Science.gov

Sample records for acid-independent bile formation

  1. Sodium Taurocholate Modifies the Bile Acid-Independent Fraction of Canalicular Bile Flow in the Rhesus Monkey

    PubMed Central

    Baker, Alfred L.; Wood, R. A. B.; Moossa, A. R.; Boyer, James L.

    1979-01-01

    Bile acid-independent secretion and the choleretic response to taurocholate were determined in rhesus monkeys fitted with indwelling silastic cannulas in the common bile ducts. Bile acids were infused intravenously in random order at 3.5, 7.0, or 10.5 μmol/min for 1.5 h each. When data were analyzed with a single regression line, bile flow increased in proportion to the level of bile acid secretion, although the y-intercepts (the conventional measurement of bile acid-independent secretion) varied widely (77.9±40.9 ml/24 h). The variation in y-intercepts was observed between animals and with repeated studies in the same animal and could not be explained by sex differences or the effects of the indwelling silastic cannulas, but seemed to be related to the order of bile acid infusion. With only two taurocholic acid infusion rates (7.0 and 3.5 μmol/min), [14C]erythritol clearance was greater per mole of secreted bile acid when the initial bile acid infusion was at the high level, but approached zero at low bile acid secretion rates, which suggests that so-called bile acid-independent canalicular flow is closely related to bile acid secretion or is small in size. The augmentation in [14C]erythritol clearance when the high infusion rate was given first was also associated with an increase in biliary clearance of [3H]inulin, which indicates that the premeability to inulin was also enhanced. Identical experiments which substituted equimolar infusions of a nonmicelle-forming bile acid (taurodehydrocholate) for taurocholate failed to demonstrate any difference in choleretic response or biliary clearance of [3H]inulin with the order of bile acid infusion. These experiments demonstrate that a micelleforming bile acid, taurocholate, can increase the permeability of the biliary system to large molecular weight solutes and simultaneously modify the y-intercept and the volume of bile secreted in response to the transported bile acid. Taurocholate may, therefore, modify its own

  2. Bile salts and hydrodynamics of bile formation.

    PubMed

    Cotting, J; Reichen, J

    1989-01-01

    We report a novel method to assess bile secretory pressure using a Statham pressure transducer. The studies were performed in vivo in male Sprague-Dawley rats under pentobarbital anesthesia. Maximal secretory pressure averaged 21.8 +/- 1.1 (S.D.) cmH2O. The bile accumulated after 10 min of obstruction was 7.7 +/- 2.8 microliters.g-1; assuming a basal biliary dead space of 2.3 microliters.g-1, the distended capacity of the biliary tree averaged 10 microliters.g-1. The small volume of the strain gauge permitted calculation of compliance of the biliary tree which averaged 0.35 +/- 0.12 microliters.cmH2O-1.g-1. Stimulation of bile flow by bile salts reduced the time required to reach maximal bile secretory pressure. Taurocholate but not taurodehydrocholate decreased maximal secretory pressure within minutes, the pressure-time curves showing a new equilibrium between bile formation and regurgitation forces. Both bile flow and bile salt recoveries were decreased by taurocholate but not by taurodehydrocholate. Taurocholate decreased biliary compliance while taurodehydrocholate had no effect. This provides further evidence that taurocholate increases the biliary permeability and suggests that this bile salt also affects the elastic properties of the biliary tree.

  3. Bile Formation and Secretion

    PubMed Central

    Boyer, James L.

    2014-01-01

    Bile is a unique and vital aqueous secretion of the liver that is formed by the hepatocyte and modified down stream by absorptive and secretory properties of the bile duct epithelium. Approximately 5% of bile consists of organic and inorganic solutes of considerable complexity. The bile-secretory unit consists of a canalicular network which is formed by the apical membrane of adjacent hepatocytes and sealed by tight junctions. The bile canaliculi (~1 μm in diameter) conduct the flow of bile countercurrent to the direction of portal blood flow and connect with the canal of Hering and bile ducts which progressively increase in diameter and complexity prior to the entry of bile into the gallbladder, common bile duct, and intestine. Canalicular bile secretion is determined by both bile salt-dependent and independent transport systems which are localized at the apical membrane of the hepatocyte and largely consist of a series of adenosine triphosphate-binding cassette transport proteins that function as export pumps for bile salts and other organic solutes. These transporters create osmotic gradients within the bile canalicular lumen that provide the driving force for movement of fluid into the lumen via aquaporins. Species vary with respect to the relative amounts of bile salt-dependent and independent canalicular flow and cholangiocyte secretion which is highly regulated by hormones, second messengers, and signal transduction pathways. Most determinants of bile secretion are now characterized at the molecular level in animal models and in man. Genetic mutations serve to illuminate many of their functions. PMID:23897680

  4. History of Hepatic Bile Formation: Old Problems, New Approaches

    ERIC Educational Resources Information Center

    Javitt, Norman B.

    2014-01-01

    Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…

  5. Molecular aspects of bile formation and cholestasis.

    PubMed

    Arrese, Marco; Trauner, Michael

    2003-12-01

    Recent insights into the cellular and molecular mechanisms that control the function and regulation of hepatobiliary transport have led to a greater understanding of the physiological significance of bile secretion. Individual carriers for bile acids and other organic anions in both liver and intestine have now been cloned from several species. In addition, complex networks of signals that regulate key enzymes and membrane transporters located in cells that participate in the metabolism or transport of biliary constituents are being unraveled. This knowledge has major implications for the pathogenesis of cholestatic liver diseases. Here, we review recent information on molecular aspects of hepatobiliary secretory function and its regulation in cholestasis. Potential implications of this knowledge for the design of new therapies of cholestatic disorders are also discussed.

  6. Kinetics of formation of bile salt micelles from coarse-grained Langevin dynamics simulations.

    PubMed

    Vila Verde, Ana; Frenkel, Daan

    2016-06-21

    We examine the mechanism of formation of micelles of dihydroxy bile salts using a coarse-grained, implicit solvent model and Langevin dynamics simulations. We find that bile salt micelles primarily form via addition and removal of monomers, similarly to surfactants with typical head-tail molecular structures, and not via a two-stage mechanism - involving formation of oligomers and their subsequent aggregation to form larger micelles - originally proposed for bile salts. The free energy barrier to removal of single bile monomers from micelles is ≈2kBT, much less than what has been observed for head-tail surfactants. Such a low barrier may be biologically relevant: it allows for rapid release of bile monomers into the intestine, possibly enabling the coverage of fat droplets by bile salt monomers and subsequent release of micelles containing fats and bile salts - a mechanism that is not possible for ionic head-tail surfactants of similar critical micellar concentrations.

  7. Formation of drug-bearing vesicles in mixed colloids of bile salts and phosphatidylcholine

    SciTech Connect

    Hjelm, R.P.; Mang, J.; Hofmann, A.F.; Schteingart, C.; Alkan-Onyuksel, H.; Ayd, S.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors used small-angle neutron scattering to study drug interactions with mixed colloids of bile salt and phosphatidylcholine. Because the mixed colloids form liposomes spontaneously, this system is a model for drug-bile interactions that are important in understanding the efficacy of oral drug formulations and in advanced applications for liposome drug delivery systems. The authors studied particle formation in incorporation of enzymatic products formed in the gut and the effects of cholesteric drugs and taxol on vesicle formation. The studies show that particle morphology is not affected by inclusion of most cholesteric drugs and taxol, and is not affected by incorporation of the products of enzymatic action. The findings suggest that particle form is important for the physiological function of bile and they are beginning to show which drugs affect liposome formation.

  8. Quantitative assessment of canalicular bile formation in isolated hepatocyte couplets using microscopic optical planimetry.

    PubMed Central

    Gautam, A; Ng, O C; Strazzabosco, M; Boyer, J L

    1989-01-01

    Isolated rat hepatocyte couplets (IRHC) are primary units of bile secretion that accumulate fluid in an enclosed canalicular space with time in culture. We have quantitated the rate of canalicular secretion in IRHC cultured for 4-8 h by measuring the change in canalicular space volume by video-microscopic optical planimetry using high resolution Nomarski optics. Electron microscopic morphometric studies revealed significant increases in canalicular membrane area after 4-6 h in culture. Canalicular secretion in basal L-15 medium (3.8 +/- 1.3 fl/min) increased significantly with the choleretic bile salts (10 microM), taurocholate, and ursodeoxycholate (14 +/- 7 fl/min each). Secretion rates after exposure to bile acids correlated directly with the canalicular surface area before stimulation. In contrast, expansion times after stimulation varied inversely with initial canalicular volumes. Ursodeoxycholic acid failed to produce a hypercholeresis at 10-, 100-, or 200-microM concentrations compared with taurocholate, either in normal or taurine-depleted IRHC. The present findings establish that rates of canalicular bile secretion can be quantitated in IRHC by serial optical planimetry, both in the basal state and after stimulation with bile acids. Furthermore, ursodeoxycholate does not acutely induce hypercholeresis at the canalicular level in this model. Rather, both taurocholic and ursodeoxycholic acids induced secretion in proportion to the surface area of the canalicular membrane. The IRHC are a useful model to identify canalicular choleretics and for studies of canalicular bile formation. Images PMID:2913052

  9. Genetic cholestasis: lessons from the molecular physiology of bile formation.

    PubMed

    Jansen, P L; Müller, M

    2000-03-01

    Progressive familial intrahepatic cholestasis (PFIC) is a group of severe genetic cholestatic liver diseases of early life. PFIC types 1 and 2 are characterized by cholestasis and a low to normal serum gamma-glutamyltransferase (GGT) activity, whereas in PFIC type 3, the serum GGT activity is elevated. PFIC types 1 and 2 occur due to mutations in loci at chromosome 18 and chromosome 2, respectively. The pathophysiology of PFIC type 1 is not well understood. PFIC types 2 and 3 are caused by transport defects in the liver affecting the hepatobiliary secretion of bile acids and phospholipids, respectively. Benign recurrent intrahepatic cholestasis (BRIC) is linked to a mutation in the same familial intrahepatic cholestasis 1 locus at chromosome 18. Defects of bile acid synthesis may be difficult to differentiate from these transport defects. Intrahepatic cholestasis of pregnancy (ICP) appears to be related to these cholestatic diseases. For example, heterozygosity in families with PFIC type 3 is associated with ICP, but ICP has also been reported in families with BRIC. In Dubin-Johnson syndrome there is no cholestasis; only the hepatobiliary transport of conjugated bilirubin is affected. This, therefore, is a mild disease, and patients have a normal lifespan.

  10. Cholesterol gallstones and bile host diverse bacterial communities with potential to promote the formation of gallstones.

    PubMed

    Peng, Yuhong; Yang, Yang; Liu, Yongkang; Nie, Yuanyang; Xu, Peilun; Xia, Baixue; Tian, Fuzhou; Sun, Qun

    2015-01-01

    The prevalence of cholesterol gallstones has increased in recent years. Bacterial infection correlates with the formation of gallstones. We studied the composition and function of bacterial communities in cholesterol gallstones and bile from 22 cholesterol gallstone patients using culture-dependent and culture-independent methods. Altogether fourteen and eight bacterial genera were detected in cholesterol gallstones and bile, respectively. Pseudomonas spp. were the dominant bacteria in both cholesterol gallstones and bile. As judged by diversity indices, hierarchical clustering and principal component analysis, the bacterial communities in gallstones were different from those in bile. The gallstone microbiome was considered more stable than that of bile. The different microbial communities may be partially explained by differences in their habitats. We found that 30% of the culturable strains from cholesterol gallstones secreted β-glucuronidase and phospholipase A2. Pseudomonas aeruginosa strains showed the highest β-glucuronidase activity and produced the highest concentration of phospholipase A2, indicating that Ps. aeruginosa may be a major agent in the formation of cholesterol gallstones.

  11. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids

    PubMed Central

    Townsley, Loni; Peach, Kelly C.; Navarro, Gabriel; Shikuma, Nicholas J.; Bray, Walter M.; Riener, Romina M.; Yildiz, Fitnat H.; Linington, Roger G.

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection. PMID:26992172

  12. The Underlying Mechanisms: How Hypothyroidism Affects the Formation of Common Bile Duct Stones—A Review

    PubMed Central

    Laukkarinen, Johanna; Sand, Juhani; Nordback, Isto

    2012-01-01

    For decades, one well-known risk factor for the development of gallbladder stones has been hypothyroidism. Recent studies have interestingly reported that the risk in particular for common bile duct (CBD) stones increases in clinical and subclinical hypothyroidism. There are multiple factors that may contribute to the formation and/or accumulation of CBD stones in hypothyroid patients, including decreased liver cholesterol metabolism, diminished bile secretion, and reduced sphincter of Oddi relaxation. This paper focuses on the mechanisms possibly underlying the association between hypothyroidism and CBD stones. The authors conclude that when treating patients with CBD stones or microlithiasis, clinicians should be aware of the possible hypothyroid background. PMID:23049165

  13. Formation of C21 bile acids from plant sterols in the rat

    SciTech Connect

    Boberg, K.M.; Lund, E.; Olund, J.; Bjoerkhem, I. )

    1990-05-15

    Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of (4-14C)sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of (4-14C) sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-(2H2)sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from (4-14C)sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a (4-14C)sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved.

  14. Transport systems in cholangiocytes: their role in bile formation and cholestasis.

    PubMed Central

    Strazzabosco, M.

    1997-01-01

    Formation of bile requires the coordinated function of two epithelial cell types: hepatocytes, that are responsible for secretion of the major osmolytes and biliary constituents and cholangiocytes that regulate the fluidity and alkalinity of bile through secretion of osmolytes such as Cl- and HCO3- Studies in isolated cholangiocyte preparations have elucidated the basic transport mechanisms involved in constitutive and stimulated secretory activities in the biliary epithelium. Basolateral Na+/H+ exchanger and Na+:HCO3- symporter mediate HCO3- uptake, while an apical cAMP-activated Cl-/HCO3- exchanger secretes bicarbonate into the lumen. Cholangiocytes also possess a cAMP-stimulated Cl- conductance (CFTR) and a Ca-activated Cl- channel, both likely located at the apical membrane. Cholangiocyte secretory functions are regulated by a complex network of hormones mainly acting via the cAMP system. In addition, recent data indicate that part of the regulation of ductular secretion may take place at the apical membrane of the cholangiocyte through factors present into the bile, such as ATP, bile acids and glutathione. Primary damage to the biliary epithelium is the cause of several chronic cholestatic disorders (cholangiopathies). From a pathophysiological point of view, common to all cholangiopathies is the coexistance of cholangiocyte death and proliferation and various degrees of portal inflammation and fibrosis. Cholestasis dominates the clinical picture and, pathophysiologically, may initiate or worsen the process. Alterations in biliary electrolyte transport could contribute to the pathogenesis of cholestasis in primary bile duct diseases. Cystic Fibrosis-related liver disease represents an example of biliary cirrhosis secondary to a derangement of cholangiocyte ion transport. Most primary cholangiopaties recognize an immune-mediated pathogenesis. Cytokines, chemokines, and proinflammatory mediators released in the portal spaces or produced by the cholangiocyte

  15. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  16. Inhibition of buckwheat starch digestion by the formation of starch/bile salt complexes: possibility of its occurrence in the intestine.

    PubMed

    Takahama, Umeo; Hirota, Sachiko

    2011-06-08

    During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.

  17. Gallstone formation in guinea pigs under different dietary conditions. Effect of vitamin C on bile acid pattern.

    PubMed

    Bergman, F; Curstedt, T; Eriksson, H; van der Linden, W; Sjövall, J

    1981-04-01

    Guinea pigs formed gallstones when fed chow supplemented with cholesterol and cholic acid. Although the stones contained little or no cholesterol the changes in biliary bile acid and lipid composition were similar to those observed in other rodents under conditions of cholesterol gallstone formation. Addition of cholestyramine to chow had a midly lithogenic effect. Hypovitaminosis C in animals given cholesterol and cholic acid resulted in an increase of the cholesterol content of the gallstones. The composition of biliary bile acids was markedly changed. Reductive formation of deoxycholic acid decreased and oxidative formation of ketonic bile acid increased. The results show that vitamin C may influence the redox state of the intestinal microorganisms microorganisms responsible for these conversions.

  18. Mechanisms of Lithogenic Bile Formation in American Indian Women with Cholesterol Gallstones

    PubMed Central

    Grundy, Scott M.; Metzger, Allan L.; Adler, Ronald D.

    1972-01-01

    Hepatic secretions of biliary lipids were estimated in 43 patients with and without cholesterol gallstones. Studies were carried out by a marker dilution technique employing duodenal intubation with a three-lumen tube. Hourly secretion rates of cholesterol, bile acids, and phospholipids were determined during constant infusion with liquid formula. In 17 American Indian women with gallstones, hourly outputs of biliary bile acids were significantly less than those in 7 Indian men and 12 Caucasian women without gallstones. These findings suggest that a decreased hepatic secretion of bile acids contributes significantly to the production of a lithogenic bile in Indian women. However, in Indian women with gallstones, secretion of biliary cholesterol was also significantly increased, as compared with Caucasian women without stones. Therefore, lithogenic bile in Indian women was, in most cases, due to a combined decrease in bile acid output and increase in cholesterol secretion. In an attempt to determine the mechanisms for these abnormalities, cholesterol balance studies were done in Indian women with gallstones and normal Indian men. Balance data were compared with results reported previously in non-Indian patients studied by the same techniques, and in general, Indian women showed a slight increase in fecal excretion of bile acids. Since bile acids in the enterohepatic circulation were relatively depleted in Indian women, these patients had a reduced fractional reabsorption. However, previous studies have shown that Caucasians can rapidly replenish bile acid pools in the presence of much greater intestinal losses, and it is suggested that among Indian women with gallstones, reduced secretion rates of bile acids are primarily the result of defective homeostatic regulation of bile acid synthesis. In Indian women with gallstones, at least two factors may have contributed to an increased availability of cholesterol in the liver for secretion into bile. First, cholesterol

  19. Bile culture

    MedlinePlus

    ... these risks. Alternative Names Culture - bile Images Bile culture References Hall GS, Woods GL. Medical bacteriology. In: McPherson RA, Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods . 22nd ed. Philadelphia, PA: Elsevier ...

  20. Formation of liquid-crystalline structures in the bile salt-chitosan system and triggered release from lamellar phase bile salt-chitosan capsules.

    PubMed

    Tangso, Kristian J; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick; Boyd, Ben J

    2014-08-13

    Nanostructured capsules comprised of the anionic bile salt, sodium taurodeoxycholate (STDC), and the biocompatible cationic polymer, chitosan, were prepared to assess their potential as novel tailored release nanomaterials. For comparison, a previously studied system, sodium dodecyl sulfate (SDS), and polydiallyldimethylammonium chloride (polyDADMAC) was also investigated. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified the presence of lamellar and hexagonal phase at the surfactant-polymer interface of the respective systems. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and salt concentration, respectively, and were found to influence the liquid-crystalline nanostructure formed. The hexagonal phase persisted at high temperatures, however the lamellar phase structure was lost above ca. 45 °C. Both mesophases were found to dissociate upon addition of 4% NaCl solution. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from the lamellar phase significantly increased in response to changes in the solution conditions studied, suggesting that modulating the drug release from these bile salt-chitosan capsules is readily achieved. In contrast, release from the hexagonal phase capsules had no appreciable response to the stimuli applied. These findings provide a platform for these oppositely charged surfactant and polymer systems to function as stimuli-responsive or sustained-release drug delivery systems.

  1. Bile Duct Diseases

    MedlinePlus

    ... gallbladder pushes the bile into tubes called bile ducts. They carry the bile to your small intestine. ... and wastes. Different diseases can block the bile ducts and cause a problem with the flow of ...

  2. Bile Duct Cancer (Cholangiocarcinoma)

    MedlinePlus

    ... Types of Cancer > Bile Duct Cancer (Cholangiocarcinoma) Bile Duct Cancer (Cholangiocarcinoma) This is Cancer.Net’s Guide to Bile Duct Cancer (Cholangiocarcinoma). Use the menu below to choose ...

  3. [Hepatocellular transport of bile acids and organic anions in infection and SIRS--evidence for different mechanisms for regulating membrane transport proteins].

    PubMed

    Bolder, U; Thasler, W E; Hofmann, A F; Jauch, K W

    1998-01-01

    The alteration of proinflammatory mediators during sepsis and SIRS results in a large variety of adaptive changes of metabolic and physiologic variables. This study investigated the alterations of hepatocellular transport in a rat sepsis model (LPS i.p.) as well as in a model inducing SIRS by sterile abscess formation (turpentine i.m.). Two bile acids (Cholyltaurine and Chemodeoxycholyltaurine) and one organic anion (Sulfolithocholyltaurine) were used as marker substrates to investigate the time course of hepatocellular transport function. Experiments were performed in isolated perfused rat livers and plasma membrane vesicles. During sepsis, both, the transport of bile acids and that of the organic anion was markedly reduced. In contrast no alteration of transport was detected during SIRS. However, biliary secretion of glutathione (+90%) and bile acid independent bile flow (%) were increased. mRNA levels of bile acid and organic anion transport proteins were reduced. The lowest values were noted 12 h after injection of LPS or turpentine. Almost unchanged kinetic parameters during SIRS pointed to a normal population of transporters with regard to quantity and substrate affinity. Therefore it seems that transcriptional regulation plays an important role for the expression of transport proteins during sepsis, whereas posttranscriptional regulation may be of importance during SIRS. The clinical phenomenon of septic cholestasis including jaundice implies endotoxemia and differenciates against SIRS.

  4. A study of the fractal structure of the precipitate and the mechanism of its formation from the gallbladder bile of a patient

    NASA Astrophysics Data System (ADS)

    Liu, S.; Kong, X.; Xie, A.; Shen, Y.; Zhu, J.; Li, C.; Zhang, Q.

    2007-12-01

    The precipitation of three kinds of structures from gallbladder bile of a patient, fractal structure, regular crystal structure, and small disperse granules, was observed in the same sample using Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). The results indicated that there was a transition from a linear equilibrium system to a nonlinear and nonequilibrium system, which was discussed using the theory of entropy. The chemical compositions of these three different kinds of precipitates were determined by energy dispersive X-ray spectroscopy (EDS). This experimental result revealed that Na and Cl played important roles in the formation of the fractal and crystal structures. Besides, the Aggregation-Diffusion-Fractal (ADF) model was used to explain the growth mechanism of the fractal.

  5. Characterization of bile acids and fatty acids from ox bile in oil paintings by gas chromatography-mass spectrometry.

    PubMed

    Casas-Catalán, M J; Doménech-Carbó, M T; Mateo-Castro, R; Gimeno-Adelantado, J V; Bosch-Reig, F

    2004-02-06

    Characterization of ox bile, traditionally used in painting, is of interest in the fields of archaeometry and conservation and restoration of works of art. Bile acids, fatty acids (F), and cholesterol found in ox bile have been identified using a derivatization method that combines the formation of ethyl esters from the carboxylic groups and the trimethylsilyl ethers from hydroxyl groups. This method of analysis is consistent with these others proposed by the authors to analyze drying oils, proteins, and diterpenic resins usually used as binders and varnishes by the painters. Bile acids from binary samples such as animal glue/ox bile, casein/ox bile and Arabic gum/ox bile have been successfully analyzed using the proposed method. Finally, a method of analysis of mixtures of drying oil and ox bile has been also proposed attempting to quantitatively characterize samples in which ox bile was added to the drying oil for increasing the surfactant properties.

  6. Supramolecular Complexes Formed in Systems Bile Salt-Bilirubin-Silica

    NASA Astrophysics Data System (ADS)

    Vlasova, N. N.; Severinovskaya, O. V.; Golovkova, L. P.

    The formation of supramolecular complexes between bilirubin and primary micelles of bile salts has been studied. The association constants of bile salts and binding of bilirubin with these associates have been determined. The adsorption of bilirubin and bile salts from individual and mixed aqueous solutions onto hydrophobic silica surfaces has been investigated. The interaction of bilirubin with primary bile salt micelles and the strong retention in mixed micelles, which are supramolecular complexes, result in the adsorption of bilirubin in free state only.

  7. Bile duct stricture

    MedlinePlus

    ... occur after surgery to remove the gallbladder. Other causes of this condition include: Cancer of the bile duct, liver or pancreas Damage and scarring due to a gallstone in the bile duct Damage or scarring after ...

  8. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  9. Beyond intestinal soap--bile acids in metabolic control.

    PubMed

    Kuipers, Folkert; Bloks, Vincent W; Groen, Albert K

    2014-08-01

    Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that bile acids are also ligands for the membrane-bound, G-protein coupled bile acid receptor 1 (also known as TGR5) have opened new avenues of research. Both FXR and TGR5 regulate various elements of glucose, lipid and energy metabolism. Consequently, a picture has emerged of bile acids acting as modulators of (postprandial) metabolism. Therefore, strategies that interfere with either bile acid metabolism or signalling cascades mediated by bile acids may represent novel therapeutic approaches for metabolic diseases. Synthetic modulators of FXR have been designed and tested, primarily in animal models. Furthermore, the use of bile acid sequestrants to reduce plasma cholesterol levels has unexpected benefits. For example, treatment of patients with type 2 diabetes mellitus (T2DM) with sequestrants causes substantial reductions in plasma levels of glucose and HbA1c. This Review aims to provide an overview of the molecular mechanisms by which bile acids modulate glucose and energy metabolism, particularly focusing on the glucose-lowering actions of bile acid sequestrants in insulin resistant states and T2DM.

  10. [Rheologic properties of bile and their possible significance for lithogenesis].

    PubMed

    Gottschalk, M

    1986-01-01

    In the sparse literature dealing with the rheological characterization of bile You can find supporters of the Newtonian and the Maxwell flow behaviour theories. The submitted examinations of 33 bile specimens sampled postoperatively by T-drainages were carried out with the help of a Contraves-Low-Shear-Viscometer. They definitely show the bile fluid's exponential increase in absolute dynamic viscosity under low shear conditions. Consequently bile behaves like a Maxwell (= Non-Newtonian) fluid, especially considering the variously caused pathological retardation of bile flow. This fact may play a decisive role in fostering lithogenesis. The classification of bile as a fluid with Maxwell behaviour is probably a pathophysiologically important fact with respect to cholelithogenesis and offers a model for further discussion on the prevention of recurrent biliary tract concrements formation.

  11. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  12. Bile culture (image)

    MedlinePlus

    ... tract. A specimen of bile is placed in culture media and observed for growth of microorganisms. If there ... no infection. If there is growth in the culture media, the growth is then isolated and identified to ...

  13. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum.

    PubMed

    Spadafora, Carmenza; Awandare, Gordon A; Kopydlowski, Karen M; Czege, Jozsef; Moch, J Kathleen; Finberg, Robert W; Tsokos, George C; Stoute, José A

    2010-06-17

    Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine.

  14. Respiratory Pathogens Adopt a Chronic Lifestyle in Response to Bile

    PubMed Central

    Reen, F. Jerry; Woods, David F.; Mooij, Marlies J.; Adams, Claire; O'Gara, Fergal

    2012-01-01

    Chronic respiratory infections are a major cause of morbidity and mortality, most particularly in Cystic Fibrosis (CF) patients. The recent finding that gastro-esophageal reflux (GER) frequently occurs in CF patients led us to investigate the impact of bile on the behaviour of Pseudomonas aeruginosa and other CF-associated respiratory pathogens. Bile increased biofilm formation, Type Six Secretion, and quorum sensing in P. aeruginosa, all of which are associated with the switch from acute to persistent infection. Furthermore, bile negatively influenced Type Three Secretion and swarming motility in P. aeruginosa, phenotypes associated with acute infection. Bile also modulated biofilm formation in a range of other CF-associated respiratory pathogens, including Burkholderia cepacia and Staphylococcus aureus. Therefore, our results suggest that GER-derived bile may be a host determinant contributing to chronic respiratory infection. PMID:23049911

  15. Bile acids: analysis in biological fluids and tissues

    PubMed Central

    Griffiths, William J.; Sjövall, Jan

    2010-01-01

    The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121

  16. Postnatal development of bile secretory physiology in the dog

    SciTech Connect

    Tavoloni, N.; Jones, M.J.; Berk, P.D.

    1985-04-01

    To determine whether bile formation in the dog is an immature process at birth, several determinants of bile secretion were studied in anesthetized, bile duct-cannulated puppies of 0-42 days of age and adult dogs. Basal canalicular bile flow rate, estimated by /sup 14/C-erythritol biliary clearance, averaged 0.182 microliter/min/g liver in 0-3 day-old puppies and increased to 0.324 and 0.461 microliter/min/g in puppies 7-21 and 28-42 days of age, respectively. Calculated ductular bile water reabsorption (/sup 14/C-erythritol biliary clearance-bile flow) was virtually absent in 0-3 day-old puppies, and averaged 0.017 and 0.092 microliter/min/g in puppies of 7-21 and 28-42 days of age, respectively. In adult dogs, ductular bile water reabsorption was 0.132 microliter/min/g. These functional deficiencies of the newborn dog were associated with an increased biliary permeability to /sup 3/H-inulin which could not be accounted for solely by an increased solute diffusion due to the lower rate of canalicular bile flow. Administration of taurocholate up to 2000 nmol/min/kg produced in all animals a similar increase in canalicular bile flow and bile acid excretion, and was not associated with changes in ductular bile water reabsorption rate. These findings are interpreted to indicate that, in the dog, bile secretory function is immature at birth and develops during postnatal life.

  17. Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids.

    PubMed Central

    Craven, P A; Pfanstiel, J; DeRubertis, F R

    1987-01-01

    Deoxycholate (DOC), chenodeoxycholate, 12-O-tetradecanoyl phorbol-13-acetate (TPA), or 1-oleoyl-2-acetyl-glycerol (OAG) activated colonic epithelial protein kinase C as reflected by translocation from the soluble to the particulate cell fraction. Activation of protein kinase C was correlated with stimulation of enhanced proliferative activity of colonic mucosa and reactive oxygen production. TPA and OAG, but not DOC, directly activated soluble protein kinase C in vitro. However, DOC rapidly increased labeled inositol phosphate and diacylglycerol accumulation in colonic epithelial cells. Retinoic acid inhibited protein kinase C activity and suppressed DOC-, TPA-, and OAG-induced increases in reactive oxygen production. The results support a role for protein kinase C in the stimulation of colonic epithelial proliferative activity and reactive oxygen production induced by bile acids, TPA and OAG. In contrast to TPA and OAG, which activate protein kinase C directly, bile acids appear to activate protein kinase C indirectly by increasing the diacylglycerol content of colonic epithelium. PMID:3027128

  18. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... Situation Bile Duct Cancer Treating Bile Duct Cancer Radiation Therapy for Bile Duct Cancer Radiation therapy uses ... of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy uses ...

  19. Fatty acid bile acid conjugates (FABACs)—New molecules for the prevention of cholesterol crystallisation in bile

    PubMed Central

    Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.

    2001-01-01

    BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity.
AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo.
METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice.
RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet.
CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in

  20. Absorption of Bile Pigments by the Gall Bladder*

    PubMed Central

    Ostrow, J. Donald

    1967-01-01

    A technique is described for preparation in the guinea pig of an in situ, isolated, vascularized gall bladder that exhibits normal absorptive functions. Absorption of labeled bile pigments from the gall bladder was determined by the subsequent excretion of radioactivity in hepatic bile. Over a wide range of concentrations, unconjugated bilirubin-14C was well absorbed, whereas transfer of conjugated bilirubin proceeded slowly. Mesobilirubinogen-3H was absorbed poorly from whole bile, but was absorbed as rapidly as unconjugated bilirubin from a solution of pure conjugated bile salt. Bilirubin absorption was not impaired by iodoacetamide, 1.5 mM, or dinitrophenol, 1.0 mM, even though water transport was affected. This indicated that absorption of bilirubin was not dependent upon water transport, nor upon energy-dependent processes. The linear relationship between absorption and concentration of pigment at low concentrations in bile salt solutions suggested that pigment was transferred by passive diffusion. At higher pigment concentrations or in whole bile, this simple relationship was modified by interactions of pigment with bile salts and other constituents of bile. These interactions did not necessarily involve binding of bilirubin in micelles. The slow absorption of the more polar conjugates and photo-oxidative derivatives of bilirubin suggested that bilirubin was absorbed principally by nonionic, and partially, by ionic diffusion. Concentrations of pure conjugated bile salts above 3.5 mM were found to be injurious to the gall bladder mucosa. This mucosal injury did not affect the kinetics of bilirubin absorption. During in vitro incubation of bile at 37°C, decay of bilirubin and hydrolysis of the conjugate proceeded as first-order reactions. The effects of these processes on the kinetics of bilirubin absorption, and their possible role in the formation of “white bile” and in the demonstrated appearance of unconjugated bilirubin in hepatic bile, are discussed

  1. Hydroxylation, conjugation and sulfation of bile acids in primary monolayer cultures of rat hepatocytes

    SciTech Connect

    Princen, H.M.; Meijer, P.

    1988-08-15

    Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of (4-/sup 14/C)-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.

  2. Human hepatoblastoma cells (HepG2) and rat hepatoma cells are defective in important enzyme activities in the oxidation of the C27 steroid side chain in bile acid formation.

    PubMed

    Farrants, A K; Nilsson, A; Pedersen, J I

    1993-12-01

    We have examined the ability of HepG2 human hepatoblastoma cells and 7800 C1 Morris rat hepatoma cells to convert 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) and 3 alpha, 7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) to cholic acid and chenodeoxycholic acid, respectively. Cell extracts from both these cell lines could neither form cholic acid from THCA nor from the activated form, THCA-CoA. This suggests that both cell lines are defective in two enzyme activities involved in the pathway, the microsomal THCA-CoA ligase and the peroxisomal THCA-CoA oxidase. Furthermore, we show that the subsequent enzymes are active in the conversion to bile acids, because the product of the THCA-CoA oxidase, 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholest-24-enoyl-coenzyme A (delta 24-THCA-CoA) or delta 24-THCA in the presence of THCA-CoA ligase, are converted to cholic acid by both cell lines. HepG2 cells were able to slowly form chenodeoxycholic acid and cholic acid from 5 beta-cholestane-3 alpha, 7 alpha-diol and 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, respectively, in 24- and 96-h incubations. The rate of cholic acid formation was lower than the rate for chenodeoxycholic acid and there was a clear accumulation of THCA. 7800 C1 Morris cells had no ability to form cholic acid or chenodeoxycholic acid after 96 h incubation. We conclude that these two cell lines have defects in two enzyme activities involved in the peroxisomal oxidation in bile acid formation, the microsomal THCA-CoA ligase and the peroxisomal THCA-CoA oxidase.

  3. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  4. Complicated bile duct stones

    PubMed Central

    Roy, Ashwin; Martin, Derrick

    2013-01-01

    Common bile duct stones (CBDSs) are solid deposits that can either form within the gallbladder or migrate to the common bile duct (CBD), or form de novo in the biliary tree. In the USA around 15% of the population have gallstones and of these, 3% present with symptoms annually. Because of this, there have been major advancements in the management of gallstones and related conditions. Management is based on the patient's risk profile; young and healthy patients are likely to be recommended for surgery and elderly patients with comorbidities are usually recommended for endoscopic procedures. Imaging of gallstones has advanced in the last 30 years with endoscopic retrograde cholangiopancreatography evolving from a diagnostic to a therapeutic procedure in removing CBDSs. We present a complicated case of a patient with a CBDS and periampullary diverticulum and discuss the techniques used to diagnose and remove the stone from the biliary system. PMID:23946532

  5. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms.

    PubMed

    Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine.

  6. In vivo and vitro studies on formation of bile acids in patients with Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic and chenodeoxycholic acid.

    PubMed Central

    Kase, B F; Pedersen, J I; Strandvik, B; Björkhem, I

    1985-01-01

    The last step in bile acid formation involves conversion of 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholestanoic acid (THCA) into cholic acid and 3 alpha,7 alpha-dihydroxy-5 beta-cholestanoic acid (DHCA) into chenodeoxycholic acid. The peroxisomal fraction of rat and human liver has the highest capacity to catalyze these reactions. Infants with Zellweger syndrome lack liver peroxisomes, and accumulate 5 beta-cholestanoic acids in bile and serum. We recently showed that such an infant had reduced capacity to convert a cholic acid precursor, 5 beta-cholestane-3 alpha,7 alpha,12 alpha-triol into cholic acid. 7 alpha-Hydroxy-4-cholesten-3-one is a common precursor for both cholic acid and chenodeoxycholic acid. Intravenous administration of [3H]7 alpha-hydroxy-4-cholesten-3-one to an infant with Zellweger syndrome led to a rapid incorporation of 3H into biliary THCA but only 10% of 3H was incorporated into cholic acid after 48 h. The incorporation of 3H into DHCA was only 25% of that into THCA and the incorporation into chenodeoxycholic acid approximately 50% of that in cholic acid. The conversion of intravenously administered [3H]THCA into cholic acid in another infant with Zellweger syndrome was only 7%. There was a slow conversion of THCA into 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-C29-dicarboxylic acid. The pool size of both cholic- and chenodeoxycholic acid was markedly reduced. Preparations of liver from two patients with Zellweger syndrome had no capacity to catalyze conversion of THCA into cholic acid. There was, however, a small conversion of DHCA into chenodeoxycholic acid and into THCA. It is concluded that liver peroxisomes are important both for the conversion of THCA into cholic acid and DHCA into chenodeoxycholic acid. PMID:4077985

  7. Viscosity of human bile sampled from the common bile duct.

    PubMed

    Reinhart, Walter H; Näf, Gabriela; Werth, Baseli

    2010-01-01

    Cholestasis is a frequent gastroenterological problem, which is tackled by endoscopic procedures. Little is known about bile viscosity, a major determinant of its flow. We measured the viscosity of bile from the common bile duct during endoscopic retrograde cholangiography. Bile was aspirated immediately after cannulation of the papilla and deep-frozen. Viscosity was measured with a rotational viscometer at 37 degrees C and a broad range of shear rates (0.08-69.5 s(-1)). The majority of the 138 patients (64.5%) had bile viscosities between water (0.7 mPa.s) and the lower limit of plasma (1.1 mPa.s). In 20 patients (14.5%) it was above that of plasma (>1.4 mPa.s), and showed a non-Newtonian behaviour, i.e. the viscosity increased exponentially with decreasing shear rate. Cholecystectomized patients had a lower bile viscosity. Bile viscosities did not differ between patient groups with either choledocholithiasis, sludge, cholangitis, biliary pancreatitis, pancreatic carcinoma, or cholangiocarcinoma. We conclude that bile viscosity in the common bile duct is usually lower than that of plasma, in 15% it is higher and increases exponentially with decreasing flow rate, which may lead to a vicious cycle.

  8. Bile acids: emerging role in management of liver diseases

    PubMed Central

    Asgharpour, Amon; Kumar, Divya

    2016-01-01

    Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome. PMID:26320013

  9. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  10. Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms

    SciTech Connect

    Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav

    2015-05-15

    Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine

  11. Surgery for Bile Duct (Cholangiocarcinoma) Cancer

    MedlinePlus

    ... Situation Bile Duct Cancer Treating Bile Duct Cancer Surgery for Bile Duct Cancer There are 2 general ... also help plan the operation to remove it. Surgery for resectable cancers For resectable cancers, the type ...

  12. What's New in Bile Duct Cancer Research and Treatment?

    MedlinePlus

    ... Bile Duct Cancer About Bile Duct Cancer What’s New in Bile Duct Cancer Research and Treatment? Bile ... is tumor blood vessels. Bile duct tumors need new blood vessels to grow beyond a certain size. ...

  13. What Happens After Treatment for Bile Duct Cancer?

    MedlinePlus

    ... After Treatment What Happens After Treatment for Bile Duct Cancer? For some people with bile duct cancer, ... Bile Duct Cancer Stops Working More In Bile Duct Cancer About Bile Duct Cancer Causes, Risk Factors, ...

  14. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  15. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  16. Cholesterol crystallization from a dilute bile salt-rich model bile

    NASA Astrophysics Data System (ADS)

    Konikoff, Fred M.; Carey, Martin C.

    1994-11-01

    In earlier work we showed that cholesterol monohydrate crystallization from model and native biles can involve filamentous cholesterol crystals, and other metastable intermediates which are covered by a layer of phosphatidylcholine (lecithin) molecules [Konikoff et al., J. Clin. Invest. 90 (1992) 1155]. The aim of the present study was to isolate the initial filamentous cholesterol crystals by density gradient centrifugation and microfiltration and to sequentially monitor their transformations into equilibrium plates within the mother liquor composed of a dilute (1.2 g/dl) bile salt-rich model bile (cholesterol/egg yolk lecithin/sodium taurocholate, 1.7/0.8/97.5 mol%). When assayed by dual radiolabeling at 37°C, total precipitated cholesterol in bile increased from zero at 2-4 h of incubation to 43% at 24 h, reaching a stable value by 48 h when 36% of total cholesterol had crystallized. Isopycnic sucrose density gradient centrifugation at 20°C separated early filamentous crystals from plate-like crystals and revealed densities compatible with anhydrous cholesterol (1.029 g/ml) and cholesterol monohydrate (1.048 g/ml), respectively. Rapid (1 h) density gradient centrifugation carried-out in time-lapse sequence disclosed that cholesterol crystallization involved initially low-density (1.01-1.03 g/ml) filamentous crystals, which reached a maximal concentration at 24 h and disappeared gradually by 156 h of incubation. Concomitantly, the concentrations of high-density (1.04-1.06 g/ml) plate-like cholesterol crystals increased reciprocally throughout the crystallization process suggesting a precursor-product relationship. Rates of crystal filament formation and transitions to thermodynamically stable plates accelerated curvilinearly with increases in temperature from 4 to 60°C, but the crystallization process per se remained unchanged. We conclude that metastable intermediate crystals during cholesterol precipitation from bile may involve either low-density anhydrous

  17. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  18. Effect of sodium taurolithocholate on bile flow and bile acid excretion

    PubMed Central

    Javitt, Norman B.; Emerman, Sidney

    1968-01-01

    Sodium taurolithocholate and sodium taurocholenate were infused intravenously into rats and hamsters. Each bile acid salt was given alone or in combination with varying amounts of a primary bile salt, either sodium taurocholate or sodium taurochenodeoxycholate. Bile flow, total bile acid salt excretion, and the excretion of sodium taurolithocholate were quantitatively determined. In addition, mannitol excretion in bile was determined at various flow rates. Sodium taurolithocholate was found to be rapidly excreted in bile in concentrations greater than its aqueous solubility. When the endogenous excretion rate of bile salt or the infusion of primary bile salt was less than the molar amount of administered sodium taurolithocholate, cholestasis always occurred. Increasing molar amounts of primary bile salt prevented cholestasis and enhanced the excretion rate of sodium taurolithocholate. Infusion of sodium taurocholenate, a nonhemolytic bile salt, caused an effect on bile flow and bile acid salt excretion qualitatively similar to sodium taurolithocholate. The induction of cholestasis can be attributed to the physical properties of these poorly water soluble bile salts. The reduction in bile flow could not be shown to be related to water reabsorption from the biliary tree since there was no increase in mannitol concentration in bile during cholestasis. Reduction in bile flow may be related to obstruction of segments of the biliary tree by precipitates of sodium taurolithocholate and possibly to a decrease in water entry into the biliary tree during infusion of this bile acid salt. PMID:5645847

  19. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp.

    PubMed Central

    Dashkevicz, M P; Feighner, S D

    1989-01-01

    An agar plate assay was developed to detect bile salt hydrolase activity in lactobacilli. On Lactobacillus-selective MRS or Rogosa SL medium supplemented with taurodeoxycholic, taurocholic, or taurochenodeoxycholic acids, bile salt hydrolysis was manifested at two intensities: (i) the formation of precipitate halos around colonies or (ii) the formation of opaque granular white colonies. Sixty-six lactobacilli were tested for bile salt hydrolase activity by both the plate assay and a sensitive radiochemical assay. No false-positive or false-negative results were detected by the plate assay. Based on results of experiments with Eubacterium lentum and Bacteroides species, the plate assay was dependent on two factors: (i) the presence of bile salt hydrolytic activity and (ii) the ability of the organism to sufficiently acidify the medium to protonate free bile acids. The availability of a differential medium for determination of bile salt hydrolase activity will provide a rapid method for determining shifts in a specific functional activity of intestinal Lactobacillus species and provide a rapid screening capability for identifying bile salt hydrolase-deficient mutants. The latter application should allow bile salt hydrolase activity to be used as a marker enzyme in genetic experiments. Images PMID:2705765

  20. Mild MPP(+) exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.

    PubMed

    Miyara, Masatsugu; Kotake, Yaichiro; Tokunaga, Wataru; Sanoh, Seigo; Ohta, Shigeru

    2016-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP(+) suggest autophagy involvement in the pathogenesis of PD, the effect of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP(+) exposure (10 and 200 μM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP(+) toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP(+) exposure predominantly inhibited autophagosome degradation, whereas acute MPP(+) exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP(+) exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP(+) exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP(+) exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP(+) exposure and mechanistic differences between mild and acute MPP(+) toxicities. Mild MPP(+) toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP(+) on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP(+) exposure. Mechanistic differences between acute and mild MPP(+) toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause

  1. Bile analysis in heroin overdose.

    PubMed

    Tassoni, Giovanna; Cacaci, Claudio; Zampi, Massimiliano; Froldi, Rino

    2007-11-01

    Following its metabolism in the liver, morphine and its metabolites can be directly eliminated in bile. Then, they undergo the enterohepatic cycle (EHC) and mostly reappear in the circulation. We report a case showing the presence of morphine in bile (21.3 mug/mL) and hair (4.8 ng/mg) but not in blood, urine or the liver of an addict who survived in hospital for about 144 h (6 days). These data would indicate that the EHC does not play any role about 144 h after the last injection, and directly confirms that gall bladder is a storage depot for morphine. They constitute the first report of a demonstration of the effect of the EHC on morphine bioavailability in an addict, and could be considered as indication, without supporting circumstantial evidence, that the morphine level in bile is related to chronic opiate use.

  2. What Are the Key Statistics about Bile Duct Cancer?

    MedlinePlus

    ... About Bile Duct Cancer What Are the Key Statistics About Bile Duct Cancer? Bile duct cancer (cholangiocarcinoma) ... it is when it is found. For survival statistics, see “ Survival statistics for bile duct cancers .” Visit ...

  3. What Should You Ask Your Doctor about Bile Duct Cancer?

    MedlinePlus

    ... What Should You Ask Your Doctor About Bile Duct Cancer? It is important to have frank, open ... Doctor About Bile Duct Cancer? More In Bile Duct Cancer About Bile Duct Cancer Causes, Risk Factors, ...

  4. Bile Acids, Obesity, and the Metabolic Syndrome

    PubMed Central

    Ma, Huijuan; Patti, Mary Elizabeth

    2014-01-01

    Bile acids are increasingly recognized as key regulators of systemic metabolism. While bile acids have long been known to play important and direct roles in nutrient absorption, bile acids also serve as signaling molecules. Bile acid interactions with the nuclear hormone receptor farnesoid X receptor (FXR) and the membrane receptor G-protein-coupled bile acid receptor 5 (TGR5) can regulate incretin hormone and fibroblast growth factor 19 (FGF19) secretion, cholesterol metabolism, and systemic energy expenditure. Bile acid levels and distribution are altered in type 2 diabetes and increased following bariatric procedures, in parallel with reduced body weight and improved insulin sensitivity and glycemic control. Thus, modulation of bile acid levels and signaling, using bile acid binding resins, TGR5 agonists, and FXR agonists, may serve as a potent therapeutic approach for the treatment of obesity, type 2 diabetes, and other components of the metabolic syndrome in humans. PMID:25194176

  5. Bilirubin conjugates in bile of man and rat in the normal state and in liver disease

    PubMed Central

    Fevery, J.; Damme, B. Van; Michiels, R.; Groote, J. De; Heirwegh, K. P. M.

    1972-01-01

    correlation with serum bilirubin concentration (r = 0.6). Recovery of the diseases was accompanied by normalization of the azopigment patterns. In rats, hydrostatic or mechanical obstruction induced increases in β- and γ-azopigments and a decrease in δ-azopigment similar to the changes observed in bile of liver patients. Complete normalization was obtained 6 hr after relieving the hydrostatic obstruction (duration 15-21 hr). In contrast, with man after surgery for extrahepatic obstruction, T-tube bile was not normalized when the T-tube was withdrawn (10 days after operation). Hydrostatic obstruction in rats provides an easy model when postobstructive bile pigment composition and parameters have to be investigated. The present investigations stress the importance of the physiopathological state when studying bilirubin conjugation. Hindrance to bile secretion induced heterogeneity of bilirubin conjugates and stimulated the formation of complex structures. Images PMID:4639028

  6. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  7. The influence of bile acids on the oral bioavailability of vitamin K encapsulated in polymeric micelles.

    PubMed

    van Hasselt, P M; Janssens, G E P J; Slot, T K; van der Ham, M; Minderhoud, T C; Talelli, M; Akkermans, L M; Rijcken, C J F; van Nostrum, C F

    2009-01-19

    The purpose of this study was to assess the ability of polymeric micelles to enable gastrointestinal absorption of the extremely hydrophobic compound vitamin K, by comparison of its absorption in bile duct ligated and sham operated rats. Hereto, vitamin K was encapsulated in micelles composed of mPEG(5000)-b-p(HPMAm-lac(2)), a thermosensitive block copolymer. Vitamin K plasma levels rose significantly upon gastric administration of 1 mg vitamin K encapsulated in polymeric micelles in sham operated rats, but not after bile duct ligation (AUC 4543 and 1.64 ng/mL/h respectively, p<0.01). Duodenal administration of polymeric micelles together with bile acids in bile duct ligated rats fully restored absorption. Dynamic light scattering time series showed a significant and dose dependent rise in micellar size in the presence of bile acids in vitro, indicating the gradual formation of mixed micelles during the first 3 h of incubation. The highest bile acid amounts (11 mM deoxycholic acid and 41 mM taurocholic acid) eventually caused aggregation of the loaded micelles after the formation of mixed micelles. These data suggest that the gastrointestinal absorption of encapsulated vitamin K from polymeric micelles is mediated by free bile and that uptake of intact micelles through pinocytosis is insignificant.

  8. Identification of quinone imine containing glutathione conjugates of diclofenac in rat bile.

    PubMed

    Waldon, Daniel J; Teffera, Yohannes; Colletti, Adria E; Liu, Jingzhou; Zurcher, Danielle; Copeland, Katrina W; Zhao, Zhiyang

    2010-12-20

    High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.

  9. Bile Acids in Neurodegenerative Disorders

    PubMed Central

    Ackerman, Hayley D.; Gerhard, Glenn S.

    2016-01-01

    Bile acids, a structurally related group of molecules derived from cholesterol, have a long history as therapeutic agents in medicine, from treatment for primarily ocular diseases in ancient Chinese medicine to modern day use as approved drugs for certain liver diseases. Despite evidence supporting a neuroprotective role in a diverse spectrum of age-related neurodegenerative disorders, including several small pilot clinical trials, little is known about their molecular mechanisms or their physiological roles in the nervous system. We review the data reported for their use as treatments for neurodegenerative diseases and their underlying molecular basis. While data from cellular and animal models and clinical trials support potential efficacy to treat a variety of neurodegenerative disorders, the relevant bile acids, their origin, and the precise molecular mechanism(s) by which they confer neuroprotection are not known delaying translation to the clinical setting. PMID:27920719

  10. Carbon monoxide and bile pigments: surprising mediators of vascular function.

    PubMed

    Durante, William

    2002-08-01

    Heme oxygenase (HO) catalyzes the degradation of heme to CO, iron, and biliverdin. Biliverdin is subsequently metabolized to bilirubin by the enzyme biliverdin reductase. Although long considered irrelevant byproducts of heme catabolism, recent studies indicate that CO and the bile pigments biliverdin and bilirubin may play an important physiological role in the circulation. The release of CO by vascular cells may modulate blood flow and blood fluidity by inhibiting vasomotor tone, smooth muscle cell proliferation, and platelet aggregation. CO may also maintain the integrity of the vessel wall by directly blocking vascular cell apoptosis and by inhibiting the release of pro-apoptotic inflammatory cytokines from the vessel wall. These effects of CO are mediated via multiple pathways, including activation of soluble guanylate cyclase, potassium channels, p38 mitogen-activated protein kinase, or inhibition of cytochrome P450. In addition, the release of bile pigments may serve to sustain vascular homeostasis by protecting vascular cells from oxidative stress and by inhibiting the adhesion and infiltration of leukocytes into the vessel wall. Induction of HO-1 gene expression and the subsequent release of CO and bile pigments are observed in numerous vascular disorders and may provide an important adaptive mechanism to preserve homeostasis at sites of vascular injury. Thus, the HO-catalyzed formation of CO and bile pigments by vascular cells may function as a critical endogenous vasoprotective system. Moreover, pharmacological or genetic approaches targeting HO-1 to the vessel wall may represent a novel therapeutic approach in treating vascular disease.

  11. Use of dimethicone to reduce the fall in gastric potential difference induced by bile salts.

    PubMed

    Bergmann, J F; Simoneau, G; Chantelair, G; Caulin, C; Segrestaa, J M

    1989-01-01

    The gastric potential difference (PD) was measured in ten healthy volunteers after sodium taurocholate intake. This bile salt was given after treatment with dimethicone or placebo in a cross-over design study. With dimethicone the fall in PD was lower (16.1 vs. 24.8 mV,) and shorter (32.5 vs. 51.0 min) than with the placebo. Our result suggests that the silicone can prevent the formation of the gastric lesions induced by bile salts.

  12. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  13. [Bile leakage in laparoscopic cholecystectomy. Authors' experience].

    PubMed

    Sperlongano, P; Pisaniello, D; Corsale, I; Cozza, G

    1999-01-01

    The Authors report their experience of two patients with bile leakage following videocholecystectomy (VLC) among a series of 163 cases. Reviewing the Literature, they analyze possible causes and mechanisms of bile spillage occurring after VCL. They also suggest some guidelines for a safe VLC, stressing the importance of the routinary placement of the sub-hepatic drainage to remove 48 hours to early detect possible bile leakages after surgery.

  14. Intestinal GPS: bile and bicarbonate control cyclic di-GMP to provide Vibrio cholerae spatial cues within the small intestine.

    PubMed

    Koestler, Benjamin J; Waters, Christopher M

    2014-01-01

    The second messenger cyclic di-GMP (c-di-GMP) regulates numerous phenotypes in response to environmental stimuli to enable bacteria to transition between different lifestyles. Here we discuss our recent findings that the human pathogen Vibrio cholerae recognizes 2 host-specific signals, bile and bicarbonate, to regulate intracellular c-di-GMP. We have demonstrated that bile acids increase intracellular c-di-GMP to promote biofilm formation. We have also shown that this bile-mediated increase of intracellular c-di-GMP is negated by bicarbonate, and that this interaction is dependent on pH, suggesting that V. cholerae uses these 2 environmental cues to sense and adapt to its relative location in the small intestine. Increased intracellular c-di-GMP by bile is attributed to increased c-di-GMP synthesis by 3 diguanylate cyclases (DGCs) and decreased expression of one phosphodiesterase (PDE) in the presence of bile. The molecular mechanisms by which bile controls the activity of the 3 DGCs and the regulators of bile-mediated transcriptional repression of the PDE are not yet known. Moreover, the impact of varying concentrations of bile and bicarbonate at different locations within the small intestine and the response of V. cholerae to these cues remains unclear. The native microbiome and pharmaceuticals, such as omeprazole, can impact bile and pH within the small intestine, suggesting these are potential unappreciated factors that may alter V. cholerae pathogenesis.

  15. The role of bile carcinoembryonic antigen in diagnosing bile duct cancer.

    PubMed Central

    Joo, Kwang Ro; Kim, Do Ha; Park, Jong Ho; Bang, Sung-Jo; Shin, Jung Woo; Park, Neung Hwa; Park, Jae Hoo

    2003-01-01

    It is known that the fluids bathing tumors might contain a higher level of the carcinoembryonic antigen (CEA) than those found in the blood. Therefore, we evaluated the role of bile CEA in diagnosing bile duct cancer. One hundred and thirty two patients were prospectively studied. The patients were divided into 3 groups: the bile duct cancer (n=32), pancreatic cancer (n=16), and benign biliary diseases (n=84) groups. Bile samples were obtained on the next day of the biliary drainage procedures. The mean bile CEA level in those with bile duct cancer (120.6 +/- 156.9 ng/mL) was significantly higher than those with pancreatic cancer and benign biliary diseases (32.0 +/- 28.5 ng/mL, 29.3 +/- 56.3 ng/mL). Using the level of 20 ng/mL, the sensitivity and specificity of bile CEA in the diagnosis of bile duct cancer from benign biliary diseases were 65.6% and 66.7%, respectively. Both the bile CEA and total bilirubin level were found to be an independent factor linked to bile duct cancer. This study result suggests that bile CEA level is a useful supplementary test for diagnosing bile duct cancer. PMID:14676443

  16. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  17. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  18. Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling.

    PubMed

    Li, W G; Luo, X Y; Chin, S B; Hill, N A; Johnson, A G; Bird, N C

    2008-11-01

    Bile flow is thought to play an essential role in the pathophysiological genesis of cholelithiasis (gallstone formation) and in gallbladder pain. In this paper, we extend our previous study of the human biliary system (Li et al., 2007, J. Biomech. Eng., 129:164-173) to include two important factors: the non-Newtonian properties of bile, and elastic deformation of the cystic duct. A one-dimensional (1D) model is analyzed and compared with three-dimensional (3D) fluid-structure interaction simulations. It is found that non-Newtonian bile raises resistance to the flow of bile, which can be augmented significantly by the elastic deformation (collapse) of the cystic duct. We also show that the 1D model predicts the pressure drop of the cystic duct flow well for all cases considered (Newtonian or non-Newtonian flow, rigid or elastic ducts), when compared with the full 3D simulations.

  19. Does bile protect or damage interstitial Cajal-like cells in the human gallbladder?

    PubMed

    Pasternak, Artur; Szura, Miroslaw; Matyja, Maciej; Tomaszewski, Krzysztof A; Matyja, Andrzej

    2013-01-01

    the etiology of gallstone disease is considered to be multifactorial, including biliary cholesterol hypersecretion, supersaturation and crystallization, stone formation, bile stasis and mucus hypersecretion and gel formation. Gallbladder hypomotility seems to be a key process that triggers the precipitation of cholesterol microcrystals from supersaturated lithogenic bile. the purpose of the current study was to determine whether ICLCs in the gallbladder were influenced by lithogenic bile. Gallbladder specimens were collected from 30 patients (8 males and 22 females) who underwent elective laparoscopic cholecystectomy for symptomatic gallstone disease. The control group consisted of 25 consecutive patients (11 males and 14 females) who received elective treatment for pancreatic head tumors. ICLCs were visualized in paraffin sections of gallbladders using double immunofluorescence protocol with monoclonal c-kit antibodies and mast cell tryptase. Cholesterol, phospholipid and bile acid concentrations were measured in bile samples obtained by needle aspiration from the gallbladder at the time of surgery. The number of ICLCs in the gallbladder wall was significantly lower in the study group than in the control group (3.35 ± 1.23 vs. 7.06 ± 1.82 cell/FOV in the muscularis propria, P < 0.001) and correlated with a significant increase in the cholesterol saturation index. The glycocholic and taurocholic acid levels were significantly elevated in the control subjects compared with the study group. The results suggest that bile composition may play an important role in the reduction of ICLC density in the gallbladder.

  20. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts.

    PubMed

    Poncy, Alexis; Antoniou, Aline; Cordi, Sabine; Pierreux, Christophe E; Jacquemin, Patrick; Lemaigre, Frédéric P

    2015-08-15

    In developing liver, cholangiocytes derive from the hepatoblasts and organize to form the bile ducts. Earlier work has shown that the SRY-related High Mobility Group box transcription factor 9 (SOX9) is transiently required for bile duct development, raising the question of the potential involvement of other SOX family members in biliary morphogenesis. Here we identify SOX4 as a new regulator of cholangiocyte development. Liver-specific inactivation of SOX4, combined or not with inactivation of SOX9, affects cholangiocyte differentiation, apico-basal polarity and bile duct formation. Both factors cooperate to control the expression of mediators of the Transforming Growth Factor-β, Notch, and Hippo-Yap signaling pathways, which are required for normal development of the bile ducts. In addition, SOX4 and SOX9 control formation of primary cilia, which are known signaling regulators. The two factors also stimulate secretion of laminin α5, an extracellular matrix component promoting bile duct maturation. We conclude that SOX4 is a new regulator of liver development and that it exerts a pleiotropic control on bile duct development in cooperation with SOX9.

  1. Circadian dysregulation disrupts bile acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...

  2. Bile salts of the coelacanth, Latimeria chalumnae.

    PubMed

    Kihira, K; Akashi, Y; Kuroki, S; Yanagisawa, J; Nakayama, F; Hoshita, T

    1984-12-01

    Bile salts of the coelacanth, Latimeria chalumnae, Smith, have been analyzed and shown to have three bile alcohols, latimerol, 5 alpha-cyprinol, and 5 alpha-cholestane-3 beta, 7 alpha,-12 alpha,25,26-pentol, two C24 bile acids, chenodeoxycholic acid and cholic acid, one C26 bile acid, probably 3 beta, 7 alpha, 12 alpha-trihydroxy-27-nor-5 alpha-cholestan-26-oic acid, and two C27 bile acids, 3 alpha,7 alpha,12 alpha-trihydroxy-5 alpha-cholestan-26-oic acid and 3 beta,7 alpha,12 alpha-trihydroxy-5 alpha-cholestan-26-oic acid as determined by gas-liquid chromatography and gas-liquid chromatography-mass spectrometry.

  3. [Bile composition in patients with chronic pancreatitis].

    PubMed

    Dronov, O I; Koval's'ka, I O; Shvets', Iu P; Vesel's'kyĭ, S P

    2013-05-01

    There was investigated a hepatic bile in 50 persons, aged 35-58 years old, including 20--practically healthy persons (I group), 20 patients, suffering chronic fibrose-degenerative pancreatitis (CHFDP) without jaundice syndrome (II group) and 10 patients, suffering CHFDP with jaundice syndrome (III group). There were determined the contents of the bile acids, the lipids and electrolytic contents of bile. A trustworthy difference in the bile contents was registered in patients, suffering CHFDP with the jaundice syndrome and without it, comparing with such in healthy persons. This have had permitted to add the complex of medicinal preoperative preparation of these patients substantially, and to apply the electrolytes content of a bile to apply as an additional diagnostic marker.

  4. Bile resistance mechanisms in Lactobacillus and Bifidobacterium

    PubMed Central

    Ruiz, Lorena; Margolles, Abelardo; Sánchez, Borja

    2013-01-01

    Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most of the probiotic bacteria currently available in the market belong to the genera Lactobacillus and Bifidobacterium, and specific health-promoting activities, such as treatment of diarrhea or amelioration of gastrointestinal discomfort, have been attributed to them. In order to be able to survive the gastrointestinal transit and transiently colonize our gut, these bacteria must be able to counteract the deleterious action of bile salts, which are the main components of bile. Bile salts are detergent-like biological substances synthesized in the liver from cholesterol. Host enzymes conjugate the newly synthesized free bile acids in the liver with the amino acids glycine or taurine, generating conjugated bile salts. These compounds are stored in the gall bladder and they are released into the duodenum during digestion to perform their physiological function, which is the solubilization of fat coming from diet. These bile salts possess strong antimicrobial activity, since they are able to disorganize the structure of the cell membrane, as well as trigger DNA damage. This means that bacteria inhabiting our intestinal tract must have intrinsic resistance mechanisms to cope with bile salts. To do that, Lactobacillus and Bifidobacterium display a variety of proteins devoted to the efflux of bile salts or protons, to modify sugar metabolism or to prevent protein misfolding. In this manuscript, we review and discuss specific bile resistance mechanisms, as well as the processes responsible for the adaptation of bifidobacteria and lactobacilli to bile. PMID:24399996

  5. Effect of dietary garlic and onion on biliary proteins and lipid peroxidation which influence cholesterol nucleation in bile.

    PubMed

    Vidyashankar, Satyakumar; Sambaiah, Kari; Srinivasan, Krishnapura

    2010-03-01

    Formation of cholesterol gallstones in gallbladder is controlled by procrystallizing and anticrystallizing factors present in bile. Dietary garlic and onion have been recently observed to possess anti-lithogenic potential in experimental mice. In this investigation, the role of biliary proteins from rats fed lithogenic diet or garlic/onion-containing diet in the formation of cholesterol gallstones in model bile was studied. Cholesterol nucleation time of the bile from lithogenic diet group was prolonged when mixed with bile from garlic or onion groups. High molecular weight proteins of bile from garlic and onion groups delayed cholesterol crystal growth in model bile. Low molecular weight (LMW) proteins from the bile of lithogenic diet group promoted cholesterol crystal growth in model bile, while LMW protein fraction isolated from the bile of garlic and onion groups delayed the same. Biliary LMW protein fraction was subjected to affinity chromatography using Con-A and the lectin-bound and unbound fractions were studied for their influence on cholesterol nucleation time in model bile. Major portion of biliary LMW proteins in lithogenic diet group was bound to Con-A, and this protein fraction promoted cholesterol nucleation time and increased cholesterol crystal growth rate, whereas Con-A unbound fraction delayed the onset of cholesterol crystallization. Biliary protein from garlic/onion group delayed the crystallization and interfered with pronucleating activity of Con-A bound protein fraction. These data suggest that apart from the beneficial modulation of biliary cholesterol saturation index, these Allium spices also influence cholesterol nucleating and antinucleating protein factors that contribute to their anti-lithogenic potential.

  6. Complex bile duct injuries: management

    PubMed Central

    Ardiles, V.; Pekolj, J.

    2008-01-01

    Background. Laparoscopic cholecystectomy is the present treatment of choice for patients with gallbladder stones, despite its being associated with a higher incidence of biliary injuries compared with the open procedure. Injuries occurring during the laparoscopic approach seem to be more complex. A complex biliary injury is a disease that is difficult to diagnose and treat. We considered complex injuries: 1) injuries that involve the confluence; 2) injuries in which repair attempts have failed; 3) any bile duct injury associated with a vascular injury; 4) or any biliary injury in association with portal hypertension or secondary biliary cirrhosis. The present review is an evaluation of our experience in the treatment of these complex biliary injuries and an analysis of the international literature on the management of patients. PMID:18695753

  7. Structure of plant bile pigments

    SciTech Connect

    Schoenleber, R.W.

    1983-12-01

    Selective peptide cleavage has provided a general procedure for the study of the structure, including stereochemistry, of plant bile pigments. The information derived from the synthesis and spectral analysis of a series of 2,3-dihydrodioxobilins allows the determination of the trans relative stereochemistry for ring A of the ..beta../sub 1/-phycocyanobilin from C-phycocyanin as well as for ring A of phytochrome. A complete structure proof of the five phycoerythrobilins attached to the ..cap alpha.. and ..beta.. subunits of B-phycoerythrin is described. One of these tetrapyrroles is doubly-peptide linked to a single peptide chain through two thioethers at the C-3' and C-18' positions. The four remaining phycoerythrobilins are singly-linked to the protein through thioethers at the C-3' position and all possess the probable stereochemistry C-2(R), C-3(R), C-3'(R), and C-16(R).

  8. Transport and biological activities of bile acids.

    PubMed

    Zwicker, Brittnee L; Agellon, Luis B

    2013-07-01

    Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.

  9. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: validation by GC-MS and LC-MS[S

    PubMed Central

    Kakiyama, Genta; Muto, Akina; Takei, Hajime; Nittono, Hiroshi; Murai, Tsuyoshi; Kurosawa, Takao; Hofmann, Alan F.; Pandak, William M.; Bajaj, Jasmohan S.

    2014-01-01

    We have developed a simple and accurate HPLC method for measurement of fecal bile acids using phenacyl derivatives of unconjugated bile acids, and applied it to the measurement of fecal bile acids in cirrhotic patients. The HPLC method has the following steps: 1) lyophilization of the stool sample; 2) reconstitution in buffer and enzymatic deconjugation using cholylglycine hydrolase/sulfatase; 3) incubation with 0.1 N NaOH in 50% isopropanol at 60°C to hydrolyze esterified bile acids; 4) extraction of bile acids from particulate material using 0.1 N NaOH; 5) isolation of deconjugated bile acids by solid phase extraction; 6) formation of phenacyl esters by derivatization using phenacyl bromide; and 7) HPLC separation measuring eluted peaks at 254 nm. The method was validated by showing that results obtained by HPLC agreed with those obtained by LC-MS/MS and GC-MS. We then applied the method to measuring total fecal bile acid (concentration) and bile acid profile in samples from 38 patients with cirrhosis (17 early, 21 advanced) and 10 healthy subjects. Bile acid concentrations were significantly lower in patients with advanced cirrhosis, suggesting impaired bile acid synthesis. PMID:24627129

  10. Biliary lipid, bile acid composition, and dietary correlations in Micmac Indian women. A population study.

    PubMed

    Williams, C N; Johnston, J L; McCarthy, S; Field, C A

    1981-01-01

    The precursor state for cholesterol gallstone formation is cholesterol-saturated bile. We studied a high-risk group for cholesterol gallstones to determine whether dietary variables affect bile cholesterol. Bile samples were analyzed from 46 Micmac Indian women without gallstones and 13 with gallstones for molar percentage cholesterol (MPC) and bile acid composition. The data were analyzed by multiple regression analysis with MPC as the dependent variable and the dietary variables, obtained from four consecutive-day food records, and biliary bile acid composition as the independent variables. In the 46 women without gallstones, obesity, calorie range/calorie intake, and iron and calcium intake were, in their order of importance, significant factors. In normal weight subjects (ponderal index > 12.5) relative obesity was still a significant correlate. Obesity and iron intake were positive correlates while calorie range/calorie intake and calcium intake varied inversely. When the effect of obesity was controlled, these factors were still significant in this group, as they were in the gallstone group. In addition, the duration of overnight fast obtained by history, together with the proportions of deoxycholic and chenodeoxycholic acids in bile were correlates of the biliary molar percentage cholesterol.

  11. [Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].

    PubMed

    Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O

    2014-01-01

    The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.

  12. Bile canalicular changes and defective bile secretion in Opisthorchis viverrini-infected hamsters.

    PubMed

    Charoensuk, Lakhanawan; Pinlaor, Porntip; Laothong, Umawadee; Yongvanit, Puangrat; Pairojkul, Chawalit; Nawa, Yukifumi; Pinlaor, Somchai

    2014-12-01

    Infection with the liver fluke Opisthorchis viverrini (Digenea) (Poirier, 1886) causes bile duct injury and periductal fibrosis by chronic overproduction of inflammatory-mediators and eventually results in cholangiocarcinoma development. While extensive research works have been done on O. viverrini infection-associated changes of bile ducts and periductal fibrosis, little attention was paid on morphological and biochemical changes of the bile canaliculi (BC), the origin of bile flow. We aimed to investigate the morphological and functional alterations of BC in the liver of hamsters infected with O. viverrini at one and three months post-infection. Ultrastructural changes of BC showed dilatation of BC and significant reduction of the density of microvilli as early as at one month post-infection. Immunohistochemistry revealed that CD10, a BC marker, expression was reduced early as one month post-infection. The mRNA expression of the genes encoding molecules related to bile secretion including bile acid uptake transporters (slc10a1 and slco1a1), bile acid dependent (abcb11) and independent (abcc2) bile flow and bile acid biosynthesis (cyp7a1 and cyp27a1) were significantly decreased at one month post-infection in association with the reduction of bile volume. In contrast, the expression of the mRNA of bile acid regulatory genes (fxr and shp-1) was significantly increased. These changes essentially persisted up to three months post-infection. In conclusion, O. viverrini infection induces morphological and functional changes of BC in association with the decrease of bile volume.

  13. The ulcerogenic effect of bile and bile acid in rats during immobilization stress

    NASA Technical Reports Server (NTRS)

    Weisener, J.

    1980-01-01

    The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.

  14. Effect of acute bile acid pool depletion on total and ionized calcium concentrations in human bile.

    PubMed

    Gleeson, D; Murphy, G M; Dowling, R H

    1995-04-01

    Although calcium salts are important components of gallstones, there are few data on the total and ionized calcium content of human bile. Therefore, in 14 fasting T-tube patients studied 7-11 days after cholecystectomy, we measured bile flow, bile acid [BA], total [CaTOT] and free ionized [Ca++] calcium concentrations, in 20-30 min bile collections during acute BA pool depletion induced by 6-8 h of continuous bile drainage. During washout of the BA pool there were parallel falls in bile flow, BA output and total calcium output (correlation coefficients ranging from 0.59 to 0.99; P < 0.02-0.001). In 12 of the 14 patients, [CaTOT] also fell (from 1.84 +/- 0.29 to 1.32 +/- 0.34 mmol L-1) in parallel with [BA] (from 34.0 +/- 14.0 to 8.2 +/- 8.0 mmol L-1; r = 0.75-0.98; P < 0.005). In contrast, biliary [Ca++] remained virtually unchanged. These data suggest that the BAs are linked to the bound, rather than to the free, ionized, fraction of biliary calcium, which is consistent with in vivo calcium binding by BAs. A model is proposed in which BA-induced biliary calcium secretion results from (i) bile acid-induced water flow via solvent drag; and (ii) calcium binding in the bile canaliculus by bile acids, which induces paracellular diffusion of Ca++, thereby maintaining [Ca++] independent of [BA].

  15. Acetic Acid Sclerotherapy for Treatment of a Bile Leak from an Isolated Bile Duct After Laparoscopic Cholecystectomy

    SciTech Connect

    Choi, Gibok Eun, Choong Ki; Choi, HyunWook

    2011-02-15

    Bile leak after laparoscopic cholecystectomy is not uncommon, and it mainly occurs from the cystic duct stump and can be easily treated by endoscopic techniques. However, treatment for leakage from an isolated bile duct can be troublesome. We report a successful case of acetic acid sclerotherapy for bile leak from an isolated bile duct after laparoscopic cholecystectomy.

  16. Treatment Option Overview (Extrahepatic Bile Duct Cancer)

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  17. Stages of Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  18. General Information about Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  19. Treatment Options for Extrahepatic Bile Duct Cancer

    MedlinePlus

    ... bile ducts or has spread to the liver, lymph nodes , or other places in the body). Whether ... the body. Cancer can spread through tissue , the lymph system , and the blood : Tissue. The cancer spreads ...

  20. Novel naproxen/esomeprazole magnesium compound pellets based on acid-independent mechanism: in vitro and in vivo evaluation.

    PubMed

    Lu, Jing; Kan, Shuling; Zhao, Yi; Zhang, Wenli; Liu, Jianping

    2016-09-01

    The purpose of this study was to develop the novel naproxen/esomeprazole magnesium compound pellets (novel-NAP/EMZ) depending on EMZ acid-independent mechanism which has been proved to be predominate in the mechanism of co-therapy with nonsteroidal anti-inflammatory drug. The novel-NAP/EMZ compound pellets, composed of NAP colon-specific pellets (NAP-CSPs) and EMZ modified-release pellets (EMZ-MRPs), were prepared by fluid-bed coating technology with desired in vitro release profiles. The resulting pellets were filled into hard gelatin capsules for in vivo evaluation in rats and compared with the reference compound pellets, consisted of NAP enteric-coated pellets (NAP-ECPs) and EMZ immediate-release pellets (EMZ-IRPs). The reference compound pellets were prepared simulating the drug delivery system of VIMOVO(®). In vivo pharmacokinetics, EMZ-MRPs had significantly larger AUC0-t (p < 0.01), 1.67 times more than that of EMZ-IRPs, and prolonged mean residence time (7.55 ± 0.12 h) than that of IRPs (1.46 ± 0.39 h). NAP-CSPs and NAP-ECPs showed similar AUC0-t. Compared to the reference compound pellets, the novel-NAP/EMZ compound pellets did not show distinct differences in histological mucosal morphology. However, biochemical tests exhibited enhanced total antioxidant capacity, increased nitric oxide content and reduced malondialdehyde level for novel-NAP/EMZ compound pellets, indicating that the acid-independent action took effect. The gastric pH values of novel-NAP/EMZ compound pellets were at a low and stable level, which could ensure normal physiological range of human gastric pH. As a result, the novel-NAP/EMZ compound pellets may be a more suitable formulation with potential advantages by improving bioavailability of drug and further reducing undesirable gastrointestinal damages.

  1. Cattle Bile Aggravates Diclofenac Sodium-Induced Small Intestinal Injury in Mice

    PubMed Central

    Ishikawa, Hironori; Watanabe, Shiro

    2011-01-01

    Cattle bile (CB) has long been used in Japan as an ingredient of digestive medicines. Bile acids are major chemical constituents of CB, and CB ingestion is assumed to affect small intestinal injury induced by nonsteroidal anti-inflammatory drugs (NSAIDs). Mice were fed a diet supplemented with or without CB for 7 days and treated with diclofenac sodium (DIF) to induce small intestinal injury. Lesion formation was enhanced, and PGE2 content and COX expression levels were elevated in the small intestine of DIF-treated mice fed the CB diet compared with those fed the control diet. The administration of a reconstituted mixture of bile acids found in CB enhanced lesion formation in DIF-treated mice. CB administration elevated the contents of CB-derived bile acids in the small intestine, some of which exhibited a high cytotoxicity to cultured intestinal epithelial cells. These results suggest that the elevated levels of CB-derived cytotoxic bile acids in the small intestine contribute to the aggravation of DIF-induced small intestinal injury. The use of CB may be limited during the therapy of inflammatory diseases with NSAIDs. PMID:21584236

  2. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  3. Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid.

    PubMed

    Geng, Weitao; Cao, Mingfeng; Song, Cunjiang; Xie, Hui; Liu, Li; Yang, Chao; Feng, Jun; Zhang, Wei; Jin, Yinghong; Du, Yang; Wang, Shufang

    2011-07-01

    Bacillus amyloliquefaciens is one of most prevalent Gram-positive aerobic spore-forming bacteria with the ability to synthesize polysaccharides and polypeptides. Here, we report the complete genome sequence of B. amyloliquefaciens LL3, which was isolated from fermented food and presents the glutamic acid-independent production of poly-γ-glutamic acid.

  4. Structural Conservation of Ligand Binding Reveals a Bile Acid-like Signaling Pathway in Nematodes*

    PubMed Central

    Zhi, Xiaoyong; Zhou, X. Edward; Melcher, Karsten; Motola, Daniel L.; Gelmedin, Verena; Hawdon, John; Kliewer, Steven A.; Mangelsdorf, David J.; Xu, H. Eric

    2012-01-01

    Bile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively. Structure analysis and functional studies reveal key residues responsible for species-specific ligand responses of DAF-12. Furthermore, DA binds to DAF-12 mechanistically and is structurally similar to bile acids binding to the mammalian bile acid receptor farnesoid X receptor. Activation of DAF-12 by cholestenoic acid and the cholestenoic acid complex structure suggest that bile acid-like signaling pathways have been conserved in nematodes and mammals. Together, these results reveal the molecular mechanism for the interplay between parasite and host, provide a structural framework for DAF-12 as a promising target in treating nematode parasitism, and provide insight into the evolution of gut parasite hormone-signaling pathways. PMID:22170062

  5. Aminoalkylmethacrylate copolymer E improves oral bioavailability of YM466 by suppressing drug-bile interaction.

    PubMed

    Takemura, Shigeo; Kondo, Hiromu; Watanabe, Shunsuke; Sako, Kazuhiro; Ogawara, Ken-Ichi; Higaki, Kazutaka

    2013-09-01

    The aim of this study was to find out polymeric compounds that can inhibit the interaction between YM466, a novel anticoagulant, and bile to improve its oral bioavailability. In vitro ultrafiltration method using extract gall powder was useful to detect the formation of insoluble complex of YM466 with bile and also used to select a polymer that can inhibit the interaction between YM466 and bile. The in vitro studies revealed that aminoalkylmethacrylate (AAM) copolymer E, a polymethacrylate, dose-dependently inhibited the interaction between YM466 and bile and that this polymer could interact with bile salt, but not with YM466, possibly by electrostatic and/or hydrophobic interactions. The coadministration of AAM copolymer E with YM466 to rats dose-dependently increased the plasma concentration of YM466 and it was found that the oral dose of the polymer three times of YM466 (polymer to drug ratio in weight, P-D ratio, 3) significantly increased AUC0-1 h of YM466 to 2.6-fold of that of YM466 alone. Considering the condition of therapeutic use of YM466 and the maximum tolerated dose of the polymer, the formulation of P-D ratio 3 would be clinically practical and promising from the viewpoint of safety.

  6. Direct Measurement of the Thermodynamics of Chiral Recognition in Bile Salt Micelles.

    PubMed

    Anderson, Shauna L; Rovnyak, David; Strein, Timothy G

    2016-04-01

    Isothermal titration calorimetry (ITC) is shown to be a sensitive reporter of bile salt micellization and chiral recognition. Detailed ITC characterization of bile micelle formation as well as the chiral recognition capabilities of sodium cholate (NaC), deoxycholate (NaDC), and taurodeoxycholate (NaTDC) micelle systems are reported. The ΔH(demic) of these bile salt micelle systems is directly observable and is strongly temperature-dependent, allowing also for the determination of ΔCp(demic). Using the pseudo-phase separation model, ΔG(demic) and TΔS(demic) were also calculated. Chirally selective guest-host binding of model racemic compounds 1,1'-bi-2-napthol (BN) and 1,1'-binaphthyl-2,2'-diylhydrogenphosphate (BNDHP) to bile salt micelles was then investigated. The S-isomer was shown to bind more tightly to the bile salt micelles in all cases. A model was developed that allows for the quantitative determination of the enthalpic difference in binding affinity that corresponds to chiral selectivity, which is on the order of 1 kJ mol(-1).

  7. Analysis of the Bile Salt Export Pump (ABCB11) Interactome Employing Complementary Approaches

    PubMed Central

    Przybylla, Susanne; Stindt, Jan; Kleinschrodt, Diana; Schulte am Esch, Jan; Häussinger, Dieter; Keitel, Verena; Smits, Sander H.; Schmitt, Lutz

    2016-01-01

    The bile salt export pump (BSEP, ABCB11) plays an essential role in the formation of bile. In hepatocytes, BSEP is localized within the apical (canalicular) membrane and a deficiency of canalicular BSEP function is associated with severe forms of cholestasis. Regulation of correct trafficking to the canalicular membrane and of activity is essential to ensure BSEP functionality and thus normal bile flow. However, little is known about the identity of interaction partners regulating function and localization of BSEP. In our study, interaction partners of BSEP were identified in a complementary approach: Firstly, BSEP interaction partners were co-immunoprecipitated from human liver samples and identified by mass spectrometry (MS). Secondly, a membrane yeast two-hybrid (MYTH) assay was used to determine protein interaction partners using a human liver cDNA library. A selection of interaction partners identified both by MYTH and MS were verified by in vitro interaction studies using purified proteins. By these complementary approaches, a set of ten novel BSEP interaction partners was identified. With the exception of radixin, all other interaction partners were integral or membrane-associated proteins including proteins of the early secretory pathway and the bile acyl-CoA synthetase, the second to last, ER-associated enzyme of bile salt synthesis. PMID:27472061

  8. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  9. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer.

    PubMed

    Li, Tiangang; Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.

  10. Fibreoptic choledochoscopy in common bile duct surgery.

    PubMed Central

    Ashby, B. S.

    1978-01-01

    Fibreoptic choledochoscopy permits visual examination of the interior of the bile ducts during operations for gallstones. But it does not replace operative cholangiography, and the common bile duct should not be opened simply to perform choledochoscopy. Operative choledochoscopy following conventional exploration and removal of stones ensures that the ducts are clear before insertion of a T tube and closure, avoiding the problem of the retained stone. Exploratory choledochoscopy with stone retrieval under direct vision is less traumatic to the ducts than conventional blind methods, and visual confirmation that the lower end of the duct is clear and the papilla patent may allow the common bile duct to be closed without a T tube, shortening the patient's convalescent period. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:697297

  11. Developmental pattern of 3-oxo-Δ4 bile acids in neonatal bile acid metabolism

    PubMed Central

    Inoue, T.; Kimura, A.; Aoki, K.; Tohma, M.; Kato, H.

    1997-01-01

    AIMS—To investigate whether a fetal pathway of bile acid synthesis persists in neonates and infants.
METHODS—3-oxo-Δ4 bile acids were determined qualitatively and quantitatively in the urine, meconium, and faeces of healthy neonates and infants, using gas chromatography-mass spectrometry.
RESULTS—The mean percentage of 3-oxo-Δ4 bile acids in total bile acids in urine at birth was significantly higher than that at 3 or 7 days, and at 1 or 3 months of age. The concentration of this component in meconium was significantly higher than that in faeces at 7 days and at 1 or 3 months of age.
CONCLUSIONS—The presence of large amounts of urinary 3-oxo-Δ4 bile acids may indicate immaturity in the activity of hepatic 3-oxo-Δ4-steroid 5β-reductase in the first week of postnatal life. Large amounts of this component in meconium may be due to the ingestion of amniotic fluid by the fetus during pregnancy.

 Keywords: ketonic bile acid; 3-oxo-Δ4 bile acid; 3-oxo-Δ4-steroid 5β-reductase; meconium; gas chromatography-mass spectrometry PMID:9279184

  12. The effect of Macrotyloma uniflorum seed on bile lithogenicity against diet induced cholelithiasis on mice

    PubMed Central

    Bigoniya, Papiya; Bais, Sourabh; Sirohi, Brijesh

    2014-01-01

    Background: The seeds of Macrotyloma uniflorum Lam. (Family Fabaceae) contain extractable total and tannins with reported hepatoprotective, hypocholesterolemic and antioxidant activity. In this study, dietary M. uniflorum seed, methanolic and acetone extracts (ME and AE) were examined for their bile-antilithogenic potential. Materials and Methods: Mice fed with 1% cholesterol and 0.5% cholic acid lithogenic (LG) diet for 8 weeks resulted in cholesterol super saturation in gallbladder bile, which promotes the formation of cholesterol gallstones (CGSs). Results: AE reduced the CGS incidence by 60.21%, and serum total cholesterol, triglyceride (TG), very low density lipoprotein (LDL) and LDL compared to control animals. Seed extracts at 300 mg/kg dose markedly reduced biliary cholesterol (BC) and decreased bile salt content. The ratio of BC to phospholipid which was 2.64 in the LG diet group was reduced to 1.57–1.35 in the M. uniflorum seed extracts treated groups. Liver cholesterol and TG were decreased significantly by feeding of ME and AE at 300 mg/kg dose. AE significantly reversed the changes in apolipoproteins A-I and C-II level disturbed by LG diet. Conclusions: M. uniflorum seed exerted antilithogenic influence by decreasing the cholesterol hyper-secretion into bile and increasing the bile acid output, thus decreasing the formation of LG bile in mice. The effect was maximum in the AE as it also reduced papillary proliferation of gallbladder and fatty degeneration of the liver. The potential antilithogenic effect of the AE of M. uniflorum may be due to antioxidant property of its rich total polyphenol and tannins content. PMID:25593405

  13. Do We Know What Causes Bile Duct Cancer?

    MedlinePlus

    ... inflame the bile ducts, whether it’s bile duct stones, infestation with a parasite, or something else. Scientists ... Treatments & Side Effects Cancer Facts & Statistics News and Stories Glossary For Health Care Professionals Programs & Services Breast ...

  14. Consequences of bile salt biotransformations by intestinal bacteria

    PubMed Central

    Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.

    2016-01-01

    ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849

  15. Bile Duct Perforation due to Inspissated Bile Presenting as Refractory Ascites.

    PubMed

    Lal, Bikrant Bihari; Bharathy, Kishore G; Alam, Seema; Khanna, Rajeev; Patidar, Yashwant; Rawat, Dinesh

    2016-09-01

    Non hepatic origin of refractory ascites is not a rarity. Hemolytic anemias are known to cause inspissated bile and biliary obstruction. Distal biliary obstruction can lead to biliary perforation. The authors report a case of hereditary spherocytosis leading to inspissated bile causing bile duct perforation and biliary ascites. A high index of suspicion for biliary ascites should be kept in a child with refractory ascites in the setting of progressive ascites with decreasing bilirubin. Ascitic fluid bilirubin analysis will clinch the diagnosis. Surgical repair is the optimal management.

  16. Recent classifications of the common bile duct injury

    PubMed Central

    2014-01-01

    Laparoscopic cholecystectomy is now a gold standard treatment modality for gallstone diseases. However, the incidence rate of bile duct injury has not been changed for many years. From initial classification published by Bismuth, there have been many classifications of common bile duct injury. The initial classification, levels and types of bile duct injury, and currently combined vascular injuries are reviewed here. PMID:26155253

  17. The gut microbiome, probiotics, bile acids axis, and human health.

    PubMed

    Jones, Mitchell Lawrence; Tomaro-Duchesneau, Catherine; Prakash, Satya

    2014-06-01

    The human gut microbiome produces potent ligands to bile acid receptors, and probiotics could act as therapeutics of bile acid dysmetabolism. A recent study in Cell Reports demonstrates that probiotic VSL#3 affects bile acid deconjugation and excretion, as well as the gut-liver FXR-FGF15 axis.

  18. The protective effect of hydrophilic bile acids on bile acid hepatotoxicity in the rat.

    PubMed

    Kitani, K

    1995-09-01

    Taurochenodeoxycholate (TCDC) (or taurocholate, TC) excessively i.v. infused in rats causes an acute cholestasis accompanied by an excessive excretion of various proteins (lactate dehydrogenase, LDH, albumin, etc.) into the bile. This cholestasis was initially found to be effectively prevented by a simultaneous infusion of tauroursodeoxycholate (TUDC). Later this property was found to be shared by glycoursodeoxycholate (GUDC) and tauro (and glyco) alpha and beta-muricholate (MC) all known to be relatively hydrophilic. The extent of the preventative effect appears to be comparable for taurine and glycine conjugates of all three bile salts (UDC, alpha-MC and beta-MC). An albumin leakage into the bile enhanced by TCDC infusion appears to be mainly from albumin in the serum, since i.v. injected 125I-human serum albumin excretion into the bile paralled the rat albumin excretion. Despite very drastic biochemical abnormalities induced by TCDC infusion, morphological correlates in the liver are scarce both from light and electron microscopic examinations, the only correlate with biochemical parameters being a sporadic necrosis of hepatocytes, especially in the periportal areas. Although there is not sufficient morphological evidence, it appears that TCDC infusion causes a direct communication between serum and bile leading to a rapid leakage of large molecules such as albumin and even gamma-globulin. Conjugates of hydrophilic bile salts such as UDC, alpha-MC and beta-MC efficiently prevent such bile abnormalities but their hydrophilicity is not the sole determinant of this property since a more hydrophilic bile salt such as taurodehydrocholate does not possess this property. The underlying mechanism(s) for this protective property remains uncertain.

  19. Hepatoprotective bile acid 'ursodeoxycholic acid (UDCA)' Property and difference as bile acids.

    PubMed

    Ishizaki, Kaoru; Imada, Teruaki; Tsurufuji, Makoto

    2005-10-01

    Ursodeoxycholic acid (UDCA) is a bile acid, which is present in human bile at a low concentration of only 3% of total bile acids. It is a 7beta-hydroxy epimer of the primary bile acid chenodeoxycholic acid (CDCA). UDCA is isolated from the Chinese drug 'Yutan' a powder preparation derived from the dried bile of adult bears. For centuries, Yutan has been used in the treatment of hepatobiliary disorders. In Japan, it has also been in widespread use as a folk medicine from the mid-Edo period. In Japan, not only basic studies such as isolation, crystallization, definition of the chemical structure and establishment of the synthesis of UDCA have been conducted but clinical studies have been conducted. First reports on the effects of UDCA in patients with liver diseases came from Japan as early as 1961. In the 1970s, the first prospective study of patients with gallbladder stones treated with UDCA demonstrating gallstone dissolution was reported. In late 1980s, a number of controlled trials on the use of UDCA in primary biliary cirrhosis (PBC) were reported. Since then, a variety of clinical studies have shown the beneficial effect of UDCA in liver disease worldwide. To date, UDCA is utilized for the treatment of PBC for which it is the only drug approved by the U.S. Food and Drug Administration (FDA). In recent years, with the advent of molecular tools, the mechanisms of action of bile acids and UDCA have been investigated, and various bioactivities and pharmacological effects have been revealed. Based on the results of these studies, the bioactive substances in bile acids that are involved in digestive absorption may play important roles in signal transduction pathways. Furthermore, the mechanisms of action of UDCA is evidently involved. We reveal the physicochemical properties of UDCA as bile acid and overview the established pharmacological effects of UDCA from its metabolism. Furthermore, we overview the current investigations into the mechanism of action of UDCA in

  20. Mixed micelles of 7,12-dioxolithocholic acid and selected hydrophobic bile acids: interaction parameter, partition coefficient of nitrazepam and mixed micelles haemolytic potential.

    PubMed

    Poša, Mihalj; Tepavčević, Vesna

    2011-09-01

    The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential.

  1. Bile acid signaling in metabolic disease and drug therapy.

    PubMed

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  2. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  3. Obesity diabetes and the role of bile acids in metabolism

    PubMed Central

    Owens, Daphne

    2016-01-01

    Abstract Bile acids have many activities over and above their primary function in aiding absorption of fat and fat soluble vitamins. Bile acids are synthesized from cholesterol, and thus are involved in cholesterol homeostasis. Bile acids stimulate glucagon-like peptide 1 (GLP1) production in the distal small bowel and colon, stimulating insulin secretion, and therefore, are involved in carbohydrate and fat metabolism. Bile acids through their insulin sensitising effect play a part in insulin resistance and type 2 diabetes. Bile acid metabolism is altered in obesity and diabetes. Both dietary restriction and weight loss due to bariatric surgery, alter the lipid carbohydrate and bile acid metabolism. Recent research suggests that the forkhead transcription factor FOXO is a central regulator of bile, lipid, and carbohydrate metabolism, but conflicting studies mean that our understanding of the complexity is not yet complete. PMID:28191525

  4. N-Methyltaurine N-acyl amidated bile acids and deoxycholic acid in the bile of angelfish (Pomacanthidae): a novel bile acid profile in Perciform fish.

    PubMed

    Satoh Née Okihara, Rika; Saito, Tetsuya; Ogata, Hiroaki; Ohsaki, Ayumi; Iida, Takashi; Asahina, Kiyoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Hofmann, Alan F; Hagey, Lee R

    2014-02-01

    Two novel N-acyl amidated bile acids, N-methyltaurine conjugated cholic acid and N-methyltaurine conjugated deoxycholic acid, were found to be major biliary bile acids in two species of angelfish the regal (Pygoplites diacanthus) and the blue-girdled (Pomacanthus navarchus) angelfish. The identification was based on their having MS and NMR spectra identical to those of synthetic standards. A survey of biliary bile acids of 10 additional species of angelfish found 7 with N-methyltaurine conjugation. In all 12 species, conjugated deoxycholic acid (known to be formed by bacterial 7-dehydroxylation of cholic acid) was a major bile acid. In all previous studies of biliary bile acids in fish, deoxycholic acid has been present in only trace proportions. In addition, bile acid conjugation with N-methyltaurine has not been detected previously in any known vertebrate. N-methyltaurine conjugated bile acids are resistant to bacterial deconjugation and dehydroxylation, and such resistance to bacterial enzymes should aid in the maintenance of high concentrations of bile acids during lipid digestion. Our findings suggest that these species of angelfish have a novel microbiome in their intestine containing anaerobic bacteria, and describe the presence of N-methyltaurine conjugated bile acids that are resistant to bacterial attack.

  5. Hepatic cytochrome P450 deficiency in mouse models for intrahepatic cholestasis predispose to bile salt-induced cholestasis.

    PubMed

    Kunne, Cindy; de Graaff, Marijke; Duijst, Suzanne; de Waart, Dirk R; Oude Elferink, Ronald P J; Paulusma, Coen C

    2014-10-01

    Progressive familial intrahepatic cholestasis (PFIC) types 1 and 3 are severe cholestatic liver diseases caused by deficiency of ATB8B1 and ABCB4, respectively. Mouse models for PFIC display mild phenotypes compared with human patients, and this can be explained by the difference in bile salt pool composition. Mice, unlike humans, have the ability to detoxify hydrophobic bile salts by cytochrome P450-mediated (re)hydroxylation and thus have a less toxic bile salt pool. We have crossed mouse models for PFIC1 and PFIC3 with Hrn mice that have a reduced capacity to (re)hydroxylate bile salts. Double transgenes were obtained by backcrossing Atp8b1(G308V/G308V) and Abcb4(-/-) mice with Hrn mice that have a liver-specific disruption of the cytochrome P450 reductase gene and therefore have markedly reduced P450 activity. In these mice, a more hydrophobic bile salt pool was instilled by cholic acid supplementation of the diet, and bile formation and liver pathology was studied. As opposed to single transgenes, Atp8b1(G308V/G308V)/Hrn and Abcb4(-/-)/Hrn mice rapidly developed strong cholestasis that was evidenced by increased plasma bilirubin and bile salt levels. The bile salt pool was more toxic in both models; Atp8b1(G308V/G308V)/Hrn mice had a more hydrophobic plasma pool compared with the single transgene, whereas Abcb4(-/-)/Hrn mice had a more hydrophobic biliary pool compared with the single transgene. In line with these findings, liver damage was not aggravated in Atp8b1(G308V/G308V)/Hrn but was more severe in Abcb4(-/-)/Hrn mice. These data indicate that bile salt pool composition is a critical determinant in the initiation and progression of cholestasis and liver pathology in PFIC1 and PFIC3. Most importantly, our data suggest that the hydrophobicity of the plasma bile salt pool is an important determinant of the severity of cholestasis, whereas the hydrophobicity of the biliary bile salt pool is an important determinant of the severity of liver pathology.

  6. Intraductal tubular neoplasms of the bile ducts.

    PubMed

    Katabi, Nora; Torres, Javiera; Klimstra, David S

    2012-11-01

    Although most tumors of the bile ducts are predominantly invasive, some have an exophytic pattern within the bile ducts; these intraductal papillary neoplasms usually have well-formed papillae at the microscopic level. In this study, however, we describe a novel type of intraductal neoplasm of the bile ducts with a predominantly tubular growth pattern and other distinctive features. Ten cases of biliary intraductal neoplasms with a predominantly tubular architecture were identified in the files of the Pathology Department at Memorial Sloan-Kettering Cancer Center from 1983 to 2006. For each of these cases we studied the clinical presentation, histologic and immunohistochemical features (9 cases only), and the clinical follow-up of the patients. Three male and 7 female patients (38 to 78 y) presented with obstructive jaundice or abdominal pain. Eight of the patients underwent a partial hepatectomy; 2 underwent a laparoscopic bile duct excision, followed by a pancreatoduodenectomy in one of them. The tumors range in size from 0.6 to 8.0 cm. The intraductal portions of the tumors (8 intrahepatic, 1 extrahepatic hilar, 1 common bile duct) were densely cellular and composed of back-to-back tubular glands and solid sheets with minimal papillary architecture. The cells were cuboidal to columnar with mild to moderate cytologic atypia. Foci of necrosis were present in the intraductal component in 6 cases. An extraductal invasive carcinoma component was present in 7 cases, composing <25% of the tumor in 4 cases, and >75% in 1 case. It was observed by immunohistochemical analysis that the tumor cells expressed CK19, CA19-9, MUC1, and MUC6 in most cases and that SMAD4 expression was retained. MUC2, MUC5AC, HepPar1, synaptophysin, chromogranin, p53, and CA125 were negative in all cases and most were negative for CEA-M and B72.3. Four patients were free of tumor recurrence after 7 to 85 months (average, 27 mo). Four patients with an invasive carcinoma component suffered

  7. Herbert Falk: a vital force in the renaissance of bile acid research and bile acid therapy.

    PubMed

    Hofmann, Alan F

    2011-01-01

    Herbert Falk died on August 8, 2008, after a long illness. It was his vision that initiated the Bile Acid Meetings and brought to market chenodeoxycholic acid and ursodeoxycholic acid for the dissolution of cholesterol gallstones as well as the successful treatment of cholestatic liver disease. The 1st Bile Acid Meeting was a small workshop held at the University Hospital of Freiburg in 1970. Great interest in the topic was evident at that small meeting and led to a larger meeting in 1972, whose scope included both the basic and clinical aspects of bile acids. These meetings have continued at biennial intervals, the 2010 meeting being the 21st. The program has always included discussions of the most fundamental aspects of bile acid biosynthesis and metabolism as well as clinical applications of bile acid therapy. The meetings featured brief presentations, ample time for discussion, and imaginative social programs. They have always been flawlessly organized. Social programs usually included a hike through the beautiful countryside of the Black Forest followed by dinner in a rustic restaurant. Herbert Falk took part in these programs, personally welcoming every participant. In the warm glow of the 'Badische' hospitality, friendships developed, and scientific collaborations were often arranged. From a scientific standpoint, there has been enormous progress in understanding the chemistry and biology of bile acids. Herbert Falk established the Windaus Prize in 1978, and the prize has been given to individuals whose contributions moved the field forward. These bile acid meetings have been marvelous, rewarding experiences. We must all be grateful to Herbert Falk's vision in establishing the Falk Foundation that has so generously sponsored these meetings. We also express our gratitude to his widow, Ursula Falk, who continues this worthy tradition.

  8. Iatrogenic bile duct injuries in kashmir valley.

    PubMed

    Chowdri, Nisar A; Dar, Farooq A; Naikoo, Zahoor A; Wani, Nazir A; Parray, Fazl Q; Wani, Khurshid A

    2010-08-01

    Cholecystectomy is one of the commonest operations performed throughout the world and bile duct injury is the worst complication of this procedure. In a prospective and retrospective study 25 patients were seen in a tertiary care hospital over a period of 10 years. 72% of patients were referred from other hospitals. 48% of patients presented within one month of injury. Pain was the commonest presentation (92%) followed by jaundice (80%). Liver functions were deranged in 70% of patients, USG revealed biliary dilatation in 69.6% of patients. ERCP was done in 16 patients and revealed cut off of the common hepatic duct in 43.8% of patients. Intraoperative findings revealed adhesions in 96% of patients. 48% of patients had bile duct stricture. Roux-en-Y hepaticojejunostomy was the commonest procedure performed. All patients showed improvement in liver function after surgery. Wound infection was the commonest complication seen in 32% patients. 3 patients died in our series.

  9. [Ultrasound of gallbladder and bile duct].

    PubMed

    Segura Grau, A; Joleini, S; Díaz Rodríguez, N; Segura Cabral, J M

    2016-01-01

    The cystic nature of the gallbladder and bile duct when dilated, and the advantages of ultrasound as a quick, reproducible, convenient, cheap and low risk technique, with a high sensitivity and specificity, make it the most eligible technique in biliary pathology studies. Ultrasound has become a valuable tool for doctors studying biliary pathology and its complications, from abnormal liver function results, right upper quadrant pain, or jaundice, to cholelithiasis, cholecystitis, or suspicion of biliary tumors.

  10. Extrahepatic bile duct neurilemmoma mimicking Klatskin tumor.

    PubMed

    Kamani, Fereshteh; Dorudinia, Atosa; Goravanchi, Farhood; Rahimi, Farzaneh

    2007-04-01

    Neurilemmoma rarely develops in the biliary tree. Here, we report a 39-year-old Iranian woman with neurilemmoma in the extrahepatic bile duct presenting with progressively deepening jaundice. On the basis of clinical and radiological features, this tumor was initially suspected as Klatskin tumor. Histologically, the tumor was a typical neurilemmoma. Immunostaining showed that tumor cells were strongly and diffusely positive for S-100 protein, which supported the diagnosis of neurilemmoma. Neurilemmoma should be considered in the differential diagnosis of obstructive jaundice.

  11. Structural Determinants for Transport Across the Intestinal Bile Acid Transporter Using C-24 Bile Acid Conjugates

    PubMed Central

    Rais, Rana; Acharya, Chayan; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium dependent bile acid transporter (hASBT) re-absorbs gram quantities of bile acid daily and is a potential prodrug target to increase oral drug absorption. In the absence of a high resolution hASBT crystal structure, 3D-QSAR modeling may prove beneficial in designing prodrug targets to hASBT. The objective was to derive a conformationally sampled pharmacophore 3D–QSAR (CSP-SAR) model for the uptake of bile acid conjugates by hASBT. A series of bile acid conjugates of glutamyl chenodeoxycholate were evaluated in terms of Km and normalized Vmax(normVmax) using hASBT-MDCK cells. All mono-anionic conjugates were potent substrates. Dianions, cations and zwitterions, which bound with a high affinity, were not substrates. CSP-SAR models were derived using structural and physicochemical descriptors, and evaluated via cross-validation. The best CSP-SAR model for Km included two structural and two physiochemical descriptors, where substrate hydrophobicity enhanced affinity. A best CSP-SAR model for Km/normVmax employed one structural and three physicochemical descriptors, also indicating hydrophobicity enhanced efficiency. Overall, the bile acid C-24 region accommodated a range of substituted anilines, provided a single negative charge was present near C-24. In comparing uptake findings to prior inhibition results, increased hydrophobicity enhanced activity, with dianions and zwitterions hindering activity. PMID:20939504

  12. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  13. Bear bile: dilemma of traditional medicinal use and animal protection

    PubMed Central

    Feng, Yibin; Siu, Kayu; Wang, Ning; Ng, Kwan-Ming; Tsao, Sai-Wah; Nagamatsu, Tadashi; Tong, Yao

    2009-01-01

    Bear bile has been used in Traditional Chinese Medicine (TCM) for thousands of years. Modern investigations showed that it has a wide range of pharmacological actions with little toxicological side effect and the pure compounds have been used for curing hepatic and biliary disorders for decades. However, extensive consumption of bear bile made bears endangered species. In the 1980's, bear farming was established in China to extract bear bile from living bears with "Free-dripping Fistula Technique". Bear farming is extremely inhumane and many bears died of illness such as chronic infections and liver cancer. Efforts are now given by non-governmental organizations, mass media and Chinese government to end bear farming ultimately. At the same time, systematic research has to be done to find an alternative for bear bile. In this review, we focused on the literature, laboratory and clinical results related to bear bile and its substitutes or alternative in English and Chinese databases. We examined the substitutes or alternative of bear bile from three aspects: pure compounds derived from bear bile, biles from other animals and herbs from TCM. We then discussed the strategy for stopping the trading of bear bile and issues of bear bile related to potential alternative candidates, existing problems in alternative research and work to be done in the future. PMID:19138420

  14. Functional genomic analysis of bile salt resistance in Enterococcus faecium

    PubMed Central

    2013-01-01

    Background Enterococcus faecium is a Gram-positive commensal bacterium of the mammalian intestinal tract. In the last two decades it has also emerged as a multi-resistant nosocomial pathogen. In order to survive in and colonize the human intestinal tract E. faecium must resist the deleterious actions of bile. The molecular mechanisms exploited by this bacterium to tolerate bile are as yet unexplored. Results In this study we used a high-throughput quantitative screening approach of transposon mutant library, termed Microarray-based Transposon Mapping (M-TraM), to identify the genetic determinants required for resistance to bile salts in E. faecium E1162. The gene gltK, which is predicted to encode a glutamate/aspartate transport system permease protein, was identified by M-TraM to be involved in bile resistance. The role of GltK in bile salt resistance was confirmed by the subsequent observation that the deletion of gltK significantly sensitized E. faecium E1162 to bile salts. To further characterize the response of E. faecium E1162 to bile salts, we performed a transcriptome analysis to identify genes that are regulated by exposure to 0.02% bile salts. Exposure to bile salts resulted in major transcriptional rearrangements, predominantly in genes involved in carbohydrate, nucleotide and coenzyme transport and metabolism. Conclusion These findings add to a better understanding of the molecular mechanisms by which E. faecium responds and resists the antimicrobial action of bile salts. PMID:23641968

  15. Common bile duct involvement in chronic pancreatitis.

    PubMed

    Angelini, G; Sgarbi, D; Castagnini, A; Cavallini, G; Bovo, P

    1994-03-01

    The features of the common bile duct (CBD) have been checked in 78 chronic pancreatitis patients in order to evaluate the frequency of extrahepatic bile duct changes, possible associated factors and effects on the outcome of the disease. Fifty of the 78 patients had an intrapancreatic stricture of the CBD and 24 of them also showed an upstream dilatation. No relationship was found between the features of the CBD and the severity of the pancreatitis, the presence of calcifications and the length of the disease. Humoral signs of impaired bile flow were found in 20 subjects, 19 of whom had an intra-pancreatic stricture of the CBD. Sixteen of these 19 patients also showed an upstream dilatation and five of them had overt jaundice. A surgical intervention on the biliary tree was carried out in 7 patients, all with a biliary stricture. Six of them also had a CBD dilatation over the stricture (p < 0.02 versus patients without CBD stricture). In conclusion CBD involvement during chronic pancreatitis is quite frequent but poorly predictable and should be checked in all patients with humoral cholestasis in order to prevent further complications.

  16. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  17. Application of palladium-catalyzed carboxyl anhydride-boronic acid cross coupling in the synthesis of novel bile acids analogs with modified side chains.

    PubMed

    Mayorquín-Torres, Martha C; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2015-09-01

    Palladium-catalyzed cross coupling of 4-methoxycarbonyl phenyboronic acid with acetylated bile acids in which the carboxyl functions was activated by formation of a mixed anhydride with pivalic anhydride afforded the cross coupled compounds, which were converted in novel side chain modified bile acids by one pot carbonyl reduction/removal of the protecting acetyl groups by Wolff-Kishner reduction. Unambiguous assignments of the NMR signals and crystal characterization of the heretofore unknown compounds are provided.

  18. Effect of bile on vitamin B12 absorption.

    PubMed Central

    Teo, N H; Scott, J M; Neale, G; Weir, D G

    1980-01-01

    The standard double-isotope Schilling test was used to study vitamin B12 absorption in seven patients with obstructive jaundice and 10 with T-tube bile duct drainage after cholecystectomy and bile duct exploration. In three and five of these patients respectively absorption was impaired. In the second group six patients were restudied after removal of the T tube, and in each case absorption was improved. Similar results were obtained after bile duct ligation in rats. Bile exclusion produced a 50-60% reduction in renal and hepatic uptake of vitamin B12 from the intestinal lumen. The malabsorption was corrected by replacing bile. These studies suggest that bile plays a part in the normal absorption of vitamin B12. PMID:7427470

  19. In vivo multiphoton imaging of bile duct ligation

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Li, Feng-Chieh; Chen, Hsiao-Chin; Chang, Po-shou; Yang, Shu-Mei; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2008-02-01

    Bile is the exocrine secretion of liver and synthesized by hepatocytes. It is drained into duodenum for the function of digestion or drained into gallbladder for of storage. Bile duct obstruction is a blockage in the tubes that carry bile to the gallbladder and small intestine. However, Bile duct ligation results in the changes of bile acids in serum, liver, urine, and feces1, 2. In this work, we demonstrate a novel technique to image this pathological condition by using a newly developed in vivo imaging system, which includes multiphoton microscopy and intravital hepatic imaging chamber. The images we acquired demonstrate the uptake, processing of 6-CFDA in hepatocytes and excretion of CF in the bile canaliculi. In addition to imaging, we can also measure kinetics of the green fluorescence intensity.

  20. Bile secretion in albino rat following chronic honey intake.

    PubMed

    Alagwu, E A; Nneli, R O; Okwari, O O; Osim, E E

    2009-12-01

    This study was carried out to evaluate the effect of honey intake on bile secretion, bile electrolytes, bilirubin and cholesterol levels including plasma cholesterol in albino rats. 20 male albino rats (200-210 g) were used in the study. The rats were assigned randomly into 2 groups (control and honey-fed groups), each group containing 10 rats. The control was fed on normal rat feed and water while the test group was fed on normal rat feed with honey added to its drinking water (1 ml of honey to every initial 10 ml of water) for 22 weeks. After 22 weeks the animals were starved for 12 hrs before the experiment, weighed and anaesthetized with sodium thiopentone (6 mg/100 mg body weight) intraperitoneally. The common bile duct was cannulated and bile collected for 3 hrs. The rate of bile flow was noted, the concentrations of bile electrolytes and bilirubin, bile and plasma cholesterol levels were determined in the control and test groups. The results obtained showed a significant [P<0.05] decrease in the rate of bile flow in the test (0.30+/-0.03 ml/hr) compared with the control groups (0.45+/-0.04 ml/hr). There were no significant differences in the concentration of bile electrolytes and bilirubin in the two groups. However, there was a significant [P<0.05] increase in the bile cholesterol and decrease in plasma cholesterol levels in the test rats compared with the control. It is therefore concluded that chronic consumption of unprocessed Nigerian honey resulted in decrease bile flow, increase bile cholesterol and decrease plasma cholesterol in albino rats.

  1. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice

    SciTech Connect

    Zhang, Youcai; Limaye, Pallavi B.; Renaud, Helen J.; Klaassen, Curtis D.

    2014-06-01

    Antibiotic treatments have been used to modulate intestinal bacteria and investigate the role of intestinal bacteria on bile acid (BA) homeostasis. However, knowledge on which intestinal bacteria and bile acids are modified by antibiotics is limited. In the present study, mice were administered various antibiotics, 47 of the most abundant bacterial species in intestine, as well as individual BAs in plasma, liver, and intestine were quantified. Compared to the two antibiotic combinations (vancomycin + imipenem and cephalothin + neomycin), the three single antibiotics (metronidazole, ciprofloxacin and aztreonam) have less effect on intestinal bacterial profiles, and thus on host BA profiles and mRNA expression of genes that are important for BA homeostasis. The two antibiotic combinations decreased the ratio of Firmicutes to Bacteroidetes in intestine, as well as most secondary BAs in serum, liver and intestine. Additionally, the two antibiotic combinations significantly increased mRNA of the hepatic BA uptake transporters (Ntcp and Oatp1b2) and canalicular BA efflux transporters (Bsep and Mrp2), but decreased mRNA of the hepatic BA synthetic enzyme Cyp8b1, suggesting an elevated enterohepatic circulation of BAs. Interestingly, the two antibiotic combinations tended to have opposite effect on the mRNAs of most intestinal genes, which tended to be inhibited by vancomycin + imipenem but stimulated by cephalothin + neomycin. To conclude, the present study clearly shows that various antibiotics have distinct effects on modulating intestinal bacteria and host BA metabolism. - Highlights: • Various antibiotics have different effects on intestinal bacteria. • Antibiotics alter bile acid composition in mouse liver and intestine. • Antibiotics influence genes involved in bile acid homeostasis. • Clostridia appear to be important for secondary bile acid formation.

  2. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  3. Postoperative Chemoradiotherapy for Extrahepatic Bile Duct Cancer

    SciTech Connect

    Park, Jin-hong; Choi, Eun Kyung; Ahn, Seung Do; Lee, Sang-wook; Song, Si Yeol; Yoon, Sang Min; Kim, Young Seok; Lee, Yu Sun; Lee, Sung-Gyu; Hwang, Shin; Lee, Young-Joo; Park, Kwang-Min; Kim, Tae Won; Chang, Heung Moon; Lee, Jae-Lyun; Kim, Jong Hoon

    2011-03-01

    Purpose: To evaluate the effect of postoperative concurrent chemoradiotherapy using three-dimensional conformal radiotherapy and to identify the prognostic factors that influence survival in patients with extrahepatic bile duct cancer. Methods and Materials: We retrospectively analyzed the data from 101 patients with extrahepatic bile duct cancer who had undergone postoperative concurrent chemoradiotherapy using three-dimensional conformal radiotherapy. Of the 101 patients, 52 (51%) had undergone complete resection (R0 resection) and 49 (49%) had microscopic or macroscopic residual tumors (R1 or R2 resection). The median radiation dose was 50 Gy. Also, 85 patients (84%) underwent concurrent chemotherapy with 5-fluorouracil. Results: The median follow-up period was 47 months for the surviving patients. The 5-year overall survival rate was 34% for all patients. A comparison between patients with R0 and R1 resection indicated no significant difference in the 5-year overall survival (44% vs. 33%, p = .2779), progression-free survival (35% vs. 22%, p = .3107), or locoregional progression-free survival (75% vs. 63%, p = .2784) rates. An analysis of the first failure site in the 89 patients with R0 or R1 resection indicated isolated locoregional recurrence in 7 patients. Elevated postoperative carbohydrate antigen 19-9 level was an independent prognostic factor for overall survival (p = .001) and progression-free survival (p = .033). A total of 3 patients developed Grade 3 or greater late toxicity. Conclusion: Adjuvant concurrent chemoradiotherapy using three-dimensional conformal radiotherapy appears to improve locoregional control and survival in extrahepatic bile duct cancer patients with R1 resection. The postoperative carbohydrate antigen 19-9 level might be a useful prognostic marker to select patients for more intensified adjuvant therapy.

  4. Prevention of taurolithocholate-induced hepatic bile canalicular distortions by HPLC-characterized extracts of artichoke (Cynara scolymus) leaves.

    PubMed

    Gebhardt, R

    2002-09-01

    The effects of water-soluble extracts of artichoke (Cynara scolymus L.) leaves on taurolithocholate-induced cholestatic bile canalicular membrane distortions were studied in primary cultured rat hepatocytes using electron microscopy. Artichoke extracts at concentrations between 0.08 and 0.5 mg/ml were able to prevent the formation of bizarre canalicular membrane transformations in a dose-dependent manner when added simultaneously with the bile acid. However, prevention also occurred when the hepatocytes were preincubated with the extracts, indicating that absorption of the bile acid to components of the extracts was not involved. These results demonstrate that artichoke leaf extracts exert a potent anticholestatic action at least in the case of taurolithocholate. This effect may contribute to the overall hepatoprotective influence of this herbal formulation.

  5. Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Janich, M.; Hildebrand, A.; Strunz, P.; Neubert, R. Н. Н.; Lombardo, D.

    2013-10-01

    Small angle neutron scattering (SANS) and dynamic light scattering (DLS) were used to study different aggregation states in sodium deoxycholate (NaDC)-phosphatidylcholine systems at T = 60 °C. Size and shape of the aggregates investigated as a function of the NaDC bile salt concentration (at the constant DPPC concentration of 6 mM) indicate a strong dependence of the size and morphology of the generated aggregates on the relative amount of NaDC bile salt. More specifically large occupied area of the bile salt induces a steric interaction which promotes the transition toward a variety of supramolecular structures ranging from ellipsoidal vesicles, ribbon-like structures, up to final spherical mixed micelles at the large amount of bile salt of 10 mM NaDC. The findings of the obtained results give important insight for understanding the formation of different topologies in aqueous lipid-bile salt mixtures as well as stimulate new routes for liposome reconstitution-solubilisation processes suitable for technological applications.

  6. Predicting Infected Bile Among Patients Undergoing Percutaneous Cholecystostomy

    SciTech Connect

    Beardsley, Shannon L.; Shlansky-Goldberg, Richard D.; Patel, Aalpen; Freiman, David B.; Soulen, Michael C.; Stavropoulos, S. William; Clark, Timothy W.I.

    2005-04-15

    Purpose. Patients may not achieve a clinical benefit after percutaneous cholecystostomy due to the inherent difficulty in identifying patients who truly have infected gallbladders. We attempted to identify imaging and biochemical parameters which would help to predict which patients have infected gallbladders. Methods. A retrospective review was performed of 52 patients undergoing percutaneous cholecystostomy for clinical suspicion of acute cholecystitis in whom bile culture results were available. Multiple imaging and biochemical variables were examined alone and in combination as predictors of infected bile, using logistic regression. Results. Of the 52 patients, 25 (48%) had infected bile. Organisms cultured included Enterococcus, Enterobacter, Klebsiella, Pseudomonas, E. coli, Citrobacter and Candida. No biochemical parameters were significantly predictive of infected bile; white blood cell count >15,000 was weakly associated with greater odds of infected bile (odds ratio 2.0, p = NS). The presence of gallstones, sludge, gallbladder wall thickening and pericholecystic fluid by ultrasound or CT were not predictive of infected bile, alone or in combination, although a trend was observed among patients with CT findings of acute cholecystitis toward a higher 30-day mortality. Radionuclide scans were performed in 31% of patients; all were positive and 66% of these patients had infected bile. Since no patient who underwent a radionuclide scan had a negative study, this variable could not be entered into the regression model due to collinearity. Conclusion. No single CT or ultrasound imaging variable was predictive of infected bile, and only a weak association of white blood cell count with infected bile was seen. No other biochemical parameters had any association with infected bile. The ability of radionuclide scanning to predict infected bile was higher than that of ultrasound or CT. This study illustrates the continued challenge to identify bacterial cholecystitis

  7. Congenital Cystic Malformation of the Bile Ducts

    PubMed Central

    Hogarth, Jean; Laird, R. C.

    1966-01-01

    A 20-year-old woman had a cyst of the proximal part of the common bile duct and a cyst of the left hepatic duct; these lesions were diagnosed preoperatively by intravenous cholangiography and successfully operated upon. At the time of writing, she has been followed up for one year. Congenital defects in the biliary system are rare and, in a review of the literature, only two cases were found similar to this one. It is generally accepted that these lesions are congenital, but the exact pathogenesis is unknown. Alonso-Lej, Rever and Pessagno2 reviewed the literature in 1959 and found 403 authentic congenital cysts of the hepatic ducts. The most common congenital defect is a single choledochal cyst of the lower end of the common bile duct. Pain, jaundice and tumour are the main symptoms. Until the advent of intravenous cholangiography, these lesions were seldom recognized preoperatively. Means of operative repair as well as complications and prognosis are reviewed. ImagesFig. 1Fig. 2Fig. 3 PMID:5937201

  8. Bile pigments in pulmonary and vascular disease.

    PubMed

    Ryter, Stefan W

    2012-01-01

    The bile pigments, biliverdin, and bilirubin, are endogenously derived substances generated during enzymatic heme degradation. These compounds have been shown to act as chemical antioxidants in vitro. Bilirubin formed in tissues circulates in the serum, prior to undergoing hepatic conjugation and biliary excretion. The excess production of bilirubin has been associated with neurotoxicity, in particular to the newborn. Nevertheless, clinical evidence suggests that mild states of hyperbilirubinemia may be beneficial in protecting against cardiovascular disease in adults. Pharmacological application of either bilirubin and/or its biological precursor biliverdin, can provide therapeutic benefit in several animal models of cardiovascular and pulmonary disease. Furthermore, biliverdin and bilirubin can confer protection against ischemia/reperfusion injury and graft rejection secondary to organ transplantation in animal models. Several possible mechanisms for these effects have been proposed, including direct antioxidant and scavenging effects, and modulation of signaling pathways regulating inflammation, apoptosis, cell proliferation, and immune responses. The practicality and therapeutic-effectiveness of bile pigment application to humans remains unclear.

  9. State of the art in bile analysis in forensic toxicology.

    PubMed

    Bévalot, F; Cartiser, N; Bottinelli, C; Guitton, J; Fanton, L

    2016-02-01

    In forensic toxicology, alternative matrices to blood are useful in case of limited, unavailable or unusable blood sample, suspected postmortem redistribution or long drug intake-to-sampling interval. The present article provides an update on the state of knowledge for the use of bile in forensic toxicology, through a review of the Medline literature from 1970 to May 2015. Bile physiology and technical aspects of analysis (sampling, storage, sample preparation and analytical methods) are reported, to highlight specificities and consequences from an analytical and interpretative point of view. A table summarizes cause of death and quantification in bile and blood of 133 compounds from more than 200 case reports, providing a useful tool for forensic physicians and toxicologists involved in interpreting bile analysis. Qualitative and quantitative interpretation is discussed. As bile/blood concentration ratios are high for numerous molecules or metabolites, bile is a matrix of choice for screening when blood concentrations are low or non-detectable: e.g., cases of weak exposure or long intake-to-death interval. Quantitative applications have been little investigated, but small molecules with low bile/blood concentration ratios seem to be good candidates for quantitative bile-based interpretation. Further experimental data on the mechanism and properties of biliary extraction of xenobiotics of forensic interest are required to improve quantitative interpretation.

  10. Novel regulator of enterohepatic bile acid signaling protects against hypercholesterolemia.

    PubMed

    Dawson, Paul A

    2013-06-04

    Hypercholesterolemia is a major cause of cardiovascular disease and can be treated by targeting bile acid and cholesterol metabolism. Vergnes et al. (2013) now identify Diet1 as a novel regulator of fibroblast growth factor 15/19 production and bile acid biosynthesis.

  11. Chicken bile Matrix metalloproteinase; its characterization and significance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies from our lab had shown that the avian bile was rich in matrix metalloproteinase (MMP), enzymes implicated in the degradation of extracellular matrices (ECM) such as collagens and proteoglycans. We hypothesized that bile MMP may be evolutionarily associated with the digestion of ECM ...

  12. Isolation and characterization of chicken bile matrix metalloproteinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian bile is rich in matrix metalloproteinases (MMP), the enzymes that cleave extracellular matrix (ECM) proteins such as collagens and proteoglycans. Changes in bile MMP expression have been correlated with hepatic and gall bladder pathologies but the significance of their expression in normal, he...

  13. Simplified quantitative determination of total fecal bile acids.

    PubMed

    de Wael, J; Raaymakers, C E; Endeman, H J

    1977-09-01

    To determine total fecal bile acids, these are extracted with diethyl ether after boiling with a solution of potassium hydroxide in ethanediol. After evaporating the ether and dissolving the residue in methanol, the bile acids are directly determined with 3 alpha-hydroxysteroid dehydrogenase. Values for 9 normals are given.

  14. Bile signalling promotes chronic respiratory infections and antibiotic tolerance

    PubMed Central

    Reen, F. Jerry; Flynn, Stephanie; Woods, David F.; Dunphy, Niall; Chróinín, Muireann Ní; Mullane, David; Stick, Stephen; Adams, Claire; O’Gara, Fergal

    2016-01-01

    Despite aggressive antimicrobial therapy, many respiratory pathogens persist in the lung, underpinning the chronic inflammation and eventual lung decline that are characteristic of respiratory disease. Recently, bile acid aspiration has emerged as a major comorbidity associated with a range of lung diseases, shaping the lung microbiome and promoting colonisation by Pseudomonas aeruginosa in Cystic Fibrosis (CF) patients. In order to uncover the molecular mechanism through which bile modulates the respiratory microbiome, a combination of global transcriptomic and phenotypic analyses of the P. aeruginosa response to bile was undertaken. Bile responsive pathways responsible for virulence, adaptive metabolism, and redox control were identified, with macrolide and polymyxin antibiotic tolerance increased significantly in the presence of bile. Bile acids, and chenodeoxycholic acid (CDCA) in particular, elicited chronic biofilm behaviour in P. aeruginosa, while induction of the pro-inflammatory cytokine Interleukin-6 (IL-6) in lung epithelial cells by CDCA was Farnesoid X Receptor (FXR) dependent. Microbiome analysis of paediatric CF sputum samples demonstrated increased colonisation by P. aeruginosa and other Proteobacterial pathogens in bile aspirating compared to non-aspirating patients. Together, these data suggest that bile acid signalling is a leading trigger for the development of chronic phenotypes underlying the pathophysiology of chronic respiratory disease. PMID:27432520

  15. Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition

    PubMed Central

    Zhang, Ling; Voskuijl, Wieger; Mouzaki, Marialena; Groen, Albert K.; Alexander, Jennifer; Bourdon, Celine; Wang, Alice; Versloot, Christian J.; Di Giovanni, Valeria; Wanders, Ronald J. A.; Bandsma, Robert

    2016-01-01

    Objective Severe acute malnutrition (SAM) is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis. Design An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6–60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4) and FGF-19 were quantified. Results On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR) of 24.6 μmol/L [8.6–47.7] compared to 1.9 μmol/L [1.7–3.3] (p = 0.01) in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19), a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower. Conclusion SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the

  16. Ambulatory oesophageal bile reflux monitoring in Barrett's oesophagus.

    PubMed

    Caldwell, M T; Lawlor, P; Byrne, P J; Walsh, T N; Hennessy, T P

    1995-05-01

    Bile reflux has been implicated in the pathogenesis of Barrett's oesophagus but evaluation remains difficult. Bilitec 2000 is an ambulatory system that detects bilirubin based on its spectrophotometric properties. Oesophageal bile exposure was evaluated in three groups of patients. Group 1 (n = 11) were normal controls, group 2 (n = 13) were patients with uncomplicated gastro-oesophageal reflux and group 3 (n = 12) were patients with Barrett's oesophagus. Bile reflux was greater in patients with Barrett's mucosa than in controls or those with uncomplicated reflux. This difference was seen in the supine and interdigestive periods. The percentage of time at which gastric pH was greater than 4 and oesophageal pH was above 7 did not differ between the groups. Bilitec 2000 detects greater bile reflux in patients with Barrett's oesophagus. No corresponding gastric or oesophageal alkaline shift is found. This ambulatory bile reflux monitoring system may be a useful tool in clinical practice.

  17. Positive predictive value of cholescintigraphy in common bile duct obstruction

    SciTech Connect

    Lecklitner, M.L.; Austin, A.R.; Benedetto, A.R.; Growcock, G.W.

    1986-09-01

    Technetium-99m DISIDA imaging was employed in 400 patients to differentiate obstruction of the common bile duct from medical and other surgical causes of hyperbilirubinemia. Sequential anterior images demonstrated variable degrees of liver uptake, yet there was no evidence of intrabiliary or extrabiliary radioactivity for at least 4 hr after injection in 25 patients. Twenty-three patients were surgically documented to have complete obstruction of the common bile duct. One patient had hepatitis, and another had sickle cell crisis without bile duct obstruction. The remaining patients had either partial or no obstruction of the common bile duct. We conclude that the presence of liver uptake without evident biliary excretion by 4 hr on cholescintigraphy is highly sensitive and predictive of total obstruction of the common bile duct.

  18. Congenital web of the common bile duct in association with cholelithiasis.

    PubMed

    Papaziogas, Basilios; Lazaridis, Charalampos; Pavlidis, Theodoros; Galanis, Ioannis; Paraskevas, George; Papaziogas, Thomas

    2002-01-01

    Congenital web formations are extremely rare anomalies of the extrahepatic biliary tree. The age at presentation and the clinical symptomatology of these anomalies depend on the grade of the biliary obstruction. We report a case of a common bile duct septum in association with cholelithiasis in a 30-year-old woman. The diagnosis was made on preoperative magnetic resonance cholangiopancreatography (MRCP) and confirmed with intraoperative cholangiography. Because all known causes of acquired web formation were excluded, a congenital origin of the web was assumed. The patient was treated with a hepaticoduodenostomy above the level of the septum. The embryological aspects of this rare anomaly are described.

  19. The Metabolism of Cholestanol, Cholesterol, and Bile Acids in Cerebrotendinous Xanthomatosis

    PubMed Central

    Salen, Gerald; Grundy, Scott M.

    1973-01-01

    The metabolism of cholesterol and its 5-dihydro derivative, cholestanol, was investigated by means of sterol balance and isotope kinetic techniques in 3 subjects with cerebrotendinous xanthomatosis (CTX) and 11 other individuals. All subjects were hospitalized on a metabolic ward and were fed diets practically free of cholesterol and cholestanol. After the intravenous administration of [1,2-3H]cholestanol, the radioactive sterol was transported and esterified in plasma lipoproteins in an identical manner to cholesterol. In these short-term experiments, the specific activity-time curves of plasma cholestanol conformed to two-pool models in both the CTX and control groups. However, cholestanol plasma concentrations, total body miscible pools, and daily synthesis rates were two to five times greater in the CTX than control individuals. The short-term specific activity decay curves of plasma [4-14C]cholesterol also conformed to two-pool models in both groups. However, in the CTX subjects the decay was more rapid, and daily cholesterol synthesis was nearly double that of the control subjects. Plasma concentrations and the sizes of the rapidly turning over pool of exchangeable cholesterol were apparently small in the CTX subjects, and these measurements did not correlate with the large cholesterol deposits found in tendon and tuberous xanthomas. Despite active cholesterol synthesis, bile acid formation was subnormal in the CTX subjects. However, bile acid sequestration was accompanied by a rise in plasma cholestanol levels and greatly augmented fecal cholestanol outputs. In contrast, the administration of clofibrate lowered plasma cholesterol levels 50% and presumably reduced synthesis in the CTX subjects. Plasma cholesterol concentrations and fecal steroid excretion did not change significantly during this therapy. These findings indicate that the excessive tissue deposits of cholesterol and cholestanol that characterize CTX were associated with hyperactive neutral

  20. Successful treatment of limy bile syndrome extending to the common bile duct by laparoscopic cholecystectomy and common bile duct exploration: A case report and literature review.

    PubMed

    Masuda, Yuka; Mizuguchi, Yoshiaki; Kanda, Tomohiro; Furuki, Hiroyasu; Mamada, Yasuhiro; Taniai, Nobuhiko; Nakamura, Yoshiharu; Yoshioka, Masato; Matsushita, Akira; Kawano, Yoichi; Shimizu, Tetsuya; Uchida, Eiji

    2017-02-01

    Limy bile syndrome extending to the common bile duct (CBD) is a rare condition that lacks a standardized treatment. Laparoscopic cholecystectomy with laparoscopic choledocholithotomy by CBD exploration is preferred because it preserves the function of the sphincter of the Vater's papilla and allows treatment of both lesions. A 37-year-old man who was receiving entecavir for chronic hepatitis B developed right upper quadrant pain. Abdominal ultrasonography revealed a calcified shadow in the gallbladder and CBD. Abdominal imaging revealed a liquid-like material identified by a calcified shadow in two phases separated by a fluid-fluid level. Abdominal and 3-D drip infusion cholangiography CT showed stones in the gallbladder and CBD with limy bile. The patient underwent laparoscopic cholecystectomy and choledocholithotomy. Intraoperatively, white-yellow-colored bile and stones were drained from the CBD. A C-tube was placed. Postoperatively, remnant stones and radiopaque materials were absent. The stones comprised of >95% calcium carbonate.

  1. Aberrant bile ducts, 'remnant surface bile ducts,' and peribiliary glands: descriptive anatomy, historical nomenclature, and surgical implications.

    PubMed

    El Gharbawy, Ramadan M; Skandalakis, Lee J; Heffron, Thomas G; Skandalakis, John E

    2011-05-01

    The term "aberrant bile ducts" has been used to designate three heterogeneous groups of biliary structures: (1) bile ducts degenerating or disappearing (unknown etiology, diverse locations); (2) curious biliary structures in the transverse fissure; and (3) aberrant right bile ducts draining directly into the common hepatic duct. We report our observations on these three groups. Twenty-nine fresh human livers of stillborns and adults were injected differentially with colored latex and dissected. Adult livers showed portal venous and hepatic arterial branches, and bile ducts not associated with parenchyma, subjacent to and firmly adherent with the liver capsule: elements of ramifications of normal sheaths were present on the liver's surface. These ramifications, having lost parenchyma associated with them, then sequentially lost their portal branches, bile ducts and arterial branches. This process affected the ramifications of the sheaths in the left triangular ligament, adjacent to the inferior vena cava, in the gallbladder bed and anywhere else on the liver's surface and resulted in the presence of bile ducts accompanied by portal venous and/or hepatic arterial branches and not associated with parenchyma for a period of time. This first group represented normal bile ducts that do not meet the criteria of aberration and could be appropriately designated "remnant surface bile ducts." Such changes were not found in the transverse fissures and review of the literature revealed that the curious biliary structures are the microscopic peribiliary glands. The third group met the criteria of aberration and the anatomy of a representative duct is described.

  2. Substitutes for Bear Bile for the Treatment of Liver Diseases: Research Progress and Future Perspective

    PubMed Central

    Li, Sha; Tan, Hor Yue; Wang, Ning; Hong, Ming; Li, Lei; Cheung, Fan; Feng, Yibin

    2016-01-01

    Bear bile has been a well-known Chinese medicine for thousands of years. Because of the endangered species protection, the concept on substitutes for bear bile was proposed decades ago. Based on their chemical composition and pharmacologic actions, artificial bear bile, bile from other animals, synthetic compounds, and medicinal plants may be the promising candidates to replace bear bile for the similar therapeutic purpose. Accumulating research evidence has indicated that these potential substitutes for bear bile have displayed the same therapeutic effects as bear bile. However, stopping the use of bear bile is a challenging task. In this review, we extensively searched PubMed and CNKI for literatures, focusing on comparative studies between bear bile and its substitutes for the treatment of liver diseases. Recent research progress in potential substitutes for bear bile in the last decade is summarized, and a strategy for the use of substitutes for bear bile is discussed carefully. PMID:27087822

  3. Influence of Phosphatidylcholine and Calcium on Self-Association and Bile Salt Mixed Micellar Binding of the Natural Bile Pigment, Bilirubin Ditaurate.

    PubMed

    Neubrand, Michael W; Carey, Martin C; Laue, Thomas M

    2015-11-17

    Recently [Neubrand, M. W., et al. (2015) Biochemistry 54, 1542-1557], we determined a concentration-dependent monomer-dimer-tetramer equilibrium in aqueous bilirubin ditaurate (BDT) solutions and explored the nature of high-affinity binding of BDT monomers with monomers and micelles of the common taurine-conjugated bile salts (BS). We now investigate, employing complementary physicochemical methods, including fluorescence emission spectrophotometry and quasi-elastic light scattering spectroscopy, the influence of phosphatidylcholine (PC), the predominant phospholipid of bile and calcium, the major divalent biliary cation, on these self-interactions and heterointeractions. We have used short-chain, lyso and long-chain PC species as models and contrasted our results with those of parallel studies employing unconjugated bilirubin (UCB) as the fully charged dianion. Both bile pigments interacted with the zwitterionic headgroup of short-chain lecithins, forming water-soluble (BDT) and insoluble ion-pair complexes (UCB), respectively. Upon micelle formation, BDT monomers apparently remained at the headgroup mantle of short-chain PCs, but the ion pairs with UCB became internalized within the micelle's hydrophobic core. BDT interacted with the headgroups of unilamellar egg yolk (EY) PC vesicles; however, with the simultaneous addition of CaCl2, a reversible aggregation took place, but not vesicle fusion. With mixed EYPC/BS micelles, BDT became bound to the hydrophilic surface (as with simple BS micelles), and in turn, both BDT and BS bound calcium, but not other divalent cations. The calcium complexation of BDT and BS was enhanced strongly with increases in micellar EYPC, suggesting calcium-mediated cross-bridging of hydrophilic headgroups at the micelle's surface. Therefore, the physicochemical binding of BDT to BS in an artificial bile medium is influenced not only by BS species and concentration but also by long-chain PCs and calcium ions that exert a specific rather

  4. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man

    SciTech Connect

    Pooler, P.A.; Duane, W.C.

    1988-09-01

    In man bile acid synthesis has a distinct circadian rhythm but the relationship of this rhythm to feedback inhibition by bile acid is unknown. We measured bile acid synthesis as release of 14CO2 from (26-14C)cholesterol every 2 hr in three normal volunteers during five separate 24-hr periods. Data were fitted by computer to a cosine curve to estimate amplitude and acrophase of the circadian rhythm. In an additional six volunteers, we measured synthesis every 2 hr from 8:00 a.m. to 4:00 p.m. only. During the control period, amplitude (expressed as percentage of mean synthesis) averaged 52% and acrophase averaged 6:49 a.m. During administration of ursodeoxycholic acid (15 mg per kg per day), synthesis averaged 126% of baseline (p less than 0.1), amplitude averaged 43% and acrophase averaged 6:20 a.m. During administration of chenodeoxycholic acid (15 mg per kg per day), synthesis averaged 43% of baseline (p less than 0.001), amplitude averaged 53% and acrophase averaged 9:04 a.m. Addition of prednisone to this regimen of chenodeoxycholic acid to eliminate release of 14CO2 from corticosteroid hormone synthesis resulted in a mean amplitude of 62% and a mean acrophase of 6:50 a.m., values very similar to those in the baseline period. Administration of prednisone alone also did not significantly alter the baseline amplitude (40%) or acrophase (6:28 a.m.). We conclude that neither chenodeoxycholic acid nor ursodeoxycholic acid significantly alters the circadian rhythm of bile acid synthesis in man.

  5. Intestinal bile acid physiology and pathophysiology

    PubMed Central

    Martínez-Augustin, Olga; de Medina, Fermín Sánchez

    2008-01-01

    Bile acids (BAs) have a long established role in fat digestion in the intestine by acting as tensioactives, due to their amphipathic characteristics. BAs are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver via transport mechanisms that have been largely elucidated. The transport and synthesis of BAs are tightly regulated in part by specific plasma membrane receptors and nuclear receptors. In addition to their primary effect, BAs have been claimed to play a role in gastrointestinal cancer, intestinal inflammation and intestinal ionic transport. BAs are not equivalent in any of these biological activities, and structural requirements have been generally identified. In particular, some BAs may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease, although further research is necessary in this field. This review covers the most recent developments in these aspects of BA intestinal biology. PMID:18837078

  6. Promotion of PDT efficacy by bile acids

    NASA Astrophysics Data System (ADS)

    Castelli, Michelle; Reiners, John, Jr.; Kessel, David

    2003-06-01

    We had previously described the use of relatively hydrophobic bile acids, notably UDCA (ursodeoxycholate) for the promotion of the apoptotic response to photodynamic therapy. Further study revealed that this effect occurred only when the target for photodamage was the anti-apoptotic protein Bcl-2. The efficacy of lysosomal photodamage, leading to a cleavage of the protein Bid, was not influenced by UDCA. Moreover, the apoptotic cell death resulting from treatment of cells with the non-peptidic Bcl-2 inhibitor HA 14-1 was also promoted by UDCA. These results are consistent with the proposal that the pro-apoptotic effects of UDCA are directed against Bcl-2, promoting inactivation by HA 14-1 or photodamage.

  7. Potential role of bile duct collaterals in the recovery of the biliary obstruction: experimental study in rats using microcholangiography, histology, serology and magnetic resonance imaging.

    PubMed

    Ni, Y; Lukito, G; Marchal, G; Cresens, E; Yu, J; Petré, C; Baert, A L; Fevery, J

    1994-12-01

    Obstructive cholestasis induced in animals at the level of the lobar and common bile ducts is known to be reversible with time. This study was conducted not only to test the hypothesis that formation of bile duct collaterals is responsible for the recovery of biliary obstruction but also to assess the potential of hepatobiliary agent-enhanced magnetic resonance imaging for visualizing cholestasis. A total of 52 rats were divided into three groups with selective biliary obstruction, total biliary obstruction and sham surgery. We studied the evolution of cholestasis by correlating microcholangiographic, histological findings with the results of liver tests and hepatobiliary agent-enhanced magnetic resonance imaging. Lobar cholestasis undetected by liver tests but seen on magnetic resonance imaging as a difference between ligated and unligated lobes, occurred in 15 out of 20 rats subjected to selective biliary obstruction within 48 hr after ligation, and recovered later on as a result of the development of bile duct collaterals. Five rats failed to show local cholestasis as a result of the existence of interlobar accessory bile channels. All 18 total biliary obstruction-treated rats were cholestatic soon after ligation, as confirmed by high serum bilirubin and alkaline phosphatase levels and as documented by poor liver enhancement on magnetic resonance imaging. Cholestasis recovered within 4 wk with normalization of liver enhancement on magnetic resonance imaging as a result of the formation of bile duct collaterals (as demonstrated by microcholangiographic and histological study). Bile duct collateral formation is responsible for the recovery from obstructive cholestasis in rats. A similar mechanism might be present in conditions of bile duct obstruction without cholestasis. Hepatobiliary agent-enhanced magnetic resonance imaging is more sensitive than blood tests in detecting local cholestasis and can be used to monitor noninvasively the evolution of biliary

  8. A novel endoscopic treatment of major bile duct leak☆

    PubMed Central

    Wahaibi, Aiman Al; AlNaamani, Khalid; Alkindi, Ahmed; Qarshoubi, Issa Al

    2014-01-01

    INTRODUCTION Bile leak is a serious complication of hepatobiliary surgery. The incidence has remained the same over the last decade despite significant improvement in the results of liver surgery. PRESENTATION OF CASE A 21-year-old man was a passenger in a motor vehicle and sustained a blunt abdominal trauma in a high-speed collision leading to major liver laceration. He had right lobe hepatectomy complicated by major bile leak. He was not fit for further surgery and he, therefore, had ERCP and obliteration of the leaking bile duct using a combination of metallic coil and N-butyl cyanoacrylate. DISCUSSION Endoscopic therapy has become the modality of choice in the treatment of biliary tract injuries. Different modalities of management of persistent bile leak such as sphincterotomy, plastic biliary stents, and nasobiliary drainage have been described. Obliteration of bile duct leak using N-butyl cyanoacrylate and coil embolization has been described but most of these reports used the percutaneous transhepatic approach. CONCLUSION In this paper, we describe the second reported case in English literature of a novel endoscopic technique using a combination of metallic coil embolization and N-butyl cyanoacrylate in a patient with major bile leak who was not a candidate for surgery as well as a third report of the late complication of coil migration to the common bile duct. PMID:24636979

  9. Excretion of caffeine and its primary degradation products into bile.

    PubMed

    Holstege, A; Kurz, M; Weinbeck, M; Gerok, W

    1993-01-01

    Caffeine, widely consumed in beverages, is known to alter several biliary parameters that can affect gallstone pathogenesis. To address the question whether methylxanthines can act on the luminal side of biliary epithelial cells, we measured caffeine and its primary demethylation products in human bile. Eight patients had an external biliary drainage due to bile duct or gallbladder disease. Two of the patients suffered from histologically confirmed liver cirrhosis. The levels of caffeine, paraxanthine, theobromine, and theophylline were monitored over 10 h in plasma and bile before and after a prior oral dose of caffeine (5 mg/kg b. wt.). Methylxanthines were enriched by an organic extraction procedure and separated by reversed-phase high-performance liquid chromatography. Time-concentration curves in bile paralleled the time-course of methylxanthine levels in blood plasma. Accordingly, values in bile and blood plasma were highly correlated for each methylxanthine measured. Within 1 h after the oral test dose, peak levels of caffeine were obtained in both fluids. Biliary concentrations were either almost equal (caffeine) or lower (dimethylxanthines) than their respective values in blood plasma. The results of our study indicate that minor amounts of caffeine and its primary degradation products are excreted via the bile allowing local interference with epithelial cell metabolism of bile ducts and gallbladder.

  10. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  11. Bile reflux and intestinal metaplasia in gastric mucosa.

    PubMed Central

    Sobala, G M; O'Connor, H J; Dewar, E P; King, R F; Axon, A T; Dixon, M F

    1993-01-01

    AIM: To determine associations between enterogastric bile reflux and gastric mucosal pathology. METHOD: A retrospective study using fasting gastric juice bile acid measurements and antral or prestomal biopsy specimens from 350 patients, 66 of whom had previously undergone surgery that either bypassed or disrupted the pyloric sphincter. RESULTS: Bile reflux was positively associated with reactive gastritis and negatively with Helicobacter pylori density. After stratification for previous surgery, age, and H pylori status, the histological feature most strongly associated with bile reflux was intestinal metaplasia, including all its subtypes. The prevalence of intestinal metaplasia was greatest in patients with both H pylori infection and high bile acid concentrations. Bile reflux was also positively associated with the severity of glandular atrophy, chronic inflammation, lamina propria oedema and foveolar hyperplasia. CONCLUSIONS: Bile reflux is a cause of reactive gastritis. It modifies the features of H pylori associated chronic gastritis. The changes are not confined to patients who have had surgery to their stomachs. The positive associations with atrophy and intestinal metaplasia have implications for models of gastric carcinogenesis. Images PMID:8463417

  12. Bile Acid Determination after Standardized Glucose Load in Pregnant Women

    PubMed Central

    Adams, April; Jacobs, Katherine; Vogel, Rachel Isaksson; Lupo, Virginia

    2015-01-01

    Objective Intrahepatic cholestasis of pregnancy (ICP) is a rare liver disorder, usually manifesting in the third trimester and associated with increased perinatal morbidity and mortality. The hallmark laboratory abnormality in ICP is elevated fasting serum bile acids; however, there are limited data on whether a nonfasting state affects a pregnant woman's total bile acids. This study assesses fasting and nonfasting bile acid levels in 10 healthy pregnant women after a standardized glucose load to provide insight into the effects of a glucose load on bile acid profiles. Study Design Pilot prospective cohort analysis of serum bile acids in pregnant women. A total of 10 healthy pregnant women from 28 to 32 weeks' gestation were recruited for the study before undergoing a glucose tolerance test. Total serum bile acids were collected for each subject in the overnight fasting state, and 1 and 3 hours after the 100-g glucose load. Results There was a statistically significant difference between fasting versus 3-hour values. There was no statistically significant difference between fasting versus 1-hour and 1-hour versus 3-hour values. Conclusion There is a difference between fasting and nonfasting total serum bile acids after a 100-g glucose load in healthy pregnant women. PMID:26495178

  13. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    PubMed Central

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  14. The Effect of Oxygen on Bile Resistance in Listeria monocytogenes

    PubMed Central

    Wright, Morgan L; Pendarvis, Ken; Nanduri, Bindu; Edelmann, Mariola J; Jenkins, Haley N; Reddy, Joseph S; Wilson, Jessica G; Ding, Xuan; Broadway, Paul R; Ammari, Mais G; Paul, Oindrila; Roberts, Brandy; Donaldson, Janet R

    2016-01-01

    Listeria monocytogenes is a Gram-positive facultative anaerobe that is the causative agent of the disease listeriosis. The infectious ability of this bacterium is dependent upon resistance to stressors encountered within the gastrointestinal tract, including bile. Previous studies have indicated bile salt hydrolase activity increases under anaerobic conditions, suggesting anaerobic conditions influence stress responses. Therefore, the goal of this study was to determine if reduced oxygen availability increased bile resistance of L. monocytogenes. Four strains representing three serovars were evaluated for changes in viability and proteome expression following exposure to bile in aerobic or anaerobic conditions. Viability for F2365 (serovar 4b), EGD-e (serovar 1/2a), and 10403S (serovar 1/2a) increased following exposure to 10% porcine bile under anaerobic conditions (P < 0.05). However, HCC23 (serovar 4a) exhibited no difference (P > 0.05) in bile resistance between aerobic and anaerobic conditions, indicating that oxygen availability does not influence resistance in this strain. The proteomic analysis indicated F2365 and EGD-e had an increased expression of proteins associated with cell envelope and membrane bioenergetics under anaerobic conditions, including thioredoxin-disulfide reductase and cell division proteins. Interestingly, HCC23 had an increase in several dehydrogenases following exposure to bile under aerobic conditions, suggesting that the NADH:NAD+ is altered and may impact bile resistance. Variations were observed in the expression of the cell shape proteins between strains, which corresponded to morphological differences observed by scanning electron microscopy. These data indicate that oxygen availability influences bile resistance. Further research is needed to decipher how these changes in metabolism impact pathogenicity in vivo and also the impact that this has on susceptibility of a host to listeriosis. PMID:27274623

  15. Separating Tumorigenicity from Bile Acid Regulatory Activity for Endocrine Hormone FGF19.

    PubMed

    Zhou, Mei; Wang, Xueyan; Phung, Van; Lindhout, Darrin A; Mondal, Kalyani; Hsu, Jer-Yuan; Yang, Hong; Humphrey, Mark; Ding, Xunshan; Arora, Taruna; Learned, R Marc; DePaoli, Alex M; Tian, Hui; Ling, Lei

    2014-06-15

    Hepatocellular carcinoma (HCC), one of the leading causes of cancer-related death, develops from premalignant lesions in chronically damaged livers. Although it is well established that FGF19 acts through the receptor complex FGFR4-β-Klotho (KLB) to regulate bile acid metabolism, FGF19 is also implicated in the development of HCC. In humans, FGF19 is amplified in HCC and its expression is induced in the liver under cholestatic and cirrhotic conditions. In mice, ectopic overexpression of FGF19 drives HCC development in a process that requires FGFR4. In this study, we describe an engineered FGF19 (M70) that fully retains bile acid regulatory activity but does not promote HCC formation, demonstrating that regulating bile acid metabolism is distinct and separable from tumor-promoting activity. Mechanistically, we show that FGF19 stimulates tumor progression by activating the STAT3 pathway, an activity eliminated by M70. Furthermore, M70 inhibits FGF19-dependent tumor growth in a rodent model. Our results suggest that selectively targeting the FGF19-FGFR4 pathway may offer a tractable approach to improve the treatment of chronic liver disease and cancer.

  16. Bile salts of vertebrates: structural variation and possible evolutionary significance[S

    PubMed Central

    Hofmann, Alan F.; Hagey, Lee R.; Krasowski, Matthew D.

    2010-01-01

    Biliary bile salt composition of 677 vertebrate species (103 fish, 130 reptiles, 271 birds, 173 mammals) was determined. Bile salts were of three types: C27 bile alcohols, C27 bile acids, or C24 bile acids, with default hydroxylation at C-3 and C-7. C27 bile alcohols dominated in early evolving fish and amphibians; C27 bile acids, in reptiles and early evolving birds. C24 bile acids were present in all vertebrate classes, often with C27 alcohols or with C27 acids, indicating two evolutionary pathways from C27 bile alcohols to C24 bile acids: a) a ‘direct’ pathway and b) an ‘indirect’ pathway with C27 bile acids as intermediates. Hydroxylation at C-12 occurred in all orders and at C-16 in snakes and birds. Minor hydroxylation sites were C-1, C-2, C-5, C-6, and C-15. Side chain hydroxylation in C27 bile salts occurred at C-22, C-24, C-25, and C-26, and in C24 bile acids, at C-23 (snakes, birds, and pinnipeds). Unexpected was the presence of C27 bile alcohols in four early evolving mammals. Bile salt composition showed significant variation between orders but not between families, genera, or species. Bile salt composition is a biochemical trait providing clues to evolutionary relationships, complementing anatomical and genetic analyses. PMID:19638645

  17. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer.

    PubMed

    Tsuei, Jessica; Chau, Thinh; Mills, David; Wan, Yu-Jui Yvonne

    2014-11-01

    Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut-liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers.

  18. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer

    PubMed Central

    Tsuei, Jessica; Chau, Thinh; Mills, David; Wan, Yu-Jui Yvonne

    2015-01-01

    Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut–liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers. PMID:24951470

  19. Studies of Relationships among Bile Flow, Liver Plasma Membrane NaK-ATPase, and Membrane Microviscosity in the Rat

    PubMed Central

    Keeffe, Emmet B.; Scharschmidt, Bruce F.; Blankenship, Nancy M.; Ockner, Robert K.

    1979-01-01

    Liver plasma membrane (LPM) NaK-ATPase activity, LPM fluidity, and bile acid-independent flow (BAIF) were studied in rats pretreated with one of five experimental agents. Compared with controls, BAIF was increased 24.6% by thyroid hormone and 34.4% by phenobarbital, decreased by ethinyl estradiol, but unchanged by propylene glycol and cortisone acetate. Parallel to the observed changes in BAIF, NaK-ATPase activity also was increased by thyroid hormone (40.8%) and decreased by ethinyl estradiol (26.2%). In contrast, NaK-ATPase activity failed to increase after phenobarbital but did increase 36% after propylene glycol and 34.8% after cortisone acetate. Thus BAIF and NaK-ATPase activity did not always change in parallel. The NaK-ATPase Km for ATP was not affected by any of these agents. LPM fluidity, measured by fluorescence polarization using the probe 1,6-diphenyl-1,3,5-hexatriene, was found to be increased by propylene glycol, thyroid hormone, and cortisone acetate, decreased by ethinyl estradiol, and unaffected by phenobarbital. Thus in these cases, induced changes in LPM fluidity paralleled those in NaK-ATPase activity. In no case did Mg-ATPase or 5′-nucleotidase activities change in the same direction as NaK-ATPase, and the activity of neither of these enzymes correlated with LPM fluidity, thus indicating the selective nature of the changes in LPM enzyme activity caused by the agents. These findings indicate that LPM fluidity correlates with NaK-ATPase activity and may influence the activity of this enzyme. However, the nature of the role of LPM NaK-ATPase in bile secretion is uncertain and needs further study. Images PMID:227937

  20. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  1. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs)

    PubMed Central

    Kurogi, Katsuhisa; Krasowski, Matthew D.; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E.; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-01-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. PMID:21839837

  2. Bile Duct Diseases - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Bile Duct Diseases URL of this page: https://medlineplus.gov/languages/bileductdiseases.html Other topics A-Z A B ...

  3. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  4. What Are the Risk Factors for Bile Duct Cancer?

    MedlinePlus

    ... but it can affect people who travel to Asia. Abnormalities where the bile duct and pancreatic duct ... duct cancer is much more common in Southeast Asia and China, largely because of the high rate ...

  5. Angioarchitecture of the rabbit extrahepatic bile ducts and gallbladder.

    PubMed

    Jackowiak, Hanna; Lametschwandtner, Alois

    2005-10-01

    The angioarchitecture of extrahepatic bile ducts and gallbladder of the miniature rabbit was studied by scanning electron microscopy (SEM) of vascular corrosion casts. Light microscopy of Masson-stained, paraffin-embedded transverse tissue sections served to attribute cast vascular structures to defined layers of bile ducts and gallbladder. In all segments of the bile tract, a mucosal and a subserosal vascular network was found. In glandular segments, the mucosal network was composed of a meshwork of subepithelial and circumglandular capillaries, which serve the mucosal functions. Differences in the angioarchitectonic patterns existed only in the subserosal networks as hepatic ducts own one supplying arteriole only, while the common bile duct owns a well-defined rete arteriosum subserosum. A well-developed dense subserosus venous plexus was present throughout the bile tract. Vascular patterns of the gallbladder body resembled those of the bile duct, whereby the dense subserous venous plexus was located close to the mucosal capillary network. The subserosal network in the neck of the gallbladder resembled that of the cystic duct. Spatial changes of the mucosal vascular network during volume changes of the gallbladder were documented. Measurements from tissue sections revealed bile tract diameters of 220-400 microm (extrahepatic ducts), 500-650 microm (cystic duct), and 4-6 mm (common bile duct). Data gained from high-powered SEM micrographs of vascular corrosion casts revealed vessel diameters of 200 microm (cystic artery), 90-110 microm (cystic vein), 30-40 microm (feeding arterioles), and 25-110 microm (subserosal venules). Crypt diameters in the filled gallbladder were 300-1,500 mum; those in the contracted organ were 100-600 microm.

  6. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S

    PubMed Central

    Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying

    2012-01-01

    The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917

  7. Olfactory sensitivity of Pacific Lampreys to lamprey bile acids

    USGS Publications Warehouse

    Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.

    2009-01-01

    Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.

  8. Chemotactic response of Helicobacter pylori to human plasma and bile.

    PubMed

    Worku, Mulugeta L; Karim, Q Najma; Spencer, John; Sidebotham, Ramon L

    2004-08-01

    To clarify further the role of chemotaxis in Helicobacter pylori colonization, the in vitro bacterium response to human plasma and bile (secretions containing chemoeffector compounds that are present in the gastric mucus layer) was examined. Human plasma, after dilution to 1 % (v/v) with buffer, was found to be a chemoattractant for the motile bacillus. Human gall-bladder bile, after dilution to 2 % (v/v) with buffer, was found to be a chemorepellent, but did not cause the motility of the bacillus to be diminished after prolonged exposure. The basis of the chemoattractant effect of plasma was explored by examining how urea and 12 amino acids found in plasma affected the taxis of H. pylori. Urea and the amino acids histidine, glutamine, glycine and arginine were the strongest chemoattractants. Other amino acids were chemoattractants, with the exceptions of aspartic and glutamic acids, which were chemorepellents. The basis of the chemorepellent effect of bile was explored by examining how the six most abundant conjugated bile acids in human bile affected the taxis of H. pylori. All the bile acids were chemorepellents, with the greatest effects being demonstrated by taurocholic and taurodeoxycholic acids. The implications of these findings for H. pylori colonization of gastric epithelium are discussed.

  9. Bile salt-phospholipid aggregation at submicellar concentrations.

    PubMed

    Baskin, Rebekah; Frost, Laura D

    2008-04-01

    The aggregation behavior of the bile salts taurodeoxycholate (NaTDC) and sodium cholate (NaC), are followed at concentrations below critical micelle concentrations (CMCs) using the environment sensitive, fluorescent-labeled phospholipid, 2-(6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-C(6)-HPC). A buffer solution containing NBD-C(6)-HPC is titrated with increasing NaC or NaTDC and the fluorescence changes followed. Both bile salts induced fluorescence changes below their critical micelle concentration indicating the presence of a bile salt-phospholipid aggregate. A critical control experiment using 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino) hexanoic acid (NBD-X) shows that the bile salts are interacting with the longer, C16 hydrocarbon tail, not the NBD probe. The fluorescence curves were fitted to the Hill equation as a model for cooperative aggregation. The cooperativity model provides a minimum estimate for the number of bile salts to give maximal fluorescence. This number was calculated for NaC and NaTDC to have a minimum value of approximately 2. A small aggregation number supports the existence of primary micellar aggregates at submicellar concentrations for bile salt-phospholipid aqueous solutions.

  10. The anti-mutagenic properties of bile pigments.

    PubMed

    Bulmer, A C; Ried, K; Blanchfield, J T; Wagner, K-H

    2008-01-01

    Bile pigments, including bilirubin and biliverdin, are endogenous compounds belonging to the porphyrin family of molecules. In the past, bile pigments and bilirubin in particular were thought of as useless by-products of heme catabolism that can be toxic if they accumulate. However, in the past 20 years, research probing the physiological relevance of bile pigments has been mounting, with evidence to suggest bile pigments possess significant antioxidant and anti-mutagenic properties. More specifically, bile pigments are potent peroxyl radical scavengers and inhibit the mutagenic effects of a number of classes of mutagens (polycyclic aromatic hydrocarbons, heterocyclic amines, oxidants). Coincidentally, persons with elevated circulating bilirubin concentrations have a reduced prevalence of cancer and cardio-vascular disease. Despite the encouraging in vitro anti-mutagenic effects of bile pigments, relatively little research has been conducted on their inhibitory capacity in bacterial and cultured cell assays of mutation, which might link the existing in vitro and in vivo observations. This is the first review to summarise the published data and it is our hope it will stimulate further research on these potentially preventative compounds.

  11. Clearance of refractory bile duct stones with extracorporeal shockwave lithotripsy

    PubMed Central

    Ellis, R; Jenkins, A; Thompson, R; Ede, R

    2000-01-01

    BACKGROUND—Extracorporeal shockwave lithotripsy (ESWL) has been used since the mid-1980s to fragment bile duct stones which cannot be removed endoscopically. Early machines required general anaesthesia and immersion in a waterbath.
AIMS—To investigate the effectiveness of the third generation Storz Modulith SL20 lithotriptor in fragmenting bile duct stones that could not be cleared by mechanical lithotripsy.
METHODS—Eighty three patients with retained bile duct stones were treated. All patients received intravenous benzodiazepine sedation and pethidine analgesia. Stones were targeted by fluoroscopy following injection of contrast via a nasobiliary drain or T tube. Residual fragments were cleared at endoscopic retrograde cholangiopancreatography.
RESULTS—Complete stone clearance was achieved in 69 (83%) patients and in 18 of 24 patients (75%) who required more than one ESWL treatment. Stone clearance was achieved in all nine patients (100%) with intrahepatic stones and also in nine patients (100%) referred following surgical exploration of the bile duct. Complications included six cases of cholangitis and one perinephric haematoma which resolved spontaneously.
CONCLUSION—Using the Storz Modulith, 83% of refractory bile duct calculi were cleared with a low rate of complications. These results confirm that ESWL is an excellent alternative to surgery in those patients in whom endoscopic techniques have failed.


Keywords: lithotripsy; bile duct calculi; extracorporeal lithotripsy PMID:11034593

  12. Bile Acid Pool Dynamics in Progressive Familial Intrahepatic Cholestasis with Partial External Bile Diversion

    PubMed Central

    Jericho, Hilary Smith; Kaurs, Elizabeth; Boverhof, Renze; Knisely, Alex; Shneider, Benjamin L; Verkade, Henkjan J; Whitington, Peter F

    2015-01-01

    Objectives Partial external bile diversion (PEBD) is an established therapy for low-GGT Progressive Familial Intrahepatic Cholestasis (PFIC). This study sought to determine if the dynamics of the cholic acid (CA) and chenodeoxycholic acid (CDCA) pools in low-GGT-PFIC subjects with successful PEBD were equivalent to those achieved with successful liver transplantation (LTX). Methods The kinetics of CA and CDCA metabolism were measured by stable isotope dilution in plasma samples in 5 PEBD subjects all with intact canalicular BSEP expression and compared to low-GGT-PFIC subjects with successful LTX. Stomal loss of bile acids was measured in PEBD subjects. Results The fractional turnover rate for CA in the PEBD group ranged from 0.5 to 4.2 d−1 (LTX group, range 0.2 – 0.9 d−1, p = 0.076) and for CDCA from 0.7 to 4.5 d−1 (LTX group 0.3 – 0.4 d−1, p = 0.009). The CA and CDCA pool sizes were equivalent between groups; however pool composition in PEBD was somewhat more hydrophilic. The CA/CDCA ratio in PEBD ranged from 0.9 to 19.5, whereas in LTX it ranged from 0.5 to 2.6. Synthesis rates computed from isotope dilution correlated well with timed output for both CA: r2 = 0.760, p = 0.024 and CDCA: r2 = 0.690, p = 0.021. Conclusions PEBD results in bile acid fractional turnover rates greater than LTX, pool sizes equivalent to LTX and pool composition that is at least as hydrophilic as produced by LTX. PMID:25383786

  13. EFFECT OF BILE DUCT LIGATION ON BILE ACID COMPOSITION IN MOUSE SERUM AND LIVER

    PubMed Central

    Zhang, Youcai; Hong, Ji-Young; Rockwell, Cheryl E.; Copple, Bryan L.; Jaeschke, Hartmut; Klaassen, Curtis D.

    2011-01-01

    Background Cholestatic liver diseases can be caused by genetic defects, drug toxicities, hepatobiliary malignancies or obstruction of the biliary tract. Cholestasis leads to accumulation of bile acids (BAs) in hepatocytes. Direct toxicity of BAs is currently the most accepted hypothesis for cholestatic liver injury. However, information on which bile acids are actually accumulating during cholestasis is limited. Aims Assess BA composition in liver and serum after bile duct ligation (BDL) in male C57Bl/6 mice between 6 h and 14 days and evaluate toxicity of most abundant BAs. Results BA concentrations increased in liver (27-fold) and serum (1400-fold) within 6 h after surgery and remained elevated up to 14 days. BAs in livers of BDL mice became more hydrophilic than sham controls, mainly due to increased 6β-hydroxylation and taurine conjugation. Among the 8 unconjugated and 16 conjugated BAs identified in serum and liver, only taurocholic acid (TCA), β-muricholic acid (βMCA) and TβMCA were substantially elevated representing >95% of these BAs over the entire time course. Although glycochenodeoxycholic acid and other conjugated BAs increased in BDL animals, the changes were several orders of magnitude lower compared to TCA, βMCA and TβMCA. A mixture of these BAs did not cause apoptosis or necrosis but induced inflammatory gene expression in cultured murine hepatocytes. Conclusion The concentrations of cytotoxic BAs are insufficient to cause hepatocellular injury. In contrast, TCA, βMCA and TβMCA are able to induce pro-inflammatory mediators in hepatocytes. Thus, BAs act as inflammagens and not as cytotoxic mediators after BDL in mice. PMID:22098667

  14. Metagenomic sequencing of bile from gallstone patients to identify different microbial community patterns and novel biliary bacteria.

    PubMed

    Shen, Hongzhang; Ye, Fuqiang; Xie, Lu; Yang, Jianfeng; Li, Zhen; Xu, Peisong; Meng, Fei; Li, Lei; Chen, Ying; Bo, Xiaochen; Ni, Ming; Zhang, Xiaofeng

    2015-12-02

    Despite the high worldwide prevalence of gallstone disease, the role of the biliary microbiota in gallstone pathogenesis remains obscure. Next-generation sequencing offers advantages for systematically understanding the human microbiota; however, there have been few such investigations of the biliary microbiome. Here, we performed whole-metagenome shotgun (WMS) sequencing and 16S rRNA sequencing on bile samples from 15 Chinese patients with gallstone disease. Microbial communities of most individuals were clustered into two types, according to the relative enrichment of different intestinal bacterial species. In the bile samples, oral cavity/respiratory tract inhabitants were more prevalent than intestinal inhabitants and existed in both community types. Unexpectedly, the two types were not associated with fever status or surgical history, and many bacteria were patient-specific. We identified 13 novel biliary bacteria based on WMS sequencing, as well as genes encoding putative proteins related to gallstone formation and bile resistance (e.g., β-glucuronidase and multidrug efflux pumps). Bile samples from gallstone patients had reduced microbial diversity compared to healthy faecal samples. Patient samples were enriched in pathways related to oxidative stress and flagellar assembly, whereas carbohydrate metabolic pathways showed varying behaviours. As the first biliary WMS survey, our study reveals the complexity and specificity of biliary microecology.

  15. A bile salt-resistant derivative of Bifidobacterium animalis has an altered fermentation pattern when grown on glucose and maltose.

    PubMed

    Ruas-Madiedo, Patricia; Hernández-Barranco, Ana; Margolles, Abelardo; de los Reyes-Gavilán, Clara G

    2005-11-01

    The growth of Bifidobacterium animalis subsp. lactis IPLA 4549 and its derivative with acquired resistance to bile, B. animalis subsp. lactis 4549dOx, was evaluated in batch cultures with glucose or the glucose disaccharide maltose as the main carbon source. The acquisition of bile salt resistance caused a change in growth pattern for both sugars, which mainly resulted in a preferential use of maltose compared to glucose, whereas the mother strain used both carbohydrates in a similar way. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses were performed to determine the amounts of glucose consumption and organic acid and ethanol formation from glucose by buffered resting cells taken at different points during growth. Resting cells of the bile-adapted strain generally consumed less glucose than those of the nonadapted one but showed an enhanced production of ethanol and higher acetic acid-to-lactic acid as well as formic acid-to-lactic acid ratios. These findings suggest a shift in the catabolism of carbohydrates promoted by the acquisition of bile resistance that may cause changes in the redox potential and improvements in the cellular ATP yield.

  16. Individual bile acids have differential effects on bile acid signaling in mice

    SciTech Connect

    Song, Peizhen Rockwell, Cheryl E. Cui, Julia Yue Klaassen, Curtis D.

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  17. Comparison study between fasting total serum bile acid and post prandial bile acid in hepatic diseases: a preliminary study.

    PubMed

    Boonyapisit, S; Lekhakula, S; Amornkittichareon, B; Shumnumsirivath, D

    1994-01-01

    Fasting bile acid, two-hour post prandial bile acid and other liver function tests (Bili, AST, ALT, ALB, Glob, ALP) were measured in 22 normal and 28 liver diseased patients. In normal volunteers, the mean value of fasting total serum bile acid (FTBA) and postprandial serum bile acid (PTBA) were 3.08 mumole/L (S.D. 1.65) range 0.21-6.26 mumol/L, and 8.07 mumole/L (S.D. 2.99) range 4.06-15.65 mumole/L. Comparison between FTBA, PTBA and other liver function tests in various liver diseases from this study the PTBA was not statistically significant superior to FTBA. Therefore, it is not necessary to do the PTBA at this time until more data is available.

  18. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10.

    PubMed

    Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan

    2012-07-01

    A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one.

  19. Sarcomatoid carcinoma of the common bile duct

    PubMed Central

    Zhang, Shuisheng; Jia, Jia; Bi, Xiaoning; Jiang, Qinglong; Zhao, Yajie; Chen, Yingtai; Xu, Quan; Lan, Zhongmin; Zhang, Jianwei; Zhang, Zhihui; Wang, Chengfeng

    2017-01-01

    Abstract Rationale: Sarcomatoid carcinoma is an extremely rare lesion in the common bile duct (CBD). Patient concerns: We present a case of sarcomatoid carcinoma of the distal CBD in a 51-year-old woman who presented with jaundice and abdominal pain. Whipple's operation was performed successfully. Microscopically, the tumor was a poorly differentiated carcinoma containing a component of sarcoma-like differentiation. The tumor cells displayed spindle-shaped nuclei with occasional mitotic figures. Cytokeratin (CK) 7, CK19, CK18, and pan-CK (AE1/AE3) staining was positive on immunohistochemistry. Vimentin and carcinoembryonic antigen (CEA) staining were also positive. Diagnoses: Sarcomatoid carcinoma of the distal CBD. Interventions: The patient received three cycles of chemotherapy after surgery. Outcomes: The patient has experienced no adverse events in the 3 years post-surgery. Lessons: We present here a case report of sarcomatoid carcinoma of the distal CBD. The patient received chemotherapy after surgery, and was event-free for 3 years post-surgery, suggesting a relatively better prognosis, despite the infiltrative pattern of the tumor. PMID:28099333

  20. Coexpression of bile salt hydrolase gene and catalase gene remarkably improves oxidative stress and bile salt resistance in Lactobacillus casei.

    PubMed

    Wang, Guohong; Yin, Sheng; An, Haoran; Chen, Shangwu; Hao, Yanling

    2011-08-01

    Lactic acid bacteria (LAB) encounter various types of stress during industrial processes and gastrointestinal transit. Catalase (CAT) and bile salt hydrolase (BSH) can protect bacteria from oxidative stress or damage caused by bile salts by decomposing hydrogen peroxide (H(2)O(2)) or deconjugating the bile salts, respectively. Lactobacillus casei is a valuable probiotic strain and is often deficient in both CAT and BSH. In order to improve the resistance of L. casei to both oxidative and bile salts stress, the catalase gene katA from L. sakei and the bile salt hydrolase gene bsh1 from L. plantarum were coexpressed in L. casei HX01. The enzyme activities of CAT and BSH were 2.41 μmol H(2)O(2)/min/10(8) colony-forming units (CFU) and 2.11 μmol glycine/min/ml in the recombinant L. casei CB, respectively. After incubation with 8 mM H(2)O(2), survival ratio of L. casei CB was 40-fold higher than that of L. casei CK. Treatment of L. casei CB with various concentrations of sodium glycodeoxycholate (GDCA) showed that ~10(5) CFU/ml cells survived after incubation with 0.5% GDCA, whereas almost all the L. casei CK cells were killed when treaded with 0.4% GDCA. These results indicate that the coexpression of CAT and BSH confers high-level resistance to both oxidative and bile salts stress conditions in L. casei HX01.

  1. Structure and Functional Characterization of a Bile Acid 7α Dehydratase BaiE in Secondary Bile Acid Synthesis

    PubMed Central

    Bhowmik, Shiva; Chiu, Hsien-Po; Jones, David H.; Chiu, Hsiu-Ju; Miller, Mitchell D.; Xu, Qingping; Farr, Carol L.; Ridlon, Jason M.; Wells, James E.; Elsliger, Marc-André; Wilson, Ian A.; Hylemon, Phillip B.; Lesley, Scott A.

    2015-01-01

    Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, we report crystal structures of apo-BaiE and its putative product-bound (3-oxo-Δ4,6- lithocholyl-Coenzyme A (CoA)) complex. BaiE is a trimer with a twisted α+β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35 and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirmed that these residues are essential for catalysis and also confirmed the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady state kinetic studies revealed that the BaiE homologs are able to turn over 3-oxo-Δ4-bile acid and CoA-conjugated 3-oxo-Δ4-bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway. PMID:26650892

  2. Trastuzumab in Treating Patients With Locally Advanced or Metastatic Gallbladder Cancer or Bile Duct Cancer That Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2014-05-15

    Adenocarcinoma of the Extrahepatic Bile Duct; Adenocarcinoma of the Gallbladder; Malignant Neoplasm; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  3. Urinary bile casts in bile cast nephropathy secondary to severe falciparum malaria

    PubMed Central

    Mohapatra, Manoj Kumar; Behera, Ashok Kumar; Karua, Purna Chandra; Bariha, Prafulla Kumar; Rath, Ashutosh; Aggrawal, Kailash Chandra; Nahak, Snigdha Rani; Gudaganatti, Santosh Shankar

    2016-01-01

    Background Severe cholestatic jaundice may complicate with bile cast nephropathy (BCN) causing severe acute kidney injury (AKI). In this study, we investigate BCN in severe falciparum malaria complicated with jaundice and AKI. Methods This prospective study was conducted in a tertiary health care institution with high prevalence of malaria. A cohort of 110 patients with falciparum malaria complicated with cerebral malaria, jaundice and AKI were enrolled. Species diagnosis was made from peripheral blood smear or rapid diagnostic test. Severe malaria was diagnosed from WHO criteria. BCN was diagnosed with the detection of bile casts in urine or in biopsy. The recovery pattern and outcome with and without BCN was assessed. Results Out of 110 patients, 20 (18.2%) patients had BCN and 15 (13.6%) patients had hepato-renal syndrome. Patients with BCN had high conjugated bilirubin (26.5 ± 4.1 mg/dL), urea (75.9 ± 10.3 mg/dL) and creatinine (7.2 ± 0.8 mg/dL), longer duration of illness (6.4 ± 1.1 days), higher mortality (25.0%) and prolonged recovery time of hepatic (9.6 ± 2.4 days) and renal dysfunction (15.1 ± 6.5 days) compared with patients without BCN. Conclusions Prolonged duration of illness and increased bilirubin cause BCN among patients with severe falciparum malaria with jaundice and AKI, which is associated with high mortality and morbidity. PMID:27478612

  4. Bile duct warmer in hepatic cryosurgery--a pig liver model.

    PubMed

    Seifert, J K; Dutkowski, P; Junginger, T; Morris, D L

    1997-11-01

    Freezing of the common bile duct resulted in injury, stenosis, or perforation of the bile duct in a dog model. Biliary cutaneous fistulas and bile leaks are reported as complications of hepatic cryosurgery in man. In an ex vivo pig liver model we compared freezing close to the bile duct with and without warming the bile duct with warmed saline solution via an inserted catheter ("bile duct warmer"). The recorded temperatures at the outer wall of the bile duct were -50 degrees C after 10 min of freezing without and 5. 8 degrees C with the use of the warmer (P < 0.001, two-way ANOVA). The bile duct warmer system may be a simple and inexpensive device in reducing perioperative morbidity after hepatic cryosurgery of hepatic liver lesions close to a bile duct.

  5. A comparative study of microstructural development in paired human hepatic and gallbladder biles.

    PubMed

    Weihs, Daphne; Schmidt, Judith; Danino, Dganit; Goldiner, Ilana; Leikin-Gobbi, Diana; Eitan, Arieh; Rubin, Moshe; Talmon, Yeshayahu; Konikoff, Fred M

    2007-10-01

    Cholesterol gallstones usually develop in the gallbladder and rarely form in bile ducts even in patients with highly lithogenic bile. Bile concentration and proteins (e.g. mucin) may affect crystallization, but the exact nature of this effect, especially in relation to crystallization pathways and microstructural evolution remains unclear. We examined lipid microstructures in paired hepatic and gallbladder biles to reveal ones that are essential for crystallization. Combining digital light microscopy with cryogenic-temperature transmission electron microscopy we are able to directly visualize and compare the time evolution of lipid microstructures in paired hepatic, gallbladder and diluted gallbladder biles of gallstone patients and controls, without drying or separating. Gallbladder bile exhibited several multilamellar vesicles and spheroidal micelles preceding and throughout crystallization. Vesicle morphology changed before crystallization was observed. In contrast, hepatic bile revealed almost no crystallization and while a variety of unilamellar vesicles and spheroidal micelles existed throughout the examination, multilamellar vesicles were rare. Diluted gallbladder bile was different from native gallbladder bile, as well as the paired hepatic bile, yielding occasional crystallization. Our findings suggest that maturing multilamellar vesicles precede (and at least partially initiate) crystallization in gallbladder bile. Although microstructural development seems to be concentration dependent, dilution of gallbladder bile to hepatic bile concentrations neither makes it identical to hepatic bile, nor prevents crystallization.

  6. Evolution of the pregnane X receptor: adaptation to cross-species differences in biliary bile salts

    PubMed Central

    Krasowski, Matthew D.; Yasuda, Kazuto; Hagey, Lee R.; Schuetz, Erin G.

    2008-01-01

    The pregnane X receptor (PXR) regulates the metabolism and elimination of bile salts, steroids, and xenobiotics. The sequence of the PXR ligand-binding domain diverges extensively between different animals suggesting inter-species differences in ligands. Of the endogenous ligands known to activate PXR, biliary bile salts vary the most across vertebrate species, ranging from 27-carbon (C27) bile alcohol sulfates (early fish, amphibians) to C24 bile acids (birds, mammals). Using a luciferase-based reporter assay, human PXR was activated by a wide variety of bile salts. In contrast, zebrafish PXR was activated efficiently only by cyprinol sulfate, the major zebrafish bile salt, but not by recent bile acids. Chicken, mouse, rat, and rabbit PXRs were all activated by species-specific bile acids and by early fish bile alcohol sulfates. In addition, phylogenetic analysis using maximum likelihood demonstrated evidence for non-neutral evolution of the PXR ligand-binding domain. PXR activation by bile salts has expanded from narrow specificity for C27 bile alcohol sulfates (early fish) to a broader specificity for recent bile acids (birds, mammals). PXR specificity for bile salts has thus paralleled the increasing complexity of the bile salt synthetic pathway during vertebrate evolution, an unusual example of ligand-receptor co-evolution in the nuclear hormone receptor superfamily. PMID:15718292

  7. Induction of bile ducts in embryonic liver by mesenchyme: a new perspective for the treatment of biliary atresia?

    PubMed

    Petersen, M; Drews, U; Schweizer, P

    2001-12-01

    Presently only those forms of Extrahepatic Biliary Atresia (EHBA) with minimal or no intrahepatic manifestations can be treated successfully by extensive hepatoportoenterostomy. Intraoperative macro- and microscopic observations show that the typical pathogenetic manifestations in EHBA are most prominent at the porta hepatis. We therefore postulate that EHBA is the result of a defective embryonic development of the porta hepatis. In rat embryos hepatic bile duct formation is initiated at the porta hepatis and in this context mesenchyme from the periportal region seems to play a major inductive role. In order to demonstrate the role of invading periportal mesenchyme for the process of bile duct rudiment formation we established an organ culture model of the embryonic porta hepatis by recombining periportal mesenchyme with peripheral liver fragments from 15 days old rat embryos (Carnegie Stage 21). The degree of mesenchyme invasion as well as the formation of mesenchyme-surrounded liver cell clusters, rosettes or vesicles (bile duct rudiments) were assessed. Mesenchyme from the porta hepatis invaded the peripheral liver fragments and induced the formation of mesenchyme-surrounded liver cell clusters and rosettes with the beginning of lumen formation. Kidney mesenchyme recombined with liver fragments as a mesenchymal alternative showed almost the same effect, lung mesenchyme showed only a very weak inductive effect. To assess the effect of a diffusible factor versus direct cell contact, a millipore filter with and without paraffin coating was interposed between mesenchyme containing tissue and peripheral liver tissue fragments. Without direct cell contact to mesenchyme no hepatoblast cluster or rosette formation could be observed. Comparing this result to the normal development of the liver in rats our investigations suggest that the embryogenesis of the porta hepatis is probably defined by the following two developmental steps: First, differentiation of the

  8. Human erythrocyte band 3 functions as a receptor for the sialic acid-independent invasion of Plasmodium falciparum. Role of the RhopH3-MSP1 complex.

    PubMed

    Baldwin, Michael; Yamodo, Innocent; Ranjan, Ravi; Li, Xuerong; Mines, Gregory; Marinkovic, Marina; Hanada, Toshihiko; Oh, Steven S; Chishti, Athar H

    2014-12-01

    Plasmodium falciparum takes advantage of two broadly defined alternate invasion pathways when infecting human erythrocytes: one that depends on and the other that is independent of host sialic acid residues on the erythrocyte surface. Within the sialic acid-dependent (SAD) and sialic acid-independent (SAID) invasion pathways, several alternate host receptors are used by P. falciparum based on its particular invasion phenotype. Earlier, we reported that two putative extracellular regions of human erythrocyte band 3 termed 5C and 6A function as host invasion receptor segments binding parasite proteins MSP1 and MSP9 via a SAID mechanism. In this study, we developed two mono-specific anti-peptide chicken IgY antibodies to demonstrate that the 5C and 6A regions of band 3 are exposed on the surface of human erythrocytes. These antibodies inhibited erythrocyte invasion by the P. falciparum 3D7 and 7G8 strains (SAID invasion phenotype), and the blocking effect was enhanced in sialic acid-depleted erythrocytes. In contrast, the IgY antibodies had only a marginal inhibitory effect on FCR3 and Dd2 strains (SAD invasion phenotype). A direct biochemical interaction between erythrocyte band 3 epitopes and parasite RhopH3, identified by the yeast two-hybrid screen, was established. RhopH3 formed a complex with MSP119 and the 5ABC region of band 3, and a recombinant segment of RhopH3 inhibited parasite invasion in human erythrocytes. Together, these findings provide evidence that erythrocyte band 3 functions as a major host invasion receptor in the SAID invasion pathway by assembling a multi-protein complex composed of parasite ligands RhopH3 and MSP1.

  9. Digestion of phospholipids after secretion of bile into the duodenum changes the phase behavior of bile components.

    PubMed

    Birru, Woldeamanuel A; Warren, Dallas B; Ibrahim, Ahmed; Williams, Hywel D; Benameur, Hassan; Porter, Christopher J H; Chalmers, David K; Pouton, Colin W

    2014-08-04

    Bile components play a significant role in the absorption of dietary fat, by solubilizing the products of fat digestion. The absorption of poorly water-soluble drugs from the gastrointestinal tract is often enhanced by interaction with the pathways of fat digestion and absorption. These processes can enhance drug absorption. Thus, the phase behavior of bile components and digested lipids is of great interest to pharmaceutical scientists who seek to optimize drug solubilization in the gut lumen. This can be achieved by dosing drugs after food or preferably by formulating the drug in a lipid-based delivery system. Phase diagrams of bile salts, lecithin, and water have been available for many years, but here we investigate the association structures that occur in dilute aqueous solution, in concentrations that are present in the gut lumen. More importantly, we have compared these structures with those that would be expected to be present in the intestine soon after secretion of bile. Phosphatidylcholines are rapidly hydrolyzed by pancreatic enzymes to yield equimolar mixtures of their monoacyl equivalents and fatty acids. We constructed phase diagrams that model the association structures formed by the products of digestion of biliary phospholipids. The micelle-vesicle phase boundary was clearly identifiable by dynamic light scattering and nephelometry. These data indicate that a significantly higher molar ratio of lipid to bile salt is required to cause a transition to lamellar phase (i.e., liposomes in dilute solution). Mixed micelles of digested bile have a higher capacity for solubilization of lipids and fat digestion products and can be expected to have a different capacity to solubilize lipophilic drugs. We suggest that mixtures of lysolecithin, fatty acid, and bile salts are a better model of molecular associations in the gut lumen, and such mixtures could be used to better understand the interaction of drugs with the fat digestion and absorption pathway.

  10. Mechanism of dynamic near-infrared fluorescence cholangiography of extrahepatic bile ducts and applications in detecting bile duct injuries using indocyanine green in animal models.

    PubMed

    Gao, Yang; Li, Min; Song, Zi-Fang; Cui, Le; Wang, Bi-Rong; Lou, Xiao-Ding; Zhou, Tao; Zhang, Yong; Zheng, Qi-Chang

    2017-02-01

    Fluorescence intraoperative cholangiography (IOC) is a potential alternative for identifying anatomical variation and preventing iatrogenic bile duct injuries by using the near-infrared probe indocyanine green (ICG). However, the dynamic process and mechanism of fluorescence IOC have not been elucidated in previous publications. Herein, the optical properties of the complex of ICG and bile, dynamic fluorescence cholangiography and iatrogenic bile duct injuries were investigated. The emission spectrum of ICG in bile peaked at 844 nm and ICG had higher tissue penetration. Extrahepatic bile ducts could fluoresce 2 min after intravenous injection, and the fluorescence intensity reached a peak at 8 min. In addition, biliary dynamics were observed owing to ICG excretion from the bile ducts into the duodenum. Quantitative analysis indicated that ICG-guided fluorescence IOC possessed a high signal to noise ratio compared to the surrounding peripheral tissue and the portal vein. Fluorescence IOC was based on rapid uptake of circulating ICG in plasma by hepatic cells, excretion of ICG into the bile and then its interaction with protein molecules in the bile. Moreover, fluorescence IOC was sensitive to detect bile duct ligation and acute bile duct perforation using ICG in rat models. All of the results indicated that fluorescence IOC using ICG is a valid alternative for the cholangiography of extrahepatic bile ducts and has potential for measurement of biliary dynamics.

  11. Bile acid receptors and nonalcoholic fatty liver disease

    PubMed Central

    Yuan, Liyun; Bambha, Kiran

    2015-01-01

    With the high prevalence of obesity, diabetes, and other features of the metabolic syndrome in United States, nonalcoholic fatty liver disease (NAFLD) has inevitably become a very prevalent chronic liver disease and is now emerging as one of the leading indications for liver transplantation. Insulin resistance and derangement of lipid metabolism, accompanied by activation of the pro-inflammatory response and fibrogenesis, are essential pathways in the development of the more clinically significant form of NAFLD, known as nonalcoholic steatohepatitis (NASH). Recent advances in the functional characterization of bile acid receptors, such as farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor (TGR) 5, have provided further insight in the pathophysiology of NASH and have led to the development of potential therapeutic targets for NAFLD and NASH. Beyond maintaining bile acid metabolism, FXR and TGR5 also regulate lipid metabolism, maintain glucose homeostasis, increase energy expenditure, and ameliorate hepatic inflammation. These intriguing features have been exploited to develop bile acid analogues to target pathways in NAFLD and NASH pathogenesis. This review provides a brief overview of the pathogenesis of NAFLD and NASH, and then delves into the biological functions of bile acid receptors, particularly with respect to NASH pathogenesis, with a description of the associated experimental data, and, finally, we discuss the prospects of bile acid analogues in the treatment of NAFLD and NASH. PMID:26668692

  12. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    PubMed Central

    Gérard, Philippe

    2013-01-01

    The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host's enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids) are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered. PMID:25437605

  13. Metabolism of cholesterol and bile acids by the gut microbiota.

    PubMed

    Gérard, Philippe

    2013-12-30

    The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host's enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids) are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  14. Intraductal papillary neoplasm originating from an anomalous bile duct.

    PubMed

    Maki, Harufumi; Aoki, Taku; Ishizawa, Takeaki; Tanaka, Mariko; Sakatani, Takashi; Beck, Yoshifumi; Hasegawa, Kiyoshi; Sakamoto, Yoshihiro; Kokudo, Norihiro

    2017-02-17

    An 82-year-old woman who had been suffering from repeated obstructive jaundice for 7 years was referred to our hospital. Although endoscopic aspiration of the mucin in the common bile duct had been temporally effective, origin of the mucin production had not been detectable. The patient thus had been forced to be on long-term follow-up without curative resection. Endoscopic retrograde cholangioscopy on admission revealed massive mucin in the common bile duct. In addition, an anomalous bile duct located proximal to the gallbladder was identified. Since the lumen of the anomalous duct was irregular and the rest of biliary tree was completely free of suspicious lesions, the anomalous duct was judged to be the primary site. Surgical resection of the segment 4 and 5 of the liver combined with the extrahepatic biliary tract was performed. Pathological diagnosis was compatible to intraductal papillary neoplasm with high-grade intraepithelial dysplasia of the anomalous bile duct. The patient has been free from the disease for 6.5 years after resection. This is the first case of intraductal papillary neoplasm derived from an anomalous bile duct, which was resected after long-term conservative treatment. The present case suggested the slow growing character of natural history of the neoplasm.

  15. Anatomical assessment of bile ducts of Luschka in human fetuses.

    PubMed

    Kocabiyik, Necdet; Yalcin, Bülent; Kilbas, Zafer; Karadeniz, Sinan R; Kurt, Bülent; Comert, Ayhan; Ozan, Hasan

    2009-08-01

    Bile ducts of Luschka (also called subvesical or supravesicular ducts) can cause bile leakage during laparoscopic cholecystectomy, especially if surgery is carried out in ignorance of such variations. The aim of this study was to clarify the clinical anatomy of these ducts in human fetuses and frequency of the ducts locating near gallbladder fossa. Thirty-two fetal cadaver livers were dissected and the gallbladders were separated from the livers and ducts were investigated under a surgical microscope. All observed ducts were examined microscopically and connective tissue cords were excluded. Bile ducts of Luschka locating near cystic fossa were found in 7 of 32 fetuses (21.9%). Three of the seven ducts ran towards to liver segment 5 (S5); three ducts were found in the gallbladder fossa; and one duct ran towards to liver segment 4 (S4). Also it was found that three of the seven ducts drained into the subsegmental duct of S5, two ducts drained into the right hepatic duct, one duct drained into the right anterior branch bile duct, and one duct drained into the subsegmental duct of S4. Subvesical ducts running along the gallbladder fossa between the gallbladder and the liver parenchyma were found in a relatively high incidence in fetuses than adults. Awareness and knowledge about incidence of such ducts alerts the surgeon during laparoscopic cholecystectomy. Therefore morbidity due to bile leaks can be reduced.

  16. Megalin and cubilin expression in gallbladder epithelium and regulation by bile acids.

    PubMed

    Erranz, Benjamín; Miquel, Juan Francisco; Argraves, W Scott; Barth, Jeremy L; Pimentel, Fernando; Marzolo, María-Paz

    2004-12-01

    Cholesterol crystal formation in the gallbladder is a key step in gallstone pathogenesis. Gallbladder epithelial cells might prevent luminal gallstone formation through a poorly understood cholesterol absorption process. Genetic studies in mice have highlighted potential gallstone susceptibility alleles, Lith genes, which include the gene for megalin. Megalin, in conjunction with the large peripheral membrane protein cubilin, mediates the endocytosis of numerous ligands, including HDL/apolipoprotein A-I (apoA-I). Although the bile contains apoA-I and several cholesterol-binding megalin ligands, the expression of megalin and cubilin in the gallbladder has not been investigated. Here, we show that both proteins are expressed by human and mouse gallbladder epithelia. In vitro studies using a megalin-expressing cell line showed that lithocholic acid strongly inhibits and cholic and chenodeoxycholic acids increase megalin expression. The effects of bile acids (BAs) were also demonstrated in vivo, analyzing gallbladder levels of megalin and cubilin from mice fed with different BAs. The BA effects could be mediated by the farnesoid X receptor, expressed in the gallbladder. Megalin protein was also strongly increased after feeding a lithogenic diet. These results indicate a physiological role for megalin and cubilin in the gallbladder and provide support for a role for megalin in gallstone pathogenesis.

  17. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome

    PubMed Central

    Hofmann, Jennifer J.; Zovein, Ann C.; Koh, Huilin; Radtke, Freddy; Weinmaster, Gerry; Iruela-Arispe, M. Luisa

    2010-01-01

    Mutations in the human Notch ligand jagged 1 (JAG1) result in a multi-system disorder called Alagille syndrome (AGS). AGS is chiefly characterized by a paucity of intrahepatic bile ducts (IHBD), but also includes cardiac, ocular, skeletal, craniofacial and renal defects. The disease penetration and severity of the affected organs can vary significantly and the molecular basis for this broad spectrum of pathology is unclear. Here, we report that Jag1 inactivation in the portal vein mesenchyme (PVM), but not in the endothelium of mice, leads to the hepatic defects associated with AGS. Loss of Jag1 expression in SM22α-positive cells of the PVM leads to defective bile duct development beyond the initial formation of the ductal plate. Cytokeratin 19-positive cells are detected surrounding the portal vein, yet they are unable to form biliary tubes, revealing an instructive role of the vasculature in liver development. These findings uncover the cellular basis for the defining feature of AGS, identify mesenchymal Jag1-dependent and -independent stages of duct development, and provide mechanistic information for the role of Jag1 in IHBD formation. PMID:21062863

  18. Pharmacophore model for bile acids recognition by the FPR receptor

    NASA Astrophysics Data System (ADS)

    Ferrari, Cristina; Macchiarulo, Antonio; Costantino, Gabriele; Pellicciari, Roberto

    2006-05-01

    Formyl-peptide receptors (FPRs) belong to the family A of the G-protein coupled receptor superfamily and include three subtypes: FPR, FPR-like-1 and FPR-like-2. They have been involved in the control of␣many inflammatory processes promoting the recruitment and infiltration of leukocytes in regions of inflammation through the molecular recognition of chemotactic factors. A large number of structurally diverse chemotypes modulate the activity of FPRs. Newly identified antagonists include bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). The molecular recognition of these compounds at FPR receptor was computationally investigated using both ligand- and structure-based approaches. Our findings suggest that all antagonists bind at the first third of the seven helical bundles. A closer inspection of bile acid interaction reveals a number of unexploited anchor points in the binding site that may be used to aid the design of new potent and selective bile acids derivatives at FPR.

  19. Endoscopic management of difficult common bile duct stones

    PubMed Central

    Trikudanathan, Guru; Navaneethan, Udayakumar; Parsi, Mansour A

    2013-01-01

    Endoscopy is widely accepted as the first treatment option in the management of bile duct stones. In this review we focus on the alternative endoscopic modalities for the management of difficult common bile duct stones. Most biliary stones can be removed with an extraction balloon, extraction basket or mechanical lithotripsy after endoscopic sphincterotomy. Endoscopic papillary balloon dilation with or without endoscopic sphincterotomy or mechanical lithotripsy has been shown to be effective for management of difficult to remove bile duct stones in selected patients. Ductal clearance can be safely achieved with peroral cholangioscopy guided laser or electrohydraulic lithotripsy in most cases where other endoscopic treatment modalities have failed. Biliary stenting may be an alternative treatment option for frail and elderly patients or those with serious co morbidities. PMID:23345939

  20. Flagging Drugs That Inhibit the Bile Salt Export Pump.

    PubMed

    Montanari, Floriane; Pinto, Marta; Khunweeraphong, Narakorn; Wlcek, Katrin; Sohail, M Imran; Noeske, Tobias; Boyer, Scott; Chiba, Peter; Stieger, Bruno; Kuchler, Karl; Ecker, Gerhard F

    2016-01-04

    The bile salt export pump (BSEP) is an ABC-transporter expressed at the canalicular membrane of hepatocytes. Its physiological role is to expel bile salts into the canaliculi from where they drain into the bile duct. Inhibition of this transporter may lead to intrahepatic cholestasis. Predictive computational models of BSEP inhibition may allow for fast identification of potentially harmful compounds in large databases. This article presents a predictive in silico model based on physicochemical descriptors that is able to flag compounds as potential BSEP inhibitors. This model was built using a training set of 670 compounds with available BSEP inhibition potencies. It successfully predicted BSEP inhibition for two independent test sets and was in a further step used for a virtual screening experiment. After in vitro testing of selected candidates, a marketed drug, bromocriptin, was identified for the first time as BSEP inhibitor. This demonstrates the usefulness of the model to identify new BSEP inhibitors and therefore potential cholestasis perpetrators.

  1. Autofluorescent polarimetry of bile films in the liver pathology differentiation

    NASA Astrophysics Data System (ADS)

    Prysyazhnyuk, V. P.; Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, A. G.; Savich, V. O.; Karachevtsev, A. O.

    2015-09-01

    A new information optical technique of diagnostics of the structure of the polycrystalline bile films is proposed. The model of Mueller-matrix description of mechanisms of optical anisotropy of such objects as optical activity, birefringence, as well as linear and circular dichroism is suggested. The ensemble of informationally topical azimuthally stable Mueller-matrix invariants is determined. Within the statistical analysis of such parameters distributions the objective criteria of differentiation of the polycrystalline bile films taken from patients with fatty degeneration (group 1) chronic hepatitis (group 2) of the liver were determined. From the point of view of probative medicine the operational characteristics (sensitivity, specificity and accuracy) of the information-optical method of Mueller-matrix mapping of polycrystalline films of bile were found and its efficiency in diagnostics of pathological changes was demonstrated.

  2. Fecal bile acids of black-footed ferrets

    USGS Publications Warehouse

    Richardson, Louise; Johnson, M.K.; Clark, T.W.; Schroder, M.H.

    1986-01-01

    Fecal bile acid characteristics have been used to identify scats to species of origin. Fecal bile acids in scats from 20 known black-footed ferrets ( Mustela nigripes ), 7 other known small carnivores, and 72 of unknown origin were analyzed to determine if this procedure could be used as a tool to verify ferret presence in an area. Seventeen ferret scats were suitable for analysis and had a mean fecal bile acid index of 156 ± 9. This was significantly different from mean indices for the other carnivores; however, substantial overlap among confidence intervals occurred for badgers, kit foxes, and especially long-tailed weasels. We conclude this method is not useful for making positive identifications if individual ferret scats and suggest that we may be able to definitively identify individual scats with reasonable confidence by using gas-liquid chromatography.

  3. Bile acids. 38. Conversion of 5 -cholestane-3 ,7 -diol to allo bile acids by the rat.

    PubMed

    Noll, B W; Doisy, E A; Elliott, W H

    1973-07-01

    5alpha-[4-(14)C, 3alpha-(3)H]Cholestane-3beta,7alpha-diol was prepared from individual samples of 5alpha-[3alpha-(3)H]cholestane-3beta,7alpha-diol and 5alpha-[4-(14)C]cholestane-3beta,7alpha-diol, each derived from 3beta-acetoxycholest-5-en-7-one. Bile was collected for 11 days from adult male rats, with cannulated bile ducts, that had received intraperitoneally 0.90-0.92 mg of the doubly labeled diol. Bile from the first 10 hr, containing 63% of the administered (14)C and 6% of the (3)H, was hydrolyzed, and the bile acids were separated by acetic acid partition chromatography. Allochenodeoxycholic and allocholic acids contained at least 20.6% and 48.6%, respectively, of the (14)C retained in the biliary acids. Small amounts of (14)C (2.5% and 1.9%, respectively) were present in the 3beta isomers of these acids, but the tritium content totaled more than half of that found in the bile acid fraction. No evidence was obtained for presence of the extensive quantities of the allomuricholates.

  4. Bile loss in the acute intestinal radiation syndrome in rats

    SciTech Connect

    Geraci, J.P.; Dunston, S.G.; Jackson, K.L.; Mariano, M.S.; Holeski, C.; Eaton, D.L.

    1987-01-01

    The effects of bile duct ligation (BDL), choledochostomy, bile acid sequestering within the intestinal lumen by cholestyramine, and fluid and electrolyte replacement on survival time and development of diarrhea after whole-body exposure to doses of ionizing radiation that result in death from acute intestinal injury were studied. BDL significantly prolonged survival and delayed the onset of diarrhea after exposure to /sup 137/Cs gamma rays, fission neutrons, or cyclotron-produced neutrons in the range of doses that produce intestinal death or death from a combination of intestinal and hematopoietic injuries. Cannulation of the bile duct with exteriorized bile flow (choledochostomy) to protect the irradiated intestine from the mucolytic action of bile salts did not duplicate the effect of BDL in increasing survival time. Choledochostomy without fluid replacement eliminated the occurrence of diarrhea in 15.4 Gy irradiated rats. Diarrhea did occur in irradiated animals with choledochostomy if they received duodenal injections of fluid and electrolytes to replace the fluid lost as a result of bile drainage. Duodenal injection of fluid and electrolytes had no significant effect on survival time in irradiated rats. Injection of fluid and electrolytes into the peritoneal cavity of irradiated rats resulted in an increase in survival time that was comparable to that observed after BDL. Addition of antibiotics to the peritoneally injected fluid and electrolytes further increased survival time (up to 9 days). This survival time approached that seen in animals receiving the same radiation dose but which had the intestine exteriorized and shielded to minimize radiation injury to the intestine. Postmortem histological examinations of the irradiated small intestine showed mucosal regeneration in these long-term survivors receiving fluid and antibiotic therapy.

  5. Tailoring supramolecular nanotubes by bile salt based surfactant mixtures.

    PubMed

    Gubitosi, Marta; Travaglini, Leana; di Gregorio, Maria Chiara; Pavel, Nicolae V; Vázquez Tato, José; Sennato, Simona; Olsson, Ulf; Schillén, Karin; Galantini, Luciano

    2015-06-08

    An approach for tailoring self-assembled tubular structures is described. By controlling the relative composition of a two-component surfactant mixture comprising the natural bile salt lithocholate and its bolamphiphilic derivative, it was possible to finely tune the nanotube cross-section of the mixed tubular aggregates that self-associated spontaneously in aqueous solution at pH 12. The diameter was found to vary up to 50% when the stoichiometric ratio of the two bile salts was changed. The tuning of supramolecular nanochannels with such remarkable precision is of significant interest for technological applications of these materials.

  6. Adenomas of the common bile duct in familial adenomatous polyposis.

    PubMed

    Yan, Mao-Lin; Pan, Jun-Yong; Bai, Yan-Nan; Lai, Zhi-De; Chen, Zhong; Wang, Yao-Dong

    2015-03-14

    Familial adenomatous polyposis (FAP) or Gardner's syndrome is often accompanied by adenomas of the stomach and duodenum. We experienced a case of adenomas of the common bile duct in a 40-year-old woman with FAP presenting with acute cholangitis. Only 8 cases of adenomas or adenocarcinoma of the common bile duct have been reported in the literature in patients with FAP or Gardner's syndrome. Those patients presented with acute cholangitis or pancreatitis. Local excision or Whipple procedure may be the reasonable surgical option.

  7. A surgical model for studying biliary bile acid and cholesterol metabolism in swine.

    PubMed

    Faidley, T D; Galloway, S T; Luhman, C M; Foley, M K; Beitz, D C

    1991-10-01

    Techniques were developed in young growing pigs to simultaneously collect and reinfuse bile. Silastic cannulae were designed and surgically implanted in the common bile duct and the duodenum. Direct sampling of the hepatic bile was achieved by bypassing the gallbladder. The techniques allowed for steady-state studies of hepatic function to be conducted in conscious swine in two different studies. Pigs, thus surgically modified, can serve as an appropriate model for physiologic, pharmacologic, and nutritional research that involves bile sampling.

  8. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms.

  9. Extracorporeal abdominal massage may help prevent recurrent bile duct stones after endoscopic sphincterotomy

    PubMed Central

    Uchida, Naohito; Hamaya, Sae; Tatsuta, Miwa; Nakatsu, Toshiaki

    2016-01-01

    Background and study aims: Endoscopic sphincterotomy (EST) is effective, but recurrent bile duct stones are a common late complication. Because there are still no effective therapies for preventing this complication, some patients have experienced bile duct stone recurrence many times. We describe herein a method of abdominal massage to treat patients with prior cholecystectomy who have experienced recurrence of bile duct stones. PMID:27540575

  10. Erlotinib in Treating Patients With Unresectable Liver, Bile Duct, or Gallbladder Cancer

    ClinicalTrials.gov

    2013-06-03

    Adult Primary Cholangiocellular Carcinoma; Adult Primary Hepatocellular Carcinoma; Advanced Adult Primary Liver Cancer; Cholangiocarcinoma of the Extrahepatic Bile Duct; Cholangiocarcinoma of the Gallbladder; Localized Unresectable Adult Primary Liver Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Unresectable Extrahepatic Bile Duct Cancer; Unresectable Gallbladder Cancer

  11. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  12. Chemical composition of blood and bile of the shovelnose sturgeon

    USGS Publications Warehouse

    Hunn, J.B.; Christenson, L.M.

    1977-01-01

    Samples of gallbladder bile and blood from shovelnose sturgeons (Scaphirhynchus platorynchus) collected from the Chippewa River, Wisconsin, contained concentrations of Na+, K+, Ca++, Mg++, Cl-, inorganic phosphate, and total cholesterol closely comparable with those reported for similar samples from other species of freshwater sturgeons.

  13. Bile-induced peptidoglycan remodelling in Salmonella enterica.

    PubMed

    Hernández, Sara B; Cava, Felipe; Pucciarelli, M Graciela; García-Del Portillo, Francisco; de Pedro, Miguel A; Casadesús, Josep

    2015-04-01

    Changes in the peptidoglycan (PG) structure of Salmonella enterica are detected in the presence of a sublethal concentration of sodium deoxycholate (DOC): (i) lower proportions of Braun lipoprotein (Lpp)-bound muropeptides; (ii) reduced levels of muropeptides cross-linked by L(meso)-diaminopimelyl-D(meso)-diaminopimelic acid (L-D) peptide bridges (3-3 cross-links). Similar structural changes are found in S. enterica cultures adapted to grow in the presence of a lethal concentration of DOC, suggesting that reduced anchoring of Braun protein to PG and low occurrence of 3-3 cross-links may increase S. enterica resistance to bile. This view is further supported by additional observations: (i) A triple mutant lacking L,D-transpeptidases YbiS, ErfK, and YcfS, which does not contain Lpp anchored to PG, is hyper-resistant to bile; (ii) enhanced 3-3 cross-linking upon overexpression of YnhG transpeptidase causes a decrease in bile resistance. These observations suggest that remodelling of the cell wall may be added to the list of adaptive responses that permit survival of S. enterica in the presence of bile.

  14. Macitentan does not interfere with hepatic bile salt transport.

    PubMed

    Treiber, Alexander; Äänismaa, Päivi; de Kanter, Ruben; Delahaye, Stephane; Treher, Marianne; Hess, Patrick; Sidharta, Patricia

    2014-07-01

    Treatment of pulmonary arterial hypertension with the endothelin receptor antagonist bosentan has been associated with transient increases in liver transaminases. Mechanistically, bosentan inhibits the bile salt export pump (BSEP) leading to an intrahepatic accumulation of cytotoxic bile salts, which eventually results in hepatocellular damage. BSEP inhibition by bosentan is amplified by its accumulation in the liver as bosentan is a substrate of organic anion-transporting polypeptide (OATP) transport proteins. The novel endothelin receptor antagonist macitentan shows a superior liver safety profile. Introduction of the less acidic sulfamide moiety and increased lipophilicity yield a hepatic disposition profile different from other endothelin receptor antagonists. Passive diffusion rather than OATP-mediated uptake is the driving force for macitentan uptake into the liver. Interaction with the sodium taurocholate cotransporting polypeptide and BSEP transport proteins involved in hepatic bile salt homeostasis is therefore limited due to the low intrahepatic drug concentrations. Evidence for this conclusion is provided by in vitro experiments in drug transporter-expressing cell lines, acute and long-term studies in rats and dogs, absence of plasma bile salt changes in healthy human volunteers after multiple dosing, and finally the liver safety profile of macitentan in the completed phase III morbidity/mortality SERAPHIN (Study with an Endothelin Receptor Antagonist in Pulmonary Arterial Hypertension to Improve Clinical Outcome) trial.

  15. Treatment of bile duct lesions after laparoscopic cholecystectomy.

    PubMed Central

    Bergman, J J; van den Brink, G R; Rauws, E A; de Wit, L; Obertop, H; Huibregtse, K; Tytgat, G N; Gouma, D J

    1996-01-01

    From January 1990 to June 1994, 53 patients who sustained bile duct injuries during laparoscopic cholecystectomy were treated at the Amsterdam Academic Medical Centre. There were 16 men and 37 women with a mean age of 47 years. Follow up was established in all patients for a median of 17 months. Four types of ductal injury were identified. Type A (18 patients) had leakage from cystic ducts or peripheral hepatic radicles, type B (11 patients) had major bile duct leakage, type C (nine patients) had an isolated ductal stricture, and type D (15 patients) had complete transection of the bile duct. Endoscopic retrograde cholangiopancreatography (ERCP) established the diagnosis in all type A, B, and C lesions. In type D lesions percutaneous cholangiography was required to delineate the proximal extent of the injury. Initial treatment (until resolution of symptoms and discharge from hospital) comprised endoscopy in 36 patients and surgery in 26 patients. Endoscopic treatment was possible and successful in 16 of 18 of type A lesions, five of seven of type B lesions, and three of nine of type C lesions. Most failures resulted from inability to pass strictures or leaks at the initial endoscopy. During initial treatment additional surgery was required in seven patients. Fourteen patients underwent percutaneous or surgical drainage of bile collections, or both. After endoscopic treatment early complications occurred in three patients, with a fatal outcome in two (not related to the endoscopic therapy). During follow up six patients developed late complications. All 15 patients with complete transection and four patients with major bile duct leakage were initially treated surgically. During initial treatment additional endoscopy was required in two patients. Early complications occurred in eight patients. During follow up seven patients developed stenosis of the anastomosis or bile duct. Reconstructive surgery in the early postoperative phase was associated with more

  16. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants and response to fenofibrate

    PubMed Central

    Trottier, Jocelyn; Perreault, Martin; Rudkowska, Iwona; Levy, Cynthia; Dallaire-Theroux, Amélie; Verreault, Mélanie; Caron, Patrick; Staels, Bart; Vohl, Marie-Claude; Straka, Robert J.; Barbier, Olivier

    2014-01-01

    Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes detoxifies cholestatic bile acids (BAs). We aimed at i) characterizing the circulating BA-glucuronide (-G) pool composition in humans, ii) evaluating how sex and UGT polymorphisms influence this composition, and iii) analyzing the effects of lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and post-fenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of 5 BA-G species, including CDCA-3G, and up-regulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrates that fenofibrate stimulates BA glucuronidation in humans, and thus reduces bile acid toxicity in the liver. PMID:23756370

  17. Identification of parasite DNA in common bile duct stones by PCR and DNA sequencing

    PubMed Central

    Jang, Ji Sun; Kim, Kyung Ho; Yu, Jae-Ran

    2007-01-01

    We attempted to identify parasite DNA in the biliary stones of humans via PCR and DNA sequencing. Genomic DNA was isolated from each of 15 common bile duct (CBD) stones and 5 gallbladder (GB) stones. The patients who had the CBD stones suffered from cholangitis, and the patients with GB stones showed acute cholecystitis, respectively. The 28S and 18S rDNA genes were amplified successfully from 3 and/or 1 common bile duct stone samples, and then cloned and sequenced. The 28S and 18S rDNA sequences were highly conserved among isolates. Identity of the obtained 28S D1 rDNA with that of Clonorchis sinensis was higher than 97.6%, and identity of the 18S rDNA with that of other Ascarididae was 97.9%. Almost no intra-specific variations were detected in the 28S and 18S rDNA with the exception of a few nucleotide variations, i.e., substitution and deletion. These findings suggest that C. sinensis and Ascaris lumbricoides may be related with the biliary stone formation and development. PMID:18165713

  18. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  19. A novel primary bile acid in the Shoebill stork and herons and its phylogenetic significance.

    PubMed

    Hagey, L R; Schteingart, C D; Ton-Nu, H-T; Hofmann, A F

    2002-05-01

    The Shoebill stork, an enigma phylogenetically, was found to contain as its dominant biliary bile acid 16alpha-hydroxychenodeoxycholic acid, a heretofore undescribed bile acid. The bile acid occurred as its taurine N-acyl amidate; structure was established by nuclear magnetic resonance (NMR) and mass spectrometry (MS). A search for this novel bile acid in other Ciconiiformes showed that it constituted >92% of biliary bile acids in five of nine herons in the Ardidae, but was absent in all other families (Ciconiidae, Threskiornithidae, Scopidae, Phoenicopteridae). The presence of this biochemical trait in the Shoebill stork and certain herons suggests that these birds are closely related.

  20. Recurrence of choledocholithiasis following endoscopic bile duct clearance: Long term results and factors associated with recurrent bile duct stones

    PubMed Central

    Konstantakis, Christos; Triantos, Christos; Theopistos, Vasileios; Theocharis, Georgios; Maroulis, Ioannis; Diamantopoulou, Georgia; Thomopoulos, Konstantinos

    2017-01-01

    AIM To evaluate the rate of recurrence of symptomatic choledocholithiasis and identify factors associated with the recurrence of bile duct stones in patients who underwent endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic sphincterotomy (EST) for bile duct stone disease. METHODS All patients who underwent ERCP and EST for bile duct stone disease and had their bile duct cleared from 1/1/2005 until 31/12/2008 was enrolled. All symptomatic recurrences during the study period (until 31/12/2015) were recorded. Clinical and laboratory data potentially associated with common bile duct (CBD) stone recurrence were retrospectively retrieved from patients’ files. RESULTS A total of 495 patients were included. Sixty seven (67) out of 495 patients (13.5%) presented with recurrent symptomatic choledocholithiasis after 35.28 ± 16.9 mo while twenty two (22) of these patients (32.8%) experienced a second recurrence after 35.19 ± 23.2 mo. Factors associated with recurrence were size (diameter) of the largest CBD stone found at first presentation (10.2 ± 6.9 mm vs 7.2 ± 4.1 mm, P = 0.024), diameter of the CBD at the first examination (15.5 ± 6.3 mm vs 12.0 ± 4.6 mm, P = 0.005), use of mechanical lithotripsy (ML) (P = 0.04) and presence of difficult lithiasis (P = 0.04). Periampullary diverticula showed a trend towards significance (P = 0.066). On the contrary, number of stones, angulation of the CBD, number of ERCP sessions required to clear the CBD at first presentation, more than one ERCP session needed to clear the bile duct initially and a gallbladder in situ did not influence recurrence. CONCLUSION Bile duct stone recurrence is a possible late complication following endoscopic stone extraction and CBD clearance. It appears to be associated with anatomical parameters (CBD diameter) and stone characteristics (stone size, use of ML, difficult lithiasis) at first presentation. PMID:28101305

  1. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4.

    PubMed

    Hagmann, W; Denzlinger, C; Rapp, S; Weckbecker, G; Keppler, D

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  2. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4

    SciTech Connect

    Hagmann, W.; Denzlinger, C.; Rapp, S.; Weckbecker, G.; Keppler, D.

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of (/sup 3/H)LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  3. Partial Portal Vein Arterialization Attenuates Acute Bile Duct Injury Induced by Hepatic Dearterialization in a Rat Model

    PubMed Central

    Wei, Jishu; Wu, Junli; Gao, Wentao; Li, Qiang; Jiang, Kuirong

    2016-01-01

    Hepatic infarcts or abscesses occur after hepatic artery interruption. We explored the mechanisms of hepatic deprivation-induced acute liver injury and determine whether partial portal vein arterialization attenuated this injury in rats. Male Sprague-Dawley rats underwent either complete hepatic arterial deprivation or partial portal vein arterialization, or both. Hepatic ischemia was evaluated using biochemical analysis, light microscopy, and transmission electron microscopy. Hepatic ATP levels, the expression of hypoxia- and inflammation-associated genes and proteins, and the expression of bile transporter genes were assessed. Complete dearterialization of the liver induced acute liver injury, as evidenced by the histological changes, significantly increased serum biochemical markers, decreased ATP content, increased expression of hypoxia- and inflammation-associated genes and proteins, and decreased expression of bile transporter genes. These detrimental changes were extenuated but not fully reversed by partial portal vein arterialization, which also attenuated ductular reaction and fibrosis in completely dearterialized rat livers. Collectively, complete hepatic deprivation causes severe liver injury, including bile infarcts and biloma formation. Partial portal vein arterialization seems to protect against acute ischemia-hypoxia-induced liver injury. PMID:27872855

  4. Further evaluation of the interrelationship between the hepatocellular transport of bile acids and endocytosed proteins.

    PubMed Central

    Herrera, M. C.; el-Mir, M. Y.; Monte, M. J.; Perez-Barriocanal, F.; Marin, J. J.

    1992-01-01

    Experiments on the relationship between the hepatocellular transport of endogenous or exogenously loaded bile acids (sodium taurocholate, TC, 0.5 mumol/min/100 g body wt) and horseradish peroxidase (HRP) or immunoglobulin A (IgA) (0.5 mg/100 g body wt) were carried out on anaesthetized Wistar rats. The time course of HRP excretion into bile (acceleration in the secretory peak), but not the total amount of HRP output, was affected by TC infusion. Administration of HRP was found to have no stimulatory effect on either spontaneous or TC-induced bile flow, bile acid, lecithin or cholesterol output. Spontaneous bile acid output was increased (25 and 67%, respectively) in rats that were treated for 12-h fasting or by oral administration of TC (45 mg/100 g body wt, every 12 h, for 2 days). These manoeuvres did not change the inability of HRP and IgA to increase bile acid output. Exogenous TC load had no stimulatory effect on the hepatocellular transport of endogenous bile acid pool, that was labelled by a combination of fasting and oral administration of 14C-glycocholic acid 12 h before the experiments. Therefore, exogenous bile acid load-induced stimulation of transcytosis had no effect on endogenous bile acid output. Moreover, bile secretion of both endogenous and exogenously loaded bile acids is unaffected by the administration of proteins, irrespective of whether they are endocytosed by a receptor or nonreceptor mediated process. PMID:1571280

  5. Risk factors and outcomes in post-liver transplantation bile duct stones and casts: A case-control study.

    PubMed

    Spier, Bret J; Pfau, Patrick R; Lorenze, Katelin R; Knechtle, Stuart J; Said, Adnan

    2008-10-01

    Bile duct stones and casts (BDS) after liver transplantation are associated with significant morbidity. Risk factors for BDS formation and the efficacy of treatment in liver transplant recipients have not been systematically studied. The aim of this study was to evaluate potential risk factors for the formation of BDS in patients post-liver transplant. A case-control study of consecutive liver transplant recipients at a university hospital from 1989 to 2007 was performed to identify risk factors for BDS formation. Cases included all liver transplant recipients with BDS, excluding those with concurrent t-tubes or biliary stents. Controls were chosen randomly from the total liver transplant population matched for year of transplantation. Pre- and post-OLT risk factors were analyzed with univariate and multivariate analyses. There were 49 cases and 101 controls over an 18-year-period (1289 liver transplants performed) with an incidence of 3.8% for BDS. In the cases, the median time to BDS diagnosis was 613 days from time of transplant. The controls had a median follow-up of 1530 days. Use of ursodeoxycholic acid was protective (P = 0.005), whereas bile duct pathology (P = 0.003), total cholesterol >/= 200 mg/dL (P = 0.008), and triglyceride >/= 150 mg/dL (P = 0.008) were significant risk factors for BDS formation. Endoscopic retrograde cholangiopancreatography (ERCP) was technically successful in all cases with resolution or improvement of liver chemistries in 59% (29) of patients. In conclusion, significant risk factors for forming BDS included bile duct pathology and elevated total cholesterol and triglyceride levels. Ursodeoxycholic acid had a significant effect in preventing the development of posttransplant BDS and should be used in those that are at increased risk. ERCP is a safe and effective diagnostic and therapeutic modality for these patients.

  6. Effects of artificial depletion of the bile acid pool in man.

    PubMed Central

    Jazrawi, R P; Bridges, C; Joseph, A E; Northfield, T C

    1986-01-01

    In order to elucidate the relationship between bile acid pool size and cholesterol saturation index of fasting state gall bladder bile, we artificially depleted the bile acid pool in 12 healthy volunteers. Bile acid pool size decreased from 7.6 +/- 0.9 to 5.8 +/- 0.7 mmol (mean +/- SEM, p less than 0.01), and saturation index of fasting state gall bladder bile increased from 0.93 +/- 0.07 to 1.18 +/- 0.07 (p less than 0.001). There was no alteration in saturation index of basal or stimulated hepatic bile. There was no change in gall bladder storage of basal hepatic bile, nor in the proportion of the bile acid pool stored in the gall bladder. The bile acid mass in the gall bladder fell from 4.9 +/- 0.5 to 3.4 +/- 0.4 mmol (p less than 0.05) and phospholipid mass from 1.6 +/- 0.3 to 1.2 +/- 0.2 mmol (p less than 0.05), but there was no change in cholesterol mass. The gall bladder volume fell from 30 +/- 4 to 18 +/- 2 ml (p less than 0.01). These results suggest that artificial depletion of the bile acid pool increased saturation index of fasting state gall bladder bile without altering saturation index of basal or stimulated hepatic bile; it probably increased the ratio of basal: stimulated hepatic bile within the gall bladder by decreasing gall bladder storage of stimulated hepatic bile. PMID:3732888

  7. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion

    PubMed Central

    Cai, Shi-Ying; Lionarons, Daniël A.; Hagey, Lee; Soroka, Carol J.; Mennone, Albert; Boyer, James L.

    2012-01-01

    The sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the post-metamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys. Adult livers were severely cholestatic with levels of bile salts >1 mM, but no evidence of necrosis, fibrosis, or inflammation. Interestingly, both larvae and adults had normal plasma levels (~10 μM) of bile salts. In larvae, petromyzonol sulfate (PZS) was the predominant bile salt, whereas the major bile salts in adult liver were sulfated C27 bile alcohols. Cytotoxicity assays revealed that PZS was highly toxic. Pharmacokinetic studies in free-swimming adults revealed that ~35% of intravenously injected bromosulfophthalein (BSP) was eliminated over a 72 hr period. Collection of urine and feces demonstrated that both endogenous and exogenous organic anions, including biliverdin, bile salts and BSP, were predominantly excreted via the kidney with minor amounts also detected in feces. Gene expression analysis detected marked up-regulation of orthologs of known organic anion and bile salt transporters in the kidney with lesser effects in the intestine and gills in adults compared to larvae. These findings indicate that adult lampreys tolerate cholestasis by altering hepatic bile salt composition, while maintaining normal plasma bile salt levels predominantly through renal excretion of bile products. Therefore, we conclude that strategies to accelerate renal excretion of bile salt and other toxins should be beneficial for patients with cholestasis. PMID:23175353

  8. Microbiological Assessment of Bile and Corresponding Antibiotic Treatment

    PubMed Central

    Rupp, Christian; Bode, Konrad; Weiss, Karl Heinz; Rudolph, Gerda; Bergemann, Janine; Kloeters-Plachky, Petra; Chahoud, Fadi; Stremmel, Wolfgang; Gotthardt, Daniel Nils; Sauer, Peter

    2016-01-01

    Abstract The aim of this study was to determine the antibiotic susceptibility profiles of bacteria in bile samples and to analyze the clinical relevance of the findings as only limited information about risk factors for elevated frequence of bacterial and fungal strains in routinely collected bile samples has been described so far. A prospective cohort study at a tertiary care center was conducted. Seven hundred forty-four patients underwent 1401 endoscopic retrograde cholangiographies (ERCs) as indicated by liver transplantation (427/1401), primary sclerosing cholangitis (222/1401), choledocholithiasis only (153/1401), obstruction due to malignancy (366/1401), or other conditions (233/1401). Bile samples for microbiological analysis were obtained in all patients. The 71.6% (823/1150) samples had a positive microbiological finding, and 57% (840/1491) of the bacterial isolates were gram-positive. The main species were Enterococcus spp (33%; 494/1491) and Escherichia coli (12%; 179/1491). Of the samples, 53.8% had enteric bacteria and 24.7% had Candida spp; both were associated with clinical and laboratory signs of cholangitis (C-reactive proteins 35.0 ± 50.1 vs 44.8 ± 57.6; 34.5 ± 51.2 vs 52.9 ± 59.7; P < 0.001), age, previous endoscopic intervention, and immunosuppression. Multi-resistant (MR) strains were found in 11.3% of all samples and were associated with clinical and laboratory signs of cholangitis, previous intervention, and immunocompromised status. In subgroup analysis, strain-specific antibiotic therapy based on bile sampling was achieved in 56.3% (89/158) of the patients. In cases with a positive bile culture and available blood culture, blood cultures were positive in 29% of cases (36/124), and 94% (34/36) of blood cultures had microbial species identical to the bile cultures. Bactobilia and fungobilia can usually be detected by routine microbiological sampling, allowing optimized, strain-specific antibiotic treatment. Previous

  9. Acidified bile acids enhance tumor progression and telomerase activity of gastric cancer in mice dependent on c-Myc expression.

    PubMed

    Wang, Xiaolong; Sun, Lei; Wang, Xijing; Kang, Huafeng; Ma, Xiaobin; Wang, Meng; Lin, Shuai; Liu, Meng; Dai, Cong; Dai, Zhijun

    2017-03-01

    c-Myc overexpression has been implicated in several malignancies including gastric cancer. Here, we report that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer via c-Myc activation both in vivo and in vitro. c-Myc mRNA and protein levels were assessed in ten primary and five local recurrent gastric cancer samples by quantitative real-time polymerase chain reaction and western blotting analysis. The gastric cancer cell line MGC803 was exposed to bile salts (100 μmol/L glycochenodeoxycholic acid and deoxycholic acid) in an acid medium (pH 5.5) for 10 min daily for 60 weeks to develop an MGC803-resistant cell line. Control MGC803 cells were grown without acids or bile salts for 60 weeks as a control. Cell morphology, proliferation, colony formation and apoptosis of MGC803-resistant cells were analyzed after 60 weeks. To determine the involvement of c-Myc in tumor progression and telomere aging in MGC803-resistant cells, we generated xenografts in nude mice and measured xenograft volume and in vivo telomerase activity. The c-Myc and hTERT protein and mRNA levels were significantly higher in local recurrent gastric cancer samples than in primary gastric cancer samples. MGC803-resistant cells showed a marked phenotypic change under normal growth conditions with more clusters and acini, and exhibited increased cell viability and colony formation and decreased apoptosis in vitro. These phenotypic changes were found to be dependent on c-Myc activation using the c-Myc inhibitor 10058-F4. MGC803-resistant cells also showed a c-Myc-dependent increase in xenograft growth and telomerase activity in vivo. In conclusion, these observations support the hypothesis that acidified bile acids enhance tumor progression and telomerase activity in gastric cancer and that these effects are dependent on c-Myc activity. These findings suggest that acidified bile acids play an important role in the malignant progression of local recurrent

  10. Bilirubin conjugates of human bile. Isolation of phenylazo derivatives of bile bilirubin

    PubMed Central

    Kuenzle, Clive C.

    1970-01-01

    A method is presented that allows the isolation of eight different phenylazo derivatives of bile bilirubin. In step I of the isolation procedure, three bilirubin fractions (bilirubin fractions 1, 2 and 3) from human hepatic bile are separated by reverse-phase partition chromatography on silicone-treated Celite with the use of a solvent system prepared from butan-1-ol and 5mm-phosphate buffer, pH6.0. Azo coupling is then performed with diazotized aniline. The three azo pigment mixtures are subjected to step II, in which the above chromatography system is used again. With each azo pigment mixture this step brings about the separation of a non-polar and a polar azo pigment fraction (azo 1A and azo 1B, azo 2A and azo 2B, and azo 3A and azo 3B from bilirubin fractions 1, 2 and 3 respectively). Approximately equal amounts of non-polar and polar pigments are obtained from bilirubin fractions 1 and 2, whereas bilirubin fraction 3 yields azo 3B almost exclusively. In step IIIA the non-polar azo pigment fractions are fractionated further by adsorption chromatography on anhydrous sodium sulphate with the use of chloroform followed by a gradient of ethyl acetate in chloroform. Three azo pigments are thus obtained from both azo 2A (azo 2A1, azo 2A2 and azo 2A3) and azo 3A (azo 3A1, azo 3A2 and azo 3A3). The 2A pigments occur in approximately the following proportions: azo 2A1, 90%; azo 2A2, 10%; azo 2A3, traces. The pigments are purified by crystallization, except for the A3 pigments, which are probably degradation products arising from the corresponding A2 pigments. In step IIIB the polar azo pigment fractions are subjected to reverse-phase partition chromatography on silicone-treated Celite with the use of a solvent system prepared from octan-1-ol–di-isopropyl ether–ethyl acetate–methanol–0.2m-acetic acid (1:2:2:3:4, by vol.). Azo pigment fractions 2B and 3B each yield six azo pigments (azo 2B1 to azo 2B6 and azo 3B1 to azo 3B6 respectively) together with small

  11. Role of β-catenin in development of bile ducts

    PubMed Central

    Cordi, Sabine; Godard, Cécile; Saandi, Thoueiba; Jacquemin, Patrick; Monga, Satdarshan P.; Colnot, Sabine; Lemaigre, Frédéric P.

    2016-01-01

    Beta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that β-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors. Second, when β-catenin was depleted in the latter, maturation of cholangiocytes, bile duct morphogenesis and differentiation of periportal hepatocytes from cholangiocyte precursors was normal. In contrast, stabilization of β-catenin in cholangiocyte precursors perturbed duct development and cholangiocyte differentiation. We conclude that β-catenin is dispensable for biliary development but that its activity must be kept within tight limits. Our work is expected to significantly impact on in vitro differentiation of stem cells to cholangiocytes for toxicology studies and disease modeling. PMID:26856660

  12. Common bile duct stones - their presentation, diagnosis and management.

    PubMed

    Desai, Rajendra; Shokouhi, Bahaman N

    2009-10-01

    Common Bile duct stones (CBD) continue to pose a significant problem both to the patient and the Surgeon. They increase the morbidity of a patient undergoing Cholecystectomy from less than 5% to as much as 20% and almost zero mortality to as high as 30%. Recent times have thrown up a fair share of controversy in the management of this condition both due to technological innovations and costreduction-pressures. The aim in CBD stone disease, as in any benign disease is to discover a therapeutic algorithm with minimal morbidity, no mortality and at reasonable cost. This can be achieved only by a thorough understanding of the disease and also the available diagnostic and treatment modalities.This article dicusses the diagnosis, investigation and therapy of Common Bile Duct Stones (CBD) and gives a therapeutic algorithm.

  13. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives.

  14. Atypical Ormond's disease associated with bile duct stricture mimicking cholangiocarcinoma.

    PubMed

    Quante, Michael; Appenrodt, Beate; Randerath, Simone; Wolff, Martin; Fischer, Hans-Peter; Sauerbruch, Tilman

    2009-01-01

    A 55-year-old woman with suspected hilar cholangiocarcinoma presented with jaundice and dilated intrahepatic bile ducts owing to high-grade hepatic duct confluence stenosis. The suspected tumour and the entire extrahepatic bile duct system were resected and Roux-en-Y hepaticojejunostomy was performed. Histological investigations showed perihepatic fibrosis but no signs of malignancy. One year later the patient developed bilateral hydronephrosis caused by ureteral obstruction. Since the patient had a gynaecological history of widespread inflammation, she was referred for transabdominal operative ureterolysis combined with hysterectomy and adnexectomy. Histological investigations as well as fluorodeoxyglucose-positron emission tomography (FDG-PET) and computed tomography (CT) findings were compatible with retroperitoneal fibrosis (Ormond's disease). Treatment with tamoxifen was initiated. To the best of our knowledge, only a few cases of intraperitoneal fibroses mimicking cholangiocarcinoma followed by the typical symptoms of retroperitoneal Ormond's disease have been reported.

  15. Protection of bile ducts in liver transplantation: looking beyond ischemia.

    PubMed

    Op den Dries, Sanna; Sutton, Michael E; Lisman, Ton; Porte, Robert J

    2011-08-27

    Biliary complications, especially nonanastomotic biliary strictures (NAS), are a major cause of morbidity after orthotopic liver transplantation. Of all donor and recipient characteristics known to increase the risk of developing NAS, the role of prolonged ischemia times is most extensively described in the literature. However, there is increasing evidence that several other, non-ischemia-related factors play a critical role in the pathogenesis of NAS as well. The clinical presentation of NAS may vary considerably among liver transplant recipients, including large variations in time of occurrence, and in location and severity of the strictures. Additional underlying causes such as bile salt toxicity and immune-mediated injury are believed to explain the wide spectrum of biliary strictures after orthotopic liver transplantation. Current and emerging insight in the pathogenesis of NAS and potential targets to reduce biliary injury and preserve bile ducts are discussed in this overview.

  16. Simple enzymatic assay for determining cholesterol concentrations in bile.

    PubMed

    Luhman, C M; Galloway, S T; Beitz, D C

    1990-02-01

    We use bilirubin oxidase (EC 1.3.3.5) to remove interference by bilirubin in the assay of cholesterol concentration in bile by standard enzymatic methods. Samples are treated for 10 min with nonlimiting amounts of bilirubin oxidase to form biliverdin from bilirubin before the reagent for cholesterol is added. The relatively small interference by biliverdin is easily eliminated by use of sample blanks. The method is simple, convenient, and not hampered by the "chromogen oxidase" activity (the inherent ability of bilirubin oxidase to oxidize some chromogens) that plagues other assays of this type. Using this assay, we have accurately and precisely determined the concentration of cholesterol in bile. Such elimination of bilirubin will also be useful in assays of other biliary constituents or constituents of urine or icteric plasma.

  17. Role of β-catenin in development of bile ducts.

    PubMed

    Cordi, Sabine; Godard, Cécile; Saandi, Thoueiba; Jacquemin, Patrick; Monga, Satdarshan P; Colnot, Sabine; Lemaigre, Frédéric P

    2016-01-01

    Beta-catenin is known to play stage- and cell-specific functions during liver development. However, its role in development of bile ducts has not yet been addressed. Here we used stage-specific in vivo gain- and loss-of-function approaches, as well as lineage tracing experiments in the mouse, to first demonstrate that β-catenin is dispensable for differentiation of liver precursor cells (hepatoblasts) to cholangiocyte precursors. Second, when β-catenin was depleted in the latter, maturation of cholangiocytes, bile duct morphogenesis and differentiation of periportal hepatocytes from cholangiocyte precursors was normal. In contrast, stabilization of β-catenin in cholangiocyte precursors perturbed duct development and cholangiocyte differentiation. We conclude that β-catenin is dispensable for biliary development but that its activity must be kept within tight limits. Our work is expected to significantly impact on in vitro differentiation of stem cells to cholangiocytes for toxicology studies and disease modeling.

  18. Eosinophilic cholecystitis with common bile duct stricture: a rare disease.

    PubMed

    Mehanna, Daniel; Naseem, Zainab; Mustaev, Muslim

    2016-05-24

    Although the most common cause of cholecystitis is gallstones, other conditions may present as acute cholecystitis. We describe a case of eosinophilic cholecystitis with common bile duct stricture. A 36-year-old woman initially had generalised abdominal pain and peripheral eosinophilia. Diagnostic laparoscopy showed eosinophilic ascites and necrotic nodules on the posterior abdominal wall. She was treated with anthelminthics on presumption of toxacara infection based on borderline positivity of serological tests. She later presented with acute cholecystitis and had a cholecystectomy and choledocotomy. Day 9 T-tube cholangiogram showed irregular narrowing of the distal common bile duct. The patient's symptoms were improved with steroids and the T-tube was subsequently removed.

  19. Bile salts of germ-free domestic fowl and pigs

    PubMed Central

    Haslewood, G. A. D.

    1971-01-01

    1. The bile of germ-free domestic fowl contains taurine conjugates of 3α,7α-dihydroxy-5β-cholan-24-oic acid (chenodeoxycholic acid), 3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (cholic acid) and its 5α-epimer (allocholic acid): that of germ-free pigs contains glycine and taurine conjugates of chenodeoxycholic acid, 3α,6α-dihydroxy-5β-cholan-24-oic acid (hyodeoxycholic acid), 3α,6α,7α-trihydroxy-5β-cholan-24-oic acid (hyocholic acid) and (probably) cholic acid. Keto acids were not found. 2. Allocholic acid and hyodeoxycholic acid are thus proved to be primary bile acids in intact animals. 3. The evolutionary and biochemical implications of these findings are briefly considered. PMID:5128663

  20. Fasting levels of monoketonic bile acids in human peripheral and portal circulation.

    PubMed

    Björkhem, I; Angelin, B; Einarsson, K; Ewerth, S

    1982-09-01

    It has been suggested that large amounts of ketonic bile acids may be present in portal venous blood. We have therefore determined the approximate concentration of 3-oxo-, 7-oxo-, and 12-oxo-bile acids (monoketonic bile acids) in human peripheral and portal circulation. These compounds were converted into the corresponding 3alpha-, 7alpha-, and 12alpha-hydroxy bile acids by treatment with sodium borodeuteride, thus increasing the molecular weight of each bile acid formed by one mass unit. The ratio between deuterated and nondeuterated bile acid was determined by combined gas-liquid chromatography-mass spectrometry with use of selected ion monitoring. From the ratio obtained and from the concentration of unlabeled bile acid, determined by isotope dilution-mass spectrometry, the approximate concentration of the different ketonic bile acids could be calculated. This method underestimates 3-oxygenated bile acids by 4-8%, 7-oxygenated bile acids by 2-3%, and 12-oxygenated bile acids by about 25%. The approximate concentration of monoketonic 3,7-oxygenated bile acids was found to be 0.08 +/- 0.02 and 0.37 +/- 0.25 micro mol/l in the peripheral venous serum and the portal venous serum, respectively. The approximate concentration of monoketonic 3,12-oxygenated bile acids was found to be 0.07 +/- 0.02 and 0.32 +/- 0.12 micro mol/l in the peripheral venous serum and the portal venous serum, respectively. The approximate concentration of monoketonic 3,7,12-oxygenated bile acids was found to be 0.03 +/- 0.01 and 0.14 +/- 0.05 micro mol/l in the peripheral venous serum and in the portal venous serum, respectively. The total concentration of the ketonic bile acids constituted only 9 +/- 1% and 8 +/- 3% of the nonoxidized bile acids in the peripheral venous serum and in the portal venous serum, respectively. Thus it seems less likely that the portal inflow of ketonic bile acids is of significant physiological importance under normal conditions.-Björkhem, I., B. Angelin, K

  1. Relative stereochemistry of the A ring of plant bile pigments

    SciTech Connect

    Schoenleber, R.W.; Kim, Y.; Rapoport, H.

    1984-05-02

    The synthesis and characterization, including the stereochemistry, of a series of 3,4-dihydropyrromethenones and 2,3-dihydrodioxobilins are described. High-resolution /sup 1/H NMR spectral analysis allows the determination of the A ring coupling constants for a series of cis and trans model compounds. From these data and correlations, the relative stereochemistry in the A ring of phycocyanin and similar bile pigment structures can be concluded.

  2. Laparoscopic Transcystic Common Bile Duct Exploration: Advantages over Laparoscopic Choledochotomy

    PubMed Central

    Wang, Kai; Yuan, Rongfa; Xiong, Xiaoli; Wu, Linquan

    2016-01-01

    Purpose The ideal treatment for choledocholithiasis should be simple, readily available, reliable, minimally invasive and cost-effective for patients. We performed this study to compare the benefits and drawbacks of different laparoscopic approaches (transcystic and choledochotomy) for removal of common bile duct stones. Methods A systematic search was implemented for relevant literature using Cochrane, PubMed, Ovid Medline, EMBASE and Wanfang databases. Both the fixed-effects and random-effects models were used to calculate the odds ratio (OR) or the mean difference (MD) with 95% confidence interval (CI) for this study. Results The meta-analysis included 18 trials involving 2,782 patients. There were no statistically significant differences between laparoscopic choledochotomy for common bile duct exploration (LCCBDE) (n = 1,222) and laparoscopic transcystic common bile duct exploration (LTCBDE) (n = 1,560) regarding stone clearance (OR 0.73, 95% CI 0.50–1.07; P = 0.11), conversion to other procedures (OR 0.62, 95% CI 0.21–1.79; P = 0.38), total morbidity (OR 1.65, 95% CI 0.92–2.96; P = 0.09), operative time (MD 12.34, 95% CI −0.10–24.78; P = 0.05), and blood loss (MD 1.95, 95% CI −9.56–13.46; P = 0.74). However, the LTCBDE group showed significantly better results for biliary morbidity (OR 4.25, 95% CI 2.30–7.85; P<0.001), hospital stay (MD 2.52, 95% CI 1.29–3.75; P<0.001), and hospital expenses (MD 0.30, 95% CI 0.23–0.37; P<0.001) than the LCCBDE group. Conclusions LTCBDE is safer than LCCBDE, and is the ideal treatment for common bile duct stones. PMID:27668730

  3. Cystic duct carcinoma mimicking a middle bile duct tumour

    PubMed Central

    Francisco, Elsa; Mendes, Miguel; Vale, Sílvio; Esteves, Joana

    2015-01-01

    Cystic duct carcinoma was defined by Farrar as a tumour restricted to the cystic duct, making it a rare disease. The authors describe a case of a cystic duct carcinoma that fulfils Farrar’s strict diagnostic criteria and that became clinically relevant by compressing the common hepatic duct, thus causing cholestasis. A cholecystectomy was performed with en bloc resection of the cystic and extrahepatic bile duct with a regional lymphadenectomy. PMID:25819819

  4. Non-Newtonian flow of pathological bile in the biliary system: experimental investigation and CFD simulations

    NASA Astrophysics Data System (ADS)

    Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy

    2014-02-01

    The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.

  5. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    PubMed

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  6. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective

    PubMed Central

    Feng, Hui-Yi; Chen, Yang-Chao

    2016-01-01

    The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269

  7. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.

    PubMed

    Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander

    2014-02-15

    Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.

  8. Bile salt incorporated polypyrrole thin film for ethanol sensing.

    PubMed

    Sharma, Partha P D; Sarkar, D

    2015-04-01

    Polypyrrole (PPy)-bile salt composite was used for sensing ethanol vapor. PPy was synthesized by interface polymerization for subsequent fabrication of thin film of its composite with bile salt, by in-situ co-dispersion method and then exposed to ethanol vapour. Sensing was visualized through changes in morphological, structural and optical characterizations. The ethanol exposed film showed larger agglomeration as revealed in its surface morphology on scanning electron microscope (SEM) and greater crystallinity as seen through X-Ray diffraction (XRD). Fourier transform infra red (FTIR) and nuclear magnetic resonance spectroscopy (NMR) of the ethanol incorporated film also gave signature of the presence of bile salt and alcohol. Alcohol incorporation pattern resulted in increase in electrical conductance from 7.08539 x 10(-5) mA/V to 8.0356 x 10(-5) mA/V, as determined from current voltage characterizations. Average molecular weight (M(n)) obtained from gel permeation chromatography changed from 6160 to 10300 on ethanol intake. Photoluminescence (PL) intensity was quenched and the PL peak shifted from 430 to 409 on ethanol exposure. Changes in morphological, structural, optical and electrical properties of the composite on ethanol exposure showed its prospective application for sensing ethanol.

  9. Systemic lanthanum is excreted in the bile of rats.

    PubMed

    Damment, Stephen J P; Pennick, Michael

    2007-06-15

    Lanthanum carbonate is a non-calcium-based oral phosphate binder for the control of hyperphosphataemia in patients with chronic kidney disease Stage 5. As part of its pre-clinical safety evaluation, studies were conducted in rats to determine the extent of absorption and routes of excretion. Following oral gavage of a single 1500 mg/kg dose, the peak plasma lanthanum concentration was 1.04+/-0.31 ng/mL, 8 h post-dose. Lanthanum was almost completely bound to plasma proteins (>99.7%). Within 24h of administration of a single oral dose, 97.8+/-2.84% of the lanthanum was recovered in the faeces of rats. Comparing plasma exposure after oral and intravenous administration of lanthanum yielded an absolute oral bioavailability of 0.0007%. Following intravenous administration of lanthanum chloride (0.3 mg/kg), 74.1+/-5.82% of the dose (96.9+/-0.50% of recovered lanthanum) was excreted in faeces in 42 days, and in bile-duct cannulated rats, 10.0+/-2.46% of the dose (85.6+/-2.97% of recovered lanthanum) was excreted in bile in 5 days. Renal excretion was negligible, with <2% of the intravenous dose recovered in urine. These studies demonstrate that lanthanum undergoes extremely low intestinal absorption and that absorbed drug is predominantly excreted in the bile.

  10. Kinetics of the Micelle-to-Vesicle Transition: Aqueous Lecithin-Bile Salt Mixtures

    PubMed Central

    Leng, J.; Egelhaaf, S. U.; Cates, M. E.

    2003-01-01

    Important routes to lipid vesicles (liposomes) are detergent removal techniques, such as dialysis or dilution. Although they are widely applied, there has been only limited understanding about the structural evolution during the formation of vesicles and the parameters that determine their properties. We use time-resolved static and dynamic light scattering to study vesicle formation in aqueous lecithin-bile salt mixtures. The kinetic rates and vesicle sizes are found to strongly depend on total amphiphile concentration and, even more pronounced, on ionic strength. The observed trends contradict equilibrium calculations, but are in agreement with a kinetic model that we present. This model identifies the key kinetic steps during vesicle formation: rapid formation of disklike intermediate micelles, growth of these metastable micelles, and their closure to form vesicles once line tension dominates bending energy. A comparison of the rates of growth and closure provides a kinetic criterion for the critical size at which disks close and thus for the vesicle size. The model suggests that liposomes are nonequilibrium, kinetically trapped structures of very long lifetime. Their properties are hence controlled by kinetics rather than thermodynamics. PMID:12944278

  11. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3.

    PubMed

    Suga, Takahiro; Yamaguchi, Hiroaki; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.

  12. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  13. Synthesis of 24-phenyl-24-oxo steroids derived from bile acids by palladium-catalyzed cross coupling with phenylboronic acid. NMR characterization and X-ray structures.

    PubMed

    Mayorquín-Torres, Martha C; Romero-Ávila, Margarita; Flores-Álamo, Marcos; Iglesias-Arteaga, Martin A

    2013-11-01

    Palladium-catalyzed cross coupling of phenyboronic acid with acetylated bile acids in which the carboxyl functions have been activated by formation of a mixed anhydride with pivalic anhydride afforded moderate to good yield of 24-phenyl-24-oxo-steroids. Unambiguous assignments of the NMR signals were made with the aid of combined 1D and 2D NMR techniques. X-ray diffraction studies confirmed the obtained structures.

  14. Use of Omega-3 Polyunsaturated Fatty Acids to Treat Inspissated Bile Syndrome: A Case Report.

    PubMed

    Jun, Woo Young; Cho, Min Jeng; Han, Hye Seung; Bae, Sun Hwan

    2016-12-01

    Inspissated bile syndrome (IBS) is a rare condition in which thick intraluminal bile, including bile plugs, sludge, or stones, blocks the extrahepatic bile ducts in an infant. A 5-week-old female infant was admitted for evaluation of jaundice and acholic stool. Diagnostic tests, including ultrasound sonography, magnetic resonance cholangiopancreatography, and a hepatobiliary scan, were not conclusive. Although the diagnosis was unclear, the clinical and laboratory findings improved gradually on administration of urodeoxycholic acid and lipid emulsion containing omega-3 polyunsaturated fatty acids (PUFAs) for 3 weeks. However, a liver biopsy was suggestive of biliary atresia. This finding forced us to perform intraoperative cholangiography, which revealed a patent common bile duct with impacted thick bile. We performed normal saline irrigation and the symptom was improved, the final diagnosis was IBS. Thus, we herein report that IBS can be treated with omega-3 PUFAs as an alternative to surgical intervention.

  15. Double Common Bile Duct with Ectopic Drainage into the Stomach Found in Asymptomatic.

    PubMed

    Arase, Yoshitaka; Deguchi, Ryuzo; Tsukune, Yoko; Dekiden, Makiko; Shiraishi, Koichi; Ogimi, Takashi; Miyakita, Hiroshi; Shimada, Hideo; Myoujin, Kazunori; Mine, Tetsuya

    2016-09-20

    The case of a patient with asymptomatic double common bile duct that was identified by chance is presented. A 41-year-old man underwent esophagogastroduodenoscopy(EGD) as part of a regular health checkup, during which he was found to have an elevated lesion in the lesser curvature of the upper gastric corpus with bile draining from its tip. Further examination led to a diagnosis of double common bile duct from the left intrahepatic bile duct to the opening into the stomach. Morphological abnormalities of the biliary tree are commonly encountered in everyday gastroenterological practice, but a double common bile duct with an ectopic opening into the stomach is comparatively rare. It is also associated with an increased risk of developing cancer of the stomach or bile duct, and as such is a biliary abnormality that must be treated with caution. This case is reported together with a discussion of the literature.

  16. Bile acid nephropathy in a bodybuilder abusing an anabolic androgenic steroid.

    PubMed

    Luciano, Randy L; Castano, Ekaterina; Moeckel, Gilbert; Perazella, Mark A

    2014-09-01

    Bile acid nephropathy, also known as cholemic nephrosis or nephropathy, is an entity that can be seen in patients with severe cholestatic liver disease. It typically is associated with acute kidney injury (AKI) with various forms of hepatic disease. Most often, patients with severe obstructive jaundice develop this lesion, which is thought to occur due to direct bile acid injury to tubular cells, as well as obstructing bile acid casts. Patients with end-stage liver disease also can develop AKI, in which case a more heterogeneous lesion occurs that includes hepatorenal syndrome and acute tubular injury/necrosis. In this circumstance, acute tubular injury develops from a combination of hemodynamic changes with some contribution from direct bile acid-related tubular toxicity and obstructive bile casts. We present a case of AKI due to bile acid nephropathy in a bodybuilder who developed severe cholestatic liver disease in the setting of anabolic androgenic steroid use.

  17. Use of Omega-3 Polyunsaturated Fatty Acids to Treat Inspissated Bile Syndrome: A Case Report

    PubMed Central

    Jun, Woo Young; Cho, Min Jeng; Han, Hye Seung

    2016-01-01

    Inspissated bile syndrome (IBS) is a rare condition in which thick intraluminal bile, including bile plugs, sludge, or stones, blocks the extrahepatic bile ducts in an infant. A 5-week-old female infant was admitted for evaluation of jaundice and acholic stool. Diagnostic tests, including ultrasound sonography, magnetic resonance cholangiopancreatography, and a hepatobiliary scan, were not conclusive. Although the diagnosis was unclear, the clinical and laboratory findings improved gradually on administration of urodeoxycholic acid and lipid emulsion containing omega-3 polyunsaturated fatty acids (PUFAs) for 3 weeks. However, a liver biopsy was suggestive of biliary atresia. This finding forced us to perform intraoperative cholangiography, which revealed a patent common bile duct with impacted thick bile. We performed normal saline irrigation and the symptom was improved, the final diagnosis was IBS. Thus, we herein report that IBS can be treated with omega-3 PUFAs as an alternative to surgical intervention. PMID:28090475

  18. Solubilization and Interaction Studies of Bile Salts with Surfactants and Drugs: a Review.

    PubMed

    Malik, Nisar Ahmad

    2016-05-01

    In this review, bile salt, bile salt-surfactant, and bile salt-drug interactions and their solubilization studies are mainly focused. Usefulness of bile salts in digestion, absorption, and excretion of various compounds and their rare properties in ordering the shape and size of the micelles owing to the presence of hydrophobic and hydrophilic faces are taken into consideration while compiling this review. Bile salts as potential bio-surfactants to solubilize drugs of interest are also highlighted. This review will give an insight into the selection of drugs in different applications as their properties get modified by interaction with bile salts, thus influencing their solution behavior which, in turn, modifies the phase-forming behavior, microemulsion, and clouding phenomenon, besides solubilization. Finally, their future perspectives are taken into consideration to assess their possible uses as bio-surfactants without side effects to human beings.

  19. Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications.

    PubMed

    Kundu, Somanath; Kumar, Sandeep; Bajaj, Avinash

    2015-07-01

    Increasing incidences of gastrointestinal (GI) cancer are linked to changes in lifestyle with excess of red meat/fat consumption, and elevated secretion of bile acids. Bile acids are strong signaling molecules that control various physiological processes. Failure in bile acid regulation has detrimental effects, often linked with development and promotion of cancer of digestive tract including esophagus, stomach, liver, and intestine. Excessive concentration of bile acids especially lipophillic secondary bile acids are cytotoxic causing apoptosis and reactive oxygen species-mediated damage to the cells. Resistance to this apoptosis and accumulation of mutations leads to progression of cancer. Cytotoxicity of bile acids is contingent on their chemical structure. In this review, we discuss the chemistry of bile acids, bile acid mediated cellular signaling processes, their role in GI cancer progression, and therapeutic potential of synthetic bile acid derivatives for cancer therapy.

  20. Growth characteristics of Lactobacillus brevis KB290 in the presence of bile.

    PubMed

    Kimoto-Nira, Hiromi; Suzuki, Shigenori; Suganuma, Hiroyuki; Moriya, Naoko; Suzuki, Chise

    2015-10-01

    Live Lactobacillus brevis KB290 have several probiotic activities, including immune stimulation and modulation of intestinal microbial balance. We investigated the adaptation of L. brevis KB290 to bile as a mechanism of intestinal survival. Strain KB290 was grown for 5 days at 37 °C in tryptone-yeast extract-glucose (TYG) broth supplemented with 0.5% sodium acetate (TYGA) containing 0.15%, 0.3%, or 0.5% bile. Growth was determined by absorbance at 620 nm or by dry weight. Growth was enhanced as the broth's bile concentration increased. Bile-enhanced growth was not observed in TYG broth or with xylose or fructose as the carbon source, although strain KB290 could assimilate these sugars. Compared with cells grown without bile, cells grown with bile had twice the cell yield (dry weight) and higher hydrophobicity, which may improve epithelial adhesion. Metabolite analysis revealed that bile induced more lactate production by glycolysis, thus enhancing growth efficiency. Scanning electron microscopy revealed that cells cultured without bile for 5 days in TYGA broth had a shortened rod shape and showed lysis and aggregation, unlike cells cultured for 1 day; cells grown with bile for 5 days had an intact rod shape and rarely appeared damaged. Cellular material leakage through autolysis was lower in the presence of bile than in its absence. Thus lysis of strain KB290 cells cultured for extended periods was suppressed in the presence of bile. This study provides new role of bile and sodium acetate for retaining an intact cell shape and enhancing cell yield, which are beneficial for intestinal survival.

  1. Inside the adaptation process of Lactobacillus delbrueckii subsp. lactis to bile.

    PubMed

    Burns, Patricia; Sánchez, Borja; Vinderola, Gabriel; Ruas-Madiedo, Patricia; Ruiz, Lorena; Margolles, Abelardo; Reinheimer, Jorge; de los Reyes-Gavilán, Clara G

    2010-08-15

    Progressive adaptation to bile might render some lactobacilli able to withstand physiological bile salt concentrations. In this work, the adaptation to bile was evaluated on previously isolated dairy strains of Lactobacillus delbrueckii subsp. lactis 200 and L. delbrueckii subsp. lactis 200+, a strain derived thereof with stable bile-resistant phenotype. The adaptation to bile was obtained by comparing cytosolic proteomes of both strains grown in the presence or absence of bile. Proteomics were complemented with physiological studies on both strains focusing on glycolytic end-products, the ability to adhere to the human intestinal epithelial cell line HT29-MTX and survival to simulated gastrointestinal conditions. Protein pattern comparison of strains grown with and without bile allowed us to identify 9 different proteins whose production was regulated by bile in both strains, and 17 proteins that showed differences in their levels between the parental and the bile-resistant derivative. These included general stress response chaperones, proteins involved in transcription and translation, in peptidoglycan/exopolysaccharide biosynthesis, in the lipid and nucleotide metabolism and several glycolytic and pyruvate catabolism enzymes. Differences in the level of metabolic end-products of the sugar catabolism were found between the strains 200 and 200+. A decrease in the adhesion of both strains to the intestinal cell line was detected in the presence of bile. In simulated gastric and intestinal juices, a protective effect was exerted by milk improving the survival of both microorganisms. These results indicate that bile tolerance in L. delbrueckii subsp. lactis involves several mechanisms responding to the deleterious impact of bile salts on bacterial physiology.

  2. In vitro model systems to investigate bile salt export pump (BSEP) activity and drug interactions: A review.

    PubMed

    Cheng, Yaofeng; Woolf, Thomas F; Gan, Jinping; He, Kan

    2016-08-05

    The bile salt export pump protein (BSEP), expressed on the canalicular membranes of hepatocytes, is primarily responsible for the biliary excretion of bile salts. The inhibition of BSEP transport activity can lead to an increase in intracellular bile salt levels and liver injury. This review discusses the various in vitro assays currently available for assessing the effect of drugs or other chemical entities to modulate BSEP transport activity. BSEP transporter assays use one of the following platforms: Xenopus laevis oocytes; canalicular membrane vesicles (CMV); BSEP-expressed membrane vesicles; cell lines expressing BSEP; sandwich cultured hepatocytes (SCH); and hepatocytes in suspension. Two of these, BSEP-expressed insect membrane vesicles and sandwich cultured hepatocytes, are the most commonly used assays. BSEP membrane vesicles prepared from transfected insect cells are useful for assessing BSEP inhibition or substrate specificity and exploring mechanisms of BSEP-associated genetic diseases. This model can be applied in a high-throughput format for discovery-drug screening. However, experimental results from use of membrane vesicles may lack physiological relevance and the model does not allow for investigation of in situ metabolism in modulation of BSEP activity. Hepatocyte-based assays that use the SCH format provide results that are generally more physiologically relevant than membrane assays. The SCH model is useful in detailed studies of the biliary excretion of drugs and BSEP inhibition, but due to the complexity of SCH preparation, this model is used primarily for determining biliary clearance and BSEP inhibition in a limited number of compounds. The newly developed hepatocyte in suspension assay avoids many of the complexities of the SCH method. The use of pooled cryopreserved hepatocytes in suspension minimizes genetic variance and individual differences in BSEP activity and also provides the opportunity for higher throughput screening and cross

  3. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice.

    PubMed

    Lam, Ping; Wang, Renxue; Ling, Victor

    2005-09-20

    In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.

  4. Effect of substituent pattern and molecular weight of cellulose ethers on interactions with different bile salts.

    PubMed

    Torcello-Gómez, Amelia; Fernández Fraguas, Cristina; Ridout, Mike J; Woodward, Nicola C; Wilde, Peter J; Foster, Timothy J

    2015-03-01

    Some known mechanisms proposed for the reduction of blood cholesterol by dietary fibre are: binding with bile salts in the duodenum and prevention of lipid absorption, which can be partially related with the bile salt binding. In order to gain new insights into the mechanisms of the binding of dietary fibre to bile salts, the goal of this work is to study the main interactions between cellulose derivatives and two types of bile salts. Commercial cellulose ethers: methyl (MC), hydroxypropyl (HPC) and hydroxypropylmethyl cellulose (HPMC), have been chosen as dietary fibre due to their highly functional properties important in manufactured food products. Two types of bile salts: sodium taurocholate (NaTC) and sodium taurodeoxycholate (NaTDC), have been chosen to understand the effect of the bile salt type. Interactions in the bulk have been investigated by means of differential scanning calorimetry (DSC) and linear mechanical spectroscopy. Results show that both bile salts have inhibitory effects on the thermal structuring of cellulose ethers and this depends on the number and type of substitution in the derivatised celluloses, and is not dependent upon molecular weight. Concerning the bile salt type, the more hydrophobic bile salt (NaTDC) has greater effect on these interactions, suggesting more efficient adsorption onto cellulose ethers. These findings may have implications in the digestion of cellulose-stabilised food matrices, providing a springboard to develop new healthy cellulose-based food products with improved functional properties.

  5. Self-assembly of micelles in organic solutions of lecithin and bile salt: Mesoscale computer simulation

    NASA Astrophysics Data System (ADS)

    Markina, A.; Ivanov, V.; Komarov, P.; Khokhlov, A.; Tung, S.-H.

    2016-11-01

    We propose a coarse-grained model for studying the effects of adding bile salt to lecithin organosols by means of computer simulation. This model allows us to reveal the mechanisms of experimentally observed increasing of viscosity upon increasing the bile salt concentration. We show that increasing the bile salt to lecithin molar ratio induces the growth of elongated micelles of ellipsoidal and cylindrical shape due to incorporation of disklike bile salt molecules. These wormlike micelles can entangle into transient network displaying perceptible viscoelastic properties.

  6. [Study of crystalline structures of the bile in the diagnosis of cholelithiasis].

    PubMed

    Postolov, P M; Bykov, A V; Mishin, S G

    1990-10-01

    Under analysis were results of polarization microscopy of bile in 111 patients with cholelithiasis, 8 patients with acalculous cholecystitis and 8 practically healthy people. It was found that in healthy people there are no crystalline structures in the initial state of bile. The composition of bile from patients with cholelithiasis is characterized by the presence of three types of crystals: solid crystals of cholesterol monohydrate, calcium bilirubinate granules and calcium carbonate microspherolites. Polarization microscopy of bile may be used as a sufficiently simple method of diagnostics of stone disease.

  7. [Joint action of aminoglycoside antibiotics and nitrofurans with bile on bacteria of the genus Proteus].

    PubMed

    Sytnik, I A; Puzakova, E V

    1980-06-01

    The combined effect of monomycin, kanamycin, neomycin and nitrofurans, such as furacillin, furagin, nitrofurantoin and furazolidone with bovine bile was studied on 36 strains of Proteus mirabilis and 14 strains of Proteus vulgaris. It was found that sub-bacteriostatic doses of the bile significantly increased the antiproteus activity of the aminoglycoside antibiotics and nitrofurans. The combinations of the bile with monomycin and kanamycin and the bile with furazolidone and nitrofurantoin proved to be most effective. Clinical trials of the drugs in treatment of inflammatory diseases of the biliferous system of the Proteus etiology are recommended.

  8. Identification of Bile Duct Paucity in Alagille Syndrome: Using CK7 and EMA Immunohistochemistry as a Reliable Panel for Accurate Diagnosis.

    PubMed

    Herman, Haley K; Abramowsky, Carlos R; Caltharp, Shelley; Metry, Diana; Cundiff, Caitlin A; Romero, Rene; Gillespie, Scott E; Shehata, Bahig M

    2016-01-01

    Bile duct paucity is the absence or marked reduction in the number of interlobular bile ducts (ILBD) within portal tracts. Its syndromic variant, Alagille syndrome (ALGS), is a multisystem disorder with effects on the liver, cardiovascular system, skeleton, face, and eyes. It is inherited as an autosomal dominant trait due to defects in NOTCH signaling pathway. ALGS is characterized by vanishing ILBD with subsequent chronic obstructive cholestasis in approximately 89% of cases. Cholestasis stimulates formation of new bile ductules through a process of neoductular reaction, making it difficult to evaluate the presence or absence of ILBD. Therefore, finding a method to differentiate clearly between ILBD and the ductular proliferation is essential for accurate diagnosis. A database search identified 28 patients with confirmed diagnosis of ALGS between 1992 and 2014. Additionally, 7 controls were used. A panel of two immunostains, cytokeratin 7 (CK7) and epithelial membrane antigen (EMA), was performed. CK7 highlighted the bile duct epithelium of ILBD and ductular proliferation, while EMA stained only the brush border of ILBD. In our ALGS group, the ratio of EMA-positive ILBD to identified portal tracts was 12.6% (range, 0%-41%). However, this same ratio was 95.0% (range, 90%-100%) among control cases (P < 0.001). We propose a panel of two immunostains, CK7 and EMA, to differentiate ILBD from ductular proliferation in patients with cholestasis. With this panel, identification of bile duct paucity can be achieved. Additional studies, including molecular confirmation and clinical correlation, would provide a definitive diagnosis of ALGS.

  9. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    PubMed

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  10. Characterization of the major diazo-positive pigments in bile of homozygous Gunn rats

    PubMed Central

    Blanckaert, Norbert; Fevery, Johan; Heirwegh, Karel P. M.; Compernolle, Frans

    1977-01-01

    Bilinoid pigments in bile of homozygous Gunn rats (jj) were analysed either after formation of dipyrrolic ethyl anthranilate azo derivatives or as the unmodified parent tetrapyrroles. 1. T.l.c. of the azo derivatives revealed seven major unconjugated components which were structurally characterized by chemical tests, spectrophotometry and mass spectrometry. In addition, two minor components were identified as azodipyrrole (A+B)-glucoside and azodipyrrole (A+B)-β-d-glucuronide. 2. Extraction and t.l.c. of the tetrapyrrolic pigments showed 13 major yellow diazo-positive bands. Four of them, accounting for 59% of total diazo-positive material, were identified as unconjugated bilirubin-IXα, -IXβ, -IXγ and -IXδ. A fifth band (16%) was characterized as a mixture of two isomeric monohydroxyl derivatives and another band (8%) as a dihydroxyl derivative of bilirubin-IXα. 3. Although unconjugated bilirubin-IXα constitutes one-third of total diazo-positive material in bile of our strain of Gunn rats, the daily amount excreted represented only about 3–4% of daily bilirubin production. 4. Phototherapy caused a 2.2-fold increase in the biliary output of diazo-positive bilinoids, but did not affect markedly their composition. However, an additional diazo-negative pigment, accounting for one-third of total yellow colour, was observed but was not identified. Mass-spectral data on two dipyrrolic azopigments have been deposited as Supplementary Publication SUP 50076 (3 pages) with the British Library Lending Division, Boston Spa, Wetherby, W. Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1977) 161, 1. PMID:880230

  11. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth.

    PubMed

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M L; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present.

  12. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.

    PubMed

    Burke, Katie T; Horn, Paul S; Tso, Patrick; Heubi, James E; Woollett, Laura A

    2009-07-01

    Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.

  13. Deconjugated Bile Salts Produced by Extracellular Bile-Salt Hydrolase-Like Activities from the Probiotic Lactobacillus johnsonii La1 Inhibit Giardia duodenalis In vitro Growth

    PubMed Central

    Travers, Marie-Agnès; Sow, Cissé; Zirah, Séverine; Deregnaucourt, Christiane; Chaouch, Soraya; Queiroz, Rayner M. L.; Charneau, Sébastien; Allain, Thibault; Florent, Isabelle; Grellier, Philippe

    2016-01-01

    Giardiasis, currently considered a neglected disease, is caused by the intestinal protozoan parasite Giardia duodenalis and is widely spread in human as well as domestic and wild animals. The lack of appropriate medications and the spread of resistant parasite strains urgently call for the development of novel therapeutic strategies. Host microbiota or certain probiotic strains have the capacity to provide some protection against giardiasis. By combining biological and biochemical approaches, we have been able to decipher a molecular mechanism used by the probiotic strain Lactobacillus johnsonii La1 to prevent Giardia growth in vitro. We provide evidence that the supernatant of this strain contains active principle(s) not directly toxic to Giardia but able to convert non-toxic components of bile into components highly toxic to Giardia. By using bile acid profiling, these components were identified as deconjugated bile-salts. A bacterial bile-salt-hydrolase of commercial origin was able to mimic the properties of the supernatant. Mass spectrometric analysis of the bacterial supernatant identified two of the three bile-salt-hydrolases encoded in the genome of this probiotic strain. These observations document a possible mechanism by which L. johnsonii La1, by secreting, or releasing BSH-like activity(ies) in the vicinity of replicating Giardia in an environment where bile is present and abundant, can fight this parasite. This discovery has both fundamental and applied outcomes to fight giardiasis, based on local delivery of deconjugated bile salts, enzyme deconjugation of bile components, or natural or recombinant probiotic strains that secrete or release such deconjugating activities in a compartment where both bile salts and Giardia are present. PMID:27729900

  14. Prognostic roles of tetrahydroxy bile acids in infantile intrahepatic cholestasis.

    PubMed

    Lee, Chee-Seng; Kimura, Akihiko; Wu, Jia-Feng; Ni, Yen-Hsuan; Hsu, Hong-Yuan; Chang, Mei-Hwei; Nittono, Hiroshi; Chen, Huey-Ling

    2017-03-01

    Tetrahydroxy bile acids (THBAs) are hydrophilic and are present at minimal or undetectable levels in healthy human adults, but are present at high levels in bile salt export pump (abcb11)-knockout mice. The roles of THBAs in human cholestatic diseases are unclear. We aimed to investigate the presence of THBAs in patients with infantile intrahepatic cholestasis and its correlation with outcome. Urinary bile acids (BAs) were analyzed by GC-MS. Data were compared between good (n = 21) (disease-free before 1 year old) and poor prognosis groups (n = 19). Good prognosis patients had a higher urinary THBA proportion than poor prognosis patients [25.89% (3.45-76.73%) vs. 1.93% (0.05-48.90%)]. A urinary THBA proportion >7.23% predicted good prognosis with high sensitivity (95.24%), specificity (84.21%), and area under the curve (0.91) (P < 0.0001). A THBA proportion 7.23% was an independent factor for decreased transplant-free survival (hazard ratio = 7.16, confidence interval: 1.24-41.31, P = 0.028). Patients with a confirmed ABCB11 or tight junction protein 2 gene mutation (n = 7) had a minimally detectable THBA proportion (0.23-2.99% of total BAs). Three patients with an ATP8B1 mutation had an elevated THBA proportion (7.51-37.26%). In conclusion, in addition to disease entity as a major determinant of outcome, a high THBA level was associated with good outcome in the infantile intrahepatic cholestasis patients.

  15. Interaction of Bile Salts with β-Cyclodextrins Reveals Nonclassical Hydrophobic Effect and Enthalpy-Entropy Compensation.

    PubMed

    Paul, Bijan K; Ghosh, Narayani; Mukherjee, Saptarshi

    2016-04-28

    Herein, we present an endeavor toward exploring the lacuna underlying the host:guest chemistry of inclusion complex formation between bile salt(s) and β-cyclodextrin(s) (βCDs). An extensive thermodynamic investigation based on isothermal titration calorimetry (ITC) demonstrates a dominant contribution from exothermic enthalpy change (ΔH < 0) accompanying the phenomenon of inclusion complex formation, along with a relatively smaller contribution to total free energy change from the entropic component. However, the negative heat capacity change (ΔCp < 0) displays the hallmark for a pivotal role of hydrophobic effect underlying the interaction. Contrary to the classical hydrophobic effect, such apparently paradoxical thermodynamic signature has been adequately described under the notion of "nonclassical hydrophobic effect". On the basis of our results, the displacement of disordered water from hydrophobic binding sites has been argued to mark the enthalpic signature and the key role of such interaction forces is further corroborated from enthalpy-entropy compensation behavior showing indication for almost complete compensation. To this end, we have quantified the interaction of two bile salt molecules (namely, sodium deoxycholate and sodium glycocholate) with a series of varying chemical substituents on the host counterpart, namely, βCD, (2-hydroxypropyl)-βCD, and methyl βCD.

  16. Gastroduodenal artery pseudoaneurysm ruptured in the common bile duct.

    PubMed

    Fodor, M; Fodor, L; Ciuce, C

    2010-01-01

    A pseudoaneurysm of the gastroduodenal artery (GDA) is the rarest splanchnic artery aneurysm, comprising fewer than 10% of these lesions. Bleeding into the gastrointestinal tract is the most rapidly fatal complication of an arterial visceral pseudoaneurysm, affecting 4-10% of patients. We present an unusual case of a GDA pseudoaneurysm that ruptured in the common bile duct, and that was successfully treated by partial resection and hepatic artery reconstruction. The postoperative evolution was favourable and the CT performed six months later disclosed the absence of a vascular tumour.

  17. Computed tomography of localized dilatation of the intrahepatic bile ducts

    SciTech Connect

    Araki, T.; Itai Y.; Tasaka, A.

    1981-12-01

    Twenty-nine patients showed localized dilatation of the intrahepatic bile ducts on computed tomography, usually unaccompanied by jaundice. Congenital dilatation was diagnosed when associated with a choledochal cyst, while cholangiographic contrast material was helpful in differentiating such dilatation from a simple cyst by showing its communication with the biliary tract when no choledochal cyst was present. Obstructive dilatation was associated with intrahepatic calculi in 4 cases, hepatoma in 9, cholangioma in 5, metastatic tumor in 5, and polycystic disease in 2. Cholangioma and intrahepatic calculi had a greater tendency to accompany such localized dilatation; in 2 cases, the dilatation was the only clue to the underlying disorder.

  18. FDG PET/CT findings of common bile duct tuberculosis.

    PubMed

    Dong, Aisheng; Wang, Yang; Gong, Jing; Zuo, Changjing

    2014-01-01

    Common bile duct (CBD) tuberculosis is rare. A 39-year-old woman was referred because of a 5-month history of abdominal pain. Abdominal enhanced MRI and CT showed dilatation of the distal CBD with irregularly thickened wall. Enhanced CT revealed enlarged retroperitoneal lymph nodes. FDG PET/CT showed increased FDG uptake of the CBD lesion and several retroperitoneal lymph nodes with slight FDG uptake. CBD cholangiocarcinoma with retroperitoneal lymph node metastasis was suspected. CBD tuberculosis was confirmed by endoluminal biopsy. Tuberculosis should be considered in the differential diagnosis of abnormal biliary FDG accumulation, particularly in tuberculosis endemic areas.

  19. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    PubMed

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-04-06

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human.

  20. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling.

    PubMed

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen; DeMorrow, Sharon

    2015-12-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.

  1. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion.

    PubMed

    Sonne, David P; Hansen, Morten; Knop, Filip K

    2014-08-01

    Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.

  2. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  3. α1- and α5-containing laminins regulate the development of bile ducts via β1 integrin signals.

    PubMed

    Tanimizu, Naoki; Kikkawa, Yamato; Mitaka, Toshihiro; Miyajima, Atsushi

    2012-08-17

    Signals derived from basal lamina components are important for developing three-dimensional architecture of epithelial tissues. Laminins consisting of α, β, and γ subunits in basal lamina play pivotal roles in the formation and maintenance of epithelial tissue structures. However, it remains unclear which laminin isoforms transmit signals and how epithelial cells receive them to regulate multiple developmental processes. In three-dimensional culture of a liver progenitor cell line, Hepatic Progenitor Cells Proliferating on Laminin (HPPL), the cells establish apicobasal polarity and form cysts with a central lumen. Neutralizing antibody against β1 integrin blocked the formation and maintenance of the cyst structure, indicating that β1 integrin signaling was necessary throughout the morphogenesis. Although the addition of α1-containing laminin, a ligand of β1 integrin, induced cyst formation, it was dispensable for the maintenance of the cyst, suggesting that HPPL produces another ligand for β1 integrin to maintain the structure. Indeed, we found that HPPL produced α5-containing laminin, and siRNA against laminin α5 partially inhibited the lumen formation. In fetal liver, p75NTR(+) periportal fibroblasts and bile duct epithelial cells, known as cholangiocytes, expressed α1- and α5-containing laminins, respectively. In laminin α5 KO liver, cholangiocytes normally emerged, but the number of bile ducts was decreased. These results suggest that α1-containing laminin is sufficient as a component of the basal lamina for the commitment of bipotential liver progenitors to cholangiocytes and the apicobasal polarization, whereas α5-containing laminin is necessary for the formation of mature duct structures. Thus, α1- and α5-containing laminins differentially regulate the sequential events to form epithelial tissues via β1 integrin signals.

  4. Clinical application of transcriptional activators of bile salt transporters☆

    PubMed Central

    Baghdasaryan, Anna; Chiba, Peter; Trauner, Michael

    2014-01-01

    Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular BS efflux through bile salt export pump (BSEP), basolateral elimination through organic solute transporters alpha and beta (OSTα/OSTβ) as well as inhibition of hepatocellular BS uptake through basolateral Na+-taurocholate cotransporting polypeptide (NTCP) represent critical steps in protection from hepatocellular BS overload and can be targeted therapeutically. In this article, we review the potential clinical implications of the major BS transporters BSEP, OSTα/OSTβ and NTCP in the pathogenesis of hereditary and acquired cholestatic syndromes, provide an overview on transcriptional control of these transporters by the key regulatory nuclear receptors and discuss the potential therapeutic role of novel transcriptional activators of BS transporters in cholestasis. PMID:24333169

  5. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    PubMed Central

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  6. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  7. Hyperspectral image segmentation of the common bile duct

    NASA Astrophysics Data System (ADS)

    Samarov, Daniel; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward

    2013-03-01

    Over the course of the last several years hyperspectral imaging (HSI) has seen increased usage in biomedicine. Within the medical field in particular HSI has been recognized as having the potential to make an immediate impact by reducing the risks and complications associated with laparotomies (surgical procedures involving large incisions into the abdominal wall) and related procedures. There are several ongoing studies focused on such applications. Hyperspectral images were acquired during pancreatoduodenectomies (commonly referred to as Whipple procedures), a surgical procedure done to remove cancerous tumors involving the pancreas and gallbladder. As a result of the complexity of the local anatomy, identifying where the common bile duct (CBD) is can be difficult, resulting in comparatively high incidents of injury to the CBD and associated complications. It is here that HSI has the potential to help reduce the risk of such events from happening. Because the bile contained within the CBD exhibits a unique spectral signature, we are able to utilize HSI segmentation algorithms to help in identifying where the CBD is. In the work presented here we discuss approaches to this segmentation problem and present the results.

  8. A nationwide assessment of outcomes after bile duct reconstruction

    PubMed Central

    Eskander, Mariam F; Bliss, Lindsay A; Yousafzai, Osman K; de Geus, Susanna W L; Ng, Sing Chau; Callery, Mark P; Kent, Tara S; Moser, A James; Khwaja, Khalid; Tseng, Jennifer F

    2015-01-01

    Background Bile duct reconstruction (BDR) is used to manage benign and malignant neoplasms, congenital anomalies, bile duct injuries and other non-malignant diseases. BDR outcomes overall, by year, and by indication were compared. Methods Retrospective analysis of Nationwide Inpatient Sample discharges (2004–2011) including ICD-9 codes for BDR. All statistical testing was performed using survey weighting. Univariate analysis of admission characteristics by chi square testing. Multivariate modelling for inpatient complications and inpatient death by logistic regression. Results Identified 67 160 weighted patient admissions: 2.5% congenital anomaly, 37.4% malignant neoplasm, 2.3% benign neoplasm, 9.9% biliary injury, 47.9% other non-malignant disease. Most BDRs were performed in teaching hospitals (69.6%) but only 25% at centres with a BDR volume more than 35/year. 32.3% involved ≥ 1 complication, and 84.7% were discharges home. There was a 4.2% inpatient death rate. The complication rate increased but the inpatient death rate decreased over time. The rates of acute renal failure increased. Significant multivariate predictors of inpatient death include indication of biliary injury or malignancy, and predictors of any complication include public insurance and non-elective admission. Conclusion This is the first national description of BDRs using a large database. In this diverse sampling, both procedure indication and patient characteristics influence morbidity and mortality. PMID:26096061

  9. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  10. Modelling of the pathological bile flow in the duct with a calculus.

    PubMed

    Kuchumov, Alex G; Nyashin, Yuriy I; Samarcev, Vladimir A; Gavrilov, Vasiliy A

    2013-01-01

    The aim of the present paper is to develop an analytical model for description of the pathological bile flow in the major duodenal papilla duct with a calculus. The problem is separated into two parts. The first part deals with determination of bile behaviour and constitutive relation parameters of the pathological bile. The viscosity vs. shear rate, the viscosity vs. time, and shear stress vs. shear rate dependences are obtained for different types of bile taken from patients of different age and sex. As a result, the approximation of curves described by the Casson equation was obtained. It was shown that the pathological bile is a thixotropic non-Newtonian fluid. The second part is directly related to modelling of the bile flow in the duct with a calculus. As a result of solving the problem, the bile velocity profile, flow rate vs. time, and bile pressure vs. calculus radius were obtained. The dependences obtained may play an important role in the assessment of an indication to operation.

  11. Evolution of the bile salt nuclear receptor FXR in vertebrates*s⃞

    PubMed Central

    Reschly, Erica J.; Ai, Ni; Ekins, Sean; Welsh, William J.; Hagey, Lee R.; Hofmann, Alan F.; Krasowski, Matthew D.

    2008-01-01

    Bile salts, the major end metabolites of cholesterol, vary significantly in structure across vertebrate species, suggesting that nuclear receptors binding these molecules may show adaptive evolutionary changes. We compared across species the bile salt specificity of the major transcriptional regulator of bile salt synthesis, the farnesoid X receptor (FXR). We found that FXRs have changed specificity for primary bile salts across species by altering the shape and size of the ligand binding pocket. In particular, the ligand binding pockets of sea lamprey (Petromyzon marinus) and zebrafish (Danio rerio) FXRs, as predicted by homology models, are flat and ideal for binding planar, evolutionarily early bile alcohols. In contrast, human FXR has a curved binding pocket best suited for the bent steroid ring configuration typical of evolutionarily more recent bile acids. We also found that the putative FXR from the sea squirt Ciona intestinalis, a chordate invertebrate, was completely insensitive to activation by bile salts but was activated by sulfated pregnane steroids, suggesting that the endogenous ligands of this receptor may be steroidal in nature. Our observations present an integrated picture of the coevolution of bile salt structure and of the binding pocket of their target nuclear receptor FXR. PMID:18362391

  12. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice.

    PubMed

    Fickert, Peter; Fuchsbichler, Andrea; Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Krause, Robert; Zatloukal, Kurt; Jaeschke, Hartmut; Denk, Helmut; Trauner, Michael

    2006-02-01

    We determined the mechanisms of hepatobiliary injury in the lithocholic acid (LCA)-fed mouse, an increasingly used model of cholestatic liver injury. Swiss albino mice received control diet or 1% (w/w) LCA diet (for 1, 2, and 4 days), followed by assessment of liver morphology and ultrastructure, tight junctions, markers of fibrosis and key proteins of hepatobiliary function, and bile flow and composition. As expected LCA feeding led to bile infarcts, which were followed by a destructive cholangitis with activation and proliferation of periductal myofibroblasts. At the ultrastructural level, small bile ducts were frequently obstructed by crystals. Biliary-excreted fluorescence-labeled ursodeoxycholic acid accumulated in bile infarcts, whereas most infarcts did not stain with India ink injected into the common bile duct; both findings are indicative of partial biliary obstruction. Expression of the main basolateral bile acid uptake proteins (sodium-taurocholate cotransporter and organic anion-transporting polypeptide 1) was reduced, the canalicular transporters bile salt export pump and multidrug-related protein 2 were preserved, and the basolateral transporter multidrug-related protein 3 and the detoxifying enzyme sulfotransferase 2a1 were induced. Thus, we demonstrate that LCA feeding in mice leads to segmental bile duct obstruction, destructive cholangitis, periductal fibrosis, and an adaptive transporter and metabolic enzyme response.

  13. Intestinal bile acid sensing is linked to key endocrine and metabolic signalng pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids have historically been considered to mainly function in cholesterol homeostasis and facilitate fat digestion in the gastrointestinal tract. Recent discoveries show that bile acids also function as signaling molecules that exert diverse endocrine and metabolic actions by activating G prote...

  14. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  15. Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport

    PubMed Central

    Lionarons, Daniël A.; Heger, Michal; van Golen, Rowan F.; Alles, Lindy K.; van der Mark, Vincent A.; Kloek, Jaap J.; de Waart, Dirk R.; Marsman, Hendrik A.; Rusch, Henny; Verheij, Joanne; Beuers, Ulrich; Paulusma, Coen C.; van Gulik, Thomas M.

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-β-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation. PMID:27535001

  16. The role of dissolved carbon dioxide and whole bile in the in vitro activation of Taenia taeniaeformis oncospheres.

    PubMed

    Ishiwata, K; Oku, Y; Kamiya, M

    1993-12-01

    Dissolved carbon dioxide was deemed not to be an important factor in the activation of Taenia taeniaeformis oncospheres. Rabbit bile was found to provide the most appropriate whole bile for in vitro activation of oncospheres.

  17. Defense of mammalian body against heavy metal-induced toxicities: Sequestration by the choroid plexus and elimination via the bile

    SciTech Connect

    Zheng Wei.

    1991-01-01

    Tissue sequestration and biliary elimination are two of the important mechanisms by which mammalian body defends against heavy metal insults. In rats or rabbits that had received Pb, Cd, Hg, As and [sup 210]Po, these metal ions were sequestered in the choroid plexus at concentrations of Pb, Cd, Hg, As and Po that were 57, 33, 12, 13 and 5 times higher, respectively, than those found in the brain cortex. In addition, the concentrations of these heavy metal ions were many fold greater in the choroid plexus than in the CSF or blood. The accumulation of Pb in the choroid plexus was dose-dependent and time-related. When the choroid plexus was incubated, in vitro, with ouabain, the latter significantly inhibited the uptake of Cd from the CSF side of the choroid plexus. Cystine concentration was four times greater in the choroid plexus than in brain cortex. Results suggest that the choroid plexus sequesters toxic metal and metalloid ions. It appears to do this in order to protect the CSF and brain from toxic heavy metals in the blood. The effects of N-(2,3-dimercaptopropyl)phthalamidic acid (DMPA), meso-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-1-propane sulfonic acid (DMPS) on biliary excretion of Cd was studied in rat chronic intoxication mode. DMPA (0.10 mmol/kg, iv), when given to rats three days after exposure to Cd, elicited within 30 min a 20-fold increase in biliary Cd excretion. GSH in rat bile was also increased three fold as compared to control. Neither DMSA nor DMPS increased biliary Cd or GSH. Upon iv administration, DMPA, not DMSA, appeared in bile. An altered, presumably disulfide, form of DMPS was also found in bile. Incubation of DMPA or DMSA with Cd-saturated MT resulted in the removal of Cd from MT. DMPS, however, promoted the formation of MT polymers. DMPA protected biliary GSH from autoxidation.

  18. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review

    PubMed Central

    Wang, David Q-H; Carey, Martin C

    2014-01-01

    Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20th century collected via library (Harvard’s Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti

  19. Therapeutic uses of animal biles in traditional Chinese medicine: an ethnopharmacological, biophysical chemical and medicinal review.

    PubMed

    Wang, David Q-H; Carey, Martin C

    2014-08-07

    Forty-four different animal biles obtained from both invertebrates and vertebrates (including human bile) have been used for centuries for a host of maladies in traditional Chinese medicine (TCM) beginning with dog, ox and common carp biles approximately in the Zhou dynasty (c. 1046-256 BCE). Overall, different animal biles were prescribed principally for the treatment of liver, biliary, skin (including burns), gynecological and heart diseases, as well as diseases of the eyes, ears, nose, mouth and throat. We present an informed opinion of the clinical efficacy of the medicinal uses of the different animal biles based on their presently known principal chemical components which are mostly steroidal detergent-like molecules and the membrane lipids such as unesterified cholesterol and mixed phosphatidylcholines and sometimes sphingomyelin, as well as containing lipopigments derived from heme principally bilirubin glucuronides. All of the available information on the ethnopharmacological uses of biles in TCM were collated from the rich collection of ancient Chinese books on materia medica held in libraries in China and United States and the composition of various animal biles was based on rigorous separatory and advanced chemical identification techniques published since the mid-20(th) century collected via library (Harvard's Countway Library) and electronic searches (PubMed and Google Scholar). Our analysis of ethnomedical data and information on biliary chemistry shows that specific bile salts, as well as the common bile pigment bilirubin and its glucuronides plus the minor components of bile such as vitamins A, D, E, K, as well as melatonin (N-acetyl-5-methoxytryptamine) are salutary in improving liver function, dissolving gallstones, inhibiting bacterial and viral multiplication, promoting cardiac chronotropsim, as well as exhibiting anti-inflammatory, anti-pyretic, anti-oxidant, sedative, anti-convulsive, anti-allergic, anti-congestive, anti-diabetic and anti

  20. Synthesis of bile acid monosulphates by the isolated perfused rat kidney.

    PubMed Central

    Summerfield, J A; Gollan, J L; Billing, B H

    1976-01-01

    Perfusion of an isolated rat kidney with labelled bile acids, in a protein-free medium, resulted in the urinary excretion of the labelled bile acid, 3% being converted into polar metabolities in 1h. These metabolities were neither glycine nor taurine conjugates, nor bile acid glucuronides, and on solovolysis yielded the free bile acid. On t.l.c. the metabolite of [24-14C]lithocholic acid had the mobility of lithocholate 3-sulphate. The principal metabolite of [24-14C]chenodeoxycholic acid had the mobility of chenodeoxycholate 7-sulphate; trace amounts appeared as chenodeoxycholate 3-sulphate. [35S]sulphate was incorporated in chenodeoxycholic acid by the kidney, resulting in a similar pattern of sulphation. No disulphate salt of chenodeoxycholic acid was detected. These findings lend support to the hypothesis that renal synthesis may account for some of the bile acid sulphates present in urine in the cholestatic syndrome in man. PMID:942413

  1. Bile cast nephropathy: A case report and review of the literature

    PubMed Central

    Patel, Jaymon; Walayat, Saqib; Kalva, Nikhil; Palmer-Hill, Sidney; Dhillon, Sonu

    2016-01-01

    Bile cast nephropathy is a condition of renal dysfunction in the setting of hyperbilirubinemia. There are very few cases of this condition reported in the last decade and a lack of established treatment guidelines. While the exact etiology remains unknown, bile cast nephropathy is presumed to be secondary to multiple concurrent insults to the kidney including direct toxicity from bile acids, obstructive physiology from bile casts, and systemic hypoperfusion from vasodilation. Therapy directed at bilirubin reduction may improve renal function, but will likely need dialysis or plasmapheresis as well. We report our case of bile cast nephropathy and the therapeutic measures undertaken in a middle-aged male with chronic renal insufficiency that developed hyperbilirubinemia and drug-induced liver injury secondary to antibiotic use. He developed acute renal injury in the setting of rising bilirubin. He subsequently had a progressive decline in renal and hepatic function, requiring dialysis and plasmapheresis with some improvement, ultimately requiring transplantation. PMID:27468221

  2. 5{alpha}-Bile alcohols function as farnesoid X receptor antagonists

    SciTech Connect

    Nishimaki-Mogami, Tomoko . E-mail: mogami@nihs.go.jp; Kawahara, Yosuke; Tamehiro, Norimasa; Yoshida, Takemi; Inoue, Kazuhide; Ohno, Yasuo; Nagao, Taku; Une, Mizuho

    2006-01-06

    The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5{beta}-configuration in FXR activation. The results showed that the 5{beta}-(A/B cis) bile alcohols 5{beta}-cyprinol and bufol are potent FXR agonists, whereas their 5{alpha}-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A orientation of bile salts in agonist/antagonist function.

  3. Faecal bile acids are natural ligands of the mouse accessory olfactory system

    PubMed Central

    Doyle, Wayne I.; Dinser, Jordan A.; Cansler, Hillary L.; Zhang, Xingjian; Dinh, Daniel D.; Browder, Natasha S.; Riddington, Ian M.; Meeks, Julian P.

    2016-01-01

    The accessory olfactory system (AOS) guides behaviours that are important for survival and reproduction, but understanding of AOS function is limited by a lack of identified natural ligands. Here we report that mouse faeces are a robust source of AOS chemosignals and identify bile acids as a class of natural AOS ligands. Single-unit electrophysiological recordings from accessory olfactory bulb neurons in ex vivo preparations show that AOS neurons are strongly and selectively activated by peripheral stimulation with mouse faecal extracts. Faecal extracts contain several unconjugated bile acids that cause concentration-dependent neuronal activity in the AOS. Many AOS neurons respond selectively to bile acids that are variably excreted in male and female mouse faeces, and others respond to bile acids absent in mouse faeces. These results identify faeces as a natural source of AOS information, and suggest that bile acids may be mammalian pheromones and kairomones. PMID:27324439

  4. Binding of cholesterol and bile acid to hemicelluloses from rice bran.

    PubMed

    Hu, Guohua; Yu, Wenjian

    2013-06-01

    The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.

  5. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor

    PubMed Central

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T.; Shelton, John M.; Richardson, James A.; Repa, Joyce J.; Mangelsdorf, David J.; Kliewer, Steven A.

    2006-01-01

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. PMID:16473946

  6. Microbial Biotransformations of Bile Acids as Detected by Electrospray Mass Spectrometry123

    PubMed Central

    Hagey, Lee R.; Krasowski, Matthew D.

    2013-01-01

    Many current experiments investigating the effects of diet, dietary supplements, and pre- and probiotics on the intestinal environments do not take into consideration the potential for using bile salts as markers of environmental change. Intestinal bacteria in vertebrates can metabolize bile acids into a number of different structures, with deamidation, hydroxyl group oxidation, and hydroxyl group elimination. Fecal bile acids are readily available to sample and contain a considerable structural complexity that directly relates to intestinal morphology, bile acid residence time in the intestine, and the species of microbial forms in the intestinal tract. Here we offer a classification scheme that can serve as an initial guide to interpret the different bile acid patterns expressed in vertebrate feces. PMID:23319120

  7. Total rupture of hydatid cyst of liver in to common bile duct: a case report.

    PubMed

    Robleh, Hassan; Yassine, Fahmi; Driss, Khaiz; Khalid, Elhattabi; Fatima-Zahra, Bensardi; Saad, Berrada; Rachid, Lefriyekh; Abdalaziz, Fadil; Najib, Zerouali Ouariti

    2014-01-01

    Rupture of hydatid liver cyst into biliary tree is frequent complications that involve the common hepatic duct, lobar biliary branches, the small intrahepatic bile ducts,but rarely rupture into common bile duct. The rupture of hydatid cyst is serious life threating event. The authors are reporting a case of total rupture of hydatid cyst of liver into common bile duct. A 50-year-old male patient who presented with acute cholangitis was diagnosed as a case of totally rupture of hydatid cyst on Abdominal CT Scan. Rupture of hydatid cyst of liver into common bile duct and the gallbladder was confirmed on surgery. Treated by cholecystectomy and T-tube drainage of Common bile duct.

  8. A study of the relationship between bile salts, bile salt-stimulated lipase, and free fatty acids in breast milk: normal infants and those with breast milk jaundice.

    PubMed

    Forsyth, J S; Donnet, L; Ross, P E

    1990-08-01

    Breast milk jaundice has been reported to be associated with increased lipase activity and elevated free fatty acid (FFA) concentrations within breast milk. We have previously shown that bile salts are present in small concentrations in breast milk and the aim of this study was to examine the relationship of bile salt-stimulated lipase (BSSL) activity, FFA concentration, and bile salt concentration in milks of normal infants and the milk of infants with breast milk jaundice. Mothers of healthy newborn infants were recruited in the early newborn period and 42 provided breast milk samples at 2 weeks, 30 at 6 weeks, 16 at 10 weeks, and 13 at 14 weeks postnatally. We initially studied the effect of lactation on bile salts and found there was a significant decline in both cholate and chenodeoxycholate levels with duration of lactation (p less than 0.05). There was also a significant fall in BSSL activity with duration of lactation (p less than 0.05), but no correlation was found between BSSL activity and bile salt concentration. FFA concentrations were similar throughout lactation and were not related to either BSSL activity or bile salt concentration. There was a significant increase in the concentration of cholate and the cholate-to-chenodeoxycholate ratio in the milks of 12 infants with breast milk jaundice compared with normal milks, the BSSL activity was similar and contrary to previous reports, the FFA concentration was not increased in the milks of infants with breast milk jaundice.

  9. Structural basis of the alternating-access mechanism in a bile acid transporter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  10. Biliary albumin excretion induced by bile salts in rats is a pathological phenomenon

    SciTech Connect

    Ohta, M.; Kitani, K.; Kanai, S. )

    1989-09-01

    The bile to plasma 125I-albumin concentration ratio (B/P ratio) was examined before and during various bile salt infusions in male Wistar rats that had previously received iv injection of 125I-albumin. Endogenous rat albumin and IgG concentrations in the bile were also determined by a single radial immunodiffusion method. Taurocholate (TC) infusion (1.0 mumol/min/100 g body wt) significantly increased the bile flow rate in the first hr but the flow began to decline in the second hr. The B/P ratio as well as rat albumin (and IgG) excretion into the bile significantly increased as early as 15 min after the start of TC infusion, and the increase became more pronounced in the second hr, when the bile flow began to decrease. Infusion of taurochenodeoxycholate (TCDC, 0.4 mumol/min/100 g) caused a reduction in bile flow 15 min after the start of infusion but the B/P ratio increased 40 times at its peak compared with the basal value before the bile salt infusion. Simultaneous infusion of tauroursodeoxycholate (TUDC, 0.6 mumol/min/100 g) and TCDC not only abolished the cholestasis induced by TCDC but maintained stable choleresis as long as for 2 hr. During this choleretic period, the B/P ration never exceeded the basal value. The choleresis induced by either taurodehydrocholate (TDHC) or bucolome was not accompanied by enhanced albumin excretion. In rats given TDHC infusion, albumin excretion started to increase only after the bile flow began to decline following the initial choleretic period. The enhanced excretion of albumin induced by TC and TCDC is therefore suggested to be caused not by the choleresis per se but by a possible concomitant increase in the communication between sinusoids and bile canaliculi, which eventually leads to cholestasis.

  11. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis.

    PubMed

    Van den Bossche, Lien; Borsboom, Daniel; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Devisscher, Lindsey; Hindryckx, Pieter; De Vos, Martine; Laukens, Debby

    2017-02-06

    Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNF(ΔARE/WT) mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNF(ΔARE/WT) mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNF(ΔARE/WT) mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.Laboratory Investigation advance online publication, 6 February 2017; doi:10

  12. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity

    PubMed Central

    Nehra, D; Howell, P; Williams, C; Pye, J; Beynon, J

    1999-01-01

    BACKGROUND—Bile acid toxicity has been shown in the gastric, colonic, and hepatic tissues; the effect on oesophageal mucosa is less well known. 
AIMS—To determine the spectrum of bile acids refluxing in patients with gastro-oesophageal reflux disease and its relation to oesophageal pH using a new technique of combined oesophageal aspiration and pH monitoring. 
METHODS—Ten asymptomatic subjects and 30 patients with symptoms of gastro-oesophageal reflux disease (minimal mucosal injury, erosive oesophagitis (grade 2 or 3 Savary-Miller), Barrett's oesophagus/stricture; n=10 in each group) underwent 15 hour continuous oesophageal aspiration with simultaneous pH monitoring. Bile acid assay of the oesophageal samples was performed using modified high performance liquid chromatography. 
RESULTS—The peak bile acid concentration and DeMeester acid scores were significantly higher in the patients with oesophagitis (median bile acid concentration 124 µmol/l; acid score 20.2) and Barrett's oesophagus/stricture (181 µmol/l; 43.3) than patients with minimal injury (14 µmol/l; 12.5) or controls (0 µmol/l; 11.1). The predominant bile acids detected were cholic, taurocholic, and glycocholic acids but there was a significantly greater proportion of secondary bile acids, deoxycholic and taurodeoxycholic acids, in patients with erosive oesophagitis and Barrett's oesophagus/stricture. Although bile acid reflux episodes occurred at variable pH, a temporal relation existed between reflux of taurine conjugates and oesophageal acid exposure (r=0.58, p=0.009). 
CONCLUSION—Toxic secondary bile acid fractions have been detected in patients with extensive mucosal damage. Mixed reflux is more harmful than acid reflux alone with possible toxic synergism existing between the taurine conjugates and acid. 

 Keywords: bile acids; reflux oesophagitis; Barrett's oesophagus PMID:10205192

  13. A retrospective analysis of endoscopic treatment outcomes in patients with postoperative bile leakage

    PubMed Central

    Sayar, Suleyman; Olmez, Sehmus; Avcioglu, Ufuk; Tenlik, Ilyas; Saritas, Bunyamin; Ozdil, Kamil; Altiparmak, Emin; Ozaslan, Ersan

    2016-01-01

    OBJECTIVE: Bile leakage, while rare, can be a complication seen after cholecystectomy. It may also occur after hepatic or biliary surgical procedures. Etiology may be underlying pathology or surgical complication. Endoscopic retrograde cholangiopancreatography (ERCP) can play major role in diagnosis and treatment of bile leakage. Present study was a retrospective analysis of outcomes of ERCP procedure in patients with bile leakage. METHODS: Patients who underwent ERCP for bile leakage after surgery between 2008 and 2012 were included in the study. Etiology, clinical and radiological characteristics, and endoscopic treatment outcomes were recorded and analyzed. RESULTS: Total of 31 patients (10 male, 21 female) were included in the study. ERCP was performed for bile leakage after cholecystectomy in 20 patients, after hydatid cyst operation in 10 patients, and after hepatic resection in 1 patient. Clinical signs and symptoms of bile leakage included abdominal pain, bile drainage from percutaneous drain, peritonitis, jaundice, and bilioma. Twelve (60%) patients were treated with endoscopic sphincterotomy (ES) and nasobiliary drainage (NBD) catheter, 7 patients (35%) were treated with ES and biliary stent (BS), and 1 patient (5%) was treated with ES alone. Treatment efficiency was 100% in bile leakage cases after cholecystectomy. Ten (32%) cases of hydatid cyst surgery had subsequent cystobiliary fistula. Of these patients, 7 were treated with ES and NBD, 2 were treated with ES and BS, and 1 patient (8%) with ES alone. Treatment was successful in 90% of these cases. CONCLUSION: ERCP is an effective method to diagnose and treat bile leakage. Endoscopic treatment of postoperative bile leakage should be individualized based on etiological and other factors, such as accompanying fistula. PMID:28058396

  14. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  15. Profiling of urinary bile acids in piglets by a combination of enzymatic deconjugation and targeted LC-MRM-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acids (BAs) have an important role in the control of fat, glucose and cholesterol metabolism. Synthesis of bile acids is the major pathway for the metabolism of cholesterol and for the excretion of excess cholesterol in mammals. Bile acid intermediates and/or their metabolites are excreted in...

  16. Interaction of a dietary fiber (pectin) with gastrointestinal components (bile salts, calcium, and lipase): a calorimetry, electrophoresis, and turbidity study.

    PubMed

    Espinal-Ruiz, Mauricio; Parada-Alfonso, Fabián; Restrepo-Sánchez, Luz-Patricia; Narváez-Cuenca, Carlos-Eduardo; McClements, David Julian

    2014-12-31

    An in vitro gastrointestinal model consisting of oral, gastric, and intestinal phases was used to elucidate the impact of pectin on the digestion of emulsified lipids. Pectin reduced the extent of lipid digestion, which was attributed to its binding interactions with specific gastrointestinal components. The interaction of pectin with bile salts, lipase, CaCl2, and NaCl was therefore investigated by turbidity, microstructure, electrophoresis, and isothermal titration calorimetry (ITC) at pH 7.0 and 37 °C. ITC showed that the interaction of pectin was endothermic with bile salts, but exothermic with CaCl2, NaCl, and lipase. Electrophoresis, microstructure, and turbidity measurements showed that anionic pectin formed electrostatic complexes with calcium ions, which may have decreased lipid digestion due to increased lipid flocculation or microgel formation because this would reduce the surface area of lipid exposed to the lipase. This research provides valuable insights into the physicochemical and molecular mechanisms of the interaction of pectin with gastrointestinal components that may affect the rate and extent of lipid digestion.

  17. Bile salt-reinforced alginate-chitosan beads.

    PubMed

    Takka, Sevgi; Cali, Aybige Gürel

    2012-01-01

    A polymeric delayed release protein delivery system was investigated with albumin as the model drug. The polysaccharide chitosan was reacted with sodium alginate in the presence of calcium chloride to form beads with a polyelectrolyte. In this study, attempts were made to extend albumin release in the phosphate buffer at pH 6.8 from the alginate-chitosan beads by reinforcing the matrix with bile salts. Sodium taurocholate was able to prevent albumin release at pH 1.2, protecting the protein from the acidic environment and extending the total albumin release at pH 6.8. This effect was explained by an interaction between the permanent negatively charged sulfonic acid of sodium taurocholate with the amino groups of chitosan. Mild formulation conditions, high bovine serum albumin (BSA) entrapment efficiency, and resistance to gastrointestinal release seem to be synergic and promising factors toward the development of an oral protein delivery form.

  18. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    PubMed Central

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  19. Development of the Bile Ducts: Essentials for the Clinical Hepatologist

    PubMed Central

    Strazzabosco, Mario; Fabris, Luca

    2012-01-01

    Several cholangiopathies result from a perturbation of developmental processes. Most of these cholangiopathies are characterised by the persistence of biliary structures with foetal configuration. Developmental processes are also relevant in acquired liver diseases, as liver repair mechanisms exploit a range of autocrine and paracrine signals transiently expressed in embryonic life. We briefly review the ontogenesis of the intra and extrahepatic biliary tree, highlighting the morphogens, growth factors and transcription factors that regulate biliary development, and the relationships between developing bile ducts and other branching biliary structures. Then we discuss the ontogenetic mechanisms involved in liver repair, and how these mechanisms are recapitulated in ductular reaction, a common reparative response to many forms of biliary and hepatocellular damage. Finally, we discuss the pathogenic aspects of the most important primary cholangiopathies related to altered biliary development i.e. polycystic and fibropolycystic liver diseases, Alagille syndrome. PMID:22245898

  20. Neuroendocrine carcinoma of the extrahepatic bile duct: A case report

    PubMed Central

    Oshiro, Yukio; Gen, Ryozo; Hashimoto, Shinji; Oda, Tatsuya; Sato, Taiki; Ohkohchi, Nobuhiro

    2016-01-01

    Neuroendocrine carcinoma (NEC) originating from the gastrointestinal hepatobiliary-pancreas is a rare, invasive, and progressive disease, for which the prognosis is extremely poor. The patient was a 72-year-old man referred with complaints of jaundice. He was diagnosed with middle extrahepatic cholangiocarcinoma (cT4N1M0, cStage IV). He underwent a right hepatectomy combined with extrahepatic bile duct and portal vein resection after percutaneous transhepatic portal vein embolization. Microscopic examination showed a large-cell neuroendocrine carcinoma according to the WHO criteria for the clinicopathologic classification of gastroenteropancreatic neuroendocrine tumors. Currently, the patient is receiving combination chemotherapy with cisplatin and etoposide for postoperative multiple liver metastases. Although NEC is difficult to diagnose preoperatively, it should be considered an uncommon alternative diagnosis. PMID:27570432

  1. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  2. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages.

  3. Mediators of exocrine pancreatic secretion induced by intraduodenal application of bile and taurodeoxycholate in man.

    PubMed

    Riepl, R L; Reichardt, B; Rauscher, J; Tzavella, K; Teufel, J; Lehnert, P

    1997-01-01

    The aim of the study was to investigate whether cholecystokinin, neurotensin, and cholinergic mechanisms act as mediators of bile salt-stimulated exocrine pancreatic secretion. Ten fasting healthy subjects provided with a double-lumen tube received 2, 4, and 6 g cattle bile and 200, 400, and 600 mg Na-taurodeoxycholate (TDC) into the duodenum at 65-min intervals, respectively. The application of TDC was repeated in another 10 subjects after intravenous bolus injection of 2.5 micrograms/kg b.w. atropine followed by continuous infusion of 5 micrograms/kg.h. Secretions of volume, bicarbonate, trypsin, and lipase were determined in 10-min fractions of duodenal juice. Plasma samples were analysed for cholecystokinin-like immunoreactivity (CCK-LI) and neurotensin with radioimmunoassays. Volume, bicarbonate, trypsin, and lipase secretion rates were significantly increased by 4 g and 6 g bile and by all doses of TDC. Incremental volume and bicarbonate output was dose-dependently enhanced by bile and TDC, and trypsin and lipase output by bile. Atropine significantly decreased the baseline values and all responses to TDC. Plasma concentrations and integrated CCK-LI and neurotensin significantly increased after 4 and 6 g bile and after 400 and 600 mg TDC. Atropine did not significantly influence peptide release. It is concluded that both hydrokinetic and ecbolic pancreatic secretion stimulated by intraduodenal bile and TDC are dependent on a cholinergic tone. CCK and probably also neurotensin act as further mediators of the ecbolic effect.

  4. Effects of bile and gastrointestinal secretions on the infectivity of Newcastle disease virus.

    PubMed

    Lee, J S; Hanson, R P

    1975-04-01

    Bile aspirated from chicken gall bladders was found to contain substances neutralizing Newcastle disease virus (NDV). Nonspecific factors were present in the bile, probably the bile acids, which caused a reduction in the infectivity of the virus. Specific anti-NDV activity was found in the bile of birds that had been vaccinated with a lentogenic strain, Ulster, and challenged with a velogenic, viscerotropic strain, California 1083. Immunoglobulins were also found in these secretions and demonstrated to include the immunoglobulin A class as well as immunoglobulin G. Variability in the neutralizing capacity of bile was found with two different plaque clones of strain 1083, indicating antigenic heterogeneity in the viral population. No difference was found between bile from uninfected birds and the bile from NDV-immune birds in their activities against influenza strain Turkey Ontario 7732, whereas activity existed against a non-viscerotropic strain of NDV, Texas GB. These findings suggest that the specific activity of the secretions was most probably due to the presence of secretory antibody. The importance of the antiviral substances present in the alimentary tract was discussed with respect to the protection of the chicken against the viscerotropic pathotype of NDV.

  5. Evaluation of bile reflux in HIDA images based on fluid mechanics.

    PubMed

    Lo, Rong-Chin; Huang, Wen-Lin; Fan, Yu-Ming

    2015-05-01

    We propose a new method to help physicians assess, using a hepatobiliary iminodiacetic acid scan image, whether or not there is bile reflux into the stomach. The degree of bile reflux is an important index for clinical diagnosis of stomach diseases. The proposed method applies image-processing technology combined with a hydrodynamic model to determine the extent of bile reflux or whether the duodenum is also folded above the stomach. This condition in 2D dynamic images suggests that bile refluxes into the stomach, when endoscopy shows no bile reflux. In this study, we used optical flow to analyze images from Tc99m-diisopropyl iminodiacetic acid cholescintigraphy (Tc99m-DISIDA) to ascertain the direction and velocity of bile passing through the pylorus. In clinical diagnoses, single photon emission computed tomography (SPECT) is the main clinical tool for evaluating functional images of hepatobiliary metabolism. Computed tomography (CT) shows anatomical images of the external contours of the stomach, liver, and biliary extent. By exploiting the functional fusion of the two kinds of medical image, physicians can obtain a more accurate diagnosis. We accordingly reconstructed 3D images from SPECT and CT to help physicians choose which cross sections to fuse with software and to help them more accurately diagnose the extent and quantity of bile reflux.

  6. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels.

    PubMed

    Chen, Qi; Yang, Xiaoying; Zhang, Huabing; Kong, Xingxing; Yao, Lu; Cui, Xiaona; Zou, Yongkang; Fang, Fude; Yang, Jichun; Chang, Yongsheng

    2017-01-01

    Metformin is widely used to treat hyperglycemia. However, metformin treatment may induce intrahepatic cholestasis and liver injury in a few patients with type II diabetes through an unknown mechanism. Here we show that metformin decreases SIRT1 protein levels in primary hepatocytes and liver. Both metformin-treated wild-type C57 mice and hepatic SIRT1-mutant mice had increased hepatic and serum bile acid levels. However, metformin failed to change systemic bile acid levels in hepatic SIRT1-mutant mice. Molecular mechanism study indicates that SIRT1 directly interacts with and deacetylates Foxa2 to inhibit its transcriptional activity on expression of genes involved in bile acids synthesis and transport. Hepatic SIRT1 mutation elevates Foxa2 acetylation levels, which promotes Foxa2 binding to and activating genes involved in bile acids metabolism, impairing hepatic and systemic bile acid homeostasis. Our data clearly suggest that hepatic SIRT1 mediates metformin effects on systemic bile acid metabolism and modulation of SIRT1 activity in liver may be an attractive approach for treatment of bile acid-related diseases such as cholestasis.

  7. Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition.

    PubMed

    De Bruyn, Tom; Sempels, Wouter; Snoeys, Jan; Holmstock, Nico; Chatterjee, Sagnik; Stieger, Bruno; Augustijns, Patrick; Hofkens, Johan; Mizuno, Hideaki; Annaert, Pieter

    2014-06-01

    This study aimed to characterize the in vitro hepatic transport mechanisms in primary rat and human hepatocytes of the fluorescent bile acid derivative N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2'-aminoethanesulfonate (tauro-nor-THCA-24-DBD), previously synthesized to study the activity of the bile salt export pump (BSEP). The fluorescent bile acid derivative exhibited saturable uptake kinetics in suspended rat hepatocytes. Hepatic uptake was inhibited in the presence of substrates/inhibitors of the organic anion transporting polypeptide (Oatp) family and Na(+) -taurocholate cotransporting peptide (Ntcp). Concentration-dependent uptake of the fluorescent bile acid was also saturable in Chinese hamster ovary cells transfected with rNtcp, hNTCP, OATP1B1, or OATP1B3. The fluorescent bile acid derivative was actively excreted in the bile canaliculi of sandwich-cultured rat and human hepatocytes (SCRH and SCHH), with a biliary excretion index (BEI) of 26% and 32%, respectively. In SCRH, cyclosporin A significantly decreased the BEI to 5%. Quantification by real-time confocal imaging further confirmed canalicular transport of the fluorescent bile acid derivative (BEI = 75%). We conclude that tauro-nor-THCA-24-DBD is a useful probe to study interference of drugs with NTCP/Ntcp- and BSEP/Bsep-mediated transport in fluorescence-based in vitro assays.

  8. Curcumin prevents bile canalicular alterations in the liver of hamsters infected with Opisthorchis viverrini.

    PubMed

    Jattujan, Prapaporn; Pinlaor, Somchai; Charoensuk, Lakhanawan; Arunyanart, Channarong; Welbat, Jariya Umka; Chaijaroonkhanarak, Wunnee

    2013-12-01

    Opisthorchis viverrini infection causes inflammation and liver injury leading to periductal fibrosis. Little is known about the pathological alterations in bile canaliculi in opisthorchiasis. This study aimed to investigate bile canalicular alterations in O. viverrini-infected hamsters and to examine the chemopreventive effects of curcumin on such changes. Hamsters were infected with O. viverrini and one group of animals was fed with 1% dietary curcumin supplement. Animals were examined during the acute infection phase, days 21 and 30 post-infection (PI) and chronic infection phase (day 90 PI). Scanning electron microscopy revealed that in the infected group fed with a normal diet, bile canaliculi became slightly tortuous by 30 day PI and more tortuous at day 90 PI. Transmission electron microscopy showed a reduction in microvilli density of canaliculi starting at day 30 PI, with a marked loss of microvilli at day 90 PI. These ultrastructral changes were slightly seen at day 21 PI, which was similar to that found in infected animals fed with 1% curcumin-supplemented diet. Notably, curcumin treatment prevented the reduction of microvilli density, reduced the dilation of bile canaliculi, and decreased the tortuosity of the bile canaliculi relative to non-infected animals on a normal diet at days 30 and 90 PI. These results suggest that curcumin reduces alteration of bile canaliculi and may be a promising agent to prevent the onset of bile duct abnormalities induced by O. viverrini infection.

  9. Comparison of the bile salts and sodium dodecyl sulfate stress responses in Enterococcus faecalis.

    PubMed Central

    Flahaut, S; Frere, J; Boutibonnes, P; Auffray, Y

    1996-01-01

    The resistance to detergents and detergent-induced tolerance of a gastrointestinal organism, Enterococcus faecalis ATCC 19433, were examined. The most remarkable observation was the rapid response of cells in contact with bile salts and sodium dodecyl sulfate (SDS). The killing by high concentrations of detergents was nearly instantaneous. A 5-s adaptation with moderate sublethal concentrations of bile salts or SDS (0.08 or 0.01%, respectively) was sufficient to induce significant adaptation against homologous lethal conditions (0.3% bile salts or 0.017% SDS). However, resistance to a subsequent lethal challenge progressively increased further to a maximum reached after 30 min of adaptation. Furthermore, extremely strong cross-resistances were observed with bile salts- and SDS-adapted cells. However, no relationship seems to exist between levels of tolerance and de novo-synthesized proteins, since blockage of protein synthesis during adaptation had no effect on induction of resistance to bile salts and SDS. We conclude that this induced tolerance to detergent stress is independent of protein synthesis. Nevertheless, the stress-induced protein patterns of E. faecalis ATCC 19433 showed significant modifications. The rates of synthesis of 45 and 34 proteins were enhanced after treatments with bile salts and SDS, respectively. In spite of the overlap of 12 polypeptides, the protein profiles induced by the two detergents were different, suggesting that these detergents trigger different responses in E. faecalis. Therefore, bile salts cannot be substituted for SDS in biochemical detergent shock experiments with bacteria. PMID:8779581

  10. Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.

    PubMed

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-02-01

    OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.

  11. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione.

    PubMed

    Rius, Maria; Hummel-Eisenbeiss, Johanna; Hofmann, Alan F; Keppler, Dietrich

    2006-04-01

    The multidrug resistance protein ABCC4 (MRP4), a member of the ATP-binding cassette superfamily, mediates ATP-dependent unidirectional efflux of organic anions out of cells. Previous studies showed that human ABCC4 is localized to the sinusoidal membrane of hepatocytes and mediates, among other substrates, the cotransport of reduced glutathione (GSH) with bile acids. In the present study, using inside-out membrane vesicles, we demonstrated that human ABCC4 in the presence of physiological concentrations of GSH has a high affinity for the taurine and glycine conjugates of the common natural bile acids as well as the unconjugated bile acid cholate. Chenodeoxycholyltaurine and chenodeoxycholylglycine were the GSH cosubstrates with the highest affinities for ABCC4, with K(m) values of 3.6 and 5.9 microM, respectively. Ursodeoxycholyltaurine and ursodeoxycholylglycine were cotransported together with GSH by ABCC4 with K(m) values of 7.8 and 12.5 microM, respectively, but no transport of ursodeoxycholate and deoxycholate was observed. The simultaneous transport of labeled GSH and cholyltaurine or cholylglycine was demonstrated in double-labeled cotransport experiments with a bile acid-to-GSH ratio of approximately 1:22. K(m) values of the bile acids for ABCC4 were in a range similar to those reported for the canalicular bile salt export pump ABCB11. Under physiological conditions, the sinusoidal ABCC4 may compete with canalicular ABCB11 for bile acids and thereby play a key role in determining the hepatocyte concentration of bile acids. In cholestatic conditions, ABCC4 may become a key pathway for efflux of bile acids from hepatocytes into blood.

  12. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  13. [Measurement of the transport activities of bile salt export pump using chemiluminescence detection method].

    PubMed

    Yamaguchi, Kana; Murai, Tsuyoshi; Yabuuchi, Hikaru; Hui, Shu-Ping; Kurosawa, Takao

    2010-05-01

    Monovalent bile acids, such as taurine- and glycine-conjugated bile acids, are excreted into bile by bile salt export pumps (BSEP, ABCB11). Human BSEP (hBSEP) is physiologically important because it was identified as the gene responsible for the genetic disease: progressive familial intrahepatic cholestasis type 2 (PFIC-2). The evaluation of the inhibitory effect of hBSEP transport activity provides significant information for predicting toxic potential in the early phase of drug development. The role and function of hBSEP have been investigated by the examination of the ATP-dependent transport of radioactive isotopically (RI)-labeled bile acid such as a tritium labeled taurocholic acid, in membrane vesicles obtained from hBSEP-expressing cells. The chemiluminescence detection method using 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) had been developed for a simple analysis of bile acids in human biological fluids. This method is extremely sensitive and it may be applicable for the measurements of bile acid transport activities by hBSEP vesicles without using RI-labeled bile acid. The present paper deals with an application of the chemiluminescence detection method using 3alpha-HSD with enzyme cycling method to the measurement of ATP-dependent transport activities of taurocholic acid (T-CA) in membrane vesicles obtained from hBSEP-expressing Sf9 cells. Calibration curves for T-CA was linear over the range from 10 to 400 pmol/ml. The values of the kinetic parameters for hBSEP vesicles obtained by the chemiluminescence detection method were comparable with the values of that obtained by liquid chromatography-mass spectrometry method. This assay method was highly useful for the measurements of bile acid transport activities.

  14. Characterization of a small vesicular cholesterol carrier in human gallbladder bile.

    PubMed Central

    Ahrendt, S A; Fox-Talbot, M K; Kaufman, H S; Lillemoe, K D; Lipsett, P A; Pitt, H A

    1994-01-01

    OBJECTIVE: Cholesterol phospholipid vesicles play an important role in the nucleation of cholesterol in bile. Recent studies have identified an additional vesicle population in human bile. In this study, the role of these small vesicles as cholesterol carriers was examined. METHODS: Gallbladder bile was obtained from 60 patients at cholecystectomy. Large vesicles, small vesicles, lamellae, and mixed micelles were separated using gel filtration chromatography. RESULTS: Small vesicles were present in bile from the majority of patients both with and without cholesterol gallstones, whereas the void volume vesicle fraction was found almost exclusively in bile from patients with cholesterol gallstones. Both large vesicular and small vesicular cholesterol increased as total bile cholesterol concentration increased; however, the cholesterol-phospholipid ratio in the large vesicle fraction from patients with cholesterol stones was significantly greater than the ratio in small vesicles (1.6 +/- 0.3 vs. 1.0 < or = 0.1, p < 0.05). Whole bile cholesterol crystal appearance time was correlated significantly with the percentage of cholesterol transported by large vesicles (r = 0.63, p < 0.001) but not with the percentage of cholesterol present in small vesicles. Finally, large vesicles isolated by gel filtration chromatography formed cholesterol crystals faster than small vesicles (5.3 +/- 2 vs. 17.4 +/- 4 days, p < 0.01). CONCLUSIONS: These data suggest that a heterogenous population of vesicles is present in human gallbladder bile. As bile becomes saturated with cholesterol, it increasingly is solubilized by both small and large vesicles. The small vesicles have relatively less cholesterol and are more stable than the larger variety, from which cholesterol is most likely to precipitate. Images Figure 2. PMID:7979611

  15. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion (< 5%) of tauro-BALU-1 was detected. BALU-1 did not inhibit the biliary secretion of endogenous bile acids. When highly choleretic bile acids, - ursodeoxycholic (UDCA) and dehydrocholic acid (DHCA) - were administered, they were found less efficient than BALU-1 in preventing phalloidin-induced cholestasis. Biliary phalloidin elimination was low but it was increased by BALU-1 > TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  16. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  17. Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus Replication in Hepatocytes

    PubMed Central

    Schupp, Anna-Kathrin; Trilling, Mirko; Rattay, Stephanie; Le-Trilling, Vu Thuy Khanh; Haselow, Katrin; Stindt, Jan; Zimmermann, Albert; Häussinger, Dieter

    2016-01-01

    ABSTRACT The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds. PMID:27170759

  18. Modulation of intrahepatic cholesterol trafficking: evidence by in vivo antisense treatment for the involvement of sterol carrier protein-2 in newly synthesized cholesterol transport into rat bile.

    PubMed Central

    Puglielli, L; Rigotti, A; Amigo, L; Nuñez, L; Greco, A V; Santos, M J; Nervi, F

    1996-01-01

    Biliary cholesterol represents one of the two major excretory pathways for sterol elimination from the body and plays a central role in cholesterol gallstone formation. Biliary cholesterol originates from a precursor pool of preformed and newly synthesized free cholesterol. Although it has been suggested that newly synthesized and preformed biliary cholesterol are secreted by independent pathways, the specific cellular and molecular mechanisms are unknown. We used male Wistar rats to study the time-course of the appearance of newly synthesized cholesterol, phosphatidylcholine and protein into bile. The specific role of sterol carrier protein-2 (SCP-2) in the transport of newly synthesized biliary cholesterol was evaluated by an in vivo antisense oligonucleotide approach. In contrast to [14C]phosphatidylcholine and [35S]proteins, the time-course of [14C]cholesterol appearance into bile was rapid, and microtubule- and Golgi-independent. In vivo SCP-2 antisense treatment reduced and delayed the appearance of biliary [14C]cholesterol. Furthermore, hepatic SCP-2 expression increased more than 3-fold over control values in rats that had been treated with diosgenin to increase biliary secretion of newly synthesized cholesterol. These results suggest that SCP-2 is necessary for the rapid transport of newly synthesized cholesterol into bile and that hepatocytes can induce SCP-2 expression according to the rate of biliary secretion of newly synthesized cholesterol. PMID:8760350

  19. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades

    PubMed Central

    Hofmann, Alan F.; Hagey, Lee R.

    2014-01-01

    During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid “family”. Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. PMID:24838141

  20. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure

    PubMed Central

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Ashfaq, Samir; de los Santos, Mario; Grant, Stephanie; DeMorrow, Sharon

    2017-01-01

    Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1−/−) mice were fed a control, cholestyramine-containing, or bile acid–containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1−/− mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure. PMID:26683664

  1. A New Insight into the Physiological Role of Bile Salt Hydrolase among Intestinal Bacteria from the Genus Bifidobacterium

    PubMed Central

    Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław

    2014-01-01

    This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche. PMID:25470405

  2. Prevention of induced atherosclerosis by diversion of bile or blockade of intestinal lymphatics in dogs.

    PubMed Central

    Wilk, P J; Karipineni, R C; Pertsemlidis, D; Danese, C A

    1976-01-01

    The prevention of induced hypercholesterolemia and atherosclerosis was studied by means of intestinal lymphatic blockade and of bile diversion in the dog. Hypercholesterolemia and atherosclerosis were produced by high cholesterol feeding after induction of hypothyroidism with radio-iodine plus thiouracil. Complete diversion of bile, by shunting all bile into the urinary bladder, effectively prevented hypercholesterolemia and atherosclerosis; in contrast, blockade of the intestinal lymphatics failed to prevent the consequences of the atherogenic regimen, because of the development of collateral lymphatic channels. Images Fig. 3. Fig. 4. Fig. 5. PMID:817679

  3. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  4. Evaluating the beneficial and detrimental effects of bile pigments in early and later life.

    PubMed

    Dennery, Phyllis A

    2012-01-01

    The heme degradation pathway has been conserved throughout phylogeny and allows for the removal of a pro-oxidant and the generation of unique molecules including bile pigments with important cellular functions. The impact of bile pigments on health and disease are reviewed, as is the special circumstance of neonatal hyperbilirubinemia. In addition, the importance of promoter polymorphisms in the UDP-glucuronosyl transferase gene (UGTA1), which is key to the elimination of excess bilirubin and to the prevention of its toxicity, are discussed. Overall, the duality of bile pigments as either cytoprotective or toxic molecules is highlighted.

  5. Bile Ducts in Regenerative Liver Nodules of Alagille Patients Are Not the Result of Genetic Mosaicism.

    PubMed

    Rougemont, Anne-Laure; Alvarez, Fernando; McLin, Valérie A; Guiochon-Mantel, Anne; Bouligand, Jérome; Clément, Sophie; Tonson La Tour, Aude; Wildhaber, Barbara E; Rubbia-Brandt, Laura; Sartelet, Hervé

    2015-07-01

    Alagille syndrome (ALGS) is a complex, multisystem disease associated with mutations in the JAG1 gene. In the liver, ALGS is characterized by paucity of intrahepatic bile ducts. Gene dosage analysis performed on a large, central regenerative nodule with preserved interlobular bile ducts of 2 unrelated ALGS patients, and on surrounding cirrhotic and ductopenic liver parenchyma, showed in both cases complete JAG1 heterozygous deletion in the regenerative nodule and the ductopenic liver, with no differences in gene dosage. Thus, JAG1 mosaicism and differential haploinsufficiency do not explain the presence of bile ducts in centrally located regenerative nodules.

  6. Bile salt surfactants in micellar electrokinetic capillary chromatography: Application to hydrophobic molecule separations

    SciTech Connect

    Cole, R.O.; Sepaniak, M.J. . Dept. of Chemistry); Hinze, W.L. . Dept. of Chemistry); Gorse, J.; Oldiges, K. . Dept. of Chemistry)

    1990-01-01

    Bile Salt surfactants are used in the micellar electrokinetic capillary chromatography (MECC) separation of various hydrophobic compounds. The use of methanol in the mobile phase allows the separation of previously intractable compounds including polyaromatic hydrocarbons. The effects of methanol on critical micelle concentration is investigated for sodium dodecyl sulfate (SDS) and the bile salt sodium cholate. It is determined that the unique structure of the bile salt micelle is much more tolerant to the addition of organic solvents than SDS, thereby increasing the scope of applications of MECC to include hydrophobic compounds. 30 refs., 9 figs.

  7. Use of a simple enzymatic assay for cholesterol analysis in human bile.

    PubMed

    Fromm, H; Amin, P; Klein, H; Kupke, I

    1980-02-01

    An enzymatic technique for cholesterol analysis in serum was applied to human bile. The analytical yield was very satisfactory in experiments in which known amounts of cholesterol were added to untreated, as well as Millipore-filtered, samples of human bile. The analytical results of the enzymatic test agreed closely with those of a method utilizing the Liebermann-Burchard reaction. The enzymatic assay of cholesterol in bile proved to be sensitive and precise. In comparison to other methods of biliary cholesterol determination, it has the advantage of being rapid and simple.

  8. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242

    PubMed Central

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia. PMID:25612224

  9. Steam Cooking Significantly Improves In Vitro Bile Acid Binding of Collard Greens, Kale, Mustard Greens, Broccoli, Green Bell Pepper and Cabbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowering recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increasing the r...

  10. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    PubMed

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  11. Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile.

    PubMed Central

    Stocker, R; Ames, B N

    1987-01-01

    Conjugated bilirubin and copper ions at their physiological concentrations in bile may play an important role in hydroperoxide and other detoxification. Conjugated bilirubin may also be an important chain-breaking antioxidant preventing lipid peroxidation. Bilirubin ditaurine (BR-DT), a water-soluble model compound of conjugated bilirubin, completely prevents the peroxyl radical-induced oxidation of phosphatidylcholine in either multilamellar liposomes or micelles. This antioxidant activity is associated with the bilirubin moiety of BR-DT, since taurine alone is inefficient in scavenging peroxyl radicals. The number of peroxyl radicals trapped per molecule of BR-DT is 1.9, compared to 4.7 trapped per molecule of biliverdin, the water-soluble physiological precursor of bilirubin. Peroxyl radical-induced oxidation of BR-DT results in a spectral shift in maximal absorbance toward shorter wavelengths; biliverdin is not formed as a major oxidation product. BR-DT, but neither taurine nor biliverdin, greatly accelerates the cupric ion-catalyzed decomposition of linoleic acid hydroperoxide. In the presence of ferric ion, BR-DT shows no lipid hydroperoxide-degrading activity. Addition of cupric ion to BR-DT results in formation of a complex with spectral features similar to that of a biliverdin-cupric ion complex, indicating that BR-DT and cupric ion undergo redox reactions. PMID:3479781

  12. Profiling serum bile acid glucuronides in humans: gender divergences, genetic determinants, and response to fenofibrate.

    PubMed

    Trottier, J; Perreault, M; Rudkowska, I; Levy, C; Dallaire-Theroux, A; Verreault, M; Caron, P; Staels, B; Vohl, M-C; Straka, R J; Barbier, O

    2013-10-01

    Glucuronidation, catalyzed by uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic bile acids (BAs). We aimed to (i) characterize the circulating BA-glucuronide (BA-G) pool composition in humans, (ii) determine how sex and UGT polymorphisms influence this composition, and (iii) analyze the effects of the lipid-lowering drug fenofibrate on the circulating BA-G profile in 300 volunteers and 5 cholestatic patients. Eleven BA-Gs were determined in pre- and postfenofibrate samples. Men exhibited higher BA-G concentrations, and various genotype/BA-G associations were discovered in relevant UGT genes. The chenodeoxycholic acid-3G (CDCA-3G) concentration was associated with the UGT2B7 802C>T polymorphism. Glucuronidation assays confirmed the predominant role of UGT2B7 and UGT1A4 in CDCA-3G formation. Fenofibrate exposure increased the serum levels of five BA-G species, including CDCA-3G, and upregulated expression of UGT1A4, but not UGT2B7, in hepatic cells. This study demonstrated that fenofibrate stimulates BA glucuronidation in humans and thus reduces BA toxicity in the liver.

  13. Epithelial-mesenchymal transitions of bile duct epithelial cells in primary hepatolithiasis.

    PubMed

    Zhao, Lijin; Yang, Rigao; Cheng, Long; Wang, Maijian; Jiang, Yan; Wang, Shuguang

    2010-07-01

    The purpose of this study was to explore the role of epithelial-mesenchymal transition in the pathogenesis of hepatolithiasis. Thirty-one patients with primary hepatolithiasis were enrolled in this study. Expressions of E-cadherin, alpha-catenin, alpha-SMA, vimentin, S100A4, TGF-beta1 and P-smad2/3 in hepatolithiasis bile duct epithelial cells were examined by immunohistochemistry staining. The results showed that the expressions of the epithelial markers E-cadherin and alpha-catenin were frequently lost in hepatolithiasis (32.3% and 25.9% of cases, respectively), while the mesenchymal markers vimentin, alpha-SMA and S100A4 were found to be present in hepatolithiasis (35.5%, 29.0%, and 32.3% of cases, respectively). The increased mesenchymal marker expression was correlated with decreased epithelial marker expression. The expressions of TGF-beta1 and P-smad2/3 in hepatolithiasis were correlated with the expression of S100A4. These data indicate that TGF-beta1-mediated epithelial-mesenchymal transition might be involved in the formation of hepatolithiasis.

  14. Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites

    PubMed Central

    2010-01-01

    Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates

  15. Glucuronic acid conjugates of bilirubin-IXα in normal bile compared with post-obstructive bile. Transformation of the 1-O-acylglucuronide into 2-, 3-, and 4-O-acylglucuronides

    PubMed Central

    Compernolle, Frans; Van Hees, Gustaaf P.; Blanckaert, Norbert; Heirwegh, Karel P. M.

    1978-01-01

    Structures have been determined for bilirubin-IXα conjugates in freshly collected bile of normal rats, dogs and man and in post-obstructive bile of man and rats. The originally secreted conjugate has been characterized as azopigment (I), i.e. a 1-O-acyl-β-d-glucopyranuronic acid glycoside. Conversion of the acetylated methyl ester of azopigment (I) into methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-β-d-glucopyranuronate (V) indicates the pyranose ring structure for the carbohydrate and a C-1 attachment for the bilirubin-IXα acyl group. Alternative procedures for deconjugation of azopigment (I) and its derivatives are also described. In post-obstructive bile, the 1-O-acylglucuronide is converted into 2-, 3- and 4-O-acylglucuronides via sequential intramolecular migrations of the bilirubin acyl group. The following approach was utilized. (1) The tetrapyrrole conjugates were cleaved to dipyrrolic aniline and ethyl anthranilate azopigments, and the azopigments were separated as the acids or methyl esters. (2) The isomeric methyl esters were characterized by mass spectral analysis of the acetates and silyl ethers. (3) The free glycosidic function was demonstrated by 1-oxime and 1-methoxime derivative formation. (4) The position of the dipyrrolic O-acyl group was determined for the methyl esters by protecting the free hydroxyl groups of the glucuronic acid moieties as the acetals formed with ethyl vinyl ether and by further conversion of the carbohydrates into partially methylated alditol acetates. These were analysed by using g.l.c.–mass spectrometry. The relevance of the present results with regard to previous reports on disaccharidic conjugates is discussed. Details of procedures for the formation of chemical derivatives for g.l.c. and mass spectrometry have been deposited as Supplementary Publication SUP 50081 (15 pages) at the British Library Lending Division, Boston Spa, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in

  16. Progressive familial intrahepatic cholestasis and inborn errors of bile acid synthesis.

    PubMed

    Jankowska, Irena; Socha, Piotr

    2012-06-01

    Progressive familial intrahepatic cholestasis (PFIC), types 1, 2 and 3, are due to defects in genes involved in bile secretion (FIC1, BSEP, MDR3). PFIC and inborn errors of bile acid synthesis (IEBAS) often present in infancy with cholestasis. The distinctive feature of PFIC 1 and 2 and IEBAS is a normal level of GGT, while IEBAS are suspected in patients with low plasma bile acids concentration. Molecular testing, urinary bile acid analysis (IEBAS), liver biopsy and immuno-staining are used for the diagnosis. Some patients with PFIC can be successfully treated with ursodeoxycholic acid or partial external biliary diversion. IEBAS is treated with cholic acid. Liver transplantation is required for cirrhosis with liver failure. Hepatocarcinoma has been reported in PFIC2.

  17. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  18. Computer analysis of three-dimensional morphological characteristics of the bile duct

    NASA Astrophysics Data System (ADS)

    Ma, Jinyuan; Chen, Houjin; Peng, Yahui; Shang, Hua

    2017-01-01

    In this paper, a computer image-processing algorithm for analyzing the morphological characteristics of bile ducts in Magnetic Resonance Cholangiopancreatography (MRCP) images was proposed. The algorithm consisted of mathematical morphology methods including erosion, closing and skeletonization, and a spline curve fitting method to obtain the length and curvature of the center line of the bile duct. Of 10 cases, the average length of the bile duct was 14.56 cm. The maximum curvature was in the range of 0.111 2.339. These experimental results show that using the computer image-processing algorithm to assess the morphological characteristics of the bile duct is feasible and further research is needed to evaluate its potential clinical values.

  19. Bile salt adsorption ability of dietary fiber from named varieties of carrot at different developmental ages.

    PubMed

    Robertson, J A; Eastwood, M A; Yeoman, M M

    1980-06-01

    The adsorption of bile salts to fiber has been measured using fiber prepared from different varieties of carrot at different developmental ages. We investigated the carrot varieties Altrinchan and Chantenay and used the bile salts deoxycholate and glycocholate. The method used to measure adsorption distinguished between true adsorption and apparent adsorption due to bile salts trapped within the interstices of the fiber matrix. Adsorption ability was influenced by the developmental age of the carrot but not by variety. Adsorption ability was at a maximum when the carrot fresh weight was at a maximum. The adsorption ability measured was true adsorption and was not dependent on the water holding capacity of the fiber. Deoxycholate was better adsorbed than glycocholate and the results suggest that the developmental age of a fiber source could be important when formulating diets designed to influence bile salt metabolism.

  20. Surgical treatment of incarcerated calculi via laparoscopic bile duct exploration using laparotomy biliary lithotomy forceps

    PubMed Central

    Jiang, H.; Wang, S. Y.; Jin, X. L.; Jin, J. C.; Gu, H. B.; Zhang, F. M.

    2016-01-01

    The present study aimed to investigate the practicability and clinical value of applying laparotomy biliary lithotomy forceps to laparoscopic bile duct exploration (LCBDE) for the surgical treatment of incarcerated calculi. A total of 63 patients were diagnosed with cholecystolithiasis and choledocholithiasis. The present study performed a retrospective analysis of clinical samples from 16 of these patients who had incarcerated calculi at the terminus of the common bile duct, and who had been treated with laparoscopic cholecystectomy and LCBDE. During the procedure, laparotomy biliary lithotomy forceps were used to gently remove the calculi from the common bile duct. Of the surgical procedures that used laparotomy biliary lithotomy forceps, one case was unsuccessful and 15 cases were successful. The results of the present study suggested that it may be clinically advisable to use laparotomy biliary lithotomy forceps to remove incarcerated calculi from the common bile duct during a laparoscopy, since it is easy, economical and effective. PMID:27698730

  1. Probiotics--interactions with bile acids and impact on cholesterol metabolism.

    PubMed

    Pavlović, Nebojša; Stankov, Karmen; Mikov, Momir

    2012-12-01

    The use of probiotics, alone or in interaction with bile acids, is a modern strategy in the prevention and treatment of hypercholesterolemia. Numerous mechanisms for hypocholesterolemic effect of probiotics have been hypothesized, based mostly on in vitro evidence. Interaction with bile acids through reaction of deconjugation catalyzed by bile salt hydrolase enzymes (BSH) is considered as the main mechanism of cholesterol-lowering effects of probiotic bacteria, but it has been reported that microbial BSH activity could be potentially detrimental to the human host. There are several approaches for prevention of possible side effects associated with BSH activity, which at the same time increase the viability of probiotics in the intestines and also in food matrices. The aim of our study was to summarize present knowledge of probiotics-bile acids interactions, with special reference to cholesterol-lowering mechanisms of probiotics, and to report novel biotechnological approaches for increasing the pharmacological benefits of probiotics.

  2. Somatostatin analogue (octreotide) inhibits bile duct epithelial cell proliferation and fibrosis after extrahepatic biliary obstruction.

    PubMed Central

    Tracy, T. F.; Tector, A. J.; Goerke, M. E.; Kitchen, S.; Lagunoff, D.

    1993-01-01

    Extrahepatic biliary obstruction leads to bile duct epithelial cell proliferation. Somatostatin and its analogue, octreotide, have been shown to inhibit DNA synthesis and proliferation in hepatocytes. We investigated the effect of octreotide on the biliary epithelial cell proliferative responses to biliary obstruction. Male Sprague-Dawley rats underwent common bile duct ligation and subcutaneous injection of either saline or octreotide (6 micrograms/kg) twice daily for 7 days. Morphometric analysis of hepatocytes, bile duct epithelial cells, and periportal connective tissue was performed by computerized point counting. Hepatocyte volume was preserved with octreotide treatment, which also significantly decreased bile duct proliferation and periportal extracellular matrix deposition in response to biliary obstruction compared with saline treated, duct-ligated animals. These results indicate that octreotide prevents the morphological changes that accompany extrahepatic biliary obstruction. Images Figure 1 PMID:8256850

  3. Application of ultra performance liquid chromatography-mass spectrometry to profiling rat and dog bile.

    PubMed

    Plumb, Robert S; Rainville, Paul D; Potts, Warren B; Johnson, Kelly A; Gika, Eleni; Wilson, Ian D

    2009-05-01

    Reversed-phase gradient UPLC-ESI-MS, in both positive and negative ionization modes, has been applied to the analysis of untreated bile obtained from bile-cannulated rats and dogs. The use of UPLC provided a high-resolution system that enabled global metabolite profiles of bile from the two species to be obtained that were suitable for metabolomic and metabonomic applications. When these metabolite profiles were analyzed using unsupervised multivariate statistical methods, based on principle components analysis (PCA), they were correctly classified by species of origin. Conventional approaches to characterizing sample components via, for example, mass and retention time compared to authentic standards resulted in the identification of a range of bile acids. In addition, the value of using an "MSE" approach to simplify the problem of classifying and identifying the metabolites present in the sample (as e.g., sulfates or taurine conjugates) was demonstrated.

  4. Radiofrequency Ablation of the Main Lesion of Hepatocellular Carcinoma and Bile Duct Tumor Thrombus as a Radical Therapeutic Alternative

    PubMed Central

    Gao, Jun; Zhang, Qingshuai; Zhang, Jun; Kong, Jian; Wang, Shaohong; Ding, Xuemei; Ke, Shan; Sun, Wenbing

    2015-01-01

    Abstract Hepatocellular carcinoma (HCC) with bile duct tumor thrombus (BDTT) formation is a rare entity found microscopically in 1% to 9.2% of resected specimens. The ideal treatment for HCC is surgical resection. However, because of poor hepatic functional reserve in patients with HCC, most tumors are unresectable. Here, we report 2 cases of HCC with BDTT type III accompanied by hepatic dysfunction that were successfully treated with radiofrequency (RF) ablation. We used RF ablation as both a radical therapeutic method and an efficient way to control bleeding from the origin of BDTT after BDTT removal. At the time of writing, the 2 patients have been disease-free for 16 and 12 months, respectively. Our results show that RF ablation may be used as a radical therapeutic alternative for HCC with BDTT in patients with liver cirrhosis and obstructive jaundice. PMID:26166111

  5. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria.

    PubMed

    Wegner, Katrin; Just, Sarah; Gau, Laura; Mueller, Henrike; Gérard, Philippe; Lepage, Patricia; Clavel, Thomas; Rohn, Sascha

    2017-02-01

    Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42-11.07 %) and inter-day (2.11-12.71 %) analyses and achieved good recovery rates for representative analytes (83.7-107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.

  6. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice.

    PubMed

    Donepudi, Ajay C; Boehme, Shannon; Li, Feng; Chiang, John Y L

    2017-03-01

    Bile acids are signaling molecules that play a critical role in regulation of hepatic metabolic homeostasis by activating nuclear farnesoid X receptor (Fxr) and membrane G-protein-coupled receptor (Takeda G-protein-coupled receptor 5; Tgr5). The role of FXR in regulation of bile acid synthesis and hepatic metabolism has been studied extensively. However, the role of TGR5 in hepatic metabolism has not been explored. The liver plays a central role in lipid metabolism, and impaired response to fasting and feeding contributes to steatosis and nonalcoholic fatty liver and obesity. We have performed a detailed analysis of gallbladder bile acid and lipid metabolism in Tgr5(-/-) mice in both free-fed and fasted conditions. Lipid profiles of serum, liver and adipose tissues, bile acid composition, energy metabolism, and messenger RNA and protein expression of the genes involved in lipid metabolism were analyzed. Results showed that deficiency of the Tgr5 gene in mice alleviated fasting-induced hepatic lipid accumulation. Expression of liver oxysterol 7α-hydroxylase in the alternative bile acid synthesis pathway was reduced. Analysis of gallbladder bile acid composition showed marked increase of taurocholic acid and decrease of tauro-α and β-muricholic acid in Tgr5(-/-) mice. Tgr5(-/-) mice had increased hepatic fatty acid oxidation rate and decreased hepatic fatty acid uptake. Interestingly, fasting induction of fibroblast growth factor 21 in liver was attenuated. In addition, fasted Tgr5(-/-) mice had increased activation of hepatic growth hormone-signal transducer and activator of transcription 5 (GH-Stat5) signaling compared to wild-type mice.

  7. Transport of fluorescent bile acids by the isolated perfused rat liver: kinetics, sequestration, and mobilization.

    PubMed

    Holzinger, F; Schteingart, C D; Ton-Nu, H T; Cerrè, C; Steinbach, J H; Yeh, H Z; Hofmann, A F

    1998-08-01

    Hepatocyte transport of six fluorescent bile acids containing nitrobenzoxadiazolyl (NBD) or a fluorescein derivative on the side chain was compared with that of natural bile acids using the single-pass perfused rat liver. Compounds were infused at 40 nmol/g liver min for 15 minutes; hepatic uptake and biliary recovery were measured; fractional extraction, intrinsic basolateral clearance, and sequestration (nonrecovery after 45 minutes of additional perfusion) were calculated. Fluorescent bile acids were efficiently extracted during the first 3 minutes (70%-97%), but net extraction decreased with time mostly because of regurgitation into the perfusate. For cholylglycine and ursodeoxycholylglycine (UDC-glycine), extraction was 94% to 99%, and regurgitation did not occur. Intrinsic hepatic clearance of fluorescent bile acids (2-7 mL/g liver x min) was lower than that of cholylglycine (9.0 +/- 0.6; mean +/- SD) and UDC-glycine (21.4 +/- 0.4). Sequestration at 60 minutes was 8% to 26% for fluorescent bile acids with a cholyl moiety (cholylglycylaminofluorescein [CGamF], cholyllysylfluorescein [C-L-F], cholyl-[N epsilon-NBD]-lysine [C-L-NBD], and cholylaminofluorescein [CamF]), 32% for ursodeoxycholylaminofluorescein (UDCamF), and 88% for ursodeoxycholyl-(N epsilon-NBD)lysine (UDC-L-NBD). Cholylglycine and UDC-glycine had <3% retention. Biliary secretion of sequestered UDCamF, but not of UDC-L-NBD, was induced by adding dibutyryl cyclic adenosine monophosphate (DBcAMP) to the perfusate, possibly by translocation to the canaliculus of pericanalicular vesicles containing fluorescent bile acids. Biliary secretion of UDC-L-NBD, but not of UDCamF, was induced by adding cholyltaurine or UDC-taurine, possibly by inhibition of binding to intracellular constituents or of transport into organelles. It is concluded that fluorescent bile acids are efficiently transported across the basolateral membrane, but in contrast to natural conjugated bile acids, are sequestered in the

  8. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  9. Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present in Brain?*

    PubMed Central

    Ogundare, Michael; Theofilopoulos, Spyridon; Lockhart, Andrew; Hall, Leslie J.; Arenas, Ernest; Sjövall, Jan; Brenton, A. Gareth; Wang, Yuqin; Griffiths, William J.

    2010-01-01

    In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C27 and C24 intermediates of the bile acid biosynthetic pathways with structures corresponding to 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 ± 2.826 ng/ml, mean ± S.D., six subjects), 3β-hydroxycholest-5-en-26-oic acid (0.416 ± 0.193 ng/ml), 7α,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 ± 0.543 ng/ml), and 7α-hydroxy-3-oxochol-4-en-24-oic acid (0.172 ± 0.085 ng/ml), and the C26 sterol 7α-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 ± 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3β-hydroxycholest-5-en-26-oic acid and 3β,7α-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7α-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7α-Hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3β,7α-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239–248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease. PMID:19996111

  10. Xenobiotic, bile acid, and cholesterol transporters: function and regulation.

    PubMed

    Klaassen, Curtis D; Aleksunes, Lauren M

    2010-03-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of

  11. Clinical presentations and outcomes of bile duct loss caused by drugs and herbal and dietary supplements.

    PubMed

    Bonkovsky, Herbert L; Kleiner, David E; Gu, Jiezhun; Odin, Joseph A; Russo, Mark W; Navarro, Victor M; Fontana, Robert J; Ghabril, Marwan S; Barnhart, Huiman; Hoofnagle, Jay H

    2017-04-01

    Bile duct loss during the course of drug-induced liver injury is uncommon, but can be an indication of vanishing bile duct syndrome (VBDS). In this work, we assess the frequency, causes, clinical features, and outcomes of cases of drug-induced liver injury with histologically proven bile duct loss. All cases of drug-induced liver injury enrolled into a prospective database over a 10-year period that had undergone liver biopsies (n = 363) were scored for the presence of bile duct loss and assessed for clinical and laboratory features, causes, and outcomes. Twenty-six of the 363 patients (7%) with drug-, herbal-, or dietary-supplement-associated liver injury had bile duct loss on liver biopsy, which was moderate to severe (<50% of portal areas with bile ducts) in 14 and mild (50%-75%) in 12. The presenting clinical features of the 26 cases varied, but the most common clinical pattern was a severe cholestatic hepatitis. The implicated agents included amoxicillin/clavulanate (n = 3), temozolomide (n = 3), various herbal products (n = 3), azithromycin (n = 2), and 15 other medications or dietary supplements. Compared to those without, those with bile duct loss were more likely to develop chronic liver injury (94% vs. 47%), which was usually cholestatic and sometimes severe. Five patients died and 2 others underwent liver transplantation for progressive cholestasis despite treatment with corticosteroids and ursodiol. The most predictive factor of poor outcome was the degree of bile duct loss on liver biopsy.

  12. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation.

    PubMed

    Houtman, Corine J; Van Oostveen, Annemiek M; Brouwer, Abraham; Lamoree, Marja H; Legler, Juliette

    2004-12-01

    Conjugates of estrogenic chemicals, endogenous as well as xenobiotic, are mainly excreted via bile into the intestine. Therefore, measurement of estrogenic activity in bile yields useful information about an organism's internal exposure to (xeno-)estrogens. Although previous studies in The Netherlands have reported estrogenic activity in male fish bile, the contribution of natural hormones and xenobiotic substances to this activity is unknown. To identify compounds responsible for estrogenic activity in fish bile, we developed a bioassay-directed fractionation method for estrogenic chemicals. In this approach, the in vitro reporter gene assay ER-CALUX (Estrogen Responsive Chemical Activated Luciferase Gene Expression) was used to assess estrogenic activity in deconjugated bile samples and to direct RP-HPLC fractionation and chemical analysis (by GC-MS) of estrogenic compounds. The method was applied to bile from male breams (Abramis brama) collected at three locations in The Netherlands. At one of these locations, the River Dommel, extremely high levels of plasma vitellogenin and a high incidence of intersex gonads in these male breams have previously been observed, indicating the exposure to estrogens. In this study, the natural hormones 17beta-estradiol, estrone, and estriol accounted for the majority of estrogenic activity in male bream bile. At the River Dommel, the synthetic contraceptive pill component ethynylestradiol was found in effective concentrations as well. The detected natural and synthetic hormones may be responsible forthe estrogenic effects observed in wild bream from this location. Furthermore, a large number of xenobiotic chemicals was detected at relatively high levels in bile, including triclosan, chloroxylenol, and clorophene. Although chloroxylenol was shown for the first time to be weakly estrogenic, these compounds did not contribute significantly to the estrogenic activity observed.

  13. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography.

    PubMed

    Ghaffarzadegan, T; Nyman, M; Jönsson, J Å; Sandahl, M

    2014-01-01

    A method based on hollow-fibre liquid phase microextraction combined with gas chromatography was developed for determination of specific bile acids in caecal materials of rats. Nine unconjugated bile acids, including the primary bile acids (cholic acid, chenodeoxycholic acid and α-muricholic acid) and the secondary bile acids (lithocholic acid, deoxycholic acid, ursodeoxycholic acid, hyodeoxycholic acid, β-muricholic acid and ω-muricholic acid) were quantified. Extraction conditions were evaluated, including: sample pH, type of organic solvent and amount of caecal material to be extracted. To compensate for sample matrix effects during extraction the method of standard addition was applied. The satisfactory linearity (r(2)>0.9840), high recovery (84.2-108.7%) and good intra-assay (6.3-10.6%) and inter-assay (6.9-11.1%) precision illustrated the good performance of the present method. The method is rapid, simple and capable of detecting and determining bile acids with limit of detection (LOD) ranged from 0.002 to 0.067μg/mL and limits of quantification (LOQ) varied from 0.006 to 0.224μg/mL. The results indicated that the concentration of some secondary bile acids, which usually are associated with health problems, were lower in rats fed with fermentable dietary fibre compared with a fibre free control diet, while the concentration of primary bile acids, usually connected with positive health effects, were higher in rats fed with diets containing dietary fibre. Of the dietary fibres, guar gum and to some extent the mixture of pectin+guar gum had the most positive effects. Thus, it was concluded that the composition of bile acids can be affected by the type of diet.

  14. Analysis of chicken bile by gel precipitation reactions using a lectin in the place of antibody.

    PubMed

    Cotter, P F

    2000-09-01

    A lectin obtained from black turtle beans (BTB) was precipitated with IgA in chicken bile samples in various forms of agarose gel systems. Ouchterlony-type double-diffusion (ODD) precipitation patterns between the lectin, bile IgA, and heavy chain-specific antibody contained spurs of the type suggestive of partial immunologic identity. The immunoelectrophoresis precipitation patterns between the same three reactants were mirror images and fused on the cathodic side of the immunoelectrophoresis origin. In addition to use in ODD-type gels, BTB could also be incorporated into agarose gels suitable for Mancini (radial immunodiffusion) or Laurell-type rocket electrophoresis. Bile samples obtained from Cornell lines OS and C, broiler breeder males, and University of California-Davis congenic lines were investigated using BTB- and antibody-based methods. The results of this study indicated that IgA was the most frequently detected isotype in bile, occurring in 139 of 156 (89%) samples. Most bile samples (128/156; 82%) also contained IgG, whereas fewer (19/156; 12%) contained IgM. Cornell lines appeared to differ from broiler breeders, having a higher frequency of IgM-positive samples. Of the total bile samples studied, 11% (17/156) of samples from broiler breeders and the Cornell lines appeared to be devoid of IgA; the bile of one broiler breeder was found to be devoid of all three isotypes. Instances were found in which bile samples shown to be negative for IgA by antibody-ODD were shown to be positive by BTB-ODD. Thus BTB appears to be a suitable adjunct to antibody for the study of IgA.

  15. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  16. [SUBSTANTIATION OF SURGICAL APPROACH IN IATROGENIC INJURIES OF THE BILE-EXCRETING DUCTS].

    PubMed

    Maistrenko, N A; Romashchenko, P N; Pryadko, A S; Aliev, A K

    2015-01-01

    The results of examination and treatment were analyzed in 51 patients with iatrogenic injuries of the bile-excreting ducts. Patients were divided into 5 groups according to international classification (EAES, 2013). It depended on the time of detection, the nature and scale of damage of the bile ducts, mechanism of injury, development of infectious and septic complications. Injuries of the main bile duct were detected intraoperatively (n = 14). The complete intersection was in 10 patients (the first group) and the edge intersection--in 4 cases (the second group). Iatrogenic injuries of the bile-excreting ducts were revealed in 37 patients in postoperative period. There were the complete intersections in 28 cases (the third group) and the edge intersections--in 7 cases (the fifth group). Injuries of additional bile ducts were determined in 2 patients (the fifth group). An analysis of the main qualifying features of iatrogenic injuries of the bile-excreting ducts allowed defining indications to reconstructive-restorative surgery in 60.8% patients, restorative operations--in 29.4%, an external drainage--in 5.8% and reclipping of additional bile ducts in relaparoscopy--in 3.9%. The rational surgical approach allowed obtaining perfect results in 65.8% and good, satisfactory results in immediate and long-term period with low postoperative lethality of 1.95%. The study of diagnostics results and treatment of the patients with iatrogenic injuries of the bile- excreting ducts indicated about reasonability of assessment of main factors, which are based on iatrogenic injuries according to the EAES classification. An individual program of examination and more rational variant of surgery could be chosen due to this approach, which provides minimization of negative results and good quality of life.

  17. Annular pancreas complicated by carcinoma of the bile duct: diagnosis by MR cholangiopancreatography and endoscopic ultrasonography.

    PubMed

    Yamaguchi, Y; Sugiyama, M; Sato, Y; Mine, Y; Yamato, T; Ishida, H; Takahashi, S

    2003-01-01

    It has been reported that annular pancreas should be evaluated for coexisting malignant tumors. However, no cases have been reported in which magnetic resonance cholangiopancreatography and endoscopic ultrasonography clearly demonstrated an annular pancreas complicated by bile duct carcinoma. We present a case that emphasizes the importance of magnetic resonance cholangiopancreatography and endoscopic ultrasonography in directly confirming a diagnosis of annular pancreas complicated by bile duct carcinoma.

  18. Photoactive bile salts with critical micellar concentration in the micromolar range.

    PubMed

    Gomez-Mendoza, Miguel; Marin, M Luisa; Miranda, Miguel A

    2016-05-14

    The aggregation behavior of bile salts is strongly dependent on the number of hydroxyl groups. Thus, cholic acid (CA), with three hydroxyls, starts forming aggregates at 15 mM, while deoxycholic, chenodeoxycholic or ursodeoxycholic acids, with two hydroxyls, start aggregating at 5-10 mM; for lithocholic acid, with only one hydroxyl group, aggregation is observed at lower concentration (2-3 mM). Here, the singular self-assembling properties of dansyl and naproxen derivatives of CA (3β-Dns-CA and 3β-NPX-CA, respectively) have been demonstrated on the basis of their photoactive properties. Thus, the emission spectra of 3β-Dns-CA registered at increasing concentrations (25-140 μM) showed a remarkable non-linear enhancement in the emission intensity accompanied by a hypsochromic shift of the maximum and up to a three-fold increase in the singlet lifetime. The inflection point at around 50-70 μM pointed to the formation of unprecedented assemblies at such low concentrations. In the case of 3β-NPX-CA, when the NPX relative triplet lifetime was plotted against concentration, a marked increase (up to two-fold) was observed at 40-70 μM, indicating the formation of new 3β-NPX-CA assemblies at ca. 50 μM. Additional evidence supporting the formation of new 3β-Dns-CA or 3β-NPX-CA assemblies at 40-70 μM was obtained from singlet excited state quenching experiments using iodide. Moreover, to address the potential formation of hybrid assemblies, 1 : 1 mixtures of 3β-Dns-CA and 3β-NPX-CA (2-60 μM, total concentration) were subjected to steady-state fluorescence experiments, and their behavior was compared to that of the pure photoactive derivatives. A lower increase in the emission was observed for 3β-NPX-CA in the mixture, while a huge increase was experienced by 3β-Dns-CA in the same concentration range (up to 60 μM total). A partial intermolecular energy transfer from NPX to Dns, consistent with their reported singlet energies, was revealed, pointing to the

  19. Removal of bile acids by two different extracorporeal liver support systems in acute-on-chronic liver failure.

    PubMed

    Stadlbauer, Vanessa; Krisper, Peter; Beuers, Ulrich; Haditsch, Bernd; Schneditz, Daniel; Jung, Aleksandra; Putz-Bankuti, Csilla; Holzer, Herwig; Trauner, Michael; Stauber, Rudolf E

    2007-01-01

    Acute-on-chronic liver failure (ACLF) is accompanied by marked intrahepatic cholestasis leading to accumulation of cytotoxic bile acids. Extracorporeal liver support systems efficiently remove bile acids, but their effect on bile acid composition in ACLF is unknown. The aim of the present study was to compare elimination of individual plasma bile acids by albumin dialysis (Molecular Adsorbents Recirculating System, MARS) and fractionated plasma separation (Prometheus). Eight consecutive patients with ACLF underwent alternating 6-hour sessions with MARS or Prometheus in a randomized, cross-over design. Serum samples were obtained before, during, and after each treatment, and individual bile acids including cholic acid and chenodeoxycholic acid (CDCA) were measured by gas chromatography. MARS and Prometheus removed total bile acids to a similar extent (reduction ratio, 45% and 46%, respectively). Both devices cleared cholic acid more efficiently than did CDCA. The molar fraction of CDCA (fCDCA) was elevated at baseline and correlated with the degree of liver dysfunction. Prometheus but not MARS treatments further increased fCDCA. Although both devices eliminate total bile acids to a similar extent, clearance of individual bile acids is different, leading to a slight change of the bile acid profile toward hydrophobic bile acids during Prometheus treatments.

  20. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  1. Mucin-producing bile duct carcinoma arising from primary sclerosing cholangitis: a case report.

    PubMed

    Yokomuro, Shigeki; Arima, Yasuo; Mizuguchi, Yoshiaki; Shimizu, Tetsuya; Kawahigashi, Yutaka; Kannda, Tomohiro; Arai, Masao; Uchida, Eiji; Akimaru, Koho; Tajiri, Takashi

    2007-02-01

    A 60-year-old woman with primary sclerosing cholangitis (PSC) and high levels of ALP, gamma-GTP, and DUPAN-2 was admitted to our institution for examination. The patient did not have ulcerative colitis or pancreatic intraductal papillary mucinous neoplasm. Imaging studies revealed atypical dilation of bile ducts in the left lobe of the liver. Repeated cytologic examinations of the bile showed atypical cells consistent with adenocarcinoma. The patient underwent extended resection of the left lobe of the liver and was found to have intraductal papillary carcinoma with associated mucin-producing bile duct carcinoma. This carcinoma fills dilated bile duct lumens with mucin. This tumor differs morphologically from typical cholangiocarcinoma, which is usually seen in the late stages of PSC. Just one case of mucin-producing bile duct carcinoma arising from PSC has been reported worldwide. The patient has had no signs of recurrence after 27 months. Patients with mucin-producing bile duct carcinoma, as in the case of its pancreatic counterpart, may have a better prognosis and a higher survival rate than patients with typical cholangiocarcinomas.

  2. Characterization of the bile and gall bladder microbiota of healthy pigs

    PubMed Central

    Jiménez, Esther; Sánchez, Borja; Farina, Annarita; Margolles, Abelardo; Rodríguez, Juan M

    2014-01-01

    Bile is a biological fluid synthesized in the liver, stored and concentrated in the gall bladder (interdigestive), and released into the duodenum after food intake. The microbial populations of different parts of mammal's gastrointestinal tract (stomach, small and large intestine) have been extensively studied; however, the characterization of bile microbiota had not been tackled until now. We have studied, by culture-dependent techniques and a 16S rRNA gene-based analysis, the microbiota present in the bile, gall bladder mucus, and biopsies of healthy sows. Also, we have identified the most abundant bacterial proteins in the bile samples. Our data show that the gall bladder ecosystem is mainly populated by members of the phyla Proteobacteria, Firmicutes, and Bacteroidetes. Furthermore, fluorescent in situ hybridization (FISH) and transmission electron microscopy (TEM) allowed us to visualize the presence of individual bacteria of different morphological types, in close association with either the epithelium or the erythrocytes, or inside the epithelial cells. Our work has generated new knowledge of bile microbial profiles and functions and might provide the basis for future studies on the relationship between bile microbiota, gut microbiota, and health. PMID:25336405

  3. Bile salt receptor complex activates a pathogenic type III secretion system

    PubMed Central

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N; Salomon, Dor; Tomchick, Diana R; Grishin, Nick V; Orth, Kim

    2016-01-01

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered that Vibrio parahaemolyticus VtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment. DOI: http://dx.doi.org/10.7554/eLife.15718.001 PMID:27377244

  4. Bile acid diarrhoea and FGF19: new views on diagnosis, pathogenesis and therapy.

    PubMed

    Walters, Julian R F

    2014-07-01

    Chronic diarrhoea induced by bile acids is common and the underlying mechanisms are linked to homeostatic regulation of hepatic bile acid synthesis by fibroblast growth factor 19 (FGF19). Increasing evidence, including that from several large case series using SeHCAT (selenium homocholic acid taurine) tests for diagnosis, indicates that bile acid diarrhoea (BAD) accounts for a sizeable proportion of patients who would otherwise be diagnosed with IBS. Studies of other approaches for diagnosis of BAD have shown increased bile acid synthesis, increased faecal levels of primary bile acids, dysbiosis and different urinary volatile organic compounds when compared with healthy controls or with other diseases. The role of the ileal hormone FGF19 in BAD has been strengthened: a prospective clinical study has confirmed low FGF19 levels in BAD, and so a test to measure these levels could be developed for diagnosis. In animal models, FGF19 depletion by antibodies produces severe diarrhoea. Bile acids affect colonic function through farnesoid X receptor (FXR) and TGR5 receptors. As well as these effects in the colon, FXR-dependent stimulation of ileal FGF19 production could be a logical mechanism to provide therapeutic benefit in BAD. Further studies of FGF19 in humans hold promise in providing novel treatments for this cause of chronic diarrhoea.

  5. Submicellar bile salts stimulate phosphatidylcholine transfer activity of sterol carrier protein 2.

    PubMed

    Leonard, A N; Cohen, D E

    1998-10-01

    To explore a potential role for sterol carrier protein 2 (SCP2, also known as non-specific lipid transfer protein) in hepatocellular phospholipid trafficking, we examined the influence of submicellar bile salt concentrations on phosphatidylcholine (PC) transfer activity of SCP2. We measured rate constants for first-order transfer of sn-1 palmitoyl, sn-2 parinaroyl PC, a naturally fluorescent self-quenching phospholipid between model membranes. Purified bovine liver SCP2 promoted transfer of PC from donor to acceptor small unilamellar vesicles. Taurine- and glycine-conjugated bile salts (anionic steroid detergent-like molecules), at concentrations well below their critical micellar concentrations, stimulated PC transfer activity of SCP2 80- to 140-fold. Rate constants increased in proportion to bile salt concentration, temperature, and bile salt-membrane binding affinity. Sodium taurofusidate, a conjugated fungal bile salt analog, also activated PC transfer whereas no effect was observed with the anionic and non-ionic straight chain detergents sodium dodecyl sulfate and octylglucoside, respectively. Thermodynamic and kinetic analyses of PC transfer support a mechanism in which bile salts stimulate SCP2 activity by partitioning into donor vesicles and enhancing membrane association of SCP2. These results imply that under physiological conditions, SCP2 may contribute to hepatocellular selection and transport of biliary PCs.

  6. Repair of a common bile duct defect with a decellularized ureteral graft

    PubMed Central

    Cheng, Yao; Xiong, Xian-Ze; Zhou, Rong-Xing; Deng, Yi-Lei; Jin, Yan-Wen; Lu, Jiong; Li, Fu-Yu; Cheng, Nan-Sheng

    2016-01-01

    AIM To evaluate the feasibility of repairing a common bile duct defect with a decellularized ureteral graft in a porcine model. METHODS Eighteen pigs were randomly divided into three groups. An approximately 1 cm segment of the common bile duct was excised from all the pigs. The defect was repaired using a 2 cm long decellularized ureteral graft over a T-tube (T-tube group, n = 6) or a silicone stent (stent group, n = 6). Six pigs underwent bile duct reconstruction with a graft alone (stentless group). The surviving animals were euthanized at 3 mo. Specimens of the common bile ducts were obtained for histological analysis. RESULTS The animals in the T-tube and stent groups survived until sacrifice. The blood test results were normal in both groups. The histology results showed a biliary epithelial layer covering the neo-bile duct. In contrast, all the animals in the stentless group died due to biliary peritonitis and cholangitis within two months post-surgery. Neither biliary epithelial cells nor accessory glands were observed at the graft sites in the stentless group. CONCLUSION Repair of a common bile duct defect with a decellularized ureteral graft appears to be feasible. A T-tube or intraluminal stent was necessary to reduce postoperative complications. PMID:28082809

  7. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  8. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics

    PubMed Central

    Ridlon, Jason M.; Bajaj, Jasmohan S.

    2015-01-01

    The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an “endocrine organ” with potential to alter host physiology, perhaps to their own favor. We propose the term “sterolbiome” to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed. PMID:26579434

  9. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids

    PubMed Central

    Cui, Julia Yue

    2015-01-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target. PMID:26261286

  10. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

    PubMed

    Klaassen, Curtis D; Cui, Julia Yue

    2015-10-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target.

  11. Bile salt receptor complex activates a pathogenic type III secretion system

    SciTech Connect

    Li, Peng; Rivera-Cancel, Giomar; Kinch, Lisa N.; Salomon, Dor; Tomchick, Diana R.; Grishin, Nick V.; Orth, Kim

    2016-07-05

    Bile is an important component of the human gastrointestinal tract with an essential role in food absorption and antimicrobial activities. Enteric bacterial pathogens have developed strategies to sense bile as an environmental cue to regulate virulence genes during infection. We discovered thatVibrio parahaemolyticusVtrC, along with VtrA and VtrB, are required for activating the virulence type III secretion system 2 in response to bile salts. The VtrA/VtrC complex activates VtrB in the presence of bile salts. The crystal structure of the periplasmic domains of the VtrA/VtrC heterodimer reveals a β-barrel with a hydrophobic inner chamber. A co-crystal structure of VtrA/VtrC with bile salt, along with biophysical and mutational analysis, demonstrates that the hydrophobic chamber binds bile salts and activates the virulence network. As part of a family of conserved signaling receptors, VtrA/VtrC provides structural and functional insights into the evolutionarily conserved mechanism used by bacteria to sense their environment.

  12. Complications of percutaneous transhepatic biliary drainage in patients with dilated and nondilated intrahepatic bile ducts.

    PubMed

    Weber, Andreas; Gaa, Jochen; Rosca, Bogdan; Born, Peter; Neu, Bruno; Schmid, Roland M; Prinz, Christian

    2009-12-01

    Percutaneous transhepatic biliary drainage (PTBD) have been described as an effective technique to obtain biliary access. Between January 1996 and December 2006, a total of 419 consecutive patients with endoscopically inaccessible bile ducts underwent PTBD. The current retrospective study evaluated success and complication rates of this invasive technique. PTBD was successful in 410/419 patients (97%). The success rate was equal in patients with dilated and nondilated bile ducts (p=0.820). In 39/419 patients (9%) procedure related complications could be observed. Major complications occurred in 17/419 patients (4%). Patients with nondilated intrahepatic bile ducts had significantly higher complication rates compared to patients with dilated intrahepatic bile ducts (14.5% vs. 6.9%, respectively [p=0.022]). Procedure related deaths were observed in 3 patients (0.7%). In conclusion, percutaneous transhepatic biliary drainage is an effective procedure in patients with dilated and nondilated intrahepatic bile ducts. However, patients with nondilated intrahepatic bile ducts showed a higher risk for procedure related complications.

  13. The Resistance of Esophageal Adenocarcinoma to Bile Salt Insult is Associated with Manganese Superoxide Dismutase Expression

    PubMed Central

    Schiffman, Suzanne C.; Li, Yan; Xiao, Deyi; Li, Xuanshe; Aiyer, Harini S.; Martin, Robert C.G.

    2010-01-01

    BACKGROUND Bile acids are implicated as etiologic agents in esophageal cancer. We sought to analyze the impact of bile acid exposure on esophageal epithelial cells, Barrett’s metaplastic cells (BE), esophageal adenocarcinoma cells (EAC) and esophageal squamous carcinoma cell (ESC). We sought to determine if cellular resistance is related to manganese superoxide dismutase expression. METHODS Cells were exposed to sodium choleate (CA), sodium deoxycholate (DCA), sodium glycocholate (GCA), sodium taurocholate (TCA) or a 1:1 mixture (MIX) of reagents at concentrations ranging 0.2 – 0.8 mM. Cell viability was evaluated by MTT assay. MnSOD expression was analyzed by Western Blot. Statistical analysis was performed using SPSS 17.0. RESULTS Bile salt exposure inhibited cell viability in esophageal squamous cells in time and growth dependent manner. There was a 50% decrease in cell viability from four to 24 hours. BE, EAC and ESC cell lines were more resistant to bile insult. In untreated cell lines, MnSOD expression was significantly decreased in EAC and ESC cell lines as compared to esophageal squamous epithelial cells and BE cells (p=0.002). Exposure of ESC cells to bile salt increased MnSOD expression. DISCUSSION The confirmation of the role of ROS and bile acids in esophageal carcinogenesis has interesting implications for chemoprevention in patients with reflux esophagitis and Barrett’s esophagus. Further studies are necessary to assess the preventative role of antioxidant supplementation PMID:20638682

  14. Bile Duct Ligation Induces ATZ Globule Clearance In a Mouse Model of Alpha-1 Antitrypsin Deficiency

    PubMed Central

    Khan, Zahida; Yokota, Shinichiro; Ono, Yoshihiro; Bell, Aaron W.; Stolz, Donna B.; Michalopoulos, George K.

    2016-01-01

    Background Alpha-1 antitrypsin deficiency (A1ATD) can progress to cirrhosis and hepatocellular carcinoma; however, not all patients are susceptible to severe liver disease. In A1ATD, a toxic gain-of-function mutation generates insoluble ATZ “globules” in hepatocytes, overwhelming protein clearance mechanisms. The relationship between bile acids and hepatocytic autophagy is less clear, but may involve altered gene expression pathways. Based on previous findings that bile duct ligation (BDL) induces autophagy, we hypothesized that retained bile acids may have hepatoprotective effects in PiZZ transgenic mice, which model A1ATD. Methods We performed BDL and partial BDL (pBDL) in PiZZ mice, followed by analysis of liver tissues. Results PiZZ liver subjected to BDL showed up to 50% clearance of ATZ globules, with increased expression of autophagy proteins. Analysis of transcription factors revealed significant changes. Surprisingly nuclear TFEB, a master regulator of autophagy, remained unchanged. pBDL confirmed that ATZ globule clearance was induced by localized stimuli rather than diet or systemic effects. Several genes involved in bile metabolism were over-expressed in globule-devoid hepatocytes, compared to globule-containing cells. Conclusions Retained bile acids led to a dramatic reduction of ATZ globules, with enhanced hepatocyte regeneration and autophagy. These findings support investigation of synthetic bile acids as potential autophagy-enhancing agents. PMID:27938510

  15. Iatrogenic bile duct injuries: Etiology, diagnosis and management

    PubMed Central

    Jabłońska, Beata; Lampe, Paweł

    2009-01-01

    Iatrogenic bile duct injuries (IBDI) remain an important problem in gastrointestinal surgery. They are most frequently caused by laparoscopic cholecystectomy which is one of the commonest surgical procedures in the world. The early and proper diagnosis of IBDI is very important for surgeons and gastroenterologists, because unrecognized IBDI lead to serious complications such as biliary cirrhosis, hepatic failure and death. Laboratory and radiological investigations play an important role in the diagnosis of biliary injuries. There are many classifications of IBDI. The most popular and simple classification of IBDI is the Bismuth scale. Endoscopic techniques are recommended for initial treatment of IBDI. When endoscopic treatment is not effective, surgical management is considered. Different surgical reconstructions are performed in patients with IBDI. According to the literature, Roux-en-Y hepaticojejunostomy is the most frequent surgical reconstruction and recommended by most authors. In the opinion of some authors, a more physiological and equally effective type of reconstruction is end-to-end ductal anastomosis. Long term results are the most important in the assessment of the effectiveness of IBDI treatment. There are a few classifications for the long term results in patients treated for IBDI; the Terblanche scale, based on clinical biliary symptoms, is regarded as the most useful classification. Proper diagnosis and treatment of IBDI may avoid many serious complications and improve quality of life. PMID:19725140

  16. The bile acid sensor FXR regulates insulin transcription and secretion.

    PubMed

    Renga, Barbara; Mencarelli, Andrea; Vavassori, Piero; Brancaleone, Vincenzo; Fiorucci, Stefano

    2010-03-01

    Farnesoid X Receptor plays an important role in maintaining bile acid, cholesterol homeostasis and glucose metabolism. Here we investigated whether FXR is expressed by pancreatic beta-cells and regulates insulin signaling in pancreatic beta-cell line and human islets. We found that FXR activation induces positive regulatory effects on glucose-induced insulin transcription and secretion by genomic and non-genomic activities. Genomic effects of FXR activation relay on the induction of the glucose regulated transcription factor KLF11. Indeed, results from silencing experiments of KLF11 demonstrate that this transcription factor is essential for FXR activity on glucose-induced insulin gene transcription. In addition FXR regulates insulin secretion by non-genomic effects. Thus, activation of FXR in betaTC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. In vivo experiments on Non Obese Diabetic (NOD) mice demonstrated that FXR activation delays development of signs of diabetes, hyperglycemia and glycosuria, by enhancing insulin secretion and by stimulating glucose uptake by the liver. These data established that an FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose.

  17. Congenital Intrahepatic Bile Duct Dilatation is a Potentially Curable Disease

    PubMed Central

    Mabrut, Jean-Yves; Partensky, Christian; Jaeck, Daniel; Oussoultzoglou, Elie; Baulieux, Jacques; Boillot, Olivier; Lerut, Jan; de Ville de Goyet, Jean; Hubert, Catherine; Otte, Jean-Bernard; Audet, Maxime; Ducerf, Christian; Gigot, Jean-François

    2007-01-01

    Objective: To report clinical presentation, perioperative outcome, and long-term results of surgical management of congenital intrahepatic bile duct (IHBD) dilatations (including Caroli disease) in a multi-institutional setting. Summary Background Data: Congenital IHBD dilatations are a rare congenital disorder predisposing to intrahepatic stones, cholangitis, and cholangiocarcinoma. The management remains difficult and controversial for bilobar forms of the disease or when concurrent congenital hepatic fibrosis is associated. Methods: From 1976 to 2004, 33 patients (range 11 to 79 years) were retrospectively enrolled. Disease extent into the liver was unilobar in 26 patients and bilobar in 7 patients (21%). Cholangiocarcinoma, congenital hepatic fibrosis, and intrahepatic stones were present in 2, 10, and 20 patients, respectively. Transplantations or liver resections were performed in 5 and 27 patients, respectively, whereas 1 asymptomatic patient was managed conservatively. Results: Postoperative mortality was nil. Postoperative complications occurred in 16 of 32 operated patients (50%) and additional procedures for residual stones were required in 5 patients. During a median follow-up of 80 months (1 patient being lost for follow-up) no patient developed metachronous carcinoma. Six patients (30%) developed recurrent intrahepatic stones but satisfactory late outcome was achieved in 27 patients (87%). Conclusions: Partial or total liver resection achieves satisfactory late outcome in congenital IHBD dilatations, when the affection is treated at an early stage and when the extent of liver resection is tailored to intrahepatic disease extent and takes into consideration the presence and severity of underlying chronic liver and renal diseases. PMID:17667502

  18. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    PubMed

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis.

  19. Melatonin Alleviates Liver Apoptosis in Bile Duct Ligation Young Rats

    PubMed Central

    Sheen, Jiunn-Ming; Chen, Yu-Chieh; Hsu, Mei-Hsin; Tain, You-Lin; Huang, Ying-Hsien; Tiao, Mao-Meng; Li, Shih-Wen; Huang, Li-Tung

    2016-01-01

    Bile duct ligation (BDL)-treated rats display cholestasis and liver damages. The potential protective activity of melatonin in young BDL rats in terms of apoptosis, mitochondrial function, and endoplasmic reticulum (ER) homeostasis has not yet been evaluated. Three groups of young male Sprague-Dawley rats were used: one group received laparotomy (Sham), a second group received BDL for two weeks (BDL), and a third group received BDL and intraperitoneal melatonin (100 mg/day) for two weeks (BDL + M). BDL group rats showed liver apoptosis, increased pro-inflamamtory mediators, caspases alterations, anti-apoptotic factors changes, and dysfunction of ER homeostasis. Melatonin effectively reversed apoptosis, mainly through intrinsic pathway and reversed ER stress. In addition, in vitro study showed melatonin exerted its effect mainly through the melatonin 2 receptor (MT2) in HepG2 cells. In conclusion, BDL in young rats caused liver apoptosis. Melatonin rescued the apoptotic changes via the intrinsic pathway, and possibly through the MT2 receptor. Melatonin also reversed ER stress induced by BDL. PMID:27556445

  20. Effect of bile on growth, peritoneal absorption, and blood clearance of Escherichia coli in E coli peritonitis

    SciTech Connect

    Andersson, R.; Schalen, C.; Tranberg, K.G. )

    1991-06-01

    The effect of intraperitoneal bile on growth, peritoneal absorption, and clearance of Escherichia coli was determined in E coli peritonitis in the rat. In E coli peritonitis, intraperitoneal bacterial counts gradually decreased, whereas they increased (after 2 hours) with subsequent development of bacteremia in E coli plus bile peritonitis. After an intraperitoneal injection of labeled bacteria, blood radioactivity was only initially lower in E coli plus bile peritonitis compared with E coli peritonitis. Clearance from blood was lower in E coli plus bile peritonitis than in E coli peritonitis. Organ localization was similar in E coli peritonitis and E coli plus bile peritonitis with decreased splenic, increased pulmonary, and unchanged hepatic uptakes compared with controls. Impaired peritoneal absorption of bacteria, together with impaired local host defense, is likely to enhance the noxious effect of bile in E coli peritonitis.

  1. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    PubMed Central

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2014-01-01

    Summary The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  2. Bile acid regulates c-Jun expression through the orphan nuclear receptor SHP induction in gastric cells

    SciTech Connect

    Park, Won Il; Park, Min Jung; An, Jin Kwang; Choi, Yung Hyun; Kim, Hye Young; Cheong, JaeHun Yang, Ung Suk

    2008-05-02

    Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}. These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.

  3. Evaluation of the Effects of Bile on the Arterial Tonus in a Rabbit Model

    PubMed Central

    Mezili, Candan; Tiftikçioğlu, Yiğit Özer; Şirinoğlu, Hakan; Çinar, Mehtap; Kismali, Erkan; Nart, Deniz; Gürler, Tahir; Alper, Mehmet

    2015-01-01

    Background: Hepatic artery anastomosis is an essential part of live-donor liver transplantation, and during this anastomosis, an unusual contact between bile and vessel ends is observed. In this study, the effects of this nonphysiological contact in a rabbit model were evaluated. Methods: The study was designed in 2 steps—in vitro and in vivo. Three groups were established for the in vitro study. In the first group, vessels were incubated in Krebs solution with 5% bile for 1 minute. In the second group, vessels were kept in Krebs solution with 5% bile for 5 minutes. Vessels in the control group were kept in Krebs solution without bile. All groups were examined for responses to vasodilator and vasoconstrictor agents in organ bath system. The specimens were evaluated immunohistochemically and histopathologically. In the in vivo step, microvascular anastomosis was performed bilaterally. Right carotid artery was anastomosed during bile contamination as study group, and left carotid artery was anastomosed without bile contamination as control group. Blood flow indexes were measured. Results: The results of the in vitro study revealed decreased responses to contractile and relaxing agents in the first study group compared with that of the control group (P < 0.0001). There was no response obtained in the second study group. The Doppler ultrasound results revealed no difference between preoperative and postoperative flow indexes (P > 0.05). There was no postoperative spasm in the study group. However, there was significant vasospasm in the control group (P < 0.05). Conclusions: Vessels exposed to bile have decreased contractile and relaxing responses, and this effect increases with exposure duration. PMID:26893995

  4. Characterization of a novel β-thioglucosidase CpTGG1 in Carica papaya and its substrate-dependent and ascorbic acid-independent O-β-glucosidase activity.

    PubMed

    Nong, Han; Zhang, Jia-Ming; Li, Ding-Qin; Wang, Meng; Sun, Xue-Piao; Zhu, Yun Judy; Meijer, Johan; Wang, Qin-Huang

    2010-10-01

    Plant thioglucosidases are the only known S-glycosidases in the large superfamily of glycosidases. These enzymes evolved more recently and are distributed mainly in Brassicales. Thioglucosidase research has focused mainly on the cruciferous crops due to their economic importance and cancer preventive benefits. In this study, we cloned a novel myrosinase gene, CpTGG1, from Carica papaya Linnaeus. and showed that it was expressed in the aboveground tissues in planta. The recombinant CpTGG1 expressed in Pichia pastoris catalyzed the hydrolysis of both sinigrin and glucotropaeolin (the only thioglucoside present in papaya), showing that CpTGG1 was indeed a functional myrosinase gene. Sequence alignment analysis indicated that CpTGG1 contained all the motifs conserved in functional myrosinases from crucifers, except for two aglycon-binding motifs, suggesting substrate priority variation of the non-cruciferous myrosinases. Using sinigrin as substrate, the apparent K(m) and V(max) values of recombinant CpTGG1 were 2.82 mM and 59.9 μmol min⁻¹ mg protein⁻¹ , respectively. The K(cat) /K(m) value was 23 s⁻¹ mM⁻¹ . O-β-glucosidase activity towards a variety of substrates were tested, CpTGG1 displayed substrate-dependent and ascorbic acid-independent O-β-glucosidase activity towards 2-nitrophenyl-β-D-glucopyranoside and 4-nitrophenyl-β-D-glucopyranoside, but was inactive towards glucovanillin and n-octyl-β-D-glucopyranoside. Phylogenetic analysis indicated CpTGG1 belongs to the MYR II subfamily of myrosinases.

  5. Dysregulation of bile acid homeostasis in parenteral nutrition mouse model

    PubMed Central

    Zhan, Le; Yang, Ill; Shen, Jianliang; Gorczyca, Ludwik; Memon, Naureen; Buckley, Brian T.

    2015-01-01

    Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE). Our results showed that PN altered the expression of genes involved in a variety of liver functions at the mRNA levels. PN increased liver gene expression of Cyp7a1 and markedly decreased that of Cyp8b1, Cyp7b1, Bsep, and Shp. CYP7A1 and CYP8B1 are important for synthesizing the total amount of BAs and regulating the hydrophobicity of BAs, respectively. Consistently, both the levels and the percentages of primary BAs as well as total non-12α-OH BAs increased significantly in the serum of PN mice compared with saline controls, whereas liver BA profiles were largely similar. The expression of several key liver-X receptor-α (LXRα) target genes involved in lipid synthesis was also increased in PN mouse livers. Retinoid acid-related orphan receptor-α (RORα) has been shown to induce the expression of Cyp8b1 and Cyp7b1, as well as to suppress LXRα function. Western blot showed significantly reduced nuclear migration of RORα protein in PN mouse livers. This study shows that continuous PN infusion with SOLE in mice leads to dysregulation of BA homeostasis. Alterations of liver RORα signaling in PN mice may be one of the mechanisms implicated in the pathogenesis of PNALD. PMID:26564717

  6. Effect of cholecystokinin-pancreozymin and secretin on the volume, composition, and enzymatic activity of hepatic bile in rabbits

    PubMed Central

    Kirchmayer, S.; Tarnawski, A.; Drożdż, H.; Cichecka, K.

    1972-01-01

    In rabbits given cholecystokinin-pancreozymin intravenously a statistically significant increase in bile volume and alkaline phosphatase (AP) activity was observed. There was also an increase in the total amount of protein, cholesterol, bicarbonates Na, K, Ca, Mg, and the total activity of alkaline phosphatase and leucineaminopeptidase (LAP) secreted in bile within 90 minutes after pancreozymin injection. Pancreozymin had no effect on the concentration and output of taurocholates and the activity of gammaglutamyltranspeptidase (GGTP) and alanineaminotransferase (ALAT) in bile. Secretin neither changes the volume nor the concentration of any of the investigated components in rabbit bile. PMID:18668839

  7. Spectral light source distribution variations to enhance discrimination of the common bile duct from surroundings in reflectance hyperspectral images

    NASA Astrophysics Data System (ADS)

    Litorja, Maritoni; Fein, Mira; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward

    2013-03-01

    The classification of anatomical features using hyperspectral imaging has been a common goal in biomedical hyperspectral imaging. Identification and location of the common bile duct is critical in cholecystectomies, one of the most common surgical procedures. In this study, surgical images where the common bile duct is visible to the surgeon during open surgeries of patients with normal bile ducts were acquired. The effect of the spectral distribution of simulated light sources on the scene color are explored with the objective of providing the optimum spectral light distribution that can enhance contrast between the common bile duct and surrounding tissue through luminance and color differences.

  8. Impact of bile salt adaptation of Lactobacillus delbrueckii subsp. lactis 200 on its interaction capacity with the gut.

    PubMed

    Burns, Patricia; Reinheimer, Jorge; Vinderola, Gabriel

    2011-10-01

    In a previous work, bile-salt-resistant derivatives were obtained from non-intestinal lactobacilli. The aim of this work was to investigate the impact of bile adaptation of Lactobacillus delbrueckii subsp. lactis 200 on morphology, surface properties, in vivo interaction capacity with the gut and ability to activate the gut immune response. Electron microscopy studies, growth kinetics in the presence of bovine and porcine bile, the capacity to deconjugate bile acids, hydrophobicity, autoaggregation and co-aggregation capacities were studied for the parental strain and its bile-resistant derivative in vitro. Additionally, survival in intestinal fluid, the interaction with the gut and the immunomodulating capacities were studied in mice. Bile salt adaptation conferred upon the adapted strain a higher capacity to withstand physiological concentrations of bile salts and greater survival capacity in intestinal fluid. However, bile salt exposure reduced cell hydrophobicity, autoaggregation and adhesion capacities, resulting in reduced persistence in the intestinal lumen and delayed capacity to activate the gut immune response. Insight into the effects of bile salts upon the interaction and immunomodulating capacity of lactobacilli with the gut is provided, relating in vitro and in vivo results.

  9. Bile composition, plasma lipids and oxidative hepatic damage induced by calcium supplementation; effects of goat or cow milk consumption.

    PubMed

    Díaz-Castro, Javier; Alférez, María J M; López-Aliaga, Inmaculada; Nestares, Teresa; Sánchez-Alcover, Ana; Campos, Margarita S

    2013-05-01

    Calcium-fortified foods, especially milk and dairy products are recommended to be consumed daily for groups in risk of nutritional deficiency, including children, young adults, menopausal women, pregnant women and the elderly, however Ca-supplementation promotes gallstone formation because Ca is a nucleating factor. The objective of the current study was to assess the influence of cow or goat milk-based diets, either normal or Ca-supplemented, on bile composition, biochemical parameters and hepatic antioxidant status. Weanling male rats were randomly divided into six groups, fed standard, goat or cow milk-based diets, either with normal Ca content (5.0 g/kg), or Ca-supplemented (10.0 g/kg), for 2 weeks. Bile cholesterol concentration and output was higher in rats fed goat milk in comparison with those fed with standard and cow-milk-based diet. Ca-supplementation increased lithogenic index with the standard and cow-milk based diets, this change was not observed with the goat milk diet. Activities of plasma transaminases were also lower in the animals fed Ca-supplemented goat milk, in comparison with the other diets assayed. In general, Ca-supplement in the diet led to an increase in the hepatic oxidative damage, with an increase in the activities of all the antioxidant enzymes studied in the standard and cow milk diet, but not with goat milk. The habitual consumption of goat milk has positive effects on the plasma lipid profile, biliary composition and hepatic antioxidant defence. In addition, under our experimental conditions, Ca-supplementation of this type of milk does not increase the lithogenic index, or hepatic oxidative damage.

  10. A multimedia CD-ROM tool to improve student understanding of bile salts and bilirubin metabolism: evaluation of its use in a medical hybrid PBL course.

    PubMed

    Azer, Samy A

    2005-03-01

    Over the last 35 years our understanding of bile salts, bilirubin metabolism, and hepatobiliary transport has progressively increased. From 1965 to the end of 2002, 3,610 articles and review papers have been published on hepatobiliary and enterocyte transport of bile salts. However, there is a lack of information in the content of current textbooks about hepatobiliary physiology, bile salt transporters, bile formation, mechanisms underlying cholestasis, and drug-induced liver injury. The use of an integrated multimedia program on the liver covering these gaps in textbooks may be useful to student learning. This study aims to 1) assess student views on a multimedia CD-ROM ("The Liver") integrating basic and clinical sciences related to the liver, bile salts, and bilirubin metabolism, 2) assess the usefulness of problem-based learning (PBL) cases included in the multimedia CD-ROM, and 3) assess student learning before and after use of the multimedia CD-ROM. A total of 106 first-year medical students (27 with and 79 without a prior university degree) at the University of Melbourne participated in this study. Students were tested on the liver, bile salts, and bilirubin metabolism before and after using the multimedia CD-ROM. After completing the multimedia CD-ROM, each student filled out a 5-point Likert scale questionnaire evaluating the features of the program and its usefulness to their learning. Results show that the aims of the package were clear to participants, the contents were logically organized and clear, the key concepts were easy to identify, the contents were pitched to an appropriate level, and the package was interactive and encouraged participants to reflect on their learning. Students also agreed that the assessment tools used in the program and the feedback provided were meaningful and helpful to their learning. No differences were found when responses were compared on the basis of academic background, gender, citizenship, or first language of

  11. Investigations of novel unsaturated bile salts of male sea lamprey as potential chemical cues

    USGS Publications Warehouse

    Johnson, Nicholas S.; Yun, Sang-Seon; Li, Weiming

    2014-01-01

    Sulfated bile salts function as chemical cues that coordinate reproduction in sea lamprey, Petromyzon marinus. 7α, 12α, 24-trihydroxy-5α-cholan-3-one 24-sulfate (3kPZS) is the most abundant known bile salt released by sexually mature male sea lampreys and attracts ovulated females. However, previous studies showed that the male-produced pheromone consists of unidentified components in addition to 3kPZS. Here, analysis of water conditioned with mature male sea lampreys indicated the presence of 4 oxidized, unsaturated compounds with molecular weights of 466 Da, 468 Da, and 2 of 470 Da. These compounds were not detectable in water conditioned with immature male sea lampreys. By using mass spectrometry, 4 A-ring unsaturated sulfated bile salts were tentatively identified from male washings as 2 4-ene, a 1-ene, and a 1,4-diene analogs. These were synthesized to determine if they attracted ovulated female sea lampreys to spawning nests in natural streams. One of the novel synthetic bile salts, 3 keto-1-ene PZS, attracted ovulated females to the point of application at a concentration of 10-12 M. This study reveals the structural diversity of bile salts in sea lamprey, some of which have been demonstrated to be pheromonal cues.

  12. Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery

    PubMed Central

    Flynn, Charles Robb; Albaugh, Vance L.; Cai, Steven; Cheung-Flynn, Joyce; Williams, Phillip E.; Brucker, Robert M.; Bordenstein, Seth R.; Guo, Yan; Wasserman, David H.; Abumrad, Naji N.

    2015-01-01

    Roux-en-Y gastric bypass (RYGB) is highly effective in reversing obesity and associated diabetes. Recent observations in humans suggest a contributing role of increased circulating bile acids in mediating such effects. Here we use a diet-induced obesity (DIO) mouse model and compare metabolic remission when bile flow is diverted through a gallbladder anastomosis to jejunum, ileum or duodenum (sham control). We find that only bile diversion to the ileum results in physiologic changes similar to RYGB, including sustained improvements in weight, glucose tolerance and hepatic steatosis despite differential effects on hepatic gene expression. Circulating free fatty acids and triglycerides decrease while bile acids increase, particularly conjugated tauro-β-muricholic acid, an FXR antagonist. Activity of the hepatic FXR/FGF15 signalling axis is reduced and associated with altered gut microbiota. Thus bile diversion, independent of surgical rearrangement of the gastrointestinal tract, imparts significant weight loss accompanied by improved glucose and lipid homeostasis that are hallmarks of RYGB. PMID:26197299

  13. Bile duct ligation in mice: induction of inflammatory liver injury and fibrosis by obstructive cholestasis.

    PubMed

    Tag, Carmen G; Sauer-Lehnen, Sibille; Weiskirchen, Sabine; Borkham-Kamphorst, Erawan; Tolba, René H; Tacke, Frank; Weiskirchen, Ralf

    2015-02-10

    In most vertebrates, the liver produces bile that is necessary to emulsify absorbed fats and enable the digestion of lipids in the small intestine as well as to excrete bilirubin and other metabolic products. In the liver, the experimental obstruction of the extrahepatic biliary system initiates a complex cascade of pathological events that leads to cholestasis and inflammation resulting in a strong fibrotic reaction originating from the periportal fields. Therefore, surgical ligation of the common bile duct has become the most commonly used model to induce obstructive cholestatic injury in rodents and to study the molecular and cellular events that underlie these pathophysiological mechanisms induced by inappropriate bile flow. In recent years, different surgical techniques have been described that either allow reconnection or reanastomosis after bile duct ligation (BDL), e.g., partial BDL, or other microsurgical methods for specific research questions. However, the most frequently used model is the complete obstruction of the common bile duct that induces a strong fibrotic response after 21 to 28 days. The mortality rate can be high due to infectious complications or technical inaccuracies. Here we provide a detailed surgical procedure for the BDL model in mice that induce a highly reproducible fibrotic response in accordance to the 3R rule for animal welfare postulated by Russel and Burch in 1959.

  14. Quality of Life and Medico-Legal Implications Following Iatrogenic Bile Duct Injuries.

    PubMed

    Hariharan, Deepak; Psaltis, Emmanouil; Scholefield, John H; Lobo, Dileep N

    2017-01-01

    In this review we aimed to evaluate quality of life after bile duct injury and the consequent medico-legal implications. A comprehensive English language literature search was performed on MEDLINE, Embase, Science Citation Index and Google™ Scholar databases for articles published between January 2000 and April 2016. The last date of search was 11 April 2016. Key search words included bile duct injury, iatrogenic, cholecystectomy, prevention, risks, outcomes, quality of life, litigation and were used in combination with the Boolean operators AND, OR and NOT. Long-term survival after bile duct injury is significantly impaired (all-cause long-term mortality approximately 21 %) along with the quality of life (especially psychological/mental state remains affected). Bile duct injury is associated with high rates of litigation. Monetary compensation varied from £2500 to £216,000 in the UK, €9826-€55,301 in the Netherlands and $628,138-$2,891,421 in the USA. Bile duct injuries have profound implications for patients, medical personnel and healthcare providers as they cause significant morbidity and mortality, high rates of litigation and raised healthcare expenditure.

  15. Genetic and Proteomic characterization of Bile Salt Export Pump (BSEP) in Snake Liver

    PubMed Central

    Tan, Xinle; Gao, Fei; Su, Hexiu; Gong, Yajun; Zhang, Jie; Sullivan, Mitchell A.; Chen, Jiachun

    2017-01-01

    Snake gallbladder, a traditional Chinese medicine, has been believed in various Asian countries to improve visual acuity and alleviate rheumatism. Bile acids, a major component of the gallbladder, are toxic to the liver and kidney in humans and animals due to its detergent effects, while also exhibiting therapeutic effects due to an increase in the gallbladder contractions of muscle strips in patients with cholesterol gallstones. Secretion of bile acids in human and mammals depends on the bile salt export pump (BSEP), a liver-specific adenosine triphosphate (ATP)-binding cassette transporter encoded by ABCB11. However, the presence of BSEP in snakes has not been thoroughly explored. Here we confirm the existence of BSEP and its coding DNA sequence in snakes on both the proteomic and genetic level. This work provides information on the snake ABCB11 sequence and helps further potential genetic manipulation to affect bile salt metabolism. Our study provides the foundation for research on bile acid production from snakes by using modern genetic and proteomic methodologies. PMID:28368001

  16. Rectal carcinoma with metachronous metastasis to the extrahepatic bile duct without liver tumor.

    PubMed

    Kobayashi, Noritoshi; Kobayashi, Ryu; Kato, Shingo; Watanabe, Seitaro; Uchiyama, Takashi; Shimamura, Takeshi; Kubota, Kensuke; Maeda, Shin; Nakajima, Atsushi; Ichikawa, Yasushi; Oshiro, Hisashi; Endo, Itaru

    2011-08-01

    In July 2003, a 63-year-old man received a low anterior resection for rectal cancer. In February 2006, he underwent a right hepatectomy for a solitary metastatic liver tumor; the liver tumor had not invaded the bile duct, and a curative resection was performed. In August 2008, an enhanced computed tomography examination revealed a massive focal lesion at the point of the common bile duct. Endoscopic ultrasonography clearly revealed a hyperechoic polypoid lesion that had spread laterally on the surface of the slightly dilated bile duct and had a smooth outer hyperechoic layer. No lymph nodes were present in this region. Endoscopic retrograde cholangiopancreatography revealed an irregular stricture, and a biopsy was performed through the scope. Microscopic examination revealed a tumor characterized as a moderately differentiated adenocarcinoma resembling the liver tumor. We diagnosed the intrabiliary tumor as a metachronous metastatic bile duct tumor from rectal cancer without involvement of the liver parenchyma. This is a very rare case, with recurrence only in an extrahepatic bile duct after the complete resection of a metastatic liver tumor. This is the first clinical, pathological, and radiological description of this rare condition.

  17. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids.

    PubMed

    Fuentes-Broto, Lorena; Martínez-Ballarín, Enrique; Miana-Mena, Javier; Berzosa, Cesar; Piedrafita, Eduardo; Cebrián, Igor; Reiter, Russel J; García, Joaquín J

    2009-01-01

    Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl(3) and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose- and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis.

  18. [ROLE OF SEROTONIN IN THE REGULATION OF RESPIRATION AND BILE SECRETORY FUNCTION OF THE LIVER].

    PubMed

    Yanchuk, P I; Athamnah, S M; Reshetnik, E M; Levadyanska, J A; Nikitina, N O; Veselsky, S P

    2015-01-01

    In acute experiments on laboratory male rats we have shown that serotonin (10 mkg/kg, intraportal) increased the oxygen consumption of by liver on 28.8% (P < 0.001) and reduced oxygen tension levels on 19.3% (P < 0.001). The action of serotonin on tissue respiration in liver realized through 5-HT(2) receptors because previous blockade by ketanserin (3 mg/kg) led to remove the effects of exogenous serotonin and inhibition of the action of endogenous autacoid. Serotonin reduced the amount of secreted bile on 13.5% (P < 0.05), and increases the concentration of conjugated bile acids and decreases the content of free cholate, indicating enhanced conjugation with taurine and glycine in the liver cells. However, serotonin didn't stimulate synthesis of primary bile acids. Introduction of serotonin in the conditions of 5-HT2 receptors blockade by ketanserin also led to speed decrease of bile secretion, but in this case stimulating effect of autacoid on bile acid conjugation with taurine and glycine wasn't manifested and content of free cholate wasn't reduced.

  19. Regulation of mdr2 P-glycoprotein expression by bile salts.

    PubMed Central

    Frijters, C M; Ottenhoff, R; van Wijland, M J; van Nieuwkerk, C M; Groen, A K; Oude Elferink, R P

    1997-01-01

    The phosphatidyl translocating activity of the mdr2 P-glycoprotein (Pgp) in the canalicular membrane of the mouse hepatocyte is a rate-controlling step in the biliary secretion of phospholipid. Since bile salts also regulate the secretion of biliary lipids, we investigated the influence of the type of bile salt in the circulation on mdr2 Pgp expression and activity. Male mice were led a purified diet to which either 0.1% (w/w) cholate or 0.5% (w/w) ursodeoxycholate was added. This led to a near-complete replacement of the endogenous bile salt pool (mainly tauromuricholate) by taurocholate or tauroursodeoxycholate respectively. The phospholipid secretion capacity was then determined by infusion of increasing amounts of tauroursodeoxycholate. Cholate feeding resulted in a 55% increase in maximal phospholipid secretion compared with that in mice on the control diet. Northern blotting revealed that cholate feeding increased mdr2 Pgp mRNA levels by 42%. Feeding with ursodeoxycholate did not influence the maximum rate of phospholipid output or the mdr2 mRNA content. Female mice had a higher basal mdr2 Pgp mRNA level than male mice, and this was also correlated with a higher phospholipid secretion capacity. This could be explained by the 4-fold higher basal cholate content in the bile of female compared with male mice. Our results suggest that the type of bile salts in the circulation influences the expression of the mdr2 gene. PMID:9020871

  20. Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk

    PubMed Central

    Govindarajan, Kalaimathi; MacSharry, John; Casey, Patrick G.; Shanahan, Fergus

    2016-01-01

    Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression. PMID:27907092

  1. Cholesterol polyps in the distal common bile duct: a case report

    PubMed Central

    Tang, Rui; Zhao, Wen-ping; Zhang, Yan-ning; Tong, Xuan; Zeng, Jian-ping

    2016-01-01

    Abstract Rationale: Cholesterol polyps are rare in the common bile duct and difficult to diagnose. Patient concerns: The small polypoid lesions often go undetected when using routine imaging methods, such as ultrasonography. Diagnoses: We treated a patient with cholesterol polyps in the common bile duct. After failing to detect choleliths using ultrasonography, magnetic resonance cholangiopancreatography revealed mild dilation of the common bile duct. Choledochoscopy was performed during laparoscopic cholecystectomy, which revealed yellowish-white polyps circumferentially distributed across the luminal surface of the distal common bile duct. Histological examination of biopsy specimens indicated cholesterol polyps with characteristic foamy cells. Interventions: The patient was treated with ursodeoxycholic acid, and the number of polyps was found to have been reduced at the 6-week follow-up based on T-tube choledochoscopic examination. Outcomes: Recovery was unremarkable, and the ursodeoxycholic acid treatment was discontinued at the 6-month follow-up. Lessons subsections: Our findings suggest that this rare condition can be treated pharmacologically to avoid potential postsurgical complications following resection of the distal common bile duct. PMID:27828866

  2. The TGR5 receptor mediates bile acid–induced itch and analgesia

    PubMed Central

    Alemi, Farzad; Kwon, Edwin; Poole, Daniel P.; Lieu, TinaMarie; Lyo, Victoria; Cattaruzza, Fiore; Cevikbas, Ferda; Steinhoff, Martin; Nassini, Romina; Materazzi, Serena; Guerrero-Alba, Raquel; Valdez-Morales, Eduardo; Cottrell, Graeme S.; Schoonjans, Kristina; Geppetti, Pierangelo; Vanner, Stephen J.; Bunnett, Nigel W.; Corvera, Carlos U.

    2013-01-01

    Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide– and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases. PMID:23524965

  3. Mouse ghrelin-O-acyltransferase (GOAT) plays a critical role in bile acid reabsorption.

    PubMed

    Kang, Kihwa; Schmahl, Jennifer; Lee, Jong-Min; Garcia, Karen; Patil, Ketan; Chen, Amelia; Keene, Michelle; Murphy, Andrew; Sleeman, Mark W

    2012-01-01

    Ghrelin is a unique peptide gut hormone that requires post-translational modification to stimulate both feeding and growth hormone release. Ghrelin O-acyltransferase (GOAT) was identified as a specific acyl-transferase for ghrelin, and recent genetic deletion studies of the Goat gene (Goat(-/-)) uncovered the role of ghrelin in the regulation of glucose homeostasis. To further understand the physiological functions of the GOAT/ghrelin system, we have conducted a metabolomic and microarray profile of Goat-null mice, as well as determined Goat expression in different tissues using the lacZ reporter gene. Serum metabolite profile analysis revealed that Goat(-/-) mice exhibited increased secondary bile acids >2.5-fold. This was attributed to increased mRNA and protein expression of the ileal sodium-dependent bile acid transporter (ISBT) in the intestinal and biliary tract. Increased expression of additional solute carrier proteins, including Slc5a12 (>10-fold) were also detected in the small intestine and bile duct. Goat staining was consistently observed in the pituitary glands, stomach, and intestines, and to a lesser extent in the gallbladder and pancreatic duct. This is the first report that the GOAT/ghrelin system regulates bile acid metabolism, and these findings suggest a novel function of GOAT in the regulation of intestinal bile acid reabsorption..

  4. Serum bile acids and their conjugates in breast-fed infants with prolonged jaundice.

    PubMed

    Tazawa, Y; Yamada, M; Nakagawa, M; Konno, T; Tada, K

    1985-05-01

    Serum bile acids and their conjugates were analysed in 20 breast-fed infants with prolonged jaundice. The mean total bile acid levels in serum were increased in the breast-fed infants with jaundice, as compared with those in either breast- or bottle-fed infants without jaundice. However, there were no significant differences between the groups. All the breast-fed infants examined, regardless of association with jaundice, had a bile acid pattern dominated by taurine conjugates (the ratio of glycine- to taurine-conjugated bile acid, G/T ratio, less than 1.00). In contrast, the bottle-fed infants without jaundice had a pattern dominated by glycine conjugates (G/T ratio, more than 1.00). Among the breast-fed infants with jaundice, the mean G/T ratio in those who had serum bilirubin levels over 10 mg/100 ml was significantly lower than that in those who had serum bilirubin levels of less than 10 mg/100 ml. The altered bile acid metabolism might be associated with the pathology of breast milk jaundice.

  5. Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH.

    PubMed

    Chanda, Dipanjan; Kim, Yong-Hoon; Li, Tiangang; Misra, Jagannath; Kim, Don-Kyu; Kim, Jung Ran; Kwon, Joseph; Jeong, Won-Il; Ahn, Sung-Hoon; Park, Tae-Sik; Koo, Seung-Hoi; Chiang, John Y L; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Bile acids concentration in liver is tightly regulated to prevent cell damage. Previous studies have demonstrated that deregulation of bile acid homeostasis can lead to cholestatic liver disease. Recently, we have shown that ER-bound transcription factor Crebh is a downstream effector of hepatic Cb1r signaling pathway. In this study, we have investigated the effect of alcohol exposure on hepatic bile acid homeostasis and elucidated the mediatory roles of Cb1r and Crebh in this process. We found that alcohol exposure or Cb1r-agonist 2-AG treatment increases hepatic bile acid synthesis and serum ALT, AST levels in vivo alongwith significant increase in Crebh gene expression and activation. Alcohol exposure activated Cb1r, Crebh, and perturbed bile acid homeostasis. Overexpression of Crebh increased the expression of key bile acid synthesis enzyme genes via direct binding of Crebh to their promoters, whereas Cb1r knockout and Crebh-knockdown mice were protected against alcohol-induced perturbation of bile acid homeostasis. Interestingly, insulin treatment protected against Cb1r-mediated Crebh-induced disruption of bile acid homeostasis. Furthermore, Crebh expression and activation was found to be markedly increased in insulin resistance conditions and Crebh knockdown in diabetic mice model (db/db) significantly reversed alcohol-induced disruption of bile acid homeostasis. Overall, our study demonstrates a novel regulatory mechanism of hepatic bile acid metabolism by alcohol via Cb1r-mediated activation of Crebh, and suggests that targeting Crebh can be of therapeutic potential in ameliorating alcohol-induced perturbation of bile acid homeostasis.

  6. Prolonged bile duct obstruction: a new experimental model for cirrhosis in the rat.

    PubMed Central

    Kountouras, J.; Billing, B. H.; Scheuer, P. J.

    1984-01-01

    Hepatic morphological abnormalities were examined in rats whose bile ducts had been either cannulated and then obstructed or irreversibly ligated for 5, 10, 15 and 28 days or longer. Throughout the experiment most of the morphological changes observed in the cannulated group were comparable to those in the ligated group. Portal inflammation and marginal bile duct proliferation were noted with the same frequency in both groups. Biliary obstruction for 15 days or more led to cirrhosis. After 28 days obstruction, five out of six cannulated rats and four out of six ligated animals respectively developed cirrhosis. The development of cirrhosis was progressive and associated with ascites. It is concluded that in the rat the morphological sequelae of long term cholestasis induced by either cannulation and obstruction or ligation of bile ducts are similar and are accompanied by cirrhosis. The advantages of this experimental model for the study of human cirrhosis are discussed. Images Fig. 1 Fig. 2 PMID:6743531

  7. Enhanced visualization of the bile duct via parallel white light and indocyanine green fluorescence laparoscopic imaging

    NASA Astrophysics Data System (ADS)

    Demos, Stavros G.; Urayama, Shiro

    2014-03-01

    Despite best efforts, bile duct injury during laparoscopic cholecystectomy is a major potential complication. Precise detection method of extrahepatic bile duct during laparoscopic procedures would minimize the risk of injury. Towards this goal, we have developed a compact imaging instrumentation designed to enable simultaneous acquisition of conventional white color and NIR fluorescence endoscopic/laparoscopic imaging using ICG as contrast agent. The capabilities of this system, which offers optimized sensitivity and functionality, are demonstrated for the detection of the bile duct in an animal model. This design could also provide a low-cost real-time surgical navigation capability to enhance the efficacy of a variety of other image-guided minimally invasive procedures.

  8. Functional transformations of bile acid transporters induced by high-affinity macromolecules

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Alam, Farzana; Park, Jooho; Lee, Kyung Eun; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-01-01

    Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery. PMID:24566561

  9. Crystal structure of the catalytic domain of human bile salt activated lipase.

    PubMed Central

    Terzyan, S.; Wang, C. S.; Downs, D.; Hunter, B.; Zhang, X. C.

    2000-01-01

    Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285). PMID:11045623

  10. Quercetin solubilisation in bile salts: A comparison with sodium dodecyl sulphate.

    PubMed

    Buchweitz, Maria; Kroon, Paul A; Rich, Gillian T; Wilde, Peter J

    2016-11-15

    To understand the bioaccessibility of the flavonoid quercetin we studied its interaction with bile salt micelles. The environmental sensitivity of quercetin's UV-visible absorption spectrum gave information about quercetin partitioning. Two quercetin absorption peaks gave complementary information: Peak A (240-280nm) on the intermicellar phase and Peak B (340-440nm) on the micellar phase. Thus, by altering pH, we showed that only non-ionised quercetin partitions into micelles. We validated our interpretation by studying quercetin's interaction with SDS micelles. Pyrene fluorescence and the quercetin UV-visible spectra show that the adsorption site for pyrene and quercetin in bile salt micelles is more hydrophobic than that for SDS micelles. Also, both quercetin and pyrene reported a higher critical micelle concentration for bile salts than for SDS. Our method of using a flavonoid as an intrinsic probe, is generally applicable to other lipophilic bioactives, whenever they have observable environmental dependent properties.

  11. Presumptive Identification of Group D Streptococci: the Bile-Esculin Test

    PubMed Central

    Facklam, Richard R.; Moody, Max D.

    1970-01-01

    Six tests commonly used for the presumptive identification of group D streptococci were evaluated. Strains tested included 282 group D streptococci and 366 non-group D. Ratios of percentages of group D to non-group D strains which gave positive reactions for each test are as follows: bile-esculin, 100:2; salt tolerance, 88:24; heat tolerance, 100:80; SF broth, 86:1; KF broth, 99:40; and methylene blue milk reduction, 90:17. These data indicate that the bile-esculin test provided a reliable means of identifying group D streptococci and differentiating them from non-group D streptococci. Methodology for reading and interpreting positive reactions and time of incubation of the bile-esculin medium was defined. Evidence of the need for standardization of salt and heat-tolerance tests was obtained. PMID:4921062

  12. The role of radiotherapy in the treatment of bile duct carcinoma.

    PubMed

    Veeze-Kuijpers, B; Meerwaldt, J H; Lameris, J S; van Blankenstein, M; van Putten, W L; Terpstra, O T

    1990-01-01

    Forty-two patients with irresectable bile duct carcinoma (n = 31) or with microscopic evidence of tumor rest after aggressive surgery for bile duct carcinoma (n = 11) were given radiotherapy consisting intentionally of external-beam therapy and intraluminal 192Iridium (192Ir) wire application(s) following bile drainage procedures. The treatment was well tolerated; complications were mainly infectious and related to the success of the drainage. A median survival of 10 months was achieved for the group as a whole. Patients treated following microscopically incomplete resection survived longer than patients with an irresectable tumor (15 vs 8 months median survival, p = 0.06). Gross lymph node involvement also proved to be a prognostic factor.

  13. The role of radiotherapy in the treatment of bile duct carcinoma

    SciTech Connect

    Veeze-Kuijpers, B.; Meerwaldt, J.H.; Lameris, J.S.; van Blankenstein, M.; van Putten, W.L.; Terpstra, O.T. )

    1990-01-01

    Forty-two patients with irresectable bile duct carcinoma (n = 31) or with microscopic evidence of tumor rest after aggressive surgery for bile duct carcinoma (n = 11) were given radiotherapy consisting intentionally of external-beam therapy and intraluminal 192Iridium ({sup 192}Ir) wire application(s) following bile drainage procedures. The treatment was well tolerated; complications were mainly infectious and related to the success of the drainage. A median survival of 10 months was achieved for the group as a whole. Patients treated following microscopically incomplete resection survived longer than patients with an irresectable tumor (15 vs 8 months median survival, p = 0.06). Gross lymph node involvement also proved to be a prognostic factor.

  14. Percutaneous management of bile duct stones in children: results of 12 cases

    PubMed Central

    Özcan, Nevzat; Kahrıman, Güven; Görkem, Süreyya Burcu; Arslan, Duran

    2017-01-01

    PURPOSE We aimed to evaluate the effectiveness of percutaneous transhepatic removal of bile duct stones in children. METHODS The study included 12 pediatric patients (4 males, 8 females; age range, 1–16 years; mean age, 6.6 years) who underwent percutaneous transhepatic removal of bile duct stones between September 2007 and December 2015. Demographic data, patient symptoms, indications for interventions, technical and clinical outcomes of the procedure, and complications were retrospectively evaluated. RESULTS Of 12 children, five children with cholelithiasis underwent cholecystectomy subsequently. The overall technical and clinical success rate was 100%. One patient had cholangitis as a complication during the follow-up and was treated medically. CONCLUSION Percutaneous transhepatic removal of bile duct stones is a safe and effective method for the treatment of children with biliary stone disease. It is a feasible alternative when the endoscopic procedure is unavailable or fails. PMID:28082252

  15. Spontaneous Perforation of Common Bile Duct: A Rare Presentation of Gall Stones Disease.

    PubMed

    Subasinghe, Duminda; Udayakumara, Edippuli Arachchige Don; Somathilaka, Upul; Huruggamuwa, Milinda

    2016-01-01

    Background. Spontaneous perforation of the extrahepatic biliary system is a rare presentation of gall stones. Very few cases of bile duct perforation have been reported in adults. It is rarely suspected or correctly diagnosed preoperatively. Case Presentation. A 66-year-old female presented at the surgical emergency with 3 days' history of severe upper abdominal pain with distension and repeated episodes of vomiting, as she had evidence of generalized peritonitis and underwent an exploratory laparotomy. A single 0.5 cm × 0.5 cm free perforation was present on the anterolateral surface of the common bile duct at the junction of cystic duct. A cholecystectomy and the CBD exploration were performed. Conclusion. Spontaneous perforation of the extrahepatic bile duct is a rare but important presentation of gall stones in adults. Therefore, awareness of the clinical presentation, expert ultrasound examination, and surgery are important aspects in the management.

  16. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-03

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials.

  17. Resolution of Bile Duct Adenoma over Follow-up Period; A Case Report

    PubMed Central

    Ahadi, Mitra; Khosravi Khorashad, Ahmad; Saadatnia, Hassan; Vosoughinia, Hassan; Davachi, Behrooz; Farzanehfar, Mohammadreza; Ghaffarzadehgan, Kamran; Memar, Bahram; Mokhtari Amirmajdi, Elham

    2016-01-01

    Bile duct adenoma (BDA) is a rare neoplasm of bile ducts with various clinical manifestations and imaging appearances. A few cases of BDA and their predisposing factors have been described. We report a 35-year-old woman with right upper quadrant pain who consumed oral contraceptive pills. Ultrasound study revealed three hypoechoic subcapsular liver masses; two of them were hypodense in computed tomography. Fine needle biopsy of the largest mass showed bile duct adenoma. Liver masses disappeared after discontinuing the pills over a 2-year follow-up. BDAs can manifest in imaging. Although previous studies have not reported tumor resolution over a follow-up period, we suggest paying more attention to predisposing factors in order to give an opportunity for tumor resolution by risk factor elimination. PMID:27957298

  18. Ultrasound imaging of the liver and bile ducts – expectations of a clinician

    PubMed Central

    Pawełas, Andrzej

    2015-01-01

    Since diseases of the liver and bile ducts are common, a clinician is faced by the need to implement an appropriate diagnostic process. It is necessary to apply diagnostic methods that enable appropriate assessment of the most common pathologies of the liver, i.e. fibrosis, steatosis and focal lesions, as well as initial assessment of the bile ducts. These goals can be achieved using ultrasound methods based on conventional sonography, contrast-enhanced sonography and elastography. The assessment of fatty liver and bile duct dilatation using ultrasound reaches satisfactory levels of sensitivity and specificity. The usage of contrast agents enables unambiguous differentiation between benign and malignant focal lesions, frequently allowing them to be identified accurately without the assistance of other imaging modalities. Elastography has enabled reliable assessment of liver fibrosis. Its results are comparable to those of the standard method, i.e. liver biopsy. PMID:26673784

  19. Ultrasound imaging of the liver and bile ducts - expectations of a clinician.

    PubMed

    Skoczylas, Krzysztof; Pawełas, Andrzej

    2015-09-01

    Since diseases of the liver and bile ducts are common, a clinician is faced by the need to implement an appropriate diagnostic process. It is necessary to apply diagnostic methods that enable appropriate assessment of the most common pathologies of the liver, i.e. fibrosis, steatosis and focal lesions, as well as initial assessment of the bile ducts. These goals can be achieved using ultrasound methods based on conventional sonography, contrast-enhanced sonography and elastography. The assessment of fatty liver and bile duct dilatation using ultrasound reaches satisfactory levels of sensitivity and specificity. The usage of contrast agents enables unambiguous differentiation between benign and malignant focal lesions, frequently allowing them to be identified accurately without the assistance of other imaging modalities. Elastography has enabled reliable assessment of liver fibrosis. Its results are comparable to those of the standard method, i.e. liver biopsy.

  20. Endoscopic Nasobiliary Drainage for Bile Leak Caused by Injury to the Ducts of Luschka.

    PubMed

    Ko, Soon Young; Lee, Jeong Rok; Wang, Joon Ho

    2017-02-25

    A 51-year-old man underwent laparoscopic cholecystectomy for gallbladder stones. He had developed fever, chills, and abdominal pain four days after the procedure. In the drain tube, bile was persistently observed. An endoscopic retrograde cholangiopancreatography (ERCP) showed a leakage from the small duct into the right intrahepatic duct. We determined that the bile leak was caused by an injury to the ducts of Luschka. An endoscopic sphincterotomy (ES) using a 5-F nasobiliary tube (NBT) was performed, and the leak was resolved in five days. Herein, we report a bile leak caused by an injury to the ducts of Luschka after laparoscopic cholecystectomy. The leak was treated with ES using 5-F NBT, and the resolution of the leak was confirmed without repeated endoscopy.

  1. Study of partition of nitrazepam in bile salt micelles and the role of lecithin.

    PubMed

    de Castro, B; Gameiro, P; Guimarães, C; Lima, J L; Reis, S

    2001-02-01

    The effect of trihydroxy (sodium cholate and sodium glycocholate) and dihydroxy (sodium deoxycholate and sodium glycodeoxycholate) bile salt micelles on the spectrophotometric properties and on the solubility of nitrazepam in aqueous solution, at 25.0 degrees C and at ionic strength 0.1 M in sodium chloride, has been assessed. From the results obtained it was possible to calculate the partition coefficients (Kp) of nitrazepam between aqueous and micellar phases. The partition coefficients of nitrazepam have also been determined in mixed micelles of cholate or deoxycholate with lecithin (egg yolk phosphatidylcholine), which were used as a model of the gastrointestinal tract. Drug partition was found to depend on the bile acid (number of hydroxyl groups and conjugation with glycine), and our data indicate further that addition of lecithin to bile salt micelles decreases the values of the partition coefficients in the mixed micelles at physiological pH.

  2. Assessment of conjugal transfer of antibiotic resistance genes in Salmonella Typhimurium exposed to bile salts.

    PubMed

    He, Xinlong; Ahn, Juhee

    2014-08-01

    This study was designed to evaluate the transfer potential of antibiotic resistance genes in antibiotic-resistant Salmonella Typhimurium (S. Typhimurium(R)) in the presence of bile salts. The resistance of S. Typhimurium(R) to ampicillin, kanamycin, and tetracycline was increased by 64-, 64-, and 512-fold, respectively. The highest transfer frequency from S. Typhimurium(R) to Escherichia coli was observed at the bile salt concentration of 160 μg/ml (3.8 × 10(-3) transferrants/cells). The expression of traJ and traY was suppressed in S. Typhimurium(R) by bile salt. This study provides useful information for understanding the conjugative transfer of antibiotic resistance genes in S. Typhimurium under intestinal conditions.

  3. Direct measurement of first-pass ileal clearance of a bile acid in humans

    SciTech Connect

    Galatola, G.; Jazrawi, R.P.; Bridges, C.; Joseph, A.E.; Northfield, T.C. )

    1991-04-01

    The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, which prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%).

  4. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  5. Human bile contains microRNA-laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis

    PubMed Central

    Li, Ling; Masica, David; Ishida, Masaharu; Tomuleasa, Ciprian; Umegaki, Sho; Kalloo, Anthony N.; Georgiades, Christos; Singh, Vikesh K.; Khashab, Mouen; Amateau, Stuart; Li, Zhiping; Okolo, Patrick; Lennon, Anne-Marie; Saxena, Payal; Geschwind, Jean-Francois; Schlachter, Todd; Hong, Kelvin; Pawlik, Timothy M.; Canto, Marcia; Law, Joanna; Sharaiha, Reem; Weiss, Clifford R.; Thuluvath, Paul; Goggins, Michael; Ji Shin, Eun; Peng, Haoran; Kumbhari, Vivek; Hutfless, Susan; Zhou, Liya; Mezey, Esteban; Meltzer, Stephen J.; Karchin, Rachel; Selaru, Florin M.

    2014-01-01

    Cholangiocarcinoma (CCA) presents significant diagnostic challenges, resulting in late patient diagnosis and poor survival rates. Primary Sclerosing Cholangitis (PSC) patients pose a particularly difficult clinical dilemma, since they harbor chronic biliary strictures that are difficult to distinguish from CCA. MicroRNAs (miRs) have recently emerged as a valuable class of diagnostic markers; however, thus far, neither extracellular vesicles (EVs) nor miRs within EVs have been investigated in human bile. We aimed to comprehensively characterize human biliary EVs, including their miR content. Conclusion We have established the presence of extracellular vesicles in human bile. In addition, we have demonstrated that human biliary EVs contain abundant miR species, which are stable and therefore amenable to the development of disease marker panels. Furthermore, we have characterized the protein content, size, numbers and size distribution of human biliary EVs. Utilizing Multivariate Organization of Combinatorial Alterations (MOCA), we defined a novel biliary vesicle miR-based panel for CCA diagnosis which demonstrated a sensitivity of 67% and specificity of 96%. Importantly, our control group contained 13 PSC patients, 16 patients with biliary obstruction of varying etiologies (including benign biliary stricture, papillary stenosis, choledocholithiasis, extrinsic compression from pancreatic cysts, and cholangitis), and 3 patients with bile leak syndromes. Clinically, these types of patients present with a biliary obstructive clinical picture that could be confused with CCA. These findings establish the importance of using extracellular vesicles, rather than whole bile, for developing miR-based disease markers in bile. Finally, we report the development of a novel bile-based CCA diagnostic panel that is stable, reproducible, and has potential clinical utility. PMID:24497320

  6. Experimental Study of Poly-l-Lactic Acid Biodegradable Stents in Normal Canine Bile Ducts

    SciTech Connect

    Yamamoto, Kiyosei Yoshioka, Tetsuya; Furuichi, Kinya; Sakaguchi, Hiroshi; Anai, Hiroshi; Tanaka, Toshihiro; Morimoto, Kengo; Uchida, Hideo; Kichikawa, Kimihiko

    2011-06-15

    Purpose: This study was designed to clarify the advantages of biodegradable stents in terms of mucosal reaction and biodegradation after placement. We designed a biodegradable stent and assessed stent degradation and changes in the normal bile ducts of dogs. Methods: The biodegradable stent is a balloon-expandable Z stent consisting of poly-l-lactic acid (PLLA) with a diameter of 6 mm and a length of 15 mm. We assessed four groups of three beagle dogs each at 1, 3, 6, and 9 months of follow-up. After evaluating stent migration by radiography and stent and bile duct patency by cholangiography, the dogs were sacrificed to remove the bile duct together with the stent. The bile duct lumen was examined macroscopically and histologically, and the stent degradation was examined macroscopically and by scanning electron microscopy (SEM). Results: Bile duct obstruction was absent and none of the stents migrated. Macroscopic evaluation showed moderate endothelial proliferation in the bile ducts at the implant sites at 3 and 6 months and a slight change at 9 months. Slight mononuclear cell infiltration was histologically identified at all time points and epithelial hyperplasia that was moderate at 3 months was reduced to slight at 6 and 9 months. Stent degradation was macroscopically evident in all animals at 9 months and was proven by SEM in two dogs at 6 months and in all of them at 9 months. Conclusions: Our results suggest that PLLA bioabsorbable stents seems to be useful for implantation in the biliary system with further investigation.

  7. Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity.

    PubMed

    Yu, Jinghua; Lo, Jane-L; Huang, Li; Zhao, Annie; Metzger, Edward; Adams, Alan; Meinke, Peter T; Wright, Samuel D; Cui, Jisong

    2002-08-30

    Bile salt export pump (BSEP) is a major bile acid transporter in the liver. Mutations in BSEP result in progressive intrahepatic cholestasis, a severe liver disease that impairs bile flow and causes irreversible liver damage. BSEP is a target for inhibition and down-regulation by drugs and abnormal bile salt metabolites, and such inhibition and down-regulation may result in bile acid retention and intrahepatic cholestasis. In this study, we quantitatively analyzed the regulation of BSEP expression by FXR ligands in primary human hepatocytes and HepG2 cells. We demonstrate that BSEP expression is dramatically regulated by ligands of the nuclear receptor farnesoid X receptor (FXR). Both the endogenous FXR agonist chenodeoxycholate (CDCA) and synthetic FXR ligand GW4064 effectively increased BSEP mRNA in both cell types. This up-regulation was readily detectable at as early as 3 h, and the ligand potency for BSEP regulation correlates with the intrinsic activity on FXR. These results suggest BSEP as a direct target of FXR and support the recent report that the BSEP promoter is transactivated by FXR. In contrast to CDCA and GW4064, lithocholate (LCA), a hydrophobic bile acid and a potent inducer of cholestasis, strongly decreased BSEP expression. Previous studies did not identify LCA as an FXR antagonist ligand in cells, but we show here that LCA is an FXR antagonist with partial agonist activity in cells. In an in vitro co-activator association assay, LCA decreased CDCA- and GW4064-induced FXR activation with an IC(50) of 1 microm. In HepG2 cells, LCA also effectively antagonized GW4064-enhanced FXR transactivation. These data suggest that the toxic and cholestatic effect of LCA in animals may result from its down-regulation of BSEP through FXR. Taken together, these observations indicate that FXR plays an important role in BSEP gene expression and that FXR ligands may be potential therapeutic drugs for intrahepatic cholestasis.

  8. Characterization of the mouse bile salt export pump overexpressed in the baculovirus system.

    PubMed

    Noe, J; Hagenbuch, B; Meier, P J; St-Pierre, M V

    2001-05-01

    The bile salt export pump (Bsep), a member of the ATP-binding cassette superfamily of transporters, mediates the ATP-dependent canalicular secretion of bile salts. We have cloned and expressed the mouse Bsep (mBsep) protein in Sf9 insect cells, and characterized its transport and ATPase properties. Because its deduced amino acid sequence predicts multiple phosphorylation sites for protein kinase A, protein kinase C (PKC) and Ca(2+)-calmodulin dependent kinase II, we have also tested whether mBsep undergoes phosphorylation. MBsep transports both glycine and taurine conjugated bile salts. Sf9 cell membranes that express mBsep exhibit higher basal ATPase activity than control membranes, and this is further stimulated by bile salts and inhibited by vanadate. Taurochenodeoxycholate is transported with the highest affinity and is the most potent inducer of ATPase activity. Cyclosporin A, glibenclamide and rifamycin SV, all competitive inhibitors of Bsep transport, also reduced the bile salt-stimulated ATPase activity. MBsep exists as a phospho-protein when expressed in Sf9 cells and the immunoprecipitated mBsep complex is a substrate for the catalytic subunit of PKC. When mBsep and the alpha-isoform of mouse PKC are co-expressed in Sf9 cells, a ninefold stimulation of phosphorylation occurs. This is further increased to 18-fold after activation by phorbol ester. Given that bile salts activate selected PKC isoforms in hepatocytes, including the alpha isoform, the phosphorylation of mBsep by PKCalpha may represent a point of regulation for this transporter that is mediated by its own substrate.

  9. GC-FID determination of cocaine and its metabolites in human bile and vitreous humor.

    PubMed

    Fernández, P; Aldonza, M; Bouzas, A; Lema, M; Bermejo, A M; Tabernero, M J

    2006-01-01

    Gas chromatography was used in combination with flame ionization detection (GC-FID) to develop a method for determining cocaine and its two metabolites, benzoylecgonine (BEG) and ecgonine methyl ester (EME), in bile and vitreous humor. The method used a 12 m x 0.2 mm i.d. column of 0.33 microm film thickness packed with 5% phenylmethylsiloxane, and proadifen as a reference compound. Drug-free bile and vitreous humor samples were used to prepare solutions of the target compounds at concentrations over the range 0.1-4 microg ml(-1) that were subjected to solid-phase extraction through Bond Elut Certify columns and derivatized with 99:1 (v/v) N,O-bis-trimethylsilyltrifluoroacetamide (BSTFA)/trimethylchlorosilane (TMCS). Calibration graphs were highly linear, with correlation coefficients above 0.99 in all instances. Also, the precision of the method was found to be quite acceptable, with coefficients of variation less than 5% for bile and less than 7% for vitreous humor. The average extraction yields ranged from 73.6% to 91.2% for bile and from 71.5% to 92.2% for vitreous humor. The proposed method was used to analyse 26 samples of bile and as many of vitreous humor from individuals fatally poisoned by cocaine, whether alone or in combination with other drugs. The mean drug levels found were 0.75 and 1.54 microg ml(-1) for cocaine in bile and vitreous humor, respectively, 6.35 and 0.94 microg ml(-1) for BEG, and 2.18 and 0.61 microg ml(-1) for EME.

  10. Common bile duct injury by fibrin glue: report of a rare complication.

    PubMed

    Yang, Yu-Long; Zhang, Cheng; Zhang, Hong-Wei; Wu, Ping; Ma, Yue-Feng; Lin, Mei-Ju; Shi, Li-Jun; Li, Jing-Yi; Zhao, Mu

    2015-03-07

    Fibrin glue is widely used in clinical practice and plays an important role in reducing postoperative complications. We report a case of a 65-year-old man, whose common bile duct was injured by fibrin glue, with a history of failed laparoscopic cholecystectomy and open operation for uncontrolled laparoscopic bleeding. In view of the persistent liver dysfunction, xanthochromia and skin itching, the patient was admitted to us for further management. Ultrasound, computed tomography, and magnetic resonance cholangiopancreatography (MRCP) revealed multiple stones in the common bile duct, and liver function tests confirmed the presence of obstructive jaundice and liver damage. Endoscopic retrograde cholangiopancreatography was unsuccessfully performed to remove choledocholithiasis, but a small amount of tissue was removed and pathologically confirmed as calcified biliary mucosa. This was followed by open surgery for suspicious cholangiocarcinoma. There was no evidence of cholangiocarcinoma, but the common bile duct wall had a defect of 8 mm × 10 mm at Calot's triangle. A hard, grid-like foreign body was removed, which proved to be solid fibrin glue. Subsequently, the residual choledocholithiasis was removed by a choledochoscopic procedure, and the common bile duct deletion was repaired by liver round ligament with T-tube drainage. Six months later, endoscopy was performed through the T-tube fistula and showed a well-repaired bile duct wall. Eight months later, MRCP confirmed no bile duct stenosis. A review of reported cases showed that fibrin glue is widely used in surgery, but it can also cause organ damage. Its mechanism may be related to discharge reactions.

  11. Bile Acids in Polycystic Liver Diseases: Triggers of Disease Progression and Potential Solution for Treatment.

    PubMed

    Perugorria, Maria J; Labiano, Ibone; Esparza-Baquer, Aitor; Marzioni, Marco; Marin, Jose J G; Bujanda, Luis; Banales, Jesús M

    2017-01-01

    Polycystic liver diseases (PLDs) are a group of genetic hereditary cholangiopathies characterized by the development and progressive growth of cysts in the liver, which are the main cause of morbidity. Current therapies are based on surgical procedures and pharmacological strategies, which show short-term and modest beneficial effects. Therefore, the determination of the molecular mechanisms of pathogenesis appears to be crucial in order to find new potential targets for pharmacological therapy. Ductal plate malformation during embryogenesis and abnormal cystic cholangiocyte growth and secretion are some of the key mechanisms involved in the pathogenesis of PLDs. However, the discovery of the presence of bile acids in the fluid collected from human cysts and the intrahepatic accumulation of cytotoxic bile acids in an animal model of PLD (i.e. polycystic kidney (PCK) rat) suggest a potential role of impaired bile acid homeostasis in the pathogenesis of these diseases. On the other hand, ursodeoxycholic acid (UDCA) has emerged as a new potential therapeutic tool for PLDs by promoting the inhibition of cystic cholangiocyte growth in both PCK rats and highly symptomatic patients with autosomal dominant polycystic kidney disease (ADPKD: most common type of PLD), and improving symptoms. Chronic treatment with UDCA normalizes the decreased intracellular calcium levels in ADPKD human cholangiocytes in vitro, which results in the reduction of their baseline-stimulated proliferation. Moreover, UDCA decreases the liver concentration of cytotoxic bile acids in PCK rats and the bile acid-dependent enhanced proliferation of cystic cholangiocytes. Here, the role of bile acids in the pathogenesis of PLDs and the potential therapeutic value of UDCA for the treatment of these diseases are reviewed and future lines of investigation in this field are proposed.

  12. Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy

    PubMed Central

    Kono, Yoshiharu; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Kaneko, Junichi; Saiura, Akio; Bandai, Yasutsugu; Kokudo, Norihiro

    2015-01-01

    Abstract To evaluate the clinical and technical factors affecting the ability of fluorescence cholangiography (FC) using indocyanine green (ICG) to delineate the bile duct anatomy during laparoscopic cholecystectomy (LC). Application of FC during LC began after laparoscopic fluorescence imaging systems became commercially available. In 108 patients undergoing LC, FC was performed by preoperative intravenous injection of ICG (2.5 mg) during dissection of Calot's triangle, and clinical factors affecting the ability of FC to delineate the extrahepatic bile ducts were evaluated. Equipment-related factors associated with bile duct detectability were also assessed among 5 laparoscopic systems and 1 open fluorescence imaging system in ex vivo studies. FC delineated the confluence between the cystic duct and common hepatic duct (CyD–CHD) before and after dissection of Calot's triangle in 80 patients (74%) and 99 patients (92%), respectively. The interval between ICG injection and FC before dissection of Calot's triangle was significantly longer in the 80 patients in whom the CyD–CHD confluence was detected by fluorescence imaging before dissection (median, 90 min; range, 15–165 min) than in the remaining 28 patients in whom the confluence was undetectable (median, 47 min; range, 21–205 min; P < 0.01). The signal contrast on the fluorescence images of the bile duct samples was significantly different among the laparoscopic imaging systems and tended to decrease more steeply than those of the open imaging system as the target-laparoscope distance increased and porcine tissues covering the samples became thicker. FC is a simple navigation tool for obtaining a biliary roadmap to reach the “critical view of safety” during LC. Key factors for better bile duct identification by FC are administration of ICG as far in advance as possible before surgery, sufficient extension of connective tissues around the bile ducts, and placement of the tip of

  13. Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile

    SciTech Connect

    Kobayashi, Yayoi Hirano, Seishiro

    2008-10-01

    Trivalent arsenicals such as arsenite (iAs{sup III}), monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}) are more toxic than analogous pentavalent compounds such as arsenate (iAs{sup V}), monomethylarsonic acid (MMA{sup V}) and dimethylarsinic acid (DMA{sup V}). It has been reported that arsenic-glutathione (As-GSH) complexes such as arsenic triglutathione (ATG) and methylarsenic diglutathione (MADG) are major metabolites in rat bile following intravenous administration of iAs{sup III}. Recently, we have shown that both ATG and MADG are unstable and easily hydrolyzed to iAs{sup III} and MMA{sup III}, respectively, and that MMA{sup III} is oxidized to MMA{sup V} in bile. In the present study we report the effects of H{sub 2}O{sub 2} and GSH on the stability of As-GSH complexes in rat bile. Male SD rats were injected intravenously with saline or iAs{sup III} at a dose of 0.2 or 2.0 mg As/kg body weight, and bile fluid was collected on ice for 30 min. To estimate the stability of As-GSH complexes in bile, ATG or MADG was added to untreated, heat-treated, catalase-treated, or dialyzed bile, and then incubated at 37 deg. C for 10 min. Concentrations of biliary H{sub 2}O{sub 2} and GSH in the higher dose group were 12.6- and 4.5-times higher than the control value, respectively. Exogenously added trivalent arsenicals were oxidized to pentavalent arsenicals in the bile depending on the biliary concentration of H{sub 2}O{sub 2}. Both catalase and dialysis prevented oxidation of trivalent arsenicals to the corresponding pentavalent compounds. Exogenously added GSH stabilized As-GSH complexes in bile. These results suggest that H{sub 2}O{sub 2} converts trivalent arsenicals to less toxic pentavalent arsenicals, whereas GSH prevents hydrolysis of As-GSH complexes and the generation of unconjugated toxic trivalent arsenicals.

  14. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    SciTech Connect

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng; Ma, Xiaochao; Gonzalez, Frank J.

    2013-01-15

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-type mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.

  15. An unusual case of trisomy 18 associated with paucity of bile ducts.

    PubMed

    Kahramaner, Zelal; Erdemir, Aydin; Cosar, Hese; Turkoglu, Ebru; Sutcuoglu, Sumer; Turelik, Ozlem; Cumurcu, Suheyla; Bayol, Umit; Ozer, Esra

    2013-10-01

    A case of neonatal cholestasis associated with Trisomy 18 (Edward's syndrome) is presented. A 3-day-old boy was referred to our clinic due to respiratory distress, elevated serum direct bilirubin levels, a systolic heart murmur, growth restriction and micrognathia. Liver biopsy and chromosomal analysis revealed paucity of intrahepatic bile ducts and Trisomy 18. Extrahepatic biliary atresia was reported in only a few patients with Trisomy 18. To our knowledge, we described for the first time a patient with Trisomy 18 and neonatal cholestasis associated with paucity of interlobular bile ducts.

  16. Main Bile Duct Stricture Occurring After Transcatheter Arterial Chemoembolization for Hepatocellular Carcinoma

    SciTech Connect

    Miyayama, Shiro Yamashiro, Masashi; Okuda, Miho; Yoshie, Yuichi; Nakashima, Yoshiko; Ikeno, Hiroshi; Orito, Nobuaki; Notsumata, Kazuo; Watanabe, Hiroyuki; Toya, Daisyu; Tanaka, Nobuyoshi; Matsui, Osamu

    2010-12-15

    The purpose of this study was to evaluate the clinical course of main bile duct stricture at the hepatic hilum after transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). Among 446 consecutive patients with HCC treated by TACE, main bile duct stricture developed in 18 (4.0%). All imaging and laboratory data, treatment course, and outcomes were retrospectively analyzed. All patients had 1 to 2 tumors measuring 10 to 100 mm in diameter (mean {+-} SD 24.5 {+-} 5.4 mm) near the hepatic hilum fed by the caudate arterial branch (A1) and/or medial segmental artery (A4) of the liver. During the TACE procedure that caused bile duct injury, A1 was embolized in 8, A4 was embolized in 5, and both were embolized in 5 patients. Nine patients (50.0%) had a history of TACE in either A1 or A4. Iodized oil accumulation in the bile duct wall was seen in all patients on computed tomography obtained 1 week later. Bile duct dilatation caused by main bile duct stricture developed in both lobes (n = 9), in the right lobe (n = 3), in the left lobe (n = 4), in segment (S) 2 (n = 1), and in S3 (n = 1). Serum levels of alkaline phosphatase and {gamma}-glutamyltranspeptidase increased in 13 patients. Biloma requiring drainage developed in 2 patients; jaundice developed in 4 patients; and metallic stents were placed in 3 patients. Complications after additional TACE sessions, including biloma (n = 3) and/or jaundice (n = 5), occurred in 7 patients and were treated by additional intervention, including metallic stent placement in 2 patients. After initial TACE of A1 and/or A4, 8 patients (44.4%), including 5 with uncontrollable jaundice or cholangitis, died at 37.9 {+-} 34.9 months after TACE, and 10 (55.6%) have survived for 38.4 {+-} 37.9 months. Selective TACE of A1 and/or A4 carries a risk of main bile duct stricture at the hepatic hilum. Biloma and jaundice are serious complications associated with bile duct strictures.

  17. Pancreas divisum: correlation between anatomical abnormalities and bile precipitation in the gallbladder in seven patients

    PubMed Central

    IZZO, P.; DI CELLO, P.; PUGLIESE, F.; IZZO, S.; GRANDE, R.; BIANCUCCI, F.; SINAIMERI, G.; RAZIONALE, F.; COSTI, U.; AL MANSOUR, M.; MUNEER, A.; VALABREGA, S.; IZZO, L.

    2016-01-01

    Pancreas divisum is a genetic defect associated with recurrent acute pancreatitis due to insufficient drainage of the accessory pancreatic duct. Seven young patients diagnosed with pancreatic divisum and thickening of the gallbladder bile as shown on magnetic resonance cholangio-pancreatography without pancreatic ductal changes underwent laparoscopic cholecystectomy. During the mean follow-up of 32 months no episode of pancreatitis was reported. There is an association between PD and higher concentration of bile in the gallbladder. Cholecystectomy can be considered curative in patients with PD in the absence of indications for major surgery. PMID:27938531

  18. Common Bile Duct Obstruction Due to Surgical Clips Following Laparoscopic Cholecystectomy Treated with Percutaneous Balloon Dilatation.

    PubMed

    Korkmaz, Mehmet; Adıgüzel, Ünal; Şanal, Bekir; Zeren, Sezgin; Ekici, Mehmet Fatih

    2016-06-01

    Bile duct injury is a commonly seen complication of the laparoscopic cholecystectomy (LC) approach, which can even lead to a life-threatening condition and endoscopic retrograde cholangiopancreatography (ERCP) is the first-line choice in treatment. Beside this, it can be concluded that percutaneous transhepatic cholangiography (PTC) and balloon dilatation methods may also constitute a reasonable selection with non-invasive, feasible and effective aspects prior to open surgery. In the present case, we report the management of a bile duct obstruction due to surgical clips following LC, treated with PTC and balloon dilatation instead of surgical procedure in a child patient.

  19. Biosynthesis and release of pheromonal bile salts in mature male sea lamprey

    PubMed Central

    2013-01-01

    Background In vertebrates, bile salts are primarily synthesized in the liver and secreted into the intestine where they aid in absorption of dietary fats. Small amounts of bile salts that are not reabsorbed into enterohepatic circulation are excreted with waste. In sexually mature male sea lamprey (Petromyzon marinus L.) a bile salt is released in large amounts across gill epithelia into water where it functions as a pheromone. We postulate that the release of this pheromone is associated with a dramatic increase in its biosynthesis and transport to the gills upon sexual maturation. Results We show an 8000-fold increase in transcription of cyp7a1, a three-fold increase in transcription of cyp27a1, and a six-fold increase in transcription of cyp8b1 in the liver of mature male sea lamprey over immature male adults. LC–MS/MS data on tissue-specific distribution and release rates of bile salts from mature males show a high concentration of petromyzonol sulfate (PZS) in the liver and gills of mature males. 3-keto petromyzonol sulfate (3kPZS, known as a male sex pheromone) is the primary compound released from gills, suggesting a conversion of PZS to 3kPZS in the gill epithelium. The PZS to 3kPZS conversion is supported by greater expression of hsd3b7 in gill epithelium. High expression of sult2b1 and sult2a1 in gill epithelia of mature males, and tissue-specific expression of bile salt transporters such as bsep, slc10a1, and slc10a2, suggest additional sulfation and transport of bile salts that are dependent upon maturation state. Conclusions This report presents a rare example where specific genes associated with biosynthesis and release of a sexual pheromone are dramatically upregulated upon sexual maturation i