative abundance of single-walled carbon nanotubes, due to the presence of both nitrogen and boron during synthesis, has been identified through Raman and absorption spectroscopy. Raman spectroscopy shows that for two specific branches boron mediates the growth of smaller-diameter zigzag or near-zigzag nanotubes. We combine our experimental results with an improved Kataura model to identify two of the preferentially grown species as (16,0) and (14,1).

  10. Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects.

    PubMed

    Elishakoff, Isaac; Challamel, Noël; Soret, Clément; Bekel, Yannis; Gomez, Thomas

    2013-06-28

    In this paper, we deal with the theoretical framework for a single-walled carbon nanotube serving as a virus or bacterium sensor, with the complicating influences of non-locality and surface effects taken into account. It is demonstrated that these effects are not negligible as is often assumed in the literature; they may greatly influence both the vibration behaviour as well as the identification process of the virus or bacterium. PMID:23690635

  11. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    SciTech Connect

    Ito, M.; Kobayashi, T.; Ito, Y.; Hayashida, T.; Nii, D.; Umemura, K.; Homma, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  12. Conductivity of Thin Films Based on Single-Walled Carbon Nanotubes Grown by Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Rybakov, M. S.; Kosobutsky, A. V.; Sevostyanov, O. G.; Russakov, D. M.; Lomakin, M. V.; Chirkova, I. M.; Shandakov, S. D.

    2015-03-01

    Electrical and optical properties of thin films of single-walled carbon nanotubes (SWCNT) obtained by aerosol chemical vapor deposition using ethanol, ferrocene, and sulfur are studied. Structural and geometrical characteristics of the synthesis products are determined by the methods of Raman spectroscopy and transmission electron microscopy. The effect of sulfur on the properties of the SWCNTs and thin films based on them is found.

  13. Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects

    SciTech Connect

    Robertson, J.; Zhong, G.; Telg, H.; Thomsen, C.; Warner, J. H.; Briggs, G. A. D.; Dettlaff-Weglikowska, U.; Roth, S.

    2008-10-20

    We grow high-density, aligned single wall carbon nanotube mats for use as interconnects in integrated circuits by remote plasma chemical vapor deposition from a Fe-Al{sub 2}O{sub 3} thin film catalyst. We carry out extensive Raman characterization of the resulting mats, and find that this catalyst system gives rise to a broad range of nanotube diameters, with no preferential selectivity of semiconducting tubes, but with at least 1/3 of metallic tubes.

  14. A triple quantum dot in a single-wall carbon nanotube.

    PubMed

    Grove-Rasmussen, K; Jørgensen, H I; Hayashi, T; Lindelof, P E; Fujisawa, T

    2008-04-01

    A top-gated single-wall carbon nanotube is used to define three coupled quantum dots in series between two electrodes. The additional electron number on each quantum dot is controlled by top-gate voltages allowing for current measurements of single, double, and triple quantum dot stability diagrams. Simulations using a capacitor model including tunnel coupling between neighboring dots captures the observed behavior with good agreement. Furthermore, anticrossings between indirectly coupled levels and higher order cotunneling are discussed. PMID:18314966

  15. Single-walled carbon nanotubes synthesis: a direct comparison of laser ablation and carbon arc routes.

    PubMed

    Bystrzejewski, M; Rümmeli, M H; Lange, H; Huczko, A; Baranowski, P; Gemming, T; Pichler, T

    2008-11-01

    Carbon arc and chemical vapor deposition are at present the most efficient methods for mass production of single-walled carbon nanotubes. However, laser ablation is renowned for high quality nanotubes with narrow diameter distributions and hence is also of great interest. The aim of this work was to compare both the carbon arc and laser ablation techniques with respect to the quality--and relative yield of the produced SWCNTs. For this comparative study we used Fe as the catalyst, which is known not to be very active in laser ablation. However, we show this is not the case when H2 is included in the reaction. The reactions for both synthesis routes were carried out in a N2-H2 (95-5% vol.) atmosphere. The same homogenous carbon rods with different iron contents, between 1 and 5 at.% were used as the carbon feedstock and catalyst supply in both synthesis routes. Additionally, two types of carbon rods containing 1 at.% Fe with different graphitization degrees were also investigated. In the arc-discharge case, the low-graphitized electrode produced a web-like product rich in SWCNTs, while the high-graphitized carbon rods yielded soot containing carbon-encapsulated iron nanocrystallites, amorphous carbon nanoparticles, and surprisingly a small fraction of SWCNTs. With laser ablation synthesis, the Fe content and the reactor temperature significantly influenced the SWCNTs yield. Carbon arc plasma diagnostics were also performed. By using optical emission and Absorption spectroscopy the plasma temperature, C2 and CN radical content in the arc zone were determined. PMID:19198361

  16. Selective Oxidation of Amorphous Carbon Layers without Damaging Embedded Single Wall Carbon Nanotube Bundles

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Lim, Seong Chu

    2013-11-01

    Single wall carbon nanotubes (SWCNTs) were synthesized by arc discharge, and then purified by selective oxidation of amorphous carbon layers that were found to encase SWCNT bundles and catalyst metal particles. In order to remove selectively the amorphous carbon layers with SWCNTs being intact, we have systematically investigated the thermal treatment conditions; firstly, setting the temperature by measuring the activation energies of SWCNTs and amorphous carbon layers, and then, secondly, finding the optimal process time. As a consequence, the optimal temperature and time for the thermal treatment was found to be 460 °C and 20 min, respectively. The complete elimination of surrounding amorphous carbon layers makes it possible to efficiently disperse the SWCNT bundles, resulting in high absorbance of SWCNT-ink. The SWCNTs which were thermal-treated at optimized temperature (460 °C) and duration (20 min) showed much better crystallinity, dispersibility, and transparent conducting properties, compared with as-synthesized and the nanotubes thermal-treated at different experimental conditions.

  17. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores

    NASA Astrophysics Data System (ADS)

    Wang, Qinyu; Johnson, J. Karl

    1999-01-01

    The adsorption of hydrogen gas into single-walled carbon nanotubes (SWNTs) and idealized carbon slit pores is studied by computer simulation. Hydrogen-hydrogen interactions are modeled with the Silvera-Goldman potential. The Crowell-Brown potential is used to model the hydrogen-carbon interactions. Calculations include adsorption inside the tubes, in the interstitial regions of tube arrays, and on the outside surface of isolated tubes. Quantum effects are included through implementation of the path integral formalism. Comparison with classical simulations gives an indication of the importance of quantum effects for hydrogen adsorption. Quantum effects are important even at 298 K for adsorption in tube interstices. We compare our simulations with experimental data for SWNTs, graphitic nanofibers, and activated carbon. Adsorption isotherms from simulations are in reasonable agreement with experimental data for activated carbon, but do not confirm the large uptake reported for SWNTs and nanofibers. Although the adsorption potential for hydrogen in SWNTs is enhanced relative to slit pores of the same size, our calculations show that the storage capacity of an array of tubes is less than that for idealized slit pore geometries, except at very low pressures. Ambient temperature isotherms indicate that an array of nanotubes is not a suitable sorbent material for achieving DOE targets for vehicular hydrogen storage.

  18. Method for separating single-wall carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E. (Inventor); Hauge, Robert H. (Inventor); Kittrell, W. Carter (Inventor); Sivarajan, Ramesh (Inventor); Strano, Michael S. (Inventor); Bachilo, Sergei M. (Inventor); Weisman, R. Bruce (Inventor)

    2006-01-01

    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types.

  19. High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite.

    PubMed

    Izadi-Najafabadi, Ali; Yamada, Takeo; Futaba, Don N; Yudasaka, Masako; Takagi, Hideyuki; Hatori, Hiroaki; Iijima, Sumio; Hata, Kenji

    2011-02-22

    A novel composite is presented as a supercapacitor electrode with a high maximum power rating (990 kW/kg; 396 kW/l) exceeding power performances of other electrodes. The high-power capability of the electrode stemmed from its unique meso-macro pore structure engineered through the utilization of single-walled carbon nanotubes (20 wt %) as scaffolding for single-walled carbon nanohorns (80 wt %). The novel composite electrode also exhibited durable operation (6.5% decline in capacitance over 100 000 cycles) as a result of its monolithic chemical composition and mechanical stability. The novel composite electrode was benchmarked against another high-power electrode made from single-walled carbon nanotubes (Bucky paper electrode). While the composite electrode had a lower surface area compared to the Bucky paper electrode (280 vs 470 m(2)/g from nitrogen adsorption), it had a higher meso-macro pore volume (2.6 vs 1.6 mL/g from mercury porosimetry) which enabled the composite electrode to retain more electrolyte, ensuring facile ion transport, hence achieving a higher maximum power rating (970 vs 400 kW/kg). PMID:21210712

  20. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  1. 40 CFR 721.10277 - Single-walled and multi-walled carbon nanotubes (generic) (P-10-40).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not intended to undergo further processing except for mechanical processing. (2) The significant new... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled and multi-walled carbon... Significant New Uses for Specific Chemical Substances § 721.10277 Single-walled and multi-walled...

  2. Surface chemical functionalized single-walled carbon nanotube with anchored phenol structures: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Bae, Jong Hyun; Shanmugharaj, A. M.; Noh, Woo Hyun; Choi, Won Seok; Ryu, Sung Hun

    2007-02-01

    Surface functionalization of single-walled carbon nanotube was carried out by introducing ylides groups containing anchored phenol structures. The functionalized nanotube is characterized using elemental analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, Raman spectroscopy and zeta potential measurements. Elemental and FT-IR analysis reveal the successful functionalization of azomethine ylides. Raman spectroscopic studies corroborates that the surface functionalization does not affect the basic crystal domain size of the nanotubes. Functionalized carbon nanotubes exhibit higher zeta potential values showing its higher dispersant ability in water and acetone solvent in comparison to pure carbon nanotube.

  3. Scanning gate microscopy of electronic inhomogeneities in single-walled carbon nanotube (SWCNT) devices

    NASA Astrophysics Data System (ADS)

    Hunt, Steven R.; Collins, Phillip G.

    2010-03-01

    The electronic properties of graphitic carbon devices are primarily determined by the contact metal and the carbon band structure. However, inhomogeneities such as substrate imperfections, surface defects, and mobile contaminants also contribute and can lead to transistor-like behaviors. We experimentally investigate this phenomena in the 1-D limit using metallic single-walled carbon nanotubes (SWCNTs) before and after the electrochemical creation of sidewall defects. While scanning gate microscopy readily identifies the defect sites, the energy-dependence of the technique allows quantitative analysis of the defects and discrimination of different defect types. This research is partly supported by the NSF (DMR 08-xxxx).

  4. Nano-Plasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madu; Cho, Kyeongjae

    1999-01-01

    Nano-plasticity of thin single-wall carbon nanotubes under uniaxial compression is investigated through generalized tight-binding molecular dynamics (GTBMD) and ab-initio electronic structure methods. A novel mechanism of nano-plasticity of carbon nanotubes under uniaxial compression is observed in which bonding geometry collapses from a graphitic (sp(sup 2)) to a localized diamond like (sp(sup 3)) reconstruction. The computed critical stress (approximately equals 153 G Pa) and the shape of the resulting plastic deformation is in good agreement with recent experimental observation of collapse and fracture of compressed carbon nanotubes in polymer composites.

  5. Practical considerations for the demonstration of a single walled carbon nanotube actuator

    NASA Astrophysics Data System (ADS)

    Minett, A. I.; Fraysse, J.; Gu, G.; Roth, S.

    2001-11-01

    The conversion of electrical energy into mechanical energy using macro scale sheets of carbon nanotubes (bucky paper) has been shown to exhibit comparable or superior performance to that of human skeletal muscle. This level of performance was not as high as predicted by theoretical calculations. Therefore, working from a bottom-up principle, it is of paramount interest to not only demonstrate a single carbon nanotube actuator, but to gain a better understanding of the process of nanotube actuation. In this paper, practical considerations and approaches to the preparation of suspended single walled carbon nanotube (SWNT) structures and the measurement of actuation force are discussed.

  6. A sonochemical route to single-walled carbon nanotubes under ambient conditions.

    PubMed

    Jeong, Soo-Hwan; Ko, Ju-Hye; Park, Jong-Bong; Park, Wanjun

    2004-12-15

    A chemical route to single-walled carbon nanotubes (SWCNTs) under ambient conditions has been developed. Silica powder was immersed in a mixture solution of ferrocene and p-xylene. After sonication at atmospheric pressure and room temperature, we obtained high-purity SWCNTs. Sonochemical effects may lead to producing high-purity SWCNTs. The process could be readily generalized to synthesize other forms of carbon-based materials, such as fullerenes, multiwalled nanotubes, carbon onions, and diamond, in liquid solution under ambient conditions. PMID:15584730

  7. Functionalized single-walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for in vivo imaging.

    PubMed

    Doan, Bich-Thuy; Seguin, Johanne; Breton, Marie; Le Beherec, Ronan; Bessodes, Michel; Rodríguez-Manzo, Julio A; Banhart, Florian; Beloeil, Jean-Claude; Scherman, Daniel; Richard, Cyrille

    2012-01-01

    Single-walled carbon nanotubes (SWCNTs) containing traces of iron oxide were functionalized by noncovalent lipid-PEG or covalent carboxylic acid function to supply new efficient MRI contrast agents for in vitro and in vivo applications. Longitudinal (r(1)) and transversal (r(2)) water proton relaxivities were measured at 300 MHz, showing a stronger T(2) feature as an MRI contrast agent (r(2)/r(1)  = 190 for CO(2) H functionalisation). The r(2) relaxivity was demonstrated to be correlated to the presence of iron oxide in the SWNT-carboxylic function COOH, in comparison to iron-free ones. Biodistribution studies on mice after a systemic injection showed a negative MRI contrast in liver, suggesting the presence of the nanotubes in this organ until 48 h after i.v. injection. The presence of carbon nanotubes in liver was confirmed after ex vivo carbon extraction. Finally, cytotoxicity studies showed no apparent effect owing to the presence of the carbon nanotubes. The functionalized carbon nanotubes were well tolerated by the animals at the dose of 10 µg g(-1) body weight. PMID:22434627

  8. Thin single-wall BN-nanotubes formed inside carbon nanotubes

    PubMed Central

    Nakanishi, Ryo; Kitaura, Ryo; Warner, Jamie H.; Yamamoto, Yuta; Arai, Shigeo; Miyata, Yasumitsu; Shinohara, Hisanori

    2013-01-01

    We report a high yield synthesis of single-wall boron nitride nanotubes (SWBNNTs) inside single-wall carbon nanotubes (SWCNTs), a nano-templated reaction, using ammonia borane complexes (ABC) as a precursor. Transmission electron microscope (TEM), high angle annular dark field (HAADF)-scanning TEM (STEM), electron energy loss spectra (EELS) and high resolution EELS mapping using aberration-corrected TEM system clearly show the formation of thin SWBNNTs inside SWCNTs. We have found that the yield of the SWBNNT formation is high and that the most of ABC molecules decompose and fuse to form the thin BNNTs at a temperature of 1,673 K having a narrow diameter distribution of 0.7 ± 0.1 nm. Optical absorption measurements suggest that the band gap of the thin SWBNNTs is about 6.0 eV, which provide the ideal insulator nanotubes with very small diameters. PMID:23459405

  9. Coalescence of parallel finite length single-walled carbon nanotubes by heat treatment

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Qiao, Fangwei; Zhu, Xiaoxun; Zhang, Pu; Chen, Dongci; To, Albert C.

    2013-03-01

    Fusion of parallel finite length single-walled carbon nanotubes (SWCNTs) without initially introducing structural defects is investigated by molecular dynamics (MD) simulations. Three different models that impose different constraints are adopted to simulate the heat welding and coalescence of the parallel SWCNTs. It is found that the ultrathin as well as some larger diameter, finite length SWCNTs, for example (8,0) and (10,0) SWCNTs can be coalesced to become a unique single-walled tube solely via high temperature heat treatment. It is observed that the ends of the nanotubes are prone to close at high temperature during the high temperature treatment. In addition, the fusion process and mechanism of parallel SWCNTs with different lengths and radii are discussed.

  10. Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites

    NASA Astrophysics Data System (ADS)

    Koratkar, Nikhil A.; Suhr, Jonghwan; Joshi, Amit; Kane, Ravi S.; Schadler, Linda S.; Ajayan, Pulickel M.; Bartolucci, Steve

    2005-08-01

    In this study, single-walled carbon nanotube and bisphenol-A-polycarbonate composite beams were fabricated by a solution mixing process and dynamic (cyclic) load tests were performed to characterize energy dissipation. We report up to an order of magnitude (>1000%) increase in loss modulus of the polycarbonate system with the addition of 2% weight fraction of oxidized single-walled nanotube fillers. We show that the increase in damping is derived from frictional sliding at the nanotube-polymer interfaces. The nanoscale dimensions of the tubes not only result in large interfacial contact area, thereby generating high damping efficiency, but also enable seamless integration of the filler materials into the composite structure.

  11. New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Meador, Michael A.

    2003-01-01

    Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing

  12. Phototransformation-Induced Aggregation of Functionalized Single-Walled Carbon Nanotubes: The Importance of Amorphous Carbon.

    PubMed

    Hou, Wen-Che; He, Chen-Jing; Wang, Yi-Sheng; Wang, David K; Zepp, Richard G

    2016-04-01

    Single-walled carbon nanotubes (SWCNTs) with proper functionalization are desirable for applications that require dispersion in aqueous and biological environments, and functionalized SWCNTs also serve as building blocks for conjugation with specific molecules in these applications. In this study, we examined the phototransformation of carboxylated SWCNTs and associated amorphous carbon impurities in the presence or absence of H2O2 under simulated sunlight conditions. We found that while carboxylated SWCNTs were rather unreactive with respect to direct solar photolysis, they photoreacted in the presence of H2O2, forming CO2 and strongly aggregated SWCNT products that precipitated. Photoreaction caused SWCNTs to lose oxygen-containing functionalities, and interestingly, the resulting photoproducts had spectral characteristics similar to those of parent carboxylated SWCNTs whose amorphous carbon was removed by base washing. These results indicated that photoreaction of the amorphous carbon was likely involved. The removal of amorphous carbon after indirect photoreaction was confirmed with thermogravimetric analysis (TGA). Further studies using carboxylated SWCNTs with and without base washing indicate that amorphous carbon reduced the extent of aggregation caused by photoreaction. The second-order rate constant for carboxylated SWCNTs reacting with (•)OH was estimated to be in the range of 1.7-3.8 × 10(9) MC(-1) s(-1). The modeled phototransformation half-lives fall in the range of 2.8-280 days in typical sunlit freshwaters. Our study indicates that photosensitized reactions involving (•)OH may be a transformation and removal pathway of functionalized SWCNTs in the aquatic environment, and that the residual amorphous carbon associated with SWCNTs plays a role in SWCNT stabilization. PMID:26928260

  13. Carbohydrate Conjugation through Microwave-Assisted Functionalization of Single-Walled Carbon Nanotubes Using Perfluorophenyl Azides

    PubMed Central

    Kong, Na; Shimpi, Manishkumar R.; Park, Jae Hyeung

    2015-01-01

    Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. PMID:25746392

  14. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  15. A comparative study of argon ion irradiated pristine and fluorinated single-wall carbon nanotubes

    SciTech Connect

    Fedoseeva, Yu. V.; Bulusheva, L. G.; Okotrub, A. V.; Vyalikh, D. V.; Fonseca, A.

    2010-12-14

    Effect of Ar{sup +} ion irradiation on the structure of pristine and fluorinated single-wall carbon nanotubes (SWCNTs) was examined using transmission electron microscopy (TEM), Raman, and x-ray photoelectron spectroscopy (XPS). The TEM analysis revealed retention of tubular structures in both irradiated samples while Raman spectroscopy and XPS data indicated a partial destruction of nanotubes and formation of oxygen-containing groups on the nanotube surface. From similarity of electronic states of carbon in the irradiated pristine and fluorinated SWCNTs observed by XPS, it was suggested that defluorination of nanotubes proceeded with breaking of C-F bonds.

  16. High structural stability of single wall carbon nanotube under quasi-hydrostatic high pressures

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik

    2009-09-01

    In quasi-hydrostatic conditions, single wall carbon nanotubes (SWNTs) exhibit high structural stability to ˜35 GPa, well beyond the stability of sp2 C dbnd C bonds in graphite, carbon fullerenes, benzene, and other hydrocarbons. The pressure-induced Raman changes of SWNT are completely reversible below 16 GPa, partially reversible between 16 and 35 GPa, and irreversible beyond 35 GPa where it turns into highly disordered graphite. We explain the high stability in terms of the pressure-induced structural modification to an interlinked configuration, which occurs reversibly under substantial sp3 hybridization (˜20%) and, thus, increases the stability of sp2 C dbnd C bonds in the SWNTs.

  17. Ferromagnetic properties of single-walled carbon nanotubes synthesized by Fe catalyst arc discharge

    NASA Astrophysics Data System (ADS)

    Ha, Byeongchul; Yeom, Tae Ho; Lee, Soo Hyung

    2009-05-01

    Single-walled carbon nanotubes (SWCNTs) were directly synthesized by a hydrogen arc discharge method using only Fe catalyst. The synthesized carbon materials indicated high-purity SWCNTs with Fe catalyst encapsulated with several graphite layers. The diameter of Fe catalysts encapsulated with graphene layers is 1.5-2.0 nm. From the ferromagnetic resonance measurements, the as-synthesized SWCNTs show the ferromagnetic properties at room temperature. The ferromagnetic properties of SWCNTs would be attributed to Fe catalysts encapsulated by graphite layers.

  18. Dependence of Thermal Conductivity on Thickness in Single-Walled Carbon Nanotube Films.

    PubMed

    Lee, Kyung-Min; Shrestha, Ramesh; Dangol, Ashesh; Chang, Won Seok; Coker, Zachary; Choi, Tae-Youl

    2016-01-01

    Herein, we report experimentally dependence of thermal conductivity on thickness of single walled carbon nanotubes (SWNTs) thin films; the measurements are based on the micropipette thermal sensor technique. Accurate and well resolved measurements of thermal conductivity made by the micropipette sensor showed a correlated behavior of thickness and thermal conductivity of CNT films that thermal conductivity decreased as thickness increased. The thickness dependence is explained by reduction of mean free path (MFP), which is induced by more intertubular junctions in more dense-packed carbon nanotube (CNT) networks; the thicker SWCNT films were revealed to have higher density. PMID:27398564

  19. Fabrication and electrical properties of single wall carbon nanotube channel and graphene electrode based transistors arrays

    SciTech Connect

    Seo, M.; Kim, H.; Kim, Y. H.; Yun, H.; McAllister, K.; Lee, S. W.; Na, J.; Kim, G. T.; Lee, B. J.; Kim, J. J.; Jeong, G. H.; Lee, I.; Kim, K. S.

    2015-07-20

    A transistor structure composed of an individual single-walled carbon nanotube (SWNT) channel with a graphene electrode was demonstrated. The integrated arrays of transistor devices were prepared by transferring patterned graphene electrode patterns on top of the aligned SWNT along one direction. Both single and multi layer graphene were used for the electrode materials; typical p-type transistor and Schottky diode behavior were observed, respectively. Based on our fabrication method and device performances, several issues are suggested and discussed to improve the device reliability and finally to realize all carbon based future electronic systems.

  20. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    SciTech Connect

    Moradi, Afshin; Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi

    2015-12-15

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the σ and π electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  1. Advances in NO2 sensing with individual single-walled carbon nanotube transistors

    PubMed Central

    Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046

  2. Electrical properties of gas sensors based on graphene and single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kondrashov, Ivan I.; Sokolov, Igor V.; Rusakov, Pavel S.; Rybin, Maxim G.; Barmin, Alexander A.; Rizakhanov, Razhudin N.; Obraztsova, Elena D.

    2016-01-01

    Here, we present investigation of the influence of different gases (carbon dioxide, ammonia, and iodine vapor) on the sensory properties of graphene and single-wall carbon nanotube films. The gas molecules are adsorbed by carbon films (graphene or nanotubes) and change the film's electrical resistance. In the course of this work, the setup for studying the electrophysical properties of carbon nanomaterials has been designed and constructed in the lab. With this home-made equipment, we have demonstrated a high efficiency of graphene and nanotubes as adsorbents of different gases and a possibility to use these materials as gas sensors. We have also performed a chemical modification of graphene and carbon nanotubes by attaching the nanoparticles of calcium carbonate (CaCO3) to improve the sensitivity and selectivity of sensors.

  3. Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan.

    PubMed

    Hasegawa, Teruaki; Fujisawa, Tomohisa; Numata, Munenori; Umeda, Mariko; Matsumoto, Takahiro; Kimura, Taro; Okumura, Shiro; Sakurai, Kazuo; Shinkai, Seiji

    2004-10-01

    Single-walled carbon nanotubes can be entrapped within a helical superstructure composed of schizophyllan bearing lactoside-appendages to show an excellent water-solubility as well as a specific lectin-affinity. PMID:15467846

  4. Photoinduced Spontaneous Free-Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes

    SciTech Connect

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; Rumbles, Garry

    2015-11-04

    The strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. We found that the conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. At low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.

  5. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes

    PubMed Central

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; Rumbles, Garry

    2015-01-01

    Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. The conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. Even at low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions. PMID:26531728

  6. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    PubMed Central

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-01-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1–25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure. PMID:27538480

  7. Modelling of single walled carbon nanotube cylindrical structures with finite element method simulations

    NASA Astrophysics Data System (ADS)

    Günay, E.

    2016-04-01

    In this study, the modulus of elasticity and shear modulus values of single-walled carbon nanotubes SWCNTs were modelled by using both finite element method and the Matlab code. Initially, cylindrical armchair and zigzag single walled 3D space frames were demonstrated as carbon nanostructures. Thereafter, macro programs were written by the Matlab code producing the space truss for zigzag and armchair models. 3D space frames were introduced to the ANSYS software and then tension, compression and additionally torsion tests were performed on zigzag and armchair carbon nanotubes with BEAM4 element in obtaining the exact values of elastic and shear modulus values. In this study, two different boundary conditions were tested and especially used in torsion loading. The equivalent shear modulus data was found by averaging the corresponding values obtained from ten different nodal points on the nanotube path. Finally, in this study it was determined that the elastic constant values showed proportional changes by increasing the carbon nanotube diameters up to a certain level but beyond this level these values remained stable.

  8. Terahertz Spectroscopy of Individual Single-Walled Carbon Nanotubes as a Probe of Luttinger Liquid Physics.

    PubMed

    Chudow, Joel D; Santavicca, Daniel F; Prober, Daniel E

    2016-08-10

    Luttinger liquid theory predicts that collective electron excitations due to strong electron-electron interactions in a one-dimensional (1D) system will result in a modification of the collective charge-propagation velocity. By utilizing a circuit model for an individual metallic single-walled carbon nanotube as a nanotransmission line, it has been shown that the frequency-dependent terahertz impedance of a carbon nanotube can probe this expected 1D Luttinger liquid behavior. We excite terahertz standing-wave resonances on individual antenna-coupled metallic single-walled carbon nanotubes. The terahertz signal is rectified using the nanotube contact nonlinearity, allowing for a low-frequency readout of the coupled terahertz current. The charge velocity on the nanotube is determined from the terahertz spectral response. Our measurements show that a carbon nanotube can behave as a Luttinger liquid system with charge-propagation velocities that are faster than the Fermi velocity. Understanding what determines the charge velocity in low-dimensional conductors is important for the development of next generation nanodevices. PMID:27439013

  9. Photoinduced Spontaneous Free-Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes

    DOE PAGESBeta

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; Rumbles, Garry

    2015-11-04

    The strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. We found that the conditions of the microwave conductivity measurement allow us tomore » avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. At low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.« less

  10. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm.

    PubMed

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M; Mutter, George L; Ozkan, Mihrimah; Ozkan, Cengiz S; Demirci, Utkan

    2016-01-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1-25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure. PMID:27538480

  11. Organic/hybrid nanoparticles and single-walled carbon nanotubes: preparation methods and chiral applications.

    PubMed

    Alhassen, Haysem; Antony, Vijy; Ghanem, Ashraf; Yajadda, Mir Massoud Aghili; Han, Zhao Jun; Ostrikov, Kostya Ken

    2014-11-01

    Nanoparticles are molecular-sized solids with at least one dimension measuring between 1-100 nm or 10-1000 nm depending on the individual discipline's perspective. They are aggregates of anywhere from a few hundreds to tens of thousands of atoms which render them larger than molecules but smaller than bulk solids. Consequently, they frequently exhibit physical and chemical properties somewhere between. On the other hand, nanocrystals are a special class of nanoparticles which have started gaining attention recently owing to their unique crystalline structures which provide a larger surface area and promising applications including chiral separations. Hybrid nanoparticles are supported by the growing interest of chemists, physicists, and biologists, who are researching to fully exploit them. These materials can be defined as molecular or nano-composites with mixed (organic or bio) and inorganic components, where at least one of the component domain has a dimension ranging from a few Å to several nanometers. Similarly, and due to their extraordinary physical, chemical, and electrical properties, single-walled carbon nanotubes have been the subject of intense research. In this short review, the focus is mainly on the current well-established simple preparation techniques of chiral organic and hybrid nanoparticles as well as single-walled carbon nanotubes and their applications in separation science. Of particular interest, cinchonidine, chitosan, and β-CD-modified gold nanoparticles (GNPs) are discussed as model examples for organic and hybrid nanoparticles. Likewise, the chemical vapor deposition method, used in the preparation of single-walled carbon nanotubes, is discussed. The enantioseparation applications of these model nanomaterials is also presented. PMID:24811353

  12. Fabrication of Dense Horizontally Aligned Arrays of Single-Wall Carbon Nanotubes from Vertically Aligned Arrays

    NASA Astrophysics Data System (ADS)

    Zheng, Gang; Wang, Xueshen; Li, Qunqing; Xie, Jing; Zhu, Zhendong; Zou, Yuan; Liu, Junku; Jiang, Kaili; Fan, Shoushan

    2011-01-01

    The as-grown vertically aligned single-wall carbon nanotube (SWNT) arrays are transferred from the original silicon substrate to a poly(ethylene terephthalate) (PET) substrate, which acts as a stamp. Thin SWNT films can be applied from the stamp to the target substrate and subsequently treated by an ultrasonic process to reduce their thickness to 6.6 nm. The transferred SWNT thin film retains the advantageous super-alignment and high-density properties of the vertical SWNT arrays. The linear density, transmittance, and square resistance of the thin film are as high as 15 tubes per micrometer, 99% at 550 nm, and 16 kΩ, respectively.

  13. Stabilities and mechanical and electronic properties on BN doped zigzag single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vongachariya, Arthit; Parasuk, Vudhichai

    2015-12-01

    Electronic structures of undoped and BN doped zigzag (8,0) single-walled carbon nanotube (SWCNT) were investigated using density functional theoretical calculations. Their stabilities due to BN doping and spin states were considered and those with the shortest B-N distance and singlet spin is the most stable. The BN substitution also causes the reduction of the band gap energy. While the BN doping reduces the band gap energy from 0.606 to 0.183 eV, it has no effect on the Young's modulus value. The band gap energy of SWCNTs can be varied upon applying stress. At high stress ratio, SWCNT could become metallic.

  14. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  15. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  16. Characterizations of Enriched Metallic Single-Walled Carbon Nanotubes in Polymer Composite

    NASA Technical Reports Server (NTRS)

    Chen, Bin; Li, Jing; Lu, Yijiang; Cinke, Martin; Au, Dyng; Harmon, Julie P.; Muisener, Patricia Anne O.; Clayton, LaNetra; D'Angelo, John

    2003-01-01

    Using different processing conditions, we disperse the single-walled carbon nanotube (SWNT) into the polymethyl methacrylate (PMMA) to form composites. In the melt-blended sample, the SWNTs originally semiconducting - became predominantly metallic after dispersion into the melt-blended composite. The interaction of the PMMA and SWNT is investigated by the polarized Raman studies. The structure changes in the PMMA and SWNT shows that the anisotropic interactions are responsible for SWNT electronic density of states (DOS) changes. The increased metallic SWNT percentage is confirmed by the conductivity and dielectric constant measurements .

  17. Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy

    NASA Astrophysics Data System (ADS)

    Ren, Y.; Fu, Y. Q.; Liao, K.; Li, F.; Cheng, H. M.

    2004-04-01

    In this work, fatigue failure mechanisms of single-walled carbon nanotube (SWCNT) bundles embedded in epoxy matrix under repeated tensile load were studied. Observed damage and failure modes include: (1) splitting of SWCNT bundles, (2) kink formation and subsequent failure in SWCNTs, and (3) fracture of SWCNT bundles. Patterns of crack propagation under tension in SWCNTs were studied by molecular mechanics simulations, where defect-free SWCNTs and SWCNTs with two different modes of Stone-Wales defects were studied. It is demonstrated by the results of molecular mechanics simulation that the observed fracture surfaces of SWCNT can be reproduced reasonably well, suggesting possible fatigue failure mechanisms of SWCNT in the composite.

  18. Reinforcement of semicrystalline polymers with collagen-modified single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sanjib; Salvetat, Jean-Paul; Saboungi, Marie-Louise

    2006-06-01

    We report on the enhancement of the mechanical properties of single wall carbon nanotube (SWNT)-polyvinyl alcohol (PVA) composites through functionalization of SWNTs with denatured collagen. In addition to improving compatibility with the matrix, the denatured collagen layer was found to increase the PVA matrix crystallinity, which results in a dramatic enhancement of the Young's modulus (260%), tensile strength (300%), and toughness (700%) well above what can be expected with the classical rule of mixture. A supramolecular organization at the interface is associated with an increase of PVA crystallinity as shown by the x-ray diffraction and differential scanning calorimetry.

  19. Polarized resonance Raman spectroscopy of single-wall carbon nanotubes within a polymer under strain

    NASA Astrophysics Data System (ADS)

    Frogley, M. D.; Zhao, Q.; Wagner, H. D.

    2002-03-01

    The D* Raman band of single-wall carbon nanotubes aligned by shear flow in a polymer matrix has been measured as a function of tensile strain. The Raman intensity varies with the optical polarization direction, an effect which is used here to assess the degree of tube alignment. The strain dependence of the Raman shift depends strongly on the nanotube orientation and the polarization direction. We show that, using polarized light, unoriented nanotubes can be used as strain sensors so that no tube alignment is necessary and the strain can be measured in all directions in a single sample.

  20. [Surface modification and microstructure of single-walled carbon nanotubes for dental composite resin].

    PubMed

    Xia, Yang; Zhang, Feimin; Xu, Li'na; Gu, Ning

    2006-12-01

    In order to improve its dispersion condition in dental composite resin and enhance its interaction with the matrix, single-walled carbon nanotubes(SWNTs) were refluxed and oxidized, then treated by APTE. Their outer surface were coated by nano-SiO2 particles using sol-gel process, then further treated by organosilanes ATES. IR and TEM were used to analyze modification results. TEM pictures showed nano-particles were on the surface of SWNTs; IR showed characteristic adsorbing bands of SiO2. Composite resin specimen with modified SWNTs was prepared and examined by TEM. SWNTs were detected in composite resin matrix among other inorganic fillers. PMID:17228726

  1. Red-emitting π-conjugated oligomers infused single-wall carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshihiko; Urita, Koki

    2016-04-01

    We demonstrate the one-step thermal fusion and infusion of pyrene molecules inside single-wall carbon nanotubes (SWCNTs). Despite the presence of metallic-SWCNTs, which behave as a quencher due to gapless electronic states, the nanohybrids consisting of pyrene and/or azupyrene oligomers infused SWCNT sheets exhibit red fluorescence by the ultraviolet, blue, and green light excitations. The wavelength-independent light-emitting behavior is explained by (1) infused PAH oligomers inside semiconducting-SWCNTs and (2) the peculiar π-π interaction through mixed π-conjugated state between the π-conjugated oligomers and non-armchair metallic-SWCNTs.

  2. Quantification of thin graphene sheets contained in spherical aggregates of single-walled carbon nanohorns

    NASA Astrophysics Data System (ADS)

    Irie, Michiko; Nakamura, Maki; Zhang, Minfang; Yuge, Ryota; Iijima, Sumio; Yudasaka, Masako

    2010-11-01

    Spherical aggregates of single-walled carbon nanohorns (SWNHs) produced by CO 2 laser ablation of graphite contain thin graphene sheets (TGSs), and their quantities depend on formation conditions. To adjust laser ablation condition to increase TGS quantities, TGS quantification in products is necessary; however, its method has not been established. We have found that high resolution thermogravimetric analysis (HRTGA) showed SWNHs and TGSs combusting at 554 and 581 °C, respectively. Transmission electron microscopy observations of HRTGA-residues obtained by stopping HRTGA on the way supported these assignments. Thus TGS was able to be quantified by analyzing derivative curves of weight vs. temperature curves.

  3. Creep-resistant composites of alumina and single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zapata-Solvas, Eugenio; Poyato, Rosalía; Gómez-García, Diego; Domínguez-Rodríguez, Arturo; Radmilovic, Velimir; Padture, Nitin P.

    2008-03-01

    Composites of alumina (Al2O3) ceramic and single-wall carbon nanotubes (SWNTs) have been tested in uniaxial compression at 1300 and 1350°C (Ar atmosphere), and they have been found to be about two orders of magnitude more creep-resistant compared to a pure alumina of about the same grain size (0.5μm). This is attributed to partial blocking of grain-boundary sliding by SWNTs in the composites. Since the grain boundaries in the ceramic/SWNTs composites are amenable to being engineered, this constitutes an attractive approach to the design of creep-resistant ceramic composites.

  4. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  5. Hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study.

    PubMed

    Miller, Glen P; Kintigh, Jeremy; Kim, Eunja; Weck, Philippe F; Berber, Savas; Tomanek, David

    2008-02-20

    We combine experimental observations with ab initio calculations to study the reversible hydrogenation of single-wall carbon nanotubes using high boiling polyamines as hydrogenation reagents. Our calculations characterize the nature of the adsorption bond and identify preferential adsorption geometries at different coverages. We find the barrier for sigmatropic rearrangement of chemisorbed hydrogen atoms to be approximately 1 eV, thus facilitating surface diffusion and formation of energetically favored, axially aligned adsorbate chains. Chemisorbed hydrogen modifies the structure and stability of nanotubes significantly and increases the inter-tube distance, thus explaining the improved dispersability in solvents like methanol, ethanol, chloroform, and benzene. PMID:18220395

  6. Universal empirical formula for optical transition energies of semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jamal, G. R. Ahmed; Mominuzzaman, S. M.

    2016-01-01

    A general empirical relation for calculating first seven optical transition energies of semiconducting single wall carbon nanotubes (SWCNTs) is proposed here for the first time. The proposed formula effectively relates first seven optical transition energies of semiconducting SWCNTs with their chiral indices (n, m) through exponential form containing two specific terms (n+2m) and (2n-m). Both mod 1 and mod 2 types of semiconducting tubes are considered here over a wide diameter range from 0.4 nm to 4.75 nm. It was observed that the proposed empirical relations can predict the recent experimental data of those optical transitions with high accuracy.

  7. All-optical trion generation in single-walled carbon nanotubes.

    PubMed

    Santos, Silvia M; Yuma, Bertrand; Berciaud, Stéphane; Shaver, Jonah; Gallart, Mathieu; Gilliot, Pierre; Cognet, Laurent; Lounis, Brahim

    2011-10-28

    We present evidence of all-optical trion generation and emission in pristine single-walled carbon nanotubes (SWCNTs). Luminescence spectra, recorded on individual SWCNTs over a large cw excitation intensity range, show trion emission peaks redshifted with respect to the bright exciton peak. Clear chirality dependence is observed for 22 separate SWCNT species, allowing for determination of electron-hole exchange interaction and trion binding energy contributions. Luminescence data together with ultrafast pump-probe experiments on chirality-sorted bulk samples suggest that exciton-exciton annihilation processes generate dissociated carriers that allow for trion creation upon a subsequent photon absorption event. PMID:22107671

  8. Nonlinear photoluminescence properties of trions in hole-doped single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Akizuki, Naoto; Iwamura, Munechiyo; Mouri, Shinichiro; Miyauchi, Yuhei; Kawasaki, Tomohiro; Watanabe, Hiroshi; Suemoto, Tohru; Watanabe, Kouta; Asano, Kenichi; Matsuda, Kazunari

    2014-05-01

    We studied the excitation density dependence of photoluminescence (PL) spectra of excitons and trions (charged excitons) in hole-doped single-walled carbon nanotubes. We found that the PL intensity of trions exhibited a strong nonlinear saturation behavior as the excitation density increased, whereas that of excitons exhibited a weak sublinear behavior. The strong PL saturation of trions is attributed to depletion of doped holes that are captured by excitons in the formation processes. Moreover, the effective radiative lifetime of a trion was evaluated to be approximately 20 ns.

  9. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  10. On the charge transfer between single-walled carbon nanotubes and graphene

    SciTech Connect

    Rao, Rahul Pierce, Neal; Dasgupta, Archi

    2014-08-18

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO{sub 2} substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO{sub 2} substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  11. Single wall carbon nanohorn as a drug carrier for controlled release

    NASA Astrophysics Data System (ADS)

    Xu, Jianxun; Yudasaka, Masako; Kouraba, Sachio; Sekido, Mitsuru; Yamamoto, Yuhei; Iijima, Sumio

    2008-08-01

    A single wall carbon nanohorn (SWNH) is a new kind of single-graphene tubules with a diameter of 2-5 nm and a length 40-50 nm. In this work, we used oxidized SWNH (SWNHox) to incorporate vancomycin hydrochloride (VCM) for its controlled release by taking advantage of the interactions between VCM and SWNHox. Phospholipid-poly(ethylene glycol) was used to modify the hydrophobic surface of SWNHox to improve its dispersion in aqueous systems. In the release study using this complex, a stable release of VCM was achieved for an extended period.

  12. Robust cyclohexanone selective chemiresistors based on single-walled carbon nanotubes.

    PubMed

    Frazier, Kelvin M; Swager, Timothy M

    2013-08-01

    Functionalized single-walled carbon nanotube (SWCNT)-based chemiresistors are reported for a highly robust and sensitive gas sensor to selectively detect cyclohexanone, a target analyte for explosive detection. The trifunctional selector has three important properties: it noncovalently functionalizes SWCNTs with cofacial π-π interactions, it binds to cyclohexanone via hydrogen bond (mechanistic studies were investigated), and it improves the overall robustness of SWCNT-based chemiresistors (e.g., humidity and heat). Our sensors produced reversible and reproducible responses in less than 30 s to 10 ppm of cyclohexanone and displayed an average theoretical limit of detection (LOD) of 5 ppm. PMID:23886453

  13. Purification of single-wall carbon nanotubes by using ultrafine gold particles

    NASA Astrophysics Data System (ADS)

    Nihey, Fumiyuki; Mizoguti, Eiji; Yudasaka, Masako; Iijima, Sumio; Ichihashi, Toshinari; Nakamura, Kazuo

    2000-03-01

    The purification of single-wall carbon nanotubes (SWNTs) is needed to enable detailed characterization and some application of this material. We report a purification method utilizing ultrafine gold particles as catalysts to selectively oxidize carbonaceous impurities in SWNT soot. The ultrafine gold particles with a diameter of 20 nm were dispersed in the soot in combination with benzalkonium chloride as surfactant. Thermogravimetric analyses and electron microscopy observations revealed that oxidation occured at about 330^circC for carbonaceous impurities and at about 410^circC for SWNTs. This selective oxidation enabled us to purify SWNTs and make the quantitative analyses of SWNTs.

  14. Electronic modulations in a single wall carbon nanotube induced by the Au(111) surface reconstruction

    SciTech Connect

    Clair, Sylvain; Shin, Hyung-Joon; Kim, Yousoo E-mail: maki@riken.jp; Kawai, Maki E-mail: maki@riken.jp

    2015-02-02

    The structural and electronic structure of single wall carbon nanotubes adsorbed on Au(111) has been investigated by low-temperature scanning tunneling microscopy and spectroscopy. The nanotubes were dry deposited in situ in ultrahigh vacuum onto a perfectly clean substrate. In some cases, the native herringbone reconstruction of the Au(111) surface interacted directly with adsorbed nanotubes and produced long-range periodic oscillations in their local density of states, corresponding to charge transfer modulations along the tube axis. This effect, however, was observed not systematically for all tubes and only for semiconducting tubes.

  15. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

    PubMed

    Qin, Xiaojun; Peng, Fei; Yang, Feng; He, Xiaohui; Huang, Huixin; Luo, Da; Yang, Juan; Wang, Sheng; Liu, Haichao; Peng, Lianmao; Li, Yan

    2014-02-12

    The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by inhibiting the formation of metallic SWNTs via oxidation. The so-produced ultralong s-SWNT arrays are immediately ready for building field effect transistors. PMID:24392872

  16. Molecular adsorption study of nicotine and caffeine on single-walled carbon nanotubes from first principles

    NASA Astrophysics Data System (ADS)

    Lee, Hyung-June; Kim, Gunn; Kwon, Young-Kyun

    2013-08-01

    Using first-principles calculations, we investigate the electronic structures and binding properties of nicotine and caffeine adsorbed on single-walled carbon nanotubes to determine whether CNTs are appropriate for filtering or sensing nicotine and caffeine molecules. We find that caffeine adsorbs more strongly than nicotine. The different binding characteristics are discussed by analyzing the modification of the electronic structure of the molecule-adsorbed CNTs. We also calculate the quantum conductance of the CNTs in the presence of nicotine or caffeine adsorbates and demonstrate that the influence of caffeine is stronger than nicotine on the conductance of the host CNT.

  17. In Vivo Delivery of Nitric Oxide-Sensing, Single-Walled Carbon Nanotubes

    PubMed Central

    Iverson, Nicole M; Strano, Michael S; Wogan, Gerald N

    2015-01-01

    Detection of nitric oxide (NO) in vivo by single walled carbon nanotubes (SWNT) is based on the fluorescent properties of SWNT and the ability of NO to quench the fluorescence signal. Alterations of the signal can be utilized to detect a small molecule in vivo that has not previously been possible by other assay techniques. The protocols described here explain the techniques used to prepare NO-detecting SWNTs and to administer them to mice by both intravenous and subcutaneous routes. These techniques can also be utilized with other SWNT sensors as well as non-SWNT sensors. PMID:26344235

  18. Influence of Single-Walled Carbon Nanotubes on Thermal Expansion of Water

    NASA Astrophysics Data System (ADS)

    Korolovych, V. F.; Bulavin, L. A.; Prylutskyy, Yu. I.; Khrapatiy, S. V.; Tsierkezos, N. G.; Ritter, U.

    2014-01-01

    This article reports the results of an investigation of the influence of single-walled carbon nanotubes (SWCNTs) functionalized with carboxyl groups on PVT data of water. Specifically, the impact of an aqueous suspension of SWCNTs (maximum concentration of 3.0 mg mL) on the isobaric thermal expansion of water in the temperature and pressure ranges of 293 K to 342 K and 0.1 MPa to 152.3 MPa, respectively, was investigated. The obtained results are discussed in terms of different structures of water confined inside and outside SWCNTs.

  19. Electronic durability of flexible transparent films from type-specific single-wall carbon nanotubes.

    PubMed

    Harris, John M; Iyer, Ganjigunte R Swathi; Bernhardt, Anna K; Huh, Ji Yeon; Hudson, Steven D; Fagan, Jeffrey A; Hobbie, Erik K

    2012-01-24

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity. PMID:22148890

  20. Temperature dependence of plasmon resonance in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Morimoto, Takahiro; Ichida, Masao; Ikemoto, Yuka; Okazaki, Toshiya

    2016-05-01

    The temperature dependence of the optical response in the far-infrared (FIR) region of metallic and semiconducting rich single-walled carbon nanotubes (SWCNTs) was investigated by micro-Fourier transform infrared spectrometry with a focused beam of synchrotron radiation. The temperature dependence of the FIR spectra of both types of SWCNT showed negligibly small variations within a wide temperature range from 4 to 300 K. Upon comparison with a theoretical model for the diffusive region, it is speculated that these results might have been caused by a strong suppression of phonon scattering in relatively short CNTs with lengths of less than 1 μm.

  1. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  2. Transmission electron microscopy observations of fracture of single-wall carbon nanotubes under axial tension

    NASA Astrophysics Data System (ADS)

    Lourie, O.; Wagner, H. D.

    1998-12-01

    Well-aligned bundles of single-wall carbon nanotubes under tensile stresses were observed to fracture in real-time by transmission electron microscopy. The expansion of elliptical holes in the polymer matrix results in a tensile force in bridging nanotubes. The polymer matrix at both ends of the bundles deforms extensively under the tension force, and fracture of the nanotubes occurs in tension within the polymer hole region rather than in shear within the gripping polymer region at the ends of the bundles. This provides evidence of significant polymer-nanotube wetting and interfacial adhesion.

  3. Determination of electronic states of individually dissolved ( n, m) single-walled carbon nanotubes in solution

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Hirayama, Kohei; Niidome, Yasuro; Nakashima, Naotoshi

    2009-11-01

    Solution redox chemistry is useful to understand the chirality-dependent electronic properties of single-walled carbon nanotubes (SWNTs). We have found that the electron transfer reactions of sodium dithionite with SWNTs cause photoluminescence (PL) quenching processes of 14 individually dissolved SWNTs in an aqueous micellar solution. Based on the analysis using the Nernst equation for the PL change, we have determined the conduction band ( c1) levels of the 14 isolated SWNTs. We have also estimated the valence band ( ν1) levels as well as the Fermi levels of the SWNTs using the reported bandgap values of the corresponding isolated SWNTs.

  4. Temperature effects in the Raman spectra of bundled single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meletov, K. P.; Krestinin, A. V.; Arvanitidis, J.; Christofilos, D.; Kourouklis, G. A.

    2009-08-01

    Bundled single-walled carbon nanotubes (SWCNTs) were studied as a function of temperature by means of Raman spectroscopy. The Raman modes exhibit negative temperature shift, reversible for the G band and partially irreversible for the radial breathing modes (RBMs). The softening of the latter is larger for larger diameter tubes, resulting in a better separation of the RBMs after high temperature treatment (HTT). The RBM residual softening vs. treatment temperature demonstrates threshold-like behavior. The temperature-induced changes may be associated with an irreversible weakening of the tube-tube (intertube) interaction possibly due to adsorbent removal or destruction of random intertube C-C bonds.

  5. Electronic properties of mechanically induced kinks in single-walled carbon nanotubes

    SciTech Connect

    Bozovic, Dolores; Bockrath, M.; Hafner, Jason H.; Lieber, Charles M.; Park, Hongkun; Tinkham, M.

    2001-06-04

    We have used an atomic-force microscope tip to mechanically buckle single-walled carbon nanotubes. The resistance of the induced defects ranged from 10 to 100 k{Omega} and varied with the local Fermi level, as determined by scanned-gate microscopy. By forming two closely spaced defects on metallic nanotubes, we defined quantum dots less than 100 nm in length. These devices exhibited single-electron charging behavior at temperatures up to {similar_to}165 K. {copyright} 2001 American Institute of Physics.

  6. Diameter-dependent bending dynamics of single-walled carbon nanotubes in liquids

    PubMed Central

    Fakhri, Nikta; Tsyboulski, Dmitri A.; Cognet, Laurent; Weisman, R. Bruce; Pasquali, Matteo

    2009-01-01

    By relating nanotechnology to soft condensed matter, understanding the mechanics and dynamics of single-walled carbon nanotubes (SWCNTs) in fluids is crucial for both fundamental and applied science. Here, we study the Brownian bending dynamics of individual chirality-assigned SWCNTs in water by fluorescence microscopy. The bending stiffness scales as the cube of the nanotube diameter and the shape relaxation times agree with the semiflexible chain model. This suggests that SWCNTs may be the archetypal semiflexible filaments, highly suited to act as nanoprobes in complex fluids or biological systems. PMID:19706503

  7. Selective interaction of a soluble pentacene derivative with metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Cai-Hong; Liu, Yi-Yang; Zhang, Yong-Hui; Wei, Rui-Rui; Li, Bing-Rui; Zhang, Hao-Li; Chen, Yong

    2009-03-01

    We report a soluble pentacene derivative, 6,13-bis(2-(trimethylsilyl)ethynyl)pentacene, can be used for efficient extraction of metallic single-walled carbon nanotubes (SWCNTs), which is proven by resonance Raman spectroscopy (RRS), Vis-NIR absorption spectroscopy and conductivity measurements. RRS studies reveal that the separation is solvent-dependent and is more efficient for small diameter tubes. Theoretical simulation suggests that the adsorption of pentacene on (7, 7) metallic SWCNT is about 34% more favorable than that on (13, 0) semiconducting SWCNT. This work provides a new direction in seeking reagents to facilitate high efficiency and nondestructive separation of metallic and semiconducting SWCNTs.

  8. Molecular dynamics simulation for flow characteristics in nanochannels and single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yasuoka, H.; Imae, T.; Kaneda, M.; Suga, K.

    2014-08-01

    Flows in graphite-, diamond- and silicon-walled nanochannels are discussed by performing molecular dynamics simulations. Flows in carbon nanotubes (CNTs) and graphene- walled nanochannels are also investigated. It is found that the flow rate in the graphite-walled channel tends to be the largest because of its slippery wall structure by the short bond length and the high molecular density of the CNTs. The flow rate in the single walled CNT at a very narrow diameter tends to increase although such a tendency is not seen in the graphene-walled channel.

  9. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Kanninen, Petri; Dang Luong, Nguyen; Hoang Sinh, Le; Anoshkin, Ilya V.; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G.; Kallio, Tanja

    2016-06-01

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g‑1 or 552 μF cm‑2), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte.

  10. Quantum Ion-Acoustic Oscillations in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Iqbal, Z.; Wazir, Z.; Aman-ur-Rehman

    2016-05-01

    Quantum ion-acoustic oscillations in single-walled carbon nanotubes are studied by employing a quantum hydrodynamics model. The dispersion equation is obtained by Fourier transformation, which exhibits the existence of quantum ion-acoustic wave affected by change of density balance due to presence of positive or negative heavy species as stationary ion clusters and wave potential at equilibrium. The numerical results are presented, and the role of quantum degeneracy, nanotube geometry, electron exchange-correlation effects, and concentration and polarity of heavy species on wave dispersion is pointed out for typical systems of interest.

  11. Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination

    NASA Astrophysics Data System (ADS)

    Iakoubovskii, Konstantin; Minami, Nobutsugu; Kim, Yeji; Miyashita, Kanae; Kazaoui, Said; Nalini, Balakrishnan

    2006-10-01

    The authors report the effect of ultraviolet (UV) illumination on optical properties of single-wall carbon nanotubes (SWCNTs) isolated using various dispersants. It is demonstrated that even weak UV light (˜1mW/cm2) can irreversibly alter the SWCNT structure, thus resulting in the emergence of hitherto unknown, redshifted photoluminescence (PL) peaks with concomitant reduction in some of the original PL peaks. These UV-induced changes are characterized in detail and attributed to the creation of midgap PL centers.

  12. Step-edge faceting and local metallization of a single-wall semiconducting carbon nanotube

    NASA Astrophysics Data System (ADS)

    Clair, Sylvain; Kim, Yousoo; Kawai, Maki

    2011-10-01

    The adsorption of a single-wall carbon nanotube on a well-defined metal surface produces substantial mutual interaction that can lead to strong effects both on the nanotube and on the substrate side. We report two kinds of step faceting on Au(111) and Cu(111). We observed local metallization of a semiconducting nanotube induced by the deformation pressure of crossing a step edge on Cu(111). The origin of this effect is discussed. Our results illustrate the complexity and the large number of situations encountered for the nanotube-on-metal system.

  13. Synthesis and catalytic activity of heteroatom doped metal-free single-wall carbon nanohorns.

    PubMed

    Wu, Xiaohui; Cui, Longbin; Tang, Pei; Hu, Ziqi; Ma, Ding; Shi, Zujin

    2016-04-01

    Boron-, phosphorus-, nitrogen-doped and co-doped single-wall carbon nanohorns were produced using an arc-vaporization method. These as-prepared doped materials consist of uniform isolated nanohorns and exhibit greatly enhanced catalytic capabilities in the reduction reaction of nitrobenzene and a volcano-shape trend between their activities with a B dopant content is found. Moreover, the B-C3 and P-C3 species in doped nanohorns might act as the acidic and basic sites to promote this reaction. PMID:27006980

  14. Thermoelectric properties of single-wall carbon nanotube films: Effects of diameter and wet environment

    NASA Astrophysics Data System (ADS)

    Hayashi, Daisuke; Ueda, Tomohiro; Nakai, Yusuke; Kyakuno, Haruka; Miyata, Yasumitsu; Yamamoto, Takahiro; Saito, Takeshi; Hata, Kenji; Maniwa, Yutaka

    2016-02-01

    The Seebeck coefficient S and the electrical resistivity ρ of single-wall carbon nanotube (SWCNT) films were investigated as a function of the SWCNT diameter and carrier concentration. The S and ρ significantly changed in humid environments through p-type carrier doping. Experiments, combined with theoretical simulations based on the non-equilibrium Green’s function theory, indicated that the power factor P can be increased threefold by the enrichment of semiconducting SWCNTs, but the nanotube diameter has little effect. The improvement of the film resistivity strongly enhances the film thermoelectric performance, manifested as increasing the value of P above 1200 µW/(m·K2).

  15. Self-assemblies of cationic porphyrins with functionalized water-soluble single-walled carbon nanotubes.

    PubMed

    Kubát, Pavel; Lang, Kamil; Jandal, Pavel; Frank, Ota; Matulková, Irena; Sýkora, Jan; Civis, Svatopluk; Hof, Martin; Kavan, Ladislav

    2009-10-01

    5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin, 5,10,15,20-tetrakis(2-N-methylpyridyl)porphyrin, and 5,10,15,20-tetrakis(4-trimethylammoniophenyl)porphyrin form self-assemblies with single-walled carbon nanotubes (SWNT) functionalized by polyaminobenzene sulfonic acid. Both steady-state and time-resolved emission studies revealed efficient quenching of the excited singlet states of the porphyrins. Atomic force microscopy, fluorescence confocal microscopy, and fluorescence lifetime imaging allowed the visualization of individual bundles of SWNTs and the differentiation of porphyrin molecules at specific binding sites of SWNT. PMID:19908455

  16. Microwave-induced electrophilic addition of single-walled carbon nanotubes with alkylhalides

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Wang, Xianbao; Tian, Rong; Li, Shaoqing; Wan, Li; Li, Mingjian; You, Haijun; Li, Qin; Wang, Shimin

    2008-02-01

    We report the microwave-induced electrophilic addition of single-walled carbon nanotubes (SWNTs) with alkylhalides using Lewis acid as a catalyst followed by hydrolysis. The reaction results in the attachment of alkyl and hydroxyl groups to the surface of the nanotubes. This rapid and high-energy microwave radiation is found to be highly efficient for this reaction, which only needs as low as several minutes. The resulting nanotubes were characterized with FTIR, UV-vis-NIR, Raman, TGA, TEM and AFM. It demonstrates that iodo-alkanes show higher reaction activity with SWNTs than chloro- and bromo-alkanes.

  17. The compressive buckling and size effect of single-walled carbon nanotubes

    SciTech Connect

    Sun, Yuzhou Zhu, Yanzhi; Li, Dongxia

    2015-03-10

    A higher-order Bernoulli-Euler beam model is developed to investigate the compressive buckling and size effect of single-walled carbon nanotubes by using a higher-order continuum relationship that has been previously proposed by the present authors. The second-order deformation gradients with respect to the axial direction are also considered, and the beam parameters are obtained by calculating the constitutive response around the circumference. The critical compressive force is analytically provided, and the size effect is studied by estimating the contribution of the higher-order terms.

  18. Transparent and flexible high-performance supercapacitors based on single-walled carbon nanotube films.

    PubMed

    Kanninen, Petri; Luong, Nguyen Dang; Sinh, Le Hoang; Anoshkin, Ilya V; Tsapenko, Alexey; Seppälä, Jukka; Nasibulin, Albert G; Kallio, Tanja

    2016-06-10

    Transparent and flexible energy storage devices have garnered great interest due to their suitability for display, sensor and photovoltaic applications. In this paper, we report the application of aerosol synthesized and dry deposited single-walled carbon nanotube (SWCNT) thin films as electrodes for an electrochemical double-layer capacitor (EDLC). SWCNT films exhibit extremely large specific capacitance (178 F g(-1) or 552 μF cm(-2)), high optical transparency (92%) and stability for 10 000 charge/discharge cycles. A transparent and flexible EDLC prototype is constructed with a polyethylene casing and a gel electrolyte. PMID:27122323

  19. Electronic properties of single-walled carbon nanotubes filled with manganese halogenides

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2016-09-01

    In this work, single-walled carbon nanotubes (SWCNTs) were filled with manganese chloride and manganese bromide by a capillary filling method. The electronic properties of the filled SWCNTs were investigated by Raman spectroscopy and X-ray photoelectron spectroscopy. It was found that the encapsulated manganese halogenides led to hole doping of the SWCNTs due to the charge transfer from the nanotubes to the encapsulated compounds. The embedded MnCl2 had stronger doping effect on the SWCNTs than MnBr2.

  20. Size effect in the tensile fracture of single-walled carbon nanotubes with defects

    NASA Astrophysics Data System (ADS)

    Yang, M.; Koutsos, V.; Zaiser, M.

    2007-04-01

    Molecular simulation is used to determine the fracture strength of single-walled carbon nanotubes (SWNT) containing different concentrations of randomly distributed point defects. The results are analysed using Weibull statistics, and the dependence of the statistical distribution of fracture strengths on defect concentration is established. Arguments from extreme order statistics are then used to formulate a relationship between the length of SWNT and their fracture strength. The results of this investigation help to explain the large differences between SWNT fracture strengths measured in experiments (13-52 GPa) and those obtained from theoretical calculations assuming defect-free nanotubes (~185 GPa).

  1. Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.

    1999-01-01

    The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.

  2. Stable double helical iodine chains inside single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Liu, Chun-Jian; Lv, Hang; Liu, Bing-Bing

    2016-08-01

    The helicity of stable double helical iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic interaction energy. Our results present clear images of stable double helical structures inside SWCNTs. The optimum helical radius and helical angle increase and decrease with increasing diameter, respectively. The tube's diameter plays a leading role in the helicity of encapsulated structures, while the tube's chirality may induce different metastable structures. This study indicates that the observed double helical iodine chains in experiments are not necessarily the optimum structures, but may also be metastable structures.

  3. Detecting the formation of single-walled carbon nanotube rings by photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hida, Akira; Suzuki, Takayuki; Ishibashi, Koji

    2016-08-01

    Photoabsorption spectroscopy was conducted on single-walled carbon nanotubes (SWNTs) during the formation of ring structures. The absorption bands observed before starting the formation gradually shifted while broadening in the middle. When they finally disappeared, it was found, via atomic force microscopy observations, that almost all SWNTs were transformed into rings. The spectral changes were assumed to be due to the changes in the electronic states of SWNTs. This idea was supported by the results of an investigation using a scanning tunneling microscope. It could be said that photoabsorption spectroscopy is useful for detecting ring formation in situ.

  4. Pore structure of raw and purified HiPco single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.

    2002-10-01

    Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.

  5. Periodic alignment of Si quantum dots on hafnium oxide coated single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Olmedo, Mario; Martinez-Morales, Alfredo A.; Liu, Gang; Yengel, Emre; Ozkan, Cengiz S.; Lau, Chun Ning; Ozkan, Mihrimah; Liu, Jianlin

    2009-03-01

    We demonstrate a bottom up approach for the aligned epitaxial growth of Si quantum dots (QDs) on one-dimensional (1D) hafnium oxide (HfO2) ridges created by the growth of HfO2 thin film on single wall carbon nanotubes. This growth process creates a high strain 1D ridge on the HfO2 film, which favors the formation of Si seeds over the surrounding flat HfO2 area. Periodic alignment of Si QDs on the 1D HfO2 ridge was observed, which can be controlled by varying different growth conditions, such as growth temperature, growth time, and disilane flow rate.

  6. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and L-alanine

    NASA Astrophysics Data System (ADS)

    Silambarasan, D.; Iyakutti, K.; Vasu, V.

    2014-06-01

    Experimental investigation of functionalization of oxidized single-walled carbon nanotubes (OSWCNTs) with three nucleic acid bases such as uracil, guanine, thymine and one amino acid, L-alanine is carried out. Initially, the SWCNTs are oxidized by acid treatment. Further, the oxidized SWCNTs are effectively functionalized with aforementioned biological compounds by ultrasonication. The diameter of OSWCNTs has increased after the adsorption of biological compounds. The cumulative Π-Π stacking, hydrogen bond and polar interaction are the key factors to realize the adsorption. The amount of adsorption of each biological compound is estimated. The adsorption of guanine is more among all the four biological compounds.

  7. In situ Raman monitoring of single-walled carbon nanotube filling with copper chloride

    NASA Astrophysics Data System (ADS)

    Eremin, Timofei V.; Tonkikh, Alexander A.; Kudryashova, Ekaterina M.

    2016-03-01

    In situ characterization of single-walled carbon nanotubes during their gas-phase filling with copper chloride (CuCl) was performed with Raman spectroscopy. The time dependence of positions and intensities of G, 2D, and radial breathing modes was investigated. It was demonstrated that the adsorption of copper chloride from gas phase on the external and internal surfaces of nanotubes leads to the Raman mode shifting. However, this effect is weaker than in case of formation of one-dimensional CuCl crystals inside nanotubes.

  8. Donor doping of single-walled carbon nanotubes by filling of channels with silver

    SciTech Connect

    Kharlamova, M. V.; Niu, J. J.

    2012-09-15

    The channels of single-walled carbon nanotubes (SWNTs) are filled with metallic silver. The synthesized nanocomposites are studied by Raman spectroscopy and optical absorption spectroscopy, and these data indicate a substantial modification of the electronic structure of the nanotubes upon their filling. Moreover, X-ray photoelectron spectroscopy shows that the incorporation of the metal leads to a change in the work function of SWNTs due to the Fermi level upshift and to the transfer of an electron density from inserted nanoparticles to the nanotube walls. Thus, the filling of the channels with silver results in donor doping of the nanotubes.

  9. Photogenerated Free Carrier Dynamics in Metal and Semiconductor Single-Walled Carbon Nanotube Films

    SciTech Connect

    Beard, M. C.; Blackburn, J. L.; Heben, M. J.

    2008-01-01

    Time-resolved THz spectroscopy (TRTS) is employed to study the photogenerated charge-carrier dynamics in transparent films of single-walled carbon nanotubes (SWNTs). Two films were investigated: a film with 94% semiconducting-type tubes (s-SWNTs) and a film with only 7% s-SWNT and 93% metal-type tubes (m-SWNTs). We conclude that charge-carriers are generated with >60% yields at low light intensities in both films. Free-carriers are generated by a linear exciton dissociation process that occurs within 1 ps and is independent of excitation wavelength or tube type.

  10. Kinetics of reactive ion etching upon single-walled carbon nanotubes

    SciTech Connect

    Kato, Toshiaki; Hatakeyama, Rikizo

    2008-01-21

    The remarkable etching reaction of single-walled carbon nanotubes (SWNTs) has been observed in their growth of the parameter-controlled plasma chemical vapor deposition (CVD). The time evolution study of the SWNTs growth leads to establishing a growth equation which can completely express the growth kinetics of SWNTs in the plasma CVD. The growth equation is found to reveal that there are several key parameters which directly affect the etching reaction of SWNTs. Furthermore, such kinetics of the SWNT etching in plasmas can perfectly be explained with a reactive ion etching model.

  11. Nickel-cobalt nanoparticles supported on single-walled carbon nanotubes and their catalytic hydrogenation activity.

    PubMed

    Lekgoathi, Mpho D S; Augustyn, Willem G; Heveling, Josef

    2011-08-01

    Single-walled carbon nanotubes were synthesized from graphite using the arc discharge technique. A nickel/yttrium/graphite mixture was used as the catalyst. After purification by sonication in a Triton X-100 solution, nickel-cobalt metal nanoparticles were deposited on the surface of the single-walled carbon nanotubes. The resulting material and/or the nanotubes themselves were characterized by physisorption, Raman spectroscopy, high-resolution transition electron microscopy and X-ray diffraction. Raman spectroscopy indicates that the nanotubes, prepared by the arc discharge technique, are semi-conducting with a diameter centering at 1.4 nm. The average nickel-cobalt particle size is estimated to be in the region of 8 nm. The catalytic activity of the material was examined for the hydrogenation of unsaturated fatty acid methyl esters obtained from avocado oil. The carbon nanotube supported nickel-cobalt particles effectively hydrogenate polyunsaturated methyl linoleate to monounsaturated methyl oleate. In contrast to a conventional nickel on kieselghur catalyst, further hydrogenation of methyl oleate to undesired methyl stearate was not observed. PMID:22103112

  12. Flux-Dependent Growth Kinetics and Diameter Selectivity in Single-Wall Carbon Nanotube Arrays

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Jackson, Jeremy Joseph; Rouleau, Christopher M; Eres, Gyula; More, Karren Leslie

    2011-01-01

    The nucleation and growth kinetics of single-wall carbon nanotubes in aligned arrays have been measured using fast pulses of acetylene and in situ optical diagnostics in conjunction with low pressure chemical vapor deposition (CVD). Increasing the acetylene partial pressure is shown to decrease nucleation times by three orders of magnitude, permitting aligned nanotube arrays to nucleate and grow to microns lengths within single gas pulses at high (up to 7 micron/s) peak growth rates and short ~ 0.5 s times.Low-frequency Raman scattering (> 10 cm-1) and transmission electron microscopy measurements show that increasing the feedstock flux in both continuous-CVD and pulsed-CVD shifts the product distribution to large single-wall carbon nanotube diameters > 2.5 nm. Sufficiently high acetylene partial pressures in pulsed-CVD appear to temporarily terminate the growth of the fastest- growing, small-diameter nanotubes by overcoating the more catalytically-active, smaller catalyst nanoparticles within the ensemble with non-nanotube carbon in agreement with a growth model. The results indicate that subsets of catalyst nanoparticle ensembles nucleate, grow, and terminate growth within different flux ranges according to their catalytic activity.

  13. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  14. Cytotoxic effect of poly-dispersed single walled carbon nanotubes on erythrocytes in vitro and in vivo.

    PubMed

    Sachar, Sumedha; Saxena, Rajiv K

    2011-01-01

    Single wall Carbon Nanotubes (SWCNTs) are hydrophobic and do not disperse in aqueous solvents. Acid functionalization of SWCNTs results in attachment of carboxy and sulfonate groups to carbon atoms and the resulting acid functionalized product (AF-SWCNTs) is negatively charged and disperses easily in water and buffers. In the present study, effect of AF-SWCNTs on blood erythrocytes was examined. Incubation of mouse erythrocytes with AF-SWCNTs and not with control SWCNTs, resulted in a dose and time dependent lysis of erythrocyte. Using fluorescence tagged AF-SWCNTs, binding of AF-SWCNTs with erythrocytes could be demonstrated. Confocal microscopy results indicated that AF-SWCNTs could enter the erythrocytes. Treatment with AF-SWCNTs resulted in exposure of hydrophobic patches on erythrocyte membrane that is indicative of membrane damage. A time and dose dependent increase in externalization of phosphatidylserine on erythrocyte membrane bilayer was also found. Administration of AF-SWCNTs through intravenous route resulted in a transient anemia as seen by a sharp decline in blood erythrocyte count accompanied with a significant drop in blood haemoglobin level. Administration of AF-SWCNTs through intratracheal administration also showed significant decline in RBC count while administration through other routes (gavage and intra-peritoneal) was not effective. By using a recently developed technique of a two step in vivo biotinylation of erythrocytes that enables simultaneous enumeration of young (age <10 days) and old (age>40 days) erythrocytes in mouse blood, it was found that the in vivo toxic effect of AF-SWCNTs was more pronounced on older subpopulation of erythrocytes. Subpopulation of old erythrocytes fell after treatment with AF-SWCNTs but recovered by third day after the intravenous administration of AF-SWCNTs. Taken together our results indicate that treatment with AF-SWCNTs results in acute membrane damage and eventual lysis of erythrocytes. Intravenous

  15. Cytotoxic Effect of Poly-Dispersed Single Walled Carbon Nanotubes on Erythrocytes In Vitro and In Vivo

    PubMed Central

    Sachar, Sumedha; Saxena, Rajiv K.

    2011-01-01

    Single wall Carbon Nanotubes (SWCNTs) are hydrophobic and do not disperse in aqueous solvents. Acid functionalization of SWCNTs results in attachment of carboxy and sulfonate groups to carbon atoms and the resulting acid functionalized product (AF-SWCNTs) is negatively charged and disperses easily in water and buffers. In the present study, effect of AF-SWCNTs on blood erythrocytes was examined. Incubation of mouse erythrocytes with AF-SWCNTs and not with control SWCNTs, resulted in a dose and time dependent lysis of erythrocyte. Using fluorescence tagged AF-SWCNTs, binding of AF-SWCNTs with erythrocytes could be demonstrated. Confocal microscopy results indicated that AF-SWCNTs could enter the erythrocytes. Treatment with AF-SWCNTs resulted in exposure of hydrophobic patches on erythrocyte membrane that is indicative of membrane damage. A time and dose dependent increase in externalization of phosphatidylserine on erythrocyte membrane bilayer was also found. Administration of AF-SWCNTs through intravenous route resulted in a transient anemia as seen by a sharp decline in blood erythrocyte count accompanied with a significant drop in blood haemoglobin level. Administration of AF-SWCNTs through intratracheal administration also showed significant decline in RBC count while administration through other routes (gavage and intra-peritoneal) was not effective. By using a recently developed technique of a two step in vivo biotinylation of erythrocytes that enables simultaneous enumeration of young (age <10 days) and old (age>40 days) erythrocytes in mouse blood, it was found that the in vivo toxic effect of AF-SWCNTs was more pronounced on older subpopulation of erythrocytes. Subpopulation of old erythrocytes fell after treatment with AF-SWCNTs but recovered by third day after the intravenous administration of AF-SWCNTs. Taken together our results indicate that treatment with AF-SWCNTs results in acute membrane damage and eventual lysis of erythrocytes. Intravenous

  16. Nanocatalyst shape and composition during nucleation of single-walled carbon nanotubes

    PubMed Central

    Gomez-Ballesteros, Jose L.; Burgos, Juan C.; Lin, Pin Ann; Sharma, Renu; Balbuena, Perla B.

    2016-01-01

    The dynamic evolution of nanocatalyst particle shape and carbon composition during the initial stages of single-walled carbon nanotube growth by chemical vapor deposition synthesis is investigated. Classical reactive and ab initio molecular dynamics simulations are used, along with environmental transmission electron microscope video imaging analyses. A clear migration of carbon is detected from the nanocatalyst/substrate interface, leading to a carbon gradient showing enrichment of the nanocatalyst layers in the immediate vicinity of the contact layer. However, as the metal nanocatalyst particle becomes saturated with carbon, a dynamic equilibrium is established, with carbon precipitating on the surface and nucleating a carbon cap that is the precursor of nanotube growth. A carbon composition profile decreasing towards the nanoparticle top is clearly revealed by the computational and experimental results that show a negligible amount of carbon in the nanoparticle region in contact with the nucleating cap. The carbon composition profile inside the nanoparticle is accompanied by a well-defined shape evolution of the nanocatalyst driven by the various opposing forces acting upon it both from the substrate and from the nascent carbon nanostructure. This new understanding suggests that tuning the nanoparticle/substrate interaction would provide unique ways of controlling the nanotube synthesis. PMID:26900454

  17. ACID-FUNCTIONALIZED SINGLE-WALLED CARBON NANOTUBES ENHANCE CARDIAC ISCHEMIC/REPERFUSION INJURY

    EPA Science Inventory

    Engineered nanotubes are being intensively developed for biomedical applications such as gene and drug delivery. Because of their unique properties, nanotubes can impose some potentially toxic effects, particularly if they have been modified to express functionally reactive chem...

  18. Light emission and degradation of single-walled carbon nanotube filament

    NASA Astrophysics Data System (ADS)

    Zhao, Z. G.; Li, F.; Liu, C.; Cheng, H. M.

    2005-08-01

    Household light bulbs were fabricated using macroscopically long and aligned single-walled carbon nanotube (SWNT) ropes as filaments. It was found that the SWNT filament could emit bright light when an electric current was passed through it. The light spectrum from the SWNT filament showed a nonblackbody characteristic of the thermal emission, and its infrared emission was almost completely suppressed possibly due to the "photonic band-gap" effect that originates in the loose fibrous bundle structure of the SWNT filament. The electrical resistance of the SWNT filament was found to first increase, and then continually decrease during light emission. It was also found that an electric current could cause degradation and burnout of the SWNT filament and result in complete amorphization, and that an interesting mushroomlike carbon structure was formed due to the carbon evaporation of the nanotube filament during light emission.

  19. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  20. Electron paramagnetic resonance investigation of purified catalyst-free single-walled carbon nanotubes.

    PubMed

    Zaka, Mujtaba; Ito, Yasuhiro; Wang, Huiliang; Yan, Wenjing; Robertson, Alex; Wu, Yimin A; Rümmeli, Mark H; Staunton, David; Hashimoto, Takeshi; Morton, John J L; Ardavan, Arzhang; Briggs, G Andrew D; Warner, Jamie H

    2010-12-28

    Electron paramagnetic resonance of single-walled carbon nanotubes (SWCNTs) has been bedevilled by the presence of paramagnetic impurities. To address this, SWCNTs produced by laser ablation with a nonmagnetic PtRhRe catalyst were purified through a multiple step centrifugation process in order to remove amorphous carbon and catalyst impurities. Centrifugation of a SWCNT solution resulted in sedimentation of carbon nanotube bundles containing clusters of catalyst particles, while isolated nanotubes with reduced catalyst particle content remained in the supernatant. Further ultracentrifugation resulted in highly purified SWCNT samples with a narrow diameter distribution and almost no detectable catalyst particles. Electron paramagnetic resonance (EPR) signals were detected only for samples which contained catalyst particles, with the ultracentrifuged SWCNTs showing no EPR signal at X-band (9.4 GHz) and fields < 0.4 T. PMID:21082779

  1. Ab-initio calculation of n-doped single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Margine, Elena R.; Crespi, Vincent H.

    2004-03-01

    We study charge-induced changes in shape and electronic structure for n-doped single-walled carbon nanotubes within density functional theory. A certain nearly free electron state is downshifted in the presence of extra electrons. A similar effect has been seen in potassium-doped carbon nanotubes [1], where the downshift was attributed to the hybridization of the nearly free electron state with the K 4s state. In the present calculation the negative charge is neutralized by a uniform positive background, so the downshift must arise from a different effect. The state crosses the Fermi level at a charge per carbon atom of 0.04 for all the tubes studied. Connections are made to recent experiments in the group of P. Eklund.[1]Yoshiyuki Miyamoto, Angel Rubio, X. Blase, Marvin L. Cohen, and Steven G. Louie PRL 74, 2993 (1995)

  2. Interaction between fullerene halves Cn (n ≤ 40) and single wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Sharma, Amrish; Kaur, Sandeep; Mudahar, Isha

    2016-05-01

    We have investigated the structural and electronic properties of carbon nanotube with small fullerene halves Cn (n ≤ 40) which are covalently bonded to the side wall of an armchair single wall carbon nanotube (SWCNT) using first principle method based on density functional theory. The fullerene size results in weak bonding between fullerene halves and carbon nanotube (CNT). Further, it was found that the C-C bond distance that attaches the fullerene half and CNT is of the order of 1.60 Å. The calculated binding energies indicate the stability of the complexes formed. The HOMO-LUMO gaps and electron density of state plots points towards the metallicity of the complex formed. Our calculations on charge transfer reveal that very small amount of charge is transferred from CNT to fullerene halves.

  3. Selective adsorption of proteins on single-wall carbon nanotubes by using a protective surfactant.

    PubMed

    Knyazev, Anton; Louise, Loïc; Veber, Michèle; Langevin, Dominique; Filoramo, Arianna; Prina-Mello, Adriele; Campidelli, Stéphane

    2011-12-16

    The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling. PMID:22095560

  4. The first atomistic modelling-aided reproduction of morphologically defective single walled carbon nanohorns.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Kaneko, Katsumi; Gauden, Piotr A; Kowlaczyk, Piotr; Itoh, Tsutomu

    2013-01-28

    A new modelling-aided approach for the atomistic model of single walled carbon nanohorn (SWNH) creation is presented, based on experimental evidence, on realistic potential of carbon-carbon interactions and on molecular simulations. A new model of SWNHs is next used to predict Ar adsorption properties and to check the molecular fundamentals of the adsorption mechanism. The influence of the apex angle value, nanohorn diameter and nanohorn length on the shapes of isotherms, enthalpy, high resolution α(s)-plots and adsorption potential distribution curves is checked. Finally the comparison with new experimental Ar adsorption results is shown and the conclusions on the porosity of real SWNH aggregates are given. PMID:23229231

  5. Quantum chemistry study on the open end of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hou, Shimin; Shen, Ziyong; Zhao, Xingyu; Xue, Zengquan

    2003-05-01

    Geometrical and electronic structures of open-ended single-walled carbon nanotubes (SWCNTs) are calculated using density functional theory (DFT) with hybrid functional (B3LYP) approximation. Due to different distances between carbon atoms along the edge, reconstruction occurs at the open end of the (4,4) armchair SWCNT, i.e., triple bonds are formed in the carbon atom pairs at the mouth; however, for the (6,0) zigzag SWCNT, electrons in dangling bonds still remain at 'no-bonding' states. The ionization potential (IP) of both (4,4) and (6,0) SWCNTs is increased by their negative intrinsic dipole moments, and localized electronic states existed at both of their open ends.

  6. FAST TRACK COMMUNICATION: Mechanical properties of non-reconstructed defective single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Scarpa, F.; Adhikari, S.; Wang, C. Y.

    2009-07-01

    This paper describes the equivalent homogeneous uniaxial mechanical properties of defective single-wall carbon nanotubes. In particular, non-reconstructed defects that can be produced by ion or electronic irradiation have been considered. A discrete nonlinear finite-element approach based on the mechanical properties of individual carbon-carbon (C-C) bonds has been used. The individual C-C bonds in turn were simulated as beam structural elements. Extensive Monte Carlo based numerical simulation has been reported in the paper. The results show that the homogeneous elastic properties of the defective nanotubes can be qualitatively and quantitatively different from the pristine configurations. The defective nanotubes show a slight reduction in axial stiffness (Young's modulus), but large variations of Poisson's ratio outside the elastic bounds for isotropic materials, depending on the locations of the vacancies. The large fluctuations of Poisson's ratio can lead to extreme positive transversal contractions or to auxetic behaviour when the nanotubes are subjected to tensile loading.

  7. Nerve agent detection using networks of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Novak, J. P.; Snow, E. S.; Houser, E. J.; Park, D.; Stepnowski, J. L.; McGill, R. A.

    2003-11-01

    We report the use of carbon nanotubes as a sensor for chemical nerve agents. Thin-film transistors constructed from random networks of single-walled carbon nanotubes were used to detect dimethyl methylphosphonate (DMMP), a simulant for the nerve agent sarin. These sensors are reversible and capable of detecting DMMP at sub-ppb concentration levels, and they are intrinsically selective against interferent signals from hydrocarbon vapors and humidity. We provide additional chemical specificity by the use of filters coated with chemoselective polymer films. These results indicate that the electronic detection of sub-ppb concentrations of nerve agents and potentially other chemical warfare agents is possible with simple-to-fabricate carbon nanotube devices.

  8. Improving Dispersion of Single-Walled Carbon Nanotubes in a Polymer Matrix Using Specific Interactions

    SciTech Connect

    Rasheed, Asif; Dadmun, Mark D; Ivanov, Ilia N; Britt, Phillip F; Geohegan, David B

    2006-01-01

    A novel approach is presented to improve the dispersion of oxidized single-walled carbon nanotubes (SWNTs) in a copolymer matrix by tuning hydrogen-bonding interactions to enhance dispersion. Nanocomposites of single-walled carbon nanotubes and copolymers of styrene and vinyl phenol (PSVPh) with varying vinyl phenol content were produced and examined. The dispersion of the SWNT in the polymer matrix is quantified by optical microscopy and Raman spectroscopy. Raman spectroscopy is also used to investigate preferred interactions between the SWNTs and the copolymers via the shift in the D* Raman band of the SWNTs in the composites. All composites show regions of SWNT aggregates; however, the aggregate size varies with composition of the PSVPh copolymer and the amount of SWNT oxidation. Optimal dispersion of the SWNT is observed in PSVPh with 20% vinyl phenol and oxidized nanotubes, which correlates with spectroscopic evidence that indicates that this system also incorporates the most interactions between SWNT and polymer matrix. These results are in agreement with previous studies that indicate that optimizing the extent of specific interactions between a polymer matrix and nanoscale filler enables the efficient dispersion of the nanofillers.

  9. Electronic structure of single-walled carbon nanotubes inside helical DNA wraps

    NASA Astrophysics Data System (ADS)

    Snyder, Stacy; Rotkin, Slava

    2007-03-01

    Single stranded DNA can helically wrap a single-walled carbon nanotube (SWNT) leading to changes in electronic structure, which is the subject of our study. Other charged polymers may produce band gap modulation similar to that observed for DNA-SWNT complexes. For these hybrids we assume a regular helical wrap, the potential of which breaks the symmetry of the pristine SWNT. Band structure changes are modeled quantum mechanically using the tight binding method together with self-consistent electrostatics. Gap modulation and band structure symmetry-lowering effects may result in variation of the optical spectra, especially for (slightly forbidden) transverse optical transitions. The effect of environmental screening of charges is investigated. Self-consistent electrostatic calculations yield cohesion energy between a charged, regular wrap and a SWNT of the order of tenths of eV per DNA base [1]. [1] Snyder, S. E., and Rotkin, S. V., Polarization Component of Cohesion Energy in Single-Wall Carbon Nanotube-DNA Complexes, JETP Letters 84, 348 (2006).

  10. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    PubMed Central

    2011-01-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  11. Comparative Dynamics and Sequence Dependence of DNA and RNA Binding to Single Walled Carbon Nanotubes

    PubMed Central

    Landry, Markita P.; Vuković, Lela; Kruss, Sebastian; Bisker, Gili; Landry, Alexandra M.; Islam, Shahrin; Jain, Rishabh; Schulten, Klaus; Strano, Michael S.

    2015-01-01

    Noncovalent polymer-single walled carbon nanotube (SWCNT) conjugates have gained recent interest due to their prevalent use as electrochemical and optical sensors, SWCNT-based therapeutics, and for SWCNT separation. However, little is known about the effects of polymer-SWCNT molecular interactions on functional properties of these conjugates. In this work, we show that SWCNT complexed with related polynucleotide polymers (DNA, RNA) have dramatically different fluorescence stability. Surprisingly, we find a difference of nearly 2500-fold in fluorescence emission between the most fluorescently stable DNA-SWCNT complex, C30 DNA-SWCNT, compared to the least fluorescently stable complex, (AT)7A-(GU)7G DNA-RNA hybrid-SWCNT. We further reveal the existence of three regimes in which SWCNT fluorescence varies nonmonotonically with SWCNT concentration. We utilize molecular dynamics simulations to elucidate the conformation and atomic details of SWCNT-corona phase interactions. Our results show that variations in polynucleotide sequence or sugar backbone can lead to large changes in the conformational stability of the polymer SWCNT corona and the SWCNT optical response. Finally, we demonstrate the effect of the coronae on the response of a recently developed dopamine nanosensor, based on (GT)15 DNA- and (GU)15 RNA-SWCNT complexes. Our results clarify several features of the sequence dependence of corona phases produced by polynucleotides adsorbed to single walled carbon nanotubes, and the implications for molecular recognition in such phases. PMID:26005509

  12. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    NASA Astrophysics Data System (ADS)

    Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

    2011-12-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  13. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    SciTech Connect

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  14. Global Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles Upon Inhalation of Single Walled Carbon Nanotubes

    PubMed Central

    Tyurina, Yulia Y.; Kisin, Elena R.; Murray, Ashley; Tyurin, Vladimir A.; Kapralova, Valentina I.; Sparvero, Louis J.; Amoscato, Andrew A.; Samhan-Arias, Alejandro K.; Swedin, Linda; Lahesmaa, Riitta; Fadeel, Bengt; Shvedova, Anna A.; Kagan, Valerian E.

    2011-01-01

    It is commonly believed that nanomaterials cause non-specific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in two most abundant phospholipid classes – phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine and phosphatidylinositol whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This non-random peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H2O2/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung. PMID:21800898

  15. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery

    NASA Astrophysics Data System (ADS)

    Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam

    2014-06-01

    In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.

  16. Global phospholipidomics analysis reveals selective pulmonary peroxidation profiles upon inhalation of single-walled carbon nanotubes.

    PubMed

    Tyurina, Yulia Y; Kisin, Elena R; Murray, Ashley; Tyurin, Vladimir A; Kapralova, Valentina I; Sparvero, Louis J; Amoscato, Andrew A; Samhan-Arias, Alejandro K; Swedin, Linda; Lahesmaa, Riitta; Fadeel, Bengt; Shvedova, Anna A; Kagan, Valerian E

    2011-09-27

    It is commonly believed that nanomaterials cause nonspecific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in the two most abundant phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine, and phosphatidylinositol, whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This nonrandom peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H(2)O(2)/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria-targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung. PMID:21800898

  17. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes.

    PubMed

    He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M; Hároz, Erik H; Doorn, Stephen K; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M; Adams, W Wade; Hauge, Robert H; Kono, Junichiro

    2016-07-01

    The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm(2)) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 10(6) nanotubes in a cross-sectional area of 1 μm(2). The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios. PMID:27043199

  18. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    He, Xiaowei; Gao, Weilu; Xie, Lijuan; Li, Bo; Zhang, Qi; Lei, Sidong; Robinson, John M.; Hároz, Erik H.; Doorn, Stephen K.; Wang, Weipeng; Vajtai, Robert; Ajayan, Pulickel M.; Adams, W. Wade; Hauge, Robert H.; Kono, Junichiro

    2016-07-01

    The one-dimensional character of electrons, phonons and excitons in individual single-walled carbon nanotubes leads to extremely anisotropic electronic, thermal and optical properties. However, despite significant efforts to develop ways to produce large-scale architectures of aligned nanotubes, macroscopic manifestations of such properties remain limited. Here, we show that large (>cm2) monodomain films of aligned single-walled carbon nanotubes can be prepared using slow vacuum filtration. The produced films are globally aligned within ±1.5° (a nematic order parameter of ∼1) and are highly packed, containing 1 × 106 nanotubes in a cross-sectional area of 1 μm2. The method works for nanotubes synthesized by various methods, and film thickness is controllable from a few nanometres to ∼100 nm. We use the approach to create ideal polarizers in the terahertz frequency range and, by combining the method with recently developed sorting techniques, highly aligned and chirality-enriched nanotube thin-film devices. Semiconductor-enriched devices exhibit polarized light emission and polarization-dependent photocurrent, as well as anisotropic conductivities and transistor action with high on/off ratios.

  19. Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material

    NASA Astrophysics Data System (ADS)

    Jana Chatterjee, Mukulika; Banerjee, Dipali; Chatterjee, Krishanu

    2016-08-01

    Nanocomposites containing single walled carbon nanotubes (SWCNTs) and highly ordered polyaniline (PANI) have been synthesized employing an in situ polymerization using different weight percentages of single-walled carbon nanotube (SWCNT) as template and aniline as a reactant. The composites show homogeneously dispersed SWCNTs which are uniformly coated with PANI through a strong interface interaction. Structural characterization shows that the PANI cultivated along the surface of the SWCNTs in an ordered manner during the SWCNT-directed polymerization process. Measurements at room temperature displayed a significant enhancement in both the electrical conductivity and thermoelectric power which could be attributed to the more ordered chain structures of the PANI on SWCNT. As a result, the power factor of the composite is improved which increases with temperature. At the same time, the measured value of thermal conductivity at room temperature being lowest among the reported values, has resulted in best ZT at room temperature. The lowest value of thermal conductivity is attributed to the large phonon scattering due to the introduction of nanointerfaces.

  20. Synthesis and Electronic Transport in Single-Walled Carbon Nanotubes of Known Chirality

    NASA Astrophysics Data System (ADS)

    Caldwell, Robert Victor

    Since their discovery in 1991, carbon nanotubes have proven to be a very interesting material for its physical strength, originating from the pure carbon lattice and strong covalent sp2 orbital bonds, and electronic properties which are derived from the lattice structure lending itself to either a metallic or semiconducting nature among its other properties. Carbon nanotubes have been researched with an eye towards industry applications ranging from use as an alloy in metals and plastics to improve physical strength of the resulting materials to uses in the semiconductor industry as either an interconnect or device layer for computer chips to chemical or biological sensors. This thesis focuses on both the synthesis of individual single-walled carbon nanotubes as well as the electrical properties of those tubes. What makes the work herein different from that of other thesis is that the research has been performed on carbon nanotubes of known chirality. Having first grown carbon nanotubes with a chemical vapor deposition growth in a quartz tube using ethanol vapor as a feedstock to grow long individual single-walled carbon nanotubes on a silicon chip that is also compatible with Rayleigh scattering spectroscopy to identify the chiral indices of the carbon nanotubes in question, those tubes were then transferred with a mechanical transfer process specially designed in our research lab onto a substrate of our choosing before an electrical device was made out of those tubes using standard electron beam lithography. The focus in this thesis is on the work that went into designing and testing this process as well as the initial results of the electronic properties of those carbon nanotubes of known chirality, such as the first known electrical measurements on single individual armchair carbon nanotubes as well as the first known electrical measurements of a single semiconducting carbon nanotube on thin hexagonal boron nitride to study the effects of the surface optical

  1. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    NASA Astrophysics Data System (ADS)

    Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  2. Development of novel single-wall carbon nanotube epoxy composite ply actuators

    NASA Astrophysics Data System (ADS)

    Yun, Yeo-Heung; Shanov, Vesselin; Schulz, Mark J.; Narasimhadevara, Suhasini; Subramaniam, Srinivas; Hurd, Douglas; Boerio, F. J.

    2005-12-01

    This paper describes a carbon nanotube epoxy ply material that has electrochemical actuation properties. The material was formed by dispersing single-wall carbon nanotubes in a solvent and then solution casting a thin paper using a mold and vacuum oven. In order to take advantage of the high elastic modulus of carbon nanotubes for actuation, epoxy as a chemically inert polymer is considered. An epoxy layer was cast on the surface of the nanotube paper to make a two-layer ply. A wet electrochemical actuator was formed by placing the nanotube epoxy ply in a 2 M NaCl electrolyte solution. Electrochemical impedance spectroscopy and cyclic voltammetry were carried out to characterize the electrochemical properties of the actuator. The voltage-current relationship and power to drive the actuator material were also determined. Compared to previous single-wall carbon nanotube buckypaper tape actuators, which had poor adhesion between the nanotubes and tape, and other nanotube-thermal plastic polymer actuators, which could not provide high strength, the epoxy based actuator has a higher elastic modulus and strength, which will be useful for future structural applications. This demonstrates that a polymer layer can reinforce nanotube paper, which is an important step in building a new structural material that actuates. Further work is under way to develop a solid electrolyte to allow dry actuation. Finally, these actuator plies will be laminated to build a carbon nanocomposite material. This smart structural material will have potential applications that range from use in robotic surgical tools to use as structures that change shape.

  3. Optical and electrical studies of single walled carbon nanotubes for infrared sensing and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Omari, Mones A.

    Carbon nanotubes are emerging as highly promising opto-electro-mechanical device components essential for the development of a variety of hybrid opto-electronic, electro-mechanical and bio-medical technologies on the nanoscale and have been a subject of continued research. In particular, single-walled carbon nanotubes are predicted to exhibit strong light absorption induced by photon-assisted electronic transitions, free carrier and plasmonic-based absorption. Single-walled carbon nanotubes have been confirmed to exhibit a strong photoconduction response in the infrared range, which can provide many new opportunities in engineering nano-photovoltaic and optoelectronic devices. At the same time, the use of strong chemical reagents has been long considered as one of the key processing steps for the separation and purification of single-walled carbon nanotube post-synthesis. In this work, optically-induced voltage in carbon nanotube bundles and thin-films configured as two-terminal resistive elements and operating as junctionless photo-cells in the infrared range as well as the time-dependent wet-processing of HiPCo nanotubes in phosphoric acid and its effect on the structural, transport, infrared light absorption, and photoconduction characteristics were studied. As the photo-voltage generated is found to appear only for asymmetric and off-contact illuminations, the effect is explained based on a photo-generated heat flow model. The engineered cell prototypes were found to yield electrical powers of ˜ 30 pW while demonstrating improved conversion efficiency under high-flux illumination. The cell is also shown to act as an uncooled infrared sensor, with its dark-to-photocurrent ratio improving as temperature increases. The wet-processing of HiPCo nanotubes was done for a nominal time intervals of 1, 2 and 3 hours. The treatment was found to be a two-step process that initially results in the removal and partial replacement of most pre-existing C-O, O-H and CHx groups

  4. Multi-Fractal Hierarchy of Single-Walled Carbon Nanotube Hydrophobic Coatings

    PubMed Central

    De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio

    2015-01-01

    A hierarchical structure is an assembly with a multi-scale morphology and with a large and accessible surface area. Recent advances in nanomaterial science have made increasingly possible the design of hierarchical surfaces with specific and tunable properties. Here, we report the fractal analysis of hierarchical single-walled carbon nanotube (SWCNT) films realized by a simple, rapid, reproducible, and inexpensive filtration process from an aqueous dispersion, then deposited by drytransfer printing method on several substrates, at room temperature. Furthermore, by varying the thickness of carbon nanotube random networks, it is possible tailoring their wettability due to capillary phenomena in the porous films. Moreover, in order to describe the wetting properties of such surfaces, we introduce a two-dimensional extension of the Wenzel-Cassie-Baxter theory. The hierarchical surface roughness of SWCNT coatings coupled with their exceptional and tunable optical and electrical properties provide an ideal hydrophobic composite surface for a new class of optoelectronic and nanofluidic devices. PMID:25716718

  5. A parametric study of single-wall carbon nanotube growth by laser ablation

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Holmes, William A.; Nikolaev, Pavel; Hadjiev, Victor G.; Scott, Carl D.

    2004-01-01

    Results of a parametric study of carbon nanotube production by the double-pulse laser oven process are presented. The effect of various operating parameters on the production of single-wall carbon nanotubes (SWCNTs) is estimated by characterizing the nanotube material using analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermo gravimetric analysis and Raman spectroscopy. The study included changing the sequence of the laser pulses, laser energy, pulse separation, type of buffer gas used, operating pressure, flow rate, inner tube diameter, as well as its material, and oven temperature. It was found that the material quality and quantity improve with deviation from normal operation parameters such as laser energy density higher than 1.5 J/cm2, pressure lower than 67 kPa, and flow rates higher than 100 sccm. Use of helium produced mainly small diameter tubes and a lower yield. The diameter of SWCNTs decreases with decreasing oven temperature and lower flow rates.

  6. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films.

    PubMed

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W; Cai, Wei; Goodson, Kenneth E

    2013-12-17

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  7. Hybrid Graphene and Single-Walled Carbon Nanotube Films for Enhanced Phase-Change Heat Transfer.

    PubMed

    Seo, Han; Yun, Hyung Duk; Kwon, Soon-Yong; Bang, In Cheol

    2016-02-10

    Nucleate boiling is an effective heat transfer method in power generation systems and cooling devices. In this letter, hybrid graphene/single-walled carbon nanotube (SWCNT), graphene, and SWCNT films deposited on indium tin oxide (ITO) surfaces were fabricated to investigate the enhancement of nucleate boiling phenomena described by the critical heat flux and heat transfer coefficient. The graphene films were grown on Cu foils and transferred to ITO surfaces. Furthermore, SWCNTs were deposited on the graphene layer to fabricate hybrid graphene/SWCNT films. We determined that the hybrid graphene/SWCNT film deposited on an ITO surface is the most effective heat transfer surface in pool boiling because of the interconnected network of carbon structures. PMID:26731547

  8. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes.

    PubMed

    Li, Jin-Cheng; Hou, Peng-Xiang; Zhang, Lili; Liu, Chang; Cheng, Hui-Ming

    2014-10-21

    Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection. PMID:25189467

  9. Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes.

    PubMed

    Su, Yanjie; Zhang, Yaozhong; Wei, Hao; Zhang, Liling; Zhao, Jiang; Yang, Zhi; Zhang, Yafei

    2012-03-01

    We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process. PMID:22301844

  10. Role of the catalyst in the growth of single-wall carbon nanotubes.

    PubMed

    Balbuena, Perla B; Zhao, Jin; Huang, Shiping; Wang, Yixuan; Sakulchaicharoen, Nataphan; Resasco, Daniel E

    2006-05-01

    Classical molecular dynamics simulations are carried out to analyze the physical state of the catalyst, and the growth of single-wall carbon nanotubes under typical temperature and pressure conditions of their experimental synthesis, emphasizing the role of the catalyst/substrate interactions. It is found that a strong cluster/substrate interaction increases the cluster melting point, modifying the initial stages of carbon dissolution and precipitation on the cluster surface. Experiments performed on model Co-Mo catalysts clearly illustrate the existence of an initial period where the catalyst is formed and no nanotube growth is observed. To quantify the nature of the Co-Mo2C interaction, quantum density functional theory is applied to characterize structural and energetic features of small Co clusters deposited on a (001) Mo2C surface, revealing a strong attachment of Co-clusters to the Mo2C surface, which may increase the melting point of the cluster and prevent cluster sintering. PMID:16792351

  11. Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation.

    PubMed

    Xu, Shuo; Wang, Fengqiu; Zhu, Chunhui; Meng, Yafei; Liu, Yujie; Liu, Wenqing; Tang, Jingyi; Liu, Kaihui; Hu, Guohua; Howe, Richard C T; Hasan, Tawfique; Zhang, Rong; Shi, Yi; Xu, Yongbing

    2016-04-28

    Understanding of the fundamental photoresponse of carbon nanotubes has broad implications for various photonic and optoelectronic devices. Here, Z-scan and pump-probe spectroscopy performed across 600-2400 nm were combined to give a broadband 'degenerate' mapping of the nonlinear absorption properties of single-wall carbon nanotubes (SWNTs). In contrast to the views obtained from non-degenerate techniques, sizable saturable absorption is observed from the visible to the near-infrared range, including the spectral regions between semiconducting excitonic peaks and metallic tube transitions. In addition, the broadband mapping unambiguously reveals a photobleaching to photoinduced absorption transition feature within the first semiconducting excitonic band ∼2100 nm, quantitatively marking the long-wavelength cut-off for saturable absorption of the SWNTs investigated. Our findings present a much clearer physical picture of SWNTs' nonlinear absorption characteristics, and help provide updated design guidelines for SWNT based nonlinear optical devices. PMID:27088630

  12. Fabrication and performance of contamination free individual single-walled carbon nanotube optical devices.

    PubMed

    Zhou, Yuxiu; Cheng, Rong; Liu, Jianqiang; Li, Tie

    2014-06-01

    Contamination free individual single-walled carbon nanotube (SWCNT) optical devices are fabricated using a hybrid method in the purpose of increase sensitivity as well as further understanding the sensing mechanism. The devices were tested in vacuum to avoid contamination. Three typical devices are discussed comparatively. Under infrared lamp illumination, photovoltaic and photoconductive properties are revealed in device A and B respectively, while device C shows no detectable signal. The photoresponse of device B reaches 108% at 78 K, much larger than that of horizontally aligned or network carbon nanotube devices, indicating priority of the individual nanotube device structure. Interestingly, the temperature characteristics of device A and B are just the opposite. The individual SWCNT devices hold promise in high performance and low cost optical sensors as well as nano-scale solar cells. PMID:24738376

  13. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes.

    PubMed

    Liu, Chang; Cheng, Hui-Ming

    2016-06-01

    Single-wall carbon nanotubes (SWCNTs) can be either semiconducting or metallic depending on their chiral angles and diameters. The use of SWCNTs in electronics has long been hindered by the fact that the as-prepared SWCNTs are usually a mixture of semiconducting and metallic ones. Therefore, controlled synthesis of SWCNTs with a uniform electrical type or even predefined chirality has been a focus of carbon nanotube research in recent years. In this Perspective, we summarize recent progress on the controlled growth of semiconducting and metallic SWCNTs by in situ selective etching and by novel catalyst design. The advantages and mechanisms of these approaches are analyzed, and the challenges are discussed. Finally, we predict possible breakthroughs and future trends in the controlled synthesis and applications of SWCNTs. PMID:27149629

  14. Ferromagnetism/antiferromagnetism transition between semihydrogenated and fully-aminated single-wall carbon nanotubes.

    PubMed

    Deng, Qingming; Zhao, Lina; Luo, Youhua; Zhang, Meng; Jing, Long; Zhao, Yuliang

    2011-09-01

    We theoretically studied the ferromagnetism/antiferromagnetism (FM/AFM) transition between single-wall carbon nanotubes (SWCNTs) induced by chemical modifications of semihydrogenation (SH-) and full-amination (NH(2)-). We found that armchairs with large diameters of SH-CNTs (n > 3) possess FM functions with intense magnetic moments, while armchair NH(2)-CNTs (n = 4, 6, 8) are antiferromagnetic semiconductors. The FM/AFM transition is mainly dominated by different chemical modifications and sizes of SWCNTs whose distance between carbon atoms of unpaired electrons can regulate the intensity of p-p spin interactions. Moreover, the zigzag SH-CNTs and NH(2)-CNTs are NM semiconductors. Thus, the electronic and magnetic properties of the SH- or NH(2)-CNTs can be precisely modulated by controlling the hydrogenation or amination on the different types and diameters of CNTs, which provides a new and also simple process for magnetism optimization design in SWCNTs. PMID:21804988

  15. Ferromagnetism/antiferromagnetism transition between semihydrogenated and fully-aminated single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Deng, Qingming; Zhao, Lina; Luo, Youhua; Zhang, Meng; Jing, Long; Zhao, Yuliang

    2011-09-01

    We theoretically studied the ferromagnetism/antiferromagnetism (FM/AFM) transition between single-wall carbon nanotubes (SWCNTs) induced by chemical modifications of semihydrogenation (SH-) and full-amination (NH2-). We found that armchairs with large diameters of SH-CNTs (n > 3) possess FM functions with intense magnetic moments, while armchair NH2-CNTs (n = 4, 6, 8) are antiferromagnetic semiconductors. The FM/AFM transition is mainly dominated by different chemical modifications and sizes of SWCNTs whose distance between carbon atoms of unpaired electrons can regulate the intensity of p-p spin interactions. Moreover, the zigzag SH-CNTs and NH2-CNTs are NM semiconductors. Thus, the electronic and magnetic properties of the SH- or NH2-CNTs can be precisely modulated by controlling the hydrogenation or amination on the different types and diameters of CNTs, which provides a new and also simple process for magnetism optimization design in SWCNTs.

  16. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Vishalli; Raina, K. K.; Avasthi, D. K.; Srivastava, Alok; Dharamvir, Keya

    2016-04-01

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir-Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (Se) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV-Vis-NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  17. Torsional characteristics of graphene nanoribbons encapsulated in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fang, Te-Hua; Chang, Win-Jin; Feng, Yu-Lun; Lu, Deng-Maw

    2016-09-01

    Molecular dynamics (MD) simulations were performed to study the torsional characteristics of a graphene nanoribbon encapsulated in a single-walled carbon nanotube (GNR@SWCNT) with different chiralities at different temperatures. Based on the simulations, the relationship between the shear stress and the twist angle was obtained. The maximum shear stress increases with an increase in chirality. However, the corresponding twist angle decreases with increasing chirality. GNR@SWCNT withstands a smaller twist angle compared with a single SWCNT. In addition, the interaction force between the GNR and the SWCNT increases with increasing temperature. GNR@SWCNT at an elevated temperature is easier to break during torsion with a lower twist angle. The results are valuable for the design of nanocomposites composed of carbon nanotubes and graphene materials.

  18. Single-walled carbon nanotube networks for flexible and printed electronics

    NASA Astrophysics Data System (ADS)

    Zaumseil, Jana

    2015-07-01

    Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier mobilities. They are thus competitive alternatives to other solution-processable materials for flexible and printed electronics. This review introduces the basic properties of SWNTs, current methods for dispersion and separation of metallic and semiconducting SWNTs and techniques to deposit and pattern dense networks from dispersion. Recent examples of applications of carbon nanotubes as conductors and semiconductors in (opto-)electronic devices and integrated circuits will be discussed.

  19. Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

    NASA Astrophysics Data System (ADS)

    Scheibe, Blazej; Rümmeli, Mark H.; Borowiak-Palen, Ewa; Kalenczuk, Ryszard J.

    2011-04-01

    This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

  20. The effect of fibronectin on structural and biological properties of single walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Atyabi, Fatemeh; Omidvar, Ramin; Shokrgozar, Mohammad Ali; Sadeghizadeh, Majid

    2015-06-01

    Despite the attractive properties of carbon nanotubes (CNTs), cytoxicity and hydrophobicity are two main considerable features which limit their application in biomedical fields. It was well established that treating CNTs with extracellular matrix components could reduce these unfavourable characteristics. In an attempt to address these issues, fibronectin (FN) with different concentrations was loaded on single walled carbon nanotubes (SWCNTs) substrate. Scanning electron microscope, atomic force microscopy (AFM), contact angles and X-ray photoelectron spectroscopy (XPS) were preformed in order to characterize FN loaded SWCNTs substrates. According to XPS and AFM results, FN could interact with SWCNTs and for this, the hydrophilicity of SWCNTs was improved. Additionally, SWCNT modified with FN showed less cytotoxicity compared with neat SWCNT. Finally, FN was shown to act as an interesting extracellular component for enhancing the biological properties of SWCNT.

  1. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  2. DNA Linked To Single Wall Carbon Nanotubes: Covalent Versus Non-Covalent Approach

    NASA Astrophysics Data System (ADS)

    Chung, C.-L.; Nguyen, K.; Lyonnais, S.; Streiff, S.; Campidelli, S.; Goux-Capes, L.; Bourgoin, J.-P.; Filoramo, A.

    2008-10-01

    Nanometer-scale structures represent a novel and intriguing field, where scientists and engineers manipulate materials at the atomic and molecular scale levels to produce innovative materials. Carbon nanotubes constitute a relatively new class of materials exhibiting exceptional mechanical and electronic properties and were found to be promising candidates for molecular electronics, sensing or biomedical applications. Considering the bottom-up strategy in nanotechnology, the combination of the recognition properties of DNA with the electronic properties of single walled carbon nanotubes (SWNTs) seems to be a promising approach for the future of electronics. With the aim to assemble DNA with SWNTs, two complementary strategies have been envisioned: the covalent linkage of DNA on carboxylic groups of SWNTs under classical coupling condition and the non-covalent approach based on biotin-streptavidin molecular recognition properties. Here, we present and compare the results that we obtained with these two different methods; we want to objectively show the advantages and disadvantages of each approach.

  3. Covalent sidewall functionalization of single-walled carbon nanotubes: a photoreduction approach.

    PubMed

    Wei, Liangming; Zhang, Yafei

    2007-12-12

    Covalent sidewall functionalization of single-walled carbon nanotubes (SWNTs) via photoreduction of aromatic ketones by alcohols is reported for the first time. Irradiation of benzophenone, benzhydrol and SWNTs in benzene resulted in covalent attachment of benzhydrol to the sidewalls of the SWNTs. A variety of tools were used to characterize the functionalized SWNTs. Raman scattering, UV-visible and near-IR spectroscopy confirm the covalent nature of the sidewall functionalization. Attenuated total reflection (ATR) FTIR and NMR provided evidence for attachment of benzhydrol onto the sidewalls of nanotubes. Thermogravimetric analysis (TGA) showed that the degree of functionalization was about one benzhydrol in 52 sidewall carbons. A long-chain hydrocarbon marker (n-C(18)H(35)) was also grafted onto the functional groups by esterification reaction for high-resolution TEM (HRTEM) visualization. PMID:20442484

  4. Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Maniwa, Yutaka; Fujiwara, Ryuji; Kira, Hiroshi; Tou, Hideki; Kataura, Hiromichi; Suzuki, Shinzo; Achiba, Yohji; Nishibori, Eiji; Takata, Masaki; Sakata, Makoto; Fujiwara, Akihiko; Suematsu, Hiroyoshi

    2001-12-01

    Thermal expansion coefficient in single-walled carbon nanotube bundles was determined as (-0.15+/-0.20)×10-5 (1/K) for the tube diameter and (0.75+/-0.25)×10-5 (1/K) for the triangular lattice constant by means of x-ray scattering between 300 K to 950 K. The value for the intertube gap was (4.2+/-1.4)×10-5 (1/K), which is larger than 2.6×10-5 (1/K) for the c-axis thermal expansion in graphite. The results reveal the presence of a remarkably larger lattice anharmonicity in nanotube bundles than that of graphite. The small value for the tube diameter is consistent with the seamless tube structure formed by a strong covalent bond between carbon atoms comparable to that in graphite.

  5. Enzymatic formation of carbohydrate rings catalyzed by single-walled carbon nanotubes.

    PubMed

    Hyun, Moon Seop; Park, Jong Pil; Seo, Dongkyun; Chang, Sung-Jin; Lee, Seok Jae; Lee, Sang Yup; Kwak, Kyungwon; Park, Tae Jung

    2016-05-01

    Macrocyclic carbohydrate rings were formed via enzymatic reactions around single-walled carbon nanotubes (SWNTs) as a catalyst. Cyclodextrin glucanotransferase, starch substrate and SWNTs were reacted in buffer solution to yield cyclodextrin (CD) rings wrapped around individual SWNTs. Atomic force microscopy showed the resulting complexes to be rings of 12-50 nm in diameter, which were highly soluble and dispersed in aqueous solution. They were further characterized by Raman and Fourier transform infrared spectroscopy and molecular simulation using density functional theory calculation. In the absence of SWNT, hydrogen bonding between glucose units determines the structure of maltose (the precursor of CD) and produces the curvature along the glucose chain. Wrapping SWNT along the short axis was preferred with curvature in the presence of SWNTs and with the hydrophobic interactions between the SWNTs and CD molecules. This synthetic approach may be useful for the functionalization of carbon nanotubes for development of nanostructures. PMID:26946491

  6. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature

    SciTech Connect

    Endo, Takumi Ishi-Hayase, Junko; Maki, Hideyuki

    2015-03-16

    We investigated the photoluminescence of individual air-suspended single-walled carbon nanotubes (SWNTs) from 6 to 300 K. Time-resolved and antibunching measurements over the telecommunication wavelength range were performed using a superconducting single-photon detector. We detected moderate temperature independent antibunching behavior over the whole temperature range studied. To investigate the exciton dynamics, which is responsible for the antibunching behavior, we measured excitation-power and temperature dependence of the photoluminescence spectra and lifetime decay curves. These measurements suggested an exciton confinement effect that is likely caused by high-dielectric amorphous carbon surrounding the SWNTs. These results indicate that SWNTs are good candidates for light sources in quantum communication technologies operating in the telecommunication wavelength range and at room temperature.

  7. Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.; Kramberger, Christian; Saito, Takeshi; Shiozawa, Hidetsugu; Pichler, Thomas

    2016-08-01

    We have synthesized cobaltocene-filled 1.7-nm-mean diameter single-walled carbon nanotubes (SWCNTs) and transformed them into double-walled carbon nanotubes by annealing at temperatures between 500 and 1000 °C for 2 h in vacuum. We analyze the temperature-dependent inner tube growth inside the filled SWCNTs by Raman spectroscopy. The changes in intensity of the Raman peaks of inner tubes with the diameters ranging from 0.832 to 1.321 nm with increasing annealing temperature are traced. It is revealed that the growth temperatures of larger diameter inner tubes are higher than the ones of smaller diameter tubes. A decrease in the diameter of the inner tubes by ~0.4 nm leads to a decrease in the growth temperature by ~200 °C.

  8. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes.

    PubMed

    Das, Sushanta K; Sengupta, Sanghamitra; Velarde, Luis

    2016-01-21

    The molecular self-assembly of surfactants on the surface of single-walled carbon nanotubes (SWCNT) is currently a common strategy for the tuning of nanotube properties and the stabilization of carbon nanotube dispersions. Here, we report direct measurements of the degree of interfacial ordering for sodium dodecyl sulfate (SDS) surfactants adsorbed on colloidal, single-chirality enriched, SWCNTs within a solid film and investigate the dependence of surface alkyl chain order on the surfactant concentration in the precursor solution. The degree of order for the SWCNT-bound SDS molecules, is probed by vibrational sum frequency generation (VSFG) spectroscopy. We find concrete evidence for the presence of highly ordered surface structures at sufficiently high SDS concentrations, attributed here to cylindrical-like micelle assemblies with the SWCNT at the core. As the SDS concentration decreases, the interfacial order is found to decrease as well, generating a more disordered or random adsorption of surfactants on the nanotube surfaces. PMID:26730991

  9. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  10. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  11. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  12. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    PubMed Central

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  13. Growth and Characterization of Isolated Single Wall Carbon Nanotubes using Liquid Precursors

    NASA Astrophysics Data System (ADS)

    Choi, Young Chul; Parker, Allen; Kesker, Gayatri; Luo, J.; Rao, A. M.

    2004-03-01

    Isolated single wall carbon nanotubes (SWNTs) were prepared on quartz and oxidized silicon substrates using chemical vapor deposition (CVD) in which a liquid precursor, such as xylene, was used as the carbon source. The density of isolated SWNTs was controlled by adjusting the concentration of iron (III) nitrate nonahydrate/2-propanol solution which provided the Fe seed catalyst particles. Micro-Raman measurements using the 785 nm excitation showed tangential bands around 1590 cm-1. The radial breathing mode (RBM) peaks ranged from 150 - 240 cm-1 and the estimated tube diameters are in good agreement with those obtained from atomic force microscope (AFM) images. Our synthesis technique facilitates controlled doping of isolated SWNTs with nitrogen and is achieved by mixing acetonitrile with xylene. Isolated nitrogen doped SWNTs are useful in making stable TUBEFETs.

  14. In vivo MRI of single-wall carbon nanohorns through magnetite nanoparticle attachment

    NASA Astrophysics Data System (ADS)

    Miyawaki, Jin; Yudasaka, Masako; Imai, Hideto; Yorimitsu, Hideki; Isobe, Hiroyuki; Nakamura, Eiichi; Iijima, Sumio

    2006-03-01

    Superparamagnetic magnetite (SPM) is used as a contrast agent in magnetic resonance imaging (MRI). Thus, the SPM-attachment to carbon nanotubes (CNTs) will enable to visualize motional behaviors of CNTs in the living body through MRI. We found that the strong attachment of the SPM nanoparticles (ca. 6 nm size) to one type of CNTs, single-wall carbon nanohorns (SWNHs), could be achieved through a deposition of iron acetate clusters on SWNHs in ethanol at room temperature, followed by heat-treatment in Ar. In vivo MRI visualized that the SWNHs attached with the SPM nanoparticles accumulated in several organs of mice when injected into mice via tail veins. This simple method for the SPM-attaching on CNTs would facilitate the toxicity assessment of CNTs and the applications of CNTs in bioscience and biotechnology.

  15. Uptake of poly-dispersed single-walled carbon nanotubes and decline of functions in mouse NK cells undergoing activation.

    PubMed

    Alam, Anwar; Puri, Niti; Saxena, Rajiv K

    2016-09-01

    The interaction of poly-dispersed acid-functionalized single-walled carbon nanotubes (AF-SWCNT) with NK cells undergoing activation was examined. Exposure to AF-SWCNT during NK activation in vitro by interleukin (IL)-2, and in vivo by Poly(I:C) significantly lowered cytotoxic activity generated against YAC-1 tumor cells. Recoveries of spleen NK1.1(+) cells as well as the activated subset of NK cells (NK1.1(+)CD69(+) cells) were significantly reduced by the AF-SWCNT exposure. The proportion of apoptotic NK cells (NK1.1(+) phosphatidylserine(+)) in the spleen cell preparations activated in vitro was also significantly elevated. Expression levels of CD107a [for assessing NK cell degranulation] as well as of FasL marker [mediating non-secretory pathway of NK cell killing] were significantly lower in cells exposed to AF-SWCNT during the activation phase. Intracellular levels of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the cells were also significantly reduced. Fluorescent AF-SWCNT (FAF-SWCNT) were internalized by the NK cells and uptake was significantly greater in activated cells. Confocal microscopy indicated the internalized FAF-SWCNT were localized to the cytoplasm of the NK cells. These results indicated that AF-SWCNT were internalized by NK cells and caused a general down-regulation of a variety of parameters associated with NK cell cytotoxicity and other cellular functions. PMID:27416475

  16. Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation

    NASA Astrophysics Data System (ADS)

    Xu, Shuo; Wang, Fengqiu; Zhu, Chunhui; Meng, Yafei; Liu, Yujie; Liu, Wenqing; Tang, Jingyi; Liu, Kaihui; Hu, Guohua; Howe, Richard C. T.; Hasan, Tawfique; Zhang, Rong; Shi, Yi; Xu, Yongbing

    2016-04-01

    Understanding of the fundamental photoresponse of carbon nanotubes has broad implications for various photonic and optoelectronic devices. Here, Z-scan and pump-probe spectroscopy performed across 600-2400 nm were combined to give a broadband `degenerate' mapping of the nonlinear absorption properties of single-wall carbon nanotubes (SWNTs). In contrast to the views obtained from non-degenerate techniques, sizable saturable absorption is observed from the visible to the near-infrared range, including the spectral regions between semiconducting excitonic peaks and metallic tube transitions. In addition, the broadband mapping unambiguously reveals a photobleaching to photoinduced absorption transition feature within the first semiconducting excitonic band ~2100 nm, quantitatively marking the long-wavelength cut-off for saturable absorption of the SWNTs investigated. Our findings present a much clearer physical picture of SWNTs' nonlinear absorption characteristics, and help provide updated design guidelines for SWNT based nonlinear optical devices.Understanding of the fundamental photoresponse of carbon nanotubes has broad implications for various photonic and optoelectronic devices. Here, Z-scan and pump-probe spectroscopy performed across 600-2400 nm were combined to give a broadband `degenerate' mapping of the nonlinear absorption properties of single-wall carbon nanotubes (SWNTs). In contrast to the views obtained from non-degenerate techniques, sizable saturable absorption is observed from the visible to the near-infrared range, including the spectral regions between semiconducting excitonic peaks and metallic tube transitions. In addition, the broadband mapping unambiguously reveals a photobleaching to photoinduced absorption transition feature within the first semiconducting excitonic band ~2100 nm, quantitatively marking the long-wavelength cut-off for saturable absorption of the SWNTs investigated. Our findings present a much clearer physical picture of

  17. Single-Wall Carbon Nanotube Field Effect Transistors with Non-Volatile Memory Operation

    NASA Astrophysics Data System (ADS)

    Sakurai, Tatsuya; Yoshimura, Takeshi; Akita, Seiji; Fujimura, Norifumi; Nakayama, Yoshikazu

    2006-10-01

    We describe the fabrication and electrical characteristics of single-wall carbon-nanotubes field-effect transistors (CNT-FETs) with a non-volatile memory function using ferroelectric thin films as gate insulators. The ferroelectric-gate CNT-FETs were fabricated using single-wall CNTs synthesized from alcohol by catalytic chemical vapor deposition and sol-gel derived PbZr0.5Ti0.5O3 thin films. The ferroelectric-gate CNT-FETs showed modulation of the drain current with the gate voltage and the threshold voltage shift (memory window) on the drain current-gate voltage characteristics. Moreover, the memory window was saturated around 1.1 V as the gate voltage sweeping range increased. These results indicate that carriers in CNTs are controlled by spontaneous polarization of the ferroelectric films. Because ferroelectrics exhibit complex couplings between their electrical, structural, mechanical, thermal, and optical properties, and because CNTs have unique mechanical and electrical properties, ferroelectric-gate CNT-FETs offer promise as potentially useful nanoelectronics devices not only for non-volatile memory elements but also for high-sensitivity sensors.

  18. Mechanism of Synthesis of Ultra-Long Single Wall Carbon Nanotubes in Arc Discharge Plasma

    SciTech Connect

    Keidar, Michael

    2013-06-23

    In this project fundamental issues related to synthesis of single wall carbon nanotubes (SWNTs), which is relationship between plasma parameters and SWNT characteristics were investigated. Given that among plasma-based techniques arc discharge stands out as very advantageous in several ways (fewer defects, high flexibility, longer lifetime) this techniques warrants attention from the plasma physics and plasma technology standpoint. Both experimental and theoretical investigations of the plasma and SWNTs synthesis were conducted. Experimental efforts focused on plasma diagnostics, measurements of nanostructures parameters, and nanoparticle characterization. Theoretical efforts focused to focus on multi-dimensional modeling of the arc discharge and single wall nanotube synthesis in arc plasmas. It was demonstrated in experiment and theoretically that controlling plasma parameters can affect nanostucture synthesis altering SWNT properties (length and diameter) and leading to synthesis of new structures such as a few-layer graphene. Among clearly identified parameters affecting synthesis are magnetic and electric fields. Knowledge of the plasma parameters and discharge characteristics is crucial for ability to control synthesis process by virtue of both magnetic and electric fields. New graduate course on plasma engineering was introduced into curriculum. 3 undergraduate students were attracted to the project and 3 graduate students (two are female) were involved in the project. Undergraduate student from Historically Black University was attracted and participated in the project during Summer 2010.

  19. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments

    EPA Science Inventory

    Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...

  20. Water Encapsulation Control in Individual Single-Walled Carbon Nanotubes by Laser Irradiation.

    PubMed

    Chiashi, Shohei; Hanashima, Tateki; Mitobe, Ryota; Nagatsu, Kotaro; Yamamoto, Takahiro; Homma, Yoshikazu

    2014-02-01

    Owing to one-dimensionality, nanoscale curvature, and high chemical stability, single-walled carbon nanotubes (SWNTs) have unique surfaces for gas molecules: outer surface as adsorption (exohedral) site and inner surface that provides encapsulation (endohedral) space. Because as-grown SWNTs have different structure (chirality and diameter) and they are normally bundled, it is extremely difficult to investigate the intrinsic properties of SWNTs as adsorbent. Here we demonstrate controlling adsorption and encapsulation states of water in individual suspended SWNTs using laser irradiation with monitoring of their behavior by photoluminescence measurement and perform molecular dynamics simulation. The laser heating and the pressure control make water molecules encapsulated or ejected for SWNTs, which are individually oxidized and opened with laser heating. The precise control of oxidization makes it possible to observe the cluster formation of water molecules during the encapsulation process and to confine water molecules inside SWNTs even in vacuum. PMID:26276583

  1. Self-Assembling Peptide Coatings Designed for Highly Luminescent Suspension of Single-Walled Carbon Nanotubes

    PubMed Central

    Tsyboulski, Dmitri A.; Bakota, Erica L.; Witus, Leah S.; Rocha, John-David R.; Hartgerink, Jeffrey D.; Weisman, R. Bruce

    2009-01-01

    A series of self-assembling multidomain peptides have been designed, synthesized, and tested for their ability to individually suspend single-walled carbon nanotubes (SWCNTs) in water while preserving strong near-IR nanotube luminescence. Photometric and spectral measurements on individual SWCNTs revealed that emission in the common biocompatible coating agents Pluronic F127, ss-DNA, and BSA is approximately an order of magnitude weaker than in the bio-incompatible ionic surfactant SDBS. By contrast, one of the engineered peptides gave SWCNT emission ~40% as intense as in SDBS. A strong inverse correlation was also found between the spectral line widths of coated SWCNTs and the efficiency of their emission. Peptides with rationally designed self-assembly properties appear to be promising coatings that may enable SWCNT optical sensing applications in biological environments. PMID:19053447

  2. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    DOE PAGESBeta

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. Asmore » a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.« less

  3. Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain

    NASA Astrophysics Data System (ADS)

    Arash, B.; Ansari, R.

    2010-06-01

    Based upon a nonlocal shell model accounting for the small-scale effects, the vibration characteristics of single-walled carbon nanotubes (SWCNTs) with different boundary conditions subjected to initial strain are studied in this paper. The set of governing equations of motion is numerically solved by a method that emerged from incorporating the radial point interpolation approximation within the framework of the generalized differential quadrature method. The effectiveness of the present nonlocal shell model is assessed by the molecular dynamics simulations as a benchmark of good accuracy. Accordingly, nonlocal parameters for clamped and cantilever SWCNTs with thicknesses of 0.066 and 0.34 nm are proposed due to the uncertainty that exists in defining nanotube wall thickness. The simulation results show that the resonant frequencies of SWCNTs are very sensitive to the initial strain, although small.

  4. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    SciTech Connect

    Vishalli, Dharamvir, Keya; Kaur, Ramneek; Raina, K. K.; Avasthi, D. K.; Jeet, Kiran

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  5. Interaction of [FeFe]-Hydrogenases with Single-walled Carbon Nanotubes

    SciTech Connect

    Chang, D. S.; McDonald, T. J.; Kim, Y.-H.; Blackburn, J. L.; Heben, M. J.; King, P. W.

    2007-01-01

    Single-walled carbon nanotubes (SWNT) are promising candidates for use in energy conversion devices as an active photo-collecting elements, for dissociation of bound excitons and charge-transfer from photo-excited chromophores, or as molecular wires to transport charge. Hydrogenases are enzymes that efficiently catalyze the reduction of protons from a variety of electron donors to produce molecular hydrogen. Hydrogenases together with SWNT suggest a novel biohybrid material for direct conversion of sunlight into H{sub 2}. Here, we report changes in SWNT optical properties upon addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum and Chlamydomonas reinhardtii. We find evidence that novel and stable charge-transfer complexes are formed under conditions of the hydrogenase catalytic turnover, providing spectroscopic handles for further study and application of this hybrid system.

  6. Acute toxicity of a mixture of copper and single-walled carbon nanotubes to Daphnia magna.

    PubMed

    Kim, Ki T; Klaine, Stephen J; Lin, Sijie; Ke, Pu C; Kim, Sang D

    2010-01-01

    Nanomaterials released into the environment will interact with many materials including other contaminants. This may influence bioavailability and fate of both the nanoparticles and the other contaminants. The present study examined the effect of a combination of soluble copper and surface-modified single-walled carbon nanotubes (SWNTs) on Daphnia magna. Lysophosphatidylcholine (LPC) was used to modify the surface of SWNTs, reducing the surface hydrophobicity of the tubes and thereby producing a stable aqueous nanoparticle suspension. The toxicity of the nanoparticle-copper (Cu) mixture was determined to be additive. The addition of nontoxic concentration of LPC-SWNTs enhanced the uptake and toxicity of copper. Greater amounts of Cu were shown to accumulate in D. magna upon addition of 0.5 and 1.0 mg/L LPC-SWNTs. PMID:20821426

  7. Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells

    NASA Astrophysics Data System (ADS)

    Pasquier, Aurelien Du; Unalan, Husnu Emrah; Kanwal, Alokik; Miller, Steve; Chhowalla, Manish

    2005-11-01

    We describe the use of single-wall carbon nanotube (SWNT) thin films as transparent and conducting electrodes for hole collection in poly(hexyl)thiophene-[6-6]phenyl-C61-butyric acid methyl ester (P3HT-PCBM) organic photovoltaics. We report a power conversion efficiency of 1%, with a fill factor of 0.3 and a short-circuit current of 6.5mA/cm2 under 100mW/cm2 polychromatic white light illumination measured in air. These values are comparatively higher than reference cells of similar thickness made on indium tin oxide (ITO) glass substrates. This is attributed to the three-dimensional nature of the interface between the SWNTs and the P3HT-PCBM nanocomposite. Our results indicate that solution processed SWNT thin films are a viable alternative to ITO for photovoltaic devices, eliminating an expensive vacuum deposition step in the fabrication of organic solar cells.

  8. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    PubMed Central

    2010-01-01

    In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs) growth via a chemical vapor deposition (CVD) process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device. PMID:20672139

  9. Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing

    NASA Astrophysics Data System (ADS)

    Li, Yan-Hui; Housten, William; Zhao, Yimin; Qiu Zhu, Yan

    2007-05-01

    The remarkable mechanical, electrical and thermal properties of single-walled carbon nanotubes (SWCNTs) have attracted extensive research interest as structural and functional materials. In particular, SWCNTs have been used to reinforce polymers and ceramic composites and great progress has been made. For metal matrix composites, the limitation of the conventional manufacturing process and the difficulty in dispersing nanotubes within metal matrices hinder the development of metal matrix composites. In this paper, we demonstrate a successful fabrication of Cu/SWCNT laminate composites by combined techniques of cold rolling and annealing, using 19 layers of large-area SWCNT films sandwiched between 20 layers of Cu thin foils. The tensile strength and Young's modulus of the resultant laminate composites are 361 MPa and 132 GPa, respectively, exhibiting an improvement over the comparative pure Cu foils processed under identical conditions. These results suggest that good interfacial adhesions between nanotubes and the Cu matrix have been achieved after the rolling-annealing-rolling processes.

  10. Toughening of epoxy matrices with reduced single-walled carbon nanotubes.

    PubMed

    Martinez-Rubi, Yadienka; Ashrafi, Behnam; Guan, Jingwen; Kingston, Christopher; Johnston, Andrew; Simard, Benoit; Mirjalili, Vahid; Hubert, Pascal; Deng, Libo; Young, Robert J

    2011-07-01

    Reduced single-walled carbon nanotubes (r-SWCNT) are shown to react readily at room temperature under inert atmosphere conditions with epoxide moieties, such as those in triglycidyl p-amino phenol (TGAP), to produce a soft covalently bonded interface around the SWCNT. The soft interface is compatible with the SWCNT-free cross-linked cured matrix and acts as a toughener for the composite. Incorporation of 0.2 wt % r-SWCNT enhances the ultimate tensile strength, toughness and fracture toughness by 32, 118, and 40%, respectively, without change in modulus. A toughening rate (dK(IC)/dwt(f)) of 200 MPa m(0.5) is obtained. The toughening mechanism is elucidated through dynamic mechanical analyses, Raman spectroscopy and imaging, and stress-strain curve analyses. The method is scalable and applicable to epoxy resins and systems used commercially. PMID:21612292

  11. Electrical and mechanical characterisation of single wall carbon nanotubes based composites for tissue engineering applications.

    PubMed

    Whulanza, Yudan; Battini, Elena; Vannozzi, Lorenzo; Vomero, Maria; Ahluwalia, Arti; Vozzi, Giovanni

    2013-01-01

    This paper presents the realisation of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(epsilon-caprolactone) (PCL), and poly(lactide-co-glycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold. PMID:23646716

  12. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites

    NASA Astrophysics Data System (ADS)

    Mamedov, Arif A.; Kotov, Nicholas A.; Prato, Maurizio; Guldi, Dirk M.; Wicksted, James P.; Hirsch, Andreas

    2002-11-01

    The mechanical failure of hybrid materials made from polymers and single-wall carbon nanotubes (SWNT) is primarily attributed to poor matrix-SWNT connectivity and severe phase segregation. Both problems can be successfully mitigated when the SWNT composite is made following the protocol of layer-by-layer assembly. This deposition technique prevents phase segregation of the polymer/SWNT binary system, and after subsequent crosslinking, the nanometre-scale uniform composite with SWNT loading as high as 50 wt% can be obtained. The free-standing SWNT/polyelectrolyte membranes delaminated from the substrate were found to be exceptionally strong with a tensile strength approaching that of hard ceramics. Because of the lightweight nature of SWNT composites, the prepared free-standing membranes can serve as components for a variety of long-lifetime devices.

  13. Photoluminescence Imaging of Oxygen Doped Individual Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yalcin, Sibel Ebru; Yamaguchi, Hisato; Galande, Charudatta; Crochet, Jared J.; Mohite, Aditya D.; Gupta, Gautam; Ma, Xuedan; Htoon, Han; Doorn, Stephen K.; Los Alamos National Laboratory Collaboration; Rice University Collaboration

    2014-03-01

    Semiconducting single-walled carbon nanotubes (SWNTs) are attractive candidates for near-IR optoelectronic applications. But they show low fluorescence quantum yield. Recent oxygen doping studies have shown that the quantum yield of the excitons can be enhanced by an order of magnitude due to the formation of local 0D sites on the SWNT surface. However, these studies have been limited to ensemble measurements. Understanding the dopant site, exciton migration and trapping dynamics on individual SWNTs is critical for controllably tuning the photo-physical behavior. We have studied ozonated individual (6,5) nanotubes as a function of progressive ozonation. We spatially resolved the pristine and doped state using visible and NIR sensitive cameras. We demonstrate PL imaging as a probe of the emission dynamics as a function of dopant concentration. The spectral studies show the red-shifted emission in the PL of the NTs due to the ozonated site.

  14. Selective electroless coating of palladium nanoparticles on metallic single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Feng, Yiyu; Lv, Peng; Zhang, Xuequan; Li, Yu; Feng, Wei

    2010-08-01

    The selective electroless coating of palladium (Pd) nanoparticles on metallic single-walled carbon nanotube (SWNT) was studied. The remarkable increase in conductivity of SWNT/Pd films up to fourfold higher than pure SWNT was due to p-type doping and Ohmic contact. Metallic behavior of SWNT/Pd-Field effect transistor (on/off ratio=1.2) was attributed to more hole carriers and no electrostatic barrier between nanotube and Pd. G-band and radial breathing mode in Raman indicates a definitive increase in the proportion of metallic SWNT. Results indicate Pd are selectively coated on metallic SWNT with more negative potential allowing for the electroless Pd2+ reduction.

  15. Roll to plate printed stretchable silver electrode using single walled carbon nanotube on elastomeric substrate.

    PubMed

    Jung, Minhun; Noh, Jinsoo; Kim, Junseok; Kim, Donghwan; Cho, Gyoujin

    2013-08-01

    Stretchable electronics may open new applications in display, sensors and actuators. To attain the stretchable electronics, the ink formulation should be compatible with elastomeric substrates. Here, we present the formulation of silver nanoparticles and single walled carbon nanotubes (SWNTs) for printing stretchable silver electrodes on the elastomeric substrates. Highly conductive stretchable electrodes can be printed directly on the poly(styrene-b-butadiene-b-styrene) (PSBS) substrates by roll to plate (R2P) gravure printer. During the stretching test, R2P printed silver based stretchable electrodes show the high conductivity of 1000 S cm(-1) at 0.27 wt% of SWNT loading. Furthermore, the resistance of the printed silver electrode was not changed up to 15% of tensile strain. PMID:23882805

  16. Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties

    NASA Astrophysics Data System (ADS)

    Kim, Taehoon; Song, Hyunsoo; Ha, Jaeheung; Kim, Sangwoo; Kim, Donghyun; Chung, Seungjun; Lee, Jaemyon; Hong, Yongtaek

    2014-03-01

    Inkjet-printed single-walled carbon nanotube (SWCNT) thin films on stretchable substrates were developed, and their electrical properties were investigated. The 1- and 5-layer printed SWCNT thin films had sheet resistances of 169.76 and 19.08 Ω/sq, respectively, and maintained conductive properties under 100% tensile strain. A nitric acid treatment significantly improved the conductivity of the SWCNT electrodes, and after an initial increase, the 5-layer printed SWCNT electrodes showed a normalized resistance of less than 1.2 after 1000 cycles under 100% tensile strain. The potential of the inkjet-printed SWCNT thin films for stretchable electrode applications was demonstrated via integration with a light-emitting diode.

  17. Direct Measurement of Polarized Absorption Cross-Section of Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Islam, M. F.; Milkie, D. E.; Kane, C. L.; Yodh, A. Y.; Kikkawa, J. M.

    2004-03-01

    We use a combination of polarized Raman scattering and linear optical absorption to infer optical absorption cross-sections of single-wall carbon nanotube ensembles for visible light co- and cross-polarized with respect to the nanotube axes. These data reveal a strong linear absorption anisotropy, and provide a rapid method by which linear absorption spectra can be used to quantitatively measure the orientation of dispersed nanotubes, even in strongly absorbing media for which Raman approaches are complicated by anisotropic re-absorption processes. Comparison with theory demonstrates that local field depolarization plays a crucial role in affecting optical spectra of the nanotubes. This work supported by NSF through DMR-0203378, DMR-079909 and DGE-0221664, NASA through NAG8-2172, DARPA/ONR through N00014-01-1-0831, and SENS.

  18. Mechanical characterization of suspended strips of meshed single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Bo; Hao, Ji; Jung, Yung Joon; Wan, Kai-tak

    2016-01-01

    A thin film of single walled carbon nanotube (SWCNT) mesh has good potential to integrate the existing electromechanical functions with flexible devices. In this paper, SWCNT mats are transferred to a patterned polymer SU-8 substrate using a wet contact print method, forming a suspended bridge over a groove in the substrate. The front edge of a tipless AFM cantilever loads the suspension at the centerline, causing it to deform into a V-shape by mixed bending and stretching. The mechanical response of load versus AFM displacement is fitted to a linear elastic model to extract the average elastic modulus. Reversible loading-unloading shows little or no permanent damage due to mechanical loads.

  19. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    NASA Astrophysics Data System (ADS)

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-01

    We demonstrate that a nonperturbative framework for the treatment of the excitations of single-walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. We test this theory explicitly on the data reported by Dukovic et al. [Nano Lett. 5, 2314 (2005), 10.1021/nl0518122] and Sfeir et al. [Phys. Rev. B 82, 195424 (2010), 10.1103/PhysRevB.82.195424] and so demonstrate the method works over a wide range of reported excitonic spectra.

  20. Platinum nanoparticles-single-walled carbon nanotubes hybrid based chemiresistive sensor array for myoglobin detection

    NASA Astrophysics Data System (ADS)

    Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Rajesh

    2016-03-01

    We examined the potential of platinum nanoparticles (PtNP) modified single-walled carbon nanotube (SWNT) hybrid chemiresistive sensor for detection of antigen myoglobin (Mb) in phosphate buffer saline. Protein antibody, Ab-Mb, was covalently immobilized through site specific binding on PtNP attached over SWNT. A concentration-dependent change in the source-drain current of the hybrid device was observed in the range of 0.1-1000 ng ml-1. The hybrid device response fitted well with the Hill-Langmuir equation with a maximum response of 111.14% and low dissociation constant value (K d = 19.98 ng ml-1), indicating high protein antigen binding affinity at hybrid nanostructure.

  1. Controlled functionalization of single-walled carbon nanotubes for enhanced ammonia sensing: a comparative study

    NASA Astrophysics Data System (ADS)

    Datta, K.; Ghosh, P.; More, M. A.; Shirsat, M. D.; Mulchandani, A.

    2012-09-01

    Electrochemically controllable functionalization of single-walled carbon nanotubes (SWNTs) with poly(N-methyl pyrrole) (P[NMP]) is demonstrated for room temperature gas sensing applications. Comparative investigations reveal that the loading content of the functionalization entity has prominent effects on the sensing characteristics of SWNTs. The optimized sensing backbone (P[NMP]-functionalized SWNTs with 5 µC deposited charge) exhibited a lower detection limit of 10 ppb and excellent linearity for a detection window of 10 ppb-01 ppm concentration of NH3. The typical response and recovery time of the optimized sensor is on the order of minutes. Finally, a performance comparison of the P[NMP]-functionalized SWNT sensing backbones with the pristine P[NMP] nanowire sensor ensured the well-defined role of SWNTs in the functionalized structure. The proposed sensing mechanism suggests that the synthesis parameters can be manoeuvered for the highest operational efficiency of the sensors.

  2. Non-radiative Exciton Decay in Single-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Harrah, Mark; Swan, Anna

    2010-03-01

    Experiments have shown step-wise changes in the fluorescence intensity from single-walled carbon nanotubes [1,2]. It has been proposed that the underlying mechanism for the step-wise changes is diffusion-limited quenching of excitons at defects [1]. This property has been used to demonstrate single-molecule detection for biological applications [3]. We perform a Monte-Carlo simulation of nanotube fluorescence with a diffusion-limited quenching model. The fluorescence intensity is seen to depend on the mean-square distance between defects, implying a nonlinear dependence on the number of defects. The intensity for consecutive defect counts can overlap depending on the positions of the defects. [4pt] [1] Cognet, L. et al. Science 316, 1465-1468 (2007).[0pt] [2] Jin, H. et al. Nano Lett. 8, 4299-4304 (2008).[0pt] [3] Heller, D. A. et al. Nature Nanotech. 4, 114-120 (2009).

  3. Structural and mechanical properties of single-wall carbon nanotube fibers

    SciTech Connect

    Pichot, V.; Albouy, P. A.; Launois, P.; Badaire, S.; Zakri, C.; Poulin, P.

    2006-12-15

    We report quantitative experimental study correlating the structure and mechanical properties of fibers made from single-walled carbon nanotubes (SWNTs) and polyvinyl alcohol (PVA). A post-synthesis solvent drawing treatment is used to vary nanotube alignment, whose detailed understanding is a prerequisite for fiber development. Quantitative analysis of nanotube alignment within the fibers with different draw ratios is performed using x-ray scattering. The method is described in detail, and we also show that the improvement of nanotube alignment with draw ratio can be understood within a model of induced orientation at constant volume. Young's modulus and tensile strength increase with nanotube alignment. This is modeled using continuum mechanics in qualitative agreement with experiment, however quantitative differences show that nanotube alignment is not the only parameter controlling the fiber mechanical properties. We suggest that interaction between the SWNTs and PVA chains should also play a significant role.

  4. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice.

    PubMed

    Xue, Xue; Yang, Jing-Yu; He, Yi; Wang, Li-Rong; Liu, Ping; Yu, Li-Sha; Bi, Guo-Hua; Zhu, Ming-Ming; Liu, Yue-Yang; Xiang, Rong-Wu; Yang, Xiao-Ting; Fan, Xin-Yu; Wang, Xiao-Min; Qi, Jia; Zhang, Hong-Jie; Wei, Tuo; Cui, Wei; Ge, Guang-Lu; Xi, Zheng-Xiong; Wu, Chun-Fu; Liang, Xing-Jie

    2016-07-01

    Methamphetamine (METH) abuse is a serious social and health problem worldwide. At present, there are no effective medications to treat METH addiction. Here, we report that aggregated single-walled carbon nanotubes (aSWNTs) significantly inhibited METH self-administration, METH-induced conditioned place preference and METH- or cue-induced relapse to drug-seeking behaviour in mice. The use of aSWNTs alone did not significantly alter the mesolimbic dopamine system, whereas pretreatment with aSWNTs attenuated METH-induced increases in extracellular dopamine in the ventral striatum. Electrochemical assays suggest that aSWNTs facilitated dopamine oxidation. In addition, aSWNTs attenuated METH-induced increases in tyrosine hydroxylase or synaptic protein expression. These findings suggest that aSWNTs may have therapeutic effects for treatment of METH addiction by oxidation of METH-enhanced extracellular dopamine in the striatum. PMID:26974957

  5. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy

    PubMed Central

    Umeyama, Tomokazu; Baek, Jinseok; Sato, Yuta; Suenaga, Kazu; Abou-Chahine, Fawzi; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2015-01-01

    The close solid-state structure–property relationships of organic π−aromatic molecules have attracted interest due to their implications for the design of organic functional materials. In particular, a dimeric structure, that is, a unit consisting of two molecules, is required for precisely evaluating intermolecular interactions. Here, we show that the sidewall of a single-walled carbon nanotube (SWNT) represents a unique molecular dimer platform that can be directly visualized using high-resolution transmission electron microscopy. Pyrene is chosen as the π−aromatic molecule; its dimer is covalently linked to the SWNT sidewalls by aryl addition. Reflecting the orientation and separation of the two molecules, the pyrene dimer on the SWNT exhibits characteristic optical and photophysical properties. The methodology discussed here—form and probe molecular dimers—is highly promising for the creation of unique models and provides indispensable and fundamental information regarding molecular interactions. PMID:26173983

  6. TRANSPORT SPECTROSCOPY OF CHEMICAL NANOSTRUCTURES: The Case of Metallic Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liang, Wenjie; Bockrath, Marc; Park, Hongkun

    2005-05-01

    Transport spectroscopy, a technique based on current-voltage measurements of individual nanostructures in a three-terminal transistor geometry, has emerged as a powerful new tool to investigate the electronic properties of chemically derived nanostructures. In this review, we discuss the utility of this approach using the recent studies of single-nanotube transistors as an example. Specifically, we discuss how transport measurements can be used to gain detailed insight into the electronic motion in metallic single-walled carbon nanotubes in several distinct regimes, depending on the coupling strength of the contacts to the nanotubes. Measurements of nanotube devices in these different conductance regimes have enabled a detailed analysis of the transport properties, including the experimental determination of all Hartree-Fock parameters that govern the electronic structure of metallic nanotubes and the demonstration of Fabry-Perot resonators based on the interference of electron waves.

  7. Temperature induced modification of the mid-infrared response of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shuba, Mikhail V.; Paddubskaya, Alesia G.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Valusis, Gintaras; Poklonski, Nikolai A.; Bellucci, Stefano; Kenanakis, George; Kafesaki, Maria

    2016-03-01

    The temperature dependences of the absorbance spectra of thin free-standing single-walled carbon nanotube (SWCNT) films were studied in the infrared range (700-6200 cm-1) while heating the air from 300 to 575 K. The observed temperature variation in the infrared absorbance spectra has been explained by two different physical factors. The first one is the strong temperature dependence of the conductivity of p-type doped semiconducting SWCNTs. The second one is the temperature dependence of electron relaxation time of intraband electron transitions in metallic SWCNTs. The possibility of the separation of contributions from the interband and intraband transitions to the infrared spectra of SWCNT films has been demonstrated.

  8. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes.

    PubMed

    Green, Alexander A; Hersam, Mark C

    2008-05-01

    Single-walled carbon nanotubes (SWNTs) are promising materials for transparent conduction as a result of their exceptional electrical, optical, mechanical, and chemical properties. However, since current synthetic methods yield polydisperse mixtures of SWNTs, the performance of SWNT transparent conductive films has previously been hindered by semiconducting species. Here, we describe the performance of transparent conductors produced using predominantly metallic SWNTs. Compared with unsorted material, films enriched in metallic SWNTs can enhance conductivity by factors of over 5.6 in the visible and 10 in the infrared. Moreover, by using monodisperse metallic SWNTs sorted with angstrom-level resolution in diameter, semitransparent conductive coatings with tunable optical transmittance can be produced. PMID:18393537

  9. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube-titanium dioxide hybrids.

    PubMed

    Ding, Mengning; Sorescu, Dan C; Star, Alexander

    2013-06-19

    The unique physical and chemical properties of single-walled carbon nanotubes (SWNTs) make them ideal building blocks for the construction of hybrid nanostructures. In addition to increasing the material complexity and functionality, SWNTs can probe the interfacial processes in the hybrid system. In this work, SWNT-TiO2 core/shell hybrid nanostructures were found to exhibit unique electrical behavior in response to UV illumination and acetone vapors. By experimental and theoretical studies of UV and acetone sensitivities of different SWNT-TiO2 hybrid systems, we established a fundamental understanding on the interfacial charge transfer between photoexcited TiO2 and SWNTs as well as the mechanism of acetone sensing. We further demonstrated a practical application of photoinduced acetone sensitivity by fabricating a microsized room temperature acetone sensor that showed fast, linear, and reversible detection of acetone vapors with concentrations in few parts per million range. PMID:23734594

  10. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube - conjugates

    NASA Astrophysics Data System (ADS)

    Ogbodu, Racheal O.; Amuhaya, Edith K.; Mashazi, Philani; Nyokong, Tebello

    2015-10-01

    The photophysical properties of the conjugate of uridine and zinc mono carboxy phenoxy phthalocyanine (ZnMCPPc-uridine, 4) are reported in this work. The conjugate was also adsorbed onto single walled carbon nanotubes (ZnMCPPc-uridine-SWCNT, 5). The X-ray photoelectron spectroscopy of 4 showed three N 1s peaks while that of 5 showed four N 1s peak, a new peak at 399.4 eV of 5 was assigned to pyrrolidonic nitrogen, due to the interaction of the pyrrolic nitrogen of 4 with the oxygen moiety of SWCNT-COOH in 5. The triplet lifetime, triplet and singlet oxygen quantum yields of the zinc mono carboxy phenoxy phthalocyanine increased by over 40% in the presence of uridine. SWCNTs resulted in only a small quenching of the triplet state parameters of 4.

  11. Dendron growth from vertically aligned single-walled carbon nanotube thin layer arrays for photovoltaic devices.

    PubMed

    Bissett, Mark Alexander; Köper, Ingo; Quinton, Jamie Scott; Shapter, Joe George

    2011-04-01

    Single-walled carbon nanotube arrays attached to conductive transparent electrodes have previously shown promise for use in photovoltaic devices, whilst still retaining light transmission. Here, chemical modification of these thin (<200 nm) arrays with PAMAM-type dendrons has been undertaken to enhance the photoresponse of these devices. The effect of modification on the electrode was measured by differential pulse voltammetry to detect the dendrons, and the effect on the nanotubes was measured by Raman spectroscopy. Solar simulator illumination of the cells was performed to measure the effect of the nanotube modification on the cell power, and determine the optimal modification. Electrochemical impedance spectroscopy was also used to investigate the equivalent electronic circuit elements of the cells. The optimal dendron modification occurred with the second generation (G-2.0), which gave a 70% increase in power over the unmodified nanotube array. PMID:21347484

  12. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  13. Reptation dynamics of single-walled carbon nanotubes in a permanent network

    NASA Astrophysics Data System (ADS)

    Fakhri, Nikta; Mackintosh, Fred; Cognet, Laurent; Lounis, Brahim; Pasquali, Matteo

    2010-03-01

    Single-walled carbon nanotubes (SWCNTs) are an ideal system of semiflexible filaments with tunable bending stiffness. By exploiting their near-infrared fluorescence, we image directly the motion of SWCNTs in a network (agarose gel). We determine the SWCNT diameter (and bending stiffness) spectroscopically, and we control the network pore size by changing the agarose concentration. Image analysis shows clearly that SWCNTs move by reptation through the pore network. We quantify the dependence of SWCNTs mobility on SWCNT bending stiffness, length and pore sizes. Our results show conclusively that, even when the SWCNT length is much smaller than the persistence length, the flexibility of filaments enhances rotational diffusion. These results confirm earlier predictions of Odijk (1983), and show that the Doi-Edwards scaling fails to capture the filaments' motion. This study provides a fundamental understanding of reptation dynamics of semiflexible filaments.

  14. Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions

    NASA Astrophysics Data System (ADS)

    Matsuura, Koji; Saito, Takeshi; Okazaki, Toshiya; Ohshima, Satoshi; Yumura, Motoo; Iijima, Sumio

    2006-10-01

    Proteins were screened by preparing dispersions of SWNTs to investigate the driving force of the interaction between single-walled carbon nanotubes (SWNTs) of mean diameter 1 nm and water-soluble proteins. Egg white lysozyme (LYS) and bovine serum albumin (BSA) dispersed SWNTs, whereas papain and pepsin could not. Far-UV circular dichroism spectra indicated that the LYS and BSA molecules that coat SWNT surfaces were partially denatured. From the amino acid composition, we ascribed the main driving force to the hydrophobic interactions between the side-wall of the SWNT and the inner hydrophobic domain exposed to the solvent during the three-dimensional change of the protein induced by sonication.

  15. Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine

    SciTech Connect

    Brown, Janis M.; Anderson, David P.; Justice, Ryan S.; Lafdi, Khalid; Belfor, Max; Strong, Karla L.; Schaefer, Dale W.

    2010-07-13

    Dispersion of single-walled carbon nanotubes (SWNTs) by sonication into diamine curing agents is studied as a means to improve the dispersion of SWNTs in cured epoxy. Cured and uncured specimens are analyzed by light microscopy, electron microscopy, light scattering (LS), ultra small-angle X-ray scattering (USAXS), electrical conductivity and Raman spectroscopy. A flexible diamine (D2000) forms a stable SWNT suspension leading to good homogeneity in both the diamine and the cured epoxy. High resolution transmission electron microscopy (TEM) shows that small ropes of SWNTs (mostly under 15 nm) are present despite the sample's visual homogeneity. Further morphological investigation of cured and uncured D2000 resins using light and small-angle X-ray scattering indicates that the SWNTs are networked into fractal clusters that electrically percolate at low SWNTs loadings (0.05 wt%).

  16. Amperometric Low-Potential Detection of Malic Acid Using Single-Wall Carbon Nanotubes Based Electrodes

    PubMed Central

    Arvinte, Adina; Rotariu, Lucian; Bala, Camelia

    2008-01-01

    The electrocatalytical property of single-wall carbon nanotube (SWNT) modified electrode toward NADH detection was explored by cyclic voltammetry and amperometry techniques. The experimental results show that SWNT decrease the overvoltage required for oxidation of NADH (to +300 mV vs. Ag/AgCl) and this property make them suitable for dehydrogenases based biosensors. The behavior of the SWNT modified biosensor for L-malic acid was studied as an example for dehydrogenases biosensor. The amperometric measurements indicate that malate dehydrogenase (MDH) can be strongly adsorbed on the surface of the SWNT-modified electrode to form an approximate monolayer film. Enzyme immobilization in Nafion membrane can increase the biosensor stability. A linear calibration curve was obtained for L-malic acid concentrations between 0.2 and 1mM.

  17. Polymer photovoltaic cell embedded with p-type single walled carbon nanotubes fabricated by spray process

    NASA Astrophysics Data System (ADS)

    Kim, Dal-Ho; Park, Jea-Gun

    2012-08-01

    In the current study, we fabricated polymer (poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C61 butyric-acid methyl-ester (PCBM) blend) photovoltaic (PV) cells embedded with p-type single walled carbon nanotubes (SWCNTs) with tangled hair morphology. The power conversion efficiency (PCE) rapidly increased with SWCNT concentration of up to 6.83% coverage, and then decreased and saturated with increasing SWCNT concentration; i.e., the PCE peaks at 5.379%. This tendency is mainly associated with hole transport efficiency toward the transparent electrode (indium-tin-oxide (ITO)) via SWCNTs, directly determining the series resistance and shunt resistance of the polymer PV cells embedded with SWCNTs: the PV cell is increasing shunt resistance and decreasing series resistance.

  18. Exciton Radiative Lifetimes and Their Temperature Dependence in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyauchi, Yuhei; Matsunaga, Ryusuke; Hirori, Hideki; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2009-03-01

    We have investigated the radiative lifetimes of excitons in single-walled carbon nanotubes (SWNTs) from simultaneous measurements of the photoluminescence (PL) lifetimes [1] and the PL quantum yields. A high-quality sample of PFO dispersed-SWNTs was used for the PL measurements. The evaluated radiative lifetimes were ˜5-15 ns for SWNTs with diameters ˜0.8-1.1 nm at room temperature. The radiative lifetimes increased with the tube diameter. The exciton spatial coherence volume (length) was of the order 10 ^2 nm along the tube axis, as deduced from the radiative lifetimes. Furthermore, we discuss the dynamics of bright and dark excitons [2] from the temperature dependence of the radiative lifetime (10 to 300 K).[3pt] [1] H. Hirori, K. Matsuda, Y. Miyauchi, S. Maruyama, and Y. Kanemitsu, Phys. Rev. Lett. 97, 257401 (2006). [0pt] [2] R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Phys. Rev. Lett. 101, 147404 (2008).

  19. Near-infrared electroluminescent devices using single-wall carbon nanotubes thin flms

    NASA Astrophysics Data System (ADS)

    Kazaoui, S.; Minami, N.; Nalini, B.; Kim, Y.; Takada, N.; Hara, K.

    2005-11-01

    We have fabricated near-infrared electroluminescent (EL) devices utilizing single-wall carbon nanotubes (SWNTs) finely dispersed in a polymer, such as poly[2-methoxy-5-(2'-ethylhexyloxy]-1,4-phenylenevinylene (MEHPPV). Al/SWNT-MEHPPV/indium tin oxide thin-film devices exhibit a very promising EL response over a broad spectrum, including the range of 900-1600nm. From the analysis of the optical absorption, photoluminescence and EL spectra, as well as the current-voltage characteristics, we demonstrate that those devices exploit the intrinsic near-infrared light-emitting properties of semiconducting SWNTs and the electronic transport properties of SWNT-doped MEHPPV. Those achievements are essential for the future development of thin-film SWNT optoelectronic devices.

  20. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    SciTech Connect

    Diniz, Ginetom S. Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  1. X-ray Absorption Improvement of Single Wall Carbon Nanotube through Gadolinium Encapsulation

    NASA Astrophysics Data System (ADS)

    Alimin; Narsito, I.; Kartini; Santosa, S. J.

    2016-02-01

    X-ray absorption improvement of single-wall carbon nanotube (SWCNT) through gadolinium (Gd) encapsulation has been studied. The liquid phase adsorption using ethanol has been performed for the doping treatment. The Gd-doped SWCNT (Gd@SWCNT) was characterized by nitrogen adsorption isotherms, Raman spectroscopy, Transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. A relatively high residual weight of Gd@SWCNT compared to non-doped SWCNT (n-SWCNT) indicated that Gd has been doped in the nanotube. Even though Gd nanoparticles could not be observed clearly by TEM image, however, a significant decrease of nitrogen uptakes at low pressure and RBM (Radial Breathing Mode) upshift of Raman spectra of Gd@SWCNT specimen suggest that the metal nanoparticles might be encapsulated in the internal tube spaces of the nanotube. It was found that Gd-doped in the SWCNT increased significantly mass attenuation coefficient of the nanotube.

  2. Dispersion of Single Walled Carbon Nanotubes Using a Novel Type of Sonication: Focused Sonication.

    PubMed

    Sachin, Bramhe N; Ae, Hwangbo Seon; Chu, Min Cheol

    2016-03-01

    We demonstrate the use of novel type of sonication method, focused sonication, with added advantages over bath and probe type of sonication for the dispersion of single walled carbon nanotubes (SWNT). Di-chloro benzene was used as the solvent for dispersion of SWNT. Results from focused sonication and bath sonication were compared and found that focused sonication results in better dispersion. Also Raman spectroscopy was analysed to ascertain if focused sonication causes any damage to the tubes and it was found that there was no damage to the SWNT. We believe that with the added advantages like in-situ temperature control and large sample volume processing, focused sonication would prove to be the most proficient method of sonication for dispersion of nanoparticles. PMID:27455717

  3. Single-walled carbon nanotubes functionalized by a series of dichlorocarbenes: DFT study

    NASA Astrophysics Data System (ADS)

    Petrushenko, Igor K.; Petrushenko, Konstantin B.

    2016-02-01

    The structural and elastic properties of neutral and ionized dichlorocarbene (CCl2) functionalized single-walled carbon nanotubes (SWCNTs) were studied using density functional theory (DFT). The Young’s modulus of ionized pristine SWCNTs is found to decrease in comparison to that of neutral models. The interesting effect of increase in Young’s modulus values of ionized functionalized SWCNTs is observed. We ascribe this feature to the concurrent processes of the bond elongation on ionization and the local deformation on cycloaddition. The strong dependence of the elasticity modulus on the number of addends is also observed. However, the CCl2-attached SWCNTs in their neutral and ionized forms remain strong enough to be suitable for the reinforcement of composites. In contrast to the elastic properties, the binding energies do not change significantly, irrespective of CCl2 coverage.

  4. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    SciTech Connect

    Moradi, Afshin

    2014-03-15

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  5. 13 nm Exciton Size in (6,5) Single-Wall Carbon Nanotubes.

    PubMed

    Mann, Christoph; Hertel, Tobias

    2016-06-16

    Electron-hole correlation lengths, also termed exciton size, for (6,5) single-wall carbon nanotubes (SWNTs) are determined using femtosecond time-resolved pump-probe spectroscopy. The phase space filling model is used to obtain the sizes of the first subband exciton in samples of isolated and of bundled SWNTs. The experiments indicate that the exciton size of (13 ± 3) nm is a factor of 6 higher than previous experimental estimates and theoretical predictions for vacuum suspended SWNTs. This surprising result may be attributed at least in part to the effect of the dielectric environment on exciton sizes and supports recent theoretical findings predicting that screening in SWNTs may enhance rather than reduce electron-hole interactions for separations larger than the tube diameter. Thereby, the work also points to the unique nature of screening and electronic correlations in one-dimensional semiconductors. PMID:27249311

  6. Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis

    SciTech Connect

    Konik, Robert M.; Sfeir, Matthew Y.; Misewich, James A.

    2015-02-17

    We demonstrate that a non-perturbative framework for the treatment of the excitations of single walled carbon nanotubes based upon a field theoretic reduction is able to accurately describe experiment observations of the absolute values of excitonic energies. This theoretical framework yields a simple scaling function from which the excitonic energies can be read off. This scaling function is primarily determined by a single parameter, the charge Luttinger parameter of the tube, which is in turn a function of the tube chirality, dielectric environment, and the tube's dimensions, thus expressing disparate influences on the excitonic energies in a unified fashion. As a result, we test this theory explicitly on the data reported in [NanoLetters 5, 2314 (2005)] and [Phys. Rev. B 82, 195424 (2010)] and so demonstrate the method works over a wide range of reported excitonic spectra.

  7. Indium Oxide-Single-Walled Carbon Nanotube Composite for Ethanol Sensing at Room Temperature.

    PubMed

    Ellis, James E; Green, Uri; Sorescu, Dan C; Zhao, Yong; Star, Alexander

    2015-02-19

    Utilizing a sol-gel synthesis, indium oxide is grown on the surface of oxidized single-walled carbon nanotubes (SWCNT) to form a hybrid material with high conductivity and sensitivity toward certain organic vapors. The room-temperature sensing of dilute ethanol and acetone vapors on the surface of indium oxide/SWCNT hybrid material is studied using electrical conductance experiments in a nonoxidizing environment. Through testing of variously calcinated materials, it was observed that the degree of annealing greatly affects the material's response to acetone and ethanol, such that the intermediate calcination condition yields the best sensitivity. DFT simulations are used to study the interface between defective SWCNT and indium oxide, as well as the interaction between ethanol and acetone molecules with the indium oxide/SWCNT hybrid material. PMID:26262491

  8. Multiple helical configuration and quantity threshold of graphene nanoribbons inside a single-walled carbon nanotube

    PubMed Central

    Li, Yifan; Chen, Wei; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2015-01-01

    Molecular dynamics simulation has been carried out to explore the configuration and quantity threshold of multiple graphene nanoribbons (GNRs) in single-walled carbon nanotube (SWCNT). The simulation results showed that several GNRs tangled together to form a perfect spiral structure to maximize the π-π stacking area when filling inside SWCNT. The formation of multiple helical configuration is influenced by the combined effect of structure stability, initial arrangement and tube space, meanwhile its forming time is related to helical angle. The simulated threshold of GNRs in SWCNT decreases with GNR width but increases with SWCNT diameter, and two formulas have come up in this study to estimate the quantity threshold for GNRs. It has been found that multilayered graphite is hard to be stripped in SWCNT because the special helical configuration with incompletely separated GNRs is metastable. This work provides a possibility to control the configuration of GNR@SWCNT. PMID:26374276

  9. Suspended single-walled carbon-nanotube field-effect transistor for gas sensing application

    NASA Astrophysics Data System (ADS)

    Wada, Yukiko; Fujita, Yoshihiro; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2015-06-01

    We investigate the pressure dependence of transfer characteristics of suspended single-walled carbon-nanotube field-effect transistors. We find that the gate bias around the charge neutral point with low drain current is appropriate for gas sensing application, while the high gate bias condition with high drain current that induces Joule heating in the suspended region for the desorption of the adsorbed molecules is preferable for the vacuum gauge application based on the heat exchange surrounding gas molecules, where the temperature at the suspended channel is investigated based on the simple one-dimensional heat transport model. We also revealed that the pressure dependence of the channel conductance at the gate bias around the charge neutral point can be explained by the Langmuir isotherm.

  10. All-printed and transparent single walled carbon nanotube thin film transistor devices

    NASA Astrophysics Data System (ADS)

    Sajed, Farzam; Rutherglen, Christopher

    2013-09-01

    We present fully transparent single-walled all-carbon nanotube thin film transistors (SWCNT TFT) fabricated using low-cost inkjet printing methods. Such a demonstration provides a platform towards low cost fully printed transparent electronics. The SWCNT TFTs were printed with metallic and semiconducting SWCNT using a room temperature printing process, without the requirement of expensive cleanroom facilities. The unoptimized SWCNT TFTs fabricated exhibited an Ion/off ratio of 92 and mobility of 2.27 cm2V-1s-1 and transmissivity of 82%. The combination of both high electrical performance and high transparency make all-SWCNT TFTs desirable for next generation transparent display backplanes and products such as Google Glass.

  11. Universal Response of Single-Wall Carbon Nanotubes to Radial Compression

    NASA Astrophysics Data System (ADS)

    Barboza, A. P. M.; Chacham, H.; Neves, B. R. A.

    2009-01-01

    The mechanical response of single-wall carbon nanotubes to radial compression is investigated via atomic force microscopy (AFM). We find that the force F applied by an AFM tip (with radius R) onto a nanotube (with diameter d), rescaled through the quantity Fd3/2(2R)-1/2, falls into a universal curve as a function of the compressive strain. Such universality is reproduced analytically in a model where the graphene bending modulus is the only fitting parameter. The application of this model to the radial Young’s modulus Er leads to a further universal-type behavior which explains the large variations of nanotube Er reported in the literature.

  12. Coupling between flexural modes in free vibration of single-walled carbon nanotubes

    SciTech Connect

    Liu, Rumeng; Wang, Lifeng

    2015-12-15

    The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.

  13. Recent Progress in Obtaining Semiconducting Single-Walled Carbon Nanotubes for Transistor Applications.

    PubMed

    Islam, Ahmad E; Rogers, John A; Alam, Muhammad A

    2015-12-22

    High purity semiconducting single-walled carbon nanotubes (s-SWCNTs) with a narrow diameter distribution are required for high-performance transistors. Achieving this goal is extremely challenging because the as-grown material contains mixtures of s-SWCNTs and metallic- (m-) SWCNTs with wide diameter distributions, typically inadequate for integrated circuits. Since 2000, numerous ex situ methods have been proposed to improve the purity of the s-SWCNTs. The majority of these techniques fail to maintain the quality and integrity of the s-SWCNTs with a few notable exceptions. Here, the progress in realizing high purity s-SWCNTs in as-grown and post-processed materials is highlighted. A comparison of transistor parameters (such as on/off ratio and field-effect mobility) obtained from test structures establishes the effectiveness of various methods and suggests opportunities for future improvements. PMID:26540144

  14. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    PubMed Central

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-01-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076

  15. The structure and electronic properties of copper iodide 1D nanocrystals within single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kiselev, N. A.; Kumskov, A. S.; Zhigalina, V. G.; Verbitskiy, N. I.; Yashina, L. V.; Chuvilin, A. L.; Vasiliev, A. L.; Eliseev, A. A.

    2013-11-01

    Copper iodide one-dimensional nanocrystals within single walled carbon nanotubes (1D CuI@SWCNTs), i.e. meta-nanotubes [1], were investigated by high resolution electron microscopy (HRTEM). In meta-nanotubes of diameter Dm = 1.3-1.4 nm produced by arc-discharge (AD) method close-packed hexagonal or deformed cubic 1D crystal anion sublattices were observed with cations in octahedral or tetrahedral positions. These two sublattices reversibly transform to one another. In catalysed chemical vapour deposition (CCVD) meta-nanotubes of diameters Dm = 1.5-2.0 nm cubic anion sublattices are formed. For diameters >=2.0 nm three-dimensional (3D) crystallization is observed.

  16. Preparation of cluster states with endohedral fullerenes in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Y. M.; Chen, C. Y.; Yang, W. L.; Feng, M.

    2012-05-01

    We propose two scalable methods for generation of cluster states with arrays of endohedral fullerenes 15N@C60 residing in single-walled carbon nanotubes (SWCNTs) using direct and indirect methods, respectively. The direct method makes use of a series of controlled-phase flip (CPF) gates by electron spin resonance pulses of selective frequencies and durations, where the CPF gates are realized by magnetic-dipole couplings between the electron spins of the nearest-neighbour fullerenes in SWCNTs. The indirect method resorts to auxiliary mobile electron as the flying qubit, which transfers quantum information from one site to another. This greatly releases the requirements for the distance between fullerenes in SWCNTs. The decoherence effect and experimental feasibility are also discussed based on currently available technology.

  17. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

    PubMed Central

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M

    2016-01-01

    Summary Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  18. Sensing Reversible Protein–Ligand Interactions with Single-Walled Carbon Nanotube Field-Effect Transistors

    PubMed Central

    2015-01-01

    We report on the reversible detection of CaptAvidin, a tyrosine modified avidin, with single-walled carbon nanotube (SWNT) field-effect transistors (FETs) noncovalently functionalized with biotin moieties using 1-pyrenebutyric acid as a linker. Binding affinities at different pH values were quantified, and the sensor’s response at various ionic strengths was analyzed. Furthermore, protein “fingerprints” of NeutrAvidin and streptavidin were obtained by monitoring their adsorption at several pH values. Moreover, gold nanoparticle decorated SWNT FETs were functionalized with biotin using 1-pyrenebutyric acid as a linker for the CNT surface and (±)-α-lipoic acid linkers for the gold surface, and reversible CaptAvidin binding is shown, paving the way for potential dual mode measurements with the addition of surface enhanced Raman spectroscopy (SERS). PMID:25126155

  19. Optical and thermal response of single-walled carbon nanotube-copper sulfide nanoparticle hybrid nanomaterials.

    PubMed

    Tseng, Yi-Hsuan; He, Yuan; Lakshmanan, Santana; Yang, Chang; Chen, Wei; Que, Long

    2012-11-16

    This paper reports the optical and thermal response of a single-walled carbon nanotube-copper sulfide nanoparticle (SWNT-CuS NP) hybrid nanomaterial and its application as a thermoelectric generator. The hybrid nanomaterial was synthesized using oleylamine molecules as the linker molecules between SWNTs and CuS NPs. Measurements found that the hybrid nanomaterial has significantly increased light absorption (up to 80%) compared to the pure SWNT. Measurements also found that the hybrid nanomaterial thin-film devices exhibit a clear optical and thermal switching effect, which can be further enhanced up to 10 ×  by asymmetric illumination of light and thermal radiation on the thin-film devices instead of symmetric illumination. A simple prototype thermoelectric generator enabled by the hybrid nanomaterials is demonstrated, indicating a new route for achieving thermoelectricity. PMID:23089651

  20. Adhesion energy of single wall carbon nanotube loops on various substrates

    SciTech Connect

    Li, Tianjun; Ayari, Anthony; Bellon, Ludovic

    2015-04-28

    The physics of adhesion of one-dimensional nano structures such as nanotubes, nano wires, and biopolymers on different substrates is of great interest for the study of biological adhesion and the development of nano electronics and nano mechanics. In this paper, we present force spectroscopy experiments of individual single wall carbon nanotube loops using a home-made interferometric atomic force microscope. Characteristic force plateaus during the peeling process allow the quantitative measurement of the adhesion energy per unit length on various substrates: graphite, mica, platinum, gold, and silicon. Moreover, using a time-frequency analysis of the deflection of the cantilever, we estimate the dynamic stiffness of the contact, providing more information on the nanotube configurations and its intrinsic mechanical properties.

  1. Interaction of [FeFe]-hydrogenases with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Svedruzic Chang, Drazenka; McDonald, Timothy J.; Kim, Yong-Hyun; Blackburn, Jeffrey L.; Heben, Michael J.; King, Paul W.

    2007-09-01

    Single-walled carbon nanotubes (SWNT) are promising candidates for use in energy conversion devices as an active photo-collecting elements, for dissociation of bound excitons and charge-transfer from photo-excited chromophores, or as molecular wires to transport charge. Hydrogenases are enzymes that efficiently catalyze the reduction of protons from a variety of electron donors to produce molecular hydrogen. Hydrogenases together with SWNT suggest a novel biohybrid material for direct conversion of sunlight into H II. Here, we report changes in SWNT optical properties upon addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum and Chlamydomonas reinhardtii. We find evidence that novel and stable charge-transfer complexes are formed under conditions of the hydrogenase catalytic turnover, providing spectroscopic handles for further study and application of this hybrid system.

  2. Heat welding of non-orthogonal X-junction of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Xueming; Han, Zhonghe; Li, Yonghua; Chen, Dongci; Zhang, Pu; To, Albert C.

    2012-09-01

    Though X-junctions of single-walled carbon nanotubes (SWCNTs) have been intensively studied, studies concerning non-orthogonal X-junctions are still very rare. In this paper, the heat welding of defect-free non-orthogonal X-junctions with different crossed angles are investigated by molecular dynamics simulations. The difference between the heat welding of non-orthogonal and orthogonal X-junctions is described, and the angle effect on the configuration and stability of the heat welded non-orthogonal X-junctions is discussed. Compared with the orthogonal X-junction, two crossed SWCNTs with a smaller non-orthogonal angle are easier to join by heat welding, and this may be an important reason why the large tubes are difficult to join, whereas large nanotube bundles are easier to observe in experiments.

  3. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    PubMed

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-01

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. PMID:22619167

  4. Theoretical analysis on nonlinear vibration of fluid flow in single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Valipour, P.; Ghasemi, S. E.; Khosravani, Mohammad Reza; Ganji, D. D.

    2016-04-01

    In this study, the concept of nonlocal continuum theory is used to characterize the nonlinear vibration of an embedded single-walled carbon nanotube. The Pasternak-type model is employed to simulate the interaction of the SWNTs. The parameterized perturbation method is used to solve the corresponding nonlinear differential equation. The effects of the vibration amplitude, flow velocity, nonlocal parameter, and stiffness of the medium on the nonlinear frequency variation are presented. The result shows that by increasing the Winkler constant, the nonlinear frequency decreases, especially for low vibration amplitudes. In addition, it is resulted that influence of the nonlocal parameter is greater at higher flow velocities in comparison with lower flow velocities.

  5. Polymers encapsulated in short single wall carbon nanotubes: pseudo-1D morphologies and induced chirality.

    PubMed

    Kumar, Sunil; Pattanayek, Sudip K; Pereira, Gerald G

    2015-03-21

    Molecular dynamics simulations are performed to investigate the stable morphologies of semi-flexible polymer chains within a single wall carbon nanotube (CNT). We characterize these morphologies with a variety of measures. Due to the different curvature inside the CNT to outside, there are increased numbers of polymer-CNT bead contacts for polymers which reside inside the CNT. A sufficiently long polymer chain first adsorbs on the exterior of the nanotube and subsequently moves inside the cavity of the nanotube. At equilibrium, the polymer configuration consists of a central stem surrounded by helically wrapped layers. Sections of the polymer outside the CNT have helical conformations (for CNTs of small radius) or circular arrangements (for CNTs of larger radius). Polymers encapsulated within the CNT have an increased chirality due to packing of the beads and this chirality is further enhanced for moderately stiff chains. PMID:25796260

  6. Multiple helical configuration and quantity threshold of graphene nanoribbons inside a single-walled carbon nanotube.

    PubMed

    Li, Yifan; Chen, Wei; Ren, Hongru; Zhou, Xuyan; Li, Hui

    2015-01-01

    Molecular dynamics simulation has been carried out to explore the configuration and quantity threshold of multiple graphene nanoribbons (GNRs) in single-walled carbon nanotube (SWCNT). The simulation results showed that several GNRs tangled together to form a perfect spiral structure to maximize the π-π stacking area when filling inside SWCNT. The formation of multiple helical configuration is influenced by the combined effect of structure stability, initial arrangement and tube space, meanwhile its forming time is related to helical angle. The simulated threshold of GNRs in SWCNT decreases with GNR width but increases with SWCNT diameter, and two formulas have come up in this study to estimate the quantity threshold for GNRs. It has been found that multilayered graphite is hard to be stripped in SWCNT because the special helical configuration with incompletely separated GNRs is metastable. This work provides a possibility to control the configuration of GNR@SWCNT. PMID:26374276

  7. Sample preparation protocols for realization of reproducible characterization of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Decker, J. E.; Hight Walker, A. R.; Bosnick, K.; Clifford, C. A.; Dai, L.; Fagan, J.; Hooker, S.; Jakubek, Z. J.; Kingston, C.; Makar, J.; Mansfield, E.; Postek, M. T.; Simard, B.; Sturgeon, R.; Wise, S.; Vladar, A. E.; Yang, L.; Zeisler, R.

    2009-12-01

    Harmonized sample pre-treatment is an essential first step in ensuring quality of measurements as regards repeatability, interlaboratory reproducibility and commutability. The development of standard preparation methods for single-wall carbon nanotube (SWCNT) samples is therefore essential to progress in their investigation and eventual commercialization. Here, descriptions of sample preparation and pre-treatment for the physicochemical characterization of SWCNTs are provided. Analytical methods of these protocols include scanning electron microscopy (dry, wet), transmission electron microscopy (dry, wet), atomic force microscopy, inductively coupled plasma mass spectrometry, neutron activation analysis, Raman spectroscopy (dry, wet), UV-Vis-NIR absorption and photoluminescence spectroscopy, manometric isothermal gas adsorption and thermogravimetric analysis. Although sample preparation refers to these specific methods, application to other methods for measurement and characterization of SWCNTs can be envisioned.

  8. Dynamics of individual single-walled carbon nanotubes in water by real-time visualization.

    PubMed

    Duggal, Rajat; Pasquali, Matteo

    2006-06-23

    Individual single-walled carbon nanotubes (SWNTs) in aqueous suspension are visualized directly by fluorescence video microscopy. The fluorescent tagging is simple, biocompatible, and does not modify the SWNTs. The dynamics of individual SWNTs in water are observed and quantified for the first time. We measure the confined rotational diffusion coefficient and find it in reasonable agreement with predictions based on confined diffusion of dilute Brownian rods. We determine the critical concentration at which SWNTs in suspensions start interacting. By analyzing the fluctuating shape of SWNTs in the 3 to 5 microm range, we determine that their persistence length ranges between 32 and 174 microm, in agreement with theoretical estimates; thus, commonly available SWNTs in liquids can be considered as rigid Brownian rods in the absence of imposed external fields or self-attractive forces. PMID:16907258

  9. Dispersion of single-walled carbon nanotubes modified with poly-l-tyrosine in water.

    PubMed

    Kojima, Mio; Chiba, Tomoka; Niishima, Junichiro; Higashi, Toshiaki; Fukuda, Takahiro; Nakajima, Yoshikata; Kurosu, Shunji; Hanajiri, Tatsuro; Ishii, Koji; Maekawa, Toru; Inoue, Akira

    2011-01-01

    In this study, complexes composed of poly-l-tyrosine (pLT) and single-walled carbon nanotubes (SWCNTs) were produced and the dispersibility of the pLT/SWCNT complexes in water by measuring the ζ potential of the complexes and the turbidity of the solution were investigated. It is found that the absolute value of the ζ potential of the pLT/SWCNT complexes is as high as that of SWCNTs modified with double-stranded DNA (dsDNA) and that the complexes remain stably dispersed in the water at least for two weeks. Thermogravimetry analysis (TGA) and visualization of the surface structures of pLT/SWCNT complexes using an atomic force microscope (AFM) were also carried out. PMID:21711636

  10. Versatile visualization of individual single-walled carbon nanotubes with near-infrared fluorescence microscopy.

    PubMed

    Tsyboulski, Dmitri A; Bachilo, Sergei M; Weisman, R Bruce

    2005-05-01

    Fluorescence microscopy in the near-infrared between 950 and 1600 nm has been developed as a novel method to image and study single-walled carbon nanotubes (SWNTs) in a variety of environments. Intrinsic photoluminescence of disaggregated pristine SWNTs was excited by a diode laser and detected with a two-dimensional InGaAs photodiode array. Individual nanotubes were visualized with a spatial resolution of ca. 1 microm and characterized with polarization measurements and emission spectroscopy. Spatially resolved emission spectra allowed (n,m) identification of single nanotubes and revealed small environmentally induced spectral shifts between segments of long tubes. Nanotube motions in aqueous surfactant were visualized with a time resolution of 50 ms and used to estimate the diffusion coefficient. PMID:15884905

  11. Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes.

    PubMed

    Ishii, Yosuke; Tashiro, Kosuke; Hosoe, Kento; Al-Zubaidi, Ayar; Kawasaki, Shinji

    2016-04-21

    We investigated the electrochemical lithium-ion storage properties of 9,10-anthraquinone (AQ) and 9,10-phenanthrenequinone (PhQ) molecules encapsulated in the inner hollow core of single-walled carbon nanotubes (SWCNTs). The structural properties of the obtained encapsulated systems were characterized by electron microscopy, synchrotron powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy. We found that almost all quinone molecules encapsulated in the SWCNTs can store Li-ions reversibly. Interestingly, the undesired capacity fading, which comes from the dissolution of quinone molecules into the electrolyte, was suppressed by the encapsulation. It was also found that the overpotential of AQ was decreased by the encapsulation, probably due to the high-electric conductivity of SWCNTs. PMID:27030581

  12. Chirality Separation of Single-Wall Carbon Nanotubes using Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Fagan, Jeffrey

    2014-03-01

    Aqueous two-phase extraction (ATPE) was recently demonstrated to enable the separation of individual species of single-wall carbon nanotubes (SWCNTs) across the separated phases. In this presentation I will describe the use of a dextran - polyethylene glycol aqueous two-phase system along with a separation scheme of varying surfactant concentrations to enable isolation at high purity of specific small diameter SWCNT species. Separation by ATPE is rapid and robust, with a remarkable tunability that allows isolation of most single nanotube chiralities at high purity. Choice of surfactant(s), temperature, polymer concentrations, and the addition of small molecule salts can all be used to tune the exact partitioning of single SWCNT species between the two phases.

  13. Fabrication of single-walled carbon nanohorns containing iodine and cesium

    SciTech Connect

    Cho, J. H.; Lim, S. T.; Huh, S. R.; Kim, G. H.

    2012-02-15

    Iodine and cesium atoms were encapsulated in single-walled carbon nanohorns (SWCNHs). Atom encapsulation was carried out with sequential plasma aided procedures which consisted of opening SWCNH tips with an oxygen plasma, atom insertion in an iodine-mixed or cesium-mixed argon plasma, and closing the open tip in an argon plasma. Results reveal that oxidation plays a role in the tip opening procedure, and capillary forces are the driving force for the permeation of the atoms through the open tip of the SWCNHs. The open tip of the atom inserted SWCNH can be closed under the ion irradiation. It demonstrated the fabrication process of encapsulating atoms in SWCNH by using the sequential plasma assisted processes.

  14. Electrochemical Redox Switchable Dispersion of Single-Walled Carbon Nanotubes in Water.

    PubMed

    Feng, Anchao; Peng, Liao; Liu, Bowen; Liu, Senyang; Wang, Shanfeng; Yuan, Jinying

    2016-05-01

    We present a new, efficient approach to achieve superior dispersibility of single-walled carbon nanotubes (SWNTs) in water by integrating reversible host-guest interaction and π-π stacking. In this approach, β-cyclodextrin (β-CD) was first modified with a pyrene group to be adsorbed onto the wall of pristine SWNTs via π-π stacking, followed by further functionalization with ferrocene (Fc)-terminated water-soluble poly(ethylene glycol) (PEG) through supramolecular host-guest interaction between β-CD and Fc. Upon alternate electrochemical oxidative/reductive stimuli, the reversible host-guest pair enabled the PEG-Fc@Py-CD@SWNTs to exhibit switchable conversion between dispersion and aggregation states. Electric field controllable PEG-Fc@Py-CD@SWNTs with good reversibility and intact nanotube structure may find potential applications in selective screening of SWNTs, biosensors, and targeted drug delivery. PMID:27025460

  15. Three-dimensional polymeric structures of single-wall carbon nanotubes.

    PubMed

    Lian, Chao-Sheng; Wang, Jian-Tao

    2014-05-28

    We explore by ab initio calculations the possible crystalline phases of polymerized single-wall carbon nanotubes (P-SWNTs) and determine their structural, elastic, and electronic properties. Based on direct cross-linking and intertube sliding-assisted cross-linking mechanisms, we have identified a series of stable three-dimensional polymeric structures for the zigzag nanotubes up to (10,0). Among proposed P-SWNT phases, the structures with favorable diamond-like sp(3) intertube bonding configuration and small tube cross-section distortion are found to be the most energetically stable ones. These polymeric crystalline phases exhibit high bulk and shear moduli superior to SWNT bundles, and show metallic or semiconducting properties depending on the diameter of constituent tubes. We also propose by hydrostatic pressure simulations that the intertube sliding between van der Waals bonded nanotubes may be an effective route to promote the polymerization of SWNTs under pressure. PMID:24880313

  16. High rate capacitive performance of single-walled carbon nanotube aerogels

    SciTech Connect

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; Beidaghi, Majid; Joo Jeong, Yeon; Islam, Mohammad F.; Gogotsi, Yury

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks and enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.

  17. Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Wang, Ru-Zhi; Wang, Yu-Fang; Song, Xue-Mei; Wang, Bo; Yan, Hui

    2007-07-01

    Using molecular-dynamics simulations and the force-constant model, we have studied the Raman-active tangential modes (TMs) of a (10,0) single-wall carbon nanotube under hydrostatic pressure. With increasing pressure, the atomic motions in the three TMs present obvious diversities. The pressure derivative of E1g , A1g , and E2g mode frequencies shows an increased value (dωE1g/dP>0) , a constant value (dωA1g/dP˜0) , and a negative value (dωE2g/dP<0) above 5.3GPa , respectively. The intrinsic characteristics of TMs consumedly help us understand the essence of the experimental T band of CNT. The anomalous pressure behavior of the TM frequencies may originate from the tube symmetry alteration from D10h to D2h then to C2h .

  18. Coupling between flexural modes in free vibration of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Rumeng; Wang, Lifeng

    2015-12-01

    The nonlinear thermal vibration behavior of a single-walled carbon nanotube (SWCNT) is investigated by molecular dynamics simulation and a nonlinear, nonplanar beam model. Whirling motion with energy transfer between flexural motions is found in the free vibration of the SWCNT excited by the thermal motion of atoms where the geometric nonlinearity is significant. A nonlinear, nonplanar beam model considering the coupling in two vertical vibrational directions is presented to explain the whirling motion of the SWCNT. Energy in different vibrational modes is not equal even over a time scale of tens of nanoseconds, which is much larger than the period of fundamental natural vibration of the SWCNT at equilibrium state. The energy of different modes becomes equal when the time scale increases to the microsecond range.

  19. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy

    NASA Astrophysics Data System (ADS)

    Umeyama, Tomokazu; Baek, Jinseok; Sato, Yuta; Suenaga, Kazu; Abou-Chahine, Fawzi; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2015-07-01

    The close solid-state structure-property relationships of organic π-aromatic molecules have attracted interest due to their implications for the design of organic functional materials. In particular, a dimeric structure, that is, a unit consisting of two molecules, is required for precisely evaluating intermolecular interactions. Here, we show that the sidewall of a single-walled carbon nanotube (SWNT) represents a unique molecular dimer platform that can be directly visualized using high-resolution transmission electron microscopy. Pyrene is chosen as the π-aromatic molecule; its dimer is covalently linked to the SWNT sidewalls by aryl addition. Reflecting the orientation and separation of the two molecules, the pyrene dimer on the SWNT exhibits characteristic optical and photophysical properties. The methodology discussed here--form and probe molecular dimers--is highly promising for the creation of unique models and provides indispensable and fundamental information regarding molecular interactions.

  20. Solution phase photolysis of 1,2-dithiane alone and with single-walled carbon nanotubes.

    PubMed

    Engel, Paul S; Gudimetla, Vittal B; Gancheff, Jorge S; Denis, Pablo A

    2012-08-16

    Photolysis of 1,2-dithiane (1) in acetonitrile with single walled carbon nanotubes (SWCNTs) was earlier reported to form thiol-functionalized SWCNTs via the butane-1,4-dithiyl diradical (2). The present study shows that 2 instead undergoes a facile rearrangement to thiophane-2-thiol (6). This photoreaction is clean, rapid, and irreversible under 313 nm irradiation. The secondary photolysis of 6 with SWCNTs at a shorter wavelength (254 nm) leads to 2-thiophanyl radicals 8, which derivatize SWCNTs by covalent attachment. Pyrolysis of the resulting "sulfurized SWCNTs" affords a mixture of organosulfur compounds, including thiophene formed by dehydrogenation. An unknown additional mechanism causes high TGA weight loss and a large incorporation of sulfur. PMID:22874092

  1. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions

    NASA Astrophysics Data System (ADS)

    Ihly, Rachelle; Mistry, Kevin S.; Ferguson, Andrew J.; Clikeman, Tyler T.; Larson, Bryon W.; Reid, Obadiah; Boltalina, Olga V.; Strauss, Steven H.; Rumbles, Garry; Blackburn, Jeffrey L.

    2016-06-01

    Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the first time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.

  2. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.

    2006-01-01

    Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.

  3. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  4. Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field.

    PubMed

    García-García, Amanda; Vergaz, Ricardo; Algorri, José F; Zito, Gianluigi; Cacace, Teresa; Marino, Antigone; Otón, José M; Geday, Morten A

    2016-01-01

    Single-wall carbon nanotubes (SWCNT) are anisotropic nanoparticles that can cause modifications in the electrical and electro-optical properties of liquid crystals. The control of the SWCNT concentration, distribution and reorientation in such self-organized fluids allows for the possibility of tuning the liquid crystal properties. The alignment and reorientation of CNTs are studied in a system where the liquid crystal orientation effect has been isolated. Complementary studies including Raman spectroscopy, microscopic inspection and impedance studies were carried out. The results reveal an ordered reorientation of the CNTs induced by an electric field, which does not alter the orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. PMID:27547599

  5. Preparation and Properties of Nanocomposites Prepared From Shortened, Functionalized Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Delozier, D. M.; Watson, K. A.; Connell, J. W.; Yu, Aiping; Haddon, R. C.; Bekyarova, E.

    2006-01-01

    As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.

  6. Three-dimensional polymeric structures of single-wall carbon nanotubes

    SciTech Connect

    Lian, Chao-Sheng; Wang, Jian-Tao

    2014-05-28

    We explore by ab initio calculations the possible crystalline phases of polymerized single-wall carbon nanotubes (P-SWNTs) and determine their structural, elastic, and electronic properties. Based on direct cross-linking and intertube sliding-assisted cross-linking mechanisms, we have identified a series of stable three-dimensional polymeric structures for the zigzag nanotubes up to (10,0). Among proposed P-SWNT phases, the structures with favorable diamond-like sp{sup 3} intertube bonding configuration and small tube cross-section distortion are found to be the most energetically stable ones. These polymeric crystalline phases exhibit high bulk and shear moduli superior to SWNT bundles, and show metallic or semiconducting properties depending on the diameter of constituent tubes. We also propose by hydrostatic pressure simulations that the intertube sliding between van der Waals bonded nanotubes may be an effective route to promote the polymerization of SWNTs under pressure.

  7. Gas sensors based on deposited single-walled carbon nanotube networks for DMMP detection

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Zhou, Zhihua; Yang, Zhi; Chen, Xiaohang; Xu, Dong; Zhang, Yafei

    2009-08-01

    Sensors based on single-walled carbon nanotube (SWNT) networks were fabricated and their sensitive properties for the nerve agent stimulant dimethyl methylphosphonate (DMMP) vapor were investigated at room temperature. The SWNT networks were deposited on oxidized silicon surface functionalized with 3-aminopropyltrimethysilane (APS). Combining with a traditional silicon process, SWNT-based gas sensors were made at a wafer scale. The effects of the density of deposited SWNTs on the sensor response were studied. The excellent response is obtained under a density of 30-40 tubes µm-2. The sensors exhibit high resistance response, fast response time, rapid recovery and good reproducibility for DMMP vapor. The deposited SWNT sensors will be potentially extended to large-scale fabrication.

  8. Si-coated single-walled carbon nanotubes under axial loads: An atomistic simulation study

    NASA Astrophysics Data System (ADS)

    HaiYang, Song; XinWei, Zha

    2007-04-01

    The mechanical properties of the Si-coated imperfect (5, 5) single-walled carbon nanotube (SWCNT), the imperfect (5, 5) SWCNT and several perfect armchair SWCNTs under axial loads were investigated using molecular dynamics simulation. The interactions between atoms were modeled using the empirical Tersoff potential and the Tersoff-Brenner potential coupled with the Lennard-Jones potential. We get Young's modulus of the defective (5, 5) nanotube with and without the Si coating under axial tension 1107.92 and 1076.02 GPa, respectively. The results also show that the structure failure of the Si-coated imperfect (5, 5) SWCNT under axial compression occurs at a slightly higher strain than for the perfect (5, 5) SWCNT. Therefore, we can confirm the protective effect of Si as a coating material for defective SWCNTs. We also obtain the critical buckling strains of perfect SWCNTs.

  9. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites.

    PubMed

    Li, Ning; Huang, Yi; Du, Feng; He, Xiaobo; Lin, Xiao; Gao, Hongjun; Ma, Yanfeng; Li, Feifei; Chen, Yongsheng; Eklund, Peter C

    2006-06-01

    Single-walled carbon nanotube (SWNT)-polymer composites have been fabricated to evaluate the electromagnetic interference (EMI) shielding effectiveness (SE) of SWNTs. Our results indicate that SWNTs can be used as effective lightweight EMI shielding materials. Composites with greater than 20 dB shielding efficiency were obtained easily. EMI SE was tested in the frequency range of 10 MHz to 1.5 GHz, and the highest EMI shielding efficiency (SE) was obtained for 15 wt % SWNT, reaching 49 dB at 10 MHz and exhibiting 15-20 dB in the 500 MHz to 1.5 GHz range. The EMI SE was found to correlate with the dc conductivity, and this frequency range is found to be dominated by reflection. The effects of SWNT wall defects and aspect ratio on the EMI SE were also studied. PMID:16771569

  10. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  11. Properties of single wall carbon nanotubes array antennas in the optical regime

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofang; Jiang, Yuesong; Hua, Houqiang

    2014-11-01

    Single wall carbon nanotubes (SWCNTs) can be metallic, depending on their chirality. For their nanoscale geometric dimension, SWCNTs can be used as antennas to convert high-frequency electromagnetic radiation such as optical radiation into localized energy and vice versa. However, at optical frequencies, traditional antenna design theory fails for metals behave as strongly coupled plasmas. As a matter of fact, an optical antenna responds to a shorter effective wavelength which depends on the material properties and geometric parameters. In this letter, we derived the relationship of effective wavelength with the wavelength of incident radiation for SWCNTs optical antenna, assuming that the SWCNTs can be described by a free electron gas according to the Drude model. SWCNTs optical antenna holds great promise for increasing solar energy conversion efficiency.

  12. Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Mao, Hongli; Cai, Rong; Kawazoe, Naoki; Chen, Guoping

    2014-01-01

    The monitoring of grafted stem cells is crucial to assess the efficiency, effectiveness and safety of such stem cell-based therapies. In this regard, a reliable and cytocompatible labeling method for stem cells is critically needed. In this study, the collagen-functionalized single-walled carbon nanotubes (Col-SWCNTs) were used as imaging probes for labeling of human mesenchymal stem cells (hMSCs) and the inherent Raman scattering of SWCNTs was used to image the SWCNT-labeled cells. The results showed that the Col-SWCNTs exhibit efficient cellular internalization by hMSCs without affecting their proliferation and differentiation. The prolonged dwell time of Col-SWCNTs in cells ensured the long-term labeling for up to 2 weeks. This work reveals the potential of Col-SWCNTs as probes for long-term stem cell labeling.

  13. Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires.

    PubMed

    Satishkumar, B C; Taubert, A; Luzzi, D E

    2003-01-01

    Nanowires of magnetic metals (Fe, Co, Ho, Gd) have been synthesized inside the hollow interiors of single-wall carbon nanotubes (SWNTs) by filling SWNTs with precursor metal chlorides and subsequent reduction. SWNTs have been filled by either the melt-phase sealed-tube reaction or a solution-phase method. Among the metal chlorides investigated in this study, HoCl3 and GdCl3 filled the SWNTs to a significantly higher extent. The nanowires have been imaged by transmission electron microscopy (TEM), high-resolution transmission electron microscopy, and scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy carried out in conjunction with TEM and STEM confirmed the presence of metal chloride and metal nanowires. PMID:12908245

  14. 0.8 nm single wall carbon nanotubes for wideband ultrafast pulse generation

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Xu, Y.; Jia, Z. X.; Qin, G. S.; Qin, W. P.

    2016-04-01

    We demonstrate wideband ultrafast optical pulse generation at 1, 1.56 and 2 μm by using single polymer composite saturable absorber (SA) based on 0.8 nm single wall carbon nanotubes (SWCNTs). The SWCNTs were mixed with sodium carboxymethylcellulose (NaCMC) to form SWCNT SA films. The film then integrated into ytterbium-(Yb-), erbium-(Er-) and thulium-(Tm-) doped ring fiber laser cavities. Using this film, we achieve 380 ps, 830 fs, and 1.24 ps mode-locked pulses at 1035, 1560, and 1933 nm, respectively. These results suggest that 0.8 nm SWCNTs are potentially useful as optical elements in wideband fiber lasers.

  15. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-03-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  16. A dislocation model for the pentagon-heptagon pair in zigzag single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Shao Feng; Zhang, Hui Li; Zhi Wu, Xiao

    2010-06-01

    The pentagon-heptagon (5/7) pair in a zigzag single-walled carbon nanotube (SWCNT) is described as a dislocation by the modified Peierls-Nabarro (P-N) theory. The theory takes discrete effects, size effects and curvature effects into account. The bonds variation and shape distortion caused by 5/7 pair have been evaluated. It is found that the neck bond (shared bond) becomes longer while the shoulder bonds become shorter comparing with the one of the hexagons. The results show that the zigzag chain across the center of the 5/7 pair will bend slightly in the axis direction towards the heptagon, and the tube will be flattened where the 5/7 pair is located because of the appearance of the internal stress and nonzero curvature.

  17. High rate capacitive performance of single-walled carbon nanotube aerogels

    DOE PAGESBeta

    Van Aken, Katherine L.; Pérez, Carlos R.; Oh, Youngseok; Beidaghi, Majid; Joo Jeong, Yeon; Islam, Mohammad F.; Gogotsi, Yury

    2015-05-30

    Single-walled carbon nanotube (SWCNT) aerogels produced by critical-point-drying of wet-gel precursors exhibit unique properties, such as high surface-area-to-volume and strength-to-weight ratios. They are free-standing, are binder-free, and can be scaled to thicknesses of more than 1 mm. In this paper, we examine the electric double layer capacitive behavior of these materials using a common room temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI). Electrochemical performance is assessed through galvanostatic cycling, cyclic voltammetry and impedance spectroscopy. Results indicate stable capacitive performance over 10,000 cycles as well as an impressive performance at high charge and discharge rates, due to accessible pore networks andmore » enhanced electronic and ionic conductivities of SWCNT aerogels. Finally, these materials can find applications in mechanically compressible and flexible supercapacitor devices with high power requirements.« less

  18. Torsional vibration of single-walled carbon nanotubes using doublet mechanics

    NASA Astrophysics Data System (ADS)

    Fatahi-Vajari, Alireza; Imam, Ali

    2016-08-01

    This paper investigates the torsional vibration of single-walled carbon nanotubes (SWCNTs) using a new approach based on doublet mechanics (DM) incorporating explicitly scale parameter and chiral effects. A fourth-order partial differential equation that governs the torsional vibration of nanotubes is derived. Using DM, an explicit equation for the natural frequency in terms of geometrical and mechanical property of CNTs is obtained for both the Zigzag and Armchair nanotube for the torsional vibration mode. It is shown that chiral effects along with the scale parameter play a significant role in the vibration behavior of SWCNTs in torsional vibration mode. Such effects decrease the natural frequency obtained by DM compared to the classical continuum mechanics and nonlocal theory predictions. However, with increase in the length and/or the radius of the tube, the effect of the chiral and scale parameter on the natural frequency decreases.

  19. Theoretical analysis on nonlinear vibration of fluid flow in single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Valipour, P.; Ghasemi, S. E.; Khosravani, Mohammad Reza; Ganji, D. D.

    2016-09-01

    In this study, the concept of nonlocal continuum theory is used to characterize the nonlinear vibration of an embedded single-walled carbon nanotube. The Pasternak-type model is employed to simulate the interaction of the SWNTs. The parameterized perturbation method is used to solve the corresponding nonlinear differential equation. The effects of the vibration amplitude, flow velocity, nonlocal parameter, and stiffness of the medium on the nonlinear frequency variation are presented. The result shows that by increasing the Winkler constant, the nonlinear frequency decreases, especially for low vibration amplitudes. In addition, it is resulted that influence of the nonlocal parameter is greater at higher flow velocities in comparison with lower flow velocities.

  20. Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation.

    PubMed

    Jang, Myungsu; Kim, Somin; Jeong, Haneul; Ju, Sang-Yong

    2016-10-14

    Sorted single-walled carbon nanotubes (SWNTs) are of paramount importance for their utilization in high-end optoelectronic applications. Sodium cholate (SC)-based density gradient ultracentrifugation (DGU) has been instrumental in isolating small diameter (d t) SWNTs. Here, we show that SWNTs wrapped by flavin mononucleotide (FMN) as a dispersing agent are sorted in DGU, and show sorting order reversal behavior, departing from prototypical SC-SWNT trends. Larger d t SWNTs are sorted in lower density (ρ), and buoyant ρ distribution of FMN-SWNT ranges from 1.15-1.25 g cm(-3). Such a nanotube layering pattern originates from both the binding affinity between FMN and SWNT and the less-susceptible hydrated volume of remote phosphate sidechains of FMN according to nanotube d t change. PMID:27595315

  1. Aggregated single-walled carbon nanotubes attenuate the behavioural and neurochemical effects of methamphetamine in mice

    NASA Astrophysics Data System (ADS)

    Xue, Xue; Yang, Jing-Yu; He, Yi; Wang, Li-Rong; Liu, Ping; Yu, Li-Sha; Bi, Guo-Hua; Zhu, Ming-Ming; Liu, Yue-Yang; Xiang, Rong-Wu; Yang, Xiao-Ting; Fan, Xin-Yu; Wang, Xiao-Min; Qi, Jia; Zhang, Hong-Jie; Wei, Tuo; Cui, Wei; Ge, Guang-Lu; Xi, Zheng-Xiong; Wu, Chun-Fu; Liang, Xing-Jie

    2016-07-01

    Methamphetamine (METH) abuse is a serious social and health problem worldwide. At present, there are no effective medications to treat METH addiction. Here, we report that aggregated single-walled carbon nanotubes (aSWNTs) significantly inhibited METH self-administration, METH-induced conditioned place preference and METH- or cue-induced relapse to drug-seeking behaviour in mice. The use of aSWNTs alone did not significantly alter the mesolimbic dopamine system, whereas pretreatment with aSWNTs attenuated METH-induced increases in extracellular dopamine in the ventral striatum. Electrochemical assays suggest that aSWNTs facilitated dopamine oxidation. In addition, aSWNTs attenuated METH-induced increases in tyrosine hydroxylase or synaptic protein expression. These findings suggest that aSWNTs may have therapeutic effects for treatment of METH addiction by oxidation of METH-enhanced extracellular dopamine in the striatum.

  2. Improved field emission stability from single-walled carbon nanotubes chemically attached to silicon

    PubMed Central

    2012-01-01

    Here, we demonstrate the simple fabrication of a single-walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring posttreatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V μm−1 and high electric field enhancement factor of 3,965. The Si-SWCNT electrodes were shown to maintain a current density of >740 μA cm−2 for 15 h with negligible change in applied voltage. The results indicate that adhesion strength between the SWCNTs and substrate is a much greater factor in field emission stability than previously reported. PMID:22853557

  3. Periodic alignment of Si quantum dots on hafnium oxide coated single wall carbon nanotubes

    SciTech Connect

    Olmedo, Mario; Martinez-Morales, Alfredo A.; Ozkan, Mihrimah; Liu Jianlin; Liu Gang; Lau, C.N.; Yengel, Emre; Ozkan, Cengiz S.

    2009-03-23

    We demonstrate a bottom up approach for the aligned epitaxial growth of Si quantum dots (QDs) on one-dimensional (1D) hafnium oxide (HfO{sub 2}) ridges created by the growth of HfO{sub 2} thin film on single wall carbon nanotubes. This growth process creates a high strain 1D ridge on the HfO{sub 2} film, which favors the formation of Si seeds over the surrounding flat HfO{sub 2} area. Periodic alignment of Si QDs on the 1D HfO{sub 2} ridge was observed, which can be controlled by varying different growth conditions, such as growth temperature, growth time, and disilane flow rate.

  4. Vertical alignment of single-walled carbon nanotube films formed by electrophoretic deposition.

    PubMed

    Kim, Sung-Kyoung; Lee, Haiwon; Tanaka, Hirofumi; Weiss, Paul S

    2008-11-18

    Films of chemically shortened and functionalized single-walled carbon nanotubes (SWNTs) have been formed on a gold electrode by electrophoretic deposition. Applying ultrasonic energy resulted in dramatic changes of the film morphology; the deposited SWNT bundles reassembled and oriented normal to the electrode. Oriented SWNT bundles with high density (more than 250 bundles/microm (2)) not only presented narrow size distributions, but uniformly spread on the electrode. We discuss the mechanism of SWNT orientation by analyzing the variation in the film morphology with ultrasonication time. In addition, we suggest that the 3D displays of AFM images can lead to misjudgment of nanotube alignment. The method for aligning SWNTs normal to the electrode may be competitive with chemical vapor deposition or screen printing, the predominant methods by which vertically aligned SWNT films have been fabricated to date. PMID:18925761

  5. Passively Q-switching induced by the smallest single-walled carbon nanotubes

    SciTech Connect

    Xu, X. T.; Zhai, J. P.; Wang, J. S.; Chen, Y. P.; Yu, Y. Q.; Zhang, M.; Li, I. L.; Ruan, S. C.; Tang, Z. K.

    2014-04-28

    We report a passively Q-switched erbium-doped fiber laser (EDFL) by using the smallest single-walled carbon nanotubes (SWNTs) with a diameter of 0.3 nm as the saturable absorber. These small SWNTs are fabricated in the nanochannels of a ZnAPO-11 (AEL) single crystal. By inserting one of the AEL crystal into an EDFL cavity pumped by a 980 nm laser diode, stable passive Q-switching is achieved for a threshold pump power of 206.2 mW, and 4.73 μs pulses with a repetition rate of 41.78 kHz and an average output power of 3.75 mW are obtained for a pump power of 406 mW.

  6. Effects of electron exchange-correlation potential on electrostatic oscillations in single-walled carbon nanotubes

    SciTech Connect

    Khan, S. A. Hassan, Sunia

    2014-05-28

    Using macroscopic quantum hydrodynamic formulation, we study the dispersion properties of electrostatic electron plasma oscillations in single-walled carbon nanotubes. The electrons and ions are considered uniformly distributed over the cylindrical surface of a nanotube thus forming a two-component (electron-ion) quantum plasma system. Electron degeneracy via Fermi-Dirac statistics as well as electron exchange and correlation effects is taken into account. It is found that the quantum (Bohm) potential arising due to fermionic nature of electrons and exchange-correlations effects has significant impact on the wave. The frequency of wave is influenced by variation in azimuthal index and radius of the nanotube. The results are analyzed numerically for typical systems for relatively longer wavelength waves and possible consequences are discussed. The results can be important in general understanding of the role of exchange-correlation potential in quantum hydrodynamic treatment of charge-carriers in nanotubes.

  7. Ultrafast charge separation at a polymer-single-walled carbon nanotube molecular junction.

    PubMed

    Stranks, Samuel D; Weisspfennig, Christian; Parkinson, Patrick; Johnston, Michael B; Herz, Laura M; Nicholas, Robin J

    2011-01-12

    We have investigated the charge photogeneration dynamics at the interface formed between single-walled carbon nanotubes (SWNTs) and poly(3-hexylthiophene) (P3HT) using a combination of femtosecond spectroscopic techniques. We demonstrate that photoexcitation of P3HT forming a single molecular layer around a SWNT leads to an ultrafast (∼430 fs) charge transfer between the materials. The addition of excess P3HT leads to long-term charge separation in which free polarons remain separated at room temperature. Our results suggest that SWNT-P3HT blends incorporating only small fractions (1%) of SWNTs allow photon-to-charge conversion with efficiencies comparable to those for conventional (60:40) P3HT-fullerene blends, provided that small-diameter tubes are individually embedded in the P3HT matrix. PMID:21105722

  8. Cell response to single-walled carbon nanotubes in hybrid porous collagen sponges.

    PubMed

    Mao, Hongli; Kawazoe, Naoki; Chen, Guoping

    2015-02-01

    Three-dimensional (3D) porous collagen sponges incorporated with single-walled carbon nanotubes (SWCNTs) were prepared and used for 3D culture of bovine articular chondrocytes (BACs). The pore structures of the sponges were controlled by using ice particulates as a porogen material. The responses of cells to SWCNTs were investigated in this 3D cell culture system by evaluation of cell functions and cellular uptake of SWCNTs. The results showed that cells adhered and spatially distributed in the porous sponges. The incorporation of SWCNTs in the porous sponges promoted cell proliferation and production of sulfated glycosaminoglycans (sGAG). Confocal Raman imaging revealed that SWCNTs could be internalized by cells. The hybrid porous sponges not only provided nanostructured pore surfaces to facilitate cell proliferation and extracellular matrix (ECM) secretion but also supplied nanomaterials for cellular uptake which may be useful for biomedical applications. PMID:25543985

  9. Selective Growth of Metallic and Semiconducting Single Walled Carbon Nanotubes on Textured Silicon.

    PubMed

    Jang, Mira; Lee, Jongtaek; Park, Teahee; Lee, Junyoung; Yang, Jonghee; Yi, Whikun

    2016-03-01

    We fabricated the etched Si substrate having the pyramidal pattern size from 0.5 to 4.2 μm by changing the texturing process parameters, i.e., KOH concentration, etching time, and temperature. Single walled carbon nanotubes (SWNTs) were then synthesized on the etched Si substrates with different pyramidal pattern by chemical vapor deposition. We investigated the optical and electronic properties of SWNT film grown on the etched Si substrates of different morphology by using scanning electron microscopy, Raman spectroscopy and conducting probe atomic force microscopy. We confirmed that the morphology of substrate strongly affected the selective growth of the SWNT film. Semiconducting SWNTs were formed on larger pyramidal sized Si wafer with higher ratio compared with SWNTs on smaller pyramidal sized Si. PMID:27455748

  10. Sodium insertion/extraction from single-walled and multi-walled carbon nanotubes: The differences and similarities

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Damian; Pramudita, James C.; Choucair, Mohammad; Rawal, Aditya; Sharma, Neeraj

    2016-05-01

    A comparative study on the sodium-ion insertion and extraction of commercially-available multi-wall and single-wall carbon nanotubes is reported. Single-wall carbon nanotubes exhibit charge/discharge capacities of 126 mA h g-1 and multi-wall carbon nanotubes produce a lower capacity of 28 mA h g-1 after 50 cycles at 25 mA g-1. To understand these differences, a combination of X-ray diffraction and solid state nuclear magnetic resonance measurements were performed at various states of sodium insertion and extraction.23Na nuclear magnetic resonance studies, a technique previously rarely used for characterising electrodes from sodium-ion batteries, shows differences in the sodium chemical environment near multi-wall compared to single-wall carbon nanotubes with distinct sodium sites found to be active during sodium insertion and extraction for the carbon nanotubes. Both types of carbon nanotubes show a similar amount of reversible sodium available for insertion/extraction reactions, but multi-wall carbon nanotubes feature half the initial insertion capacity relative to single-wall carbon nanotubes. The electrochemical performance of the carbon nanotube electrodes are discussed in relation to the observed mechanism of sodium insertion.

  11. Developing Xenopus embryos recover by compacting and expelling single wall carbon nanotubes.

    PubMed

    Holt, Brian D; Shawky, Joseph H; Dahl, Kris Noel; Davidson, Lance A; Islam, Mohammad F

    2016-04-01

    Single wall carbon nanotubes are high aspect ratio nanomaterials being developed for use in materials, technological and biological applications due to their high mechanical stiffness, optical properties and chemical inertness. Because of their prevalence, it is inevitable that biological systems will be exposed to nanotubes, yet studies of the effects of nanotubes on developing embryos have been inconclusive and are lacking for single wall carbon nanotubes exposed to the widely studied model organism Xenopus laevis (African clawed frog). Microinjection of experimental substances into the Xenopus embryo is a standard technique for toxicology studies and cellular lineage tracing. Here we report the surprising finding that superficial (12.5 ± 7.5 µm below the membrane) microinjection of nanotubes dispersed with Pluronic F127 into one- to two-cell Xenopus embryos resulted in the formation and expulsion of compacted, nanotube-filled, punctate masses, at the blastula to mid-gastrula developmental stages, which we call "boluses." Such expulsion of microinjected materials by Xenopus embryos has not been reported before and is dramatically different from the typical distribution of the materials throughout the progeny of the microinjected cells. Previous studies of microinjections of nanomaterials such as nanodiamonds, quantum dots or spherical nanoparticles report that nanomaterials often induce toxicity and remain localized within the embryos. In contrast, our results demonstrate an active recovery pathway for embryos after exposure to Pluronic F127-coated nanotubes, which we speculate is due to a combined effect of the membrane activity of the dispersing agent, Pluronic F127, and the large aspect ratio of nanotubes. PMID:26153061

  12. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures.

    PubMed

    Meng, Ling; Jin, Juan; Yang, Gaixiu; Lu, Tianhong; Zhang, Hui; Cai, Chenxin

    2009-09-01

    A new electrocatalyst, palladium nanoparticle-single-walled carbon nanotube (Pd-SWNTs) hybrid nanostructure, for the nonenzymatic oxidation of glucose was developed and characterized by X-ray diffraction (XRD) and the transmission electron microscope (TEM). The hybrid nanostructures were prepared by depositing palladium nanoparticles with average diameters of 4-5 nm on the surface of single-walled carbon nanotubes (SWNTs) via chemical reduction of the precursor (Pd(2+)). The electrocatalyst showed good electrocatalytic activity toward the oxidation of glucose in the neutral phosphate buffer solution (PBS, pH 7.4) even in the presence of a high concentration of chloride ions. A nonenzymatic amperometric glucose sensor was developed with the use of the Pd-SWNT nanostructure as an electrocatalyst. The sensor had good electrocatalytic activity toward oxidation of glucose and exhibited a rapid response (ca.3 s), a low detection limit (0.2 +/- 0.05 microM), a wide and useful linear range (0.5-17 mM), and high sensitivity (approximately 160 microA mM(-1) cm(-2)) as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, 4-acetamidophenol, 3,4-dihydroxyphenylacetic acid, and so forth did not cause any interference due to the use of a low detection potential (-0.35 V vs SCE). The sensor can also be used for quantification of the concentration of glucose in real clinical samples. Therefore, this work has demonstrated a simple and effective sensing platform for nonenzymatic detection of glucose. PMID:19715358

  13. [Study on single-walled carbon nanotube thin film photoelectric device].

    PubMed

    Xie, Wen-bin; Zhu, Yong; Gong, Tian-cheng; Chen, Yu-lin; Zhang, Jie

    2015-01-01

    The single-walled carbon nanotube film photoelectric device was invented, and it can generate net photocurrent under bias voltage when it is illuminated by the laser. The influences of bias voltage, laser power and illuminating position on the net photocurrent were investigated. The experimental results showed that when the center of the film was illuminated, the photocurrent increased with the applied bias, but tended to saturate as the laser power increased. As the voltage and the laser power reached 0. 2 V and 22. 7 mW respectively, the photocurrent reached 0. 24 µA. When the voltage was removed, the photocurrent varied with the laser illuminating position on the film and its value was distributed symmetrically about the center of the device. The photocurrent reached maximum and almost zero respectively when the laser illuminated on two ends and the center of the film. Analysis proposes that the net photocurrent can be generated due to internal photoelectric effect when the device is under voltage and the laser illuminates on the center of the film. It can be also generated due to photo-thermoelectric effect when the device is under no voltage and the laser illuminates on the film, and the relation between the net photocurrent and the illuminating position was derived according to the nature of thermoelectric power of single-walled carbon nanotubes with the established temperature model, which coincides with experimental result. Two effects are the reasons for the generation and variety of the net photocurrent and they superimpose to form the result of the net photocurrent when the device is under general conditions of voltage and laser illuminating position. The device has potential applications in the areas of photovoltaic device and optical sensor for its characteristic. PMID:25993863

  14. The separation and substrate independent organization of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Debjit D.

    Learning how to separate, purify and manipulate single wall carbon nanotubes (SWNTs) presents a unique challenge in material science. The processing-related difficulties of these long nano-fibers stem from their high aspect ratio, rigidity and the profound hydrophobic attractions along their tubular walls. Shortening them into discrete segments, with lengths from tens to hundreds of nanometers, presents a viable methodology to alleviate the shape-induced intractability. The thesis presents a route for the length fractionation of shortened-S WNTs, and most importantly provides a venue by which substantial separation of single wall carbon nanotubes (SWNTs) according to type (metallic versus semiconducting) has been achieved for HiPco and laser-ablated SWNTs. Herein I argue that stable dispersions of SWNTs with octadecylamine (ODA) in tetrahydrofuran (THF) originate from the physisorption and organization of ODA along the SWNT sidewalls in addition to the originally proposed zwitterion model. Furthermore, the reported affinity of amine groups for semiconducting SWNTs, as opposed to their metallic counterparts contributes additional stability to the physisorbed ODA. This provides a venue for the selective precipitation of metallic SWNTs upon increasing dispersion concentration, as indicated by Raman investigations. In addition, the thesis provides a novel metal-assisted self-organization of these nanosized objects into nano-forest geometries with dense perpendicular surface grafting, and demonstrates that such nanosized objects hold significant promise for the development of nanoscale sensors. Additionally, this dissertation provides a method for the complete elimination of catalytic impurities from SWNTs. Electrochemical actuators using such purified SWNTs have been characterized.

  15. Gold Nanopopcorn Attached Single-Walled Carbon Nanotube Hybrid for Rapid Detection and Killing of Bacteria

    PubMed Central

    Ondera, Thomas. J.

    2014-01-01

    We report a strategy to fabricate a rapid and stable surface-enhanced Raman scattering (SERS)-based hybrid nanomaterial using gold nanopopcorns attached single-walled carbon nanotubes (AuNP@f3-SWCNTs) for label-free detection and photothermal killing of bacteria. Herein, previously ester-functionalized single-walled carbon nanotubes (f1-SWCNTs) undergo 1,3-dipolar cycloaddition reaction with in-situ generated nitrile imine under Microwave (MW) irradiation to form a doubly ester terminated SWCNTs cycloadduct (f2-SWCNTs). The ester terminals are further modified with 4-aminothiophenol (4-ATP) under MW-irradiation to form thiol-terminated SWCNTs templates (f3-SWCNTs) that allow gold nanopopcorns (AuNPs) to covalently and uniformly attach at a minimum inter-particle distance thus yielding a hybrid nanomaterial (AuNP@f3-SWCNT) with good aqueous stability and abundant ‘hotspots’. Consequently, monoclonal E. coli antibody-conjugated bioassays fabricated with our AuNP@f3-SWCNT substrates (mAb-AuNP@f3-SWCNT) rapidly detect E. coli in water with good selectivity and impressive SERS sensitivity. The detection limit of E. coli 49979, selected as a model to establish proof of principle, was found to be 1.0×102 CFU/mL. Furthermore, the AuNP@f3-SWCNT hybrid nanomaterial offers impressive photothermal pathogen killing effects. The synergy-type enhancement effect arising from the inherent noble properties of the respective components of the hybrid nanomaterial indicate that our AuNP@f3-SWCNT has the potential for further application in multiplex detection in samples. PMID:25414794

  16. Polypyrrole-Functionalized Single-Walled Carbon Nanotube Gas Sensor Arrays

    NASA Astrophysics Data System (ADS)

    Kakoullis, James, Jr.

    The overall objective of this work is to fabricate and evaluate polypyrrole-single-walled carbon nanotubes hybrid structures based chemiresistive sensor arrays for sensitive, selective and discriminative sensing at room temperature of emissions from automobiles and industrial manufacturing. To conceive the sensor arrays single-walled carbon nanotubes (SWNTs) networks were aligned to bridge a 3 mum gap between a pair of prefabricated microelectrodes followed by coating with polypyrrole (PPY) with different dopants by electrochemical polymerization. Initially, the sensor¡¦s synthesis conditions in terms of PPY thickness on SWNTs networks by varying the electropolymerization charge of the monomer pyrrole in presence of LiClO4 dopant for the sensing of NH3 was optimized. Using the optimized polymerization charge of 1 muC determined previously, arrays of SWNTs-PPY hybrid sensors were fabricated by replacing dopant LiClO4 by L-camphor sulfonic acid, D-camphor sulfonic acid, p-toluene sulfonic acid and sodium dodecyl sulfonate. Room temperature gas sensing performance of the PPY coated SWNTs network arrays to gases of environmental significance such as NH3, NO 2, H2S, SO2, CO and CO2 and volatile organic compounds such as benzene, toluene, ethyl benzene, p-xylene, methanol, n-hexane and acetone and humidity, was evaluated. Several folds enhancement in sensing performance was observed towards all the tested analytesfor hybrid devices when compared to bare SWNTs network devices. Differences in sensing performance were noticed for PPY coating with different dopants demonstrating the potential of using the array for discrimination of the tested analytes in a mixture by using chemometric techniques. The underlying sensing mechanism was also investigated by using the devices in chemFET mode configuration.

  17. Attachment of Single-wall Carbon Nanotubes (SWNTs) on Platinum Surfaces by Self-Assembling Techniques

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Cabrera, Carlos R.; Perez-Davis, Maria; Lebron, Marisabel; Meador, Michael

    2003-01-01

    Single-wall carbon nanotubes (SWNTs) are very interesting materials because of their morphology, electronic and mechanical properties. Its morphology (high length-to-diameter ratio) and electronic properties suggest potential application of SWNTs as anode material for lithium ion secondary batteries. The introduction of SWNTs on these types of sources systems will improve their performance, efficiency, and capacity to store energy. A purification method has been applied for the removal of iron and amorphous carbon from the nanotubes. Unpurified and purified SWNTs were characterized by transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). In order to attach carbon nanotubes on platinum electrode surfaces, a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) was deposited over the electrodes. The amino-terminated SAM obtained was characterized by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and Fourier-transforms infrared (FTIR) spectroscopy. Carbon nanotubes were deposited over the amino-terminated SAM by an amide bond formed between SAM amino groups and carboxylic acid groups at the open ends of the carbon nanotubes.This deposition was characterized using Raman spectroscopy and Scanning Electron microscopy (SEM).

  18. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles.

    PubMed

    Yashchenok, Alexey; Masic, Admir; Gorin, Dmitry; Inozemtseva, Olga; Shim, Bong Sup; Kotov, Nicholas; Skirtach, Andre; Möhwald, Helmuth

    2015-03-18

    The real-time temperature measurement of nanostructured materials is particularly attractive in view of increasing needs of local temperature probing with high sensitivity and resolution in nanoelectronics, integrated photonics, and biomedicine. Light-induced heating and Raman scattering of single-walled carbon nanotubes with adsorbed gold nanoparticles decorating silica microparticles are reported, by both green and near IR lasers. The plasmonic shell is used as nanoheater, while the single-walled carbon nanotubes are Raman active and serve as a thermometer. Stokes and Anti-Stokes Raman spectra of single-walled carbon nanotubes serve to estimate the effective light-induced temperature rise on the metal nanoparticles. The temperature rise is constant with time, indicating stability of the adsorption density. The effective temperatures derived from Stokes and Anti-Stokes intensities are correlated with those measured in a heating stage. The resolution of the thermal experiments in our study was found to be 5-40 K. PMID:25367373

  19. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.

    PubMed

    Rouhi, S; Alizadeh, Y; Ansari, R

    2016-01-01

    Molecular dynamics simulations are used to study the physical and mechanical properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites. The effects of nanotube atomic structure, diameter, and volume fraction on the polymer density distribution, polymer atom distribution, stress-strain curves of nanocomposites and Young's, and shear moduli of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites are explored. It is shown that the density of polymer, surrounding the nanotube surface, has a peak near the nanotube surface. However, increasing distance leads to dropping it to the value near the density of pure polymer. It is seen that for armchair nanotubes, the average polymer atoms distances from the single-walled carbon nanotubes are larger than the polymer atom distance from zigzag nanotubes. It further is shown that zigzag nanotubes are better candidates to reinforce poly (ethylene oxide) than their armchair counterparts. PMID:26791535

  20. Synthesis and Characterization of Single-Wall Carbon Nanotube-Amorphous Diamond Thin-Film Composites

    SciTech Connect

    Schittenhelm, Henrik; Geohegan, David B; Jellison Jr, Gerald Earle; Puretzky, Alexander A; Lance, Michael J; Britt, Phillip F

    2002-01-01

    Thin-film single-wall carbon nanotube (SWNT) composites synthesized by pulsed laser deposition (PLD) are reported. Ultrahard, transparent, pure-carbon, electrically insulating, amorphous diamond thin films were deposited by PLD as scratch-resistant, encapsulating matrices for disperse, electrically conductive mats of SWNT bundles. In situ resistance measurements of the mats during PLD, as well as ex situ Raman spectroscopy, current-voltage measurements, spectroscopic ellipsometry, and field-emission scanning electron microscopy, are used to understand the interaction between the SWNT and the highly energetic ({approx}100 eV) carbon species responsible for the formation of the amorphous diamond thin film. The results indicate that a large fraction of SWNT within the bundles survive the energetic bombardment from the PLD plume, preserving the metallic behavior of the interconnected nanotube mat, although with higher resistance. Amorphous diamond film thicknesses of only 50 nm protect the SWNT against wear, providing scratch hardness up to 25 GPa in an optically transmissive, all-carbon thin-film composite.

  1. Carbon Single-Wall Nanatube Growth in a Volumetrically Confined Arc Discharge System

    SciTech Connect

    Franz, K.J.; Alleman, J.L.; Jones, K.M.; Dillon, A.C.; Heben, M.J.

    2004-01-01

    Carbon nanotubes hold significant promise for a vast number of materials applications due to their unique mechanical, electrical, and gas storage properties. Although carbon single-wall nanotubes (SWNTs) have been synthesized since 1993 by the arc discharge method, and numerous other synthesis methods have since been developed, no method has yet produced 100% pure carbon nanotubes. Instead, a significant amount of impurities—various carbon structures and metal catalysts—are present in the raw soot. While arc discharge was the first method for SWNT synthesis, it also produces more impure raw soot in comparison to the more recently developed laser vaporization, which has produced the purest raw soot to date but is much slower. Geometry and thermal gradient are appreciably different between traditional arc discharge systems and laser vaporization systems. We report that, by incorporating some characteristics inherent to a laser vaporization system into an arc discharge system, improvement in the yield of SWNT raw soot may be achieved. This is accomplished by confining the arc within a 50 mm diameter quartz tube, similar to laser vaporization. We find through transmission electron microscopy and Raman spectroscopy that SWNTs are made in significant numbers in this confined arc discharge system, comparable to laser vaporization synthesized material. Further study is, however, required to prove reproducibility and attain an exact value for the purity of the produced raw soot.

  2. Commensurate Phases of Kr Adsorbed on Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mbaye, Mamadou T.; Maiga, Sidi M.; Gatica, Silvina M.

    2016-02-01

    In this paper, we show that Krypton atoms form a commensurate solid (CS) phase with a fractional coverage of one krypton atom per every four carbons on zigzag carbon nanotubes. This is a unique phase, different from the √{3} × √{3} R30° CS monolayer formed on graphite, which has a lower coverage of one krypton atom per every six carbons. Our prediction disagrees with experiments that observe in nanotubes the same solid structure found on graphite. In order to address this discrepancy, we simulated adsorption of Kr on zigzag and armchair single-walled carbon nanotubes with radii ranging from 4.7 to 28.83 Å. Our simulations confirm that the CS of coverage 1/4 forms on medium-sized zigzag nanotubes. We also found the 1/6-coverage solid on graphene, which represents the infinite-radius limit of a nanotube. Our findings are key to experiments of adsorption on nanotubes where the interpretation and justification of the results are based on the monolayer coverage, such as mass or conductance isotherms measurements.

  3. Threshold displacement energies in graphene and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Merrill, Andrew; Cress, Cory D.; Rossi, Jamie E.; Cox, Nathanael D.; Landi, Brian J.

    2015-08-01

    The threshold displacement energy Ed has been determined for graphene and 216 different (n , m ) single-walled carbon nanotube chiralities, with 5 ≤n ≤20 and 0 ≤m ≤n , under several model conditions using classical molecular dynamics. The model conditions vary by particle (electron or carbon ion), empirical potential (two parametrizations of Tersoff [J. Tersoff, Phys. Rev. B 39, 5566 (1989), 10.1103/PhysRevB.39.5566; L. Lindsay and D. A. Broido, Phys. Rev. B 81, 205441 (2010), 10.1103/PhysRevB.81.205441] and one of Brenner et al. [D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002), 10.1088/0953-8984/14/4/312]), and momentum transfer direction (towards or away from the nanotube axis). For electron irradiation simulations, Ed exhibits a smoothly varying chirality dependence and a characteristic curvature influenced by the momentum transfer direction. Changing the empirical potential shifts the magnitude of Ed, but the trend is preserved for electron simulations. However, the perturbation in the knock-on dynamics introduced by the carbon ion leads to Ed trends that diverge from the equivalent electron simulation. Thus, the ion interaction has a non-negligible effect on the dynamics of the collision and leads to Ed values that can distinctly vary depending on the selected carbon nanostructure.

  4. Can trans-polyacetylene be formed on single-walled carbon-doped boron nitride nanotubes?

    PubMed

    Chen, Ying; Wang, Hong-xia; Zhao, Jing-xiang; Cai, Qing-hai; Wang, Xiao-guang; Wang, Xuan-zhang

    2012-07-01

    Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.e., a carbon in the C(2)H(2) attacks a site on the BNNT). The adsorption energy gradually decreases with increasing tube diameter. The free radical of the carbon-doped BNNT is almost completely transferred to the carbon atom at the end of the adsorbed C(2)H(2) molecule. When another C(2)H(2) molecule approaches the carbon-doped BNNT, it is most energetically favorable for this C(2)H(2) molecule to be adsorbed at the end of the previously adsorbed C(2)H(2) molecule, and so on with extra C(2)H(2) molecules, leading to the formation of polyacetylene on the nanotube. The spin of the whole system is always localized at the tip of the polyacetylene formed, which initiates the adsorption of the incoming species. The present results imply that carbon-doped BNNT is an effective "metal-free" initiator for the formation of polyacetylene. PMID:22271098

  5. Study of in vivo exposure of single-walled carbon nanotubes in mouse liver

    NASA Astrophysics Data System (ADS)

    Lyons, Lyndon L.

    Currently, few studies are available that have explored the role of carbon nanoparticles in liver toxicity. The susceptibility of the liver to nanoparticles rises from the inhalation exposure route often encountered during manufacturing and occupational exposure. Persons occupying these types of environmental setting are exposed to airborne nanoparticles less than 100nm, which have unobstructed access to most area of the lungs due to their size. Several reports have shown that single walled carbon nanotubes (SWCNTs) induce oxidative stress and pose the greatest cytotoxicity potential do to their size. Also, studies in mice indicate nanoparticles tend to accumulate in organs such as the spleen, kidney and liver, which is a major concern due to a lack of knowledge as to their fate. Single Wall Carbon Nanotubes (SWCNT's) are able to more easily penetrate through the cell membrane and display higher cell toxicity than Multi walled carbon nanotubes (MWCTs), opening the possibility for crossing various biological barriers within the body. Therefore effective occupational and environmental health risk assessments are significant in controlling the manufacture process of carbon nanotubes (CNTs). The present study was undertaken to determine the toxicity exhibited by SWCNT in mouse liver tissue as a model system. Mouse exposure during inhalation with and without SWCNT and reactive oxygen species (ROS) products were measured by change in fluorescence using dichloro fluorescein (DCF). The result showed no increase ROS on exposure of SWCNT in a dose and time dependent manner. Also, there is no reduction levels of glutathione (GSH) and super oxide dismutase (SOD), the antioxidant protective mechanism present in mouse liver cells upon SWCNT exposure. Lipid Peroxidation (LPO) and Lactate Dehydrogenase (LDH) assays indicated no tissue or protein damage. Additionally, Caspases --8 and --3 assays were conducted in order to understand the apoptotic signaling pathways initiated by

  6. Ultrashort Single-Wall Carbon Nanotubes Reveal Field-Emission Coulomb Blockade and Highest Electron-Source Brightness

    NASA Astrophysics Data System (ADS)

    Pascale-Hamri, A.; Perisanu, S.; Derouet, A.; Journet, C.; Vincent, P.; Ayari, A.; Purcell, S. T.

    2014-03-01

    We present here well-defined Coulomb staircases using an original field-emission experiment on several individual in situ—grown single-wall carbon nanotubes. A unique in situ process was applied nine times to progressively shorten one single-wall carbon nanotube down to ≃10 nm, which increased the oscillations periods from 5.5 to 80 V, the temperature for observable Coulomb staircase to 1100 K and the currents to 1.8 μA. This process led to the brightest electron source ever reported [9×1011 A/(str m2 V)].

  7. Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant.

    PubMed

    Ingrosso, Chiara; Bianco, Giuseppe Valerio; Lopalco, Patrizia; Tamborra, Michela; Curri, Maria Lucia; Corcelli, Angela; Bruno, Giovanni; Agostiano, Angela; Siciliano, Pietro; Striccoli, Marinella

    2012-10-21

    In this work, single walled carbon nanotubes (SWNTs) have been chemically functionalized at their walls with a membrane protein, namely the mutated bacteriorhodopsin D96N, integrated in its native archaeal lipid membrane. The modification of the SWNT walls with the mutant has been carried out in different buffer solutions, at pH 5, 7.5 and 9, to investigate the anchoring process, the typical chemical and physical properties of the component materials being dependent on the pH. The SWNTs modified by interactions with bacteriorhodopsin membrane patches have been characterized by UV-vis steady state, Raman and attenuated total reflection Fourier transform infrared spectroscopy and by atomic force and transmission electron microscopy. The investigation shows that the membrane protein patches wrap the carbon walls by tight chemical interactions undergoing a conformational change; such chemical interactions increase the mechanical strength of the SWNTs and promote charge transfers which p-dope the nano-objects. The functionalization, as well as the SWNT doping, is favoured in acid and basic buffer conditions; such buffers make the nanotube walls more reactive, thus catalysing the anchoring of the membrane protein. The direct electron communication among the materials can be exploited for effectively interfacing the transport properties of carbon nanotubes with both molecular recognition capability and photoactivity of the cell membrane for sensing and photoconversion applications upon integration of the achieved hybrid materials in sensors or photovoltaic devices. PMID:22961248

  8. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  9. Study of the surface chemistry and morphology of single walled carbon nanotube-magnetite composites

    NASA Astrophysics Data System (ADS)

    Marquez-Linares, F.; Uwakweh, O. N. C.; Lopez, N.; Chavez, E.; Polanco, R.; Morant, C.; Sanz, J. M.; Elizalde, E.; Neira, C.; Nieto, S.; Roque-Malherbe, R.

    2011-03-01

    The study of the morphologies of the single walled carbon nanotube (SWCNT), magnetite nanoparticles (MNP), and the composite based on them was carried with combined X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM). These techniques together with thermogravimetric analyses (TGA) and diffuse reflectance infrared transform spectroscopy (DRIFTS) confirmed the production of pure single phases, and that the composite material consisted of MNP attached to the outer surface of the SWCNT. The Mössbauer spectroscopy (MS) research showed the presence of a large quantity of Lewis acid sites in the highly dispersed magnetite particles supported on the SWCNT outer surface. The DRIFTS carbon dioxide adsorption study of the composites revealed significant adsorption of carbon dioxide, fundamentally in the Lewis acid sites. Then, the Lewis acid sites were observed to be catalytically active. Further, the electron exchange between the Lewis acid sites and the basic or amphoteric adsorbed molecules could influence the magnetic properties of the magnetite. Consequently, together with this first ever use of MS in the study of Lewis acid sites, this investigation revealed the potential of the composites for catalytic and sensors applications.

  10. Catalytic effect of different forms of iron in purification of single-walled carbon nanotubes.

    PubMed

    Suzuki, Tomoko; Inoue, Sakae; Ando, Yoshinori

    2010-06-01

    In the arc plasma jet (APJ) method, a large amount of soot including single wall carbon nanotubes (SWNTs) can be produced in a short time. However, as-grown soot contains a lot of impurities, such as metallic particles used as catalyst and amorphous carbon. Hence it is necessary to purify the soot to obtain pure SWNTs. The biggest problem in purifying APJ-SWNTs is how to remove the thick amorphous carbon covering the catalyst metal particles. By refluxing APJ-SWNTs in hydrogen peroxide using iron particle as catalyst, it can be purified. The added fine particle of pure iron is found to be effective. Then, we examine whether SWNTs can be purified more effectively by adding solution containing the Fe ion instead of the iron particle. We used iron (III) nitrate nonahydrate, hydrogen peroxide decomposing agent which contains catalase and ammonium iron (II) sulfate hexahydrate. In the case of iron (III) nitrate and catalase, purification effect is not obvious. Under these conditions hydrogen peroxide was decomposed into H2O and O2, and the hydroxyl radical was not generated. On the other hand, ammonium iron (II) sulfate is effective. Because of existence of Fe2+ in solution Fenton's reaction takes place. Reaction rate is increased at high temperature. Therefore, APJ-SWNT is purified more effectively if refluxed in hydrogen peroxide using ammonium iron (II) sulfate as catalyst. PMID:20355392

  11. Nanoscale soldering of axially positioned single-walled carbon nanotubes: a molecular dynamics simulation study.

    PubMed

    Cui, Jianlei; Yang, Lijun; Zhou, Liang; Wang, Yang

    2014-02-12

    The miniaturization of electronics devices into the nanometer scale is indispensable for next-generation semi-conductor technology. Carbon nanotubes (CNTs) are considered to be the promising candidates for future interconnection wires. To study the carbon nanotubes interconnection during nanosoldering, the melting process of nanosolder and nanosoldering process between single-walled carbon nanotubes are simulated with molecular dynamics method. As the simulation results, the melting point of 2 nm silver solder is about 605 K because of high surface energy, which is below the melting temperature of Ag bulk material. In the nanosoldering process simulations, Ag atoms may be dragged into the nanotubes to form different connection configuration, which has no apparent relationship with chirality of SWNTs. The length of core filling nanowires structure has the relationship with the diameter, and it does not become longer with the increasing diameter of SWNT. Subsequently, the dominant mechanism of was analyzed. In addition, as the heating temperature and time, respectively, increases, more Ag atoms can enter the SWNTs with longer length of Ag nanowires. And because of the strong metal bonds, less Ag atoms can remain with the tight atomic structures in the gap between SWNT and SWNT. The preferred interconnection configurations can be achieved between SWNT and SWNT in this paper. PMID:24392855

  12. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  13. Hydrothermally Oxidized Single-Walled Carbon Nanotube Networks for High Volumetric Electrochemical Energy Storage.

    PubMed

    Liu, Tianyuan; Davijani, Amir A Bakhtiary; Sun, Jingying; Chen, Shuo; Kumar, Satish; Lee, Seung Woo

    2016-07-01

    Improving volumetric energy density is one of the major challenges in nanostructured carbon electrodes for electrochemical energy storage device applications. Herein, a simple hydrothermal oxidation process of single-walled carbon nanotube (SWNT) networks in dilute nitric acid is reported, enabling simultaneous physical densification and chemical functionalization of the as-assembled randomly-packed SWNT films. After the hydrothermal oxidation process, the density of the SWNT films increases from 0.63 to 1.02 g cm(-3) and a considerable amount of redox-active oxygen functional groups are introduced on the surface of the SWNTs. The functionalized SWNT films are used as positive electrodes against Li metal negative electrodes for potential Li-ion capacitors or Li-ion battery applications. The functionalized SWNT electrodes deliver high volumetric as well as gravimetric capacities, 154 Ah L(-1) and 152 mAh g(-1) , respectively, owing to the surface redox reactions between the introduced oxygen functional groups and Li ions. In addition, these electrodes exhibit a remarkable rate-capability by retaining its high capacity of 94 Ah L(-1) (92 mAh g(-1) ) at a high discharge rate of 10 A g(-1) . These results demonstrate the simple hydrothermal oxidation process as an attractive strategy for improving the volumetric performance of nanostructured carbon electrodes. PMID:27200509

  14. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    NASA Astrophysics Data System (ADS)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  15. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes.

    PubMed

    Li, Hao; Cao, Kun; Cui, Jin; Liu, Shuangshuang; Qiao, Xianfeng; Shen, Yan; Wang, Mingkui

    2016-03-28

    A single walled carbon nanotube (SWCNT) possesses excellent hole conductivity. This work communicates an investigation of perovskite solar cells using a mesoscopic TiO2/Al2O3 structure as a framework in combination with a certain amount of SWCNT-doped graphite/carbon black counter electrode material. The CH3NH3PbI3-based device achieves a power conversion efficiency of 14.7% under AM 1.5G illumination. Detailed investigations show an increased charge collection in this device compared to that without the SWCNT additive. PMID:26752505

  16. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1 M LiPF{sub 6} electrolyte

    SciTech Connect

    Azam, M.A.; Jantan, N.H.; Dorah, N.; Seman, R.N.A.R.; Manaf, N.S.A.; Kudin, T.I.T.; Yahya, M.Z.A.

    2015-09-15

    Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, among others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.

  17. Nontrivial magnetoresistive behavior of a single-wall carbon nanotube with an attached molecular magnet

    NASA Astrophysics Data System (ADS)

    Płomińska, Anna; Weymann, Ireneusz

    2015-11-01

    The spin-resolved transport properties of a single-wall carbon nanotube quantum dot, with an attached single molecular magnet, are studied theoretically. With the aid of the real-time diagrammatic technique in the lowest-order perturbation expansion with respect to the tunnel coupling, the current, differential conductance, and the tunnel magnetoresistance (TMR) are determined in both the linear and nonlinear response regimes. It is shown that transport properties depend greatly on both the shell filling sequence of the carbon nanotube and the type of exchange interaction between the molecular magnet and nanotube. This results in highly nontrivial behavior of the TMR, which is especially visible in the low bias voltage regime. Depending on the gate voltage and parameters of the system, we find transport regimes where either a greatly enhanced or negative TMR develops. The mechanism leading to such behavior is associated with nonequilibrium spin accumulation, which builds up in the antiparallel magnetic configuration of the device. We show that it is crucial whether the spin accumulation occurs in the highest-weight spin states or in states with lower spin values. While in the former case it leads to enhanced TMR, in the latter case it may result in negative tunnel magnetoresistance. In addition, we analyze how the above effects depend on the magnitude of the molecular magnet's spin, and show that this dependence is generally nonmonotonic.

  18. Release characteristics of single-wall carbon nanotubes during manufacturing and handling

    NASA Astrophysics Data System (ADS)

    Ogura, I.; Kotake, M.; Hashimoto, N.; Gotoh, K.; Kishimoto, A.

    2013-04-01

    We investigated the release characteristics of single-wall carbon nanotubes (CNTs) synthesized by a pilot-scale plant. In addition to on-site aerosol measurements at the pilot-scale plant where the CNTs were synthesized, harvested, and packed, we conducted dustiness tests by vortex shaking and by transferring CNTs from one bowl to another. In the results of the on-site aerosol measurements, slight increases in the concentration were observed by aerosol monitoring instruments in the enclosure where CNTs were harvested and packed. In filter samples collected in this enclosure, micron-sized CNT clusters were observed by electron microscopy analysis. For samples collected outside the enclosure or during other processes, no CNTs were observed. The concentrations of elemental carbon at all locations were lower than the proposed occupational exposure limits of CNTs. The results of the dustiness tests revealed that submicron-sized particles were dominant in the number concentration measured by aerosol monitoring instruments, whereas micron-sized CNT clusters were mainly observed by electron microscopy analysis. The results of dustiness tests indicate that these CNTs have a low release characteristic. The lower drop impact of CNT clusters due to their lower bulk density resulted in lower CNT release from falling CNTs.

  19. Single-walled carbon nanotube interactions with HeLa cells

    PubMed Central

    Yehia, Hadi N; Draper, Rockford K; Mikoryak, Carole; Walker, Erin Kate; Bajaj, Pooja; Musselman, Inga H; Daigrepont, Meredith C; Dieckmann, Gregg R; Pantano, Paul

    2007-01-01

    This work concerns exposing cultured human epithelial-like HeLa cells to single-walled carbon nanotubes (SWNTs) dispersed in cell culture media supplemented with serum. First, the as-received CoMoCAT SWNT-containing powder was characterized using scanning electron microscopy and thermal gravimetric analyses. Characterizations of the purified dispersions, termed DM-SWNTs, involved atomic force microscopy, inductively coupled plasma – mass spectrometry, and absorption and Raman spectroscopies. Confocal microRaman spectroscopy was used to demonstrate that DM-SWNTs were taken up by HeLa cells in a time- and temperature-dependent fashion. Transmission electron microscopy revealed SWNT-like material in intracellular vacuoles. The morphologies and growth rates of HeLa cells exposed to DM-SWNTs were statistically similar to control cells over the course of 4 d. Finally, flow cytometry was used to show that the fluorescence from MitoSOX™ Red, a selective indicator of superoxide in mitochondria, was statistically similar in both control cells and cells incubated in DM-SWNTs. The combined results indicate that under our sample preparation protocols and assay conditions, CoMoCAT DM-SWNT dispersions are not inherently cytotoxic to HeLa cells. We conclude with recommendations for improving the accuracy and comparability of carbon nanotube (CNT) cytotoxicity reports. PMID:17956629

  20. Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution

    DOE PAGESBeta

    Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; Smith, Gregory Scott; Do, Changwoo

    2015-05-15

    The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less