Science.gov

Sample records for acid-induced acute lung

  1. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    SciTech Connect

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  2. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    PubMed

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI. PMID:25165710

  3. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  4. Changes in breath sound power spectra during experimental oleic acid-induced lung injury in pigs.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2014-01-01

    To evaluate the effect of acute lung injury on the frequency spectra of breath sounds, we made serial acoustic recordings from nondependent, midlung and dependent regions of both lungs in ten 35- to 45-kg anesthetized, intubated, and mechanically ventilated pigs during development of acute lung injury induced with intravenous oleic acid in prone or supine position. Oleic acid injections rapidly produced severe derangements in the gas exchange and mechanical properties of the lung, with an average increase in venous admixture from 16 ± 12 to 62 ± 16% (P < 0.01), and a reduction in dynamic respiratory system compliance from 25 ± 4 to 14 ± 4 ml/cmH2O (P < 0.01). A concomitant increase in sound power was seen in all lung regions (P < 0.05), predominantly in frequencies 150-800 Hz. The deterioration in gas exchange and lung mechanics correlated best with concurrent spectral changes in the nondependent lung regions. Acute lung injury increases the power of breath sounds likely secondary to redistribution of ventilation from collapsed to aerated parts of the lung and improved sound transmission in dependent, consolidated areas.

  5. Acute lung injury review.

    PubMed

    Tsushima, Kenji; King, Landon S; Aggarwal, Neil R; De Gorordo, Antonio; D'Alessio, Franco R; Kubo, Keishi

    2009-01-01

    The first report of acute respiratory distress syndrome (ARDS) was published in 1967, and even now acute lung injury (ALI) and ARDS are severe forms of diffuse lung disease that impose a substantial health burden all over the world. Recent estimates indicate approximately 190,000 cases per year of ALI in the United States each year, with an associated 74,500 deaths per year. Common causes of ALI/ARDS are sepsis, pneumonia, trauma, aspiration pneumonia, pancreatitis, and so on. Several pathologic stages of ALI/ARDS have been described: acute inflammation with neutrophil infiltration, fibroproliferative phase with hyaline membranes, with varying degrees of interstitial fibrosis, and resolution phase. There has been intense investigation into the pathophysiologic events relevant to each stage of ALI/ARDS, and much has been learned in the alveolar epithelial, endobronchial homeostasis, and alveolar cell immune responses, especially neutrophils and alveolar macrophages in an animal model. However, these effective results in the animal models are not equally adoptive to those in randomized, controlled trials. The clinical course of ALI/ARDS is variable with the likely pathophysiologic complexity of human ALI/ARDS. In 1994, the definition was recommended by the American-European Consensus Conference Committee, which facilitated easy nomination of patients with ALI/ARDS for a randomized, clinical trial. Here, we review the recent randomized, clinical trials of ALI/ARDS.

  6. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  7. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case

    PubMed Central

    Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-01-01

    Valproic acid is the most widely used anti-epilep­tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up. PMID:26366333

  8. Biomarkers in acute lung injury.

    PubMed

    Mokra, Daniela; Kosutova, Petra

    2015-04-01

    Acute respiratory distress syndrome (ARDS) and its milder form acute lung injury (ALI) may result from various diseases and situations including sepsis, pneumonia, trauma, acute pancreatitis, aspiration of gastric contents, near-drowning etc. ALI/ARDS is characterized by diffuse alveolar injury, lung edema formation, neutrophil-derived inflammation, and surfactant dysfunction. Clinically, ALI/ARDS is manifested by decreased lung compliance, severe hypoxemia, and bilateral pulmonary infiltrates. Severity and further characteristics of ALI/ARDS may be detected by biomarkers in the plasma and bronchoalveolar lavage fluid (or tracheal aspirate) of patients. Changed concentrations of individual markers may suggest injury or activation of the specific types of lung cells-epithelial or endothelial cells, neutrophils, macrophages, etc.), and thereby help in diagnostics and in evaluation of the patient's clinical status and the treatment efficacy. This chapter reviews various biomarkers of acute lung injury and evaluates their usefulness in diagnostics and prognostication of ALI/ARDS.

  9. Morphometric analysis of oleic acid-induced permeability pulmonary edema: correlation with gravimetric lung water.

    PubMed

    Darien, B J; Saban, M R; Hart, A P; MacWilliams, P S; Clayton, M K; Kruse-Elliott, K T

    1997-07-01

    The technique used most commonly to quantitate pulmonary edema in in vivo animal models is postmortem gravimetric analysis (wet:dry) ratio. To determine whether lung water can be quantitated morphometrically, as accurately as by the commonly used gravimetric analysis, perivascular edema (cuff) area to vessel area ratio was correlated to wet:dry ratio. Anesthetized pigs were given either oleic acid (20 mg/kg/h, intravenously) or physiologic saline. At 4 h, lungs were excised and cuff:vessel and wet:dry ratio analysis was performed. The intermediate lobe was clamped across its main stem bronchus to maintain peak inspiratory inflation, excised, frozen in liquid nitrogen, and stored at -70 degrees C until cryostat sectioning and quantification of perivascular interstitial edema (cuff) area. Gravimetric analysis (wet:dry ratio) was performed on the remaining lung. Mean cuff:vessel and wet:dry analyzes showed that lung water increased significantly (p < .01) in the oleic-acid treated group (4.9 +/- .22 and 6.78 +/- .47, respectively), compared with the saline group (.03 +/- .02 and 2.55 +/- .27, respectively). The correlation coefficient between mean cuff:vessel and wet:dry ratios was .86 (p = .0016). This study demonstrates that cuff:vessel ratio analysis can be used to identify the distribution of edema fluid versus vessel diameter, and seems to be as effective a technique as gravimetric analysis to quantitate lung water changes in acute lung injury models. Moreover cuff:vessel ratio analysis can differentiate modest changes in pulmonary edema by direct quantitation, an important end-point not provided by wet:dry analysis. Therefore, it may be a more sensitive technique when investigating therapeutic interventions in in vivo models of acute lung injury.

  10. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover.

  11. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    PubMed

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. PMID:27597244

  12. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  13. Necrostatin-1 protects against oleic acid-induced acute respiratory distress syndrome in rats.

    PubMed

    Pan, Long; Yao, Dun-Chen; Yu, Yu-Zhong; Li, Sheng-Jie; Chen, Bing-Jun; Hu, Gui-He; Xi, Chang; Wang, Zi-Hui; Wang, Hong-Yan; Li, Jian-Hua; Tu, Yong-Sheng

    2016-09-30

    Necroptosis is a recently discovered necrotic cell death which is regulated by receptor interacting protein kinase 1 (RIPK1) and RIPK3 under the stimulus of death signal and can be inhibited by necrostatin-1 (Nec-1) specifically. Therefore, the aim was to investigate the role of necroptosis in a rat model of acute respiratory distress syndrome (ARDS) induced by oleic acid (OA) and assess the effect of Nec-1 on lung injury in ARDS. Our results found that RIPK1, RIPK3 and mixed lineage kinase domain-like protein (MLKL) were abundantly expressed in rat lung tissues of OA-induced ARDS. Nec-1 pretreatment improved pulmonary function and attenuated lung edema dramatically in OA-induced ARDS rats. Furthermore, Nec-1 reduced RIPK1-RIPK3 interaction and down-regulated RIPK1-RIPK3-MLKL signal pathway, and inhibited inflammatory response by reducing neutrophil infiltration and protein leakage into lung tissue in OA-induced ARDS. Collectively, our study proves the intervention of necroptosis in OA-induced ARDS. Moreover, our findings imply that Nec-1 plays an important role in the treatment of ARDS via inhibiting necroptosis and inflammation. PMID:27586277

  14. Primary and secondary genetic responses after folic acid-induced acute renal injury in the mouse.

    PubMed

    Calvet, J P; Chadwick, L J

    1994-12-01

    Folic acid-induced acute renal injury results in dramatic changes in gene expression. Among the genes affected by folic acid treatment are the primary response genes, c-fos and c-myc, which are thought to function to initiate cell cycle events. In this report, changes in the expression of three other genes in response to folic acid injury have been investigated: ornithine decarboxylase, epidermal growth factor (EGF), and sulfated glycoprotein-2 (SGP-2). Renal injury was found to cause a rapid decrease in EGF mRNA, which remained absent for several days after the initial injury, gradually returning to normal levels over an approximately 3-wk regeneration and recovery period. Ornithine decarboxylase mRNA showed a similar decrease. In contrast, folic acid caused a rapid increase in SGP-2 mRNA, which peaked several days after treatment, decreasing to normal levels over the 3-wk period. The mRNAs for the primary response genes were superinduced in the injured kidneys in the presence of the protein synthesis inhibitor cycloheximide. In contrast, the changes in EGF and SGP-2 mRNA levels were blocked by cycloheximide, indicating that these responses required new protein synthesis during the first few hours after folic acid injury. The opposite but parallel responses in the expression of the EGF and SGP-2 genes suggest that their regulation is coupled to the initial injury-induced dedifferentiation and subsequent return to the fully differentiated state.

  15. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis

    PubMed Central

    Nagy-Szakal, Dorottya; Mir, Sabina A. V.; Harris, R. Alan; Dowd, Scot E.; Yamada, Takeshi; Lacorazza, H. Daniel; Tatevian, Nina; Smith, C. Wayne; de Zoeten, Edwin F.; Klein, John; Kellermayer, Richard

    2015-01-01

    Dietary influences may affect microbiome composition and host immune responses, thereby modulating propensity toward inflammatory bowel diseases (IBDs): Crohn disease (CD) and ulcerative colitis (UC). Dietary n-6 fatty acids have been associated with UC in prospective studies. However, the critical developmental period when (n-6) consumption may induce UC is not known. We examined the effects of transiently increased n-6 consumption during pediatric development on subsequent dextran-sulfate-sodium (DSS)-induced acute murine colitis. The animals transiently became obese then rapidly lost this phenotype. Interestingly, mice were protected against DSS colitis 40 days after n-6 consumption. The transient high n-6-induced protection against colitis was fat type- and dietary reversal-dependent and could be transferred to germ-free mice by fecal microbiota transplantation. We also detected decreased numbers of chemokine receptor (Cxcr)5+ CD4+ T cells in the mesenteric lymph nodes (MLNs) of transiently n-6-fed mice. Further experiments revealed that anti-chemokine ligand (Cxcl)13 (the ligand of Cxcr5) antibody treatment decreased DSS colitis severity, implicating the importance of the Cxcr5-Cxcl13 pathway in mammalian colitis. Consecutively, we found elevated CXCL13 concentrations (CD: 1.8-fold, P = 0.0077; UC: 1.9-fold, P = 0.056) in the serum of untreated pediatric IBD patients. The human serologic observations supported the translational relevance of our findings.—Nagy-Szakal, D., Mir, S. A. V., Harris, R. A., Dowd, S. E., Yamada, T., Lacorazza, H. D., Tatevian, N., Smith, C. W., de Zoeten, E. F., Klein, J., Kellermayer, R. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis. PMID:25903104

  16. Characterization of oleic acid-induced acute respiratory distress syndrome model in rat.

    PubMed

    Akella, Aparna; Sharma, Parul; Pandey, Ratna; Deshpande, Shripad B

    2014-07-01

    Animal studies using oleic acid (OA) model to produce acute respiratory distress syndrome (ARDS) have been inconsistent. Therefore, the present study was undertaken to establish an acute model of ARDS in rats using OA and to characterize its effect on cardio-respiratory parameters and lethality. The trachea, jugular vein and femoral artery of anesthetized adult rats were cannulated. A dose of OA (30-90 microL; iv) was injected in each animal and changes in respiratory frequency (RF), heart rate (HR) and mean arterial pressure (MAP) were recorded. Minute ventilation and PaO2/FiO2 (P/F) ratio were also determined. At the end, lungs were excised for determination of pulmonary water content and histological examination. At all doses of OA, there was immediate decrease followed by increase in RF, however at 75 and 90 microL of OA, RF decreased abruptly and the animals died by 63 +/- 8.2 min and 19 +/- 6.3 min; respectively. In all the groups, HR and MAP changes followed the respiratory changes. The minute ventilation increased in a dose-dependent manner while the values of P/F ratio decreased correspondingly. Pulmonary edema was induced at all doses. Histological examination of the lung showed alveolar damage, microvascular congestion, microvascular injury, infiltration of inflammatory cells, pulmonary edema and necrosis in a dose-dependent manner. With these results, OA can be used to induce different grades of ARDS in rats and OA doses of 50, 60 and 75 microL resemble mild, moderate and severe forms of ARDS respectively. Hence, OA model serves as a useful tool to study the pathophysiology of ARDS.

  17. Akt2 deficiency as a therapeutic strategy protects against acute lung injury.

    PubMed

    Gauna, Adrienne E; Cha, Seunghee

    2014-01-01

    Evaluation of: Vergadi E, Vaporidi K, Theodorakis EE et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J. Immunol. 192, 394-406 (2013). Acute respiratory distress syndrome currently has limited effective treatments; however, recent evidence suggests that modulation of alveolar macrophage responses may be an effective method for protection or repair of lung injury. Vergadi et al. are the first to demonstrate that depletion of Akt2 kinase and microRNA-146a induction in mice resulted in polarization of alveolar macrophages towards an M2 activation phenotype and resulted in less severe injury following acid-induced lung injury. However, this M2 polarization also resulted in increased lung bacterial load following infection with Pseudomonas aeruginosa.

  18. Acute exacerbations of fibrotic interstitial lung disease.

    PubMed

    Churg, Andrew; Wright, Joanne L; Tazelaar, Henry D

    2011-03-01

    An acute exacerbation is the development of acute lung injury, usually resulting in acute respiratory distress syndrome, in a patient with a pre-existing fibrosing interstitial pneumonia. By definition, acute exacerbations are not caused by infection, heart failure, aspiration or drug reaction. Most patients with acute exacerbations have underlying usual interstitial pneumonia, either idiopathic or in association with a connective tissue disease, but the same process has been reported in patients with fibrotic non-specific interstitial pneumonia, fibrotic hypersensitivity pneumonitis, desquamative interstitial pneumonia and asbestosis. Occasionally an acute exacerbation is the initial manifestation of underlying interstitial lung disease. On biopsy, acute exacerbations appear as diffuse alveolar damage or bronchiolitis obliterans organizing pneumonia (BOOP) superimposed upon the fibrosing interstitial pneumonia. Biopsies may be extremely confusing, because the acute injury pattern can completely obscure the underlying disease; a useful clue is that diffuse alveolar damage and organizing pneumonia should not be associated with old dense fibrosis and peripheral honeycomb change. Consultation with radiology can also be extremely helpful, because the fibrosing disease may be evident on old or concurrent computed tomography scans. The aetiology of acute exacerbations is unknown, and the prognosis is poor; however, some patients survive with high-dose steroid therapy.

  19. Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines

    PubMed Central

    Ge, Dong-zheng; Sheng, Yan; Cai, Xun

    2014-01-01

    All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines. PMID:24769642

  20. Valproic acid-induced acute pancreatitis in pediatric age: case series and review of literature

    PubMed Central

    COFINI, M.; QUADROZZI, F.; FAVORITI, P.; FAVORITI, M.; COFINI, G.

    2015-01-01

    Valproic acid (VPA) is commonly prescribed medication for epilepsy, migraine and bipolar disorder. Although the common adverse effect associated with VPA are typically benign, less common adverse effect can occur; these include hepatotixicity, teratogenicity and acute pancreatitis (AP). VPA-induced pancreatitis does not depend on valproic acid serum level and may occur anytime after onset of therapy. Re-challenge with VPA is dangerous and should be avoided. The diagnosis of VPA-induced pancreatitis seems to be underestimated because of difficulties in determining the causative agent and the need for a retrospective re-evaluation of the causative factor. More of idiopathic pancreatitis should be a drug-induced pancreatitis. We report four cases of VPA-induced AP found in a group of 52 cases of AP in children come to our attention from January 2008 to December 2012. The aim of these reports is to point out our experience about clinical presentation, diagnosis, management, outcome in children with VPA-induced AP and review of literature. PMID:26712070

  1. Acute lung injury after thoracic surgery.

    PubMed

    Eichenbaum, Kenneth D; Neustein, Steven M

    2010-08-01

    In this review, the authors discussed criteria for diagnosing ALI; incidence, etiology, preoperative risk factors, intraoperative management, risk-reduction strategies, treatment, and prognosis. The anesthesiologist needs to maintain an index of suspicion for ALI in the perioperative period of thoracic surgery, particularly after lung resection on the right side. Acute hypoxemia, imaging analysis for diffuse infiltrates, and detecting a noncardiogenic origin for pulmonary edema are important hallmarks of acute lung injury. Conservative intraoperative fluid administration of neutral to slightly negative fluid balance over the postoperative first week can reduce the number of ventilator days. Fluid management may be optimized with the assistance of new imaging techniques, and the anesthesiologist should monitor for transfusion-related lung injuries. Small tidal volumes of 6 mL/kg and low plateau pressures of < or =30 cmH2O may reduce organ and systemic failure. PEEP may improve oxygenation and increases organ failure-free days but has not shown a mortality benefit. The optimal mode of ventilation has not been shown in perioperative studies. Permissive hypercapnia may be needed in order to reduce lung injury from positive-pressure ventilation. NO is not recommended as a treatment. Strategies such as bronchodilation, smoking cessation, steroids, and recruitment maneuvers are unproven to benefit mortality although symptomatically they often have been shown to help ALI patients. Further studies to isolate biomarkers active in the acute setting of lung injury and pharmacologic agents to inhibit inflammatory intermediates may help improve management of this complex disease.

  2. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice.

    PubMed

    Tian, Chunjie; Kim, Young Ho; Kim, Young Chul; Park, Kyung Tae; Kim, Seung Won; Kim, Youn Ju; Lim, Hye Jin; Choung, Yun-Hoon

    2013-01-01

    3-Nitropropionic acid (3-NP), a mitochondrial toxin, has been reported to induce an acute cochlear damage. Korean red ginseng (KRG) is known to have protective effects from some types of hearing loss. This study aimed to observe the protective effect of KRG in an ototoxic animal model using 3-NP intratympanic injection. BALB/c mice were classified into 5 groups (n=15) and dose-dependent toxic effects after intratympanic injection with 3-NP (300-5000 mM) on the left ear were investigated to determine the appropriate toxicity level of 3-NP. For observation of the protective effects of KRG, 23 mice were grouped into 3-NP (500 mM, n=12) and KRG+3-NP groups (300 mg/kg KRG for 7 days before 500 mM 3-NP administration, n=11). Auditory brain response (ABR) and cochlear morphological evaluations were performed before and after drug administration. The ABR thresholds in the 800-5000 mM groups exceeded the maximum recording limit at 16 and 32 kHz 1 day after 3-NP administration. The ABR threshold in the 500 mM 3-NP+KRG group was significantly lower than that in the 500 mM 3-NP group from post 1 week to 1 month. The mean type II fibrocyte counts significantly differed between the control and 3-NP groups and between the 3-NP and 3-NP+KRG groups. Spiral ganglion cell degeneration in the 3-NP group was more severe than that in the 3-NP+KRG group. This animal model exhibited a dose-dependent hearing loss with histological changes. KRG administration ameliorated the deterioration of hearing by 3-NP. PMID:23164932

  3. Pharmacotherapy of Acute Lung Injury and Acute Respiratory Distress Syndrome

    PubMed Central

    Raghavendran, Krishnan; Pryhuber, Gloria S.; Chess, Patricia R.; Davidson, Bruce A.; Knight, Paul R.; Notter, Robert H.

    2009-01-01

    Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are characterized by rapid-onset respiratory failure following a variety of direct and indirect insults to the parenchyma or vasculature of the lungs. Mortality from ALI/ARDS is substantial, and current therapy primarily emphasizes mechanical ventilation and judicial fluid management plus standard treatment of the initiating insult and any known underlying disease. Current pharmacotherapy for ALI/ARDS is not optimal, and there is a significant need for more effective medicinal chemical agents for use in these severe and lethal lung injury syndromes. To facilitate future chemical-based drug discovery research on new agent development, this paper reviews present pharmacotherapy for ALI/ARDS in the context of biological and biochemical drug activities. The complex lung injury pathophysiology of ALI/ARDS offers an array of possible targets for drug therapy, including inflammation, cell and tissue injury, vascular dysfunction, surfactant dysfunction, and oxidant injury. Added targets for pharmacotherapy outside the lungs may also be present, since multiorgan or systemic pathology is common in ALI/ARDS. The biological and physiological complexity of ALI/ARDS requires the consideration of combined-agent treatments in addition to single-agent therapies. A number of pharmacologic agents have been studied individually in ALI/ARDS, with limited or minimal success in improving survival. However, many of these agents have complementary biological/biochemical activities with the potential for synergy or additivity in combination therapy as discussed in this article. PMID:18691048

  4. Surfactant for pediatric acute lung injury.

    PubMed

    Willson, Douglas F; Chess, Patricia R; Notter, Robert H

    2008-06-01

    This article reviews exogenous surfactant therapy and its use in mitigating acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) in infants, children, and adults. Biophysical and animal research documenting surfactant dysfunction in ALI/ARDS is described, and the scientific rationale for treatment with exogenous surfactant is discussed. Major emphasis is placed on reviewing clinical studies of surfactant therapy in pediatric and adult patients who have ALI/ARDS. Particular advantages from surfactant therapy in direct pulmonary forms of these syndromes are described. Also discussed are additional factors affecting the efficacy of exogenous surfactants in ALI/ARDS.

  5. Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury

    PubMed Central

    Carvalho, Alysson Roncally S; Jandre, Frederico C; Pino, Alexandre V; Bozza, Fernando A; Salluh, Jorge; Rodrigues, Rosana; Ascoli, Fabio O; Giannella-Neto, Antonio

    2007-01-01

    Introduction Protective ventilatory strategies have been applied to prevent ventilator-induced lung injury in patients with acute lung injury (ALI). However, adjustment of positive end-expiratory pressure (PEEP) to avoid alveolar de-recruitment and hyperinflation remains difficult. An alternative is to set the PEEP based on minimizing respiratory system elastance (Ers) by titrating PEEP. In the present study we evaluate the distribution of lung aeration (assessed using computed tomography scanning) and the behaviour of Ers in a porcine model of ALI, during a descending PEEP titration manoeuvre with a protective low tidal volume. Methods PEEP titration (from 26 to 0 cmH2O, with a tidal volume of 6 to 7 ml/kg) was performed, following a recruitment manoeuvre. At each PEEP, helical computed tomography scans of juxta-diaphragmatic parts of the lower lobes were obtained during end-expiratory and end-inspiratory pauses in six piglets with ALI induced by oleic acid. The distribution of the lung compartments (hyperinflated, normally aerated, poorly aerated and non-aerated areas) was determined and the Ers was estimated on a breath-by-breath basis from the equation of motion of the respiratory system using the least-squares method. Results Progressive reduction in PEEP from 26 cmH2O to the PEEP at which the minimum Ers was observed improved poorly aerated areas, with a proportional reduction in hyperinflated areas. Also, the distribution of normally aerated areas remained steady over this interval, with no changes in non-aerated areas. The PEEP at which minimal Ers occurred corresponded to the greatest amount of normally aerated areas, with lesser hyperinflated, and poorly and non-aerated areas. Levels of PEEP below that at which minimal Ers was observed increased poorly and non-aerated areas, with concomitant reductions in normally inflated and hyperinflated areas. Conclusion The PEEP at which minimal Ers occurred, obtained by descending PEEP titration with a protective

  6. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI.

  7. Role of Transient Receptor Potential Vanilloid 4 in Neutrophil Activation and Acute Lung Injury.

    PubMed

    Yin, Jun; Michalick, Laura; Tang, Christine; Tabuchi, Arata; Goldenberg, Neil; Dan, Qinghong; Awwad, Khader; Wang, Liming; Erfinanda, Lasti; Nouailles, Geraldine; Witzenrath, Martin; Vogelzang, Alexis; Lv, Lu; Lee, Warren L; Zhang, Haibo; Rotstein, Ori; Kapus, Andras; Szaszi, Katalin; Fleming, Ingrid; Liedtke, Wolfgang B; Kuppe, Hermann; Kuebler, Wolfgang M

    2016-03-01

    The cation channel transient receptor potential vanilloid (TRPV) 4 is expressed in endothelial and immune cells; however, its role in acute lung injury (ALI) is unclear. The functional relevance of TRPV4 was assessed in vivo, in isolated murine lungs, and in isolated neutrophils. Genetic deficiency of TRPV4 attenuated the functional, histological, and inflammatory hallmarks of acid-induced ALI. Similar protection was obtained with prophylactic administration of the TRPV4 inhibitor, GSK2193874; however, therapeutic administration of the TRPV4 inhibitor, HC-067047, after ALI induction had no beneficial effect. In isolated lungs, platelet-activating factor (PAF) increased vascular permeability in lungs perfused with trpv4(+/+) more than with trpv4(-/-) blood, independent of lung genotype, suggesting a contribution of TRPV4 on blood cells to lung vascular barrier failure. In neutrophils, TRPV4 inhibition or deficiency attenuated the PAF-induced increase in intracellular calcium. PAF induced formation of epoxyeicosatrienoic acids by neutrophils, which, in turn, stimulated TRPV4-dependent Ca(2+) signaling, whereas inhibition of epoxyeicosatrienoic acid formation inhibited the Ca(2+) response to PAF. TRPV4 deficiency prevented neutrophil responses to proinflammatory stimuli, including the formation of reactive oxygen species, neutrophil adhesion, and chemotaxis, putatively due to reduced activation of Rac. In chimeric mice, however, the majority of protective effects in acid-induced ALI were attributable to genetic deficiency of TRPV4 in parenchymal tissue, whereas TRPV4 deficiency in circulating blood cells primarily reduced lung myeloperoxidase activity. Our findings identify TRPV4 as novel regulator of neutrophil activation and suggest contributions of both parenchymal and neutrophilic TRPV4 in the pathophysiology of ALI. PMID:26222277

  8. Gallic Acid Induces a Reactive Oxygen Species-Provoked c-Jun NH2-Terminal Kinase-Dependent Apoptosis in Lung Fibroblasts

    PubMed Central

    Chen, Chiu-Yuan; Chen, Kun-Chieh; Yang, Tsung-Ying; Liu, Hsiang-Chun; Hsu, Shih-Lan

    2013-01-01

    Idiopathic pulmonary fibrosis is a chronic lung disorder characterized by fibroblasts proliferation and extracellular matrix accumulation. Induction of fibroblast apoptosis therefore plays a crucial role in the resolution of this disease. Gallic acid (3,4,5-trihydroxybenzoic acid), a common botanic phenolic compound, has been reported to induce apoptosis in tumor cell lines and renal fibroblasts. The present study was undertaken to examine the role of mitogen-activated protein kinases (MAPKs) in lung fibroblasts apoptosis induced by gallic acid. We found that treatment with gallic acid resulted in activation of c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB, Akt), but not p38MAPK, in mouse lung fibroblasts. Inhibition of JNK using pharmacologic inhibitor (SP600125) and genetic knockdown (JNK specific siRNA) significantly inhibited p53 accumulation, reduced PUMA and Fas expression, and abolished apoptosis induced by gallic acid. Moreover, treatment with antioxidants (vitamin C, N-acetyl cysteine, and catalase) effectively diminished gallic acid-induced hydrogen peroxide production, JNK and p53 activation, and cell death. These observations imply that gallic acid-mediated hydrogen peroxide formation acts as an initiator of JNK signaling pathways, leading to p53 activation and apoptosis in mouse lung fibroblasts. PMID:23533505

  9. [Clinico-roentgenological characteristics of acute lung abscess].

    PubMed

    Gadzhiev, S A; Anan'ina, G V; Abramov, Sh I

    1976-01-01

    Based on an analysis of the clinico-roentgenological picture of the disease in 48 patients with acute lung suppuration, the authors have detected some peculiarities in clinical manifestations of the disease, and also characteristic features of the roentgenological semiotics, which enabled them to define the pathological process as "a primary" acute abscess of the lung.

  10. The effects of prophylactic expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs.

    PubMed Central

    Luce, J M; Huang, T W; Robertson, H T; Colley, P S; Gronka, R; Nessly, M L; Cheney, F W

    1983-01-01

    It is not known whether positive end-expiratory airway pressure (PEEP) merely improves gas exchange in patients with the adult respiratory distress syndrome (ARDS) or if it also affects the resolution of their lung injury. The present investigation was performed to determine whether expiratory positive airway pressure (EPAP), a form of PEEP, is prophylactic in preventing the lung injury induced by oleic acid in dogs or in enhancing its resolution. Arterial and mixed venous blood gases and functional residual capacity (FRC) were measured in 14 pairs of mongrel dogs with indwelling catheters and permanent tracheostomies. One member of each pair was treated with 10 cm H2O EPAP through a valve attached to the tracheostomy tube. Both dogs received 0.06 ml/kg oleic acid intravenously at hour 0. Measurements were made at three, 12, and 24 hours, when EPAP was discontinued, and over the next six days. Five dog pairs were sacrificed at 72 hours; the other surviving animals were sacrificed at 168 hours. FRC was higher at three, 12, and 24 hours in dogs receiving EPAP than in the untreated dogs. The arterial oxygen tension (PaO2) was higher and the venous admixture (Qva/Qt) was lower at three and 12 hours in the dogs receiving EPAP than in the untreated dogs. However, after 24 hours, no differences were noted between the two groups in FRC, PaO2, Qav/Qt, mortality, final lung compliance to initial lung compliance differences, lung water to dry lung weight ratios, or histology. It is concluded that EPAP improves gas exchange during its administration, but has no demonstrable prophylactic effect on the resolution of lung injury in the oleic acid model of human ARDS. Images Fig. 7. Fig. 7. PMID:6338844

  11. Acute respiratory distress syndrome and acute lung injury.

    PubMed

    Dushianthan, A; Grocott, M P W; Postle, A D; Cusack, R

    2011-09-01

    Acute respiratory distress syndrome (ARDS) is a life threatening respiratory failure due to lung injury from a variety of precipitants. Pathologically ARDS is characterised by diffuse alveolar damage, alveolar capillary leakage, and protein rich pulmonary oedema leading to the clinical manifestation of poor lung compliance, severe hypoxaemia, and bilateral infiltrates on chest radiograph. Several aetiological factors associated with the development of ARDS are identified with sepsis, pneumonia, and trauma with multiple transfusions accounting for most cases. Despite the absence of a robust diagnostic definition, extensive epidemiological investigations suggest ARDS remains a significant health burden with substantial morbidity and mortality. Improvements in outcome following ARDS over the past decade are in part due to improved strategies of mechanical ventilation and advanced support of other failing organs. Optimal treatment involves judicious fluid management, protective lung ventilation with low tidal volumes and moderate positive end expiratory pressure, multi-organ support, and treatment where possible of the underlying cause. Moreover, advances in general supportive measures such as appropriate antimicrobial therapy, early enteral nutrition, prophylaxis against venous thromboembolism and gastrointestinal ulceration are likely contributory reasons for the improved outcomes. Although therapies such as corticosteroids, nitric oxide, prostacyclins, exogenous surfactants, ketoconazole and antioxidants have shown promising clinical effects in animal models, these have failed to translate positively in human studies. Most recently, clinical trials with β2 agonists aiding alveolar fluid clearance and immunonutrition with omega-3 fatty acids have also provided disappointing results. Despite these negative studies, mortality seems to be in decline due to advances in overall patient care. Future directions of research are likely to concentrate on identifying potential

  12. Therapeutic Strategies for Severe Acute Lung Injury

    PubMed Central

    Diaz, Janet. V.; Brower, Roy; Calfee, Carolyn S.; Matthay, Michael A.

    2015-01-01

    Objective In the management of patients with severe Acute Lung Injury and the Acute Respiratory Distress Syndrome (ALI/ARDS), clinicians are sometimes challenged to maintain acceptable gas exchange while avoiding harmful mechanical ventilation practices. In some of these patients, physicians may consider the use of “rescue therapies” to sustain life. Our goal is to provide a practical, evidence-based review to assist critical care physicians’ care for patients with severe ALI/ARDS. Data Sources and Study Selection We searched the Pub Med database for clinical trials examining the use of the following therapies in ALI/ARDS: recruitment maneuvers, high positive end expiratory pressure, prone position, high frequency oscillatory ventilation, glucocorticoids, inhaled nitric oxide, buffer therapy and extracorporeal life support. Study selection All clinical trials that included patients with severe ALI/ARDS were included in the review. Data Synthesis The primary author reviewed the aforementioned trials in depth and then disputed findings and conclusions with other authors until consensus was achieved. Conclusions This article is designed to: a) provide clinicians with a simple, bedside definition for the diagnosis of severe ARDS; b) describe several therapies that can be used in severe ARDS with an emphasis on the potential risks as well as the indications and benefits; and c) to offer practical guidelines for implementation of these therapies. PMID:20562704

  13. On the Pathogenesis of Acute Exacerbations of Mucoobstructive Lung Diseases.

    PubMed

    Boucher, Richard C

    2015-11-01

    Mucoobstructive lung diseases have highlighted the importance of a proper description of the normal mucus clearance system. A useful description of the normal mucus clearance apparatus requires the presence of two gels on the airway surface (i.e., a mucus layer gel and a periciliary gel). Importantly, most mucoobstructive lung diseases are distributed heterogeneously in the lung, and exacerbations may reflect spread of the disease to previously normal areas. The spread may reflect disturbances in the balance of water between the two gel layers, producing heterogeneous mucus adhesion and infection within the lung. Ultimately, spread can produce losses of lung function that may be associated with acute exacerbation frequency.

  14. On the Pathogenesis of Acute Exacerbations of Mucoobstructive Lung Diseases

    PubMed Central

    2015-01-01

    Mucoobstructive lung diseases have highlighted the importance of a proper description of the normal mucus clearance system. A useful description of the normal mucus clearance apparatus requires the presence of two gels on the airway surface (i.e., a mucus layer gel and a periciliary gel). Importantly, most mucoobstructive lung diseases are distributed heterogeneously in the lung, and exacerbations may reflect spread of the disease to previously normal areas. The spread may reflect disturbances in the balance of water between the two gel layers, producing heterogeneous mucus adhesion and infection within the lung. Ultimately, spread can produce losses of lung function that may be associated with acute exacerbation frequency. PMID:26595733

  15. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells.

    PubMed

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-09

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting.

  16. Isogambogenic acid induces apoptosis-independent autophagic cell death in human non-small-cell lung carcinoma cells

    PubMed Central

    Yang, Jianhong; Zhou, Yongzhao; Cheng, Xia; Fan, Yi; He, Shichao; Li, Shucai; Ye, Haoyu; Xie, Caifeng; Wu, Wenshuang; Li, Chunyan; Pei, Heying; Li, Luyuan; Wei, Zhe; Peng, Aihua; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2015-01-01

    To overcome drug resistance caused by apoptosis deficiency in patients with non-small cell lung carcinoma (NSCLC), there is a need to identify other means of triggering apoptosis-independent cancer cell death. We are the first to report that isogambogenic acid (iso-GNA) can induce apoptosis-independent autophagic cell death in human NSCLC cells. Several features of the iso-GNA-treated NSCLC cells indicated that iso-GNA induced autophagic cell death. First, there was no evidence of apoptosis or cleaved caspase 3 accumulation and activation. Second, iso-GNA treatment induced the formation of autophagic vacuoles, increased LC3 conversion, caused the appearance of autophagosomes and increased the expression of autophagy-related proteins. These findings provide evidence that iso-GNA induces autophagy in NSCLC cells. Third, iso-GNA-induced cell death was inhibited by autophagic inhibitors or by selective ablation of Atg7 and Beclin 1 genes. Furthermore, the mTOR inhibitor rapamycin increased iso-GNA-induced cell death by enhancing autophagy. Finally, a xenograft model provided additional evidence that iso-GNA exhibited anticancer effect through inducing autophagy-dependent cell death in NSCLC cells. Taken together, our results demonstrated that iso-GNA exhibited an anticancer effect by inducing autophagy-dependent cell death in NSCLC cells, which may be an effective chemotherapeutic agent that can be used against NSCLC in a clinical setting. PMID:25571970

  17. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury.

    PubMed

    Imai, Yumiko; Kuba, Keiji; Neely, G Greg; Yaghubian-Malhami, Rubina; Perkmann, Thomas; van Loo, Geert; Ermolaeva, Maria; Veldhuizen, Ruud; Leung, Y H Connie; Wang, Hongliang; Liu, Haolin; Sun, Yang; Pasparakis, Manolis; Kopf, Manfred; Mech, Christin; Bavari, Sina; Peiris, J S Malik; Slutsky, Arthur S; Akira, Shizuo; Hultqvist, Malin; Holmdahl, Rikard; Nicholls, John; Jiang, Chengyu; Binder, Christoph J; Penninger, Josef M

    2008-04-18

    Multiple lung pathogens such as chemical agents, H5N1 avian flu, or SARS cause high lethality due to acute respiratory distress syndrome. Here we report that Toll-like receptor 4 (TLR4) mutant mice display natural resistance to acid-induced acute lung injury (ALI). We show that TLR4-TRIF-TRAF6 signaling is a key disease pathway that controls the severity of ALI. The oxidized phospholipid (OxPL) OxPAPC was identified to induce lung injury and cytokine production by lung macrophages via TLR4-TRIF. We observed OxPL production in the lungs of humans and animals infected with SARS, Anthrax, or H5N1. Pulmonary challenge with an inactivated H5N1 avian influenza virus rapidly induces ALI and OxPL formation in mice. Loss of TLR4 or TRIF expression protects mice from H5N1-induced ALI. Moreover, deletion of ncf1, which controls ROS production, improves the severity of H5N1-mediated ALI. Our data identify oxidative stress and innate immunity as key lung injury pathways that control the severity of ALI.

  18. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats

    PubMed Central

    Minaiyan, Mohsen; Asghari, Gholamreza; Taheri, Diana; Saeidi, Mozhgan; Nasr-Esfahani, Salar

    2014-01-01

    Objective: Anti-inflammatory, immuno-modulatory, and antioxidant properties of Moringa oleifera Lam. suggest that it might have beneficial effects on colitis. The present study was performed to investigate the anticolitis effect of Moringa oleifera seeds hydro-alcoholic extract (MSHE) and its chloroform fraction (MCF) on acetic acid-induced colitis in rats. Materials and Methods: Both MSHE and MCF with three increasing doses (50, 100, and 200 mg/kg) were administered orally to separate groups of male Wistar rats, 2 h before ulcer induction (using acetic acid 4%) and continued for 5 days. Prednisolone (4 mg/kg) and normal saline (1 ml/kg) were used in reference and control groups, respectively. All rats were sacrificed 24 h after the last dose (at day 6) and tissue injuries were assessed macroscopically and pathologically. Results: Extracts with three doses mentioned before were effective to reduce weight of distal colon (8 cm) as a marker for inflammation and tissue edema. Three doses of MSHE and two greater doses of MCF (100 and 200 mg/kg) were effective to reduce ulcer severity, area, and index as well as mucosal inflammation severity and extent, crypt damage, invasion involvement, total colitis index, and MPO activity compared with controls. MCF (50 mg/kg) was not significantly effective in reducing evaluated parameters of colitis compared with controls. Conclusion: It is concluded that MSHE and MCF were both effective to treat experimental colitis and this might be attributed to their similar major components, biophenols and flavonoids. Since the efficacy was evident even in low doses of MSHE, presence of active constituents with high potency in seeds is persuasive. PMID:25050310

  19. Effect of inhaled nitric oxide on pulmonary hemodynamics after acute lung injury in dogs

    SciTech Connect

    Romand, J.A.; Pinsky, M.R.; Firestone, L.; Zar, H.A.; Lancaster, J.R. Jr. )

    1994-03-01

    Increased pulmonary vascular resistance (PVR) and mismatch in ventilation-to-perfusion ratio characterize acute lung injury (ALI). Pulmonary arterial pressure (Ppa) decreases when nitric oxide (NO) is inhaled during hypoxic pulmonary vasoconstriction (HPV); thus NO inhalation may reduce PVR and improve gas exchange in ALI. The authors studied the hemodynamic and gas exchange effects of NO inhalation during HPV and then ALI in eight anesthetized open-chest mechanically ventilated dogs. Right atrial pressure, Ppa, and left ventricular and arterial pressures were measured, and cardiac output was estimated by an aortic flow probe. Shunt and dead space were also estimated. The effect of 5-min exposures to 0, 17, 28, 47, and 0 ppm inhaled NO was recorded during hyperoxia, hypoxia, and oleic acid-induced ALI. During ALI, partial [beta]-adrenergic blockage (propanolol, 0.15 mg/kg iv) was induced and 74 ppm NO was inhaled. Nitrosylhemoglobin (NO-Hb) and methemoglobin (MetHb) levels were measured. During hyperoxia, NO inhalation had no measurable effects. Hypoxia increased Ppa and calculated PVR, both of which decreased with 17 ppm NO. ALI decreased arterial Po[sub 2] and increased airway pressure, shunt, and dead space ventilation. Ppa and PVR were greater during ALI than during hyperoxia. NO inhalation had no measurable effect during ALI before or after [beta]-adrenergic blockage. MetHb remained low, and NO-Hb was unmeasurable. Bolus infusion of nitroglycerin (15 [mu]g) induced an immediate decrease in Ppa and PVR during ALI. Short-term NO inhalation does not affect PVR or gas exchange in dogs with oleic acid-induced ALI, nor does it increase NO-Hb or MetHb. In contrast, NO can diminish hypoxia-induced elevations in pulmonary vascular tone. These data suggest that NO inhalation selectively dilates the pulmonary circulation and specifically reduces HPV but not oleic acid-induced increases in pulmonary vasomotor tone. 28 refs., 3 figs., 2 tabs.

  20. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice.

    PubMed

    Vergadi, Eleni; Vaporidi, Katerina; Theodorakis, Emmanuel E; Doxaki, Christina; Lagoudaki, Eleni; Ieronymaki, Eleftheria; Alexaki, Vassilia I; Helms, Mike; Kondili, Eumorfia; Soennichsen, Birte; Stathopoulos, Efstathios N; Margioris, Andrew N; Georgopoulos, Dimitrios; Tsatsanis, Christos

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.

  1. Lung ultrasound-guided management of acute breathlessness during pregnancy.

    PubMed

    Zieleskiewicz, L; Lagier, D; Contargyris, C; Bourgoin, A; Gavage, L; Martin, C; Leone, M

    2013-01-01

    Lung ultrasonography is a standard tool in the intensive care unit and in emergency medicine, but has not been described in the particular setting of the labour ward. During pregnancy, acute respiratory failure and pulmonary oedema are not uncommon life-threatening events. We present two case reports outlining the potential of lung ultrasonography in parturients. In case 1, lung ultrasonography allowed early diagnosis and treatment of acute dyspnoea in a parturient admitted for suspected asthma exacerbation. Lung ultrasonography revealed a 'B-pattern' of vertical lines radiating into the lung tissue, indicating severe pulmonary oedema complicating previously undiagnosed pre-eclampsia. In case 2, a pre-eclamptic patient was managed with combined transthoracic echocardiography and lung ultrasonography. The accuracy of lung ultrasonography in detecting interstitial oedema at a pre-clinical stage allowed adequate fluid resuscitation in this patient who had a high risk of alveolar pulmonary oedema. We believe that these cases strongly support the prospective validation of lung ultrasound for management of lung disorders in pregnant women. PMID:23088788

  2. Glutamine Attenuates Acute Lung Injury Caused by Acid Aspiration

    PubMed Central

    Lai, Chih-Cheng; Liu, Wei-Lun; Chen, Chin-Ming

    2014-01-01

    Inadequate ventilator settings may cause overwhelming inflammatory responses associated with ventilator-induced lung injury (VILI) in patients with acute respiratory distress syndrome (ARDS). Here, we examined potential benefits of glutamine (GLN) on a two-hit model for VILI after acid aspiration-induced lung injury in rats. Rats were intratracheally challenged with hydrochloric acid as a first hit to induce lung inflammation, then randomly received intravenous GLN or lactated Ringer’s solution (vehicle control) thirty min before different ventilator strategies. Rats were then randomized to receive mechanical ventilation as a second hit with a high tidal volume (TV) of 15 mL/kg and zero positive end-expiratory pressure (PEEP) or a low TV of 6 mL/kg with PEEP of 5 cm H2O. We evaluated lung oxygenation, inflammation, mechanics, and histology. After ventilator use for 4 h, high TV resulted in greater lung injury physiologic and biologic indices. Compared with vehicle treated rats, GLN administration attenuated lung injury, with improved oxygenation and static compliance, and decreased respiratory elastance, lung edema, extended lung destruction (lung injury scores and lung histology), neutrophil recruitment in the lung, and cytokine production. Thus, GLN administration improved the physiologic and biologic profiles of this experimental model of VILI based on the two-hit theory. PMID:25100435

  3. Attenuation of acute lung injury in mice by oxymatrine is associated with inhibition of phosphorylated p38 mitogen-activated protein kinase.

    PubMed

    Xu, G L; Yao, L; Rao, S Y; Gong, Z N; Zhang, S Q; Yu, S Q

    2005-04-01

    Oxymatrine is one of the alkaloids extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.) with activities of anti-inflammation, inhibiting immune reaction, antivirus, protecting hepatocytes and antihepatic fibrosis. However, the effect of oxymatrine on acute lung injury (ALI) has not been known yet. In this study, the effect of oxymatrine on ALI was investigated using an oleic acid-induced ALI mouse model. Morphological findings showed that the oleic acid group demonstrated a marked lung injury represented by prominent atelectasis, intraalveolar and interstitial patchy hemorrhage, edema, thickened alveolar septum, formation of hyaline membranes and the existence of inflammatory cells in alveolar spaces. While in the oxymatrine/dexamethasone group, these changes were less severe and in the vicinity of the control group. Furthermore, pretreatment with oxymatrine significantly alleviated oleic acid-induced lung injury accompanied by reduction of lung index and wet-to-dry weight ratio, decreases in serum TNF-alpha level and inhibition of phosphorylated p38 MAPK. These findings suggest that oxymatrine has a beneficial effect on acute lung injury induced by oleic acid in mice and may inhibit the production of proinflammatory cytokine, TNF-alpha, by means of the inhibition of p38 MAPK. PMID:15763380

  4. Postoperative Acute Exacerbation of IPF after Lung Resection for Primary Lung Cancer.

    PubMed

    Watanabe, Atsushi; Kawaharada, Nobuyoshi; Higami, Tetsuya

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by slowly progressive respiratory dysfunction. Nevertheless, some IPF patients experience acute exacerbations generally characterized by suddenly worsening and fatal respiratory failure with new lung opacities and pathological lesions of diffuse alveolar damage. Acute exacerbation of idiopathic pulmonary fibrosis (AEIPF) is a fatal disorder defined by rapid deterioration of IPF. The condition sometimes occurs in patients who underwent lung resection for primary lung cancer in the acute and subacute postoperative phases. The exact etiology and pathogenesis remain unknown, but the condition is characterized by diffuse alveolar damage superimposed on a background of IPF that probably occurs as a result of a massive lung injury due to some unknown factors. This systematic review shows that the outcome, however, is poor, with postoperative mortality ranging from 33.3% to 100%. In this paper, the etiology, risk factors, pathogenesis, therapy, prognosis, and predictors of postoperative AEIPF are described.

  5. Lung Ultrasound in the Management of Acute Decompensated Heart Failure

    PubMed Central

    Ang, Shiang-Hu; Andrus, Phillip

    2012-01-01

    Once thought impracticable, lung ultrasound is now used in patients with a variety of pulmonary processes. This review seeks to describe the utility of lung ultrasound in the management of patients with acute decompensated heart failure (ADHF). A literature search was carried out on PubMed/Medline using search terms related to the topic. Over three thousand results were narrowed down via title and/or abstract review. Related articles were downloaded for full review. Case reports, letters, reviews and editorials were excluded. Lung ultrasonographic multiple B-lines are a good indicator of alveolar interstitial syndrome but are not specific for ADHF. The absence of multiple B-lines can be used to rule out ADHF as a causative etiology. In clinical scenarios where the assessment of acute dyspnea boils down to single or dichotomous pathologies, lung ultrasound can help rule in ADHF. For patients being treated for ADHF, lung ultrasound can also be used to monitor response to therapy. Lung ultrasound is an important adjunct in the management of patients with acute dyspnea or ADHF. PMID:22708913

  6. [Perioperative lung injury: acute exacerbation of idiopathic pulmonary fibrosis and acute interstitial pneumonia after pulmonary resection].

    PubMed

    Hoshikawa, Yasushi; Kondo, Takashi

    2004-12-01

    The mortality rate after surgical resection for lung cancer has been reported to range between 1% and 3%, with 30% caused by acute exacerbation of idiopathic pulmonary fibrosis (IPF) or acute interstitial pneumonia (AIP). Approximately 20% of patients with IPF have lung cancer, while 2% to 4% of lung cancer patients have IPF. The incidence of postoperative acute exacerbation of IPF is about 20%. Some investigations in Japan revealed that 10% to 17% of lung cancer patients undergoing lung resection, who have not been diagnosed with IPF preoperatively, have localized-usual interstitial pneumonia (Lo-UIP) lesions. Approximately 20% of patients with Lo-UIP show postoperative acute exacerbation, while about 0.5% of those without Lo-UIP develop AIP after surgery. There is no confirmed treatment or prophylaxis. Most patients who develop postoperative acute exacerbation or AIP are treated with methylpredonisolone (1,000 mg/day x 3 days), but the mortality rate is 50% or greater. We emphasize that more efforts should be made to develop strategies to prevent postoperative acute exacerbation of IPF and AIP.

  7. Diverse macrophage populations mediate acute lung inflammation and resolution

    PubMed Central

    King, Landon S.; D'Alessio, Franco R.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS. PMID:24508730

  8. Metallothionein-induced zinc partitioning exacerbates hyperoxic acute lung injury

    PubMed Central

    Lee, Sang-Min; McLaughlin, Joseph N.; Frederick, Daniel R.; Zhu, Lin; Thambiayya, Kalidasan; Wasserloos, Karla J.; Kaminski, Iris; Pearce, Linda L.; Peterson, Jim; Li, Jin; Latoche, Joseph D.; Peck Palmer, Octavia M.; Stolz, Donna Beer; Fattman, Cheryl L.; Alcorn, John F.; Oury, Tim D.; Angus, Derek C.; Pitt, Bruce R.

    2013-01-01

    Hypozincemia, with hepatic zinc accumulation at the expense of other organs, occurs in infection, inflammation, and aseptic lung injury. Mechanisms underlying zinc partitioning or its impact on extrahepatic organs are unclear. Here we show that the major zinc-binding protein, metallothionein (MT), is critical for zinc transmigration from lung to liver during hyperoxia and preservation of intrapulmonary zinc during hyperoxia is associated with an injury-resistant phenotype in MT-null mice. Particularly, lung-to-liver zinc ratios decreased in wild-type (WT) and increased significantly in MT-null mice breathing 95% oxygen for 72 h. Compared with female adult WT mice, MT-null mice were significantly protected against hyperoxic lung injury indicated by reduced inflammation and interstitial edema, fewer necrotic changes to distal airway epithelium, and sustained lung function at 72 h hyperoxia. Lungs of MT-null mice showed decreased levels of immunoreactive LC3, an autophagy marker, compared with WT mice. Analysis of superoxide dismutase (SOD) activity in the lungs revealed similar levels of manganese-SOD activity between strains under normoxia and hyperoxia. Lung extracellular SOD activity decreased significantly in both strains at 72 h of hyperoxia, although there was no difference between strains. Copper-zinc-SOD activity was ∼4× higher under normoxic conditions in MT-null compared with WT mice but was not affected in either group by hyperoxia. Collectively the data suggest that genetic deletion of MT-I/II in mice is associated with compensatory increase in copper-zinc-SOD activity, prevention of hyperoxia-induced zinc transmigration from lung to liver, and hyperoxia-resistant phenotype strongly associated with differences in zinc homeostasis during hyperoxic acute lung injury. PMID:23275622

  9. Crocin attenuates lipopolysacchride-induced acute lung injury in mice

    PubMed Central

    Wang, Jian; Kuai, Jianke; Luo, Zhonghua; Wang, Wuping; Wang, Lei; Ke, Changkang; Li, Xiaofei; Ni, Yunfeng

    2015-01-01

    Crocin, a representative of carotenoid compounds, exerts a spectrum of activities including radical scavenger, anti-microbial and anti-inflammatory properties. To investigate the protective effect of crocin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intragastric injection of crocin (50 mg/kg) 1 h before LPS administration. Pulmonary histological changes were evaluated by hematoxylineosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and nitric oxide (NO), and myeloperoxidase (MPO) activity were measured by enzymelinked immunosorbent assay. Expression of inducible nitric oxide synthase (iNOS) in lung tissues was determined by Western blot analysis. Crocin pretreatment significantly alleviated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by crocin pretreatment. Crocin pretreatment also reduced the concentrations of NO in lung tissues. Furthermore, the expression of iNOS was significantly suppressed by crocin pretreatment. Croncin potently protected against LPS-induced ALI and the protective effects of crocin may attribute partly to the suppression of iNOS expression. PMID:26191176

  10. Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis

    PubMed Central

    Cruz, Fernanda Ferreira; Horta, Lucas Felipe Bastos; Maia, Lígia de Albuquerque; Lopes-Pacheco, Miquéias; da Silva, André Benedito; Morales, Marcelo Marco; Gonçalves-de-Albuquerque, Cassiano Felippe; Takiya, Christina Maeda; de Castro-Faria-Neto, Hugo Caire; Rocco, Patricia Rieken Macedo

    2016-01-01

    Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis. PMID:26789403

  11. Acute lung injury after inhalation of nitric acid.

    PubMed

    Kao, Shih Ling; Yap, Eng Soo; Khoo, See Meng; Lim, Tow Keang; Mukhopadhyay, Amartya; Teo, Sylvia Tzu Li

    2008-12-01

    We report two cases of acute lung injury after the inhalation of nitric acid fumes in an industrial accident. The first patient, who was not using a respirator and standing in close proximity to the site of spillage of concentrated nitric acid, presented within 12 h with worsening dyspnea and required noninvasive ventilation for type 1 respiratory failure. The second case presented 1 day later with similar symptoms, but only required supportive treatment with high-flow oxygen. Both patients' chest radiographs showed widespread bilateral airspace shadows consistent with acute lung injury. Both received treatment with systemic steroids. They were discharged from hospital 5 days postexposure. Initial lung function test showed a restrictive pattern that normalized by 3 weeks postexposure. This case series describes the natural history after acute inhalation of nitric acid fumes, and demonstrates that the severity of lung injury is directly dependent on the exposure level. It also highlights the use of noninvasive ventilatory support in the management of such patients.

  12. Transfusion-Related Acute Lung Injured (TRALI): Current Concepts

    PubMed Central

    Álvarez, P; Carrasco, R; Romero-Dapueto, C; Castillo, R.L

    2015-01-01

    Transfusion-related acute lung injury (TRALI) is a life-threatening intervention that develops within 6 hours of transfusion of one or more units of blood, and is an important cause of morbidity and mortality resulting from transfusion. It is necessary to dismiss other causes of acute lung injury (ALI), like sepsis, acute cardiogenic edema, acute respiratory distress syndrome (ARDS) or bacterial infection. There are two mechanisms that lead to the development of this syndrome: immune-mediated and no immune- mediated TRALI. A common theme among the experimental TRALI models is the central importance of neutrophils in mediating the early immune response, and lung vascular injury. Central clinical symptoms are dyspnea, tachypnea, tachycardia, cyanosis and pulmonary secretions, altogether with other hemodynamic alterations, such as hypotension and fever. Complementary to these clinical findings, long-term validated animal models for TRALI should allow the determination of the cellular targets for TRALI-inducing alloantibodies as well as delineation of the underlying pathogenic molecular mechanisms, and key molecular mediators of the pathology. Diagnostic criteria have been established and preventive measures have been implemented. These actions have contributed to the reduction in the overallnumber of fatalities. However, TRALI still remains a clinical problem. Any complication suspected of TRALI should immediately be reported. PMID:26312100

  13. Transfusion-Related Acute Lung Injured (TRALI): Current Concepts.

    PubMed

    Álvarez, P; Carrasco, R; Romero-Dapueto, C; Castillo, R L

    2015-01-01

    Transfusion-related acute lung injury (TRALI) is a life-threatening intervention that develops within 6 hours of transfusion of one or more units of blood, and is an important cause of morbidity and mortality resulting from transfusion. It is necessary to dismiss other causes of acute lung injury (ALI), like sepsis, acute cardiogenic edema, acute respiratory distress syndrome (ARDS) or bacterial infection. There are two mechanisms that lead to the development of this syndrome: immune-mediated and no immune- mediated TRALI. A common theme among the experimental TRALI models is the central importance of neutrophils in mediating the early immune response, and lung vascular injury. Central clinical symptoms are dyspnea, tachypnea, tachycardia, cyanosis and pulmonary secretions, altogether with other hemodynamic alterations, such as hypotension and fever. Complementary to these clinical findings, long-term validated animal models for TRALI should allow the determination of the cellular targets for TRALI-inducing alloantibodies as well as delineation of the underlying pathogenic molecular mechanisms, and key molecular mediators of the pathology. Diagnostic criteria have been established and preventive measures have been implemented. These actions have contributed to the reduction in the overallnumber of fatalities. However, TRALI still remains a clinical problem. Any complication suspected of TRALI should immediately be reported.

  14. [Sodium dichloroisocyanurate-induced acute lung injury in a child].

    PubMed

    Wiel, E; Sicot, J; Leteurtre, S; Binoche, A; Nisse, P; Assez, N

    2013-04-01

    Intoxication, by cyanurate and its chlorated derivatives in children, is increasingly reported in the literature due to accidental ingestion compared to accidental inhalation. We report a case in a 5-year-old child who presented with acute lung injury due to accidental inhalation of gas formed after a reaction of sodium dichloroisocyanurate tablets with water. Prevention remains the best way to reduce the risk of children being intoxicated by inhalation of the gas formed after contact of tablets with water. PMID:23433843

  15. Presumptive acute lung injury following multiple surgeries in a cat

    PubMed Central

    Katayama, Masaaki; Okamura, Yasuhiko; Katayama, Rieko; Sasaki, Jun; Shimamura, Shunsuke; Uzuka, Yuji; Kamishina, Hiroaki; Nezu, Yoshinori

    2013-01-01

    A 12-year-old, 3.5-kg spayed female domestic shorthair cat had a tracheal mass identified as malignant B-cell lymphoma. The cat had tracheal resection and subsequently developed laryngeal paralysis. Due to multiple episodes of respiratory distress the cat subsequently had tracheal surgeries. Finally, the cat had a sudden onset of severe respiratory distress and collapsed. Computed tomography imaging and arterial blood gas analysis supported a diagnosis of acute lung injury. PMID:24082167

  16. [Acute lung injury as a consequence of blood transfusion].

    PubMed

    Rodríguez-Moyado, Héctor

    2011-01-01

    Acute lung injury (ALI) has been recognized as a consequence of blood transfusion (BT) since 1978; the Food and Drug Administration, has classified it as the third BT mortality issue, in 2004, and in first place related with ALI. It can be mainly detected as: Acute respiratory distress syndrome (ARDS), transfusion associated circulatory overload (TACO) and transfusion related acute lung injury (TRALI). The clinical onset is: severe dyspnea, bilateral lung infiltration and low oxygen saturation. In USA, ARDS has an incidence of three to 22.4 cases/100 000 inhabitants, with 58.3 % mortality. TACO and TRALI are less frequent; they have been reported according to the number of transfusions: one in 1275 to 6000 for TRALI and one in 356 transfusions for TACO. Mortality is reported from two to 20 % in TRALI and 20 % in TACO. Antileukocyte antibodies in blood donors plasma, caused TRALI in 89 % of cases; also it has been found antigen specificity against leukocyte blood receptor in 59 %. The UCI patients who received a BT have ALI as a complication in 40 % of cases. The capillary pulmonary endothelia is the target of leukocyte antibodies and also plasma biologic modifiers of the stored plasma, most probable like a Sanarelli-Shwar-tzman phenomenon.

  17. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury.

    PubMed

    Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J

    2015-02-01

    We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.

  18. Enrichment of murine CD68+ CCR2+ and CD68+ CD206+ lung macrophages in acute pancreatitis-associated acute lung injury.

    PubMed

    Akbarshahi, Hamid; Menzel, Mandy; Posaric Bauden, Monika; Rosendahl, Ann; Andersson, Roland

    2012-01-01

    Acute lung injury (ALI) is an important cause of mortality in critically ill patients. Acute pancreatitis (AP) is one of the risk factors for developing this syndrome. Among the inflammatory cells, macrophages have a key role in determining the severity of the acute lung injury. In the lungs, macrophages constitute a heterogeneous cell population distributed in different compartments. Changes in not only the macrophage count, but also in their phenotype have been seen during the course of lung injury. A murine ductal ligation model of acute pancreatitis showed substantial morphological changes in the pancreas and lungs. Immunohistochemistry showed neutrophil recruitment into both organs after 9 hours and later on. F4/80(+) cells in the pancreas increased in the ligated animals, though there was not a significant difference in their number in the lungs as compared to sham operated animals. Flow cytometry analysis of lung macrophages demonstrated an enrichment of F4/80(-) CD68(+)CCR2(+) and F4/80(-) CD68(+)CD206(+) lung macrophages in ligated animals (AP) as compared to the sham operated group. The level of interleukin-6 in plasma increased 3 hours after ligation compared to the sham operated group, as a first indicator of a systemic inflammatory response.This study suggests a role for F4/80(-) CD68(+) macrophages in the pathogenesis of acute lung injury in acute pancreatitis. Studying lung macrophages for different phenotypic markers, their polarization, activation and recruitment, in the context of acute lung injury, is a novel area to potentially identify interventions which may improve the outcome of acute lung injury.

  19. [Differential magnetic resonance diagnosis of central lung cancer and acute pneumonia].

    PubMed

    Gamova, E V; Nudnov, N V

    2006-01-01

    The paper analyzes the authors' own data of chest magnetic resonance imaging (MRI) in 86 patients with verified central lung cancer and acute pneumonia. The MRI signs of lung cancer are systematized in exo-, endo-, and peribronchial forms of growth. The additional capacities of contrast enhancement are analyzed. The MRI semiotics of acute pneumonia has been developed. The differential diagnostic criteria for recognizing central lung cancer and acute pneumonia have been also elaborated.

  20. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells

  1. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury

    PubMed Central

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F.; Liu, Boyi; Kaelberer, Melanie M.; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S.; Ye, Guosen; Willette, Robert N.; Thorneloe, Kevin S.; Bradshaw, Heather B.; Matalon, Sadis

    2014-01-01

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  2. TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury.

    PubMed

    Balakrishna, Shrilatha; Song, Weifeng; Achanta, Satyanarayana; Doran, Stephen F; Liu, Boyi; Kaelberer, Melanie M; Yu, Zhihong; Sui, Aiwei; Cheung, Mui; Leishman, Emma; Eidam, Hilary S; Ye, Guosen; Willette, Robert N; Thorneloe, Kevin S; Bradshaw, Heather B; Matalon, Sadis; Jordt, Sven-Eric

    2014-07-15

    The treatment of acute lung injury caused by exposure to reactive chemicals remains challenging because of the lack of mechanism-based therapeutic approaches. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), an ion channel expressed in pulmonary tissues, is a crucial mediator of pressure-induced damage associated with ventilator-induced lung injury, heart failure, and infarction. Here, we examined the effects of two novel TRPV4 inhibitors in mice exposed to hydrochloric acid, mimicking acid exposure and acid aspiration injury, and to chlorine gas, a severe chemical threat with frequent exposures in domestic and occupational environments and in transportation accidents. Postexposure treatment with a TRPV4 inhibitor suppressed acid-induced pulmonary inflammation by diminishing neutrophils, macrophages, and associated chemokines and cytokines, while improving tissue pathology. These effects were recapitulated in TRPV4-deficient mice. TRPV4 inhibitors had similar anti-inflammatory effects in chlorine-exposed mice and inhibited vascular leakage, airway hyperreactivity, and increase in elastance, while improving blood oxygen saturation. In both models of lung injury we detected increased concentrations of N-acylamides, a class of endogenous TRP channel agonists. Taken together, we demonstrate that TRPV4 inhibitors are potent and efficacious countermeasures against severe chemical exposures, acting against exaggerated inflammatory responses, and protecting tissue barriers and cardiovascular function. PMID:24838754

  3. The Heat Shock Response and Acute Lung Injury

    PubMed Central

    Wheeler, Derek S.; Wong, Hector R.

    2006-01-01

    All cells respond to stress through the activation of primitive, evolutionarily conserved genetic programs that maintain homeostasis and assure cell survival. Stress adaptation, which is known in the literature by a myriad of terms, including tolerance, desensitization, conditioning, and reprogramming, is a common paradigm found throughout nature, in which a primary exposure of a cell or organism to a stressful stimulus (e.g., heat) results in an adaptive response by which a second exposure to the same stimulus produces a minimal response. More interesting is the phenomenon of cross-tolerance, by which a primary exposure to a stressful stimulus results in an adaptive response whereby the cell or organism is resistant to a subsequent stress that is different from the initial stress (i.e. exposure to heat stress leading to resistance to oxidant stress). The heat shock response is one of the more commonly described examples of stress adaptation and is characterized by the rapid expression of a unique group of proteins collectively known as heat shock proteins (also commonly referred to as stress proteins). The expression of heat shock proteins is well described in both whole lungs and in specific lung cells from a variety of species and in response to a variety of stressors. More importantly, in vitro data, as well as data from various animal models of acute lung injury, demonstrate that heat shock proteins, especially Hsp27, Hsp32, Hsp60, and Hsp70 have an important cytoprotective role during lung inflammation and injury. PMID:17157189

  4. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism

    PubMed Central

    Quintero Barceinas, Reyna Sara; García-Regalado, Alejandro; Aréchaga-Ocampo, Elena; Villegas-Sepúlveda, Nicolás; González-De la Rosa, Claudia Haydée

    2015-01-01

    All-trans retinoic acid (ATRA) has been used as an antineoplastic because of its ability to promote proliferation, inhibition, and differentiation, primarily in leukemia; however, in other types of cancer, such as lung cancer, treatment with ATRA is restricted because not all the patients experience the same results. The ERK signaling pathway is dysregulated in cancer cells, including lung cancer, and this dysregulation promotes proliferation and cell invasion. In this study, we demonstrate that treatment with ATRA can activate the ERK signaling pathway by a transcription-independent mechanism through a signaling cascade that involves RARα and PI3K, promoting growth, survival, and migration in lung cancer cells. Until now, this mechanism was unknown in lung cancer cells. The inhibition of the ERK signaling pathway restores the beneficial effects of ATRA, reduces proliferation, increases apoptosis, and blocks the cell migration process in lung cancer cells. In conclusion, our results suggest that the combination of ATRA with ERK inhibitor in clinical trials for lung cancer is warranted. PMID:26557664

  5. VEGF Promotes Malaria-Associated Acute Lung Injury in Mice

    PubMed Central

    Carapau, Daniel; Pena, Ana C.; Ataíde, Ricardo; Monteiro, Carla A. A.; Félix, Nuno; Costa-Silva, Artur; Marinho, Claudio R. F.; Dias, Sérgio; Mota, Maria M.

    2010-01-01

    The spectrum of the clinical presentation and severity of malaria infections is broad, ranging from uncomplicated febrile illness to severe forms of disease such as cerebral malaria (CM), acute lung injury (ALI), acute respiratory distress syndrome (ARDS), pregnancy-associated malaria (PAM) or severe anemia (SA). Rodent models that mimic human CM, PAM and SA syndromes have been established. Here, we show that DBA/2 mice infected with P. berghei ANKA constitute a new model for malaria-associated ALI. Up to 60% of the mice showed dyspnea, airway obstruction and hypoxemia and died between days 7 and 12 post-infection. The most common pathological findings were pleural effusion, pulmonary hemorrhage and edema, consistent with increased lung vessel permeability, while the blood-brain barrier was intact. Malaria-associated ALI correlated with high levels of circulating VEGF, produced de novo in the spleen, and its blockage led to protection of mice from this syndrome. In addition, either splenectomization or administration of the anti-inflammatory molecule carbon monoxide led to a significant reduction in the levels of sera VEGF and to protection from ALI. The similarities between the physiopathological lesions described here and the ones occurring in humans, as well as the demonstration that VEGF is a critical host factor in the onset of malaria-associated ALI in mice, not only offers important mechanistic insights into the processes underlying the pathology related with malaria but may also pave the way for interventional studies. PMID:20502682

  6. Preemptive mechanical ventilation can block progressive acute lung injury

    PubMed Central

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-01-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  7. Acute caprine fasciolosis: a case with unusual migration to lung.

    PubMed

    Hashemnia, Mohammad; Rezaei, Farid; Nikousefat, Zahra; Ghashghaii, Ali

    2015-09-01

    Fasciolosis is an important parasitic disease of domestic ruminants and occurs worldwide as a result of infection with liver fluke species. This report describes the macroscopic and microscopic characteristics of acute fasciolosis in a goat with unusual migration to lung. A 10-month-old goat was presented with history of weakness and acute recumbency from 12 h ago. The clinicians didn't report clinical evidence of systemic disease. Hematological analysis showed no significant changes in blood parameters except a mild reduction in lymphocyte population and about 6 % eosinophilia and also normocytic normochromic anemia. A noticeable increase in the level of serum ALP, AST and also GLDH were observed. Moreover, total protein and albumin showed a slight decrease in value comparing to reference intervals. In macroscopic examination numerous short vermiform cords were noted on the liver surface and the surface had an uneven appearance. A large number of immature, wandering flukes were seen on the cut surface. Histopathologically, a wide range of hepatic lesions was found. The most important lesions were moderate to severe perihepatitis and haemorrhagic tracts on the hepatic surface. These lesions corresponded to migratory tunnels filled with blood, fibrin and cellular debris. However histopathological findings of lung revealed chronic suppurative bronchopneumonia, but this lesion is not only associated with larval migration. PMID:26345062

  8. Preemptive mechanical ventilation can block progressive acute lung injury.

    PubMed

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-01

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS. PMID:26855896

  9. Integrating acute lung injury and regulation of alveolar fluid clearance.

    PubMed

    Guidot, David M; Folkesson, Hans G; Jain, Lucky; Sznajder, Jacob I; Pittet, Jean-François; Matthay, Michael A

    2006-09-01

    The acute respiratory distress syndrome (ARDS) is characterized by non-cardiogenic pulmonary edema and flooding of the alveolar air spaces with proteinaceous fluid. ARDS develops in response to inflammatory stresses including sepsis, trauma, and severe pneumonia, and despite aggressive critical care management, it still has a mortality of 30-50%. At the time of its original description in 1967, relatively little was known about the specific mechanisms by which the alveolar epithelium regulated lung fluid balance. Over the last 20 years, substantial advances in our understanding of the alveolar epithelium have provided major new insights into how molecular and cellular mechanisms regulate the active transport of solutes and fluid across the alveolar epithelium under both normal and pathological conditions. Beginning with the elucidation of active sodium transport as a major driving force for the transport of water from the air space to the interstitium, elegant work by multiple investigators has revealed a complex and integrated network of membrane channels and pumps that coordinately regulates sodium, chloride, and water flux in both a cell- and condition-specific manner. At the Experimental Biology Meeting in San Francisco on April 4, 2006, a symposium was held to discuss some of the most recent advances. Although there is still much to learn about the mechanisms that impair normal alveolar fluid clearance under pathological conditions, the compelling experimental findings presented in this symposium raise the prospect that we are now poised to test and develop therapeutic strategies to improve outcome in patients with acute lung injury. PMID:16698856

  10. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  11. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway.

  12. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  13. Extracorporeal lung assist for sepsis and acute respiratory distress syndrome.

    PubMed

    Iwashita, Yoshiaki; Imai, Hiroshi

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is one of the major causes of ICU deaths. Extracorporeal lung assist (ECLA) has been used as a rescue therapy for most severe form of ARDS. However, its survival benefit had not been shown until CESAR trial in 2009. This has been because the concept of lung protective ventilation strategy had not yet known. Since CESAR trial, the clinical application of ECLA for ARDS as a method to achieve lung rest has wide spread. The effectiveness is further appreciated during the 2009 H1N1 influenza pandemic. The succeeded countries achieved building the transportation systems to collect ECLA patients. With the accumulating evidences of survival benefit, the long-term outcome such as pulmonary function and quality of life are in concern. PumplessECLA which is a newly developed form of ECLA is also reviewed. In this essay we will firstly review the basics of ARDS and ECLA. Then the historical development of ECLA evidences for ARDS are reviewed. PMID:25567336

  14. Acute effects of routine firefighting on lung function.

    PubMed

    Sheppard, D; Distefano, S; Morse, L; Becker, C

    1986-01-01

    We undertook a study to determine the acute effects of routine firefighting on lung function and the relationship between these acute effects and nonspecific airway responsiveness. For 29 firefighters from a single fire station, we calculated the concentration of methacholine aerosol that caused a 100% increase in specific airway resistance (Pc100). Over an 8-week period we than measured FEV1 and FVC in each firefighter before and after each 24-hr workshift and after every fire. From 199 individual workshifts without fires, we calculated the mean +/- 2 SD across-workshift change in FEV1 and FVC for each firefighter. Eighteen of 76 measurements obtained within 2 hr after a fire (24%) showed a greater than 2 SD fall in FEV1 and/or FVC compared to two of 199 obtained after routine workshifts without fires (1%; p less than .001). On 13 of 18 occasions when spirometry decreased significantly, we obtained repeat spirometry (postshift) 3-18.5 hr after fires, and on four of these occasions FEV1 and/or FVC were still more than 2 SD below baseline. Decrements in spirometry occurred as often in firefighters with high Pc100s as in those with low Pc100s. In two firefighters in whom FEV1 and FVC fell by more than 10% after fires, we repeated measurements of methacholine sensitivity, and it was increased over the prestudy baseline. These findings suggest that routine firefighting is associated with a high incidence of acute decrements in lung function.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Metabolomics and Its Application to Acute Lung Diseases

    PubMed Central

    Stringer, Kathleen A.; McKay, Ryan T.; Karnovsky, Alla; Quémerais, Bernadette; Lacy, Paige

    2016-01-01

    Metabolomics is a rapidly expanding field of systems biology that is gaining significant attention in many areas of biomedical research. Also known as metabonomics, it comprises the analysis of all small molecules or metabolites that are present within an organism or a specific compartment of the body. Metabolite detection and quantification provide a valuable addition to genomics and proteomics and give unique insights into metabolic changes that occur in tangent to alterations in gene and protein activity that are associated with disease. As a novel approach to understanding disease, metabolomics provides a “snapshot” in time of all metabolites present in a biological sample such as whole blood, plasma, serum, urine, and many other specimens that may be obtained from either patients or experimental models. In this article, we review the burgeoning field of metabolomics in its application to acute lung diseases, specifically pneumonia and acute respiratory disease syndrome (ARDS). We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized environmental toxins. Recent reports have suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe disease, such as sepsis, which kills many patients each year. In addition, metabolomics may provide more detailed phenotyping of patient heterogeneity, which is needed to achieve the goal of precision medicine. However, although several experimental and clinical metabolomics studies have been conducted assessing the application of the science to acute lung diseases, only incremental progress has been made. Specifically, little is known about the metabolic phenotypes of these illnesses. These data are needed to substantiate metabolomics biomarker credentials so that clinicians can employ them for clinical decision

  16. Therapeutic modulation of coagulation and fibrinolysis in acute lung injury and the acute respiratory distress syndrome.

    PubMed

    Sebag, Sara C; Bastarache, Julie A; Ware, Lorraine B

    2011-09-01

    Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are characterized by excessive intraalveolar fibrin deposition, driven, at least in part by inflammation. The imbalance between activation of coagulation and inhibition of fibrinolysis in patients with ALI/ARDS favors fibrin formation and appears to occur both systemically and in the lung and airspace. Tissue factor (TF), a key mediator of the activation of coagulation in the lung, has been implicated in the pathogenesis of ALI/ARDS. As such, there have been numerous investigations modulating TF activity in a variety of experimental systems in order to develop new therapeutic strategies for ALI/ARDS. This review will summarize current understanding of the role of TF and other proteins of the coagulation cascade as well the fibrinolysis pathway in the development of ALI/ARDS with an emphasis on the pathways that are potential therapeutic targets. These include the TF inhibitor pathway, the protein C pathway, antithrombin, heparin, and modulation of fibrinolysis through plasminogen activator- 1 (PAI-1) or plasminogen activators (PA). Although experimental studies show promising results, clinical trials to date have proven unsuccessful in improving patient outcomes. Modulation of coagulation and fibrinolysis has complex effects on both hemostasis and inflammatory pathways and further studies are needed to develop new treatment strategies for patients with ALI/ARDS. PMID:21401517

  17. Mechanisms of Severe Acute Respiratory Syndrome Coronavirus-Induced Acute Lung Injury

    PubMed Central

    Gralinski, Lisa E.; Bankhead, Armand; Jeng, Sophia; Menachery, Vineet D.; Proll, Sean; Belisle, Sarah E.; Matzke, Melissa; Webb-Robertson, Bobbie-Jo M.; Luna, Maria L.; Shukla, Anil K.; Ferris, Martin T.; Bolles, Meagan; Chang, Jean; Aicher, Lauri; Waters, Katrina M.; Smith, Richard D.; Metz, Thomas O.; Law, G. Lynn; Katze, Michael G.; McWeeney, Shannon; Baric, Ralph S.

    2013-01-01

    ABSTRACT Systems biology offers considerable promise in uncovering novel pathways by which viruses and other microbial pathogens interact with host signaling and expression networks to mediate disease severity. In this study, we have developed an unbiased modeling approach to identify new pathways and network connections mediating acute lung injury, using severe acute respiratory syndrome coronavirus (SARS-CoV) as a model pathogen. We utilized a time course of matched virologic, pathological, and transcriptomic data within a novel methodological framework that can detect pathway enrichment among key highly connected network genes. This unbiased approach produced a high-priority list of 4 genes in one pathway out of over 3,500 genes that were differentially expressed following SARS-CoV infection. With these data, we predicted that the urokinase and other wound repair pathways would regulate lethal versus sublethal disease following SARS-CoV infection in mice. We validated the importance of the urokinase pathway for SARS-CoV disease severity using genetically defined knockout mice, proteomic correlates of pathway activation, and pathological disease severity. The results of these studies demonstrate that a fine balance exists between host coagulation and fibrinolysin pathways regulating pathological disease outcomes, including diffuse alveolar damage and acute lung injury, following infection with highly pathogenic respiratory viruses, such as SARS-CoV. PMID:23919993

  18. Bronchoalveolar hemostasis in lung injury and acute respiratory distress syndrome.

    PubMed

    Glas, G J; Van Der Sluijs, K F; Schultz, M J; Hofstra, J-J H; Van Der Poll, T; Levi, M

    2013-01-01

    Enhanced intrapulmonary fibrin deposition as a result of abnormal broncho-alveolar fibrin turnover is a hallmark of acute respiratory distress syndrome (ARDS), pneumonia and ventilator-induced lung injury (VILI), and is important to the pathogenesis of these conditions. The mechanisms that contribute to alveolar coagulopathy are localized tissue factor-mediated thrombin generation, impaired activity of natural coagulation inhibitors and depression of bronchoalveolar urokinase plasminogen activator-mediated fibrinolysis, caused by the increase of plasminogen activator inhibitors. There is an intense and bidirectional interaction between coagulation and inflammatory pathways in the bronchoalveolar compartment. Systemic or local administration of anticoagulant agents (including activated protein C, antithrombin and heparin) and profibrinolytic agents (such as plasminogen activators) attenuate pulmonary coagulopathy. Several preclinical studies show additional anti-inflammatory effects of these therapies in ARDS and pneumonia. PMID:23114008

  19. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    PubMed

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. PMID:26530889

  20. Lung ultrasound-a primary survey of the acutely dyspneic patient.

    PubMed

    Lee, Francis Chun Yue

    2016-01-01

    There has been an explosion of knowledge and application of clinical lung ultrasound (LUS) in the last decade. LUS has important applications in the ambulatory, emergency, and critical care settings and its deployability for immediate bedside assessment allows many acute lung conditions to be diagnosed and early interventional decisions made in a matter of minutes. This review detailed the scientific basis of LUS, the examination techniques, and summarises the current applications in several acute lung conditions. It is to be hoped that clinicians, after reviewing the evidence within this article, would see LUS as an important first-line modality in the primary evaluation of an acutely dyspneic patient. PMID:27588206

  1. The serpentine path to a novel mechanism-based inhibitor of acute inflammatory lung injury

    PubMed Central

    2014-01-01

    The Comroe lecture on which this review is based described my research path during the past 45 years, beginning with studies of oxidant stress (hyperoxia) and eventuating in the discovery of a synthetic inhibitor of phospholipase A2 activity (called MJ33) that prevents acute lung injury in mice exposed to lipopolysaccharide. In between were studies of lung ischemia, lung surfactant metabolism, the protein peroxiredoxin 6 and its phospholipase A2 activity, and mechanisms for NADPH oxidase activation. These seemingly unrelated research activities provided the nexus for identification of a novel target and a potentially novel therapeutic agent for prevention or treatment of acute lung injury. PMID:24744383

  2. Noninvasive ventilation for patients with acute lung injury or acute respiratory distress syndrome.

    PubMed

    Nava, Stefano; Schreiber, Ania; Domenighetti, Guido

    2011-10-01

    Few studies have been performed on noninvasive ventilation (NIV) to treat hypoxic acute respiratory failure in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The outcomes of these patients, for whom endotracheal intubation is not mandatory, depend on the degree of hypoxia, the presence of comorbidities and complications, and their illness severity. The use of NIV as an alternative to invasive ventilation in severely hypoxemic patients with ARDS (ie, P(aO(2))/F(IO(2)) < 200) is not generally advisable and should be limited to hemodynamically stable patients who can be closely monitored in an intensive care unit by highly skilled staff. Early NIV application may be extremely helpful in immunocompromised patients with pulmonary infiltrates, in whom intubation dramatically increases the risk of infection, pneumonia, and death. The use of NIV in patients with severe acute respiratory syndrome and other airborne diseases has generated debate, despite encouraging clinical results, mainly because of safety issues. Overall, the high rate of NIV failure suggests a cautious approach to NIV use in patients with ALI/ARDS, including early initiation, intensive monitoring, and prompt intubation if signs of NIV failure emerge. PMID:22008399

  3. Keratinocyte growth factor-2 is protective in lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Tong, Lin; Bi, Jing; Zhu, Xiaodan; Wang, Guifang; Liu, Jie; Rong, Linyi; Wang, Qin; Xu, Nuo; Zhong, Ming; Zhu, Duming; Song, Yuanlin; Bai, Chunxue

    2014-09-15

    Keratinocyte growth factor-2 (KGF-2) plays a key role in lung development, but its role in acute lung injury has not been well characterized. Lipopolysaccharide instillation caused acute lung injury, which significantly elevated lung wet-to-dry weight ratio, protein and neutrophils in bronchoalveolar lavage fluid (BALF), inhibited surfactant protein A and C expression in lung tissue, and increased pathological injury. Pretreatment with KGF-2 improved the above lung injury parameters, partially restored surfactant protein A and C expression, and KGF-2 given 2-3 days before LPS challenge showed maximum lung injury improvement. Pretreatment with KGF-2 also markedly reduced the levels of TNF-α, MIP-2, IL-1β and IL-6 in BALF and the levels of IL-1β and IL-6 in lung tissue. Histological analysis showed there was increased proliferation of alveolar type II epithelial cells in lung parenchyma, which reached maximal 2 days after KGF-2 instillation. Intratracheal administration of KGF-2 attenuates lung injury induced by LPS, suggesting KGF-2 may be potent in the intervention of acute lung injury.

  4. c-Jun N-terminal Kinase-Dependent Endoplasmic Reticulum Stress Pathway is Critically Involved in Arjunic Acid Induced Apoptosis in Non-Small Cell Lung Cancer Cells.

    PubMed

    Joo, HyeEun; Lee, Hyun Joo; Shin, Eun Ah; Kim, Hangil; Seo, Kyeong-Hwa; Baek, Nam-In; Kim, Bonglee; Kim, Sung-Hoon

    2016-04-01

    Though arjunic acid, a triterpene isolated from Terminalia arjuna, was known to have antioxidant, antiinflammatory, and cytotoxic effects, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the molecular antitumor mechanism of arjunic acid was examined in A549 and H460 non-small cell lung cancer (NSCLC) cells. Arjunic acid exerted cytotoxicity by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and significantly increased sub-G1 population in A549 and H460 cells by cell cycle analysis. Consistently, arjunic acid cleaved poly (ADP-ribose) polymerase (PARP), activated Bax, and phosphorylation of c-Jun N-terminal kinases (JNK), and also attenuated the expression of pro-caspase-3 and Bcl-2 in A549 and H460 cells. Furthermore, arjunic acid upregulated the expression of endoplasmic reticulum (ER) stress proteins such as IRE1 α, ATF4, p-eIF2α, and C/EBP homologous protein (CHOP) in A549 and H460 cells. Conversely, CHOP depletion attenuated the increase of sub-G1 population by arjunic acid, and also JNK inhibitor SP600125 blocked the cytotoxicity and upregulation of IRE1 α and CHOP induced by arjunic acid in A549 and H460 cells. Overall, our findings suggest that arjunic acid induces apoptosis in NSCLC cells via JNK mediated ER stress pathway as a potent chemotherapeutic agent for NSCLC. PMID:26787261

  5. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respir atory distress syndrome

    PubMed Central

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS. PMID:26261640

  6. Total ginsenosides synergize with ulinastatin against septic acute lung injury and acute respiratory distress syndrome.

    PubMed

    Sun, Rongju; Li, Yana; Chen, Wei; Zhang, Fei; Li, Tanshi

    2015-01-01

    Total ginsenosides synergize with ulinastatin (UTI) against septic acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). We randomly divided 80 cases of severe sepsis-induced ALI and ARDS into a UTI group and a ginsenosides (GS)+UTI group. Continuous electrocardiac monitoring of pulse, respiratory rate, blood pressure, and heart rate; invasive hemodynamic monitoring; ventilator-assisted breathing and circulation support; and anti-infection as well as UTI treatment were given in the UTI group with GS treatment added for 7 consecutive days in the GS+UTI group. The indicators of pulmonary vascular permeability, pulmonary circulation, blood gases, and hemodynamics as well as APACHE II and ALI scores were detected on days 1, 3, and 7. The ALI score in the GS+UTI group was significantly decreased (P < 0.05) compared with that of the UTI group, and the indicators of pulmonary capillary permeability such as pulmonary vascular permeability index, extravascular lung water index, and oxygenation index, in the GS+UTI group improved significantly more than that of the UTI group. The indicators of hemodynamics and pulmonary circulation such as cardiac index, intrathoracic blood volume index, and central venous pressure improved significantly (P < 0.05), and the APACHE II score in the GS+UTI group was lower than that of the UTI group. GS can effectively collaborate with UTI against ALI and/or ARDS.

  7. Monoacylglycerol Lipase (MAGL) Inhibition Attenuates Acute Lung Injury in Mice

    PubMed Central

    Costola-de-Souza, Carolina; Ribeiro, Alison; Ferraz-de-Paula, Viviane; Calefi, Atilio Sersun; Aloia, Thiago Pinheiro Arrais; Gimenes-Júnior, João Antonio; de Almeida, Vinicius Izidio; Pinheiro, Milena Lobão; Palermo-Neto, João

    2013-01-01

    Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that, for 2-Arachidonoylglycerol (2-AG), is mediated by monoacylglycerol lipase (MAGL). The piperidine carbamate, 4-​nitrophenyl- ​4-​(dibenzo[d] [1,3]dioxol-​5-​yl (hydroxy) methyl) piperidine- 1-​carboxylate (JZL184), is a drug that inhibits MAGL and presents high potency and selectivity. Thus, JZL184 increases the levels of 2-AG, an endocannabinoid that acts on the CB1 and CB2 cannabinoid receptors. Here, we investigated the effects of MAGL inhibition, with a single dose (16 mg/kg, intraperitoneally (i.p.)) of JZL184, in a murine model of lipopolysaccharide (LPS) -induced acute lung injury (ALI) 6, 24 and 48 hours after the inflammatory insult. Treatment with JZL184 decreased the leukocyte migration into the lungs as well as the vascular permeability measured through the bronchoalveolar lavage fluid (BAL) and histological analysis. JZL184 also reduced the cytokine and chemokine levels in the BAL and adhesion molecule expression in the blood and BAL. The CB1 and CB2 receptors were considered involved in the anti-inflammatory effects of JZL184 because the AM281 selective CB1 receptor antagonist (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide) and the AM630 selective CB2 receptor antagonist ([6-​iodo-​2-​methyl-​1-​[2-​(4-​morpholinyl)ethyl]-​1H-​indol-​3-​yl](4-​methoxyphenyl)-​methanone) blocked the anti-inflammatory effects previously described for JZL184. It was concluded that MAGL inhibition, and consequently the increase in 2-AG levels, produced anti-inflammatory effects in a murine model of LPS-induced ALI, a finding that was considered a consequence of the activation of the CB1 and CB2 receptors. PMID:24204926

  8. Lung Transcriptomics during Protective Ventilatory Support in Sepsis-Induced Acute Lung Injury

    PubMed Central

    Acosta-Herrera, Marialbert; Lorenzo-Diaz, Fabian; Pino-Yanes, Maria; Corrales, Almudena; Valladares, Francisco; Klassert, Tilman E.; Valladares, Basilio; Slevogt, Hortense; Ma, Shwu-Fan

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory process of the lung. The only proven life-saving support is mechanical ventilation (MV) using low tidal volumes (LVT) plus moderate to high levels of positive end-expiratory pressure (PEEP). However, it is currently unknown how they exert the protective effects. To identify the molecular mechanisms modulated by protective MV, this study reports transcriptomic analyses based on microarray and microRNA sequencing in lung tissues from a clinically relevant animal model of sepsis-induced ALI. Sepsis was induced by cecal ligation and puncture (CLP) in male Sprague-Dawley rats. At 24 hours post-CLP, septic animals were randomized to three ventilatory strategies: spontaneous breathing, LVT (6 ml/kg) plus 10 cmH2O PEEP and high tidal volume (HVT, 20 ml/kg) plus 2 cmH2O PEEP. Healthy, non-septic, non-ventilated animals served as controls. After 4 hours of ventilation, lung samples were obtained for histological examination and gene expression analysis using microarray and microRNA sequencing. Validations were assessed using parallel analyses on existing publicly available genome-wide association study findings and transcriptomic human data. The catalogue of deregulated processes differed among experimental groups. The ‘response to microorganisms’ was the most prominent biological process in septic, non-ventilated and in HVT animals. Unexpectedly, the ‘neuron projection morphogenesis’ process was one of the most significantly deregulated in LVT. Further support for the key role of the latter process was obtained by microRNA studies, as four species targeting many of its genes (Mir-27a, Mir-103, Mir-17-5p and Mir-130a) were found deregulated. Additional analyses revealed 'VEGF signaling' as a central underlying response mechanism to all the septic groups (spontaneously breathing or mechanically ventilated). Based on this data, we conclude that a co-deregulation of 'VEGF signaling' along with 'neuron projection

  9. Gambogic acid induces growth inhibition and differentiation via upregulation of p21waf1/cip1 expression in acute myeloid leukemia cells.

    PubMed

    Chen, Yan; Hui, Hui; Li, Zheng; Wang, Hong-Mei; You, Qi-Dong; Lu, Na

    2014-10-01

    Gambogic acid (GA) is the major active ingredient of gamboges, a brownish to orange resin product from Garcinia hanburyi tree in Southeast Asia. This compound exhibits anti-cancer effect on solid tumors. In this study, we investigated the effects of GA on the growth and differentiation of acute myeloid leukemia cells by growth-inhibition detection, morphological changes observation, nitroblue tetrazolium reduction, and the expression of the relative cell-surface differentiation markers. The results showed that GA could inhibit cell growth and promote differentiation in U937 and HL-60 cells. In addition, GA upregulated the expression of p21waf1/cip1 in the two cell lines. Finally, downregulating the p21waf1/cip1 expression with small interfering RNA partially blocked GA-induced cell growth inhibition and differentiation. These results of this study revealed that GA may be used as one of the investigational drugs for acute myeloid leukemia.

  10. Effect of corticosteroid treatment on cell recovery by lung lavage in acute radiation-induced lung injury

    SciTech Connect

    Wesselius, L.J.; Floreani, A.A.; Kimler, B.F.; Papasian, C.J.; Dixon, A.Y. )

    1989-11-01

    The purpose of this study was to quantitate cell populations recovered by lung lavage up to 6 weeks following thoracic irradiation (24 Gy) as an index of the acute inflammatory response within lung structures. Additionally, rats were treated five times weekly with intraperitoneal saline (0.3 cc) or methylprednisolone (7.5 mg/kg/week). Lung lavage of irradiated rats recovered increased numbers of total cells compared to controls beginning 3 weeks after irradiation (P less than 0.05). The initial increase in number of cells recovered was attributable to an influx of neutrophils (P less than 0.05), and further increases at 4 and 6 weeks were associated with increased numbers of recovered macrophages (P less than 0.05). Lung lavage of steroid-treated rats at 6 weeks after irradiation recovered increased numbers of all cell populations compared to controls (P less than 0.05); however, numbers of recovered total cells, macrophages, neutrophils, and lymphocytes were all significantly decreased compared to saline-treated rats (P less than 0.05). The number of inflammatory cells recovered by lung lavage during acute radiation-induced lung injury is significantly diminished by corticosteroid treatment. Changes in cells recovered by lung lavage can also be correlated with alteration in body weight and respiration rate subsequent to treatment with thoracic irradiation and/or corticosteroids.

  11. The effects of morin on lipopolysaccharide-induced acute lung injury by suppressing the lung NLRP3 inflammasome.

    PubMed

    Tianzhu, Zhang; Shihai, Yang; Juan, Du

    2014-12-01

    In previous study, the anti-inflammatory effect of morin had been found. In this study, we investigated anti-inflammatory effects of morin on acute lung injury using lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The cell counting in the bronchoalveolar lavage fluid (BALF) was measured. The animal lung edema degree was evaluated by wet/dry weight (W/D) ratio. The superoxidase dismutase (SOD) activity and myeloperoxidase (MPO) activity were assayed by SOD and MPO kits, respectively. The levels of inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-18, and IL-6 were assayed by enzyme-linked immunosorbent assay method. Pathological changes of lung tissues were observed by hematoxylin and eosin (HE) staining. The protein level of lung NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome was measured by Western blotting. The data showed that treatment with the morin markedly attenuated inflammatory cell numbers in the BALF, decreased lung NLRP3 inflammasome protein level, and improved SOD activity and inhibited MPO activity. Histological studies demonstrated that morin substantially inhibited LPS-induced neutrophils in lung tissue compared with model group. The results indicated that the morin had a protective effect on LPS-induced ALI in mice.

  12. Redistribution of pulmonary blood flow impacts thermodilution-based extravascular lung water measurements in a model of acute lung injury

    PubMed Central

    Easley, R. Blaine; Mulreany, Daniel G.; Lancaster, Christopher T.; Custer, Jason W.; Fernandez-Bustamante, Ana; Colantuoni, Elizabeth; Simon, Brett A.

    2009-01-01

    Background Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. We hypothesize that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computerized tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly following endotoxin administration. Computerized tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computerized tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW. PMID:19809280

  13. Effects of budesonide and N-acetylcysteine on acute lung hyperinflation, inflammation and injury in rats.

    PubMed

    Jansson, Anne-Helene; Eriksson, Christina; Wang, Xiangdong

    2005-08-01

    Leukocyte activation and production of inflammatory mediators and reactive oxygen species are important in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury. The present study investigated acute lung hyperinflation, edema, and lung inflammation 4 h after an intratracheal instillation of LPS (0.5, 2.5, 5, 10, 50, 100, 500, 1000, and 5000 microg/ml/kg). Effects of budesonide, an inhaled anti-inflammatory corticosteroids, and N-acetylcysteine (NAC), an antioxidant, were evaluated in Wistar rats receiving either low (2.5 microg/ml/kg) or high (50 microg/ml/kg) concentrations of LPS. This study demonstrates that LPS in a concentration-dependent pattern induces acute lung hyperinflation measured by excised lung gas volume (25-45% above control), lung injury indicated by increased lung weight (10-60%), and lung inflammation characterized by the infiltration of leukocytes (40-14000%) and neutrophils (80-17000%) and the production of cytokines (up to 2700%) and chemokines (up to 350%) in bronchoalveolar lavage fluid (BALF). Pretreatment with NAC partially prevented tumor necrosis factor alpha (TNFalpha) production induced by the low concentration of LPS, while pretreatment with budesonide totally prevented the increased production of TNFalpha, interleukin (IL)-1beta, IL-6, and monocyte chemoattractive protein (MCP)-1 after LPS challenge at both low and high concentrations. Budesonide failed to prevent BALF levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant 1 (GRO/CINC-1) as well as lung hyperinflation induced by both low and high concentrations of LPS. Pretreatment with budesonide totally prevented the formation of lung edema at the low concentration of LPS and had partial effects on acute lung injury and leukocyte influx at the high concentrations. Thus, our data indicate that therapeutic effects of budesonide and NAC are dependent upon the severity of the disease.

  14. Pretreatment by low-dose fibrates protects against acute free fatty acid-induced renal tubule toxicity by counteracting PPAR{alpha} deterioration

    SciTech Connect

    Takahashi, Kyoko; Kamijo, Yuji; Hora, Kazuhiko; Hashimoto, Koji; Higuchi, Makoto; Nakajima, Takero; Ehara, Takashi; Shigematsu, Hidekazu; Gonzalez, Frank J.; Aoyama, Toshifumi

    2011-05-01

    Development of a preventive strategy against tubular damage associated with proteinuria is of great importance. Recently, free fatty acid (FFA) toxicities accompanying proteinuria were found to be a main cause of tubular damage, which was aggravated by insufficiency of peroxisome proliferator-activated receptor alpha (PPAR{alpha}), suggesting the benefit of PPAR{alpha} activation. However, an earlier study using a murine acute tubular injury model, FFA-overload nephropathy, demonstrated that high-dose treatment of PPAR{alpha} agonist (0.5% clofibrate diet) aggravated the tubular damage as a consequence of excess serum accumulation of clofibrate metabolites due to decreased kidney elimination. To induce the renoprotective effects of PPAR{alpha} agonists without drug accumulation, we tried a pretreatment study using low-dose clofibrate (0.1% clofibrate diet) using the same murine model. Low-dose clofibrate pretreatment prevented acute tubular injuries without accumulation of its metabolites. The tubular protective effects appeared to be associated with the counteraction of PPAR{alpha} deterioration, resulting in the decrease of FFAs influx to the kidney, maintenance of fatty acid oxidation, diminution of intracellular accumulation of undigested FFAs, and attenuation of disease developmental factors including oxidative stress, apoptosis, and NF{kappa}B activation. These effects are common to other fibrates and dependent on PPAR{alpha} function. Interestingly, however, clofibrate pretreatment also exerted PPAR{alpha}-independent tubular toxicities in PPAR{alpha}-null mice with FFA-overload nephropathy. The favorable properties of fibrates are evident when PPAR{alpha}-dependent tubular protective effects outweigh their PPAR{alpha}-independent tubular toxicities. This delicate balance seems to be easily affected by the drug dose. It will be important to establish the appropriate dosage of fibrates for treatment against kidney disease and to develop a novel PPAR

  15. Critical care in the ED: potentially fatal asthma and acute lung injury syndrome

    PubMed Central

    Hodder, Rick

    2012-01-01

    Emergency department clinicians are frequently called upon to assess, diagnose, and stabilize patients who present with acute respiratory failure. This review describes a rapid initial approach to acute respiratory failure in adults, illustrated by two common examples: (1) an airway disease – acute potentially fatal asthma, and (2) a pulmonary parenchymal disease – acute lung injury/acute respiratory distress syndrome. As such patients are usually admitted to hospital, discussion will be focused on those initial management aspects most relevant to the emergency department clinician. PMID:27147862

  16. Treatment of acute lung injury by targeting MG53-mediated cell membrane repair

    PubMed Central

    Lieber, Gissela; Nishi, Miyuki; Yan, Rosalie; Wang, Zhen; Yao, Yonggang; Li, Yu; Whitson, Bryan A.; Duann, Pu; Li, Haichang; Zhou, Xinyu; Zhu, Hua; Takeshima, Hiroshi; Hunter, John C.; McLeod, Robbie L.; Weisleder, Noah; Zeng, Chunyu; Ma, Jianjie

    2014-01-01

    Injury to lung epithelial cells has a role in multiple lung diseases. We previously identified mitsugumin 53 (MG53) as a component of the cell membrane repair machinery in striated muscle cells. Here we show that MG53 also has a physiological role in the lung and may be used as a treatment in animal models of acute lung injury. Mice lacking MG53 show increased susceptibility to ischemia-reperfusion and over-ventilation induced injury to the lung when compared with wild type mice. Extracellular application of recombinant human MG53 (rhMG53) protein protects cultured lung epithelial cells against anoxia/reoxygenation-induced injuries. Intravenous delivery or inhalation of rhMG53 reduces symptoms in rodent models of acute lung injury and emphysema. Repetitive administration of rhMG53 improves pulmonary structure associated with chronic lung injury in mice. Our data indicate a physiological function for MG53 in the lung and suggest that targeting membrane repair may be an effective means for treatment or prevention of lung diseases. PMID:25034454

  17. Blocking TGF-β Signaling Pathway Preserves Mitochondrial Proteostasis and Reduces Early Activation of PDGFRβ+ Pericytes in Aristolochic Acid Induced Acute Kidney Injury in Wistar Male Rats

    PubMed Central

    Pozdzik, Agnieszka A.; Giordano, Laetitia; Li, Gang; Antoine, Marie-Hélène; Quellard, Nathalie; Godet, Julie; De Prez, Eric; Husson, Cécile; Declèves, Anne-Emilie; Arlt, Volker M.; Goujon, Jean-Michel; Brochériou-Spelle, Isabelle; Ledbetter, Steven R.; Caron, Nathalie; Nortier, Joëlle L.

    2016-01-01

    Background The platelet-derived growth factor receptor β (PDGFRβ)+ perivascular cell activation becomes increasingly recognized as a main source of scar-associated kidney myofibroblasts and recently emerged as a new cellular therapeutic target. Aims In this regard, we first confirmed the presence of PDGFRβ+ perivascular cells in a human case of end-stage aristolochic acid nephropathy (AAN) and thereafter we focused on the early fibrosis events of transforming growth factor β (TGFβ) inhibition in a rat model of AAN. Materials and Methods Neutralizing anti-TGFβ antibody (1D11) and its control isotype (13C4) were administered (5 mg/kg, i.p.) at Days -1, 0, 2 and 4; AA (15 mg/kg, sc) was injected daily. Results At Day 5, 1D11 significantly suppressed p-Smad2/3 signaling pathway improving renal function impairment, reduced the score of acute tubular necrosis, peritubular capillaritis, interstitial inflammation and neoangiogenesis. 1D11 markedly decreased interstitial edema, disruption of tubular basement membrane loss of brush border, cytoplasmic edema and organelle ultrastructure alterations (mitochondrial disruption and endoplasmic reticulum edema) in proximal tubular epithelial cells. Moreover, 1D11 significantly inhibited p-PERK activation and attenuated dysregulation of unfolded protein response (UPR) pathways, endoplasmic reticulum and mitochondrial proteostasis in vivo and in vitro. Conclusions The early inhibition of p-Smad2/3 signaling pathway improved acute renal function impairment, partially prevented epithelial-endothelial axis activation by maintaining PTEC proteostasis and reduced early PDGFRβ+ pericytes-derived myofibroblasts accumulation. PMID:27379382

  18. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation.

    PubMed

    Lutz, Waldemar; Stetkiewicz, Jan

    2004-01-01

    Acute inflammatory lung injury is often a delayed complication of critical illness and is associated with increased mortality. High mobility group box 1 (HMGB1) protein, in addition to its role as a transcriptional regulator factor, has been identified as a late mediator of endotoxin lethality and might be also involved in the development and progression of acute lung injury. HMGB1 protein itself can cause an acute inflammatory response manifested by increased production of proinflammatory cytokines and neutrophil accumulation. The delayed kinetics of HMGB1 protein release indicate that this protein is a distal mediator of acute inflamatory lung injury. Anti-HMGB1 protein antibodies attenuated endotoxin-induced lung injury, but not the early release of TNF-alpha and IL-1beta, indicating that HMGB1 protein is a late mediator of endotoxin-induced acute lung injury. HMGB1 protein is not released by apoptotic cells but is passively released by necrotic or damaged somatic and immune cells and it functions as a major stimulus of necrosis-induced inflammation. HMGB1 protein is also released by activated monocytes/macrophages and induces delayed and biphasic release of proinflammatory mediators from these cells. HMGB1 protein failed to stimulate cytokines release in lymphocytes, indicating that cellular stimulation is specific. We would like to suggest that HMGB1 protein may be also a primary mediator of the inflammatory responses to lung cells injury caused by toxic environmental chemicals.

  19. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs* **

    PubMed Central

    Torres, Ronaldo Lopes; Torres, Iraci Lucena da Silva; Laste, Gabriela; Ferreira, Maria Beatriz Cardoso; Cardoso, Paulo Francisco Guerreiro; Belló-Klein, Adriane

    2014-01-01

    Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO) and total reactive antioxidant potential (TRAP), in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.); acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days); and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels. PMID:25029646

  20. Emerging therapies for treatment of acute lung injury and acute respiratory distress syndrome.

    PubMed

    Bosma, Karen J; Lewis, James F

    2007-09-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a life-threatening form of respiratory failure that affects a heterogeneous population of critically ill patients. Although overall mortality appears to be decreasing in recent years due to improvements in supportive care, there are presently no proven, effective pharmacological therapies to treat ARDS and prevent its associated complications. The most common cause of death in ARDS is not hypoxemia or pulmonary failure, but rather multiple organ dysfunction syndrome (MODS), suggesting that improving survival in patients with ARDS may be linked to decreasing the incidence or severity of MODS. The key to developing novel treatments depends, in part, on identifying and understanding the mechanisms by which ARDS leads to MODS, although the heterogeneity and complexity of this disorder certainly poses a challenge to investigators. Novel therapies in development for treatment of ALI/ARDS include exogenous surfactant, therapies aimed at modulating neutrophil activity, such as prostaglandin and complement inhibitors, and treatments targeting earlier resolution of ARDS, such as beta-agonists and granulocyte macrophage colony-stimulating factor. From a clinical perspective, identifying subpopulations of patients most likely to benefit from a particular therapy and recognising the appropriate stage of illness in which to initiate treatment could potentially lead to better outcomes in the short term.

  1. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome.

    PubMed

    Rajasekaran, Subbiah; Pattarayan, Dhamotharan; Rajaguru, P; Sudhakar Gandhi, P S; Thimmulappa, Rajesh K

    2016-10-01

    The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality worldwide. Despite decades of research, effective therapeutic strategies for clinical ALI/ARDS are not available. In recent years, microRNAs (miRNAs), small non-coding molecules have emerged as a major area of biomedical research as they post-transcriptionally regulate gene expression in diverse biological and pathological processes, including ALI/ARDS. In this context, this present review summarizes a large body of evidence implicating miRNAs and their target molecules in ALI/ARDS originating largely from studies using animal and cell culture model systems of ALI/ARDS. We have also focused on the involvement of miRNAs in macrophage polarization, which play a critical role in regulating the pathogenesis of ALI/ARDS. Finally, the possible future directions that might lead to novel therapeutic strategies for the treatment of ALI/ARDS are also reviewed. J. Cell. Physiol. 231: 2097-2106, 2016. © 2016 Wiley Periodicals, Inc.

  2. Tissue Inhibitor of Metalloproteinase-1 Deficiency Amplifies Acute Lung Injury in Bleomycin-Exposed Mice

    PubMed Central

    Kim, Kyoung-Hee; Burkhart, Kristin; Chen, Peter; Frevert, Charles W.; Randolph-Habecker, Julie; Hackman, Robert C.; Soloway, Paul D.; Madtes, David K.

    2005-01-01

    Bleomycin-induced lung injury triggers a profound and durable increase in tissue inhibitor of metalloproteinase (TIMP)-1 expression, suggesting a potential role for this antiproteinase in the regulation of lung inflammation and fibrosis. TIMP-1 protein induction is spatially restricted to areas of lung injury as determined by immunohistochemistry. Using TIMP-1 null mutation mice, we demonstrate that TIMP-1 deficiency amplifies acute lung injury as determined by exaggerated pulmonary neutrophilia, hemorrhage, and vascular permeability compared with wild-type littermates after bleomycin exposure. The augmented pulmonary neutrophilia observed in TIMP-1–deficient animals was not found in similarly treated TIMP-2–deficient mice. Using TIMP-1 bone marrow (BM) chimeric mice, we observed that the TIMP-1–deficient phenotype was abolished in wild-type recipients of TIMP-1–deficient BM but not in TIMP-1–deficient recipients of wild-type BM. Acute lung injury in TIMP-1–deficient mice was accompanied by exaggerated gelatinase-B activity in the alveolar compartment. TIMP-1 deficiency did not alter neutrophil chemotactic factor accumulation in the injured lung nor neutrophil migration in response to chemotactic stimuli in vivo or in vitro. Moreover, TIMP-1 deficiency did not modify collagen accumulation after bleomycin injury. Our results provide direct evidence that TIMP-1 contributes significantly to the regulation of acute lung injury, functioning to limit inflammation and lung permeability. PMID:15947421

  3. Neutrophil-dependent, oxygen-radical mediated lung injury associated with acute pancreatitis.

    PubMed Central

    Guice, K S; Oldham, K T; Caty, M G; Johnson, K J; Ward, P A

    1989-01-01

    Cerulein-induced acute pancreatitis in rats is associated with a reversible lung injury that is characterized by alveolar capillary endothelial-cell injury, increased microvascular permeability, interstitial edema formation, and intraalveolar hemorrhage and fibrin deposition. The role of mediators in this injury was analyzed using gravimetric data, microvascular permeability indices, electron microscopy, and a quantitative morphometric analysis. Neutrophil depletion induced by a specific antibody was highly protective against lung injury. Interruption of the complement pathway (using low dose Naja naja cobra venom factor) also protected against lung injury. Catalase and superoxide dismutase were also protective. The iron chelator deferoxamine and the hydroxyl radical scavenger, dimethylsulfoxide, were not protective against acute lung injury. These data suggest that complement, neutrophils, and neutrophil-derived (H2O2-dependent) oxygen products mediate lung injury that occurs secondary to cerulein-induced pancreatitis. In contrast to other models of neutrophil-dependent, oxygen-radical-mediated lung injury, this lung injury does not appear to be an iron-dependent and hydroxyl-radical mediated injury. We postulate that the process of acute pancreatitis leads to complement activation followed by neutrophil recruitment, sequestration, and adherence to alveolar capillary endothelial cells. Ultimately lung injury appears to result from local endothelial-cell injury secondary to neutrophil-generated oxygen products that may be myeloperoxidase dependent. Images Figs. 3A-D. PMID:2589887

  4. [Lung ultrasound in acute and critical care medicine].

    PubMed

    Zechner, P M; Seibel, A; Aichinger, G; Steigerwald, M; Dorr, K; Scheiermann, P; Schellhaas, S; Cuca, C; Breitkreutz, R

    2012-07-01

    The development of modern critical care lung ultrasound is based on the classical representation of anatomical structures and the need for the assessment of specific sonography artefacts and phenomena. The air and fluid content of the lungs is interpreted using few typical artefacts and phenomena, with which the most important differential diagnoses can be made. According to a recent international consensus conference these include lung sliding, lung pulse, B-lines, lung point, reverberation artefacts, subpleural consolidations and intrapleural fluid collections. An increased number of B-lines is an unspecific sign for an increased quantity of fluid in the lungs resembling interstitial syndromes, for example in the case of cardiogenic pulmonary edema or lung contusion. In the diagnosis of interstitial syndromes lung ultrasound provides higher diagnostic accuracy (95%) than auscultation (55%) and chest radiography (72%). Diagnosis of pneumonia and pulmonary embolism can be achieved at the bedside by evaluating subpleural lung consolidations. Detection of lung sliding can help to detect asymmetrical ventilation and allows the exclusion of a pneumothorax. Ultrasound-based diagnosis of pneumothorax is superior to supine anterior chest radiography: for ultrasound the sensitivity is 92-100% and the specificity 91-100%. For the diagnosis of pneumothorax a simple algorithm was therefore designed: in the presence of lung sliding, lung pulse or B-lines, pneumothorax can be ruled out, in contrast a positive lung point is a highly specific sign of the presence of pneumothorax. Furthermore, lung ultrasound allows not only diagnosis of pleural effusion with significantly higher sensitivity than chest x-ray but also visual control in ultrasound-guided thoracocentesis. PMID:22772347

  5. Depressive Symptoms and Impaired Physical Function after Acute Lung Injury

    PubMed Central

    Colantuoni, Elizabeth; Mendez-Tellez, Pedro A.; Dinglas, Victor D.; Shanholtz, Carl; Husain, Nadia; Dennison, Cheryl R.; Herridge, Margaret S.; Pronovost, Peter J.; Needham, Dale M.

    2012-01-01

    Rationale: Survivors of acute lung injury (ALI) frequently have substantial depressive symptoms and physical impairment, but the longitudinal epidemiology of these conditions remains unclear. Objectives: To evaluate the 2-year incidence and duration of depressive symptoms and physical impairment after ALI, as well as risk factors for these conditions. Methods: This prospective, longitudinal cohort study recruited patients from 13 intensive care units (ICUs) in four hospitals, with follow-up 3, 6, 12, and 24 months after ALI. The outcomes were Hospital Anxiety and Depression Scale depression score greater than or equal to 8 (“depressive symptoms”) in patients without a history of depression before ALI, and two or more dependencies in instrumental activities of daily living (“impaired physical function”) in patients without baseline impairment. Measurements and Main Results: During 2-year follow-up of 186 ALI survivors, the cumulative incidences of depressive symptoms and impaired physical function were 40 and 66%, respectively, with greatest incidence by 3-month follow-up; modal durations were greater than 21 months for each outcome. Risk factors for incident depressive symptoms were education 12 years or less, baseline disability or unemployment, higher baseline medical comorbidity, and lower blood glucose in the ICU. Risk factors for incident impaired physical function were longer ICU stay and prior depressive symptoms. Conclusions: Incident depressive symptoms and impaired physical function are common and long-lasting during the first 2 years after ALI. Interventions targeting potentially modifiable risk factors (e.g., substantial depressive symptoms in early recovery) should be evaluated to improve ALI survivors’ long-term outcomes. PMID:22161158

  6. Role and importance of ultrasound lung comets in acute cardiac care.

    PubMed

    Ricci, Fabrizio; Aquilani, Roberta; Radico, Francesco; Bianco, Francesco; Dipace, Gioacchino Giuseppe; Miniero, Ester; De Caterina, Raffaele; Gallina, Sabina

    2015-04-01

    Lung ultrasonography is an emerging, user-friendly and easy-to-use technique that can be performed quickly at the patient's bedside to evaluate several pathologic conditions affecting the lung. Ultrasound lung comets (ULCs) are an echographic sign of uncertain biophysical characterisation mostly attributed to water-thickened subpleural interlobular septa, but invariably associated with increased extravascular lung water. ULCs have thus been proposed as a complementary tool for the assessment and monitoring of acute heart failure and are now entering into statements in international recommendation documents. Adding lung ultrasonography to conventional echocardiography allows for performing an integrated cardiopulmonary ultrasound examination, and this is an important opportunity for the cardiologist. The technique allows the simultaneous gathering of considerable information about the heart and the lungs to investigate acute and chronic cardio-pulmonary conditions within a non-invasive, radiation-free, single-probe, all-in-one examination. We have here reviewed the pertinent literature on the physical origin of ULCs and on their role and importance in intensive and acute cardiac care settings. We also here propose a new algorithm aimed at implementing evaluation in the diagnostic work-up of patients with suspected acute heart failure. PMID:25267879

  7. Overexpression of steroidogenic acute regulatory protein in rat aortic endothelial cells attenuates palmitic acid-induced inflammation and reduction in nitric oxide bioavailability

    PubMed Central

    2012-01-01

    Background Endothelial dysfunction is a well documented evidence for the onset of atherosclerosis and other cardiovascular diseases. Lipids disorder is among the main risk factors for endothelial dysfunction in these diseases. Steroidogenic acute regulatory protein (StAR), one of the cholesterol transporters, plays an important role in the maintenance of intracellular lipid homeostasis. However, the effect of StAR on endothelial dysfunction is not well understood. Palmitic acid (PA) has been shown to decrease eNOS activity and induce inflammation, both are the causes of endothelial dysfunction, in an endothelial cell culture model. Methods StAR gene was introduced into primary rat aortic endothelial cells by adenovirus infection. Real-time PCR and Western blotting were performed to determine the relative genes and proteins expression level to elucidate the underlying mechanism. The free fatty acid and cholesterol quantification kits were used to detect total cellular free fatty acid and cholesterol. The levels of inflammatory factors and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. Results We successfully overexpressed StAR in primary rat aortic endothelial cells. Following StAR overexpression, mRNA levels of IL-1β, TNFα, IL6 and VCAM-1 and protein levels of IL-1β, , TNFα and IL-6 in culture supernatant were significantly decreased, which duing to blocke NFκB nuclear translocation and activation. Moreover, StAR overexpression attenuated the PA-induced reduction of nitric oxide bioavailability by protecting the bioactivity of pAkt/peNOS/NO pathway. Furthermore, the key genes involved in lipid metabolism were greatly reduced following StAR overexpression. In order to investigate the underlying mechanism, cerulenin and lovastatin, the inhibitor of fatty acid and cholesterol synthase, were added prior to PA treatment. The results showed that both cerulenin and lovastatin had a similar effect as StAR overexpression. On the

  8. Clinical review: Lung imaging in acute respiratory distress syndrome patients - an update

    PubMed Central

    2013-01-01

    Over the past 30 years lung imaging has greatly contributed to the current understanding of the pathophysiology and the management of acute respiratory distress syndrome (ARDS). In the past few years, in addition to chest X-ray and lung computed tomography, newer functional lung imaging techniques, such as lung ultrasound, positron emission tomography, electrical impedance tomography and magnetic resonance, have been gaining a role as diagnostic tools to optimize lung assessment and ventilator management in ARDS patients. Here we provide an updated clinical review of lung imaging in ARDS over the past few years to offer an overview of the literature on the available imaging techniques from a clinical perspective. PMID:24238477

  9. Novel Role for Aldose Reductase in Mediating Acute Inflammatory Responses in the Lung1

    PubMed Central

    Ravindranath, Thyyar M.; Mong, Phyllus Y.; Ananthakrishnan, Radha; Li, Qing; Quadri, Nosirudeen; Schmidt, Ann Marie; Ramasamy, Ravichandran; Wang, Qin

    2011-01-01

    Exaggerated inflammatory responses and the resultant increases in alveolar-capillary permeability underlie the pathogenesis of acute lung injury during sepsis. This study examined the functions of aldose reductase (AR) in mediating acute lung inflammation. Transgenic mice expressing human AR (ARTg) were used to study the functions of AR since mice have low intrinsic AR activity. In a mild cecal ligation and puncture model, ARTg mice demonstrated an enhanced AR activity and a greater inflammatory response as evaluated by circulating cytokine levels, neutrophil accumulation in the lungs, and activation of Rho kinase in lung endothelial cells (ECs). Compared with WT lung cells, ARTg lung cells produced more IL-6 and showed augmented JNK activation in response to LPS stimulation ex vivo. In human neutrophils, AR activity was required for fMLP-included CD11b activation and up-regulation, respiratory burst, and shape changes. In human pulmonary microvascular ECs, AR activity was required for TNF-α-induced activation of the Rho kinase/MKK4/JNK pathway and IL-6 production, but not p38 activation or ICAM-1 expression. Importantly, AR activity in both human neutrophils and ECs was required for neutrophil adhesion to TNF-α-stimulated ECs. These data demonstrate a novel role for AR in regulating the signaling pathways leading to neutrophil-EC adhesion during acute lung inflammation. PMID:20007578

  10. Corticosteroids prevent acute lung dysfunction caused by thoracic irradiation in unanesthetized sheep

    SciTech Connect

    Loyd, J.E.; Bolds, J.M.; Wickersham, N.; Malcolm, A.W.; Brigham, K.L.

    1988-11-01

    We sought to determine the effect of corticosteroid therapy in a new acute model of oxidant lung injury, thoracic irradiation in awake sheep. Sheep were irradiated with 1,500 rads to the whole chest except for blocking the heart and adjacent ventral lung. Seven experimental sheep were given methylprednisolone (1 g intravenously every 6 h for four doses) and thoracic irradiation; control sheep received only irradiation. In irradiated control sheep, lung lymph flow increased from baseline (7.6 ml/h) to peak at 3 h (13.2), and lung lymph protein clearance increased from 5.1 to 9.7 ml/h. Mean pulmonary artery pressure increased in the irradiated control sheep from 19 to 32.4 cm H/sub 2/O, whereas the lung lymph thromboxane concentration increased from 0.09 to 6.51 ng/ml at 3 h. Arterial oxygen tension in irradiated control sheep fell gradually from 86 mm Hg at baseline to 65 mm Hg at 8 h. Methylprednisolone administration significantly prevented the increase in lung lymph protein clearance, mean pulmonary artery pressure, and lung lymph thromboxane concentration. Methylprednisolone also prevented the fall in arterial oxygen tension after thoracic irradiation, but did not prevent a further decrease in lymphocytes in blood or lung lymph after radiation. We conclude that corticosteroid therapy prevents most of the acute physiologic changes caused by thoracic irradiation in awake sheep.

  11. CLOCK modulates survival and acute lung injury in mice with polymicrobial sepsis.

    PubMed

    Wang, Chao-Yung; Hsieh, Ming-Jer; Hsieh, I-Chang; Shie, Shian-Sen; Ho, Ming-Yun; Yeh, Jih-Kai; Tsai, Ming-Lung; Yang, Chia-Hung; Hung, Kuo-Chun; Wang, Chun-Chieh; Wen, Ming-Shien

    2016-09-16

    Polymicrobial sepsis is a potentially fatal condition and a significant burden on health care systems. Acute lung injury is the most common complication of sepsis and results in high mortality. However, there has been no recent significant progress in the treatment of sepsis or acute lung injury induced by sepsis. Here we show that mice deficient in the circadian protein CLOCK had better survival than wild-type mice after induction of polymicrobial sepsis by cecal ligation and puncture. Inflammatory cytokine production was attenuated and bacterial clearance was improved in CLOCK-deficient mice. Moreover, acute lung injury after induction of sepsis was significantly decreased in CLOCK-deficient mice. Genome-wide profiling analysis showed that inhibin signaling was reduced in CLOCK-deficient mice. These data establish the importance of circadian CLOCK-inhibin signaling in sepsis, which may have potential therapeutic implications. PMID:27520377

  12. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure.

    PubMed

    Gattinoni, L; Pelosi, P; Vitale, G; Pesenti, A; D'Andrea, L; Mascheroni, D

    1991-01-01

    Ten patients with parenchymal acute respiratory failure (ARF) underwent computed tomography (CT) scans while in the supine and prone positions. At equal levels of positive end-expiratory pressure, the authors measured the changes of CT density in dorsal and ventral basilar lung regions induced by the change of position as well as alterations of gas exchange. The level of venous admixture did not change with body position. The CT scan image of each lung was fractionated into ten levels from dorsal to ventral, each constituting 10% of the lung height. After measuring each lung fraction, the volume, the average CT number, its frequency distribution, and the expected normal value, we computed the lung tissue mass, the excess tissue mass, and the fraction of normally inflated tissue (excess tissue mass = amount of "tissue," which includes edema, cells, and blood in excess of the expected normal value). We also estimated the superimposed hydrostatic pressure on each lung region. We found that the excess lung tissue mass is independent of position. However, in patients in the supine position, lung CT density increased and regional inflation decreased from ventral to dorsal, suggesting progressive deflation of gas-containing alveoli along the gravity gradient. A similar ventral-dorsal deflation pattern occurred within 10 min in patients in the prone position. We conclude that the lung in patients with ARF behaves like an elastic body with a diffusely increased mass; dependent lung regions are compressed by the pressure of overlying structures.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Dihydro-Resveratrol Ameliorates Lung Injury in Rats with Cerulein-Induced Acute Pancreatitis.

    PubMed

    Lin, Ze-Si; Ku, Chuen Fai; Guan, Yi-Fu; Xiao, Hai-Tao; Shi, Xiao-Ke; Wang, Hong-Qi; Bian, Zhao-Xiang; Tsang, Siu Wai; Zhang, Hong-Jie

    2016-04-01

    Acute pancreatitis is an inflammatory process originated in the pancreas; however, it often leads to systemic complications that affect distant organs. Acute respiratory distress syndrome is indeed the predominant cause of death in patients with severe acute pancreatitis. In this study, we aimed to delineate the ameliorative effect of dihydro-resveratrol, a prominent analog of trans-resveratrol, against acute pancreatitis-associated lung injury and the underlying molecular actions. Acute pancreatitis was induced in rats with repetitive injections of cerulein (50 µg/kg/h) and a shot of lipopolysaccharide (7.5 mg/kg). By means of histological examination and biochemical assays, the severity of lung injury was assessed in the aspects of tissue damages, myeloperoxidase activity, and levels of pro-inflammatory cytokines. When treated with dihydro-resveratrol, pulmonary architectural distortion, hemorrhage, interstitial edema, and alveolar thickening were significantly reduced in rats with acute pancreatitis. In addition, the production of pro-inflammatory cytokines and the activity of myeloperoxidase in pulmonary tissues were notably repressed. Importantly, nuclear factor-kappaB (NF-κB) activation was attenuated. This study is the first to report the oral administration of dihydro-resveratrol ameliorated acute pancreatitis-associated lung injury via an inhibitory modulation of pro-inflammatory response, which was associated with a suppression of the NF-κB signaling pathway.

  14. Effect on extrapulmonary sepsis-induced acute lung injury by hemoperfusion with neutral microporous resin column.

    PubMed

    Huang, Zhao; Wang, Si-rong; Yang, Zi-li; Liu, Ji-yun

    2013-08-01

    The aim of this study was to investigate the effect of neutral microporous resin hemoperfusion on oxygenation improvement, removal of inflammatory cytokines in plasma and bronchoalveolar lavage, and mortality in acute lung injury induced by extrapulmonary sepsis. Forty-six patients with acute lung injury induced by extrapulmonary sepsis were randomized to HA type hemoperfusion treatment (N=25) or standard therapy (N=21). Those undergoing hemoperfusion treatment received HA330 hemoperfusion. We measured the plasma and bronchoalveolar lavage concentrations of TNF-α and IL-1, and the following parameters were compared between the control group and the hemoperfusion group on days 0, 3 and 7: lung injury measurements (arterial oxygen tension/fractional inspired oxygen ratio, lung injury score, chest X-ray score); interstitial edema of lung (extravascular lung water). Duration of mechanical ventilation, hospital, 28-day, and intensive care unit mortality were also observed. Patients treated with HA hemoperfusion showed a significant removal of plasma and bronchoalveolar lavage TNF-α and IL-1 over time while in the study. Patients in the HA group also demonstrated not only significant improvement of PaO2 /FiO2 , but also decreased Lung Injury Score and chest X-ray score at days 3 and 7. Furthermore, the measurements of the arterial oxygen tension/fractional inspired oxygen ratio, lung injury score and extravascular lung water (EVLWI) significantly correlated with and the concentration of cytokines in the plasma (all P<0.05). The HA hemoperfusion treatment group had a significant reduction in duration of mechanical ventilation, length of intensive care unit stay, and intensive care unit mortality. Significant removal of inflammatory cytokines from circulation and lung by hemoperfusion treatment using the HA type cartridge may contribute to the improvement of lung injury and intensive care unit outcome in extrapulmonary septic patients. PMID:23931889

  15. Mitogen-activated Protein Kinase Kinase Kinase 1 Protects against Nickel-induced Acute Lung Injury

    PubMed Central

    Mongan, Maureen; Tan, Zongqing; Chen, Liang; Peng, Zhimin; Dietsch, Maggie; Su, Bing; Leikauf, George; Xia, Ying

    2008-01-01

    Nickel compounds are environmental and occupational hazards that pose serious health problems and are causative factors of acute lung injury. The c-jun N-terminal kinases (JNKs) are regulated through a mitogen-activated protein (MAP) 3 kinase-MAP2 kinase cascade and have been implicated in nickel toxicity. In this study, we used genetically modified cells and mice to investigate the involvement of two upstream MAP3Ks, MAP3K1 and 2, in nickel-induced JNK activation and acute lung injury. In mouse embryonic fibroblasts, levels of JNK activation and cytotoxicity induced by nickel were similar in the Map3k2-null and wild-type cells but were much lower in the Map3k1/Map3k2 double-null cells. Conversely, the levels of JNK activation and cytotoxicity were unexpectedly much higher in the Map3k1-null cells. In adult mouse tissue, MAP3K1 was widely distributed but was abundantly expressed in the bronchiole epithelium of the lung. Accordingly, MAP3K1 ablation in mice resulted in severe nickel-induced acute lung injury and reduced survival. Based on these findings, we propose a role for MAP3K1 in reducing JNK activation and protecting the mice from nickel-induced acute lung injury. PMID:18467339

  16. Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats.

    PubMed

    Liu, Shulin; Liu, Kan; Sun, Qiang; Liu, Wenwu; Xu, Weigang; Denoble, Petar; Tao, Hengyi; Sun, Xuejun

    2011-01-01

    Exposure to paraquat leads to acute lung injury and oxidative stress is widely accepted as a contributor to paraquat-induced acute lung injury. Recent studies have reported that consumption of water with dissolved molecular hydrogen to a saturated level (hydrogen water) prevents oxidative stress-induced diseases. Here, we investigated whether consumption of saturated hydrogen saline protects rats against paraquat-induced acute lung injury. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group; hydrogen water-only group (HW group); paraquat-only group (PQ group); paraquat and hydrogen water group (PQ + HW group). The rats in control group and HW group drank pure water or hydrogen water; the rats in PQ group and PQ + HW group were intraperitonealy injected with paraquat (35 mg/kg) and then provided pure water or hydrogen water. Both biochemical and histological lung alterations were measured. The results showed that hydrogen water ameliorated these alterations, demonstrating that hydrogen water alleviated paraquat-induced acute lung injury possibly by inhibition of oxidative damage. PMID:21318114

  17. Treatment for sulfur mustard lung injuries; new therapeutic approaches from acute to chronic phase

    PubMed Central

    2012-01-01

    Objective Sulfur mustard (SM) is one of the major potent chemical warfare and attractive weapons for terrorists. It has caused deaths to hundreds of thousands of victims in World War I and more recently during the Iran-Iraq war (1980–1988). It has ability to develop severe acute and chronic damage to the respiratory tract, eyes and skin. Understanding the acute and chronic biologic consequences of SM exposure may be quite essential for developing efficient prophylactic/therapeutic measures. One of the systems majorly affected by SM is the respiratory tract that numerous clinical studies have detailed processes of injury, diagnosis and treatments of lung. The low mortality rate has been contributed to high prevalence of victims and high lifetime morbidity burden. However, there are no curative modalities available in such patients. In this review, we collected and discussed the related articles on the preventive and therapeutic approaches to SM-induced respiratory injury and summarized what is currently known about the management and therapeutic strategies of acute and long-term consequences of SM lung injuries. Method This review was done by reviewing all papers found by searching following key words sulfur mustard; lung; chronic; acute; COPD; treatment. Results Mustard lung has an ongoing pathological process and is active disorder even years after exposure to SM. Different drug classes have been studied, nevertheless there are no curative modalities for mustard lung. Conclusion Complementary studies on one hand regarding pharmacokinetic of drugs and molecular investigations are mandatory to obtain more effective treatments. PMID:23351279

  18. A decremental PEEP trial for determining open-lung PEEP in a rabbit model of acute lung injury.

    PubMed

    Hua, Yi-Ming; Lien, Shao-Hung; Liu, Tao-Yuan; Lee, Chuen-Ming; Yuh, Yeong-Seng

    2008-04-01

    A positive end-expiratory pressure (PEEP) above the lower inflection point (LIP) of the pressure-volume curve has been thought necessary to maintain recruited lung volume in acute lung injury (ALI). We used a strategy to identify the level of open-lung PEEP (OLP) by detecting the maximum tidal compliance during a decremental PEEP trial (DPT). We performed a randomized controlled study to compare the effect of the OLP to PEEP above LIP and zero PEEP on pulmonary mechanics, gas exchange, hemodynamic change, and lung injury in 26 rabbits with ALI. After recruitment maneuver, the lavage-injured rabbits received DPTs to identify the OLP. Animals were randomized to receive volume controlled ventilation with either: (a) PEEP = 0 cm H2O (ZEEP); (b) PEEP = 2 cm H2O above OLP (OLP + 2); or (c) PEEP = 2 cm H2O above LIP (LIP + 2). Peak inspiratory pressure and mean airway pressure were recorded and arterial blood gases were analyzed every 30 min. Mean blood pressure and heart rate were monitored continuously. Lung injury severity was assessed by lung wet/dry weight ratio. Animals in OLP + 2 group had less lung injury as well as relatively better compliance, more stable pH, and less hypercapnia compared to the LIP + 2 and ZEEP groups. We concluded that setting PEEP according to the OLP identified by DPTs is an effective method to attenuate lung injury. This strategy could be used as an indicator for optimal PEEP. The approach is simple and noninvasive and may be of clinical interest. PMID:18293413

  19. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury

    PubMed Central

    Togbe, Dieudonnée; Schnyder-Candrian, Silvia; Schnyder, Bruno; Doz, Emilie; Noulin, Nicolas; Janot, Laure; Secher, Thomas; Gasse, Pamela; Lima, Carla; Coelho, Fernando Rodrigues; Vasseur, Virginie; Erard, François; Ryffel, Bernhard; Couillin, Isabelle; Moser, Rene

    2007-01-01

    Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation. PMID:18039275

  20. Acute- or subacute-onset lung complications in treating patients with rheumatoid arthritis.

    PubMed

    Nakajima, Reiko; Sakai, Fumikazu; Mimura, Toshihide; Tokuda, Hitoshi; Takahashi, Masahiro; Kimura, Fumiko

    2013-08-01

    Rheumatoid arthritis (RA) is a common systemic disease that manifests as inflammatory arthritis of multiple joints and produces a wide variety of intrathoracic lesions, including pleural diseases, diffuse interstitial pneumonia, rheumatoid nodules, and airway disease. Patients treated for RA can have associated lung disease that commonly manifests as diffuse interstitial pneumonia, drug-induced lung injury, and infection. The purpose of this pictorial review is to illustrate the radiographic and clinical features of lung complications of acute or subacute onset in patients treated for RA and to show the computed tomography features of these complications.

  1. [Acute pancreatitis and obstructive jaundice secondary to metastases from lung cancer].

    PubMed

    Belhassen-García, Moncef; Velasco-Tirado, Virginia; Carpio-Pérez, Adela; Soler-Fernández, María Carmen; López-Bernús, Amparo; Pardo-Lledias, Javier; Fuentes-Pardo, Lucía; Iglesias-Gómez, Alicia

    2009-12-01

    Lung cancer is one of the most frequent neoplasms. The symptoms are due to the cancer itself, its extension, and associated paraneoplastic syndromes. Although biliopancreatic metastases are common, biliopancreatic involvement as the initial symptom of lung cancer--whether as pancreatitis or obstructive jaundice--is rare. We describe our clinical experience, reporting two patients with acute pancreatitis and one patient with obstructive jaundice as the clinical presentation of advanced lung cancer. We also provide a brief review that highlights the absence of guidelines in this situation.

  2. Acute lung injury following exposure to nitric acid

    PubMed Central

    Jayalakshmi, T. K.; Shah, Samir; Lobo, Ivona; Uppe, Abhay; Mehta, Ankur

    2009-01-01

    We present a series of three cases of survival following inhalation of nitric acid fumes, which resulted in acute respiratory distress. Inhalation of nitric acid fumes and its decomposition gases such as nitrogen dioxide results in delayed onset of acute respiratory distress syndrome. Intensive respiratory management, ventilatory support, and steroids can help in survival. PMID:20532002

  3. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    PubMed

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury.

  4. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats

    PubMed Central

    Ma, Huan; Huang, Daozheng; Guo, Liheng; Chen, Quanfu; Zhong, Wenzhao

    2016-01-01

    Background Lung ultrasound (LUS) is a clinical imaging technique for diagnosing acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In humans and several large animals, LUS demonstrates similar specificity and sensitivity to computerized tomography (CT) scanning. Current study evaluated the degree of agreement between LUS and CT imaging in characterizing ALI/ARDS in rats. Methods Thirty male Sprague-Dawley rats were imaged by LUS before randomization into three groups to receive intratracheal saline, 3 or 6 mg/kg LPS respectively (n=10). LUS and CT imaging was conducted 2 hours after instillation. Cross table analyses and kappa statistics were used to determine agreement levels between LUS and CT assessments of lung condition. Results Before instillation, rats presented with a largely A-pattern in LUS images, however, a significantly increase B-lines were observed in all groups after instillation and showed dose response to LPS or to saline. One rat treated with 6 mg/kg lipopolysaccharide (LPS) presented with lung consolidation. The agreement between the LUS and the CT in detecting the main characteristics of ALI/ARDS in rat was strong (r=0.758, P<0.01, k=0.737). Conclusions In conclusion, LUS detects ALI/ARDS with high agreement with micro PET/CT scanning in a rat model, suggesting that LUS represents a positive refinement in rat ALI/ARDS disease models. PMID:27499930

  5. Protective Role of Proton-Sensing TDAG8 in Lipopolysaccharide-Induced Acute Lung Injury.

    PubMed

    Tsurumaki, Hiroaki; Mogi, Chihiro; Aoki-Saito, Haruka; Tobo, Masayuki; Kamide, Yosuke; Yatomi, Masakiyo; Sato, Koichi; Dobashi, Kunio; Ishizuka, Tamotsu; Hisada, Takeshi; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-04

    Acute lung injury is characterized by the infiltration of neutrophils into lungs and the subsequent impairment of lung function. Here we explored the role of TDAG8 in lung injury induced by lipopolysaccharide (LPS) administrated intratracheally. In this model, cytokines and chemokines released from resident macrophages are shown to cause neutrophilic inflammation in the lungs. We found that LPS treatment increased TDAG8 expression in the lungs and confirmed its expression in resident macrophages in bronchoalveolar lavage (BAL) fluids. LPS administration remarkably increased neutrophil accumulation without appreciable change in the resident macrophages, which was associated with increased penetration of blood proteins into BAL fluids, interstitial accumulation of inflammatory cells, and damage of the alveolar architecture. The LPS-induced neutrophil accumulation and the associated lung damage were enhanced in TDAG8-deficient mice as compared with those in wild-type mice. LPS also increased several mRNA and protein expressions of inflammatory cytokines and chemokines in the lungs or BAL fluids. Among these inflammatory mediators, mRNA and protein expression of KC (also known as CXCL1), a chemokine of neutrophils, were significantly enhanced by TDAG8 deficiency. We conclude that TDAG8 is a negative regulator for lung neutrophilic inflammation and injury, in part, through the inhibition of chemokine production.

  6. Lung injury in mice and rats acutely exposed to beryllium

    SciTech Connect

    Sendelbach, L.E. Jr.

    1985-01-01

    The effect of lung injury, in rats and mice, exposed to an aerosol of beryllium sulfate (BE) for one hour, through nose-only inhalation, was evaluated by the methods of bronchoalveolar lavage (BAL) and lung cell kinetics. The BAL in rats, sacrificed over a 21 day period following exposure, showed lactate dehydrogenase (LDH) and alkaline phosphatase (Alk Pase) activities as the most sensitive indicators of lung damage. LDH activity peaked at day 8 while Alk Pase activity peaked at day 5, both being 30 times greater than comparable control values. Acid phosphatase activity and albumin levels were also increased, but not to the same extent as LDH and Alk Pase. The BAL of mice showed LDH activity as the most sensitive indicator of lung damage, with a maximum response 3 times greater than controls at day 5. In another series of experiments, animals were treated with three agents capable of inducing fibrosis: beryllium sulfate, bleomycin, and butylated hydroxytoluene (BHT). Cy A completely inhibited the fibrogenic effects of BHT in mice, as measured through total lung hydroxyproline content. Bleomycin-induced fibrosis was significantly reduced by Cy A treatment in rats, but showed no effect in mice. Additionally, the effect of iron salt administration to rats decreased the intravenous LD/sub 50/ dose, and significantly reduced the inhalation toxicity, of beryllium sulfate. The protective mechanism of iron salt administration, through the induction of ferritin synthesis, is postulated.

  7. Molecular Imaging of Folate Receptor β–Positive Macrophages during Acute Lung Inflammation

    PubMed Central

    Zaynagetdinov, Rinat; Yull, Fiona E.; Polosukhin, Vasiliy V.; Gleaves, Linda A.; Tanjore, Harikrishna; Young, Lisa R.; Peterson, Todd E.; Manning, H. Charles; Prince, Lawrence S.; Blackwell, Timothy S.

    2015-01-01

    Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor β (FRβ) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FRβ expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5–conjugated folate as FRβ+ interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-κB activator in airway epithelium. Using CC chemokine receptor 2–deficient mice, we found that FRβ+ macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation. PMID:25375039

  8. MATRILYSIN PARTICIPATES IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PRODUCTS

    EPA Science Inventory

    ROLE OF MATRILYSIN IN THE ACUTE LUNG INJURY INDUCED BY OIL COMBUSTION PARTICLES.

    K L Dreher1, WY Su2 and C L Wilson3. 1US Environmental Protection Agency, Research Triangle Park, NC; 2Duke University, Durham, NC;3Washington University, St. Louis, MO.

    Mechanisms by ...

  9. ROLE OF CELL SIGNALING IN PROTECTION FROM DIESEL AND LPS INDUCED ACUTE LUNG INJURY

    EPA Science Inventory

    We have previously demonstrated in CD-1 mice that pre-administration of N-acetyl cysteine (NAC) or the p38 MAP kinase inhibitor (SB203580) reduces acute lung injury and inflammation following pulmonary exposures to diesel exhaust particles (DEP) or lipopolysaccharide (LPS). Here ...

  10. [Acute respiratory distress syndrome caused by tropical eosinophilic lung disease: a case in Gabon].

    PubMed

    Chani, M; Iken, M; Eljahiri, Y; Nzenze, J R; Mion, G

    2011-04-01

    The purpose of this report is to describe the case of a 28-year-old woman in whom acute respiratory distress syndrome (ARDS) following cholecystectomy led to the discovery of eosinophilic lung disease. Outcome was favorable after oxygenotherapy and medical treatment using ivermectin and corticosteroids. The case shows that hypereosinophilic syndrome can be the underlying cause of ARDS. PMID:21695880

  11. Lung Protective Ventilation (ARDSNet) versus APRV: Ventilatory Management in a Combined Model of Acute Lung and Brain Injury

    PubMed Central

    Davies, Stephen W.; Leonard, Kenji L.; Falls, Randall K.; Mageau, Ronald P.; Efird, Jimmy T.; Hollowell, Joseph P.; Trainor, Wayne E.; Kanaan, Hilal A.; Hickner, Robert C.; Sawyer, Robert G.; Poulin, Nathaniel R.; Waibel, Brett H.; Toschlog, Eric A.

    2014-01-01

    Background Concomitant lung/brain traumatic injury, results in significant morbidity and mortality. Lung protective ventilation (ARDSNet) has become the standard for managing acute respiratory distress syndrome (ARDS); however, the resulting permissive hypercapnea may compound traumatic brain injury (TBI). Airway pressure release ventilation (APRV) offers an alternative strategy for management of this patient population. APRV was hypothesized to retard the progression of acute lung/brain injury to a greater degree than ARDSNet in a swine model. Methods Yorkshire swine were randomized to ARDSNet, APRV, or sham. Ventilatory settings and pulmonary parameters, vitals, blood gases, quantitative histopathology, and cerebral microdialysis were compared between groups using chi-square, Fisher’s exact, Student’s t-test, Wilcoxon rank-sum, and mixed effects repeated measures modeling. Results 22 swine (17 male, 5 female), weighing 25±6.0kg, were randomized to APRV (n=9), ARDSNet (n=12), or sham (n=1). PaO2/FiO2 (P/F) ratio dropped significantly while intracranial pressure increased significantly for all three groups immediately following lung and brain injury. Over time, peak inspiratory pressure, mean airway pressure, and P/F ratio significantly increased, while total respiratory rate significantly decreased within the APRV group compared to the ARDSNet group. Histopathology did not show significant differences between groups in overall brain or lung tissue injury; however, cerebral microdialysis trends suggested increased ischemia within the APRV group compared to ARDSNet over time. Conclusion Previous studies have not evaluated the effects of APRV in this population. While our macroscopic parameters and histopathology did not observe a significant difference between groups, microdialysis data suggest a trend toward increased cerebral ischemia associated with APRV over time. Additional and future studies should focus on extending the time interval for observation to

  12. Hesperetin attenuates ventilator-induced acute lung injury through inhibition of NF-κB-mediated inflammation.

    PubMed

    Ma, Hongzhong; Feng, Xiaoli; Ding, Suchun

    2015-12-15

    Hesperetin, a major bioflavonoid in sweet oranges and lemons, has been reported to have anti-inflammatory properties. However, the effect of hesperetin on ventilator-induced acute lung injury has not been studied. In present study, we investigated the protective effect of hesperetin on ventilator-induced acute lung injury in rats. Rats were orally administered hesperetin (10, 20, or 40mg/kg) two hour before acute lung injury was induced by mechanical ventilation. Rats were then randomly divided into six groups: the lung protective ventilation group (n=20, LV group), injurious ventilation group (n=20, HV group), vehicle-treated injurious ventilation group (n=20, LV+vehicle group), hesperetin (10mg/kg)-treated acute lung injury group (n=20, HV+Hsp (10mg)), hesperetin (20mg/kg)-treated acute lung injury group (n=20, HV+Hsp (20mg)), and hesperetin (40mg/kg)-treated acute lung injury group (n=20, HV+Hsp (40mg)). The lung tissues and bronchoalveolar lavage fluid were isolated for subsequent measurements. Treatment with hesperetin dramatically improved the histology of lung tissue, and reduced the wet/dry ratio, myeloperoxidase activity, protein concentration, and production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and MIP-2 in the bronchoalveolar lavage fluid of rats with ventilator-induced acute lung injury. Additionally, our study indicated that this protective effect of hesperetin results from its ability to increase the expression of peroxisome proliferator-activated receptor (PPAR)-γ and inhibit the activation of the nuclear factor (NF)-κB pathway. These results suggest that hesperetin may be a potential novel therapeutic candidate for protection against ventilator-induced acute lung injury.

  13. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS.

    PubMed

    Sepehr, Reyhaneh; Audi, Said H; Maleki, Sepideh; Staniszewski, Kevin; Eis, Annie L; Konduri, Girija G; Ranji, Mahsa

    2013-07-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure.

  14. OPTICAL IMAGING OF LIPOPOLYSACCHARIDE-INDUCED OXIDATIVE STRESS IN ACUTE LUNG INJURY FROM HYPEROXIA AND SEPSIS

    PubMed Central

    SEPEHR, REYHANEH; AUDI, SAID H.; MALEKI, SEPIDEH; STANISZEWSKI, KEVIN; EIS, ANNIE L.; KONDURI, GIRIJA G.; RANJI, MAHSA

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of many acute and chronic pulmonary disorders such as acute lung injury (ALI) in adults and bronchopulmonary dysplasia (BPD) in premature infants. Bacterial infection and oxygen toxicity, which result in pulmonary vascular endothelial injury, contribute to impaired vascular growth and alveolar simplification seen in the lungs of premature infants with BPD. Hyperoxia induces ALI, reduces cell proliferation, causes DNA damage and promotes cell death by causing mitochondrial dysfunction. The objective of this study was to use an optical imaging technique to evaluate the variations in fluorescence intensities of the auto-fluorescent mitochondrial metabolic coenzymes, NADH and FAD in four different groups of rats. The ratio of these fluorescence signals (NADH/FAD), referred to as NADH redox ratio (NADH RR) has been used as an indicator of tissue metabolism in injuries. Here, we investigated whether the changes in metabolic state can be used as a marker of oxidative stress caused by hyperoxia and bacterial lipopolysaccharide (LPS) exposure in neonatal rat lungs. We examined the tissue redox states of lungs from four groups of rat pups: normoxic (21% O2) pups, hyperoxic (90% O2) pups, pups treated with LPS (normoxic + LPS), and pups treated with LPS and hyperoxia (hyperoxic + LPS). Our results show that hyperoxia oxidized the respiratory chain as reflected by a ~31% decrease in lung tissue NADH RR as compared to that for normoxic lungs. LPS treatment alone or with hyperoxia had no significant effect on lung tissue NADH RR as compared to that for normoxic or hyperoxic lungs, respectively. Thus, NADH RR serves as a quantitative marker of oxidative stress level in lung injury caused by two clinically important conditions: hyperoxia and LPS exposure. PMID:24672581

  15. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  16. Clinical course of acute chemical lung injury caused by 3-chloropentafluoropene.

    PubMed

    Morita, Satomu; Takimoto, Takayuki; Kawahara, Kunimitsu; Nishi, Katsuji; lino, Morio

    2013-01-01

    Perfluoroallyl chloride (PFAC), a fluorine-containing compound, has very severe toxicity, but this toxicity is not well characterised. We report a fatal case of acute chemical lung injury caused by the inhalation of PFAC. A 39-year-old man, working at a chemical factory, inhaled PFAC gas and died 16 days later of acute lung injury with severe pneumothorax. We present his clinical course together with thoracic CT findings, autopsy and analysis of PFAC in blood and urine samples with gas chromatograph-mass spectrometry. Previously, a fatal case of PFAC was reported in 1981 but PFAC was not identified in any of the patient's samples. In our patient, we identified PFAC in both blood and urine samples. Our toxicological analysis may be used as a reference to detect PFAC toxicity in the future. Our study should be helpful for diagnosing lung injury induced by a highly toxic gas, such as PFAC. PMID:24311414

  17. Clinical course of acute chemical lung injury caused by 3-chloropentafluoropene.

    PubMed

    Morita, Satomu; Takimoto, Takayuki; Kawahara, Kunimitsu; Nishi, Katsuji; lino, Morio

    2013-01-01

    Perfluoroallyl chloride (PFAC), a fluorine-containing compound, has very severe toxicity, but this toxicity is not well characterised. We report a fatal case of acute chemical lung injury caused by the inhalation of PFAC. A 39-year-old man, working at a chemical factory, inhaled PFAC gas and died 16 days later of acute lung injury with severe pneumothorax. We present his clinical course together with thoracic CT findings, autopsy and analysis of PFAC in blood and urine samples with gas chromatograph-mass spectrometry. Previously, a fatal case of PFAC was reported in 1981 but PFAC was not identified in any of the patient's samples. In our patient, we identified PFAC in both blood and urine samples. Our toxicological analysis may be used as a reference to detect PFAC toxicity in the future. Our study should be helpful for diagnosing lung injury induced by a highly toxic gas, such as PFAC.

  18. The ultrastructure of rat lung following acute primary blast injury.

    PubMed

    Brown, R F; Cooper, G J; Maynard, R L

    1993-04-01

    While a number of workers have described the effects of blast waves upon the lung at both the macroscopic and light microscopic level, studies involving the use of the electron microscope have not been reported. In the experiments reported here the ultrastructural changes seen in lungs from rats exposed to a blast wave impacting on the right side of the chest are described. Considerable damage to the right lower lobe was observed which took the form of tearing of the inter-alveolar septa with capillary rupture and intra-alveolar haemorrhage. Changes to the alveolar epithelium and type II pneumocytes were also noted. Lesions were also identified in the left lung; these included intra-alveolar oedema with a minimal amount of interstitial oedema together with increased pinocytosis and isolated rupture of the alveolar epithelium. 'Ballooning' of the endothelium into the lumen of the capillary was also observed. There was an indication that lesions noted in the left lung at the electron microscopic level may be progressive in the first 24 hours following injury. PMID:8499315

  19. Gallbladder Metastasis of Non-small Cell Lung Cancer Presenting as Acute Cholecystitis.

    PubMed

    Jeong, Yu-Sook; Han, Hye-Suk; Lim, Sung-Nam; Kim, Mi-Jin; Han, Joung-Ho; Kang, Min-Ho; Ryu, Dong-Hee; Lee, Ok-Jun; Lee, Ki-Hyeong; Kim, Seung-Taik

    2012-09-01

    Although non-small cell lung cancer (NSCLC) can metastasize to almost any organ, metastasis to the gallbladder with significant clinical manifestation is relatively rare. Here, we report a case of gallbladder metastasis of NSCLC presenting as acute cholecystitis. A 79-year-old man presented with pain in the right upper quadrant and fever. A computed tomography (CT) scan of the chest and abdomen showed a cavitary mass in the right lower lobe of the lung and irregular wall thickening of the gallbladder. Open cholecystectomy and needle biopsy of the lung mass were performed. Histological examination of the gallbladder revealed a moderately-differentiated squamous cell carcinoma displaying the same morphology as the lung mass assessed by needle biopsy. Subsequent immunohistochemical examination of the gallbladder and lung tissue showed that the tumor cells were positive for P63 but negative for cytokeratin 7, cytokeratin 20 and thyroid transcription factor-1. A second primary tumor of the gallbladder was excluded by immunohistochemical methods, and the final pathological diagnosis was gallbladder metastasis of NSCLC. Although the incidence is extremely rare, acute cholecystitis can occur in association with lung cancer metastasis to the gallbladder. PMID:23358590

  20. [Serrapeptase-induced lung injury manifesting as acute eosiniphilic pneumonia].

    PubMed

    Sasaki, S; Kawanami, R; Motizuki, Y; Nakahara, Y; Kawamura, T; Tanaka, A; Watanabe, S

    2000-07-01

    An 84-year-old man was referred to our hospital because of fever, cough, and hemoptysis. The patient had acute respiratory failure (PaO2 < 40 mmHg) on admission, with diffuse interstitial infiltration and bilateral pleural effusion. The bronchoalveolar lavage fluid was bloody, and contained a high percentage of eosinophils (32%). A diagnosis of acute eosinophilic pneumonia was established, and the patient made a rapid recovery after corticosteroids were administered. When the DLST (drug lymphocyte stimulation test) was performed after the corticosteroid therapy was stopped, it was positive for serrapeptase, which had been prescribed for chronic cystitis for 3 months before the onset of the pneumonia. This was a case of drug (serrapeptase)-induced pneumonitis manifesting as acute eosinophilic pneumonia.

  1. Acute ischemic optic neuropathy with extended prone position ventilation in a lung transplant recipient.

    PubMed

    Panchabhai, Tanmay S; Bandyopadhyay, Debabrata; Kapoor, Aanchal; Akindipe, Olufemi; Lane, Charles; Krishnan, Sudhir

    2016-01-01

    Prone position ventilation (PPV) improves mortality in severe acute respiratory distress syndrome (ARDS), but outcomes following its use in lung transplant recipients are not known. We report the case of a 42-year-old Caucasian man who presented with severe ARDS from Bordetella pertussis, 5 years after bilateral sequential lung transplant for cystic fibrosis. He was managed with PPV for 22 days and had a prolonged ICU stay complicated by hypoxic ischemic optic neuropathy leading to blindness. Since his discharge from the ICU 6 months ago, his FEV1 has recovered to 47% predicted compared to his pre-ICU peak FEV1 of 85% predicted, suggesting recovery of lung function. This is the first report of optic nerve damage and vision loss in patients undergoing PPV. Our report also suggests that, in appropriately selected lung transplant recipients, severe hypoxemia could potentially be managed with prone ventilation. PMID:27051622

  2. Effects on rat lung immunity by acute lung exposure to benzo(a)pyrene

    SciTech Connect

    Schnizlein, C.T.; Bice, D.E.; Mitchell, C.E.; Hahn, F.F.

    1982-07-01

    This study describes the effects of intratracheal instillation of benzo(a)pyrene (BaP) on immunological responses in the lung-associated lymph nodes, cervical lymph nodes, and spleen after deposition of 10/sup 8/ sheep red blood cells (SRBC) in the lung or peritoneal cavity of rats. An increased number of anti-SRBC antibody-forming cells was observed in the lung-associated lymph nodes when rats were immunized simultaneously with BaP instillation. A suppression in the number of anti-SRBC antibody-forming cells occurred when SRBC were given intratracheally 4 or 7 days after BaP. The effects of the BaP appeared to be on the function of the cells in the lung-associated lymph nodes rather than due to changes in the exposed lung. BaP-induced changes in antigen handling or in regulatory populations of immune cells in the lung-associated lymph nodes may be responsible for the immune alterations observed.

  3. Effects on rat lung immunity by acute lung exposure to benzo(a)pyrene

    SciTech Connect

    Schnizlein, C.T.; Bice, D.E.; Mitchell, C.E.; Hahn, F.F.

    1982-07-01

    This study describes the effect of intratracheal instillation of benzo(a)pyrene (BaP) on immunological responses in the lung-associated lymph nodes, cervical lymph nodes, and spleen after deposition of 10/sup 8/ sheep red blood cells (SRCB) in the lung or peritoneal cavity of rats. An increased number of anti-SRBC antibody-forming cells was observed in the lung-assoicated lymph nodes when rats were immunized simultaneously with BaP instillation. A suppression in the number of anti-SRBC antibody-forming cells occurred when SRBC were given intratracheally 4 or 7 days after BaP. The effects of the BaP appeared to be on the function of the cells in the lung-associated lymph nodes rather than due to changes in the exposed lung. BaP-induced changes in antigen handling or in regulatory populations of immune cells in the lung-associated lymph nodes may be responsible for the immune alterations observed.

  4. Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation

    PubMed Central

    Kanemi, O; Zhang, X; Sakamoto, Y; Ebina, M; Nagatomi, R

    2005-01-01

    There are lines of evidence that natural killer (NK) cells are sensitive to physical and psychological stress. Alterations in the immune system including NK cells are known to differ among tissues and organs. The effect of stress on the lung immune system, however, has not been well documented in spite of the fact that the lungs always confront viral or bacterial attacks as well as tumour cell metastasis. In this study, we intended to investigate the effect of restraint stress on lung lymphocytes including NK cells. C57BL/6 mice were exposed to 2 h restraint stress. The concentration of plasma epinephrine significantly rose immediately after the release from restraint as compared to home-cage control mice. Flow cytometric analysis revealed that the numbers of most lymphocyte subsets including NK cells were decreased in the lungs and blood but not in the spleen, immediately after restraint stress. Immunohistochemical examination revealed that the number of NK cells was decreased in the intraparenchymal region of the lungs, while the number of alveolar macrophages did not change. The decrease in the number of NK cells in the lungs and blood was reversed by the administration of propranolol, a nonselective beta adrenergic antagonist. Taken together, our findings suggest that acute stress reduces the number of intraparenchymal lung NK cells via activation of beta adrenergic receptors. PMID:15606610

  5. A model of hemorrhagic shock and acute lung injury in Landrace-Large White Swine.

    PubMed

    Xanthos, Theodoros T; Balkamou, Xanthippi A; Stroumpoulis, Kostantinos I; Pantazopoulos, Ioannis N; Rokas, Georgios I; Agrogiannis, Georgios D; Troupis, Georgios T; Demestiha, Theano D; Skandalakis, Panagiotis N

    2011-04-01

    Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace-Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases-stabilization, hemorrhage, maintenance, resuscitation, and observation-after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace-Large White swine may be useful for future study of hemorrhagic shock and acute lung injury.

  6. A Model of Hemorrhagic Shock and Acute Lung Injury in Landrace–Large White Swine

    PubMed Central

    Xanthos, Theodoros T; Balkamou, Xanthippi A; Stroumpoulis, Kostantinos I; Pantazopoulos, Ioannis N; Rokas, Georgios I; Agrogiannis, Georgios D; Troupis, Georgios T; Demestiha, Theano D; Skandalakis, Panagiotis N

    2011-01-01

    Traumatic injury is a leading cause of death worldwide for people between 5 and 44 y of age, and it accounts for 10% of all deaths. The incidence of acute lung injury, a life-threatening complication in severely injured trauma patients remains between 30% and 50%. This study describes an experimental protocol of volume-controlled hemorrhage in Landrace–Large White swine. The experimental approach simulated the clinical situation associated with hemorrhagic shock in the trauma patient while providing controlled conditions to maximize reproducibility. The duration of the protocol was 8 h and was divided into 5 distinct phases—stabilization, hemorrhage, maintenance, resuscitation, and observation—after which the swine were euthanized. Lung tissue samples were analyzed histologically. All swine survived the protocol. The hemodynamic responses accurately reflected those seen in humans, and the development of acute lung injury was consistent among all swine. This experimental protocol of hemorrhagic shock and fluid resuscitation in Landrace–Large White swine may be useful for future study of hemorrhagic shock and acute lung injury. PMID:21535927

  7. Activation of PPARα by Wy-14643 ameliorates systemic lipopolysaccharide-induced acute lung injury

    SciTech Connect

    Yoo, Seong Ho; Abdelmegeed, Mohamed A.; Song, Byoung-Joon

    2013-07-05

    Highlights: •Activation of PPARα attenuated LPS-mediated acute lung injury. •Pretreatment with Wy-14643 decreased the levels of IFN-γ and IL-6 in ALI. •Nitrosative stress and lipid peroxidation were downregulated by PPARα activation. •PPARα agonists may be potential therapeutic targets for acute lung injury. -- Abstract: Acute lung injury (ALI) is a major cause of mortality and morbidity worldwide. The activation of peroxisome proliferator-activated receptor-α (PPARα) by its ligands, which include Wy-14643, has been implicated as a potential anti-inflammatory therapy. To address the beneficial efficacy of Wy-14643 for ALI along with systemic inflammation, the in vivo role of PPARα activation was investigated in a mouse model of lipopolysaccharide (LPS)-induced ALI. Using age-matched Ppara-null and wild-type mice, we demonstrate that the activation of PPARα by Wy-14643 attenuated LPS-mediated ALI. This was evidenced histologically by the significant alleviation of inflammatory manifestations and apoptosis observed in the lung tissues of wild-type mice, but not in the corresponding Ppara-null mice. This protective effect probably resulted from the inhibition of LPS-induced increases in pro-inflammatory cytokines and nitroxidative stress levels. These results suggest that the pharmacological activation of PPARα might have a therapeutic effect on LPS-induced ALI.

  8. Viola yedoensis liposoluble fraction ameliorates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Li, Wen; Xie, Jun-Yun; Li, Hong; Zhang, Yun-Yi; Cao, Jie; Cheng, Zhi-Hong; Chen, Dao-Feng

    2012-01-01

    Viola yedoensis is a component of traditional Chinese herb medicine for inflammatory diseases. Chemical constituents of V. yedoensis have been shown to possess antibacterial, anti-HIV, and anticoagulant effects in experimental research; however, their anti-inflammatory properties remain to be demonstrated. In this study, a mouse model of lipopolysaccharide (LPS)-induced acute lung injury was used to investigate the effect of petroleum ether fraction of V. yedoensis (PEVY) on inflammation in vivo. After being shown to have anti-complementary activity in vitro, PEVY was orally administered to the mice at doses of 2, 4, and 8 mg/kg. Treatment with PEVY significantly decreased the wet-to-dry weight ratio of the lung, total cells, red blood cells, protein concentration, and myeloperoxidase activity in bronchoalveolar lavage fluid. PEVY markedly attenuated lung injury with improved lung morphology and reduced complement deposition. In addition, PEVY suppressed the expression of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. Taken together, PEVY protects the lung from acute injury, potentially via inhibiting the activation of the complement system and excessive production of proinflammatory mediators.

  9. Genomic and functional analysis of the host response to acute simian varicella infection in the lung

    PubMed Central

    Arnold, Nicole; Girke, Thomas; Sureshchandra, Suhas; Nguyen, Christina; Rais, Maham; Messaoudi, Ilhem

    2016-01-01

    Varicella Zoster Virus (VZV) is the causative agent of varicella and herpes zoster. Although it is well established that VZV is transmitted via the respiratory route, the host-pathogen interactions during acute VZV infection in the lungs remain poorly understood due to limited access to clinical samples. To address these gaps in our knowledge, we leveraged a nonhuman primate model of VZV infection where rhesus macaques are intrabronchially challenged with the closely related Simian Varicella Virus (SVV). Acute infection is characterized by immune infiltration of the lung airways, a significant up-regulation of genes involved in antiviral-immunity, and a down-regulation of genes involved in lung development. This is followed by a decrease in viral loads and increased expression of genes associated with cell cycle and tissue repair. These data provide the first characterization of the host response required to control varicella virus replication in the lung and provide insight into mechanisms by which VZV infection can cause lung injury in an immune competent host. PMID:27677639

  10. Apios americana Medik Extract Alleviates Lung Inflammation in Influenza Virus H1N1- and Endotoxin-Induced Acute Lung Injury.

    PubMed

    Sohn, Sung-Hwa; Lee, Sang-Yeon; Cui, Jun; Jang, Ho Hee; Kang, Tae-Hoon; Kim, Jong-Keun; Kim, In-Kyoung; Lee, Deuk-Ki; Choi, Seulgi; Yoon, Il-Sub; Chung, Ji-Woo; Nam, Jae-Hwan

    2015-12-28

    Apios americana Medik (hereinafter Apios) has been reported to treat diseases, including cancer, hypertension, obesity, and diabetes. The therapeutic effect of Apios is likely to be associated with its anti-inflammatory activity. This study was conducted to evaluate the protective effects of Apios in animal models of acute lung injury induced by lipopolysaccharide (LPS) or pandemic H1N1 2009 influenza A virus (H1N1). Mice were exposed to LPS or H1N1 for 2-4 days to induce acute lung injury. The treatment groups were administered Apios extracts via oral injection for 8 weeks before LPS treatment or H1N1 infection. To investigate the effects of Apios, we assessed the mice for in vivo effects of Apios on immune cell infiltration and the level of pro-inflammatory cytokines in the bronchoalveolar lavage (BAL) fluid, and histopathological changes in the lung. After induction of acute lung injury, the numbers of neutrophils and total cells were lower in the Apios-treated groups than in the non-Apios-treated LPS and H1N1 groups. The Apios groups tended to have lower levels of tumor necrosis factor-a and interleukin-6 in BAL fluid. In addition, the histopathological changes in the lungs were markedly reduced in the Apios-treated groups. These data suggest that Apios treatment reduces LPS- and H1N1-induced lung inflammation. These protective effects of Apios suggest that it may have therapeutic potential in acute lung injury.

  11. Growth arrest-specific protein 6 attenuates neutrophil migration and acute lung injury in sepsis.

    PubMed

    Giangola, Matthew D; Yang, Weng-Lang; Rajayer, Salil R; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2013-12-01

    Sepsis is an acute inflammatory condition that can result in multiple organ failure and acute lung injury. Growth arrest-specific protein 6 (Gas6) is a broad regulator of the innate immune response involved with the nuclear factor κB signaling pathway. We hypothesized that Gas6 could have a protective role in attenuating the severity of acute lung injury and sepsis. Male mice were subjected to sepsis by cecal ligation and puncture (CLP) after which recombinant murine Gas6 (rmGas6; 5 μg/mouse) or normal saline (vehicle) was administered intravenously. Blood and lung tissues were collected at 20 h after CLP for various measurements. Treatment with rmGas6 significantly reduced serum levels of the injury markers aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase, as well as proinflammatory cytokines interleukin 6 (IL-6) and IL-17, compared with the vehicle group (P < 0.05). The parenchyma of the lungs damaged by CLP was attenuated by rmGas6 treatment. Lung mRNA levels of tumor necrosis factor α, IL-1β, IL-6, IL-17, and macrophage inflammatory protein 2 (MIP-2) were decreased by 60%, 86%, 82%, 93%, and 82%, respectively, with rmGas6 treatment as determined by real-time reverse transcriptase-polymerase chain reaction (P < 0.05). The degradation of IκB-α induced by CLP in the lungs was inhibited by rmGas6 treatment. The number of neutrophils and myeloperoxidase activity in the lungs were significantly reduced in the rmGas6 group. Moreover, rmGas6 reduced the in vitro migration of differentiated human promyelocytic HL60 cells by 64%. Finally, the 10-day survival rate of mice subjected to CLP was increased from 31% in the vehicle group to 67% in the rmGas6 group (P < 0.05). Thus, Gas6 has potential to be developed as a novel therapeutic agent to treat patients with sepsis and acute lung injury.

  12. Cytokine levels in pleural fluid as markers of acute rejection after lung transplantation*

    PubMed Central

    de Camargo, Priscila Cilene León Bueno; Afonso, José Eduardo; Samano, Marcos Naoyuki; Acencio, Milena Marques Pagliarelli; Antonangelo, Leila; Teixeira, Ricardo Henrique de Oliveira Braga

    2014-01-01

    Our objective was to determine the levels of lactate dehydrogenase, IL-6, IL-8, and VEGF, as well as the total and differential cell counts, in the pleural fluid of lung transplant recipients, correlating those levels with the occurrence and severity of rejection. We analyzed pleural fluid samples collected from 18 patients at various time points (up to postoperative day 4). The levels of IL-6, IL-8, and VEGF tended to elevate in parallel with increases in the severity of rejection. Our results suggest that these levels are markers of acute graft rejection in lung transplant recipients. PMID:25210966

  13. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.

  14. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury. PMID:27216047

  15. Ulinastatin reduces pathogenesis of phosgene-induced acute lung injury in rats.

    PubMed

    Shen, Jie; Gan, Zhengyi; Zhao, Jie; Zhang, Liming; Xu, Guoxiong

    2014-10-01

    Phosgene (CG) is an industrial chemical used to make plastics, rubbers, dyestuff, and pesticides. Although the inhalation of CG is relatively uncommon, its accidental exposure can lead to acute lung injury (ALI). Ulinastatin, a urinary trypsin inhibitor, has been emerged to use for the treatment of acute inflammatory state of a number of organs including the lung. In this study, we examined the pathogenic changes in the lungs after the inhalation of CG gas and also examined the effect of ulinastatin treatment in reversing these changes in rats. We found that the rats exposed to CG gas at a dose of 5.0 g/m(3) for 5 min led to ALI after 6 h. The signs of lung injury include pulmonary edema, hemorrhage, and cellular infiltration in pulmonary alveoli. In addition, interleukin-15 (IL-15) and intercellular adhesion molecule-1 (ICAM-1) were significantly increased in CG-inhaled animals. Ulinastatin administration at 1 h postexposure significantly reduced the intensity of all the pathological changes in the lungs of these CG-exposed animals. Ulinastatin at a dose of 400 U/g was shown to decrease the total number of cells in bronchoalveolar lavage fluid and the levels of IL-15 and ICAM-1 in the serum. We also found that the structure of the lung was protected by ulinastatin treatment. Thus, our data suggest that ulinastatin can be used as an effective drug for the treatment of CG-induced ALI. The serum levels of IL-15 and ICAM-1 can be used as the markers of lung injury after exposure to CG and may also serve as useful therapeutic targets at an early stage. The effects of long-term treatment of ulinastatin and the mechanisms by which ulinastatin decreases the infiltration of blood cells and reduces cytokines need further investigation.

  16. Isoflurane ameliorates acute lung injury by preserving epithelial tight junction integrity

    PubMed Central

    Englert, Joshua A.; Macias, Alvaro A.; Amador-Munoz, Diana; Vera, Miguel Pinilla; Isabelle, Colleen; Guan, Jiazhen; Magaoay, Brady; Velandia, Margarita Suarez; Coronata, Anna; Lee, Awapuhi; Fredenburgh, Laura E.; Culley, Deborah J.; Crosby, Gregory; Baron, Rebecca M.

    2015-01-01

    Background Isoflurane may be protective in pre-clinical models of lung injury but its use in patients with lung injury remains controversial and the mechanism of its protective effects remains unclear. We hypothesized that this protection is mediated at the level of alveolar tight junctions and investigated the possibility in a two-hit model of lung injury that mirrors human acute respiratory distress syndrome. Methods Wild-type mice were treated with isoflurane one hour after exposure to nebulized endotoxin (n=8) or saline control (n=9) then allowed to recover for 24 hrs prior to mechanical ventilation (MV, tidal volume 15 mL/kg, 2 hrs) producing ventilator-induced lung injury. Mouse lung epithelial cells were similarly treated with isoflurane one hour after exposure to lipopolysaccharide. Cells were cyclically stretched the following day to mirror the MV protocol used in vivo. Results Mice treated with isoflurane following exposure to inhaled endotoxin and prior to MV exhibited significantly less physiologic lung dysfunction. These effects appeared to be mediated by decreased vascular leak, but not altered inflammatory indices. Mouse lung epithelial cells treated with lipopolysaccharide and cyclic stretch and lungs harvested from mice following treatment with lipopolysaccharide and MV had decreased levels of a key tight junction protein (i.e. zona occludens 1) that was rescued by isoflurane treatment. Conclusions Isoflurane rescued lung injury induced by a two-hit model of endotoxin exposure followed by MV by maintaining the integrity of the alveolar-capillary barrier possibly by modulating the expression of a key tight junction protein. PMID:26068207

  17. Crosstalk between ACE2 and PLGF regulates vascular permeability during acute lung injury

    PubMed Central

    Wang, Lantao; Li, Yong; Qin, Hao; Xing, Dong; Su, Jie; Hu, Zhenjie

    2016-01-01

    Angiotensin converting enzyme 2 (ACE2) treatment suppresses the severity of acute lung injury (ALI), through antagonizing hydrolyzing angiotensin II (AngII) and the ALI-induced apoptosis of pulmonary endothelial cells. Nevertheless, the effects of ACE2 on vessel permeability and its relationship with placental growth factor (PLGF) remain ill-defined. In the current study, we examined the relationship between ACE2 and PLGF in ALI model in mice. We used a previously published bleomycin method to induce ALI in mice, and treated the mice with ACE2. We analyzed the levels of PLGF in these mice. The mouse lung vessel permeability was determined by a fluorescence pharmacokinetic assay following i.v. injection of 62.5 µg/kg Visudyne. PLGF pump or soluble Flt-1 (sFlt-1) pump was given to augment or suppress PLGF effects, respectively. The long-term effects on lung function were determined by measurement of lung resistance using methacholine. We found that ACE2 treatment did not alter PLGF levels in lung, but antagonized the effects of PLGF on increases of lung vessel permeability. Ectogenic PLGF abolished the antagonizing effects of ACE2 on the vessel permeability against PLGF. On the other hand, suppression of PLGF signaling mimicked the effects of ACE2 on the vessel permeability against PLGF. The suppression of vessel permeability resulted in improvement of lung function after ALI. Thus, ACE2 may antagonize the PLGF-mediated increases in lung vessel permeability during ALI, resulting in improvement of lung function after ALI. PMID:27158411

  18. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    SciTech Connect

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  19. Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome - where do we go from here?

    PubMed Central

    2012-01-01

    Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. Surfactant dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous surfactant replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of surfactant biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: surfactant inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of surfactant material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal natural surfactant material with adequate surfactant proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published surfactant replacement clinical trials. Recent advances in stable isotope labelling of surfactant phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous surfactant

  20. Niacinamide abrogates the organ dysfunction and acute lung injury caused by endotoxin.

    PubMed

    Kao, Shang-Jyh; Liu, Demeral David; Su, Chain-Fa; Chen, Hsing I

    2007-09-01

    Poly (ADP-ribose) synthabse (PARS) or polymerase (PARP) is a cytotoxic enzyme causing cellular damage. Niacinamide inhibits PARS or PARP. The present experiment tests the effects of niacinamide (NCA) on organ dysfunction and acute lung injury (ALI) following lipopolysaccharide (LPS). LPS was administered to anesthetized rats and to isolated rat lungs. In anesthetized rats, LPS caused systemic hypotension and increased biochemical factors, nitrate/nitrite (NOx), methyl guanidine (MG), tumor necrosis factoralpha (TNFalpha), and interleukin-1beta (IL-1beta). In isolated lungs, LPS increased lung weight (LW) to body weight ratio, LW gain, protein and dye tracer leakage, and capillary permeability. The insult also increased NOx, MG, TNFalpha, and IL-1beta in lung perfusate, while decreased adenosine triphosphate (ATP) content with an increase in PARP activity in lung tissue. Pathological examination revealed pulmonary edema with inflammatory cell infiltration. These changes were abrogated by posttreatment (30 min after LPS) with NCA. Following LPS, the inducible NO synthase (iNOS) mRNA expression was increased. NCA reduced the iNOS expression. Niacinamide exerts protective effects on the organ dysfunction and ALI caused by endotoxin. The mechanisms may be mediated through the inhibition on the PARP activity, iNOS expression and the subsequent suppression of NO, free radicals, and proinflammatory cytokines with restoration of ATP.

  1. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome.

    PubMed

    Dickson, Robert P; Singer, Benjamin H; Newstead, Michael W; Falkowski, Nicole R; Erb-Downward, John R; Standiford, Theodore J; Huffnagle, Gary B

    2016-01-01

    Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases. PMID:27670109

  2. Therapeutic Effect of the Tuber of Alisma orientale on Lipopolysaccharide-Induced Acute Lung Injury

    PubMed Central

    Kwun, Min Jung; Choi, Jun-Yong; Ahn, Kyung-Seop; Oh, Sei-Ryang; Lee, Yong Gyu; Christman, John W.; Sadikot, Ruxana T.

    2013-01-01

    Although Alisma orientale, an ethnic herb, has been prescribed for treating various diseases in Asian traditional medicine, experimental evidence to support its therapeutic effects is lacking. Here, we sought to determine whether A. orientale has a therapeutic effect on acute lung injury (ALI). Ethanol extract of the tuber of A. orientale (EEAO) was prepared and fingerprinted by HPLC for its constituents. Mice received an intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) for the induction of ALI. At 2 h after LPS treatment, mice received an intratracheal (i.t.) spraying of various amounts of EEAO to the lung. Bioluminescence imaging of transgenic NF-κB/luciferase reporter mice shows that i.t. EEAO posttreatment suppressed lung inflammation. In similar experiments with C57BL/6 mice, EEAO posttreatment significantly improved lung inflammation, as assessed by H&E staining of lung sections, counting of neutrophils in bronchoalveolar lavage fluid, and semiquantitative RT-PCR analyses of proinflammatory cytokines and Nrf2-dependent genes in the inflamed lungs. Furthermore, EEAO posttreatment enhanced the survival of mice that received a lethal dose of LPS. Together, our results provide evidence that A. orientale has a therapeutic effect on ALI induced by sepsis. PMID:23983806

  3. XB130 deficiency enhances lipopolysaccharide-induced septic response and acute lung injury

    PubMed Central

    Toba, Hiroaki; Tomankova, Tereza; Wang, Yingchun; Bai, Xiaohui; Cho, Hae-Ra; Guan, Zhehong; Adeyi, Oyedele A.; Tian, Feng; Keshavjee, Shaf; Liu, Mingyao

    2016-01-01

    XB130 is a novel oncoprotein that promotes cancer cell survival, proliferation and migration. Its physiological function in vivo is largely unknown. The objective of this study was to determine the role of XB130 in lipopolysaccharide (LPS)-induced septic responses and acute lung injury. LPS was intraperitoneally administrated to Xb130 knockout (KO) and wild type (WT) mice. There was a significant weight loss in KO mice at Day 2 and significantly higher disease scores during the 7 days of observation. The levels of tumor necrosis factor-alpha, monocyte chemoattractant protein-1, interleukin-6 and interleukin-10 in the serum were significantly higher in KO mice at Day 2. In KO mice there were a significantly higher lung injury score, higher wet/dry lung weight ratio, more apoptotic cells and less proliferative cells in the lung. Macrophage infiltration was significantly elevated in the lung of KO mice. There was significantly increased number of p-GSK-3β positive cells in KO mice, which were mainly neutrophils and macrophages. XB130 is expressed in alveolar type I and type II cells in the lung. The expression in these cells was significantly reduced after LPS challenge. XB130 deficiency delayed the recovery from systemic septic responses, and the presence of XB130 in the alveolar epithelial cells may provide protective mechanisms by reducing cell death and promoting cell proliferation, and reducing pulmonary permeability. PMID:27029000

  4. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury.

    PubMed

    Yasui, Hideki; Donahue, Deborah L; Walsh, Mark; Castellino, Francis J; Ploplis, Victoria A

    2016-07-01

    Acute lung injury (ALI) and systemic coagulopathy are serious complications of traumatic brain injury (TBI) that frequently lead to poor clinical outcomes. Although the release of tissue factor (TF), a potent initiator of the extrinsic pathway of coagulation, from the injured brain is thought to play a key role in coagulopathy after TBI, its function in ALI following TBI remains unclear. In this study, we investigated whether the systemic appearance of TF correlated with the ensuing coagulopathy that follows TBI in ALI using an anesthetized rat blunt trauma TBI model. Blood and lung samples were obtained after TBI. Compared with controls, pulmonary edema and increased pulmonary permeability were observed as early as 5 min after TBI without evidence of norepinephrine involvement. Systemic TF increased at 5 min and then diminished 60 min after TBI. Lung injury and alveolar hemorrhaging were also observed as early as 5 min after TBI. A biphasic elevation of TF was observed in the lungs after TBI, and TF-positive microparticles (MPs) were detected in the alveolar spaces. Fibrin(ogen) deposition was also observed in the lungs within 60 min after TBI. Additionally, preadministration of a direct thrombin inhibitor, Refludan, attenuated lung injuries, thus implicating thrombin as a direct participant in ALI after TBI. The results from this study demonstrated that enhanced systemic TF may be an initiator of coagulation activation that contributes to ALI after TBI. PMID:27190065

  5. Natural Antioxidant Betanin Protects Rats from Paraquat-Induced Acute Lung Injury Interstitial Pneumonia

    PubMed Central

    Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further. PMID:25861636

  6. Natural antioxidant betanin protects rats from paraquat-induced acute lung injury interstitial pneumonia.

    PubMed

    Han, Junyan; Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further.

  7. CAF1-knockout mice are more susceptive to lipopolysaccharide-induced acute lung injury

    PubMed Central

    Shi, Jia-Xin; Li, Jia-Shu; Hu, Rong; Li, Xiao-Min; Wang, Hong

    2016-01-01

    The carbon catabolite repressor protein 4 (CCR4)–negative on TATA (NOT) complex includes multiple subunits and is conserved in the eukaryotic cells. The CCR4–NOT complex can regulate gene expression at different levels. Two subunits of the CCR4–NOT complex, CCR4 and CCR4-associated factor 1 (CAF1), possess deadenylase activity. In yeast, the deadenylase activity is mainly provided by the CCR4 subunit; however, the deadenylase activity is provided by both CCR4 and CAF1 in other eukaryotes. A previous study reported that CAF1 but not CCR4 is required for the decay of a reporter mRNA with AU-rich elements. Our previous study showed that CAF1 is involved in the regulation of intercellular adhesion molecule-1 (ICAM-1) and interleukin-8 (IL-8) expression. Both ICAM-1 and IL-8 play crucial roles in acute lung injury. In the present study, we examined the effects of CAF1 deficiency on IL-8 and ICAM-1 expression and acute lung injury in mice. Here we showed that there were no differences between the wild-type and CAF1-knockout mice on phenotypes. The lung histology and protein and mRNA levels of IL-8 and ICAM-1 in unstimulated wild-type mice were comparable to those in unstimulated CAF1-knockout mice. However, lipopolysaccharide stimulation led to more severe lung histological injury and greatly higher IL-8 and ICAM-1 expression in CAF1-knockout mice compared to the wild-type mice. These results, together with our previous study, suggest that CAF1 is involved in the regulation of lipopolysaccharide-stimulated IL-8 and ICAM-1 expression in vivo and affects the progression of acute lung injury. PMID:27358572

  8. 17β-Estradiol administration attenuates seawater aspiration-induced acute lung injury in rats.

    PubMed

    Fan, Qixin; Zhao, Pengtao; Li, Jiahuan; Xie, Xiaoyan; Xu, Min; Zhang, Yong; Mu, Deguang; Li, Wangping; Sun, Ruilin; Liu, Wei; Nan, Yandong; Zhang, Bo; Jin, Faguang; Li, Zhichao

    2011-12-01

    There is very little evidence on the value of administering estrogen in cases of seawater drowning which can induce acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Therefore, this study aimed to investigate whether 17β-estradiol (E2) treatment can attenuate seawater aspiration-induced ALI in rats. In the experiment, ALI was induced by endotracheal instillation of seawater (4mL/kg) and the rats were then given intraperitoneal injection of E2 (5mg/kg) 20min after seawater instillation. Finally, the changes of arterial blood gases which contained hydrogen ion concentration (pH), arterial oxygen tension (PaO(2)) and arterial carbon dioxide tension (PaCO(2)) were measured and the measurement of extravascular lung water (EVLW) was observed. The pulmonary histological changes were evaluated by hematoxylin-eosin stain. The expression of aquaporins (AQPs) 1, AQP5, and estrogen receptor-β (ERβ) was measured by western blotting and immunohistochemical methods. The results showed that compared with normal saline water, seawater aspiration induced more serious ALI in rats which was markedly alleviated by E2 treatment. Meanwhile, the ERβ in lung tissues was activated after E2 administration. The seawater aspiration group also presented with severe pulmonary edema which was paralleled with over expressed AQP1 and AQP5. However, the up-regulation of AQP1 and AQP5 was suppressed by the administration of E2, resulting in an attenuation of lung edema. In conclusion, E2 treatment could effectively attenuate seawater aspiration-induced acute lung injury in rats by the down-regulation of AQP1 and AQP5.

  9. Acid aspiration-induced lung injury in rabbits is mediated by interleukin-8-dependent mechanisms.

    PubMed Central

    Folkesson, H G; Matthay, M A; Hébert, C A; Broaddus, V C

    1995-01-01

    Acid aspiration lung injury may be mediated primarily by neutrophils recruited to the lung by acid-induced cytokines. We hypothesized that a major acid-induced cytokine was IL-8 and that a neutralizing anti-rabbit-IL-8 monoclonal antibody (ARIL8.2) would attenuate acid-induced lung injury in rabbits. Hydrochloric acid (pH = 1.5 in 1/3 normal saline) or 1/3 normal saline (4 ml/kg) was instilled into the lungs of ventilated, anesthetized rabbits. The rabbits were studied for 6 or 24 h. In acid-instilled rabbits without the anti-IL-8 monoclonal antibody, severe lung injury developed in the first 6 h; in the long-term experiments, all rabbits died with lung injury between 12 and 14 h. In acid-instilled rabbits given the anti-IL-8 monoclonal antibody (2 mg/kg, intravenously) either as pretreatment (5 min before the acid) or as treatment (1 h after the acid), acid-induced abnormalities in oxygenation and extravascular lung water were prevented and extravascular protein accumulation was reduced by 70%; in the long-term experiments, anti-IL-8 treatment similarly protected lung function throughout the 24-h period. The anti-IL-8 monoclonal antibody also significantly reduced air space neutrophil counts and IL-8 concentrations. This study establishes IL-8 as a critical cytokine for the development of acid-induced lung injury. Neutralization of IL-8 may provide the first useful therapy for this clinically important form of acute lung injury. Images PMID:7615779

  10. Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers.

    PubMed

    Tariket, Sofiane; Sut, Caroline; Hamzeh-Cognasse, Hind; Laradi, Sandrine; Pozzetto, Bruno; Garraud, Olivier; Cognasse, Fabrice

    2016-05-01

    Transfusion-related acute lung injury (TRALI) may be induced by plasma, platelet concentrates and red blood cell concentrates. The mechanism leading to TRALI is thought to involve two steps. The priming step consists of previous inflammatory pathological conditions or external factors attracting leukocytes to lung vessels and creating conditions favorable for the second step, in which anti-HLA or anti-HNA antibodies or biologically active lipids, usually in transfused blood products, stress leukocytes and inflame lung epithelia. Platelets may be involved in the pathogenesis of TRALI because of their secretory potential and capacity to interact with other immune cells. There is no drug based-prophylaxis, but transfusion strategies are used to mitigate the risk of TRALI. PMID:26855042

  11. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model.

    PubMed

    Liu, Jinfeng; Xiao, Siyu; Huang, Shiguang; Pei, Fuquan; Lu, Fangli

    2016-02-01

    Malaria is the most relevant parasitic disease worldwide, and severe malaria is characterized by cerebral edema, acute lung injury (ALI), and multiple organ dysfunctions; however, the mechanisms of lung damage need to be better clarified. In this study, we used Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) to elucidate the profiles of T cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of ALI. Mice were injected intraperitoneally with 10(6) PbANKA-infected red blood cells. The lungs and mediastinal lymph nodes (MLNs) were harvested at days 5, 10, 15, and 20 post infections (p.i.). The grade of lung injury was histopathologically evaluated. Tim-3- and Gal-9-positive cells in the lungs and MLNs were stained by immunohistochemistry, and the messenger RNA (mRNA) expressions of Tim-3, Gal-9, and related cytokines were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Bronchoalveolar lavage fluid (BALF) analyses were performed from days 18 to 20 p.i. The results showed that the pathological severities in the lungs were increased with times and the total protein level in the BALFs was significantly elevated in PbANKA-infected mice. The numbers of Gal-9(+) and Tim-3(+) cells in the lungs were significantly increased, and the mRNA levels of both Gal-9 and Tim-3 in the lungs and MLNs were over-expressed in PbANKA-infected mice. In conclusion, our data suggested that Tim-3/Gal-9 may play a role in PbANKA-induced ALI. PMID:26494364

  12. Upregulated Tim-3/galectin-9 expressions in acute lung injury in a murine malarial model.

    PubMed

    Liu, Jinfeng; Xiao, Siyu; Huang, Shiguang; Pei, Fuquan; Lu, Fangli

    2016-02-01

    Malaria is the most relevant parasitic disease worldwide, and severe malaria is characterized by cerebral edema, acute lung injury (ALI), and multiple organ dysfunctions; however, the mechanisms of lung damage need to be better clarified. In this study, we used Kunming outbred mice infected with Plasmodium berghei ANKA (PbANKA) to elucidate the profiles of T cell immunoglobulin and mucin domain-3 (Tim-3) and its ligand galecin-9 (Gal-9) in the development of ALI. Mice were injected intraperitoneally with 10(6) PbANKA-infected red blood cells. The lungs and mediastinal lymph nodes (MLNs) were harvested at days 5, 10, 15, and 20 post infections (p.i.). The grade of lung injury was histopathologically evaluated. Tim-3- and Gal-9-positive cells in the lungs and MLNs were stained by immunohistochemistry, and the messenger RNA (mRNA) expressions of Tim-3, Gal-9, and related cytokines were assessed using quantitative real-time polymerase chain reaction (qRT-PCR). Bronchoalveolar lavage fluid (BALF) analyses were performed from days 18 to 20 p.i. The results showed that the pathological severities in the lungs were increased with times and the total protein level in the BALFs was significantly elevated in PbANKA-infected mice. The numbers of Gal-9(+) and Tim-3(+) cells in the lungs were significantly increased, and the mRNA levels of both Gal-9 and Tim-3 in the lungs and MLNs were over-expressed in PbANKA-infected mice. In conclusion, our data suggested that Tim-3/Gal-9 may play a role in PbANKA-induced ALI.

  13. Conflicting Physiological and Genomic Cardiopulmonary Effects of Recruitment Maneuvers in Murine Acute Lung Injury

    PubMed Central

    Mekontso Dessap, Armand; Voiriot, Guillaume; Zhou, Tong; Marcos, Elisabeth; Dudek, Steven M.; Jacobson, Jeff R.; Machado, Roberto; Adnot, Serge; Brochard, Laurent; Maitre, Bernard

    2012-01-01

    Low tidal volume ventilation, although promoting atelectasis, is a protective strategy against ventilator-induced lung injury. Deep inflation (DI) recruitment maneuvers restore lung volumes, but potentially compromise lung parenchymal and vascular function via repetitive overdistention. Our objective was to examine cardiopulmonary physiological and transcriptional consequences of recruitment maneuvers. C57/BL6 mice challenged with either PBS or LPS via aspiration were placed on mechanical ventilation (5 h) using low tidal volume inflation (TI; 8 μl/g) alone or in combination with intermittent DIs (0.75 ml twice/min). Lung mechanics during TI ventilation significantly deteriorated, as assessed by forced oscillation technique and pressure–volume curves. DI mitigated the TI-induced alterations in lung mechanics, but induced a significant rise in right ventricle systolic pressures and pulmonary vascular resistances, especially in LPS-challenged animals. In addition, DI exacerbated the LPS-induced genome-wide lung inflammatory transcriptome, with prominent dysregulation of a gene cluster involving vascular processes, as well as increases in cytokine concentrations in bronchoalveolar lavage fluid and plasma. Gene ontology analyses of right ventricular tissue expression profiles also identified inflammatory signatures, as well as apoptosis and membrane organization ontologies, as potential elements in the response to acute pressure overload. Our results, although confirming the improvement in lung mechanics offered by DI, highlight a detrimental impact in sustaining inflammatory response and exacerbating lung vascular dysfunction, events contributing to increases in right ventricle afterload. These novel insights should be integrated into the clinical assessment of the risk/benefit of recruitment maneuver strategies. PMID:22135358

  14. The lung lysosomal hydrolases and phospholipase A in acute experimental pancreatitis with reference to heparin treatment.

    PubMed

    Wereszczyńska, U; Długosz, J; Gabryelewicz, A; Andrzejewska, A

    1986-10-01

    The pulmonary complications are severe sequeles of acute pancreatitis. The pathogenesis of these complications is unsolved. The purpose of this work was to evaluate the status of lung lysosomes and phospholipase A activity in acute experimental pancreatitis (AEP) and the effect of heparin as a potentially protective agent. Taurocholate-induced AEP in rats lasting 24 and 48 hours was treated with heparin intraperitoneally (2 mg/kg every 8 hours). The total activity of cathepsins and B-glucuronidase in lysosomal enriched subfraction increased markedly during 48 hours of AEP in untreated animals, but the relative free activity was maximal after 24 hours. Free activity of cathepsins and acid phosphatase in supernatant was maximal after 24 hours. The phospholipase A activity was maximally elevated (more than twofold) after 48 hours. Heparin prevented the increase of activity of B-glucuronidase, depressed the relative free activity of all investigated lysosomal hydrolases and inhibited the phospholipase A activity in the lung homogenate. Our results indicate the significance of labilization of lung lysosomes and increment of phospholipase A activity in the lungs in the damage of this organ during AEP in the rats, and suggest the beneficial effect of heparin on these factors. PMID:2431400

  15. Human mesenchymal stem cells attenuate early damage in a ventilated pig model of acute lung injury.

    PubMed

    Moodley, Yuben; Sturm, Marian; Shaw, Kathryn; Shimbori, Chiko; Tan, Dino B A; Kolb, Martin; Graham, Ruth

    2016-07-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a major cause of global morbidity and mortality. Mesenchymal stem cells (MSC) have shown promise in treating inflammatory lung conditions. We hypothesised that human MSC (hMSC) can improve ALI/ARDS through their anti-inflammatory actions. We subjected pigs (n=6) to intravenous oleic acid (OA) injury, ventilation and hMSC infusion, while the controls (n=5) had intravenous OA, ventilation and an infusion vehicle control. hMSC were infused 1h after the administration of OA. The animals were monitored for additional 4h. Nuclear translocation of nuclear factor-light chain enhancer of activated B cells (NF-κB), a transcription factor that mediates several inflammatory pathways was reduced in hMSC treated pigs compared to controls (p=0.04). There was no significant difference in lung injury, assessed by histological scoring in hMSC treated pigs versus controls (p=0.063). There was no difference in neutrophil counts between hMSC-treated pigs and controls. Within 4h, there was no difference in the levels of IL-10 and IL-8 pre- and post-treatment with hMSC. In addition, there was no difference in hemodynamics, lung mechanics or arterial blood gases between hMSC treated animals and controls. Subsequent studies are required to determine if the observed decrease in inflammatory transcription factors will translate into improvement in inflammation and in physiological parameters over the long term.

  16. Transcriptome Profiling of the Newborn Mouse Lung Response to Acute Ozone Exposure

    PubMed Central

    Loader, Joan E.; White, Carl W.; Dakhama, Azzeddine

    2014-01-01

    Ozone pollution is associated with adverse effects on respiratory health in adults and children but its effects on the neonatal lung remain unknown. This study was carried out to define the effect of acute ozone exposure on the neonatal lung and to profile the transcriptome response. Newborn mice were exposed to ozone or filtered air for 3h. Total RNA was isolated from lung tissues at 6 and 24h after exposure and was subjected to microarray gene expression analysis. Compared to filtered air-exposed littermates, ozone-exposed newborn mice developed a small but significant neutrophilic airway response associated with increased CXCL1 and CXCL5 expression in the lung. Transcriptome analysis indicated that 455 genes were down-regulated and 166 genes were up-regulated by at least 1.5-fold at 6h post-ozone exposure (t-test, p < .05). At 24h, 543 genes were down-regulated and 323 genes were up-regulated in the lungs of ozone-exposed, compared to filtered air-exposed, newborn mice (t-test, p < .05). After controlling for false discovery rate, 50 genes were identified as significantly down-regulated and only a few (RORC, GRP, VREB3, and CYP2B6) were up-regulated at 24h post-ozone exposure (q < .05). Gene ontology enrichment analysis revealed that cell cycle-associated functions including cell division/proliferation were the most impacted pathways, which were negatively regulated by ozone exposure, an adverse effect that was associated with reduced bromo-deoxyuridine incorporation. These results demonstrate that acute ozone exposure alters cell proliferation in the developing neonatal lung through a global suppression of cell cycle function. PMID:24336422

  17. Neutralization of Osteopontin Ameliorates Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Yang, Weng-Lang; Ochani, Mahendar; Wang, Ping

    2016-10-01

    Intestinal ischemia-reperfusion (I/R) is associated with acute respiratory distress syndrome. Osteopontin (OPN), a glycoprotein secreted from immune-reactive cells, plays a deleterious role in various inflammatory diseases. Considering OPN as a pro-inflammatory molecule, we hypothesize that the treatment with its neutralizing antibody (anti-OPN Ab) protects mice against intestinal I/R-induced acute lung injury (ALI). Intestinal I/R was induced in mice by superior mesenteric artery occlusion with a vascular clip. After 45 min of occlusion, the clip was removed and anti-OPN Ab (25 μg/mouse) or normal IgG isotype control (25 μg/mouse) was immediately administrated intravenously. Blood, small intestine, and lung tissues were collected at 4 h after reperfusion for various analyses. After intestinal I/R, mRNA and protein levels of OPN were significantly induced in the small intestine, lungs, and blood relative to sham-operated animals. Compared with the IgG control group, treatment of anti-OPN Ab significantly reduced plasma levels of pro-inflammatory cytokine and chemokine (IL-6 and MIP-2) and organ injury markers (AST, ALT, and LDH). The histological architecture of the gut and lung tissues in anti-OPN Ab-treated intestinal I/R-induced mice showed significant improvement versus the IgG control mice. The lung inflammation measured by the levels of IL-6, IL-1β, and MIP-2 was also significantly downregulated in the anti-OPN Ab-treated mice as compared with the IgG control mice. Besides, the lung MPO and neutrophil infiltration in anti-OPN Ab-treated mice showed significant reduction as compared with the IgG control animals. In conclusion, we have demonstrated beneficial outcomes of anti-OPN Ab treatment in protecting against ALI, implicating a novel therapeutic potential in intestinal I/R. PMID:26974422

  18. Neutralization of Osteopontin Ameliorates Acute Lung Injury Induced by Intestinal Ischemia-Reperfusion.

    PubMed

    Hirano, Yohei; Aziz, Monowar; Yang, Weng-Lang; Ochani, Mahendar; Wang, Ping

    2016-10-01

    Intestinal ischemia-reperfusion (I/R) is associated with acute respiratory distress syndrome. Osteopontin (OPN), a glycoprotein secreted from immune-reactive cells, plays a deleterious role in various inflammatory diseases. Considering OPN as a pro-inflammatory molecule, we hypothesize that the treatment with its neutralizing antibody (anti-OPN Ab) protects mice against intestinal I/R-induced acute lung injury (ALI). Intestinal I/R was induced in mice by superior mesenteric artery occlusion with a vascular clip. After 45 min of occlusion, the clip was removed and anti-OPN Ab (25 μg/mouse) or normal IgG isotype control (25 μg/mouse) was immediately administrated intravenously. Blood, small intestine, and lung tissues were collected at 4 h after reperfusion for various analyses. After intestinal I/R, mRNA and protein levels of OPN were significantly induced in the small intestine, lungs, and blood relative to sham-operated animals. Compared with the IgG control group, treatment of anti-OPN Ab significantly reduced plasma levels of pro-inflammatory cytokine and chemokine (IL-6 and MIP-2) and organ injury markers (AST, ALT, and LDH). The histological architecture of the gut and lung tissues in anti-OPN Ab-treated intestinal I/R-induced mice showed significant improvement versus the IgG control mice. The lung inflammation measured by the levels of IL-6, IL-1β, and MIP-2 was also significantly downregulated in the anti-OPN Ab-treated mice as compared with the IgG control mice. Besides, the lung MPO and neutrophil infiltration in anti-OPN Ab-treated mice showed significant reduction as compared with the IgG control animals. In conclusion, we have demonstrated beneficial outcomes of anti-OPN Ab treatment in protecting against ALI, implicating a novel therapeutic potential in intestinal I/R.

  19. Genome-wide association mapping of acute lung injury in neonatal inbred mice

    PubMed Central

    Nichols, Jennifer L.; Gladwell, Wesley; Verhein, Kirsten C.; Cho, Hye-Youn; Wess, Jürgen; Suzuki, Oscar; Wiltshire, Tim; Kleeberger, Steven R.

    2014-01-01

    Reactive oxygen species (ROS) contribute to the pathogenesis of many acute and chronic pulmonary disorders, including bronchopulmonary dysplasia (BPD), a respiratory condition that affects preterm infants. However, the mechanisms of susceptibility to oxidant stress in neonatal lungs are not completely understood. We evaluated the role of genetic background in response to oxidant stress in the neonatal lung by exposing mice from 36 inbred strains to hyperoxia (95% O2) for 72 h after birth. Hyperoxia-induced lung injury was evaluated by using bronchoalveolar lavage fluid (BALF) analysis and pathology. Statistically significant interstrain variation was found for BALF inflammatory cells and protein (heritability estimates range: 33.6–55.7%). Genome-wide association mapping using injury phenotypes identified quantitative trait loci (QTLs) on chromosomes 1, 2, 4, 6, and 7. Comparative mapping of the chromosome 6 QTLs identified Chrm2 (cholinergic receptor, muscarinic 2, cardiac) as a candidate susceptibility gene, and mouse strains with a nonsynonymous coding single-nucleotide polymorphism (SNP) in Chrm2 that causes an amino acid substitution (P265L) had significantly reduced hyperoxia-induced inflammation compared to strains without the SNP. Further, hyperoxia-induced lung injury was significantly reduced in neonatal mice with targeted deletion of Chrm2, relative to wild-type controls. This study has important implications for understanding the mechanisms of oxidative lung injury in neonates.—Nichols, J. L., Gladwell, W., Verhein, K. C., Cho, H.-Y., Wess, J., Suzuki, O., Wiltshire, T., Kleeberger, S. R. Genome-wide association mapping of acute lung injury in neonatal inbred mice. PMID:24571919

  20. Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice

    PubMed Central

    Qiao, Ying-Ying; Liu, Xiao-Qin; Xu, Chang-Qin; Zhang, Zheng; Xu, Hong-Wei

    2016-01-01

    AIM: To investigate the potential protective effect of exogenous recombinant interleukin-22 (rIL-22) on L-arginine-induced acute severe pancreatitis (SAP)-associated lung injury and the possible signaling pathway involved. METHODS: Balb/c mice were injected intraperitoneally with L-arginine to induce SAP. Recombinant mouse IL-22 was then administered subcutaneously to mice. Serum amylase levels and myeloperoxidase (MPO) activity in the lung tissue were measured after the L-arginine administration. Histopathology of the pancreas and lung was evaluated by hematoxylin and eosin (HE) staining. Expression of B cell lymphoma/leukemia-2 (Bcl-2), Bcl-xL and IL-22RA1 mRNAs in the lung tissue was detected by real-time PCR. Expression and phosphorylation of STAT3 were analyzed by Western blot. RESULTS: Serum amylase levels and MPO activity in the lung tissue in the SAP group were significantly higher than those in the normal control group (P < 0.05). In addition, the animals in the SAP group showed significant pancreatic and lung injuries. The expression of Bcl-2 and Bcl-xL mRNAs in the SAP group was decreased markedly, while the IL-22RA1 mRNA expression was increased significantly relative to the normal control group (P < 0.05). Pretreatment with PBS did not significantly affect the serum amylase levels, MPO activity or expression of Bcl-2, Bcl-xL or IL-22RA1 mRNA (P > 0.05). Moreover, no significant differences in the degrees of pancreatic and lung injuries were observed between the PBS and SAP groups. However, the serum amylase levels and lung tissue MPO activity in the rIL-22 group were significantly lower than those in the SAP group (P < 0.05), and the injuries in the pancreas and lung were also improved. Compared with the PBS group, rIL-22 stimulated the expression of Bcl-2, Bcl-xL and IL-22RA1 mRNAs in the lung (P < 0.05). In addition, the ratio of p-STAT3 to STAT3 protein in the rIL-22 group was significantly higher than that in the PBS group (P < 0.05). CONCLUSION

  1. Pendrin, an anion exchanger on lung epithelial cells, could be a novel target for lipopolysaccharide-induced acute lung injury mice

    PubMed Central

    Jia, Chun-E; Jiang, Dingyuan; Dai, Huaping; Xiao, Fei; Wang, Chen

    2016-01-01

    Objective: The aim of this study is to evaluate the role of pendrin in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and to explore whether pendrin expression existing on alveolar cells. Methods: ALI C57BL/6 mice model induced by lipopolysaccharide (LPS) was established. The expression of pendrin in lung was analyzed by RT-PCR and western blotting methods, the changes of lung inflammatory parameters and pathology were observed, the cellular distribution of pendrin in the lung was determined using immunofluorescence. Statistical comparisons between groups were made by two-tailed Student’s t-test. Results: Enhanced expression of the slc26a4 gene and production of pendrin in lungs of LPS-induced ALI mice were confirmed. In comparison with vehicle-control mice, methazolamide treatment mitigated lung inflammatory parameters and pathology. IL-6 and MCP-1 in lung tissues and BALF in methazolamide-treated mice were statistically decreased. Methazolamide treatment had significant effect on the total protein concentration in the BALF and the ratio of lung wet/dry weight. The percentage of macrophages in the BALF was increased. There was a low expression of pendrin in ATII. Conclusions: Pendrin may be involved in pathological process of LPS-induced ALI. Inhibition of the pendrin function could be used to treat ALI. Airway epithelial cell may be a valuable therapeutic target for discovering and developing new drugs and/or new therapeutic strategies for the treatment of ALI/ARDS. PMID:27158384

  2. An acute adrenal insufficiency revealing pituitary metastases of lung cancer in an elderly patient

    PubMed Central

    Marmouch, Hela; Arfa, Sondes; Mohamed, Saoussen Cheikh; Slim, Tensim; Khochtali, Ines

    2016-01-01

    Metastases of solid tumors to the pituitary gland are often asymptomatic or appereas as with diabetes insipid us. Pituitary metastases more commonly affect the posterior lobe and the infundibulum than the anterior lobe. The presentation with an acute adrenal insufficiency is a rare event. A 69-year-old men presented with vomiting, low blood pressure and hypoglycemia. Hormonal exploration confirmed a hypopituitarism. Appropriate therapy was initiated urgently. The hypothalamic-pituitary MRI showed a pituitary hypertrophy, a nodular thickening of the pituitary stalk. The chest X Rays revealed pulmonary opacity. Computed tomography scan of the chest showed a multiples tumors with mediastinal lymphadenopathy. Bronchoscopy and biopsy demonstrated a pulmonary adenocarcinoma. Hence we concluded to a lung cancer with multiple pituitary and adrenal gland metastases. This case emphasizes the need for an etiological investigation of acute adrenal insufficiency after treatment of acute phase. PMID:27200139

  3. Biomarkers for oxidative stress in acute lung injury induced in rabbits submitted to different strategies of mechanical ventilation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative damage has been said to play an important role in pulmonary injury, which is associated with the development and progression of acute respiratory distress syndrome (ARDS). We aimed to identify biomarkers to determine the oxidative stress in an animal model of acute lung injury (ALI) using ...

  4. Silencing of Paralemmin-3 Protects Mice from lipopolysaccharide-induced acute lung injury.

    PubMed

    Li, Shaoying; Guo, Liang; Zhao, Yunfeng; Qian, Pin; Lv, Xuejun; Qian, Lanlan; Wang, Qin; Qian, Guisheng; Yao, Wei; Wu, Xueling

    2016-02-01

    Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.

  5. Effect of ulinastatin on HMGB1 expression in rats with acute lung injury induced by sepsis.

    PubMed

    Wang, S Y; Li, Z J; Wang, X; Li, W F; Lin, Z F

    2015-04-30

    The aim of this study was to investigate the influence of ulinastatin (UTI) on high mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 expression in acute lung injury (ALI) rats with sepsis caused by cecal ligation and puncture (CLP) surgery, as well as to examine the underlying biological mechanism. Thirty rats were randomly and evenly divided into sham (control), CLP, and CLP + UTI groups. Thirty minutes after the surgery, the rats in the CLP + UTI group received UTI via the caudal vein, while normal saline was administered to rats in the other groups. Blood, lung tissues, and bronchoalveolar lavage fluid (BALF) were collected at different time points (6, 12, 24, and 48 h) after surgery for determination of related indicators. Compared with the CLP group, rats in the CLP + UTI group exhibited higher seven day survival rates, less lung injury, and decreased HMGB1 expression in the lung tissue, serum, and BALF. In addition, the levels of TNF-α and IL-6 at 24 h in the CLP + UTI group were markedly lower than those in the CLP group. These results suggest that by deregulation, UTI might decrease the lung injury and increase the survival time of ALI rats by downregulating HMGB1 expression as well as by inhibiting TNF-α and IL-6 levels in serum and BALF.

  6. Effects of simvastatin on the expression of inducible NOS in acute lung injury in septic rats

    PubMed Central

    Li, Wei-Chao; Zou, Zi-Jun; Zhou, Ming-Gen; Chen, Liang; Zhou, Lin; Zheng, Yu-Kai; He, Zhi-Jie

    2015-01-01

    Background: The available evidence suggests that simvastatin plays a beneficial role in lung injury. In addition, statins have been shown to inhibit the activity of inducible nitric oxide synthase (iNOS). The aim of the present study was to investigate the effects of simvastatin on iNOS expression based on a lipopolysaccharide (LPS)-induced septic rat model. Methods: Thirty-six rats were randomly divided into 3 groups (control group, sepsis group and simvastatin group). A rat model of sepsis was established with LPS. The simvastatin group was pre-treated with simvastatin, whereas the control and sepsis groups were treated with saline before LPS treatment. LPS was injected into the rats in the simvastatin and sepsis groups, while as a negative control, the control group received saline alone. The oxygenation index, expression levels of iNOS and IL-6, and pathological integral of lung injury were analyzed to evaluate the effect of simvastatin on septic rats. Results: Compared with the septic group, significant decreases in the oxygenation index and expression level of iNOS were observed in the simvastatin group. Furthermore, simvastatin treatment resulted in a significant decrease in iNOS levels and the pathological integral of lung injury score in septic rats. Conclusion: Simvastatin can relieve acute lung injury induced by sepsis in rats. Decreasing iNOS levels may contribute to the protective role of simvastatin in lung injury. PMID:26823851

  7. Effects of a Soluble Epoxide Hydrolase Inhibitor on Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Yang, Liu-Qing; Ma, Yong-Bo

    2016-01-01

    Objectives Inflammation plays a key role in the pathogenesis of acute lung injury (ALI). Soluble epoxide hydrolase (sEH) is suggested as a vital pharmacologic target for inflammation. In this study, we determined whether a sEH inhibitor, AUDA, exerts lung protection in lipopolysaccharide (LPS)-induced ALI in mice. Methods Male BALB/c mice were randomized to receive AUDA or vehicle intraperitoneal injection 4 h after LPS or phosphate buffered saline (PBS) intratracheal instillation. Samples were harvested 24 h post LPS or PBS administration. Results AUDA administration decreased the pulmonary levels of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α. Improvement of oxygenation and lung edema were observed in AUDA treated group. AUDA significantly inhibited sEH activity, and elevated epoxyeicosatrienoic acids (EETs) levels in lung tissues. Moreover, LPS induced the activation of nuclear factor (NF)-κB was markedly dampened in AUDA treated group. Conclusion Administration of AUDA after the onset of LPS-induced ALI increased pulmonary levels of EETs, and ameliorated lung injury. sEH is a potential pharmacologic target for ALI. PMID:27490848

  8. Upregulation of PIAS1 protects against sodium taurocholate-induced severe acute pancreatitis associated with acute lung injury.

    PubMed

    Chen, Ping; Huang, Liya; Sun, Yunwei; Yuan, Yaozong

    2011-06-01

    The regulator of cytokine signaling known as protein inhibitor of activated STAT-1 (PIAS1) is increasingly understood to have diverse regulatory functions for inflammation, but its effect in inflammatory conditions such as severe acute pancreatitis (SAP) has not previously been reported. The aim of this study was to investigate the effect of upregulation of PIAS1 on SAP associated with acute lung injury (ALI), and its subsequent effect on disease severity. Sprague-Dawley rats were given an IV injection of adenovirus serotype 5 (Ad5)/F35-PIAS1, Ad5/F35-vector or saline before induction of SAP. The control group received only a sham operation. Lung and pancreas samples were harvested 16h after induction. The protein levels of PIAS1 in tissue were investigated. The severity of pancreatic injury was determined by a histological score of pancreatic injury, serum amylase, and pancreatic water content. The lung injury was evaluated by measurement of pulmonary microvascular permeability, lung myeloperoxidase activity and malondialdehyde levels. The survival rates of rats were also analyzed. The results found that in Ad5/F35-PIAS1 treated rats, serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 levels were decreased but showed no influence on the levels of IL-10, and the severity of pancreatic tissue injury was less compared with either untreated SAP or Ad5/F35-vector treated rats (P<0.01). The administration of Ad5/F35-PIAS1 in SAP-induced rats downregulated the activity of the signal transducer and activator of transcription-1 (STAT1) pathway and the expressions of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule (ICAM)-1 protein in lung. Thus, compared with the untreated SAP rats, the inflammatory response and the severity of ALI decreased, and the survival rates increased (P<0.01). These findings suggest that PIAS1 could augment anti-inflammatory activity by inhibiting STAT1, thus attenuating the severity of SAP associated with ALI.

  9. Pentoxifylline Attenuates Nitrogen Mustard-induced Acute Lung Injury, Oxidative Stress and Inflammation

    PubMed Central

    Sunil, Vasanthi R.; Vayas, Kinal N.; Cervelli, Jessica A.; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B.; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2014-01-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (250 g; 8–10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histolopathological changes in the lung within 3 d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2+ and MMP-9+), and anti-inflammatory/wound repair (CD163+ and Gal-3+) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3 d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3+ macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants. PMID:24886962

  10. Acute ozone-induced lung injury in rats: Structural-functional relationships of developing alveolar edema

    SciTech Connect

    Paterson, J.F.; Hammond, M.D.; Montgomery, M.R.; Sharp, J.T.; Farrier, S.E.; Balis, J.U. )

    1992-11-01

    As part of a study on the effects of acute ozone stress on the lung surfactant system, we correlated morphometric, biochemical, and functional indices of lung injury using male rats exposed to 3 ppm ozone for 1, 2, 4, and 8 hr. Evaluation of lung mechanics, using the Pulmonary Evaluation and Diagnostic Laboratory System, revealed a significant decrease in dynamic lung compliance (ml/cmH[sub 2]O/kg) from a control value of 0.84 [plus minus] 0.02 (SEM) to 0.72 [plus minus] 0.04 and 0.57 [plus minus] 0.06 at 4 and 8 hr, respectively. At 2 hr there was a transient increase in PaO[sub 2] to 116 torr (control = 92 torr) followed by a decrease at 4 hr (65 torr) and 8 hr (55 torr). Morphometry of lung tissue, fixed by perfusion of fixative via the pulmonary artery at 12 cm H[sub 2]O airway distending pressure, demonstrated an increase in the area of the intravascular compartment at 8 hr, in association with a 65 and 39% replacement of the alveolar area by fluid in ventral and dorsal lung regions, respectively. There was a positive correlation (r = 0.966) between alveolar edema and transudated proteins in lavage fluid. A stepwise multiple regression model, with edema as the dependent variable, suggested that pulmonary vasodilatation, hypoxemia, and depletion of surfactant tubular myelin in lavage fluid were indices for predicting alveolar edema. In a second model, with lavage protein concentration as the dependent variable, decreasing dynamic compliance and hypoxemia were predictors of progressive, intraalveolar transudation of plasma proteins. The above structural-functional relationships support the concept that ozone-induced high-protein alveolar edema is pathogenetically linked to pulmonary hyperemia, deficiency of surfactant tubular myelin, and associated lung dysfunctions.

  11. Bedside lung ultrasound in the evaluation of acute decompensated heart failure.

    PubMed

    Leidi, Federica; Casella, Francesco; Cogliati, Chiara

    2016-06-01

    Dyspnea is a common presenting complaint in the emergency department (ED) and a leading cause of hospitalization in intensive care unit (ICU) and medical wards. Ultrasound (US) has traditionally been considered inadequate to explore the aerated lung. However, in the past 15 years LUS gained broader application, at least in part thanks to the interpretation of the artefacts generated by the interaction of US and lung structures/content. The total reflection of US beam occurring at the pleural level determines the artefactual image of the aerated lung: an homogenous 'foggy-like' picture under the pleural line. As the air content of the lungs decreases due to interstitial imbibition, deposition of collagen or presence of blood, vertical artefacts -arising from the pleural line and moving synchronously with the respiration- called B-lines appear. Multiple and bilateral B-lines identify the alveolar-interstitial syndrome (AIS). The most common cause of AIS is the wet lung: the more the congestion burden, the more the extent of the B-lines, which become confluent until the so-called white lung in case of pulmonary edema. Many studies showed a higher accuracy of LUS in diagnosing acute decompensated heart failure (ADHF) as compared to chest X-ray As recently shown, the integration of LUS to clinical assessment allow to differentiate cardiogenic dyspnea with sensitivity and specificity greater than 95 %. Moreover, LUS can easily detect pleural effusion -frequently present in ADHF-appearing as an anechoic area in the recumbent area of the thorax, delimited inferiorly by the diaphragmatic dome and superiorly by the aerated lung. PMID:26885846

  12. Pentoxifylline attenuates nitrogen mustard-induced acute lung injury, oxidative stress and inflammation.

    PubMed

    Sunil, Vasanthi R; Vayas, Kinal N; Cervelli, Jessica A; Malaviya, Rama; Hall, LeRoy; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2014-08-01

    Nitrogen mustard (NM) is a toxic alkylating agent that causes damage to the respiratory tract. Evidence suggests that macrophages and inflammatory mediators including tumor necrosis factor (TNF)α contribute to pulmonary injury. Pentoxifylline is a TNFα inhibitor known to suppress inflammation. In these studies, we analyzed the ability of pentoxifylline to mitigate NM-induced lung injury and inflammation. Exposure of male Wistar rats (150-174 g; 8-10 weeks) to NM (0.125 mg/kg, i.t.) resulted in severe histopathological changes in the lung within 3d of exposure, along with increases in bronchoalveolar lavage (BAL) cell number and protein, indicating inflammation and alveolar-epithelial barrier dysfunction. This was associated with increases in oxidative stress proteins including lipocalin (Lcn)2 and heme oxygenase (HO)-1 in the lung, along with pro-inflammatory/cytotoxic (COX-2(+) and MMP-9(+)), and anti-inflammatory/wound repair (CD163+ and Gal-3(+)) macrophages. Treatment of rats with pentoxifylline (46.7 mg/kg, i.p.) daily for 3d beginning 15 min after NM significantly reduced NM-induced lung injury, inflammation, and oxidative stress, as measured histologically and by decreases in BAL cell and protein content, and levels of HO-1 and Lcn2. Macrophages expressing COX-2 and MMP-9 also decreased after pentoxifylline, while CD163+ and Gal-3(+) macrophages increased. This was correlated with persistent upregulation of markers of wound repair including pro-surfactant protein-C and proliferating nuclear cell antigen by Type II cells. NM-induced lung injury and inflammation were associated with alterations in the elastic properties of the lung, however these were largely unaltered by pentoxifylline. These data suggest that pentoxifylline may be useful in treating acute lung injury, inflammation and oxidative stress induced by vesicants.

  13. Amelioration of meconium-induced acute lung injury by parecoxib in a rabbit model

    PubMed Central

    Li, Ai-Min; Zhang, Li-Na; Li, Wen-Zhi

    2015-01-01

    Cyclooxygenase-2 (COX-2) plays important roles in various inflammatory conditions and is significantly increased in meconium-induced lung injury. We investigated the effects of parecoxib on meconium-induced acute lung injury (ALI) in rabbits. Twenty-four rabbits were randomized into sham, control, and parecoxib groups. Rabbits in the control and parecoxib groups underwent tracheal instillation of meconium, followed by intravenous injection of saline or parecoxib and 4 h of ventilation. The airway pressure, dynamic compliance, and ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2 ratio) were recorded at baseline (T0) and 4 h after instillation (T1-T4). The lung tissue wet-to-dry weight ratio; neutrophil percentage; and total protein, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-8, prostaglandin E2, and malondialdehyde levels in bronchoalveolar lavage fluid (BALF) were evaluated. The myeloperoxidase activity, COX-2 expression, and degree of histopathologic injury in lung tissue were also analyzed. The airway pressure, compliance, and PaO2/FiO2 ratio were significantly improved by parecoxib after meconium instillation. The lung wet-to-dry weight ratio, total protein level, and neutrophil percentage in BALF were lowest in the parecoxib group. The TNF-α, IL-1β, IL-8, prostaglandin E2, and malondialdehyde levels in the BALF were lowest in the parecoxib group. The COX-2 expression and myeloperoxidase activity in lung tissue were significantly reduced by parecoxib. The degree of lung injury was also reduced. In conclusions: Parecoxib effectively ameliorates respiratory function and attenuates meconium-induced ALI. These effects are correlated with prostaglandin E2 and COX-2 inhibition. PMID:26221218

  14. C1P Attenuates Lipopolysaccharide-Induced Acute Lung Injury by Preventing NF-κB Activation in Neutrophils.

    PubMed

    Baudiß, Kristin; de Paula Vieira, Rodolfo; Cicko, Sanja; Ayata, Korcan; Hossfeld, Madelon; Ehrat, Nicolas; Gómez-Muñoz, Antonio; Eltzschig, Holger K; Idzko, Marco

    2016-03-01

    Recently, ceramide-1-phosphate (C1P) has been shown to modulate acute inflammatory events. Acute lung injury (Arnalich et al. 2000. Infect. Immun. 68: 1942-1945) is characterized by rapid alveolar injury, lung inflammation, induced cytokine production, neutrophil accumulation, and vascular leakage leading to lung edema. The aim of this study was to investigate the role of C1P during LPS-induced acute lung injury in mice. To evaluate the effect of C1P, we used a prophylactic and therapeutic LPS-induced ALI model in C57BL/6 male mice. Our studies revealed that intrapulmonary application of C1P before (prophylactic) or 24 h after (therapeutic) LPS instillation decreased neutrophil trafficking to the lung, proinflammatory cytokine levels in bronchoalveolar lavage, and alveolar capillary leakage. Mechanistically, C1P inhibited the LPS-triggered NF-κB levels in lung tissue in vivo. In addition, ex vivo experiments revealed that C1P also attenuates LPS-induced NF-κB phosphorylation and IL-8 production in human neutrophils. These results indicate C1P playing a role in dampening LPS-induced acute lung inflammation and suggest that C1P could be a valuable candidate for treatment of ALI. PMID:26800872

  15. Inflammasome-regulated Cytokines Are Critical Mediators of Acute Lung Injury

    PubMed Central

    Dolinay, Tamás; Kim, Young Sam; Howrylak, Judie; Hunninghake, Gary M.; Fredenburgh, Laura; Massaro, Anthony F.; Rogers, Angela; Gazourian, Lee; Nakahira, Kiichi; Haspel, Jeffrey A.; Landazury, Roberto; Eppanapally, Sabitha; Christie, Jason D.; Meyer, Nuala J.; Ware, Lorraine B.; Christiani, David C.; Ryter, Stefan W.; Baron, Rebecca M.

    2012-01-01

    Rationale: Despite advances in clinical management, there are currently no reliable diagnostic and therapeutic targets for acute respiratory distress syndrome (ARDS). The inflammasome/caspase-1 pathway regulates the maturation and secretion of proinflammatory cytokines (e.g., IL-18). IL-18 is associated with injury in animal models of systemic inflammation. Objectives: We sought to determine the contribution of the inflammasome pathway in experimental acute lung injury and human ARDS. Methods: We performed comprehensive gene expression profiling on peripheral blood from patients with critical illness. Gene expression changes were assessed using real-time polymerase chain reaction, and IL-18 levels were measured in the plasma of the critically ill patients. Wild-type mice or mice genetically deficient in IL-18 or caspase-1 were mechanically ventilated using moderate tidal volume (12 ml/kg). Lung injury parameters were assessed in lung tissue, serum, and bronchoalveolar lavage fluid. Measurements and Main Results: In mice, mechanical ventilation enhanced IL-18 levels in the lung, serum, and bronchoalveolar lavage fluid. IL-18–neutralizing antibody treatment, or genetic deletion of IL-18 or caspase-1, reduced lung injury in response to mechanical ventilation. In human patients with ARDS, inflammasome-related mRNA transcripts (CASP1, IL1B, and IL18) were increased in peripheral blood. In samples from four clinical centers, IL-18 was elevated in the plasma of patients with ARDS (sepsis or trauma-induced ARDS) and served as a novel biomarker of intensive care unit morbidity and mortality. Conclusions: The inflammasome pathway and its downstream cytokines play critical roles in ARDS development. PMID:22461369

  16. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  17. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  18. Anti-Inflammatory Effects of Adrenomedullin on Acute Lung Injury Induced by Carrageenan in Mice

    PubMed Central

    Elena, Talero; Rosanna, Di Paola; Emanuela, Mazzon; Esposito, Emanuela; Virginia, Motilva; Salvatore, Cuzzocrea

    2012-01-01

    Adrenomedullin (AM) is a 52 amino acid peptide that has shown predominant anti-inflammatory activities. In the present study, we evaluated the possible therapeutic effect of this peptide in an experimental model of acute inflammation, the carrageenan- (CAR-) induced pleurisy. Pleurisy was induced by injection of CAR into the pleural cavity of mice. AM (200 ng/kg) was administered by intraperitoneal route 1 h after CAR, and the animals were sacrificed 4 h after that. AM treatment attenuated the recruitment of leucocytes in the lung tissue and the generation and/or the expression of the proinflammatory cytokines as well as the expression of the intercellular cell adhesion molecules. Moreover, AM inhibited the induction of inducible nitric oxide synthase (iNOS), thereby abating the generation of nitric oxide (NO) and prevented the oxidative and nitroxidative lung tissue injury, as shown by the reduction of nitrotyrosine, malondialdehyde (MDA), and poly (ADP-ribose) polymerase (PARP) levels. Finally, we demonstrated that these anti-inflammatory effects of AM were associated with the inhibition of nuclear factor-κB (NF-κB) activation. All these parameters were markedly increased by intrapleural CAR in the absence of any treatment. We report that treatment with AM significantly reduces the development of acute lung injury by downregulating a broad spectrum of inflammatory factors. PMID:22685374

  19. Resveratrol potentiates the effect of dexamethasone in rat model of acute lung inflammation.

    PubMed

    Sadarani, Bhakti N; Majumdar, Anuradha S

    2015-09-01

    Cigarette smoking is considered to be the main etiological factor in Chronic Obstructive Pulmonary Disease (COPD). In this study, we explored the potential of resveratrol, to reinstate the effectiveness of dexamethasone when administered as an adjunct in acute lung inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). CS and LPS instillation produced acute inflammatory response exhibited by increased leukocyte count, particularly neutrophils, total protein, MMP-9 activity, cytokines like TNF-α, IL-8 in bronchoalveolar lavage fluid (BALF) as well as elevated myeloperoxidase activity, and lipid peroxidation in lung. These alterations were not abated by dexamethasone (2.5mg/kg & 10mg/kg) and resveratrol (50mg/kg) alone. Combination of resveratrol (50mg/kg) and dexamethasone (2.5mg/kg) significantly reduced all inflammatory parameters. The protective effect of the combination was abolished when co-administered with sirtinol, a SIRT1 inhibitor. The results indicate that the combination therapy may serve as a potential approach for treating lung inflammatory conditions like COPD.

  20. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury.

    PubMed

    Han, Shichao; Cai, Weixia; Yang, Xuekang; Jia, Yanhui; Zheng, Zhao; Wang, Hongtao; Li, Jun; Li, Yan; Gao, Jianxin; Fan, Lei; Hu, Dahai

    2015-01-01

    The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI. PMID:26576075

  1. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury

    PubMed Central

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4+ CD25+ regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  2. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury.

    PubMed

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-02-17

    T helper (Th) 17 cells and CD4(+) CD25(+) regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease.

  3. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury.

    PubMed

    Han, Shichao; Cai, Weixia; Yang, Xuekang; Jia, Yanhui; Zheng, Zhao; Wang, Hongtao; Li, Jun; Li, Yan; Gao, Jianxin; Fan, Lei; Hu, Dahai

    2015-01-01

    The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI.

  4. ROS-Mediated NLRP3 Inflammasome Activity Is Essential for Burn-Induced Acute Lung Injury

    PubMed Central

    Han, Shichao; Cai, Weixia; Yang, Xuekang; Jia, Yanhui; Zheng, Zhao; Wang, Hongtao; Li, Jun; Li, Yan; Gao, Jianxin; Fan, Lei; Hu, Dahai

    2015-01-01

    The NLRP3 inflammasome is necessary for initiating acute sterile inflammation. However, its role in the pathogenesis of burn-induced acute lung injury (ALI) is unknown. This study aimed to determine the role of the NLRP3 inflammasome and the signaling pathways involved in burn-induced ALI. We observed that the rat lungs exhibited enhanced inflammasome activity after burn, as evidenced by increased levels of NLRP3 expression and Caspase-1 activity and augmented inflammatory cytokines. Inhibition of NLRP3 inflammasome by BAY11-7082 attenuated burn-induced ALI, as demonstrated by the concomitant remission of histopathologic changes and the reduction of myeloperoxidase (MPO) activity, inflammatory cytokines in rat lung tissue, and protein concentrations in the bronchoalveolar lavage fluid (BALF). In the in vitro experiments, we used AMs (alveolar macrophages) challenged with burn serum to mimic the postburn microenvironment and noted that the serum significantly upregulated NLRP3 inflammasome signaling and reactive oxygen species (ROS) production. The use of ROS scavenger N-acetylcysteine (NAC) partially reversed NLRP3 inflammasome activity in cells exposed to burn serum. These results indicate that the NLRP3 inflammasome plays an essential role in burn-induced ALI and that burn-induced NLRP3 inflammasome activity is a partly ROS-dependent process. Targeting this axis may represent a promising therapeutic strategy for the treatment of burn-induced ALI. PMID:26576075

  5. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury.

    PubMed

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4(+) CD25(+) regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  6. Protective effects of dexamethasone on early acute lung injury induced by oleic acid in rats

    PubMed Central

    Huang, Bin; Wang, Dao-Xin; Deng, Wang

    2014-01-01

    Objective: Whether alveolar edema could be cleared by alveolar epithelial is a key to the treatment and prognosis of ALI (acute lung injury). In this study, oleic acid(OA)-induced ALI model was established, the expression of α1 Na+/K+-ATPase (NKA) and β1 Na+/K+-ATPase were performed in vivo to investigate the mechanism of alveolar fluid clearance (AFC) in ALI and the effect of early low doses of dexamethasone on alveolar fluid clearance. Methods: In this study, Male rats were challenged by OA with or without dexamethasone (1 mg/kg, iv) post-treatment. Lung histopathology, blood gas, pulmonary vascular permeability, BALF IL-6, MPO and NKA activity of lung were examined. α1NKA and β1NKA mRNA and protein expression were detected. Results: The results indicated that compared with sham operated group, NKA activity, mRNA and protein expression of α1NKA and β1NKA were decreased in OA treated group, while wet/dry ratio, lung index, IL-6, and MPO activity were increased significantly. Pulmonary edema was obviously seen under light microscope. Those indexes were improved in dexamethasone treated group compared to OA treated group. Conclusion: The expression of NKA to decline for the lung injury is one important mechanism of pulmonary edema. Early low dose of dexamethasone treatment could suppress the expression of inflammatory mediators, improved lung epithelial-endothelial barrier permeability, increased the expressions of α1 NKA and β1 NKA mRNA, α1 NKA and β1 NKA protein level, stimulated NKA activity and decreased pulmonary edema. In conclusion, these observations suggest that early low dose of dexamethasone treatment has a protective effect on OA induced ALI. PMID:25663967

  7. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.

    PubMed

    Garibaldi, Brian T; D'Alessio, Franco R; Mock, Jason R; Files, D Clark; Chau, Eric; Eto, Yoshiki; Drummond, M Bradley; Aggarwal, Neil R; Sidhaye, Venkataramana; King, Landon S

    2013-01-01

    Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI. PMID:23002097

  8. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4

    PubMed Central

    Zhao, Juanjuan; Chen, Chao; Guo, Mengmeng; Tao, Yijin; Cui, PanPan; Zhou, Ya; Qin, Nalin; Zheng, Jing; Zhang, Jidong; Xu, Lin

    2016-01-01

    Recent evidence showed that microRNA-7 (miR-7) played an important role in the pathologies of lung-related diseases. However, the potential role of miR-7 in acute lung injury (ALI) still remains poorly understood. Here, we assessed the effect of miR-7 deficiency on the pathology of ALI. We, first, found that the expression of miR-7 was upregulated in lung tissue in murine LPS-induced ALI model. Notably, we generated miR-7 knock down mice by using miRNA-Sponge technique and found that miR-7 deficiency could ameliorate the pathologies of lung as evidenced by accelerated body weight recovery, reduced level of bronchoalveolar lavage (BAL) proinflammatory cytokines and decreased number of BAL cells in ALI mice. Moreover, the proportion and number of various immune cells in BAL, including innate immune cell F4/80+ macrophages, γδT cells, NK1.1+ T cells, and CD11c+DCs, as well as adaptive immune cell CD4+ T cells and CD8+ T cells, also significantly changed, respectively. Mechanistic evidence showed that KLF4, a target molecule of miR-7, was upregulated in lung tissues in ALI model, accompanied by altered transduction of NF-κB, AKT, and ERK pathway. These data provided a previously unknown role of miR-7 in pathology of ALI, which could ultimately aid the understanding of development of ALI and the development of new therapeutic strategies against clinical inflammatory lung diseases. PMID:27774091

  9. Regional pulmonary inflammation in an endotoxemic ovine acute lung injury model.

    PubMed

    Fernandez-Bustamante, A; Easley, R B; Fuld, M; Mulreany, D; Chon, D; Lewis, J F; Simon, B A

    2012-08-15

    The regional distribution of inflammation during acute lung injury (ALI) is not well known. In an ovine ALI model we studied regional alveolar inflammation, surfactant composition, and CT-derived regional specific volume change (sVol) and specific compliance (sC). 18 ventilated adult sheep received IV lipopolysaccharide (LPS) until severe ALI was achieved. Blood and bronchoalveolar lavage (BAL) samples from apical and basal lung regions were obtained at baseline and injury time points, for analysis of cytokines (IL-6, IL-1β), BAL protein and surfactant composition. Whole lung CT images were obtained in 4 additional sheep. BAL protein and IL-1β were significantly higher in injured apical vs. basal regions. No significant regional surfactant composition changes were observed. Baseline sVol and sC were lower in apex vs. base; ALI enhanced this cranio-caudal difference, reaching statistical significance only for sC. This study suggests that apical lung regions show greater inflammation than basal ones during IV LPS-induced ALI which may relate to differences in regional mechanical events.

  10. Interactive effects of mechanical ventilation, inhaled nitric oxide and oxidative stress in acute lung injury.

    PubMed

    Ronchi, Carlos Fernando; Ferreira, Ana Lucia Anjos; Campos, Fabio Joly; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Moraes, Marcos Aurélio; Bonatto, Rossano Cesar; Yeum, Kyung-Jin; Fioretto, Jose Roberto

    2014-01-01

    To compare conventional mechanical ventilation (CMV) and high-frequency oscillatory ventilation (HFOV), with/without inhaled nitric oxide (iNO), for oxygenation, inflammation, antioxidant/oxidative stress status, and DNA damage in a model of acute lung injury (ALI). Lung injury was induced by tracheal infusion of warm saline. Rabbits were ventilated at [Formula: see text] 1.0 and randomly assigned to one of five groups. Overall antioxidant defense/oxidative stress was assessed by total antioxidant performance assay, and DNA damage by comet assay. Ventilatory and hemodynamic parameters were recorded every 30min for 4h. ALI groups showed worse oxygenation than controls after lung injury. After 4h of mechanical ventilation, HFOV groups presented significant improvements in oxygenation. HFOV with and without iNO, and CMV with iNO showed significantly increased antioxidant defense and reduced DNA damage than CMV without iNO. Inhaled nitric oxide did not beneficially affect HFOV in relation to antioxidant defense/oxidative stress and pulmonary DNA damage. Overall, lung injury was reduced using HFOV or CMV with iNO. PMID:24148688

  11. Anti-Inflammatory Effects of Ellagic Acid on Acute Lung Injury Induced by Acid in Mice

    PubMed Central

    Cornélio Favarin, Daniely; Martins Teixeira, Maxelle; Lemos de Andrade, Ednéia; de Freitas Alves, Claudiney; Lazo Chica, Javier Emilio; Artério Sorgi, Carlos; Paula Rogerio, Alexandre

    2013-01-01

    Acute lung injury (ALI) is characterized by alveolar edema and uncontrolled neutrophil migration to the lung, and no specific therapy is still available. Ellagic acid, a compound present in several fruits and medicinal plants, has shown anti-inflammatory activity in several experimental disease models. We used the nonlethal acid aspiration model of ALI in mice to determine whether preventive or therapeutic administration of ellagic acid (10 mg/kg; oral route) could interfere with the development or establishment of ALI inflammation. Dexamethasone (1 mg/kg; subcutaneous route) was used as a positive control. In both preventive and therapeutic treatments, ellagic acid reduced the vascular permeability changes and neutrophil recruitment to the bronchoalveolar lavage fluid (BALF) and to lung compared to the vehicle. In addition, the ellagic acid accelerated the resolution for lung neutrophilia. Moreover, ellagic acid reduced the COX-2-induced exacerbation of inflammation. These results were similar to the dexamethasone. However, while the anti-inflammatory effects of dexamethasone treatment were due to the reduced activation of NF-κB and AP-1, the ellagic acid treatment led to reduced BALF levels of IL-6 and increased levels of IL-10. In addition, dexamethasone treatment reduced IL-1β. Together, these findings identify ellagic acid as a potential therapeutic agent for ALI-associated inflammation. PMID:23533300

  12. Thromboxane A2 exacerbates acute lung injury via promoting edema formation.

    PubMed

    Kobayashi, Koji; Horikami, Daiki; Omori, Keisuke; Nakamura, Tatsuro; Yamazaki, Arisa; Maeda, Shingo; Murata, Takahisa

    2016-01-01

    Thromboxane A2 (TXA2) is produced in the lungs of patients suffering from acute lung injury (ALI). We assessed its contribution in disease progression using three different ALI mouse models. The administration of hydrochloric acid (HCl) or oleic acid (OA)+ lipopolysaccharide (LPS) caused tissue edema and neutrophil infiltration with TXA2 production in the lungs of the experimental mice. The administration of LPS induced only neutrophil accumulation without TXA2 production. Pretreatment with T prostanoid receptor (TP) antagonist attenuated the tissue edema but not neutrophil infiltration in these models. Intravital imaging and immunostaining demonstrated that administration of TP agonist caused vascular hyper-permeability by disrupting the endothelial barrier formation in the mouse ear. In vitro experiments showed that TP-stimulation disrupted the endothelial adherens junction, and it was inhibited by Ca(2+) channel blockade or Rho kinase inhibition. Thus endogenous TXA2 exacerbates ALI, and its blockade attenuates it by modulating the extent of lung edema. This can be explained by the endothelial hyper-permeability caused by the activation of TXA2-TP axis, via Ca(2+)- and Rho kinase-dependent signaling. PMID:27562142

  13. Protective Effect of Isorhamnetin on Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Yang, Bo; Li, Xiao-Ping; Ni, Yun-Feng; Du, Hong-Yin; Wang, Rong; Li, Ming-Jiang; Wang, Wen-Chen; Li, Ming-Ming; Wang, Xu-Hui; Li, Lei; Zhang, Wei-Dong; Jiang, Tao

    2016-02-01

    Isorhamnetin has been reported to have anti-inflammatory, anti-oxidative, and anti-proliferative effects. The aim of this study was to investigate the protective effect of isorhamnetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice by inhibiting the expression of cyclooxygenase-2 (COX-2). The effects of isorhamnetin on LPS-induced lung pathological damage, wet/dry ratios and the total protein level in bronchoalveolar lavage fluid (BALF), inflammatory cytokine release, myeloperoxidase (MPO) and superoxide dismutase (SOD) activities, and malondialdehyde (MDA) level were examined. In addition, the COX-2 activation in lung tissues was detected by Western blot. Isorhamnetin pretreatment improved the mice survival rates. Moreover, isorhamnetin pretreatment significantly attenuated edema and the pathological changes in the lung and inhibited protein extravasation in BALF. Isorhamnetin also significantly decreased the levels of inflammatory cytokines in BALF. In addition, isorhamnetin markedly prevented LPS-induced oxidative stress. Furthermore, isorhamnetin pretreatment significantly suppressed LPS-induced activation of COX-2. Isorhamnetin has been demonstrated to protect mice from LPS-induced ALI by inhibiting the expression of COX-2. PMID:26276127

  14. Thromboxane A2 exacerbates acute lung injury via promoting edema formation

    PubMed Central

    Kobayashi, Koji; Horikami, Daiki; Omori, Keisuke; Nakamura, Tatsuro; Yamazaki, Arisa; Maeda, Shingo; Murata, Takahisa

    2016-01-01

    Thromboxane A2 (TXA2) is produced in the lungs of patients suffering from acute lung injury (ALI). We assessed its contribution in disease progression using three different ALI mouse models. The administration of hydrochloric acid (HCl) or oleic acid (OA)+ lipopolysaccharide (LPS) caused tissue edema and neutrophil infiltration with TXA2 production in the lungs of the experimental mice. The administration of LPS induced only neutrophil accumulation without TXA2 production. Pretreatment with T prostanoid receptor (TP) antagonist attenuated the tissue edema but not neutrophil infiltration in these models. Intravital imaging and immunostaining demonstrated that administration of TP agonist caused vascular hyper-permeability by disrupting the endothelial barrier formation in the mouse ear. In vitro experiments showed that TP-stimulation disrupted the endothelial adherens junction, and it was inhibited by Ca2+ channel blockade or Rho kinase inhibition. Thus endogenous TXA2 exacerbates ALI, and its blockade attenuates it by modulating the extent of lung edema. This can be explained by the endothelial hyper-permeability caused by the activation of TXA2-TP axis, via Ca2+- and Rho kinase-dependent signaling. PMID:27562142

  15. Effects of methylene blue in acute lung injury induced by oleic acid in rats

    PubMed Central

    Cassiano Silveira, Ana Paula; Vento, Daniella Alves; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Tefé-Silva, Cristiane; Ramos, Simone Gusmão; Rubens de Nadai, Tales; Rodrigues, Alfredo José; Poli-Neto, Omero Benedicto

    2016-01-01

    Background In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. Methods Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. Results Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. Conclusions The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI. PMID:26855944

  16. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury

    PubMed Central

    Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C

    2015-01-01

    Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099

  17. Protective effect of carvacrol on acute lung injury induced by lipopolysaccharide in mice.

    PubMed

    Feng, Xiaosheng; Jia, Aiqing

    2014-08-01

    Carvacrol, the major component of Plectranthus amboinicus, has been known to exhibit anti-inflammatory activities. The aim of this study was to investigate the effects of carvacrol on lipopolysaccharide (LPS)-induced endotoxemia and acute lung injury (ALI) in mice. Mice were injected intraperitoneally (i.p.) with LPS and the mortality of mice for 7 days were observed twice a day. Meanwhile, the protective effect of carvacrol (20, 40 or 80 mg/kg) on LPS-induced endotoxemia were detected. Using an experimental model of LPS-induced ALI, we examined the effect of carvacrol in resolving lung injury. The results showed that carvacrol could improve survival during lethal endotoxemia and attenuate LPS-induced ALI in mice. The anti-inflammatory mechanisms of carvacrol may be due to its ability to inhibit NF-κB and MAPKs signaling pathways, thereby inhibiting inflammatory cytokines TNF-α, IL-6 and IL-1β production. PMID:24577726

  18. Involvement of Protein Kinase C-δ in Vascular Permeability in Acute Lung Injury.

    PubMed

    Ahn, Jong J; Jung, Jong P; Park, Soon E; Lee, Minhyun; Kwon, Byungsuk; Cho, Hong R

    2015-08-01

    Pulmonary edema is a major cause of mortality due to acute lung injury (ALI). The involvement of protein kinase C-δ (PKC-δ) in ALI has been a controversial topic. Here we investigated PKC-δ function in ALI using PKC-δ knockout (KO) mice and PKC inhibitors. Our results indicated that although the ability to produce proinflammatory mediators in response to LPS injury in PKC-δ KO mice was similar to that of control mice, they showed enhanced recruitment of neutrophils to the lung and more severe pulmonary edema. PKC-δ inhibition promoted barrier dysfunction in an endothelial cell layer in vitro, and administration of a PKC-δ-specific inhibitor significantly increased steady state vascular permeability. A neutrophil transmigration assay indicated that the PKC-δ inhibition increased neutrophil transmigration through an endothelial monolayer. This suggests that PKC-δ inhibition induces structural changes in endothelial cells, allowing extravasation of proteins and neutrophils.

  19. Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4.

    PubMed

    Fang, Xiaohui; Abbott, Jason; Cheng, Linda; Colby, Jennifer K; Lee, Jae Woo; Levy, Bruce D; Matthay, Michael A

    2015-08-01

    Previous studies demonstrated that bone marrow-derived mesenchymal stem (stromal) cells (MSCs) reduce the severity of acute lung injury in animal models and in an ex vivo perfused human lung model. However, the mechanisms by which MSCs reduce lung injury are not well understood. In the present study, we tested the hypothesis that human MSCs promote the resolution of acute lung injury in part through the effects of a specialized proresolving mediator lipoxin A4 (LXA4). Human alveolar epithelial type II cells and MSCs expressed biosynthetic enzymes and receptors for LXA4. Coculture of human MSCs with alveolar epithelial type II cells in the presence of cytomix significantly increased the production of LXA4 by 117%. The adoptive transfer of MSCs after the onset of LPS-induced acute lung injury (ALI) in mice led to improved survival (48 h), and blocking the LXA4 receptor with WRW4, a LXA4 receptor antagonist, significantly reversed the protective effect of MSCs on both survival and the accumulation of pulmonary edema. LXA4 alone improved survival in mice, and it also significantly decreased the production of TNF-α and MIP-2 in bronchoalveolar lavage fluid. In summary, these experiments demonstrated two novel findings: human MSCs promote the resolution of lung injury in mice in part through the proresolving lipid mediator LXA4, and LXA4 itself should be considered as a therapeutic for acute respiratory distress syndrome.

  20. Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury.

    PubMed

    Bocharov, Alexander V; Wu, Tinghuai; Baranova, Irina N; Birukova, Anna A; Sviridov, Denis; Vishnyakova, Tatyana G; Remaley, Alan T; Eggerman, Thomas L; Patterson, Amy P; Birukov, Konstantin G

    2016-07-15

    Synthetic amphipathic helical peptides (SAHPs) designed as apolipoprotein A-I mimetics are known to bind to class B scavenger receptors (SR-Bs), SR-BI, SR-BII, and CD36, receptors that mediate lipid transport and facilitate pathogen recognition. In this study, we evaluated SAHPs, selected for targeting human CD36, by their ability to attenuate LPS-induced inflammation, endothelial barrier dysfunction, and acute lung injury (ALI). L37pA, which targets CD36 and SR-BI equally, inhibited LPS-induced IL-8 secretion and barrier dysfunction in cultured endothelial cells while reducing lung neutrophil infiltration by 40% in a mouse model of LPS-induced ALI. A panel of 20 SAHPs was tested in HEK293 cell lines stably transfected with various SR-Bs to identify SAHPs with preferential selectivity toward CD36. Among several SAHPs targeting both SR-BI/BII and CD36 receptors, ELK-B acted predominantly through CD36. Compared with L37pA, 5A, and ELK SAHPs, ELK-B was most effective in reducing the pulmonary barrier dysfunction, neutrophil migration into the lung, and lung inflammation induced by LPS. We conclude that SAHPs with relative selectivity toward CD36 are more potent at inhibiting acute pulmonary inflammation and dysfunction. These data indicate that therapeutic strategies using SAHPs targeting CD36, but not necessarily mimicking all apolipoprotein A-I functions, may be considered a possible new treatment approach for inflammation-induced ALI and pulmonary edema. PMID:27316682

  1. Cigarette smoke causes acute airway disease and exacerbates chronic obstructive lung disease in neonatal mice.

    PubMed

    Jia, Jie; Conlon, Thomas M; Ballester Lopez, Carolina; Seimetz, Michael; Bednorz, Mariola; Zhou-Suckow, Zhe; Weissmann, Norbert; Eickelberg, Oliver; Mall, Marcus A; Yildirim, Ali Önder

    2016-09-01

    Epidemiological evidence demonstrates a strong link between postnatal cigarette smoke (CS) exposure and increased respiratory morbidity in young children. However, how CS induces early onset airway disease in young children, and how it interacts with endogenous risk factors, remains poorly understood. We, therefore, exposed 10-day-old neonatal wild-type and β-epithelial sodium ion channel (β-ENaC)-transgenic mice with cystic fibrosis-like lung disease to CS for 4 days. Neonatal wild-type mice exposed to CS demonstrated increased numbers of macrophages and neutrophils in the bronchoalveolar lavage fluid (BALF), which was accompanied by increased levels of Mmp12 and Cxcl1 BALF from β-ENaC-transgenic mice contained greater numbers of macrophages, which did not increase following acute CS exposure; however, there was significant increase in airway neutrophilia compared with filtered air transgenic and CS-exposed wild-type controls. Interestingly, wild-type and β-ENaC-transgenic mice demonstrated epithelial airway and vascular remodeling following CS exposure. Morphometric analysis of lung sections revealed that CS exposure caused increased mucus accumulation in the airway lumen of neonatal β-ENaC-transgenic mice compared with wild-type controls, which was accompanied by an increase in the number of goblet cells and Muc5ac upregulation. We conclude that short-term CS exposure 1) induces acute airway disease with airway epithelial and vascular remodeling in neonatal wild-type mice; and 2) exacerbates airway inflammation, mucus hypersecretion, and mucus plugging in neonatal β-ENaC-transgenic mice with chronic lung disease. Our results in neonatal mice suggest that young children may be highly susceptible to develop airway disease in response to tobacco smoke exposure, and that adverse effects may be aggravated in children with underlying chronic lung diseases. PMID:27448665

  2. Effects of basic drugs on prognosis of acute lung injury in mice

    PubMed Central

    Jia, Liming; Ren, Junming; Zhang, Weiwei; Qi, Yuehong; Zheng, Lina; Guo, Yongqing

    2015-01-01

    The aim of this study was to investigate the effects of basic drugs that alkalizes blood, on prognosis of acute lung injury in mice. Mice were randomized into three groups: Group normal saline, Group THAM, injected with 3.64% tri-(hydroxymethyl) methylamine (THAM), and Group NaHCO3, injected with 5% NaHCO3 (n=26, each group). The acute lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS; 50 mg/kg), followed by infusion of varying concentrations of the above solution into tail vein at the rate of 0.5 ml/h (controlled by micro pump) for over 2 h. Thirty minutes later, 6 mice from each group were randomly selected for blood gas analysis; then, the mice were killed and their lung tissues were sampled for detection of relative indicators, and the remaining mice were observed for signs of mortality for 72 h. Arterial pH, bicarbonate (HCO3 -), and BE and mortality of group THAM and NaHCO3 increased significantly compared to the corresponding parameters of the group normal saline (P<0.05); compared to the group normal saline, group NaHCO3 had increased blood [Na+] and decreased [K+] and [Ca2+] (P<0.05). Blood [Na+] of group THAM decreased while the lactic acid concentration increased (P<0.05) compared to the corresponding values of the group normal saline. Malondialdehyde (MDA) and myeloperoxidase (MPO) activity and wet-to-dry lung weight ratio (W/D) of group THAM and NaHCO3 increased significantly relative to group normal saline (P<0.05). Compared with the biopsy results of (A), pathological biopsy of (B) and (C) clearly revealed alveolar wall thickening, edema of alveolar epithelial cells, and infiltration of large neutrophils. Alkalizing blood could neither inhibit inflammatory reactions in LPS mouse model nor reduce the mortality rate of mice with acute lung injury, while excessive alkalization of blood could increase mice mortality. PMID:26770536

  3. Effects of basic drugs on prognosis of acute lung injury in mice.

    PubMed

    Jia, Liming; Ren, Junming; Zhang, Weiwei; Qi, Yuehong; Zheng, Lina; Guo, Yongqing

    2015-01-01

    The aim of this study was to investigate the effects of basic drugs that alkalizes blood, on prognosis of acute lung injury in mice. Mice were randomized into three groups: Group normal saline, Group THAM, injected with 3.64% tri-(hydroxymethyl) methylamine (THAM), and Group NaHCO3, injected with 5% NaHCO3 (n=26, each group). The acute lung injury model was established by intraperitoneal injection of lipopolysaccharide (LPS; 50 mg/kg), followed by infusion of varying concentrations of the above solution into tail vein at the rate of 0.5 ml/h (controlled by micro pump) for over 2 h. Thirty minutes later, 6 mice from each group were randomly selected for blood gas analysis; then, the mice were killed and their lung tissues were sampled for detection of relative indicators, and the remaining mice were observed for signs of mortality for 72 h. Arterial pH, bicarbonate (HCO3 (-)), and BE and mortality of group THAM and NaHCO3 increased significantly compared to the corresponding parameters of the group normal saline (P<0.05); compared to the group normal saline, group NaHCO3 had increased blood [Na(+)] and decreased [K(+)] and [Ca(2+)] (P<0.05). Blood [Na(+)] of group THAM decreased while the lactic acid concentration increased (P<0.05) compared to the corresponding values of the group normal saline. Malondialdehyde (MDA) and myeloperoxidase (MPO) activity and wet-to-dry lung weight ratio (W/D) of group THAM and NaHCO3 increased significantly relative to group normal saline (P<0.05). Compared with the biopsy results of (A), pathological biopsy of (B) and (C) clearly revealed alveolar wall thickening, edema of alveolar epithelial cells, and infiltration of large neutrophils. Alkalizing blood could neither inhibit inflammatory reactions in LPS mouse model nor reduce the mortality rate of mice with acute lung injury, while excessive alkalization of blood could increase mice mortality. PMID:26770536

  4. Transfusion-related acute lung injury in an era of TRALI risk mitigation.

    PubMed

    Lavelle, John C; Grant, Michelle L; Karp, Julie K

    2015-01-01

    Transfusion-related acute lung injury (TRALI) is a rare complication of transfusion, for which the true incidence remains obscure, since there are a number of factors that may lead to misdiagnosis. Despite this, it continues to be the leading cause of transfusion-associated mortality. Here we present a historical case of TRALI in an elderly female who received group AB plasma and discuss how current mitigation strategies would likely have prevented its occurrence. It is important to remember that both immune and non-immune factors play a role in TRALI pathogenesis, and although current preventative strategies may decrease TRALI's incidence, they likely will not eliminate it.

  5. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury.

    PubMed

    Kása, Anita; Csortos, Csilla; Verin, Alexander D

    2015-01-01

    Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review. PMID:25838980

  6. Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury

    PubMed Central

    Kása, Anita; Csortos, Csilla; Verin, Alexander D

    2014-01-01

    Endothelial cells (EC) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. In acute lung injury (ALI) the EC barrier is weakened leading to increased vascular permeability. It is widely accepted that EC barrier integrity is critically dependent upon intact cytoskeletal structure and cell junctions. Edemagenic agonists, like thrombin or endotoxin lipopolysaccharide (LPS), induced cytoskeletal rearrangement, and EC contractile responses leading to disruption of intercellular contacts and EC permeability increase. The highly clinically-relevant cytoskeletal mechanisms of EC barrier dysfunction are currently under intense investigation and will be described and discussed in the current review. PMID:25838980

  7. Protective effects of thoracic epidural anesthesia on hypoxia-induced acute lung injury in rabbits

    PubMed Central

    WANG, LIJUN; CANG, JING; XUE, ZHANGGANG

    2016-01-01

    The mechanism underlying the effect of thoracic epidural anesthesia (TEA) on hypoxia-induced acute lung injury (ALI) is currently unknown. In the present study, a rabbit acute lung injury model was established to investigate the effects of TEA on inflammatory factors, pulmonary surfactant and ultrastructure. A total of 56 rabbits were randomly assigned to four groups (n=14 per group): Control group (Group C), hypoxia group (Group H), sevoflurane group (Group S) and combined sevoflurane-epidural anesthesia group (Group ES). The ALI model was considered to have been successfully induced when the ratio of arterial oxygen partial pressure to fractional inspired oxygen was <300. The correct placement of a catheter for TEA was confirmed using epidurography. ALI was maintained for 3 h. Arterial blood samples were collected from all groups during spontaneous breathing (T0) and at 3 h after ALI induction (T5) in order to evaluate the serum levels of interleukin (IL)-6, IL-8 and IL-10. Bronchoalveolar lavage fluid was harvested to determine the total phospholipid, saturated phosphatidylcholine and total protein levels. Furthermore, the dry/wet weight ratio and the mRNA expression levels of IL-6, IL-8 and IL-10 in the lung tissue were determined using ELISA. In addition, light and transmission electron microscopy and histological techniques were used to examine the morphology of alveolar type II cells in the rat lung tissue. The results indicate that changes of serum IL-6, IL-8 and IL-10 levels following ALI were consistent with the changes in the mRNA expression levels of IL-6, IL-8 and IL-10 in the lung tissue. TEA attenuated these changes and thus reduced the severity of the ALI. In addition, TEA improved the alveolar structure, reduced the number of polymorphonuclear cells and mitigated the damage of lamellar bodies. In summary, the results of the present study indicate that TEA reduces lung tissue damage by inhibiting systemic and local inflammation, decreasing the

  8. Development of a Multicomponent Prediction Model for Acute Esophagitis in Lung Cancer Patients Receiving Chemoradiotherapy

    SciTech Connect

    De Ruyck, Kim; Sabbe, Nick; Oberije, Cary; Vandecasteele, Katrien; Thas, Olivier; De Ruysscher, Dirk; Lambin, Phillipe; Van Meerbeeck, Jan; De Neve, Wilfried; Thierens, Hubert

    2011-10-01

    Purpose: To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile. Patients and Methods: Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidate genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve. Results: A total of 110 patients (40%) developed acute esophagitis Grade {>=}2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%. Conclusion: Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.

  9. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome

    PubMed Central

    Hagawane, T.N.; Gaikwad, R.V.; Kshirsagar, N.A.

    2016-01-01

    Background & objectives: Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Methods: Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest X-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. Results: It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. Interpretation & conclusions: The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury. PMID

  10. Danaparoid sodium inhibits systemic inflammation and prevents endotoxin-induced acute lung injury in rats

    PubMed Central

    Hagiwara, Satoshi; Iwasaka, Hideo; Hidaka, Seigo; Hishiyama, Sohei; Noguchi, Takayuki

    2008-01-01

    Introduction Systemic inflammatory mediators, including high mobility group box 1 (HMGB1), play an important role in the development of sepsis. Anticoagulants, such as danaparoid sodium (DA), may be able to inhibit sepsis-induced inflammation, but the mechanism of action is not well understood. We hypothesised that DA would act as an inhibitor of systemic inflammation and prevent endotoxin-induced acute lung injury in a rat model. Methods We used male Wistar rats. Animals in the intervention arm received a bolus of 50 U/kg of DA or saline injected into the tail vein after lipopolysaccharide (LPS) administration. We measured cytokine (tumour necrosis factor (TNF)α, interleukin (IL)-6 and IL-10) and HMGB1 levels in serum and lung tissue at regular intervals for 12 h following LPS injection. The mouse macrophage cell line RAW 264.7 was assessed following stimulation with LPS alone or concurrently with DA with identification of HMGB1 and other cytokines in the supernatant. Results Survival was significantly higher and lung histopathology significantly improved among the DA (50 U/kg) animals compared to the control rats. The serum and lung HMGB1 levels were lower over time among DA-treated animals. In the in vitro study, administration of DA was associated with decreased production of HMGB1. In the cell signalling studies, DA administration inhibited the phosphorylation of IκB. Conclusion DA decreases cytokine and HMGB1 levels during LPS-induced inflammation. As a result, DA ameliorated lung pathology and reduces mortality in endotoxin-induced systemic inflammation in a rat model. This effect may be mediated through the inhibition of cytokines and HMGB1. PMID:18380908

  11. [Fatal acute interstitial lung disease associated with docetaxel administration: about a case and review of the literature].

    PubMed

    Brahmi, Sami Aziz; Youssef, Seddik; Ziani, Fatima Zahra; Afqir, Said

    2016-01-01

    Docetaxel is a chemotherapeutic agent belonging to the taxane family. This drug is widely used to treat cancers. Interstitial lung disease is a rare but serious toxicity due to the high mortality risk. We report a case of a patient with breast cancer who had fatal acute interstitial lung disease after auxiliary chemotherapy with docetaxel. The clinician should be aware of this risk and should consider it in differential diagnosis in patients with respiratory symptoms treated with docetaxel. PMID:27642457

  12. Cervical lung herniation complicating a case of acute asphyxial asthma in a child.

    PubMed

    Martchek, Melissa A; Padilla, Benjamin E; Zonfrillo, Mark R; Friedlaender, Eron Y

    2015-04-01

    The abrupt onset of respiratory failure secondary to asthma, known as acute asphyxial asthma (AAA) in adults, is uncommonly reported in children. Here, we report a case of a child with the acute onset of respiratory failure consistent with AAA complicated by the finding of a neck mass during resuscitation. This 11-year-old boy with a history of asthma initially presented in respiratory failure with altered mental status after the complaint of difficulty in breathing minutes before collapsing at home. Initially, his respiratory failure was thought to be secondary to status asthmaticus, and treatment was initiated accordingly. However, a neck mass noted during the resuscitation was cause for concern, and other etiologies for his respiratory failure were considered, including an airway obstructing neck mass. After pediatric surgery and anesthesia consultation for intubation and possible tracheostomy placement, general anesthesia was induced in the operating room with an inhaled anesthetic, with prompt resolution of the bronchspasm and decompression of the neck mass. Review of the imaging and clinical course ultimately yielded a diagnosis of cervical lung herniation as the etiology of his neck mass. We report this case of AAA and cervical lung herniation and a review of the literature of these 2 uncommon phenomena in children. PMID:25831031

  13. Sirtinol Inhibits Neutrophil Elastase Activity and Attenuates Lipopolysaccharide-Mediated Acute Lung Injury in Mice

    PubMed Central

    Tsai, Yung-Fong; Yu, Huang-Ping; Chang, Wen-Yi; Liu, Fu-Chao; Huang, Zhen-Cheng; Hwang, Tsong-Long

    2015-01-01

    Enhanced activity of neutrophil elastase leads to a protease–antiprotease imbalance, and plays an essential pathogenic role in acute lung injury (ALI) and acute respiratory distress syndrome. We assayed the pharmacological effects and mechanisms of the action of sirtinol in human neutrophils, and in neutrophil elastase (HNE)-induced paw edema and lipopolysaccharide (LPS)-mediated ALI in mice. Sirtinol significantly inhibited the activity of HNE from human neutrophils in response to various stimulators. The inhibitory effects on HNE activity were not mediated through protein kinase A, calcium, extracellular-regulated kinase, c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, Akt, or Src family kinases. Analysis of enzymatic activities showed that sirtinol inhibited HNE activity in a concentration-dependent manner. These results demonstrate that sirtinol does not affect neutrophil function and is an HNE inhibitor. In addition, administration of sirtinol significantly inhibited HNE-induced paw edema, and attenuated the myeloperoxidase activity and reduced pulmonary wet/dry weight ratio in the LPS-induced ALI mouse model. Our study indicates that sirtinol has anti-inflammatory effects through direct inhibition of HNE activity and attenuates HNE-induced and LPS-mediated tissue or organ injury in vivo. Sirtinol is a novel HNE inhibitor and may have the potential for clinical application in the treatment of inflammatory lung diseases. PMID:25666548

  14. Acute high-altitude exposure reduces lung diffusion: data from the HIGHCARE Alps project.

    PubMed

    Agostoni, Piergiuseppe; Swenson, Erik R; Fumagalli, Roberto; Salvioni, Elisabetta; Cattadori, Gaia; Farina, Stefania; Bussotti, Maurizio; Tamplenizza, Margherita; Lombardi, Carolina; Bonacina, Daniele; Brioschi, Maura; Caravita, Sergio; Modesti, Pietro; Revera, Miriam; Giuliano, Andrea; Meriggi, Paolo; Faini, Andrea; Bilo, Grzegorz; Banfi, Cristina; Parati, Gianfranco

    2013-08-15

    The causes and development of lung fluid, as well as the integrity of the alveolar-capillary membrane at high altitude, are undefined. This study was conceived to see whether fluid accumulates within the lung with acute high altitude exposure, and whether this is associated with alveolar capillary membrane damage. We studied lung carbon monoxide diffusion (DLCO), its components - membrane diffusion (DM) and capillary volume (VC) and alveolar volume (VA) measured in 43 healthy subjects in Milan (122 m) and after 1 and 3 days at Capanna Regina Margherita (4559 m). DLCO measurement was adjusted for hemoglobin and inspired oxygen. We also measured plasma surfactant derived protein B (SPB) and Receptor of Advanced Glycation End-products (RAGE) as markers of alveolar-capillary membrane damage, and ultrasound lung comets as a marker of extravascular lung water. 21 subjects received acetazolamide and 22 placebo. DLCO was lower at Capanna Regina Margherita (day 1: 24.3 ± 4.7 and day 3: 23.6 ± 5.4 mL/mmHg/min), than in Milan (25.8 ± 5.5; p<0.001 vs. day 1 and 3) due to DM reduction (Milan: 50.5 ± 14.6 mL/mmHg/min, Capanna Regina Margherita day 1: 45.1 ± 11.5 mL/mmHg/min, day 3: 43.2 ± 13.9 mL/mmHg/min; p<0.05 Milan vs. day 3) with a partially compensatory VC increase (Milan: 96 ± 37 mL, Capanna Regina Margherita day 1: 152 ± 66 mL, day 3: 153 ± 59 mL; p<0.001 Milan vs. day 1 and day 3). Acetazolamide did not prevent the fall in DLCO albeit, between day 1 and 3, such a trend was observed. Regardless of treatment lung comets increased from 0 to 7.2 ± 3.6 (p<0.0001). SPB and RAGE were unchanged. Lung fluid increased at high altitude without evidence from plasma measurements, supporting alveolar-capillary damage. PMID:23619193

  15. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  16. Severe acute oxidant exposure: morphological damage and aerobic metabolism in the lung

    SciTech Connect

    Montgomery, M.R.; Teuscher, F.; LaSota, I.; Niewoehner, D.E.

    1986-09-01

    Groups of male rats were exposed to acute doses of oxygen, ozone, or paraquat which produced equivalent mortality (25-30%) over a 28 day post-exposure period. Quantitative evaluation of morphological changes indicated the primary response to be edema and inflammation with only slight fibrosis being apparent by the end of the observation period. Aerobic pulmonary metabolism was inhibited in lungs from animals exposed to oxygen and ozone as evidenced by decreased oxygen consumption; however, this was transient and O/sub 2/ consumption returned to normal within 24 hours after removal from the exposure chamber. Conversely, treatment with paraquat caused an immediate, transient stimulation of O/sub 2/ consumption. Glucose metabolism was unaltered by the gas exposures and, as previously reported, was initially stimulated by paraquat treatment. In vitro, only paraquat altered both O/sub 2/ consumption and glucose metabolism when added to lung slice preparations; ozone had no effect. Oxygen did not alter O/sub 2/ consumption but caused a slight biphasic response in glucose metabolism. Aerobic metabolism is relatively unchanged by these doses of oxygen and ozone which result in the death of 25-30% of all treated animals. Even though paraquat produces similar morphologic changes, it may represent a more severe metabolic insult than ''equivalent'' doses of oxygen or ozone. Also, if interstitial pulmonary fibrosis is a desired result of experimental exposure, rats may not be a suitable model for oxidant induced lung injury.

  17. Asiatic Acid Inhibits Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Li, Zhiling; Xiao, Xianzhong; Yang, Mingshi

    2016-10-01

    Asiatic acid (AA), a major triterpene isolated from Centella asiatica (L.) Urban, is known to exert various pharmacological activities, including anti-inflammatory and antioxidant effects. The aim of this study was to evaluate the anti-inflammatory effects of AA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the underlying mechanisms. Lung pathological changes were assessed by H&E staining. The myeloperoxidase (MPO) activity was detected by MPO assay. The levels of inflammatory cytokines were measured by ELISA. TLR4 and NF-kB expression was detected by Western blot analysis. AA obviously inhibited LPS-induced lung histopathological changes, MPO activity, and inflammatory cell numbers in bronchoalveolar lavage fluid (BALF). Treatment of AA also inhibited LPS-induced TNF-α, IL-6, and IL-1β production. Furthermore, Western blot analysis showed that AA inhibited LPS-induced TLR4 expression and NF-kB activation. In conclusion, AA inhibited LPS-induced ALI in mice by inhibiting inflammatory cytokine production, which is mediated via blocking of the TLR4/NF-kB signaling pathway.

  18. Eupatorium lindleyanum DC. flavonoids fraction attenuates lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Chu, Chunjun; Yao, Shi; Chen, Jinglei; Wei, Xiaochen; Xia, Long; Chen, Daofeng; Zhang, Jian

    2016-10-01

    Eupatorium lindleyanum DC., "Ye-Ma-Zhui" called by local residents in China, showed anti-inflammatory activity and is used to treat tracheitis. We had isolated and identified the flavonoids, diterpenoids and sesquiterpenes compounds from the herb. In the present study, we evaluated the protective effects of the flavonoids fraction of E. lindleyanum (EUP-FLA) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and the possible underlying mechanisms of action. EUP-FLA could significantly decrease lung wet-to-dry weight (W/D) ratio, nitric oxide (NO) and protein concentration in BALF, lower myeloperoxidase (MPO) activity, increase superoxide dismutase (SOD) activity and down-regulate the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Additionally, EUP-FLA attenuated lung histopathological changes and significantly reduced complement deposition with decreasing the levels of Complement 3 (C3) and Complement 3c (C3c) in serum. These results demonstrated that EUP-FLA may attenuate LPS-induced ALI via reducing productions of pro-inflammatory mediators, decreasing the level of complement and affecting the NO, SOD and MPO activity. PMID:27398612

  19. Leukotriene B4 receptor type 2 protects against pneumolysin-dependent acute lung injury

    PubMed Central

    Shigematsu, Misako; Koga, Tomoaki; Ishimori, Ayako; Saeki, Kazuko; Ishii, Yumiko; Taketomi, Yoshitaka; Ohba, Mai; Jo-Watanabe, Airi; Okuno, Toshiaki; Harada, Norihiro; Harayama, Takeshi; Shindou, Hideo; Li, Jian-Dong; Murakami, Makoto; Hoka, Sumio; Yokomizo, Takehiko

    2016-01-01

    Although pneumococcal infection is a serious problem worldwide and has a high mortality rate, the molecular mechanisms underlying the lethality caused by pneumococcus remain elusive. Here, we show that BLT2, a G protein-coupled receptor for leukotriene B4 and 12(S)-hydroxyheptadecatrienoic acid (12-HHT), protects mice from lung injury caused by a pneumococcal toxin, pneumolysin (PLY). Intratracheal injection of PLY caused lethal acute lung injury (ALI) in BLT2-deficient mice, with evident vascular leakage and bronchoconstriction. Large amounts of cysteinyl leukotrienes (cysLTs), classically known as a slow reactive substance of anaphylaxis, were detected in PLY-treated lungs. PLY-dependent vascular leakage, bronchoconstriction, and death were markedly ameliorated by treatment with a CysLT1 receptor antagonist. Upon stimulation by PLY, mast cells produced cysLTs that activated CysLT1 expressed in vascular endothelial cells and bronchial smooth muscle cells, leading to lethal vascular leakage and bronchoconstriction. Treatment of mice with aspirin or loxoprofen inhibited the production of 12-HHT and increased the sensitivity toward PLY, which was also ameliorated by the CysLT1 antagonist. Thus, the present study identifies the molecular mechanism underlying PLY-dependent ALI and suggests the possible use of CysLT1 antagonists as a therapeutic tool to protect against ALI caused by pneumococcal infection. PMID:27703200

  20. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats.

    PubMed

    Gao, S; Li, H; Zhou, X-Q; You, J-B; Tu, D-N; Xia, G; Jiang, J-X; Xin, C

    2015-07-31

    Withaferin A (WFA) is an active compound from Withania somnifera and has been reported to exhibit a variety of pharmacological activities such as anti—inflammatory, immunomodulatory and anti—tumor properties. In the present study, we investigated the potential protective role of WFA on acute lung injury in neonatal rats induced by lipopolysaccharide (LPS). We found that WFA significantly attenuated the pathological changes of lungs induced by LPS injection. Administration with WFA obviously decreased pulmonary neutrophil infiltration accompanied with decreased MPO concentrations. WFA also reduced the expression of pro—inflammatory cytokines including MIP—2, TNF—α, IL—1β and IL—6. Meanwhile, the expression levels of anti—inflammatory mediators such as TGF—β1 and IL—10 were significantly increased following WFA administration. Moreover, WFA protected LPS—treated rats from oxidative damage via up—regulation of TBARS and H2O2 concentrations and down—regulation of ROS contents. Taken together, the present study demonstrated that WFA administration attenuated LPS—induced lung injury through inhibition of inflammatory responses and oxidative stress.

  1. VEGF‐D promotes pulmonary oedema in hyperoxic acute lung injury

    PubMed Central

    Sato, Teruhiko; Paquet‐Fifield, Sophie; Harris, Nicole C; Roufail, Sally; Turner, Debra J; Yuan, Yinan; Zhang, You‐Fang; Fox, Stephen B; Hibbs, Margaret L; Wilkinson‐Berka, Jennifer L; Williams, Richard A; Stacker, Steven A; Sly, Peter D

    2016-01-01

    Abstract Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF‐D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF‐D in pathological oedema was unknown. To address these issues, we exposed Vegfd‐deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd‐deficient mice was substantially reduced compared to wild‐type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf‐d and its receptor Vegfr‐3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild‐type mice, indicating that components of the Vegf‐d signalling pathway are up‐regulated in hyperoxia. Importantly, VEGF‐D and its receptors were co‐localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF‐D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf‐d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF‐D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. PMID:26924464

  2. Pulmonary clearance of radiotracers after positive end-expiratory pressure or acute lung injury

    SciTech Connect

    Barrowcliffe, M.P.; Zanelli, G.D.; Jones, J.G.

    1989-01-01

    In anesthetized rabbits we measured clearance from lung to blood of eight aerosolized technetium-99m-labeled compounds: diethylenetriaminepentaacetate (99mTc-DTPA); cytochrome c; myoglobin; a myoglobin polymer; albumin; and anionic, cationic, and neutral dextrans of equivalent molecular size. We investigated the effect of applying positive end-expiratory pressure (PEEP) and, on a subsequent occasion, of injecting oleic acid intravenously to produce acute lung injury on the pulmonary clearance rate. Base-line clearance rates were monoexponential and varied with the molecular weights of the radiotracers. For each tracer the rate of clearance was increased a similar degree by either PEEP or oleic acid. However, with PEEP, clearance remained monoexponential, whereas after oleic acid, smaller molecular-weight radiotracers had multiexponential clearance curves. This suggests that after oleic acid the alveolar epithelium breaks down in a nonuniform fashion. We conclude that differentiation of the effect of PEEP from that of severe lung injury caused by oleic acid is not readily accomplished by either increasing the size of the tracer molecule or by varying the molecular charge.

  3. Acute response to elastase in sheep lungs measured with Ga-67

    SciTech Connect

    Susskind, H.; Chanana, A.D.; Joel, D.D.; Brill, A.B.; Janoff, A.; Som, P.; Oster, Z.H.

    1984-12-01

    The early inflammatory changes in sheep's lungs were studied with Ga-67 citrate, injected i.v. immediately following intrabronchial instillation of different doses of elastase into the right diaphragmatic lobes of 15 sheep. The elastase-induced lesions in the first five sheep (two received 4000 units; three got 6000) were imaged up to seven times in an 8-day period to measure the temporal changes in the lesion and to select the appropriate imaging time; the other ten sheep (800-8000 units) were imaged once at 52 hr. Localization of Ga-67, as seen on the posterior and right lateral projections, was confined to a well-circumscribed region in the right lung field. The lesion could be detected as early as 4 hr after elastase instillation. It decreased to 60% of its initial area at 4 hr, while the total Ga-67 activity in the sheep remained constant after 52-75 hr. Gallium-67 uptake in the lesion correlated positively with the dose of elastase (r = 0.88, p < 0.001) and with the reduction in perfusion, as determined 4 wk after the elastase instillation (r = 0.66, p < 0.05). Early Ga-67 uptake in inflammatory lung lesions could therefore be used as a reliable predictor of the size of the acute elastase-induced inflammatory reaction, as well as of the sequelae involving the regional vascular supply 4 wk later. 25 references, 5 figures, 2 tables.

  4. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury.

    PubMed

    Sato, Teruhiko; Paquet-Fifield, Sophie; Harris, Nicole C; Roufail, Sally; Turner, Debra J; Yuan, Yinan; Zhang, You-Fang; Fox, Stephen B; Hibbs, Margaret L; Wilkinson-Berka, Jennifer L; Williams, Richard A; Stacker, Steven A; Sly, Peter D; Achen, Marc G

    2016-06-01

    Leakage of fluid from blood vessels, leading to oedema, is a key feature of many diseases including hyperoxic acute lung injury (HALI), which can occur when patients are ventilated with high concentrations of oxygen (hyperoxia). The molecular mechanisms driving vascular leak and oedema in HALI are poorly understood. VEGF-D is a protein that promotes blood vessel leak and oedema when overexpressed in tissues, but the role of endogenous VEGF-D in pathological oedema was unknown. To address these issues, we exposed Vegfd-deficient mice to hyperoxia. The resulting pulmonary oedema in Vegfd-deficient mice was substantially reduced compared to wild-type, as was the protein content of bronchoalveolar lavage fluid, consistent with reduced vascular leak. Vegf-d and its receptor Vegfr-3 were more highly expressed in lungs of hyperoxic, versus normoxic, wild-type mice, indicating that components of the Vegf-d signalling pathway are up-regulated in hyperoxia. Importantly, VEGF-D and its receptors were co-localized on blood vessels in clinical samples of human lungs exposed to hyperoxia; hence, VEGF-D may act directly on blood vessels to promote fluid leak. Our studies show that Vegf-d promotes oedema in response to hyperoxia in mice and support the hypothesis that VEGF-D signalling promotes vascular leak in human HALI. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.

  5. Protective effects of fenofibrate against acute lung injury induced by intestinal ischemia/reperfusion in mice

    PubMed Central

    Zhu, Qiankun; He, Guizhen; Wang, Jie; Wang, Yukang; Chen, Wei

    2016-01-01

    This experiment was conducted to evaluate whether pretreatment with fenofibrate could mitigate acute lung injury (ALI) in a mice model of intestinal ischemia/reperfusion (I/R). Male C57BL/6 mice were randomly assigned into three groups (n = 6): sham, intestinal I/R + vehicle, and intestinal I/R + fenofibrate. Intestinal I/R was achieved by clamping the superior mesenteric artery. Fenofibrate (100 mg/kg) or equal volume of vehicle was injected intraperitoneally 60 minutes before the ischemia. At the end of experiment, measurement of pathohistological score, inflammatory mediators and other markers were performed. In addition, a 24-hour survival experiment was conducted in intestinal I/R mice treated with fenofibrate or vehicle. The chief results were as anticipated. Pathohistological evaluation indicated that fenofibrate ameliorated the local intestine damage and distant lung injury. Pretreatment with fenofibrate significantly decreased inflammatory factors in both the intestine and the lung. Consistently, renal creatine levels and hepatic ALT levels were significantly decreased in the fenofibrate group. Moreover, serum systemic inflammatory response indicators were significantly alleviated in the fenofibrate group. In addition, fenofibrate administration significantly improved the survival rate. Collectively, our data indicated that pretreatment with fenofibrate prior to ischemia attenuated intestinal I/R injury and ALI. PMID:26902261

  6. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury.

    PubMed

    Yang, Penghui; Gu, Hongjing; Zhao, Zhongpeng; Wang, Wei; Cao, Bin; Lai, Chengcai; Yang, Xiaolan; Zhang, LiangYan; Duan, Yueqiang; Zhang, Shaogeng; Chen, Weiwen; Zhen, Wenbo; Cai, Maosheng; Penninger, Josef M; Jiang, Chengyu; Wang, Xiliang

    2014-11-13

    Since March 2013, the emergence of an avian-origin influenza A (H7N9) virus has raised concern in China. Although most infections resulted in respiratory illness, some severe cases resulted in acute respiratory distress syndrome (ARDS), which is a severe form of acute lung injury (ALI) that further contributes to morbidity. To date, no effective drugs that improve the clinical outcome of influenza A (H7N9) virus-infected patients have been identified. Angiotensin-converting enzyme (ACE) and ACE2 are involved in several pathologies such as cardiovascular functions, renal disease, and acute lung injury. In the current study, we report that ACE2 could mediate the severe acute lung injury induced by influenza A (H7N9) virus infection in an experimental mouse model. Moreover, ACE2 deficiency worsened the disease pathogenesis markedly, mainly by targeting the angiotensin II type 1 receptor (AT1). The current findings demonstrate that ACE2 plays a critical role in influenza A (H7N9) virus-induced acute lung injury, and suggest that might be a useful potential therapeutic target for future influenza A (H7N9) outbreaks.

  7. Arginase 1: An Unexpected Mediator of Pulmonary Capillary Barrier Dysfunction in Models of Acute Lung Injury

    PubMed Central

    Lucas, Rudolf; Czikora, Istvàn; Sridhar, Supriya; Zemskov, Evgeny A.; Oseghale, Aluya; Circo, Sebastian; Cederbaum, Stephen D.; Chakraborty, Trinad; Fulton, David J.; Caldwell, Robert W.; Romero, Maritza J.

    2013-01-01

    The integrity of epithelial and endothelial barriers in the lower airspaces of the lungs has to be tightly regulated, in order to prevent leakage and to assure efficient gas exchange between the alveoli and capillaries. Both G− and G+ bacterial toxins, such as lipopolysaccharide and pneumolysin, respectively, can be released in high concentrations within the pulmonary compartments upon antibiotic treatment of patients suffering from acute respiratory distress syndrome (ARDS) or severe pneumonia. These toxins are able to impair endothelial barrier function, either directly, or indirectly, by induction of pro-inflammatory mediators and neutrophil sequestration. Toxin-induced endothelial hyperpermeability can involve myosin light chain phosphorylation and/or microtubule rearrangement. Endothelial nitric oxide synthase (eNOS) was proposed to be a guardian of basal barrier function, since eNOS knock-out mice display an impaired expression of inter-endothelial junction proteins and as such an increased vascular permeability, as compared to wild type mice. The enzyme arginase, the activity of which can be regulated by the redox status of the cell, exists in two isoforms – arginase 1 (cytosolic) and arginase 2 (mitochondrial) – both of which can be expressed in lung microvascular endothelial cells. Upon activation, arginase competes with eNOS for the substrate l-arginine, as such impairing eNOS-dependent NO generation and promoting reactive oxygen species generation by the enzyme. This mini-review will discuss recent findings regarding the interaction between bacterial toxins and arginase during acute lung injury and will as such address the role of arginase in bacterial toxin-induced pulmonary endothelial barrier dysfunction. PMID:23966993

  8. The role of tumor necrosis factor in increased airspace epithelial permeability in acute lung inflammation.

    PubMed

    Li, X Y; Donaldson, K; Brown, D; MacNee, W

    1995-08-01

    Increased airspace epithelial permeability is an early event in lung inflammation and injury. In this study, we have developed a rat model to study the mechanisms of the epithelial permeability to 125iodine-labeled bovine serum albumin (125I-BSA), instilled intratracheally during acute lung inflammation. Epithelial permeability was measured as the percentage of instilled 125I-BSA appearing in the blood. The increase in epithelial permeability induced by intratracheal instillation of heat-killed Corynebacterium parvum produced a peak influx of neutrophils into the bronchoalveolar space at 16 h, which occurred after the peak increase in epithelial permeability (8 h). The increased epithelial permeability induced by C. parvum did not appear to be protease- or oxidant-mediated. Depletion of peripheral blood neutrophils was achieved by an intravenous injection of anti-neutrophil polyclonal antibody. The consequent profound reduction in neutrophil and macrophage influx into the airspaces 8 h after instillation of C. parvum reduced the epithelial permeability to control values. Bronchoalveolar lavage (BAL) leukocytes from rats 8 h, but not 16 h, after treatment with C. parvum caused a modest increase in epithelial permeability when re-instilled intratracheally into control rat lungs. Separation of the leukocytes before re-instillation indicated that macrophages rather than neutrophils were predominantly responsible for the increased epithelial permeability. The presence of dramatically increased levels of tumor necrosis factor (TNF) in BAL 8 h in contrast to a slight increase in BAL 16 h after C. parvum, the release of TNF from 8 h macrophages, the increased epithelial permeability induced by TNF in epithelial monolayers in vitro, and the inhibition of C. parvum-induced epithelial permeability by TNF antibody support the premise that TNF is a major player in the increased epithelial permeability that occurs during C. parvum-induced acute alveolitis. PMID:7626286

  9. The impact of recurrent acute chest syndrome on the lung function of young adults with sickle cell disease.

    PubMed

    Knight-Madden, Jennifer M; Forrester, Terrence S; Lewis, Norma A; Greenough, Anne

    2010-12-01

    The aim of this study was to assess the impact of recurrent acute chest syndrome (ACS) episodes on the lung function of young adults with sickle cell disease (SCD). Our prospective study included 80 SCD adults [26 with recurrent acute chest syndrome (ACS)] and 80 ethnically matched controls aged between 18 and 28 years. Lung function (spirometry and lung volumes) was measured and the results were expressed as the percentage predicted for height. Bronchial hyperresponsiveness (BHR) was assessed by the response to either a bronchodilator or an exercise challenge. The adults with recurrent ACS (two or more ACS episodes) had lower median forced vital capacity (74 vs. 83%, p = 0.03), forced expiratory volume in 1 s (79 vs. 90%, p < 0.03), and total lung capacity (69 vs. 81%, p = 0.04) than SCD adults who had one or no ACS episodes. The greater the number of ACS episodes, the greater the reduction in lung function (p = 0.001). The adults with SCD had lower median forced vital capacity (81 vs. 106%), forced expiratory volume in 1 s (85 vs. 107%), and total lung capacity (80 vs. 87%) than the controls (p < 0.001). Similar numbers in each group had BHR (p = 0.2). The prevalence of restrictive ventilatory defect in the patients with SCD was almost double that of the controls (p = 0.004). Young adults with SCD have worse lung function than ethnically matched controls, particularly if they have suffered recurrent ACS episodes.

  10. Bone marrow-derived cells participate in stromal remodeling of the lung following acute bacterial pneumonia in mice.

    PubMed

    Serikov, Vladimir B; Mikhaylov, Viatcheslav M; Krasnodembskay, Anna D; Matthay, Michael A

    2008-01-01

    Bone marrow-derived cells (BMDC) have been shown to graft injured tissues, differentiate in specialized cells, and participate in repair. The importance of these processes in acute lung bacterial inflammation and development of fibrosis is unknown. The goal of this study was to investigate the temporal sequence and lineage commitment of BMDC in mouse lungs injured by bacterial pneumonia. We transplanted GFP-tagged BMDC into 5-Gy-irradiated C57BL/6 mice. After 3 months of recovery, mice were subjected to LD(50) intratracheal instillation of live E. coli (controls received saline) which produced pneumonia and subsequent areas of fibrosis. Lungs were investigated by immunohistology for up to 6 months. At the peak of lung inflammation, the predominant influx of BMDC were GFP(+) leukocytes. Postinflammatory foci of lung fibrosis were evident after 1-2 months. The fibrotic foci in lung stroma contained clusters of GFP(+) CD45(+) cells, GFP(+) vimentin-positive cells, and GFP(+) collagen I-positive fibroblasts. GFP(+) endothelial or epithelial cells were not identified. These data suggest that following 5-Gy irradiation and acute bacterial pneumonia, BMDC may temporarily participate in lung postinflammatory repair and stromal remodeling without long-term engraftment as specialized endothelial or epithelial cells.

  11. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway.

    PubMed

    Wang, Ruixuan; Ma, Lijie; Weng, Dan; Yao, Jiahui; Liu, Xueying; Jin, Faguang

    2016-05-01

    Small cell lung cancer (SCLC) is the most aggressive lung cancer subtype and accounts for more than 15% of all lung cancer cases. Cisplatin [cis-diamminedichloroplatinum (CDDP)]-based combination chemotherapy is the cornerstone for all stages of SCLC. However, acquired multidrug resistance (MDR) and intolerable toxicities lead to a high mortality rate in SCLC patients. Gallic acid [3,4,5-trihydroxybenzoic acid (GA)] is a natural botanic phenolic compound which can induce cell apoptosis in several types of cancers. In the present study, we aimed to explore the anticancer effects of GA on human SCLC H446 cells and its promotive effects on the anticancer activities of cisplatin. The viability of the H446 cells was analyzed by MTT assay. Morphological changes in the H446 cells were observed under an inverted microscope. Apoptosis induction was determined by Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining. The level of reactive oxygen species (ROS) was assessed by 2'7'-dichlorofluorescein diacetate (DCFH‑DA), mitochondrial membrane potential (MMP) by JC-1, and western blotting was used to examine the expression of mitochondrial apoptosis-related proteins. The results showed that both GA and cisplatin changed the morphology, inhibited the growth and induced apoptosis in the H446 cells by inducing generation of ROS, disruption of MMP, downregulation of XIAP expression, and upregulation of Bax, Apaf-1, DIABLO and p53 expression. More importantly, GA combined with cisplatin exhibited synergistic effects on inducing of these pro-apoptotic mediators and modulating the activation of apoptosis-related molecules. However, inhibition of the generation of ROS by N-acetyl-l-cysteine (NAC), a specific ROS inhibitor, reversed the cell apoptosis induced by cisplatin combined with GA. In conclusion, the results from the present study revealed that GA exhibited an anticancer effect on human SCLC H446 cells and enhanced the antitumor activities of cisplatin

  12. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect.

    PubMed

    Zhu, Lifei; Li, Miao; Dong, Junxing; Jin, Yiguang

    2015-08-01

    Acute lung injury (ALI) is a severe disease, leading to death if not treated quickly. An emergency medicine is necessary for ALI therapy. Dimethyl silicone (DMS) is an effective agent to defoam the bubbles in the lung induced by ALI. However, DMS aerosols, a marketed formulation of DMS, affect environments and will be limited in the future. Here we firstly report a dry nanoemulsion inhalation for pulmonary delivery. Novel DMS dry nanoemulsion inhalations (DSNIs) were developed in this study. The optimal formulation of stable and homogenous DMS nanoemulsions (DSNs) was composed of Cremophor RH40/PEG 400/DMS (4:4:2, w/w/w) and water. The DSNs showed the tiny size of 19.8 nm, the zeta potential of -9.66 mV, and the low polydispersity index (PDI) of 0.37. The type of DSNs was identified as oil-in-water. The DSNs were added with mannitol followed by freeze-drying to obtain the DSNIs that were loose white powders, showed good fluidity, and were capable of rapid reconstitution to DSNs. The DSNs could adhere on the surfaces of lyophilized mannitol crystals. The aerodynamic diameter of DSNIs was 4.82 μm, suitable for pulmonary inhalation. The in vitro defoaming rate of DSNIs was 1.25 ml/s, much faster than those of the blank DSNIs, DMS, and DMS aerosols. The DSNIs showed significantly higher anti-ALI effect on the ALI rat models than the blank DSNIs and the DMS aerosols according to lung appearances, histological sections, and lung wet weight/dry weight ratios. The DSNIs are effective anti-ALI nanomedicines. The novel DMS formulation is a promising replacement of DMS aerosols.

  13. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation

    PubMed Central

    2014-01-01

    Background We have previously reported the presence of novel subpopulations of pulmonary monocyte-like cells (PMLC) in the human lung; resident PMLC (rPMLC, HLA-DR+CD14++CD16+cells) and inducible PMLC (iPMLC, HLA-DR+CD14++CD16- cells). iPMLC are significantly increased in bronchoalveolar lavage (BAL) fluid following inhalation of lipopolysaccharide (LPS). We have carried out the first functional evaluation of PMLC subpopulations in the inflamed lung, following the isolation of these cells, and other lineages, from BAL fluid using novel and complex protocols. Methods iPMLC, rPMLC, alveolar macrophages (AM), neutrophils, and regulatory T cells were quantified in BAL fluid of healthy subjects at 9 hours post-LPS inhalation (n = 15). Cell surface antigen expression by iPMLC, rPMLC and AM and the ability of each lineage to proliferate and to undergo phagocytosis were investigated using flow cytometry. Basal cytokine production by iPMLC compared to AM following their isolation from BAL fluid and the responsiveness of both cell types following in vitro treatment with the synthetic corticosteroid dexamethasone were assessed. Results rPMLC have a significantly increased expression of mature macrophage markers and of the proliferation antigen Ki67, compared to iPMLC. Our cytokine data revealed a pro-inflammatory, corticosteroid-resistant phenotype of iPMLC in this model. Conclusions These data emphasise the presence of functionally distinct subpopulations of the monocyte/macrophage lineage in the human lung in experimental acute lung inflammation. PMID:24684897

  14. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  15. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment.

    PubMed

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F; Kolliputi, Narasaiah

    2015-09-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  16. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment

    PubMed Central

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F.

    2015-01-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  17. Attenuation of acute nitrogen mustard-induced lung injury, inflammation and fibrogenesis by a nitric oxide synthase inhibitor

    SciTech Connect

    Malaviya, Rama; Venosa, Alessandro; Hall, LeRoy; Gow, Andrew J.; Sinko, Patrick J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2012-12-15

    Nitrogen mustard (NM) is a toxic vesicant known to cause damage to the respiratory tract. Injury is associated with increased expression of inducible nitric oxide synthase (iNOS). In these studies we analyzed the effects of transient inhibition of iNOS using aminoguanidine (AG) on NM-induced pulmonary toxicity. Rats were treated intratracheally with 0.125 mg/kg NM or control. Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 1 d–28 d later and lung injury, oxidative stress and fibrosis assessed. NM exposure resulted in progressive histopathological changes in the lung including multifocal lesions, perivascular and peribronchial edema, inflammatory cell accumulation, alveolar fibrin deposition, bronchiolization of alveolar septal walls, and fibrosis. This was correlated with trichrome staining and expression of proliferating cell nuclear antigen (PCNA). Expression of heme oxygenase (HO)-1 and manganese superoxide dismutase (Mn-SOD) was also increased in the lung following NM exposure, along with levels of protein and inflammatory cells in BAL, consistent with oxidative stress and alveolar-epithelial injury. Both classically activated proinflammatory (iNOS{sup +} and cyclooxygenase-2{sup +}) and alternatively activated profibrotic (YM-1{sup +} and galectin-3{sup +}) macrophages appeared in the lung following NM administration; this was evident within 1 d, and persisted for 28 d. AG administration (50 mg/kg, 2 ×/day, 1 d–3 d) abrogated NM-induced injury, oxidative stress and inflammation at 1 d and 3 d post exposure, with no effects at 7 d or 28 d. These findings indicate that nitric oxide generated via iNOS contributes to acute NM-induced lung toxicity, however, transient inhibition of iNOS is not sufficient to protect against pulmonary fibrosis. -- Highlights: ► Nitrogen mustard (NM) induces acute lung injury and fibrosis. ► Pulmonary toxicity is associated with increased expression of iNOS. ► Transient inhibition of iNOS attenuates acute

  18. Dosimetric correlations of acute esophagitis in lung cancer patients treated with radiotherapy

    SciTech Connect

    Takeda, Ken . E-mail: takedak41@yahoo.co.jp; Nemoto, Kenji; Saito, Haruo; Ogawa, Yoshihiro; Takai, Yoshihiro; Yamada, Shogo

    2005-07-01

    Purpose: To evaluate the factors associated with acute esophagitis in lung cancer patients treated with thoracic radiotherapy. Methods and Materials: We examined 35 patients with non-small-cell lung cancer (n = 27, 77%) and small-cell lung cancer (n = 8, 23%) treated with thoracic radiotherapy between February 2003 and November 2004. The median patient age was 70 years (range, 50-83 years). The disease stage was Stage I in 2 patients (6%), Stage II in 1 (3%), Stage IIIa in 10 (28%), Stage IIIb in 9 (26%), and Stage IV in 9 (26%); 4 patients (11%) had recurrent disease after surgery. A median dose of 60 Gy (range, 50-67 Gy) was given to the isocenter and delivered in single daily fractions of 1.8 or 2 Gy. With heterogeneity corrections, the median given dose to the isocenter was 60.3 Gy (range, 49.9-67.2 Gy). Of the 35 patients, 30 (86%) received concurrent chemotherapy consisting of a platinum agent, cisplatin or carboplatin, combined with paclitaxel in 18 patients (52%), irinotecan hydrochloride in 7 (20%), vincristine sulfate and etoposide in 2 (5%), vinorelbine ditartrate in 1 (3%), etoposide in 1 (3%), and docetaxel in 1 patient (3%). Three of these patients underwent induction therapy with cisplatin and irinotecan hydrochloride, administered before thoracic radiotherapy, and concurrent chemotherapy. Esophageal toxicity was graded according to the Radiation Therapy Oncology Group criteria. The following factors were analyzed with respect to their association with Grade 1 or worse esophagitis by univariate and multivariate analyses: age, gender, concurrent chemotherapy, chemotherapeutic agents, maximal esophageal dose, mean esophageal dose, and percentage of esophageal volume receiving >10 to >65 Gy in 5-Gy increments. Results: Of the 35 patients, 25 (71%) developed acute esophagitis, with Grade 1 in 20 (57%) and Grade 2 in 5 (14%). None of the patients had Grade 3 or worse toxicity. The most significant correlation was between esophagitis and percentage of

  19. [Role of biomarkers in the differential diagnosis of acute respiratory failure in the immediate postoperative period of lung transplantation].

    PubMed

    Ruano, L; Sacanell, J; Roman, A; Rello, J

    2013-01-01

    Lung transplant recipients are at high risk of suffering many complications during the immediate postoperative period, such as primary graft dysfunction, acute graft rejection or infection. The most common symptom is the presence of acute respiratory failure, and the use of biomarkers could be useful for establishing an early diagnosis of these conditions. Different biomarkers have been studied, but none have proven to be the gold standard in the differential diagnosis of acute respiratory failure. This paper offers a review of the different biomarkers that have been studied in this field.

  20. [Role of biomarkers in the differential diagnosis of acute respiratory failure in the immediate postoperative period of lung transplantation].

    PubMed

    Ruano, L; Sacanell, J; Roman, A; Rello, J

    2013-01-01

    Lung transplant recipients are at high risk of suffering many complications during the immediate postoperative period, such as primary graft dysfunction, acute graft rejection or infection. The most common symptom is the presence of acute respiratory failure, and the use of biomarkers could be useful for establishing an early diagnosis of these conditions. Different biomarkers have been studied, but none have proven to be the gold standard in the differential diagnosis of acute respiratory failure. This paper offers a review of the different biomarkers that have been studied in this field. PMID:23462428

  1. DO ACUTE PHASE PROTEINS REFLECT SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    EPA Science Inventory

    Title: DO ACUTE PHASE PROTEINS REFLECT THE SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    M. C. Schladweiler, BS 1, P. S. Gilmour, PhD 2, D. L. Andrews, BS 1, D. L. Costa, ScD 1, A. D. Ledbetter, BS 1, K. E. Pinkerton, PhD 3 and U. P. Kodavanti, ...

  2. Severe acute interstitial lung disease in a patient with anaplastic lymphoma kinase rearrangement-positive non-small cell lung cancer treated with alectinib.

    PubMed

    Yamamoto, Yuzo; Okamoto, Isamu; Otsubo, Kohei; Iwama, Eiji; Hamada, Naoki; Harada, Taishi; Takayama, Koichi; Nakanishi, Yoichi

    2015-10-01

    Alectinib, the second generation anaplastic lymphoma kinase (ALK) inhibitor, has significant potency in patients with ALK rearrangement positive non-small cell lung cancer (NSCLC), and its toxicity is generally well tolerable. We report a patient who developed severe acute interstitial lung disease after alectinib treatment. An 86-year-old woman with stage IV lung adenocarcinoma positive for rearrangement of ALK gene was treated with alectinib. On the 215th day after initiation of alectinib administration, she was admitted to our hospital with the symptom of progressive dyspnea. Computed tomography (CT) revealed diffuse ground glass opacities and consolidations in both lungs, and analysis of bronchoalveolar lavage fluid revealed pronounced lymphocytosis. There was no evidence of infection or other specific causes of her condition, and she was therefore diagnosed with interstitial lung disease induced by alectinib. Her CT findings and respiratory condition improved after steroid pulse therapy. As far as we are aware, this is the first reported case of alectinib-induced severe interstitial lung disease (ILD). We should be aware of the possibility of such a severe adverse event and should therefore carefully monitor patients treated with this drug.

  3. Glycyrrhetinic acid induces cytoprotective autophagy via the inositol-requiring enzyme 1α-c-Jun N-terminal kinase cascade in non-small cell lung cancer cells.

    PubMed

    Tang, Zheng-Hai; Zhang, Le-Le; Li, Ting; Lu, Jia-Hong; Ma, Dik-Lung; Leung, Chung-Hang; Chen, Xiu-Ping; Jiang, Hu-Lin; Wang, Yi-Tao; Lu, Jin-Jian

    2015-12-22

    Glycerrhetinic acid (GA), one of the main bioactive constituents of Glycyrrhiza uralensis Fisch, exerts anti-cancer effects on various cancer cells. We confirmed that GA inhibited cell proliferation and induced apoptosis in non-small cell lung cancer A549 and NCI-H1299 cells. GA also induced expression of autophagy marker phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II) and punta formation of green fluorescent protein microtubule-associated protein light-chain 3. We further proved that expression of GA-increased autophagy marker was attributed to activation instead of suppression of autophagic flux. The c-jun N-terminal kinase (JNK) pathway was activated after incubation with GA. Pretreatment with the JNK inhibitor SP600125 or silencing of the JNK pathway by siRNA of JNK or c-jun decreased GA-induced autophagy. The endoplasmic reticulum (ER) stress responses were also apparently stimulated by GA by triggering the inositol-requiring enzyme 1α (IRE1α) pathway. The GA-induced JNK pathway activation and autophagy were decreased by IRE1α knockdown, and inhibition of autophagy or the JNK cascade increased GA-stimulated IRE1α expression. In addition, GA-induced cell proliferative inhibition and apoptosis were increased by inhibition of autophagy or the JNK pathway. Our study was the first to demonstrate that GA induces cytoprotective autophagy in non-small cell lung cancer cells by activating the IRE1α-JNK/c-jun pathway. The combined treatment of autophagy inhibitors markedly enhances the anti-neoplasmic activity of GA. Such combination shows potential as a strategy for GA or GA-contained prescriptions in cancer therapy.

  4. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome.

    PubMed

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Omodeo Salè, Fausta; Van den Steen, Philippe E; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  5. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  6. Tempol, a membrane-permeable radical scavenger, ameliorates lipopolysaccharide-induced acute lung injury in mice: a key role for superoxide anion.

    PubMed

    El-Sayed, Nesrine S; Mahran, Laila G; Khattab, Mahmoud M

    2011-08-01

    Acute lung injury or acute respiratory distress syndrome is a serious clinical problem with high mortality. Oxidative stress was found to play a major role in mediating lung injury and antioxidants have been shown to be effective in attenuating acute lung injury. In this study, we determine the effects of tempol, a membrane-permeable radical scavenger, in lipopolysaccharide (LPS)-induced acute lung injury and the underlying mechanism. Acute lung injury was induced by intraperitoneal injection of LPS (1mg/kg) and mice were treated with tempol 30min before injection of LPS. One hour later, bronchoalveolar lavage fluid was collected and subjected to estimation of total and differential cell counts as well as the proinflammatory cytokines; tumor necrosis factor-alpha(TNF-α), interleukin-1beta(IL-1β) and interferon-gamma (IFN-γ). Lung tissue damage was confirmed by histopathological changes and by immunohistochemical analysis of myeloperoxidase (MPO). Moreover, lipid peroxidation, reduced glutathione (GSH) and nitric oxide (NO) were investigated in the lung tissue. Pretreatment with tempol produced significant attenuation of LPS-induced lung injury as well as inhibition of LPS mediated increase in MPO immunostaining, MDA and NO levels in lung tissue. Elevated cytokines levels in both bronchoalveolar lavage fluid and lung tissue homogenates of acute lung injury mice were significantly decreased after administration of tempol. These findings confirmed significant protection by tempol against LPS-induced acute lung injury and that superoxide anion scavenging appears to be a potential target for new potential therapy in pulmonary disorders.

  7. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.

  8. Anti-inflammatory and Anti-oxidative Effects of Dexpanthenol on Lipopolysaccharide Induced Acute Lung Injury in Mice.

    PubMed

    Li-Mei, Wan; Jie, Tan; Shan-He, Wan; Dong-Mei, Meng; Peng-Jiu, Yu

    2016-10-01

    The aim of this study is to investigate the effects of dexpanthenol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS). Lung injury was induced by exposure to atomized LPS. Mice were randomly divided into four groups: control group; Dxp (500 mg/kg) group; LPS group; LPS + Dxp (500 mg/kg) group. The effects of dexpanthenol on LPS-induced neutrophil recruitment, cytokine levels, total protein concentration, myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) contents were examined. Additionally, lung tissue was examined by histology to investigate the changes in pathology in the presence and absence of dexpanthenol. In LPS-challenged mice, dexpanthenol significantly improved lung edema. Dexpanthenol also markedly inhibited the LPS-induced neutrophiles influx, protein leakage, and release of TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF). Furthermore, dexpanthenol attenuated MPO activity and MDA contents and increased SOD and GSH activity in the LPS-challenged lung tissue. These data suggest that dexpanthenol protects mice from LPS-induced acute lung injury by its anti-inflammatory and anti-oxidative activities. PMID:27469104

  9. Adalimumab-induced acute interstitial lung disease in a patient with rheumatoid arthritis*

    PubMed Central

    Dias, Olívia Meira; Pereira, Daniel Antunes Silva; Baldi, Bruno Guedes; Costa, André Nathan; Athanazio, Rodrigo Abensur; Kairalla, Ronaldo Adib; Carvalho, Carlos Roberto Ribeiro

    2014-01-01

    The use of immunobiological agents for the treatment of autoimmune diseases is increasing in medical practice. Anti-TNF therapies have been increasingly used in refractory autoimmune diseases, especially rheumatoid arthritis, with promising results. However, the use of such therapies has been associated with an increased risk of developing other autoimmune diseases. In addition, the use of anti-TNF agents can cause pulmonary complications, such as reactivation of mycobacterial and fungal infections, as well as sarcoidosis and other interstitial lung diseases (ILDs). There is evidence of an association between ILD and the use of anti-TNF agents, etanercept and infliximab in particular. Adalimumab is the newest drug in this class, and some authors have suggested that its use might induce or exacerbate preexisting ILDs. In this study, we report the first case of acute ILD secondary to the use of adalimumab in Brazil, in a patient with rheumatoid arthritis and without a history of ILD. PMID:24626274

  10. [A Case of Acute Arterial Occlusion of the Lower Limb during Chemotherapy for Lung Cancer].

    PubMed

    Tanaka, Kentaro; Takada, Kazuto; Kojima, Eiji; Shimizu, Takahiro; Miyamatsu, Shohko; Nohara, Kango; Sakurai, Tsutomu; Mizuno, Takaaki; Yamashita, Yuuki

    2016-05-01

    A 69-year-old man visited a clinic for left leg weakness. With suspicions of lung cancer and a metastatic brain tumor, he was referred to our hospital and was diagnosed with large cell neuroendocrine carcinoma, cT1bN0M1b (BRA), stage IV. After stereotactic radiosurgery for his brain metastasis, he was treated with chemotherapy containing cisplatin and irinotecan. A week after initiating chemotherapy, he suddenly developed severe right leg pain and adynamia. A computed tomography angiogram revealed occlusion of the right common femoral artery, and percutaneous thrombectomy was performed. The symptoms resolved completely, and he was discharged without any sequelae or recurrence. Acute arterial occlusion of the limbs during chemotherapy is uncommon and requires prompt diagnosis and treatment; hence, caution should be paid when it is clinically suspected. PMID:27210093

  11. Transfusion Related Acute Lung Injury after Cesarean Section in a Patient with HELLP Syndrome.

    PubMed

    Moon, Kyoung Min; Han, Min Soo; Rim, Ch'ang Bum; Kim, So Ri; Shin, Sang Ho; Kang, Min Seok; Lee, Jun Ho; Kim, Jihye; Kim, Sang Il

    2016-01-01

    Transfusion-related acute lung injury (TRALI) is a serious adverse reaction of transfusion, and presents as hypoxemia and non-cardiogenic pulmonary edema within 6 hours of transfusion. A 14-year-old primigravida woman at 34 weeks of gestation presented with upper abdominal pain without dyspnea. Because she showed the syndrome of HELLP (hemolysis, elevated liver enzymes, and low platelet count), an emergency cesarean section delivery was performed, and blood was transfused. In the case of such patients, clinicians should closely observe the patient's condition at least during the 6 hours while the patient receives blood transfusion, and should suspect TRALI if the patient complains of respiratory symptoms such as dyspnea. Furthermore, echocardiography should be performed to distinguish between the different types of transfusion-related adverse reactions.

  12. Bedside Lung Ultrasound During Acute Chest Syndrome in Sickle Cell Disease

    PubMed Central

    Razazi, Keyvan; Deux, Jean-François; de Prost, Nicolas; Boissier, Florence; Cuquemelle, Elise; Galactéros, Frédéric; Rahmouni, Alain; Maître, Bernard; Brun-Buisson, Christian; Mekontso Dessap, Armand

    2016-01-01

    Abstract Lung ultrasound (LU) is increasingly used to assess pleural and lung disease in intensive care unit (ICU) and emergency unit at the bedside. We assessed the performance of bedside chest radiograph (CR) and LU during severe acute chest syndrome (ACS), using computed tomography (CT) as the reference standard. We prospectively explored 44 ACS episodes (in 41 patients) admitted to the medical ICU. Three imaging findings were evaluated (consolidation, ground-glass opacities, and pleural effusion). A score was used to quantify and compare loss of lung aeration with each technique and assess its association with outcome. A total number of 496, 507, and 519 lung regions could be assessed by CT scan, bedside CR, and bedside LU, respectively. Consolidations were the most common pattern and prevailed in lung bases (especially postero-inferior regions). The agreement with CT scan patterns was significantly higher for LU as compared to CR (κ coefficients of 0.45 ± 0.03 vs 0.30 ± 0.03, P < 0.01 for the parenchyma, and 0.73 ± 0.08 vs 0.06 ± 0.09, P < 0.001 for pleural effusion). The Bland and Altman analysis showed a nonfixed bias of −1.0 (P = 0.12) between LU score and CT score whereas CR score underestimated CT score with a fixed bias of −5.8 (P < 0.001). The specificity for the detection of consolidated regions or pleural effusion (using CT scan as the reference standard) was high for LU and CR, whereas the sensitivity was high for LU but low for CR. As compared to others, ACS patients with an LU score above the median value of 11 had a larger volume of transfused and exsanguinated blood, greater oxygen requirements, more need for mechanical ventilation, and a longer ICU length of stay. LU outperformed CR for the diagnosis of consolidations and pleural effusion during ACS. Higher values of LU score identified patients at risk of worse outcome. PMID:26886600

  13. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia

    PubMed Central

    Kraft, Bryan D.; Hess, Dean R.; Harris, R. Scott; Wolf, Monroe A.; Suliman, Hagir B.; Roggli, Victor L.; Davies, John D.; Winkler, Tilo; Stenzler, Alex; Baron, Rebecca M.; Thompson, B. Taylor; Choi, Augustine M.; Welty-Wolf, Karen E.; Piantadosi, Claude A.

    2015-01-01

    Inhaled carbon monoxide (CO) gas has therapeutic potential for patients with acute respiratory distress syndrome if a safe, evidence-based dosing strategy and a ventilator-compatible CO delivery system can be developed. In this study, we used a clinically relevant baboon model of Streptococcus pneumoniae pneumonia to 1) test a novel, ventilator-compatible CO delivery system; 2) establish a safe and effective CO dosing regimen; and 3) investigate the local and systemic effects of CO therapy on inflammation and acute lung injury (ALI). Animals were inoculated with S. pneumoniae (108-109 CFU) (n = 14) or saline vehicle (n = 5); in a subset with pneumonia (n = 5), we administered low-dose, inhaled CO gas (100–300 ppm × 60–90 min) at 0, 6, 24, and/or 48 h postinoculation and serially measured blood carboxyhemoglobin (COHb) levels. We found that CO inhalation at 200 ppm for 60 min is well tolerated and achieves a COHb of 6–8% with ambient CO levels ≤ 1 ppm. The COHb level measured at 20 min predicted the 60-min COHb level by the Coburn-Forster-Kane equation with high accuracy. Animals given inhaled CO + antibiotics displayed significantly less ALI at 8 days postinoculation compared with antibiotics alone. Inhaled CO was associated with activation of mitochondrial biogenesis in the lung and with augmentation of renal antioxidative programs. These data support the feasibility of safely delivering inhaled CO gas during mechanical ventilation and provide preliminary evidence that CO may accelerate the resolution of ALI in a clinically relevant nonhuman primate pneumonia model. PMID:26320156

  14. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    PubMed Central

    Liu, Dongdong; Mao, Pu; Huang, Yongbo; Liu, Yiting; Liu, Xiaoqing; Pang, Xiaoqing; Li, Yimin

    2014-01-01

    Acute respiratory distress syndrome (ARDS) remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI) lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS) challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α), whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI. PMID:25024510

  15. Vascular Immunotargeting of Glucose Oxidase to the Endothelial Antigens Induces Distinct Forms of Oxidant Acute Lung Injury

    PubMed Central

    Christofidou-Solomidou, Melpo; Kennel, Stephen; Scherpereel, Arnaud; Wiewrodt, Rainer; Solomides, Charalambos C.; Pietra, Giuseppe G.; Murciano, Juan-Carlos; Shah, Sayed A.; Ischiropoulos, Harry; Albelda, Steven M.; Muzykantov, Vladimir R.

    2002-01-01

    Oxidative endothelial stress, leukocyte transmigration, and pulmonary thrombosis are important pathological factors in acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Vascular immunotargeting of the H2O2-generating enzyme glucose oxidase (GOX) to the pulmonary endothelium causes an acute oxidative lung injury in mice. 1 In the present study we compared the pulmonary thrombosis and leukocyte transmigration caused by GOX targeting to the endothelial antigens platelet-endothelial cell adhesion molecule (PECAM) and thrombomodulin (TM). Both anti-PECAM and anti-TM delivered similar amounts of 125I-GOX to the lungs and caused a dose-dependent, tissue-selective lung injury manifested within 2 to 4 hours by high lethality, vascular congestion, polymorphonuclear neutrophil (PMN) sequestration in the pulmonary vasculature, severe pulmonary edema, and tissue oxidation, yet at an equal dose, anti-TM/GOX inflicted more severe lung injury than anti-PECAM/GOX. Moreover, anti-TM/GOX-induced injury was accompanied by PMN transmigration in the alveolar space, whereas anti-PECAM/GOX-induced injury was accompanied by PMN degranulation within vascular lumen without PMN transmigration, likely because of PECAM blockage. Anti-TM/GOX caused markedly more severe pulmonary thrombosis than anti-PECAM/GOX, likely because of TM inhibition. These results indicate that blocking of specific endothelial antigens by GOX immunotargeting modulates important pathological features of the lung injury initiated by local generation of H2O2 and that this approach provides specific and robust models of diverse variants of human ALI/ARDS in mice. In particular, anti-TM/GOX causes lung injury combining oxidative, prothrombotic, and inflammatory components characteristic of the complex pathological picture seen in human ALI/ARDS. PMID:11891211

  16. Non–Muscle Myosin Light Chain Kinase Isoform Is a Viable Molecular Target in Acute Inflammatory Lung Injury

    PubMed Central

    Mirzapoiazova, Tamara; Moitra, Jaideep; Moreno-Vinasco, Liliana; Sammani, Saad; Turner, Jerry R.; Chiang, Eddie T.; Evenoski, Carrie; Wang, Ting; Singleton, Patrick A.; Huang, Yong; Lussier, Yves A.; Watterson, D. Martin; Dudek, Steven M.; Garcia, Joe G. N.

    2011-01-01

    Acute lung injury (ALI) and mechanical ventilator-induced lung injury (VILI), major causes of acute respiratory failure with elevated morbidity and mortality, are characterized by significant pulmonary inflammation and alveolar/vascular barrier dysfunction. Previous studies highlighted the role of the non–muscle myosin light chain kinase isoform (nmMLCK) as an essential element of the inflammatory response, with variants in the MYLK gene that contribute to ALI susceptibility. To define nmMLCK involvement further in acute inflammatory syndromes, we used two murine models of inflammatory lung injury, induced by either an intratracheal administration of lipopolysaccharide (LPS model) or mechanical ventilation with increased tidal volumes (the VILI model). Intravenous delivery of the membrane-permeant MLC kinase peptide inhibitor, PIK, produced a dose-dependent attenuation of both LPS-induced lung inflammation and VILI (∼50% reductions in alveolar/vascular permeability and leukocyte influx). Intravenous injections of nmMLCK silencing RNA, either directly or as cargo within angiotensin-converting enzyme (ACE) antibody–conjugated liposomes (to target the pulmonary vasculature selectively), decreased nmMLCK lung expression (∼70% reduction) and significantly attenuated LPS-induced and VILI-induced lung inflammation (∼40% reduction in bronchoalveolar lavage protein). Compared with wild-type mice, nmMLCK knockout mice were significantly protected from VILI, with significant reductions in VILI-induced gene expression in biological pathways such as nrf2-mediated oxidative stress, coagulation, p53-signaling, leukocyte extravasation, and IL-6–signaling. These studies validate nmMLCK as an attractive target for ameliorating the adverse effects of dysregulated lung inflammation. PMID:20139351

  17. β1-Na(+),K(+)-ATPase gene therapy upregulates tight junctions to rescue lipopolysaccharide-induced acute lung injury.

    PubMed

    Lin, X; Barravecchia, M; Kothari, P; Young, J L; Dean, D A

    2016-06-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with diverse disorders and characterized by disruption of the alveolar-capillary barrier, leakage of edema fluid into the lung, and substantial inflammation leading to acute respiratory failure. Gene therapy is a potentially powerful approach to treat ALI/ARDS through repair of alveolar epithelial function. Herein, we show that delivery of a plasmid expressing β1-subunit of the Na(+),K(+)-ATPase (β1-Na(+),K(+)-ATPase) alone or in combination with epithelial sodium channel (ENaC) α1-subunit using electroporation not only protected from subsequent lipopolysaccharide (LPS)-mediated lung injury, but also treated injured lungs. However, transfer of α1-subunit of ENaC (α1-ENaC) alone only provided protection benefit rather than treatment benefit although alveolar fluid clearance had been remarkably enhanced. Gene transfer of β1-Na(+),K(+)-ATPase, but not α1-ENaC, not only enhanced expression of tight junction protein zona occludins-1 (ZO-1) and occludin both in cultured cells and in mouse lungs, but also reduced pre-existing increase of lung permeability in vivo. These results demonstrate that gene transfer of β1-Na(+),K(+)-ATPase upregulates tight junction formation and therefore treats lungs with existing injury, whereas delivery of α1-ENaC only maintains pre-existing tight junction but not for generation. This indicates that the restoration of epithelial/endothelial barrier function may provide better treatment of ALI/ARDS. PMID:26910760

  18. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury.

    PubMed

    Yang, Hailing; Li, Yan; Huo, Pengfei; Li, Xiao-Ou; Kong, Daliang; Mu, Wei; Fang, Wei; Li, Lingxia; Liu, Ning; Fang, Ling; Li, Hongjun; He, Chengyan

    2015-05-01

    Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation.

  19. Acute Abdominal Pain after Intercourse: Adrenal Hemorrhage as the First Sign of Metastatic Lung Cancer

    PubMed Central

    Packer, Clifford D.

    2014-01-01

    Although the adrenal glands are a common site of cancer metastases, they are often asymptomatic and discovered incidentally on CT scan or autopsy. Spontaneous adrenal hemorrhage associated with metastatic lung cancer is an exceedingly rare phenomenon, and diagnosis can be difficult due to its nonspecific symptoms and ability to mimic other intra-abdominal pathologies. We report a case of a 65-year-old man with a history of right upper lobectomy seven months earlier for stage IB non-small cell lung cancer who presented with acute abdominal pain after intercourse. CT scan revealed a new right adrenal mass with surrounding hemorrhage, and subsequent FDG-PET scan confirmed new metabolic adrenal metastases. The patient's presentation of abdominal pain and adrenal hemorrhage immediately after sexual intercourse suggests that exertion, straining, or increased intra-abdominal pressure might be risk factors for precipitation of hemorrhage in patients with adrenal metastases. Management includes pain control and supportive treatment in mild cases, with arterial embolization or adrenalectomy being reserved for cases of severe hemorrhage. PMID:25126096

  20. Acid aspiration-induced acute lung injury causes leukocyte-dependent systemic organ injury.

    PubMed

    St John, R C; Mizer, L A; Kindt, G C; Weisbrode, S E; Moore, S A; Dorinsky, P M

    1993-04-01

    The adult respiratory distress syndrome is a form of acute lung injury (ALI) that is frequently associated with systemic organ injury and often occurs in the setting of wide-spread inflammatory cell activation. However, whether conditions that lead to ALI result in systemic organ injury is unclear. This study was designed to test the hypothesis that ALI induced by acid aspiration will not result in systemic organ injury. Morphological alterations and lymph-to-plasma protein ratios were measured in autoperfused cat ileum preparations of four control animals and five animals with ALI produced by the endobronchial instillation of 0.1 N HCl (0.5 ml.kg-1.lung-1). After 2 h, the lymph-to-plasma protein ratio (a measure of microvascular permeability) was increased in the ilea of HCl-injured animals compared with control animals (0.234 +/- 0.03 vs. 0.121 +/- 0.005; P = 0.012) and was accompanied by extensive morphological alterations. Four additional HCl-injured animals were pretreated with an antileukocyte adherence antibody (anti-CD18, 2 mg/kg) that blocked the HCl-induced alterations in the ileum. This study provides evidence for significant systemic organ injury after acid aspiration-induced ALI and suggests that the neutrophil may be a key mediator.

  1. Tristetraprolin mediates anti-inflammatory effects of carbon monoxide on lipopolysaccharide-induced acute lung injury.

    PubMed

    Joe, Yeonsoo; Kim, Seul-Ki; Chen, Yingqing; Yang, Jung Wook; Lee, Jeong-Hee; Cho, Gyeong Jae; Park, Jeong Woo; Chung, Hun Taeg

    2015-11-01

    Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.

  2. Bufexamac ameliorates LPS-induced acute lung injury in mice by targeting LTA4H

    PubMed Central

    Xiao, Qiang; Dong, Ningning; Yao, Xue; Wu, Dang; Lu, Yanli; Mao, Fei; Zhu, Jin; Li, Jian; Huang, Jin; Chen, Aifang; Huang, Lu; Wang, Xuehai; Yang, Guangxiao; He, Guangyuan; Xu, Yong; Lu, Weiqiang

    2016-01-01

    Neutrophils play an important role in the occurrence and development of acute lung injury (ALI). Leukotriene B4 (LTB4), a hydrolysis product of epoxide leukotriene A4 (LTA4) catalyzed by LTA4 hydrolase (LTA4H), is one of the most potent chemoattractants for neutrophil. Bufexamac is a drug widely used as an anti-inflammatory agent on the skin, however, the mechanism of action is still not fully understood. In this study, we found bufexamac was capable of specifically inhibiting LTA4H enzymatic activity and revealed the mode of interaction of bufexamac and LTA4H using X-ray crystallography. Moreover, bufexamac significantly prevented the production of LTB4 in neutrophil and inhibited the fMLP-induced neutrophil migration through inhibition of LTA4H. Finally, bufexamac significantly attenuated lung inflammation as reflected by reduced LTB4 levels and weakened neutrophil infiltration in bronchoalveolar lavage fluid from a lipopolysaccharide-induced ALI mouse model. In summary, our study indicates that bufexamac acts as an inhibitor of LTB4 biosynthesis and may have potential clinical applications for the treatment of ALI. PMID:27126280

  3. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

  4. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    PubMed Central

    Li, G.; Zhou, CL.; Zhou, QS.; Zou, HD.

    2015-01-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  5. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  6. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  7. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    SciTech Connect

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  8. Therapeutic Effects of Bone Marrow-Derived Mesenchymal Stem Cells in Models of Pulmonary and Extrapulmonary Acute Lung Injury.

    PubMed

    Liu, Ling; He, Hongli; Liu, Airan; Xu, Jingyuan; Han, Jibin; Chen, Qihong; Hu, Shuling; Xu, Xiuping; Huang, Yingzi; Guo, Fengmei; Yang, Yi; Qiu, Haibo

    2015-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapy for acute lung injury (ALI). However, whether the same MSC treatments possess similar potential for different ALI models is not fully clear. The present study evaluated the distribution and therapeutic effects of intravenous MSC administration for the treatment of intratracheal lipopolysaccharide (LPS)-induced intrapulmonary ALI and intravenous LPS/zymosan-induced extrapulmonary ALI, matched with lung injury severity, at 30 min and 1, 3, and 7 days. We found that MSC transplantation attenuated lung injury and inhibited lung inflammation in both ALI models. The benefits of MSCs were more significant in the intrapulmonary ALI mice. In vivo and ex vivo fluorescence imaging showed that MSCs primarily homed into the lung. However, more MSCs were recruited into the lungs of the intrapulmonary ALI mice than those of the extrapulmonary ALI mice over the time course. A few MSCs were also detected in the liver and spleen at days 3 and 7. In addition, the two ALI models showed different extrapulmonary organ dysfunction. A lower percentage of cell apoptosis and SDF-1α levels was found in the liver and spleen of the intrapulmonary ALI mice than in those of the extrapulmonary ALI mice. These results suggested that the two ALI models were accompanied with different degrees of extrapulmonary organ damage, which resulted in differences in the trafficking and accumulation of MSCs to the injured lung and consequently accounted for different therapeutic effects of MSCs for lung repair in the two ALI models. These data suggest that intravenous administration of MSCs has a greater potential for the treatment of intrapulmonary ALI than extrapulmonary ALI matched with lung injury severity; these differences were due to more recruitment of MSCs in the lungs of intrapulmonary ALI mice than those of extrapulmonary ALI mice. This finding may contribute to the clinical use of MSCs for the treatment of ALI. PMID

  9. Accuracy of Nurse-Performed Lung Ultrasound in Patients With Acute Dyspnea: A Prospective Observational Study.

    PubMed

    Mumoli, Nicola; Vitale, Josè; Giorgi-Pierfranceschi, Matteo; Cresci, Alessandra; Cei, Marco; Basile, Valentina; Brondi, Barbara; Russo, Elisa; Giuntini, Lucia; Masi, Lorenzo; Cocciolo, Massimo; Dentali, Francesco

    2016-03-01

    In clinical practice lung ultrasound (LUS) is becoming an easy and reliable noninvasive tool for the evaluation of dyspnea. The aim of this study was to assess the accuracy of nurse-performed LUS, in particular, in the diagnosis of acute cardiogenic pulmonary congestion. We prospectively evaluated all the consecutive patients admitted for dyspnea in our Medicine Department between April and July 2014. At admission, serum brain natriuretic peptide (BNP) levels and LUS was performed by trained nurses blinded to clinical and laboratory data. The accuracy of nurse-performed LUS alone and combined with BNP for the diagnosis of acute cardiogenic dyspnea was calculated. Two hundred twenty-six patients (41.6% men, mean age 78.7 ± 12.7 years) were included in the study. Nurse-performed LUS alone had a sensitivity of 95.3% (95% CI: 92.6-98.1%), a specificity of 88.2% (95% CI: 84.0-92.4%), a positive predictive value of 87.9% (95% CI: 83.7-92.2%) and a negative predictive value of 95.5% (95% CI: 92.7-98.2%). The combination of nurse-performed LUS with BNP level (cut-off 400 pg/mL) resulted in a higher sensitivity (98.9%, 95% CI: 97.4-100%), negative predictive value (98.8%, 95% CI: 97.2-100%), and corresponding negative likelihood ratio (0.01, 95% CI: 0.0, 0.07). Nurse-performed LUS had a good accuracy in the diagnosis of acute cardiogenic dyspnea. Use of this technique in combination with BNP seems to be useful in ruling out cardiogenic dyspnea. Other studies are warranted to confirm our preliminary findings and to establish the role of this tool in other settings. PMID:26945396

  10. Accuracy of Nurse-Performed Lung Ultrasound in Patients With Acute Dyspnea

    PubMed Central

    Mumoli, Nicola; Vitale, Josè; Giorgi-Pierfranceschi, Matteo; Cresci, Alessandra; Cei, Marco; Basile, Valentina; Brondi, Barbara; Russo, Elisa; Giuntini, Lucia; Masi, Lorenzo; Cocciolo, Massimo; Dentali, Francesco

    2016-01-01

    Abstract In clinical practice lung ultrasound (LUS) is becoming an easy and reliable noninvasive tool for the evaluation of dyspnea. The aim of this study was to assess the accuracy of nurse-performed LUS, in particular, in the diagnosis of acute cardiogenic pulmonary congestion. We prospectively evaluated all the consecutive patients admitted for dyspnea in our Medicine Department between April and July 2014. At admission, serum brain natriuretic peptide (BNP) levels and LUS was performed by trained nurses blinded to clinical and laboratory data. The accuracy of nurse-performed LUS alone and combined with BNP for the diagnosis of acute cardiogenic dyspnea was calculated. Two hundred twenty-six patients (41.6% men, mean age 78.7 ± 12.7 years) were included in the study. Nurse-performed LUS alone had a sensitivity of 95.3% (95% CI: 92.6–98.1%), a specificity of 88.2% (95% CI: 84.0–92.4%), a positive predictive value of 87.9% (95% CI: 83.7–92.2%) and a negative predictive value of 95.5% (95% CI: 92.7–98.2%). The combination of nurse-performed LUS with BNP level (cut-off 400 pg/mL) resulted in a higher sensitivity (98.9%, 95% CI: 97.4–100%), negative predictive value (98.8%, 95% CI: 97.2–100%), and corresponding negative likelihood ratio (0.01, 95% CI: 0.0, 0.07). Nurse-performed LUS had a good accuracy in the diagnosis of acute cardiogenic dyspnea. Use of this technique in combination with BNP seems to be useful in ruling out cardiogenic dyspnea. Other studies are warranted to confirm our preliminary findings and to establish the role of this tool in other settings. PMID:26945396

  11. Association of physical examination with pulmonary artery catheter parameters in acute lung injury*

    PubMed Central

    Grissom, Colin K.; Morris, Alan H.; Lanken, Paul N.; Ancukiewicz, Marek; Orme, James F.; Schoenfeld, David A.; Thompson, B. Taylor

    2016-01-01

    Objective To correlate physical examination findings, central venous pressure, fluid output, and central venous oxygen saturation with pulmonary artery catheter parameters. Design Retrospective study. Setting Data from the multicenter Fluid and Catheter Treatment Trial of the National Institutes of Health Acute Respiratory Distress Syndrome Network. Patients Five hundred thirteen patients with acute lung injury randomized to treatment with a pulmonary artery catheter. Interventions Correlation of physical examination findings (capillary refill time >2 secs, knee mottling, or cool extremities), central venous pressure, fluid output, and central venous oxygen saturation with parameters from a pulmonary artery catheter. Measurements We determined association of baseline physical examination findings and on-study parameters of central venous pressure and central venous oxygen saturation with cardiac index <2.5 L/min/m2 and mixed venous oxygen saturation <60%. We determined correlation of baseline central venous oxygen saturation and mixed venous oxygen saturation and predictive value of a low central venous oxygen saturation for a low mixed venous oxygen saturation. Measurements and Main Results Prevalence of cardiac index <2.5 and mixed venous oxygen saturation <60% was 8.1% and 15.5%, respectively. Baseline presence of all three physical examination findings had low sensitivity (12% and 8%), high specificity (98% and 99%), low positive predictive value (40% and 56%), but high negative predictive value (93% and 86%) for cardiac index <2.5 and mixed venous oxygen saturation <60%, respectively. Central venous oxygen saturation <70% predicted a mixed venous oxygen saturation <60% with a sensitivity 84%, specificity 70%, positive predictive value 31%, and negative predictive value of 96%. Low cardiac index correlated with cool extremities, high central venous pressure, and low 24-hr fluid output; and low mixed venous oxygen saturation correlated with knee mottling and

  12. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury.

    PubMed

    Jiang, Shaoning; Park, Dae Won; Tadie, Jean-Marc; Gregoire, Murielle; Deshane, Jessy; Pittet, Jean Francois; Abraham, Edward; Zmijewski, Jaroslaw W

    2014-05-15

    Although resistin was recently found to modulate insulin resistance in preclinical models of type II diabetes and obesity, recent studies also suggested that resistin has proinflammatory properties. We examined whether the human-specific variant of resistin affects neutrophil activation and the severity of LPS-induced acute lung injury. Because human and mouse resistin have distinct patterns of tissue distribution, experiments were performed using humanized resistin mice that exclusively express human resistin (hRTN(+/-)(/-)) but are deficient in mouse resistin. Enhanced production of TNF-α or MIP-2 was found in LPS-treated hRtn(+/-/-) neutrophils compared with control Rtn(-/-/-) neutrophils. Expression of human resistin inhibited the activation of AMP-activated protein kinase, a major sensor and regulator of cellular bioenergetics that also is implicated in inhibiting inflammatory activity of neutrophils and macrophages. In addition to the ability of resistin to sensitize neutrophils to LPS stimulation, human resistin enhanced neutrophil extracellular trap formation. In LPS-induced acute lung injury, humanized resistin mice demonstrated enhanced production of proinflammatory cytokines, more severe pulmonary edema, increased neutrophil extracellular trap formation, and elevated concentration of the alarmins HMGB1 and histone 3 in the lungs. Our results suggest that human resistin may play an important contributory role in enhancing TLR4-induced inflammatory responses, and it may be a target for future therapies aimed at reducing the severity of acute lung injury and other inflammatory situations in which neutrophils play a major role.

  13. A coin-like peripheral small cell lung carcinoma associated with acute paraneoplastic axonal Guillain-Barre-like syndrome.

    PubMed

    Jung, Ioan; Gurzu, Simona; Balasa, Rodica; Motataianu, Anca; Contac, Anca Otilia; Halmaciu, Ioana; Popescu, Septimiu; Simu, Iunius

    2015-06-01

    A 65-year-old previously healthy male heavy smoker was hospitalized with a 2-week history of progressive muscle weakness in the lower and upper extremities. After 10 days of hospitalization, urinary sphincter incompetence and fecal incontinence were added and tetraparesis was established. The computer-tomography scan examination revealed a massive right hydrothorax and multifocal solid acinar structures with peripheral localization in the left lung, which suggested pulmonary cancer. Bone marrow metastases were also suspected. Based on the examination results, the final diagnosis was acute paraneoplastic axonal Guillain-Barre-like syndrome. The patient died 3 weeks after hospitalization. At autopsy, bronchopneumonia and a right hydrothorax were confirmed. Several 4 to 5-mm-sized round peripherally located white nodules were identified in the left lung, without any central tumor mass. Under microscope, a coin-shaped peripheral/subpleural small cell carcinoma was diagnosed, with generalized bone metastases. A huge thrombus in the abdominal aorta and acute pancreatitis was also seen at autopsy. This case highlights the difficulty of diagnosis of lung carcinomas and the necessity of a complex differential diagnosis of severe progressive ascending neuropathies. This is the 6th reported case of small cell lung cancer-associated acute Guillain-Barre-like syndrome and the first report about an association with a coin-like peripheral pattern. PMID:26039124

  14. RGD peptides protects against acute lung injury in septic mice through Wisp1-integrin β6 pathway inhibition.

    PubMed

    Ding, Xibing; Wang, Xin; Zhao, Xiang; Jin, Shuqing; Tong, Yao; Ren, Hao; Chen, Zhixia; Li, Quan

    2015-04-01

    Acute lung injury is a common consequence of sepsis, a life-threatening inflammatory response caused by severe infection. In this study, we elucidate the attenuating effects of synthetic Arg-Gly-Asp-Ser peptides (RGDs) on acute lung injury in a sepsis mouse model. We further reveal that the beneficial effects of RGDs stem from their negative regulation of the Wisp1 (WNT1-inducible signaling pathway)-integrin β6 pathway. After inducing sepsis using cecal ligation and puncture (CLP), mice were randomized into experimental and control groups, and survival rates were recorded over 7 days, whereas only 20% of mice subjected to CLP survived when compared with untreated controls; the addition of RGDs to this treatment regimen dramatically increased the survival rate to 80%. Histological analysis revealed acute lung injury in CLP-treated mice, whereas those subjected to the combined treatment of CLP and RGDs showed a considerable decrease in lung injury severity. The addition of RGDs also dramatically attenuated other common sepsis-associated effects, such as increased white blood cell number in bronchoalveolar lavage fluid and decreased pulmonary capillary barrier function. Furthermore, treatment with RGDs decreased the serum and bronchoalveolar lavage fluid levels of inflammatory cytokines such as tumor necrosis factor α and interleukin 6, contrary to the CLP treatment alone that increased the levels of these proteins. Interestingly, however, RGDs had no detectable effect on bacterial invasion following sepsis induction. In addition, mice treated with RGDs showed decreased levels of wisp1 and integrin β6 when compared with CLP-treated mice. In the present study, a linkage between Wisp1 and integrin β6 was evaluated in vivo. Most strikingly, RGDs resulted in a decreased association of Wisp1 with integrin β6 based on coimmunoprecipitation analyses. These data suggest that RGDs ameliorate acute lung injury in a sepsis mouse model by inhibiting the Wisp1-integrin β6

  15. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration

    PubMed Central

    Li, Yan; Huang, Jie; Foley, Niamh M.; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H. Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  16. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration.

    PubMed

    Li, Yan; Huang, Jie; Foley, Niamh M; Xu, Yunyun; Li, Yi Ping; Pan, Jian; Redmond, H Paul; Wang, Jiang Huai; Wang, Jian

    2016-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration. PMID:27515382

  17. Fisetin Alleviates Lipopolysaccharide-Induced Acute Lung Injury via TLR4-Mediated NF-κB Signaling Pathway in Rats.

    PubMed

    Feng, Guang; Jiang, Ze-yu; Sun, Bo; Fu, Jie; Li, Tian-zuo

    2016-02-01

    Acute lung injury (ALI), a common component of systemic inflammatory disease, is a life-threatening condition without many effective treatments. Fisetin, a natural flavonoid from fruits and vegetables, was reported to have wide pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. The aim of this study was to detect the effects of fisetin on lipopolysaccharide (LPS)-induced acute lung injury and investigate the potential mechanism. Fisetin was injected (1, 2, and 4 mg/kg, i.v.) 30 min before LPS administration (5 mg/kg, i.v.). Our results showed that fisetin effectively reduced the inflammatory cytokine release and total protein in bronchoalveolar lavage fluids (BALF), decreased the lung wet/dry ratios, and obviously improved the pulmonary histology in LPS-induced ALI. Furthermore, fisetin inhibited LPS-induced increases of neutrophils and macrophage infiltration and attenuated MPO activity in lung tissues. Additionally, fisetin could significantly inhibit the Toll-like receptor 4 (TLR4) expression and the activation of NF-κB in lung tissues. Our data indicates that fisetin has a protective effect against LPS-induced ALI via suppression of TLR4-mediated NF-κB signaling pathways, and fisetin may be a promising candidate for LPS-induced ALI treatment.

  18. Changes in the biophysical properties and ultrastructure of lungs, and intrapulmonary fibrin deposition in experimental acute pancreatitis.

    PubMed Central

    Berry, A R; Davies, G C; Millar, A M; Taylor, T V

    1983-01-01

    Using an experimental model of acute pancreatitis in the rat, we have studied changes in the biophysical properties of lungs and intrapulmonary fibrin deposition in this condition. Acute pancreatitis is associated with a significant decrease in pulmonary compliance (p less than 0.01) and a significant increase in lung weight (p less than 0.01) compared with a control sham operation group. These changes are associated with a 24% increase in intrapulmonary 125I fibrinogen deposition (p less than 0.01), and an 18% increase in 125I fibrinogen deposition per gram of lung tissue (p less than 0.05) in acute pancreatitis, compared with a control sham operation group. The increased fibrinogen deposition is abolished by treatment with low dose heparin. Using the same animal model changes in pulmonary ultrastructure are shown using scanning electron microscopy. The results indicate that pulmonary abnormalities are associated with intrapulmonary fibrin deposition in experimental acute pancreatitis and these findings may be relevant to the well described respiratory complications of the condition in man. Images Fig. 3 Fig. 4 Fig. 7 PMID:6618271

  19. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  20. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury

    PubMed Central

    Tong, Lin; Zhou, Jian; Rong, Linyi; Seeley, Eric J.; Pan, Jue; Zhu, Xiaodan; Liu, Jie; Wang, Qin; Tang, Xinjun; Qu, Jieming; Bai, Chunxue; Song, Yuanlin

    2016-01-01

    FGF-10 can prevent or reduce lung specific inflammation due to traumatic or infectious lung injury. However, the exact mechanisms are poorly characterized. Additionally, the effect of FGF-10 on lung-resident mesenchymal stem cells (LR-MSCs) has not been studied. To better characterize the effect of FGF-10 on LR-MSCs, FGF-10 was intratracheally delivered into the lungs of rats. Three days after instillation, bronchoalveolar lavage was performed and plastic-adherent cells were cultured, characterized and then delivered therapeutically to rats after LPS intratracheal instillation. Immunophenotyping analysis of FGF-10 mobilized and cultured cells revealed expression of the MSC markers CD29, CD73, CD90, and CD105, and the absence of the hematopoietic lineage markers CD34 and CD45. Multipotency of these cells was demonstrated by their capacity to differentiate into osteocytes, adipocytes, and chondrocytes. Delivery of LR-MSCs into the lungs after LPS injury reduced the inflammatory response as evidenced by decreased wet-to-dry ratio, reduced neutrophil and leukocyte recruitment and decreased inflammatory cytokines compared to control rats. Lastly, direct delivery of FGF-10 in the lungs of rats led to an increase of LR-MSCs in the treated lungs, suggesting that the protective effect of FGF-10 might be mediated, in part, by the mobilization of LR-MSCs in lungs. PMID:26869337

  1. Association of Nrf2 Polymorphism Haplotypes with Acute Lung Injury Phenotypes in Inbred Strains of Mice

    PubMed Central

    Jedlicka, Anne E.; Gladwell, Wesley; Marzec, Jacqui; McCaw, Zackary R.; Bienstock, Rachelle J.; Kleeberger, Steven R.

    2015-01-01

    Abstract Aims: Nrf2 is a master transcription factor for antioxidant response element (ARE)-mediated cytoprotective gene induction. A protective role for pulmonary Nrf2 was determined in model oxidative disorders, including hyperoxia-induced acute lung injury (ALI). To obtain additional insights into the function and genetic regulation of Nrf2, we assessed functional single nucleotide polymorphisms (SNPs) of Nrf2 in inbred mouse strains and tested whether sequence variation is associated with hyperoxia susceptibility. Results: Nrf2 SNPs were compiled from publicly available databases and by re-sequencing DNA from inbred strains. Hierarchical clustering of Nrf2 SNPs categorized the strains into three major haplotypes. Hyperoxia susceptibility was greater in haplotypes 2 and 3 strains than in haplotype 1 strains. A promoter SNP −103 T/C adding an Sp1 binding site in haplotype 2 diminished promoter activation basally and under hyperoxia. Haplotype 3 mice bearing nonsynonymous coding SNPs located in (1862 A/T, His543Gln) and adjacent to (1417 T/C, Thr395Ile) the Neh1 domain showed suppressed nuclear transactivation of pulmonary Nrf2 relative to other strains, and overexpression of haplotype 3 Nrf2 showed lower ARE responsiveness than overexpression of haplotype 1 Nrf2 in airway cells. Importantly, we found a significant correlation of Nrf2 haplotypes and hyperoxic lung injury phenotypes. Innovation and Conclusion: The results indicate significant influence of Nrf2 polymorphisms and haplotypes on gene function and hyperoxia susceptibility. Our findings further support Nrf2 as a genetic determinant in ALI pathogenesis and provide useful tools for investigators who use mouse strains classified by Nrf2 haplotypes to elucidate the role for Nrf2 in oxidative disorders. Antioxid. Redox Signal. 22, 325–338. PMID:25268541

  2. Prone position prevents regional alveolar hyperinflation and mechanical stress and strain in mild experimental acute lung injury.

    PubMed

    Santana, Maria Cristina E; Garcia, Cristiane S N B; Xisto, Débora G; Nagato, Lilian K S; Lassance, Roberta M; Prota, Luiz Felipe M; Ornellas, Felipe M; Capelozzi, Vera L; Morales, Marcelo M; Zin, Walter A; Pelosi, Paolo; Rocco, Patricia R M

    2009-06-30

    Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa O2), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa O2. PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain.

  3. Assessment of inhaled acute ammonia-induced lung injury in rats.

    PubMed

    Perkins, Michael W; Wong, Benjamin; Tressler, Justin; Coggins, Andrew; Rodriguez, Ashley; Devorak, Jennifer; Sciuto, Alfred M

    2016-01-01

    This study examined acute toxicity and lung injury following inhalation exposure to ammonia. Male Sprague-Dawley rats (300-350 g) were exposed to 9000, 20,000, 23,000, 26,000, 30,000 or 35,000 ppm of ammonia for 20 min in a custom head-out exposure system. The exposure atmosphere, which attained steady state within 3 min for all ammonia concentrations, was monitored and verified using a Fourier transform infrared spectroscopy (FTIR) gas analyzer. Animals exposed to ammonia resulted in dose-dependent increases in observed signs of intoxication, including increased chewing and licking, ocular irritation, salivation, lacrimation, oronasal secretion and labored breathing. The LCt50 of ammonia within this head-out inhalation exposure model was determined by probit analysis to be 23,672 ppm (16,489 mg/m(3)) for the 20 min exposure in male rats. Exposure to 20,000 or 23,000 ppm of ammonia resulted in significant body weight loss 24-h post-exposure. Lung edema increased in all ammonia-exposed animal groups and was significant following exposure to 9000 ppm. Bronchoalveolar fluid (BALF) protein concentrations significantly increased following exposure to 20,000 or 23,000 ppm of ammonia in comparison to controls. BAL cell (BALC) death and total cell counts increased in animals exposed to 20,000 or 23,000 ppm of ammonia in comparison to controls. Differential cell counts of white blood cells, neutrophils and platelets from blood and BALF were significantly increased following exposure to 23,000 ppm of ammonia. The following studies describe the validation of a head-out inhalation exposure model for the determination of acute ammonia-induced toxicity; this model will be used for the development and evaluation of potential therapies that provide protection against respiratory and systemic toxicological effects. PMID:26821737

  4. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-01

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  5. Matrix metalloproteinase and elastase activities in LPS-induced acute lung injury in guinea pigs.

    PubMed

    D'Ortho, M P; Jarreau, P H; Delacourt, C; Macquin-Mavier, I; Levame, M; Pezet, S; Harf, A; Lafuma, C

    1994-03-01

    Matrix metalloproteinases (MMPs) and elastase are proteolytic enzymes specifically directed against extracellular matrix (ECM) components. They are secreted by inflammatory cells and may consequently contribute to the lesions of the ECM observed during acute pulmonary edema. We therefore evaluated the MMP and elastase activities, which are secreted by cultured alveolar macrophages (AMACs) and polymorphonuclear neutrophils (PMNs) and present in the bronchoalveolar lavage (BAL) fluid in a guinea pig model of acute lung injury induced by intratracheal instillation of lipopolysaccharide (LPS). The control group was given 0.9% NaCl. 24 h after instillation, a BAL was performed, the BAL fluid was separated from the cells by centrifugation, and AMACs and PMNs were separately cultured for 24 h. In BAL fluid from LPS-treated guinea pigs, we found 1) an increase in free gelatinase activity, tested on [3H]gelatin (0.7 +/- 0.2 micrograms.200 microliters BAL fluid-1.48 h-1 vs. 0.2 +/- 0.1 in controls, P < 0.05), and 2) increased total gelatinase activities, as assessed by zymography. The molecular masses of the major gelatinase species found in BAL fluid by zymography were 92 and 68 kDa. The 92-kDa gelatinase was secreted by both AMACs and PMNs, as demonstrated by zymography of their respective culture media. When tested on [3H]elastin, the elastase activity of BAL fluid of LPS-treated animals exhibited no increase, but when tested on a synthetic peptidic substrate [N-succinyl-(L-alanine)3-p-nitro anilide (SLAPN)], increased elastase-like activity was observed (from 17 +/- 4 nmol of SLAPN.200 microliters BAL fluid-1.24 h-1 in control group to 34 +/- 8 in LPS group, P < 0.05). This increase was attributable to the activity of a metalloendopeptidase that was inhibited by the metal chelator EDTA but not by the specific tissue inhibitor of MMPs.

  6. Effects of MMP-9 inhibition by doxycycline on proteome of lungs in high tidal volume mechanical ventilation-induced acute lung injury

    PubMed Central

    2010-01-01

    Background Although mechanical ventilation (MV) is a major supportive therapy for patients with acute respiratory distress syndrome, it may result in side effects including lung injury. In this study we hypothesize that MMP-9 inhibition by doxycycline might reduce MV-related lung damage. Using a proteomic approach we identified the pulmonary proteins altered in high volume ventilation-induced lung injury (VILI). Forty Wistar rats were randomized to an orally pretreated with doxycycline group (n = 20) or to a placebo group (n = 20) each of which was followed by instrumentation prior to either low or high tidal volume mechanical ventilation. Afterwards, animals were euthanized and lungs were harvested for subsequent analyses. Results Mechanical function and gas exchange parameters improved following treatment with doxycycline in the high volume ventilated group as compared to the placebo group. Nine pulmonary proteins have shown significant changes between the two biochemically analysed (high volume ventilated) groups. Treatment with doxycycline resulted in a decrease of pulmonary MMP-9 activity as well as in an increase in the levels of soluble receptor for advanced glycation endproduct, apoliporotein A-I, peroxiredoxin II, four molecular forms of albumin and two unnamed proteins. Using the pharmacoproteomic approach we have shown that treatment with doxycycline leads to an increase in levels of several proteins, which could potentially be part of a defense mechanism. Conclusion Administration of doxycycline might be a significant supportive therapeutic strategy in prevention of VILI. PMID:20205825

  7. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation. PMID:27089391

  8. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Li, Chengye; Deng, Ganzhen

    2016-06-01

    Despite developments in the knowledge and therapy of acute lung injury in recent decades, mortality remains high, and there is usually a lack of effective therapy. Plantamajoside, a major ingredient isolated from Plantago asiatica L. (Plantaginaceae), has been reported to have potent anti-inflammatory properties. However, the effect of plantamajoside on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice has not been investigated. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of plantamajoside on LPS-induced acute lung injury in mice and in RAW264.7 cells. The results of histopathological changes as well as the lung wet-to-dry ratio and myeloperoxidase (MPO) activity showed that plantamajoside ameliorated the lung injury that was induced by LPS. qPCR and ELISA assays demonstrated that plantamajoside suppressed the production of IL-1β, IL-6 and TNF-α in a dose-dependent manner. TLR4 is an important sensor in LPS infection. Molecular studies showed that the expression of TLR4 was inhibited by plantamajoside administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that plantamajoside inhibited the phosphorylation of IκBα, p65, p38, JNK and ERK. All results indicated that plantamajoside has protective effect on LPS-induced ALI in mice and in RAW264.7 cells. Thus, plantamajoside may be a potential therapy for the treatment of pulmonary inflammation.

  9. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    PubMed Central

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  10. Clinical review: Early treatment of acute lung injury - paradigm shift toward prevention and treatment prior to respiratory failure

    PubMed Central

    2012-01-01

    Acute lung injury (ALI) remains a major cause of morbidity and mortality in critically ill patients. Despite improved understanding of the pathogenesis of ALI, supportive care with a lung protective strategy of mechanical ventilation remains the only treatment with a proven survival advantage. Most clinical trials in ALI have targeted mechanically ventilated patients. Past trials of pharmacologic agents may have failed to demonstrate efficacy in part due to the resultant delay in initiation of therapy until several days after the onset of lung injury. Improved early identification of at-risk patients provides new opportunities for risk factor modification to prevent the development of ALI and novel patient groups to target for early treatment of ALI before progression to the need for mechanical ventilation. This review will discuss current strategies that target prevention of ALI and some of the most promising pharmacologic agents for early treatment of ALI prior to the onset of respiratory failure that requires mechanical ventilation. PMID:22713281

  11. /sup 111/In-platelet and /sup 125/I-fibrinogen deposition in the lungs in experimental acute pancreatitis

    SciTech Connect

    Goulbourne, I.A.; Watson, H.; Davies, G.C.

    1987-12-01

    An experimental model of acute pancreatitis in rats has been used to study intrapulmonary /sup 125/I-fibrinogen and /sup 111/In-platelet deposition. Pancreatitis caused a significant increase in wet lung weight compared to normal, and this could be abolished by heparin or aspirin pretreatment. /sup 125/I-fibrinogen was deposited in the lungs of animals to a significantly greater degree than in controls (P less than 0.01). /sup 125/I-fibrinogen deposition was reduced to control levels by pretreatment with aspirin or heparin (P less than 0.05). The uptake of radiolabeled platelets was greater in pancreatitis than in controls (P less than 0.001). Pancreatitis appears to be responsible for platelet entrapment in the lungs. Platelet uptake was reduced by heparin treatment but unaffected by aspirin therapy.

  12. Scutellarin protects against lipopolysaccharide-induced acute lung injury via inhibition of NF-kappaB activation in mice.

    PubMed

    Tan, Zheng-Huai; Yu, Ling-Hong; Wei, Huai-Ling; Liu, Geng-Tao

    2010-03-01

    This paper investigates the effect of natural scutellarin on acute lung injury (ALI) induced by Escherichia coli endotoxin lipopolysaccharide (LPS) in mice and its mechanism of action. Mouse ALI was induced by the injection of LPS (15 mg/kg) via the tail vein, and mice were intraperitoneally injected with 50 and 25 mg/kg of scutellarin before the LPS injection. The lung index, serum NO2(-)/NO3(-), and tumor necrosis factor-alpha (TNF-alpha) levels were determined using kits. The lung lesions were examined by light microscope. The mRNA levels of TNF-alpha, inducible nitric oxide synthase (iNOS), and FasL in pulmonary tissues were detected by RT-PCR. c-Fos, c-Jun, IkappaB, and iNOS proteins were detected by the western blotting method. Pretreatment with 25 and 50 mg/kg of scutellarin significantly reduced lung injury induced by LPS, which expressed in the decrease in lung morphological lesions, serum NO2(-)/NO3(-), TNF-alpha levels, lactate dehydrogenase release, and total protein in the lavage fluid of bronchoalveolar of the lung. The mRNA level of TNF-alpha, iNOS, the protein content of c-Fos, iNOS, and the activation of NF-kappaB in pulmonary tissues were all inhibited, while the lung glutathione level increased. In conclusion, scutellarin has protective action against LPS-induced lung damage in mice, and its underlying mechanism might be the inhibition of IkappaB alpha degradation and the expression of TNF-alpha mRNA.

  13. [Acute lung injury as a consequence of fresh frozen plasma administration in a patient with factor XII deficiency].

    PubMed

    San Juan-Álvarez, M; Sánchez-Zamora, P; de la Flor-Robledo, M

    2014-10-01

    Along with the complete blood count, the coagulation tests are those most demanded before a surgical procedure. The activated partial thromboplastin time (APPT) quantifies the intrinsic and common coagulation pathways, including factors XII, XI, IX, VIII, X, V and II. Factor XII deficiency is associated with a prolonged APPT and an increase in thromboembolic phenomena, without increasing the intraoperative bleeding risk. A 20 year old man with factor XII deficiency was receiving two units of fresh frozen plasma because of an APPT of 100 seconds, with the intention of normalizing it before an urgent surgery procedure, and the fear of intraoperative bleeding. An hour after starting the transfusion the patient developed an acute lung injury (ALI) compatible with the diagnosis of a transfusion related acute lung injury (TRALI). The surgery continued without complications, and the patient was admitted to the resuscitation unit for 72 h, needing respiratory support. If the APTT is prolonged in the absence of bleeding, the presence of a non-specific circulating anticoagulant, a deficiency of factor XI, XII and VIII (associated to Von Willebrand disease) must be ruled out. Therefore, in the case presented here, the administration of hemoderivatives was unnecessary and can have consequences as serious as the one that the patient presented, a transfusion related acute lung injury.

  14. Reverse-migrated neutrophils regulated by JAM-C are involved in acute pancreatitis-associated lung injury

    PubMed Central

    Wu, Deqing; Zeng, Yue; Fan, Yuting; Wu, Jianghong; Mulatibieke, Tunike; Ni, Jianbo; Yu, Ge; Wan, Rong; Wang, Xingpeng; Hu, Guoyong

    2016-01-01

    Junctional adhesion molecule-C (JAM-C) plays a key role in the promotion of the reverse transendothelial migration (rTEM) of neutrophils, which contributes to the dissemination of systemic inflammation and to secondary organ damage. During acute pancreatitis (AP), systemic inflammatory responses lead to distant organ damage and typically result in acute lung injury (ALI). Here, we investigated the role of rTEM neutrophils in AP-associated ALI and the molecular mechanisms by which JAM-C regulates neutrophil rTEM in this disorder. In this study, rTEM neutrophils were identified in the peripheral blood both in murine model of AP and human patients with AP, which elevated with increased severity of lung injury. Pancreatic JAM-C was downregulated during murine experimental pancreatitis, whose expression levels were inversely correlated with both increased neutrophil rTEM and severity of lung injury. Knockout of JAM-C resulted in more severe lung injury and systemic inflammation. Significantly greater numbers of rTEM neutrophils were present both in the circulation and pulmonary vascular washout in JAM-C knockout mice with AP. This study demonstrates that during AP, neutrophils that are recruited to the pancreas may migrate back into the circulation and then contribute to ALI. JAM-C downregulation may contribute to AP-associated ALI via promoting neutrophil rTEM. PMID:26841848

  15. Customization of an open-lung ventilation strategy to treat a case of life-threatening acute respiratory distress syndrome.

    PubMed

    Grooms, David A; Sibole, Stephen H; Tomlinson, James R; Marik, Paul E; Chatburn, Robert L

    2011-04-01

    The ARDS Network low-tidal-volume protocol is considered the standard of care for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The protocol is built on the foundation of low-tidal-volume ventilation, use of a combined PEEP and F(IO(2)) table, and managing alveolar end-inspiratory pressure by limiting the plateau airway pressure to ≤ 30 cm H(2)O. Although this strategy, to date, is the only method that significantly improves ALI/ARDS survival, alternative methods of improving hypoxemia and minimizing ventilator-induced lung injury, in conjunction with low-tidal-volume ventilation, can be used for life-threatening ARDS. We present a case in which we customized the use of alveolar recruitment maneuvers by analyzing the hysteresis of the pressure-volume curve to assess lung recruitability, decremental PEEP to sustain lung recruitment, and careful use of plateau pressure ≥ 30 cm H(2)O, which improved our patient's life-threatening hypoxemia within the first 36 min of arrival to our ICU.

  16. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9.

    PubMed

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  17. Intra-Peritoneal Administration of Mitochondrial DNA Provokes Acute Lung Injury and Systemic Inflammation via Toll-Like Receptor 9

    PubMed Central

    Zhang, Lemeng; Deng, Songyun; Zhao, Shuangping; Ai, Yuhang; Zhang, Lina; Pan, Pinhua; Su, Xiaoli; Tan, Hongyi; Wu, Dongdong

    2016-01-01

    The pathogenesis of sepsis is complex. Mitochondrial dysfunction, which is responsible for energy metabolism, intrinsic apoptotic pathway, oxidative stress, and systemic inflammatory responses, is closely related with severe sepsis induced death. Mitochondria DNA (mtDNA) contain un-methylated cytosine phosphate guanine (CpG) motifs, which exhibit immune stimulatory capacities. The aim of this study was to investigate the role and mechanism of mtDNA release on lipopolysaccharide (LPS) induced acute lung injury (ALI) and systemic inflammation. Following LPS injection, plasma mtDNA copies peak at 8 h. Compared with wild-type (WT) mice, mtDNA in toll like receptor 4 knockout (TLR4 KO) mice were significantly decreased. MtDNA intra-peritoneal administration causes apparent ALI as demonstrated by increased lung injury score, bronchoalveolar lavage fluid (BALF) total protein and wet/dry (W/D) ratio; mtDNA injection also directly provokes systemic inflammation, as demonstrated by increased IL-1β, IL-6, high-mobility group protein B1 (HMGB1) level; while nuclear DNA (nDNA) could not induce apparent ALI and systemic inflammation. However, compared with WT mice, TLR4 KO could not protect from mtDNA induced ALI and systemic inflammation. Specific TLR9 inhibitor, ODN 2088 pretreatment can significantly attenuate mtDNA induced ALI and systemic inflammation, as demonstrated by improved lung injury score, decreased lung wet/dry ratio, BALF total protein concentration, and decreased systemic level of IL-1β, IL-6 and HMGB1. MtDNA administration activates the expression of p-P38 mitogen-activated protein kinases (MAPK) in lung tissue and specific TLR9 inhibitor pretreatment can attenuate this activation. Thus, LPS-induced mtDNA release occurs in a TLR4-dependent manner, and mtDNA causes acute lung injury and systemic inflammation in a TLR9-dependent and TLR4-independent manner. PMID:27589725

  18. Role of Complement C5 in Experimental Blunt Chest Trauma-Induced Septic Acute Lung Injury (ALI)

    PubMed Central

    Karbach, Michael; Braumueller, Sonja; Kellermann, Philipp; Gebhard, Florian; Huber-Lang, Markus; Perl, Mario

    2016-01-01

    Background Severe blunt chest trauma is associated with high mortality. Sepsis represents a serious risk factor for mortality in acute respiratory distress syndrome (ARDS). In septic patients with ARDS complement activation products were found to be elevated in the plasma. In single models like LPS or trauma complement has been studied to some degree, however in clinically highly relevant double hit models such as the one used here little data is available. Here, we hypothesized that absence of C5 is correlated with a decreased inflammatory response in trauma induced septic acute lung injury. Methods 12 hrs after DH in mice the local and systemic cytokines and chemokines were quantified by multiplex bead array or ELISA, activated caspase-3 by western blot. Data were analyzed using one-way ANOVA followed by post-hoc Sidak’s multiple comparison test (significance, p≤ 0.05). Results In lung tissue interleukin (IL)-6, monocyte chemo attractant protein-1 (MCP-1) and granulocyte-colony stimulating factor (G-CSF) was elevated in both C5-/- mice and wildtype littermates (wt), whereas caspase-3 was reduced in lungs after DH in C5-/- mice. Systemically, reduced keratinocyte-derived chemokine (KC) levels were observed after DH in C5-/- compared to wt mice. Locally, lung myeloperoxidase (MPO), protein, IL-6, MCP-1 and G-CSF in brochoalveolar lavage fluid (BALF) were elevated after DH in C5-/- compared to wt. Conclusions In the complex but clinically relevant DH model the local and systemic inflammatory immune response features both, C5-dependent and C5-independent characteristics. Activation of caspase-3 in lung tissue after DH was C5-dependent whereas local inflammation in lung tissue was C5-independent. PMID:27437704

  19. Acute secondary effects in the esophagus in patients undergoing radiotherapy for carcinoma of the lung

    SciTech Connect

    Mascarenhas, F.; Silvestre, M.E.; Sa da Costa, M.; Grima, N.; Campos, C.; Chaves, P.

    1989-02-01

    The incidence and nature of acute secondary irradiation esophagitis was studied in a series of 38 patients undergoing 60Co teletherapy for carcinoma of the lung. Thirty-four patients were male and four female, with ages ranging from 38 to 78 years. The mediastinum being irradiated in the process, all the patients underwent endoscopy for signs of esophagitis and/or gastritis after a dose of 30-40 Gy was delivered to the esophagus. Eighteen patients complained of dysphagia, but only in 12 of them did endoscopy show esophagitis. Of the remaining patients without complaints five had endoscopic signs of esophagitis. Gastritis was found in 18 cases and confirmed histologically in 14. In 17 cases, esophagitis and/or gastritis were confirmed histologically. It is believed that there is a fairly close correlation among clinical, endoscopic, and histological findings to support the claim that esophagitis in these patients is radiation induced. However, the cause of gastritis is not well understood. Data in the literature suggest that nonsteroid anti-inflammatory agents can act as prophylactic means of preventing radiation esophagitis.

  20. Are Intensive Care Factors Associated with Depressive Symptoms Six Months after Acute Lung Injury?

    PubMed Central

    Dowdy, David W.; Bienvenu, O. Joseph; Dinglas, Victor D.; Mendez-Tellez, Pedro A.; Sevransky, Jonathan; Shanholtz, Carl; Needham, Dale M.

    2009-01-01

    Objective To evaluate intensive care-related factors as predictors of depressive symptoms 6 months after acute lung injury (ALI) Design Prospective cohort study Setting Thirteen intensive care units (ICUs) in 4 hospitals in Baltimore, MD Patients Consecutive ALI survivors (n = 160; 71% from medical ICUs) screened for depressive symptoms at six months post-ALI Interventions None Measurements and Main Results We prospectively measured 12 features of critical illness and ICU care and used multivariable regression to evaluate associations with depressive symptoms as measured by the Hospital Anxiety and Depression (HAD) depression score. The prevalence of a positive screening for depression (score ≥8) at 6 months post-ALI was 26%. Depressive symptoms were significantly associated with surgical (versus medical or trauma) ICU admission (relative risk [RR] 2.2, 95% confidence interval [CI] 1.1 – 4.2), maximum daily Sequential Organ Failure Assessment score of >10 (RR 2.1, 95% CI 1.1 – 3.5), and mean daily ICU benzodiazepine dose of ≥75mg of midazolam-equivalent (RR 2.1, 95% CI 1.1 – 3.5). Conclusions Depressive symptoms at 6 months post-ALI are common and potentially associated with ICU-related factors. Mechanisms by which critical illness and intensive care management associate with depressive symptoms merit further investigation. PMID:19357507

  1. Dose-related reversal of acute lung rejection by aerosolized cyclosporine.

    PubMed

    Iacono, A T; Smaldone, G C; Keenan, R J; Diot, P; Dauber, J H; Zeevi, A; Burckart, G J; Griffith, B P

    1997-05-01

    This study evaluated the effectiveness of aerosolized cyclosporine as rescue therapy for refractory acute rejection in lung-transplant patients that is unresponsive to conventional therapy. Over 2 yr, nine allograft recipients with histologic evidence of persistent acute rejection and worsening pulmonary function were enrolled. Twenty-two patients with similar degrees of unremitting rejection served as historical controls. Aerosolization of cyclosporin A (300 mg in 4.8 ml propylene glycol) using an AeroTech II jet nebulizer was instituted daily for 12 consecutive days followed by a maintenance regimen of 3 d/wk. Cyclosporine and tacrolimus blood and plasma levels were maintained within therapeutic ranges throughout this trial. Efficacy was assessed by histologic grade of rejection, interleukin-6 (IL-6) mRNA expression by graft bronchoalveolar lavage cells, and pulmonary function testing before and during cyclosporine therapy. In seven patients, results were correlated to deposition of cyclosporine aerosol in the allograft(s) as measured by radioisotopic techniques. At a mean of 37 d after initiation of aerosolized cyclosporine, graft histology improved in eight of the nine patients. Cellular IL-6 mRNA expression decreased significantly in seven patients (mean IL-6/actin +/- SD, 40.96 +/- 118 versus 0.33 +/- 0.57 [p = 0.038]). Pulmonary function (FEV1), which had decreased posttransplant (over a mean of 347 d of observation) from a best value of 1.98 +/- 0.8 L to 1.59 +/- 0.6 L (p = 0.0077), improved over time (152 d) to a posttransplant value of 1.90 +/- 0.8 (p = 0.025). In the control subjects, FEV1 inexorably declined over a comparable period of observation (best posttransplant value 2.36 +/- 0.86 to 1.32 +/- 0.53, p < 0.0001). There was a strong correlation between cyclosporine deposition in the allograft and improvement in FEV1 (r = 0.900, p < 0.01). Fewer cycles of pulsed corticosteroids (1.4 +/- 0.9 versus 0.2 +/- 0.4, p = 0.011) and anti-thymocyte globulin 0

  2. The Effects of Dexamethasone and L-NAME on Acute Lung Injury in Rats with Lung Contusion.

    PubMed

    Kozan, Ahmet; Kilic, Nermin; Alacam, Hasan; Guzel, Ahmet; Guvenc, Tolga; Acikgoz, Mehmet

    2016-10-01

    The therapeutic efficiency of an anti-inflammatory agent, dexamethasone (DXM), and a nitric oxide synthase (NOS) inhibitor, Nitro-L-arginine methyl ester (L-NAME), in lung tissue injury after lung contusion was investigated. Serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), YKL-40, an inflammatory peptide, inducible NOS (iNOS), and Clara cell protein 16 (CC-16) were evaluated. Immunohistochemical analyses were also performed, and the lung tissue was examined histopathologically. The study consisted of eight groups of Sprague-Dawley rats (n = 10 in each group), weighing 250-300 g: (1) control, (2) contusion, (3) control + DXM, (4) contusion + DXM, (5) control + L-NAME (6) contusion + L-NAME, (7) control + DXM + L-NAME, and (8) contusion + DXM + L-NAME. A previously developed lung contusion model was used, in addition to the control group. The rats were administered DXM and L-NAME intraperitoneally (i.p.) at doses of 15 and 60 mg/kg/day, respectively. DXM and L-NAME administration decreased the iNOS level in the contusion groups. DXM increased the levels of YKL-40 and IL-10 in both the control and contusion groups, with higher levels in the contusion groups. L-NAME increased the serum level of IL-10 in the lung contusion groups. DXM increased the synthesis of CC-16 in the control and contusion groups. The combined use of a high-dose steroid and NOS inhibitor resulted in the death of the rats. Steroids can increase the level of cytokines, such as YKL-40 and IL-10, and the synthesis of CC-16 and prevent pneumonia, ALI/ARDS, and sepsis in lung contusion.

  3. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  4. Clinical review: Exogenous surfactant therapy for acute lung injury/acute respiratory distress syndrome--where do we go from here?

    PubMed

    Dushianthan, Ahilanandan; Cusack, Rebecca; Goss, Victoria; Postle, Anthony D; Grocott, Mike P W

    2012-01-01

    Acute lung injury and acute respiratory distress syndrome (ARDS) are characterised by severe hypoxemic respiratory failure and poor lung compliance. Despite advances in clinical management, morbidity and mortality remains high. Supportive measures including protective lung ventilation confer a survival advantage in patients with ARDS, but management is otherwise limited by the lack of effective pharmacological therapies. Surfactant dysfunction with quantitative and qualitative abnormalities of both phospholipids and proteins are characteristic of patients with ARDS. Exogenous surfactant replacement in animal models of ARDS and neonatal respiratory distress syndrome shows consistent improvements in gas exchange and survival. However, whilst some adult studies have shown improved oxygenation, no survival benefit has been demonstrated to date. This lack of clinical efficacy may be related to disease heterogeneity (where treatment responders may be obscured by nonresponders), limited understanding of surfactant biology in patients or an absence of therapeutic effect in this population. Crucially, the mechanism of lung injury in neonates is different from that in ARDS: surfactant inhibition by plasma constituents is a typical feature of ARDS, whereas the primary pathology in neonates is the deficiency of surfactant material due to reduced synthesis. Absence of phenotypic characterisation of patients, the lack of an ideal natural surfactant material with adequate surfactant proteins, coupled with uncertainty about optimal timing, dosing and delivery method are some of the limitations of published surfactant replacement clinical trials. Recent advances in stable isotope labelling of surfactant phospholipids coupled with analytical methods using electrospray ionisation mass spectrometry enable highly specific molecular assessment of phospholipid subclasses and synthetic rates that can be utilised for phenotypic characterisation and individualisation of exogenous surfactant

  5. Rapamycin reverses paraquat-induced acute lung injury in a rat model through inhibition of NFκB activation

    PubMed Central

    Chen, Da; Ma, Tao; Liu, Xiao-Wei; Yang, Chen; Liu, Zhi

    2015-01-01

    Objective: To evaluate the role of rapamycin (RAPA) in paraquat (PQ)-induced acute lung injury. Methods: Lung tissues were stained with HE and lung histology was observed. Mortality rate, and neutrophil and leukocyte count in blood and bronchoalveolar lavage fluid (BALF) were recorded. Protein content in BALF was determined by Coomassie blue staining. Malondialdehyde (MDA) content, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity in blood were determined by thiobarbituric acid (TBA) assay, pyrogallol autoxidation method, and modified Haefman method, respectively. The NF-κB activity was measured by gel electrophoretic mobility shift assay (EMSA). Carbon dioxide partial pressure (PaCO2), partial pressure of oxygen (PaO2) and pH values were measured by automated blood gas analyzer. Results: HE staining results demonstrated RAPA alleviated pathological changes of acute alveolitis in SD rats. Trend of protein content in BALF was PQ group > RAPA treatment group > control group (P < 0.05). Neutrophil and leukocyte count in RAPA treatment group was significantly lower than PQ group at 3, 5, and 7 days after injection (P < 0.05). Trend of MDA content was RAPA treatment group > PQ group > control group (P < 0.05). Trend of GSH-Px and SOD activity was control group > RAPA treatment group > PQ group (P < 0.05). Compared with PQ group, PaO2 in RAPA treatment group was markedly higher and PaCO2 was lower (P < 0.05). Conclusion: PQ-induced acute lung injury was effectively reversed with RAPA, through inhibition of NF-κB activation. PMID:26191153

  6. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    PubMed

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation. PMID:26976597

  7. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    PubMed

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.

  8. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo

    PubMed Central

    Chan, Michael C. W.; Kuok, Denise I. T.; Leung, Connie Y. H.; Hui, Kenrie P. Y.; Valkenburg, Sophie A.; Lau, Eric H. Y.; Nicholls, John M.; Fang, Xiaohui; Guan, Yi; Lee, Jae W.; Chan, Renee W. Y.; Webster, Robert G.; Matthay, Michael A.; Peiris, J. S. Malik

    2016-01-01

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium’s protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation. PMID:26976597

  9. Heparin-binding epidermal growth factor–like growth factor attenuates acute lung injury and multiorgan dysfunction after scald burn

    PubMed Central

    Lutmer, Jeffrey; Watkins, Daniel; Chen, Chun-Liang; Velten, Markus; Besner, Gail

    2013-01-01

    Background Impaired gut barrier function and acute lung injury (ALI) are significant components of the multiorgan dysfunction syndrome that accompanies severe burns. Heparin-binding epidermal growth factor–like growth factor (HB-EGF) has been shown to reduce inflammation, preserve gut barrier function, and protect the lungs from acute injury in several models of intestinal injury; however, comparable effects of HB-EGF after burn injury have never been investigated. The present studies were based on the hypothesis that HB-EGF would reduce the severity of ALI and multiorgan dysfunction after scald burns in mice. Materials and methods Mice were randomized to sham, burn (25% of total body surface area with full thickness dorsal scald), and burn + HB-EGF groups. The HB-EGF group was pre-treated with two enteral doses of HB-EGF (1200 μg/kg/dose). Mice were resuscitated after injury and sacrificed at 8 h later. Their lungs were harvested for determination of pulmonary myeloperoxidase activity, wet:dry ratios, and terminal deoxynucleotidyl transferase dUTP nick end label and cleaved caspase 3 immunohistochemistry. Lung function was assessed using the SCIREQ Flexivent. Splenic apoptosis was quantified by Western blot for cleaved caspase 3, and intestinal permeability was measured using the everted gut sac method. Results Mice subjected to scald burn injury had increased lung myeloperoxidase levels, increased pulmonary and splenic apoptosis, elevated airway resistance and bronchial reactivity, and increased intestinal permeability compared with sham mice. These abnormalities were significantly attenuated in mice that were subjected to scald burn injury but treated with enteral HB-EGF. Conclusions These data suggest that HB-EGF protects mice from ALI after scald burn and attenuates the severity of postburn multiorgan dysfunction. PMID:23777985

  10. Daidzein attenuates lipopolysaccharide-induced acute lung injury via toll-like receptor 4/NF-kappaB pathway.

    PubMed

    Feng, Guang; Sun, Bo; Li, Tian-zuo

    2015-06-01

    Daidzein, a diphenolic isoflavone from many plants and herbs, has been reported to have anti-inflammatory properties. However, the effects of daidzein on lipopolysaccharide (LPS)-induced acute lung injury have not been determined. The aim of this study was to detect the effects of daidzein on LPS-induced acute lung injury and investigate the molecular mechanisms. Daidzein was intraperitoneally injected (2, 4, 8 mg/kg) 30 min after intratracheal instillation of LPS (5 mg/kg) in rats. The results showed that daidzein treatment remarkably improved the pulmonary histology and decreased the lung wet/dry weight ratios. We also found that daidzein significantly inhibited LPS-induced increases of macrophages and neutrophils infiltration of lung tissues, as well as markedly attenuated MPO activity. Moreover, daidzein effectively reduced the inflammatory cytokines release and total protein in bronchoalveolar lavage fluids (BALF). Furthermore, daidzein significantly inhibited LPS-induced toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) protein up-expressions and NF-κB activation in lung tissues. In vitro, daidzein obviously inhibited the expressions of TLR4 and MyD88 and the activation of NF-κB in LPS-stimulated A549 alveolar epithelial cells. In conclusion, these data indicate that the anti-inflammatory effects of daidzein against LPS-induced ALI may be due to its ability to inhibit TLR4-MyD88-NF-κB pathway and daidzein may be a potential therapeutic agent for LPS-induced ALI. PMID:25887269

  11. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen.

    PubMed

    Brown, Andrew S; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L; van Driel, Ian R

    2016-06-01

    Legionella pneumophila is the causative agent of Legionnaires' disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  12. Cooperation between Monocyte-Derived Cells and Lymphoid Cells in the Acute Response to a Bacterial Lung Pathogen

    PubMed Central

    Brown, Andrew S.; Yang, Chao; Fung, Ka Yee; Bachem, Annabell; Bourges, Dorothée; Bedoui, Sammy; Hartland, Elizabeth L.; van Driel, Ian R.

    2016-01-01

    Legionella pneumophila is the causative agent of Legionnaires’ disease, a potentially fatal lung infection. Alveolar macrophages support intracellular replication of L. pneumophila, however the contributions of other immune cell types to bacterial killing during infection are unclear. Here, we used recently described methods to characterise the major inflammatory cells in lung after acute respiratory infection of mice with L. pneumophila. We observed that the numbers of alveolar macrophages rapidly decreased after infection coincident with a rapid infiltration of the lung by monocyte-derived cells (MC), which, together with neutrophils, became the dominant inflammatory cells associated with the bacteria. Using mice in which the ability of MC to infiltrate tissues is impaired it was found that MC were required for bacterial clearance and were the major source of IL12. IL12 was needed to induce IFNγ production by lymphoid cells including NK cells, memory T cells, NKT cells and γδ T cells. Memory T cells that produced IFNγ appeared to be circulating effector/memory T cells that infiltrated the lung after infection. IFNγ production by memory T cells was stimulated in an antigen-independent fashion and could effectively clear bacteria from the lung indicating that memory T cells are an important contributor to innate bacterial defence. We also determined that a major function of IFNγ was to stimulate bactericidal activity of MC. On the other hand, neutrophils did not require IFNγ to kill bacteria and alveolar macrophages remained poorly bactericidal even in the presence of IFNγ. This work has revealed a cooperative innate immune circuit between lymphoid cells and MC that combats acute L. pneumophila infection and defines a specific role for IFNγ in anti-bacterial immunity. PMID:27300652

  13. Critical role for the NLRP3 inflammasome during acute lung injury.

    PubMed

    Grailer, Jamison J; Canning, Bethany A; Kalbitz, Miriam; Haggadone, Mikel D; Dhond, Rasika M; Andjelkovic, Anuska V; Zetoune, Firas S; Ward, Peter A

    2014-06-15

    The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1β and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was dependent on availability of NLRP3 as well as caspase-1, which are known features of the NLRP3 inflammasome. The appearance of IL-1β, a product of NLRP3 inflammasome activation, was detected in bronchoalveolar lavage fluids (BALF) in a macrophage- and neutrophil-dependent manner. Neutrophil-derived extracellular histones appeared in the BALF during ALI and directly activated the NLRP3 inflammasome. Ab-mediated neutralization of histones significantly reduced IL-1β levels in BALF during ALI. Inflammasome activation by extracellular histones in LPS-primed macrophages required NLRP3 and caspase-1 as well as extrusion of K(+), increased intracellular Ca(2+) concentration, and generation of reactive oxygen species. NLRP3 and caspase-1 were also required for full extracellular histone presence during ALI, suggesting a positive feedback mechanism. Extracellular histone and IL-1β levels in BALF were also elevated in C5a-induced and IgG immune complex ALI models, suggesting a common inflammatory mechanism. These data indicate an interaction between extracellular histones and the NLRP3 inflammasome, resulting in ALI. Such findings suggest novel targets for treatment of ALI, for which there is currently no known efficacious drug. PMID:24795455

  14. HIF2α signaling inhibits adherens junctional disruption in acute lung injury

    PubMed Central

    Gong, Haixia; Rehman, Jalees; Tang, Haiyang; Wary, Kishore; Mittal, Manish; Chatturvedi, Pallavi; Zhao, Youyang; Komorova, Yulia A.; Vogel, Stephen M.; Malik, Asrar B.

    2015-01-01

    Vascular endothelial barrier dysfunction underlies diseases such as acute respiratory distress syndrome (ARDS), characterized by edema and inflammatory cell infiltration. The transcription factor HIF2α is highly expressed in vascular endothelial cells (ECs) and may regulate endothelial barrier function. Here, we analyzed promoter sequences of genes encoding proteins that regulate adherens junction (AJ) integrity and determined that vascular endothelial protein tyrosine phosphatase (VE-PTP) is a HIF2α target. HIF2α-induced VE-PTP expression enhanced dephosphorylation of VE-cadherin, which reduced VE-cadherin endocytosis and thereby augmented AJ integrity and endothelial barrier function. Mice harboring an EC-specific deletion of Hif2a exhibited decreased VE-PTP expression and increased VE-cadherin phosphorylation, resulting in defective AJs. Mice lacking HIF2α in ECs had increased lung vascular permeability and water content, both of which were further exacerbated by endotoxin-mediated injury. Treatment of these mice with Fg4497, a prolyl hydroxylase domain 2 (PHD2) inhibitor, activated HIF2α-mediated transcription in a hypoxia-independent manner. HIF2α activation increased VE-PTP expression, decreased VE-cadherin phosphorylation, promoted AJ integrity, and prevented the loss of endothelial barrier function. These findings demonstrate that HIF2α enhances endothelial barrier integrity, in part through VE-PTP expression and the resultant VE-cadherin dephosphorylation-mediated assembly of AJs. Moreover, activation of HIF2α/VE-PTP signaling via PHD2 inhibition has the potential to prevent the formation of leaky vessels and edema in inflammatory diseases such as ARDS. PMID:25574837

  15. Effect of hydroxyethyl starch on alveolar flooding in acute lung injury in dogs.

    PubMed

    Tanaka, H; Dahms, T E; Bell, E; Naunheim, K S; Baudendistel, L J

    1993-10-01

    The efficacy of hydroxyethyl starch (HES) in limiting alveolar flooding after acute lung injury was investigated using ethchlorvynol (ECV)-induced low pressure pulmonary edema in dogs. Harvested autologous plasma (PL) (control, n = 8) or 6% HES (n = 8) was infused (25 ml/kg) along with packed cells to result in an isovolemic, normochromic preparation before the administration of ECV. Extravascular thermal volume significantly increased after ECV administration in both groups of animals (6.6 to 13.4 ml/kg in PL, 6.5 to 15.0 ml/kg in HES). Systemic arterial PO2 decreased from 216 +/- 4 to 113 +/- 20 mm Hg, and venous admixture increased from 2.8 to 12.8% in the PL group but was not significantly changed in the HES group (219 +/- 5 to 203 +/- 8 mm Hg, and 2.9 to 4.4%, respectively). Epithelial lining fluid volumes after ECV administration increased in both groups but were elevated in the PL group to a greater extent than in the HES group (13.5 ml in HES versus 24.8 ml in PL). In the HES group there appeared to be no difference in the ability of plasma proteins to move across the alveolar epithelium. These results suggest that HES attenuates the flooding of the alveolar space and the resulting alterations in gas exchange during the development of low pressure pulmonary edema. The replacement of the plasma proteins with HES and the apparent inability of HES to cross the epithelial barrier into the alveoli may account for the protective effect of HES in these experiments.

  16. Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis

    PubMed Central

    Wang, Changsong; Wang, Xiaoyang; Chi, Chunjie; Guo, Libo; Guo, Lei; Zhao, Nana; Wang, Weiwei; Pi, Xin; Sun, Bo; Lian, Ailing; Shi, Jinghui; Li, Enyou

    2016-01-01

    To identify the best lung ventilation strategy for acute respiratory distress syndrome (ARDS), we performed a network meta-analysis. The Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, CINAHL, and the Web of Science were searched, and 36 eligible articles were included. Compared with higher tidal volumes with FiO2-guided lower positive end-expiratory pressure [PEEP], the hazard ratios (HRs) for mortality were 0.624 (95% confidence interval (CI) 0.419–0.98) for lower tidal volumes with FiO2-guided lower PEEP and prone positioning and 0.572 (0.34–0.968) for pressure-controlled ventilation with FiO2-guided lower PEEP. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning had the greatest potential to reduce mortality, and the possibility of receiving the first ranking was 61.6%. Permissive hypercapnia, recruitment maneuver, and low airway pressures were most likely to be the worst in terms of all-cause mortality. Compared with higher tidal volumes with FiO2-guided lower PEEP, pressure-controlled ventilation with FiO2-guided lower PEEP and lower tidal volumes with FiO2-guided lower PEEP and prone positioning ventilation are associated with lower mortality in ARDS patients. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning ventilation and lower tidal volumes with pressure-volume (P–V) static curve-guided individual PEEP are potential optimal strategies for ARDS patients. PMID:26955891

  17. Mechanisms of transfusion-related acute lung injury (TRALI): anti-leukocyte antibodies.

    PubMed

    Curtis, Brian R; McFarland, Janice G

    2006-05-01

    There is abundant evidence that leukocyte antibodies in blood donor products are somehow involved in transfusion-related acute lung injury (TRALI). Human leukocyte antigen (HLA) class I, HLA class II, and neutrophil-specific antibodies in the plasma of both blood donors and recipients have been implicated in the pathogenesis of TRALI. The case for a relationship between leukocyte antibodies and TRALI is more compelling if concordance between the antigen specificity of the leukocyte antibodies in the donor plasma and the corresponding antigen on the cells of the affected recipient is demonstrated. Such antibody-antigen concordance can be investigated by typing the recipient for the cognate leukocyte antigens or by cross-matching the donor plasma against the recipient's leukocytes. Two proposed pathophysiologic mechanisms for TRALI have received the most attention: the antibody hypothesis and the two-event hypothesis. The final common pathway in all of the proposed pathogenic mechanisms of TRALI is increased pulmonary capillary permeability, which results in movement of plasma into the alveolar space causing pulmonary edema. A typical TRALI serologic workup consists of tests for HLA class I and II and neutrophil-specific antibodies. The use of flow cytometry and HLA-coated microbeads is recommended for detection of HLA antibodies in plasma of implicated blood donors and a combination of the granulocyte agglutination test and granulocyte immunofluorescence test for detection of neutrophil-specific antibodies. Genotyping for class I and II HLA and for a limited number of neutrophil antigens may also be helpful in establishing antibody-antigen concordance. PMID:16617255

  18. High Prevalence of Acute Exacerbation of Interstitial Lung Disease in Japanese Patients with Systemic Sclerosis.

    PubMed

    Tomiyama, Fumiko; Watanabe, Ryu; Ishii, Tomonori; Kamogawa, Yukiko; Fujita, Yoko; Shirota, Yuko; Sugimura, Koichiro; Fujii, Hiroshi; Harigae, Hideo

    2016-01-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by extensive fibrosis and autoantibodies. Its clinical manifestations are diverse and include Raynaud's phenomenon, gastrointestinal dysmotility, interstitial lung disease (ILD), pulmonary hypertension, and renal crisis. Among these, ILD is the primary cause of SSc-related death. It has been considered that acute exacerbation of ILD (AE-ILD) is not common in patients with SSc; however, little is known about the prevalence of AE-ILD in Japanese patients with SSc. In this study, we aimed to clarify the prevalence, clinical characteristics, and prognosis of patients with SSc who developed AE-ILD and to identify predictive factors for AE-ILD in our Japanese cohorts. Clinical data of patients who visited our department from 1990 to 2014 and fulfilled the 2013 classification criteria for SSc were retrospectively reviewed. A total of 139 patients were enrolled. The mean age of onset was 49.1 years, and 113 (81.3%) patients were female; 116 (83.5%) had limited cutaneous involvement, and the overall 10-year survival rate was 92.0%. Among 66 (47.5%) patients with ILD, 13 (9.4%) developed AE-ILD. Patients with AE-ILD had a significantly higher incidence of overlap with polymyositis (PM) or dermatomyositis (DM) and lower prevalence of anticentromere antibodies with higher mortality rate compared with those without AE-ILD. Multivariate Cox regression analysis identified that an overlap with PM or DM was the most significant predictive factor for AE-ILD. Our study results suggest that Japanese patients with SSc, particularly patients overlapped with PM or DM, have a high risk of AE-ILD. PMID:27487743

  19. A genetic mouse model to investigate hyperoxic acute lung injury survival.

    PubMed

    Prows, Daniel R; Hafertepen, Amanda P; Gibbons, William J; Winterberg, Abby V; Nick, Todd G

    2007-08-20

    Acute lung injury (ALI) is a devastating disease that maintains a high mortality rate, despite decades of research. Hyperoxia, a universal treatment for ALI and other critically ill patients, can itself cause pulmonary damage, which drastically restricts its therapeutic potential. We stipulate that having the ability to use higher levels of supplemental O2 for longer periods would improve recovery rates. Toward this goal, a mouse model was sought to identify genes contributing to hyperoxic ALI (HALI) mortality. Eighteen inbred mouse strains were screened in continuous >95% O2. A significant survival difference was identified between sensitive C57BL/6J and resistant 129X1/SvJ strains. Although resistant, only one-fourth of 129X1/SvJ mice survived longer than any C57BL/6J mouse, demonstrating decreased penetrance of resistance. A survival time difference between reciprocal F1 mice implicated a parent-of-origin (imprinting) effect. To further evaluate imprinting and begin to delineate the genetic components of HALI survival, we generated and phenotyped offspring from all four possible intercrosses. Segregation analysis supported maternal inheritance of one or more genes but paternal inheritance of one or more contributor genes. A significant sex effect was demonstrated, with males more resistant than females for all F2 crosses. Survival time ranges and sensitive-to-resistant ratios of the different F2 crosses also supported imprinting and predicted that increased survival is due to dominant resistance alleles contributed by both the resistant and sensitive parental strains. HALI survival is multigenic with a complex mode of inheritance, which should be amenable to genetic dissection with this mouse model.

  20. Fever Is Associated with Delayed Ventilator Liberation in Acute Lung Injury

    PubMed Central

    Dowdy, David W.; Harrington, Thelma; Chandolu, Satish; Dinglas, Victor D.; Shah, Nirav G.; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A.; Shanholtz, Carl; Hasday, Jeffrey D.; Needham, Dale M.

    2013-01-01

    Background: Acute lung injury (ALI) is characterized by inflammation, leukocyte activation, neutrophil recruitment, endothelial dysfunction, and epithelial injury, which are all affected by fever. Fever is common in the intensive care unit, but the relationship between fever and outcomes in ALI has not yet been studied. We evaluated the association of temperature dysregulation with time to ventilator liberation, ventilator-free days, and in-hospital mortality. Methods: Analysis of a prospective cohort study, which recruited consecutive patients with ALI from 13 intensive care units at four hospitals in Baltimore, Maryland. The relationship of fever and hypothermia with ventilator liberation was assessed with a Cox proportional hazards model. We evaluated the association of temperature during the first 3 days after ALI with ventilator-free days, using multivariable linear regression models, and the association with mortality was evaluated by robust Poisson regression. Measurements and Main Results: Of 450 patients, only 12% were normothermic during the first 3 days after ALI onset. During the first week post-ALI, each additional day of fever resulted in a 33% reduction in the likelihood of successful ventilator liberation (95% confidence interval [CI] for adjusted hazard ratio, 0.57 to 0.78; P < 0.001). Hypothermia was independently associated with decreased ventilator-free days (hypothermia during each of the first 3 d: reduction of 5.58 d, 95% CI: –9.04 to –2.13; P = 0.002) and increased mortality (hypothermia during each of the first 3 d: relative risk, 1.68; 95% CI, 1.06 to 2.66; P = 0.03). Conclusions: Fever and hypothermia are associated with worse clinical outcomes in ALI, with fever being independently associated with delayed ventilator liberation. PMID:24024608

  1. The lung at high altitude: bronchoalveolar lavage in acute mountain sickness and pulmonary edema.

    PubMed

    Schoene, R B; Swenson, E R; Pizzo, C J; Hackett, P H; Roach, R C; Mills, W J; Henderson, W R; Martin, T R

    1988-06-01

    High-altitude pulmonary edema (HAPE), a severe form of altitude illness that can occur in young healthy individuals, is a noncardiogenic form of edema that is associated with high concentrations of proteins and cells in bronchoalveolar lavage (BAL) fluid (Schoene et al., J. Am. Med. Assoc. 256: 63-69, 1986). We hypothesized that acute mountain sickness (AMS) in which gas exchange is impaired to a milder degree is a precursor to HAPE. We therefore performed BAL with 0.89% NaCl by fiberoptic bronchoscopy in eight subjects at 4,400 m (barometric pressure = 440 Torr) on Mt. McKinley to evaluate the cellular and biochemical responses of the lung at high altitude. The subjects included one healthy control (arterial O2 saturation = 83%), three climbers with HAPE (mean arterial O2 saturation = 55.0 +/- 5.0%), and four with AMS (arterial O2 saturation = 70.0 +/- 2.4%). Cell counts and differentials were done immediately on the BAL fluid, and the remainder was frozen for protein and biochemical analysis to be performed later. The results of this and of the earlier study mentioned above showed that the total leukocyte count (X10(5)/ml) in BAL fluid was 3.5 +/- 2.0 for HAPE, 0.9 +/- 4.0 for AMS, and 0.7 +/- 0.6 for controls, with predominantly alveolar macrophages in HAPE. The total protein concentration (mg/dl) was 616.0 +/- 3.3 for HAPE, 10.4 +/- 8.3 for AMS, and 12.0 +/- 3.4 for controls, with both large- (immunoglobulin M) and small- (albumin) molecular-weight proteins present in HAPE.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3403445

  2. Acute Esophagus Toxicity in Lung Cancer Patients After Intensity Modulated Radiation Therapy and Concurrent Chemotherapy

    SciTech Connect

    Kwint, Margriet; Uyterlinde, Wilma; Nijkamp, Jasper; Chen, Chun; Bois, Josien de; Sonke, Jan-Jakob; Heuvel, Michel van den; Knegjens, Joost; Herk, Marcel van; Belderbos, Jose

    2012-10-01

    Purpose: The purpose of this study was to investigate the dose-effect relation between acute esophageal toxicity (AET) and the dose-volume parameters of the esophagus after intensity modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with non-small cell lung cancer (NSCLC). Patients and Methods: One hundred thirty-nine patients with inoperable NSCLC treated with IMRT and concurrent chemotherapy were prospectively analyzed. The fractionation scheme was 66 Gy in 24 fractions. All patients received concurrently a daily dose of cisplatin (6 mg/m Superscript-Two ). Maximum AET was scored according to Common Toxicity Criteria 3.0. Dose-volume parameters V5 to V70, D{sub mean} and D{sub max} of the esophagus were calculated. A logistic regression analysis was performed to analyze the dose-effect relation between these parameters and grade {>=}2 and grade {>=}3 AET. The outcome was compared with the clinically used esophagus V35 prediction model for grade {>=}2 after radical 3-dimensional conformal radiation therapy (3DCRT) treatment. Results: In our patient group, 9% did not experience AET, and 31% experienced grade 1 AET, 38% grade 2 AET, and 22% grade 3 AET. The incidence of grade 2 and grade 3 AET was not different from that in patients treated with CCRT using 3DCRT. The V50 turned out to be the most significant dosimetric predictor for grade {>=}3 AET (P=.012). The derived V50 model was shown to predict grade {>=}2 AET significantly better than the clinical V35 model (P<.001). Conclusions: For NSCLC patients treated with IMRT and concurrent chemotherapy, the V50 was identified as most accurate predictor of grade {>=}3 AET. There was no difference in the incidence of grade {>=}2 AET between 3DCRT and IMRT in patients treated with concurrent chemoradiation therapy.

  3. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury

    PubMed Central

    Silveyra, Patricia; Floros, Joanna

    2013-01-01

    Pulmonary surfactant, a lipoprotein complex, maintains alveolar integrity and plays an important role in lung host defense, and control of inflammation. Altered inflammatory processes and surfactant dysfunction are well described events that occur in patients with acute or chronic lung disease that can develop secondary to a variety of insults. Genetic variants of surfactant proteins, including single nucleotide polymorphisms, haplotypes, and other genetic variations have been associated with acute and chronic lung disease throughout life in several populations and study groups. The hydrophilic surfactant proteins SP-A and SP-D, also known as collectins, in addition to their surfactant-related functions, are important innate immunity molecules as these, among others, exhibit the ability to bind and enhance clearance of a wide range of pathogens and allergens. This review focuses on published association studies of human surfactant proteins A and D genetic polymorphisms with respiratory, and non-respiratory diseases in adults, children, and newborns. The potential role of genetic variations in pulmonary disease or pathogenesis is discussed following an evaluation, and comparison of the available literature. PMID:22201752

  4. [A patient with acute hypersensitivity pneumonitis with a diagnosis of air-conditioner lung, who responded to therapy].

    PubMed

    Ishikawa, Rie; Kamiya, Hiroyuki; Ikushima, Souichiro; Oristu, Masaru; Takemura, Tamiko

    2010-02-01

    The patient was a 48-year-old woman and current smoker. In May 2007, she moved to a new residence. In the middle of the following month, she developed acute respiratory distress and a fever (38 degrees C) after running her air conditioner continuously throughout the night. The chest X-ray film showed diffuse infiltrative shadows in the middle and lower lung fields. After hospital admission, her oxygenation improved without treatment and the infiltrates improved over the clinical course. As a consequence, we suspected hypersensitivity pneumonitis. The bronchoalveolar lavage showed predominant lymphocytes of 72.6%, with a low CD 4/8 ratio of 0.2. Transbronchial lung biopsy findings corresponded to acute hypersensitivity pneumonitis. The results of the environmental challenge test were positive only when her air conditioner was on, resulting, in a diagnosis of air-conditioner lung. Several microorganisms were detected in an environmental sample, but 20 kinds of serum precipitating antibodies were negative on a thorough screening, so no responsible antigen could be identified. The patient's symptoms did not recur after her air conditioner was replaced. PMID:20184245

  5. Combined treatment with bone marrow mesenchymal stem cells and methylprednisolone in paraquat-induced acute lung injury

    PubMed Central

    2013-01-01

    Background To evaluate the efficacy of combined treatment with bone marrow mesenchymal stem cell (BMSC) transplantation and methylprednisolone (MP) to treat paraquat (PQ)-induced acute lung injury. Materials and methods A total of 102 female rats were randomly divided into five groups: PQ, BMSC, MP, BMSC + MP and normal control. After 14 days of PQ poisoning, the survival of rats, wet/dry weight ratio of lung tissue, serum levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde (MDA) and superoxidase dismutase (SOD), and the expression of nuclear factor (NF)-кB p65 in lung tissue were determined. Results Rats in BMSC and BMSC + MP groups survived. BMSC transplantation significantly decreased the wet/dry weight ratio of lung tissue, down-regulated NF-кB p65 expression in lung tissue, lowered serum levels of TNF-α, IL-1β, IL-6 and MDA, and increased serum levels of IL-10 and SOD. These changes were particularly significant on days 7–14 after PQ poisoning. The above changes were more significant in the MP group on days 1–3 after PQ poisoning, compared with those of the BMSC group. However, the BMSC + MP group showed more significant changes on days 1–14 after PQ poisoning than those of both BMSC and MP groups. Conclusions MP inhibits the inflammatory response, reduces the products of lipid peroxidation and promotes survival of transplanted BMSC, thus improving the intermediate and longer term efficacy of BMSC transplantation for treatment of PQ-induced lung injury. PMID:23902576

  6. Distending Pressure Did Not Activate Acute Phase or Inflammatory Responses in the Airways and Lungs of Fetal, Preterm Lambs

    PubMed Central

    Petersen, Rebecca Y.; Royse, Emily; Kemp, Matthew W.; Miura, Yuichiro; Noe, Andres; Jobe, Alan H.; Hillman, Noah H.

    2016-01-01

    Background Mechanical ventilation at birth causes airway injury and lung inflammation in preterm sheep. Continuous positive airway pressure (CPAP) is being increasingly used clinically to transition preterm infants at birth. Objective To test if distending pressures will activate acute phase reactants and inflammatory changes in the airways of fetal, preterm lambs. Methods The head and chest of fetal lambs at 128±1 day GA were surgically exteriorized. With placental circulation intact, fetal lambs were then randomized to one of five 15 minute interventions: PEEP of 0, 4, 8, 12, or 16 cmH2O. Recruitment volumes were recorded. Fetal lambs remained on placental support for 30 min after the intervention. The twins of each 0 cmH2O animal served as controls. Fetal lung fluid (FLF), bronchoalveolar lavage fluid (BAL), right mainstem bronchi and peripheral lung tissue were evaluated for inflammation. Results Recruitment volume increased from 0.4±0.04 mL/kg at 4 cmH2O to 2.4±0.3 mL/kg at 16 cmH2O. The lambs were surfactant deficient, and all pressures were below the opening inflection pressure on pressure-volume curve. mRNA expression of early response genes and pro-inflammatory cytokines did not increase in airway tissue or lung tissue at any pressure compared to controls. FLF and BAL also did not have increases in early response proteins. No histologic changes or Egr-1 activation was present at the pressures used. Conclusion Distending pressures as high as 16 cmH2O did not recruit lung volume at birth and did not increase markers of injury in the lung or airways in non-breathing preterm fetal sheep. PMID:27463520

  7. Baclofen, a GABABR Agonist, Ameliorates Immune-Complex Mediated Acute Lung Injury by Modulating Pro-Inflammatory Mediators

    PubMed Central

    Jin, Shunying; Merchant, Michael L.; Ritzenthaler, Jeffrey D.; McLeish, Kenneth R.; Lederer, Eleanor D.; Torres-Gonzalez, Edilson; Fraig, Mostafa; Barati, Michelle T.; Lentsch, Alex B.; Roman, Jesse; Klein, Jon B.; Rane, Madhavi J.

    2015-01-01

    Immune-complexes play an important role in the inflammatory diseases of the lung. Neutrophil activation mediates immune-complex (IC) deposition-induced acute lung injury (ALI). Components of gamma amino butyric acid (GABA) signaling, including GABA B receptor 2 (GABABR2), GAD65/67 and the GABA transporter, are present in the lungs and in the neutrophils. However, the role of pulmonary GABABR activation in the context of neutrophil-mediated ALI has not been determined. Thus, the objective of the current study was to determine whether administration of a GABABR agonist, baclofen would ameliorate or exacerbate ALI. We hypothesized that baclofen would regulate IC-induced ALI by preserving pulmonary GABABR expression. Rats were subjected to sham injury or IC-induced ALI and two hours later rats were treated intratracheally with saline or 1 mg/kg baclofen for 2 additional hours and sacrificed. ALI was assessed by vascular leakage, histology, TUNEL, and lung caspase-3 cleavage. ALI increased total protein, tumor necrosis factor α (TNF-α and interleukin-1 receptor associated protein (IL-1R AcP), in the bronchoalveolar lavage fluid (BALF). Moreover, ALI decreased lung GABABR2 expression, increased phospho-p38 MAPK, promoted IκB degradation and increased neutrophil influx in the lung. Administration of baclofen, after initiation of ALI, restored GABABR expression, which was inhibited in the presence of a GABABR antagonist, CGP52432. Baclofen administration activated pulmonary phospho-ERK and inhibited p38 MAPK phosphorylation and IκB degradation. Additionally, baclofen significantly inhibited pro-inflammatory TNF-α and IL-1βAcP release and promoted BAL neutrophil apoptosis. Protective effects of baclofen treatment on ALI were possibly mediated by inhibition of TNF-α- and IL-1β-mediated inflammatory signaling. Interestingly, GABABR2 expression was regulated in the type II pneumocytes in lung tissue sections from lung injured patients, further suggesting a

  8. Angiotensin II is related to the acute aortic dissection complicated with lung injury through mediating the release of MMP9 from macrophages

    PubMed Central

    Wu, Zhiyong; Ruan, Yongle; Chang, Jinxing; Li, Bowen; Ren, Wei

    2016-01-01

    Background: Acute aortic dissection (AAD) patients usually show concurrent lung injury mainly featured by hyoxemia. To date, no effective treatment method has been established for the AAD complicated with acute lung injury (ALI). Matrix metalloproteinases (MMPs), especially MMP2 and MMP9, have been considered to be closely related to the onset of aortic disease including AAD. To investigate the roles of MMP in the pathogenesis of AAD complicated with ALI, we determined the expression of MMP2 and MMP9 in serum and lung tissues of AAD patients. In addition, a new rat model of AAD complicated with ALI was established to investigate the pathogenesis of such complicated conditions. Methods and results: Angiotensin II (Ang II) and MMP9 were up-regulated in the AAD complicated with ALI patients compared to those of the AAD without ALI patients, normal individuals and the patients with non-ruptured aneurysm. Besides, massive macrophages with MMP9 expression was noticed in the lung tissues in the AAD complicated with ALI patients. On this basis, AAD complicated with ALI rat model was established based on BAPN feeding and infusion of Ang II. Obvious lung injury was observed in the BAPN+Ang II group compared to that of the BAPN group, together with macrophage accumulation in lung tissues, as well as over-expression of MMP9 in lung tissues. After interference of MMP antagonist, a large number of macrophages were still accumulated in the lung tissues, but the lung injury was obviously attenuated. After the interference of AT1 receptor, the number of macrophages in the lung tissues was obviously decreased and the lung injury was obviously relieved. Conclusions: Ang II is closely related to the lung injury at the early stage of AAD through mediating the release of MMP9 in the macrophages in the lung tissues. PMID:27186269

  9. Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia

    PubMed Central

    Cui, Liang; Zheng, Dahai; Lee, Yie Hou; Chan, Tze Khee; Kumar, Yadunanda; Ho, Wanxing Eugene; Chen, Jian Zhu; Tannenbaum, Steven R.; Ong, Choon Nam

    2016-01-01

    Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process. PMID:27188343

  10. The mechanism of rapamycin in the intervention of paraquat-induced acute lung injury in rats.

    PubMed

    Chen, Da; Jiao, Guangyu; Ma, Tao; Liu, Xiaowei; Yang, Chen; Liu, Zhi

    2015-01-01

    1. Paraquat (PQ) is an organic nitrogen heterocyclic herbicide that is widely used in agriculture throughout the world. Numerous studies have reported PQ intoxication on humans. 2. In this study, we established a rat lung injury model induced by PQ and evaluated the intervention effect of rapamycin on the model, exploring the pathogenesis of PQ on lung injury as well as therapeutic effects of rapamycin on PQ-induced lung injury. 3. A rat lung injury model was established by gavage of PQ, and rapamycin was used to treat the model animals with PQ-induced lung injury. Different physiological indices were measured through Western blot and real-time polymerase chain reaction to evaluate the effect of rapamycin on the PQ-induced lung injury. 4. The analyses showed that application of rapamycin could significantly reduce the lung injury damage caused by PQ, with lung tissue wet-dry weight ratio, pathological features, compositions in serum, protein in bronchoalveolar lavage fluid and other indices being significantly improved after the injection of rapamycin. 5. It was inferred that the use of rapamycin could improve the PQ-induced lung injury through inhibiting the activity of mTOR. And we expected the use of rapamycin to be a potential treatment method for the PQ intoxication in future. PMID:25523308

  11. Fish oil-supplemented parenteral nutrition could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

    PubMed

    Li, Xiaolong; Zhang, Xianxiang; Yang, Enqin; Zhang, Nanyang; Cao, Shougen; Zhou, Yanbing

    2015-09-01

    The objectives were to confirm that intravenous fish oil (FO) emulsions could alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis and to explore the mechanisms of these effects. Thirty-six adult male Sprague-Dawley rats were divided into 4 groups randomly. Two days after central venous catheterization, rats were subjected to cecal ligation and puncture to produce abdominal sepsis. Rats were assigned to receive normal saline or total parenteral nutrition (TPN) containing standard soybean oil emulsions or FO-supplemented TPN at the onset of sepsis for 5 days. A sham operation and control treatment were performed in control group rats. Acute lung injury scores, peripheral blood lymphocyte subsets, plasma cytokines, and Foxp3 expression in the spleen were determined. Compared with the normal saline and TPN without FO, FO-supplemented TPN beneficially altered the distributions of the T-lymphocyte subsets and downregulated the acute lung injury scores, plasma cytokines, and expression of Foxp3 due to sepsis. Fish oil-supplemented TPN can decrease acute lung injury scores, alleviate histopathology, reduce the bacterial load in the peritoneal lavage fluid, modulate the lymphocyte subpopulation in the peripheral blood, downregulate Foxp3 expression in the spleen, and reduce plasma cytokines, which means that FO-supplemented TPN can alleviate acute lung injury, modulate immunity, and reduce inflammation in rats with abdominal sepsis.

  12. N-acetyl cysteine improves the effects of corticosteroids in a mouse model of chlorine-induced acute lung injury.

    PubMed

    Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2015-02-01

    Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated.

  13. Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection.

    PubMed

    Sun, Yang; Li, Chenggang; Shu, Yuelong; Ju, Xiangwu; Zou, Zhen; Wang, Hongliang; Rao, Shuan; Guo, Feng; Liu, Haolin; Nan, Wenlong; Zhao, Yan; Yan, Yiwu; Tang, Jun; Zhao, Chen; Yang, Peng; Liu, Kangtai; Wang, Shunxin; Lu, Huijun; Li, Xiao; Tan, Lei; Gao, Rongbao; Song, Jingdong; Gao, Xiang; Tian, Xinlun; Qin, Yingzhi; Xu, Kai-Feng; Li, Dangsheng; Jin, Ningyi; Jiang, Chengyu

    2012-02-21

    The threat of a new influenza pandemic has existed since 1997, when the highly pathogenic H5N1 strain of avian influenza A virus infected humans in Hong Kong and spread across Asia, where it continued to infect poultry and people. The human mortality rate of H5N1 infection is about 60%, whereas that of seasonal H1N1 infection is less than 0.1%. The high mortality rate associated with H5N1 infection is predominantly a result of respiratory failure caused by acute lung injury; however, how viral infection contributes to this disease pathology is unclear. Here, we used electron microscopy to show the accumulation of autophagosomes in H5N1-infected lungs from a human cadaver and mice, as well as in infected A549 human epithelial lung cells. We also showed that H5N1, but not seasonal H1N1, induced autophagic cell death in alveolar epithelial cells through a pathway involving the kinase Akt, the tumor suppressor protein TSC2, and the mammalian target of rapamycin. Additionally, we suggest that the hemagglutinin protein of H5N1 may be responsible for stimulating autophagy. When applied prophylactically, reagents that blocked virus-induced autophagic signaling substantially increased the survival rate of mice and substantially ameliorated the acute lung injury and mortality caused by H5N1 infection. We conclude that the autophagic cell death of alveolar epithelial cells likely plays a crucial role in the high mortality rate of H5N1 infection, and we suggest that autophagy-blocking agents might be useful as prophylactics and therapeutics against infection of humans by the H5N1 virus. PMID:22355189

  14. Metastasis-Induced Acute Pancreatitis Successfully Treated with Chemotherapy and Radiotherapy in a Patient with Small Cell Lung Cancer

    PubMed Central

    Okutur, Kerem; Bozkurt, Mustafa; Korkmaz, Taner; Karaaslan, Ercan; Guner, Levent; Goksel, Suha; Demir, Gokhan

    2015-01-01

    Although involvement of pancreas is a common finding in small cell lung cancer (SCLC), metastasis-induced acute pancreatitis (MIAP) is very rare. A 50-year-old female with SCLC who had limited disease and achieved full response after treatment presented with acute pancreatitis during her follow-up. The radiologic studies revealed a small area causing obliteration of the pancreatic duct without mass in the pancreatic neck, and endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) confirmed the metastasis of SCLC. The patient was treated successfully with systemic chemotherapy and radiotherapy delivered to pancreatic field. In SCLC, cases of MIAP can be encountered with conventional computed tomography with no mass image, and positron emission tomography and EUS-FNA can be useful for diagnosis of such cases. Aggressive systemic and local treatment can prolong survival, especially in patients with good performance status. PMID:26075124

  15. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  16. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome.

    PubMed

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  17. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    NASA Astrophysics Data System (ADS)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  18. Feasibility of 68Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome

    PubMed Central

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [15O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting 68Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([68Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [68Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [68Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [68Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  19. Feasibility of (68)Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome.

    PubMed

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [(15)O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting (68)Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([(68)Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [(68)Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [(68)Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [(68)Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  20. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury.

    PubMed

    Prows, Daniel R; Gibbons, William J; Smith, Jessica J; Pilipenko, Valentina; Martin, Lisa J

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35-45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6-12 week X1 control strain. Sorting mice into distinct age groups revealed that 'age at exposure' inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3-4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  1. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury

    PubMed Central

    Prows, Daniel R.; Gibbons, William J.; Smith, Jessica J.; Pilipenko, Valentina; Martin, Lisa J.

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35–45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6–12 week X1 control strain. Sorting mice into distinct age groups revealed that ‘age at exposure’ inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3–4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  2. Acute Skin Toxicity Following Stereotactic Body Radiation Therapy for Stage I Non-Small-Cell Lung Cancer: Who's at Risk?

    SciTech Connect

    Hoppe, Bradford S.; Laser, Benjamin; Kowalski, Alex V.; Fontenla, Sandra C.; Pena-Greenberg, Elizabeth; Yorke, Ellen D.; Lovelock, D. Michael; Hunt, Margie A.; Rosenzweig, Kenneth E.

    2008-12-01

    Purpose: We examined the rate of acute skin toxicity within a prospectively managed database of patients treated for early-stage non-small-cell lung cancer (NSCLC) and investigated factors that might predict skin toxicity. Methods: From May 2006 through January 2008, 50 patients with Stage I NSCLC were treated at Memorial Sloan-Kettering Cancer Center with 60 Gy in three fractions or 44-48 Gy in four fractions. Patients were treated with multiple coplanar beams (3-7, median 4) with a 6 MV linac using intensity-modulated radiotherapy (IMRT) and dynamic multileaf collimation. Toxicity grading was performed and based on the National Cancer Institute Common Terminology Criteria for Adverse Effects. Factors associated with Grade 2 or higher acute skin reactions were calculated by Fisher's exact test. Results: After a minimum 3 months of follow-up, 19 patients (38%) developed Grade 1, 4 patients (8%) Grade 2, 2 patients (4%) Grade 3, and 1 patient Grade 4 acute skin toxicity. Factors associated with Grade 2 or higher acute skin toxicity included using only 3 beams (p = 0.0007), distance from the tumor to the posterior chest wall skin of less than 5 cm (p = 0.006), and a maximum skin dose of 50% or higher of the prescribed dose (p = 0.02). Conclusions: SBRT can be associated with significant skin toxicity. One must consider the skin dose when evaluating the treatment plan and consider the bolus effect of immobilization devices.

  3. Usnic acid protects LPS-induced acute lung injury in mice through attenuating inflammatory responses and oxidative stress.

    PubMed

    Su, Zu-Qing; Mo, Zhi-Zhun; Liao, Jin-Bin; Feng, Xue-Xuan; Liang, Yong-Zhuo; Zhang, Xie; Liu, Yu-Hong; Chen, Xiao-Ying; Chen, Zhi-Wei; Su, Zi-Ren; Lai, Xiao-Ping

    2014-10-01

    Usnic acid is a dibenzofuran derivative found in several lichen species, which has been shown to possess several activities, including antiviral, antibiotic, antitumoral, antipyretic, analgesic, antioxidative and anti-inflammatory activities. However, there were few reports on the effects of usnic acid on LPS-induced acute lung injury (ALI). The aim of our study was to explore the effect and possible mechanism of usnic acid on LPS-induced lung injury. In the present study, we found that pretreatment with usnic acid significantly improved survival rate, pulmonary edema. In the meantime, protein content and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) significantly decreased, and the levels of MPO, MDA, and H2O2 in lung tissue were markedly suppressed after treatment with usnic acid. Meanwhile, the activities of SOD and GSH in lung tissue significantly increased after treatment with usnic acid. Additionally, to evaluate the anti-inflammatory activity of usnic acid, the expression of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and anti-inflammatory cytokine IL-10, and chemokines interleukin-8 (IL-8) and macrophage inflammatory protein-2 (MIP-2) in BALF were studied. The results in the present study indicated that usnic acid attenuated the expression of TNF-α, IL-6, IL-8 and MIP-2. Meanwhile, the improved level of IL-10 in BALF was observed. In conclusion, these data showed that the protective effect of usnic acid on LPS-induced ALI in mice might relate to the suppression of excessive inflammatory responses and oxidative stress in lung tissue. Thus, it was suggested that usnic acid might be a potential therapeutic agent for ALI.

  4. A Comparative Analysis of Bronchial Stricture Following Lung Transplantation in Recipients With and Without Early Acute Rejection

    PubMed Central

    Castleberry, Anthony W.; Worni, Mathias; Kuchibhatla, Maragatha; Lin, Shu S.; Snyder, Laurie D.; Shofer, Scott L.; Palmer, Scott M.; Pietrobon, Ricardo S.; Davis, R. Duane; Hartwig, Matthew G.

    2014-01-01

    Background Risk factors and outcomes of bronchial stricture following lung transplantation are not well defined. An association between acute rejection and development of stricture has been suggested in small case series. We evaluated this relationship using a large, national registry. Methods All lung transplants between 04/1994 and 12/2008 per the United Network for Organ Sharing database were analyzed. Generalized linear models were used to determine the association between early rejection and development of stricture after adjusting for potential confounders. The association of stricture with postoperative lung function and overall survival was also evaluated. Results 9,335 patients were included for analysis. The incidence of stricture was 11.5% (=1,077/9,335) with no significant change in incidence during the study period (p=0.13). Early rejection was associated with a significantly greater incidence of stricture [adjusted odds ratio (AOR) 1.40, 95% confidence interval (CI) 1.22 - 1.61; p<0.0001]. Male gender, restrictive lung disease, and pre-transplant requirement for hospitalization were also associated with stricture. Those who developed stricture had and a lower postoperative peak percent predicted forced expiratory volume at one second (median 74% vs. 86% for bilateral transplants only, p<0.0001), shorter unadjusted survival (median 6.09 vs. 6.82 years, p<0.001) and increased risk of death after adjusting for potential confounders (adjusted hazard ratio 1.13, CI 1.03 - 1.23, p=0.007). Conclusions Early rejection is associated with an increased incidence of stricture. Recipients with stricture demonstrate worse postoperative lung function and survival. Prospective studies may be warranted to further assess causality and the potential for coordinated rejection and stricture surveillance strategies to improve postoperative outcomes. PMID:23870829

  5. Protective Ventilation of Preterm Lambs Exposed to Acute Chorioamnionitis Does Not Reduce Ventilation-Induced Lung or Brain Injury

    PubMed Central

    Barton, Samantha K.; Moss, Timothy J. M.; Hooper, Stuart B.; Crossley, Kelly J.; Gill, Andrew W.; Kluckow, Martin; Zahra, Valerie; Wong, Flora Y.; Pichler, Gerhard; Galinsky, Robert; Miller, Suzanne L.

    2014-01-01

    Background The onset of mechanical ventilation is a critical time for the initiation of cerebral white matter (WM) injury in preterm neonates, particularly if they are inadvertently exposed to high tidal volumes (VT) in the delivery room. Protective ventilation strategies at birth reduce ventilation-induced lung and brain inflammation and injury, however its efficacy in a compromised newborn is not known. Chorioamnionitis is a common antecedent of preterm birth, and increases the risk and severity of WM injury. We investigated the effects of high VT ventilation, after chorioamnionitis, on preterm lung and WM inflammation and injury, and whether a protective ventilation strategy could mitigate the response. Methods Pregnant ewes (n = 18) received intra-amniotic lipopolysaccharide (LPS) 2 days before delivery, instrumentation and ventilation at 127±1 days gestation. Lambs were either immediately euthanased and used as unventilated controls (LPSUVC; n = 6), or were ventilated using an injurious high VT strategy (LPSINJ; n = 5) or a protective ventilation strategy (LPSPROT; n = 7) for a total of 90 min. Mean arterial pressure, heart rate and cerebral haemodynamics and oxygenation were measured continuously. Lungs and brains underwent molecular and histological assessment of inflammation and injury. Results LPSINJ lambs had poorer oxygenation than LPSPROT lambs. Ventilation requirements and cardiopulmonary and systemic haemodynamics were not different between ventilation strategies. Compared to unventilated lambs, LPSINJ and LPSPROT lambs had increases in pro-inflammatory cytokine expression within the lungs and brain, and increased astrogliosis (p<0.02) and cell death (p<0.05) in the WM, which were equivalent in magnitude between groups. Conclusions Ventilation after acute chorioamnionitis, irrespective of strategy used, increases haemodynamic instability and lung and cerebral inflammation and injury. Mechanical ventilation is a potential contributor

  6. I-FABP as Biomarker for the Early Diagnosis of Acute Mesenteric Ischemia and Resultant Lung Injury

    PubMed Central

    Khadaroo, Rachel G.; Fortis, Spyridon; Salim, Saad Y.; Streutker, Catherine; Churchill, Thomas A.; Zhang, Haibo

    2014-01-01

    Acute mesenteric ischemia (AMI) is a life-threatening condition that can result in multiple organ injury and death. A timely diagnosis and treatment would have a significant impact on the morbidity and mortality in high-risk patient population. The purpose of this study was to investigate if intestinal fatty acid binding protein (I-FABP) and α-defensins can be used as biomarkers for early AMI and resultant lung injury. C57BL/6 mice were subjected to intestinal ischemia by occlusion of the superior mesenteric artery. A time course of intestinal ischemia from 0.5 to 3 h was performed and followed by reperfusion for 2 h. Additional mice were treated with N-acetyl-cysteine (NAC) at 300 mg/kg given intraperitoneally prior to reperfusion. AMI resulted in severe intestinal injury characterized by neutrophil infiltrate, myeloperoxidase (MPO) levels, cytokine/chemokine levels, and tissue histopathology. Pathologic signs of ischemia were evident at 1 h, and by 3 h of ischemia, the full thickness of the intestine mucosa had areas of coagulative necrosis. It was noted that the levels of α-defensins in intestinal tissue peaked at 1 h and I-FABP in plasma peaked at 3 h after AMI. Intestinal ischemia also resulted in lung injury in a time-dependent manner. Pretreatment with NAC decreased the levels of intestinal α-defensins and plasma I-FABP, as well as lung MPO and cytokines. In summary, the concentrations of intestinal α-defensins and plasma I-FABP predicted intestinal ischemia prior to pathological evidence of ischemia and I-FABP directly correlated with resultant lung injury. The antioxidant NAC reduced intestinal and lung injury induced by AMI, suggesting a role for oxidants in the mechanism for distant organ injury. I-FABP and α-defensins are promising biomarkers, and may guide the treatment with antioxidant in early intestinal and distal organ injury. PMID:25541714

  7. Accuracy of Point-of-Care B-Line Lung Ultrasound in Comparison to NT-ProBNP for Screening Acute Heart Failure

    PubMed Central

    Glöckner, E.; Christ, M.; Geier, F.; Otte, P.; Thiem, U.; Neubauer, S.; Kohfeldt, V.; Singler, K.

    2016-01-01

    Aim: The objective of this pilot study was to determine the accuracy of point-of-care B-line lung ultrasound in comparison to NT Pro-BNP for screening acute heart failure. Materials and Methods: An 8-zone lung ultrasound was performed by experienced sonographers in patients presenting with acute dyspnea in the ED. AHF was determined as the final diagnosis by 2 independent reviewers. Results: Contrary to prior studies, B-line ultrasound in our study was highly specific, but moderately sensitive for identifying patients with AHF. There was a strong association between elevated NT-proBNP levels and an increased number of B-lines. Conclusion: In conclusion, point-of-care lung ultrasound is a helpful tool for ruling in or ruling out important differential diagnoses in ED patients with acute dyspnea. PMID:27689182

  8. Design, synthesis and biological evaluation of paralleled Aza resveratrol-chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury.

    PubMed

    Chen, Wenbo; Ge, Xiangting; Xu, Fengli; Zhang, Yali; Liu, Zhiguo; Pan, Jialing; Song, Jiao; Dai, Yuanrong; Zhou, Jianmin; Feng, Jianpeng; Liang, Guang

    2015-08-01

    Acute lung injury (ALI) is a major cause of acute respiratory failure in critically-ill patients. It has been reported that both resveratrol and chalcone derivatives could ameliorate lung injury induced by inflammation. A series of paralleled Aza resveratrol-chalcone compounds (5a-5m, 6a-6i) were designed, synthesized and screened for anti-inflammatory activity. A majority showed potent inhibition on the IL-6 and TNF-α expression-stimulated by LPS in macrophages, of which compound 6b is the most potent analog by inhibition of LPS-induced IL-6 release in a dose-dependent manner. Moreover, 6b exhibited protection against LPS-induced acute lung injury in vivo. These results offer further insight into the use of Aza resveratrol-chalcone compounds for the treatment of inflammatory diseases, and the use of compound 6b as a lead compound for the development of anti-ALI agents.

  9. CB2 receptor activation ameliorates the proinflammatory activity in acute lung injury induced by paraquat.

    PubMed

    Liu, Zhenning; Wang, Yu; Zhao, Hongyu; Zheng, Qiang; Xiao, Li; Zhao, Min

    2014-01-01

    Paraquat, a widely used herbicide, is well known to exhibit oxidative stress and lung injury. In the present study, we investigated the possible underlying mechanisms of cannabinoid receptor-2 (CB2) activation to ameliorate the proinflammatory activity induced by PQ in rats. JWH133, a CB2 agonist, was administered by intraperitoneal injection 1 h prior to PQ exposure. After PQ exposure for 4, 8, 24, and 72 h, the bronchoalveolar lavage fluid was collected to determine levels of TNF-α and IL-1β, and the arterial blood samples were collected for detection of PaO2 level. At 72 h after PQ exposure, lung tissues were collected to determine the lung wet-to-dry weight ratios, myeloperoxidase activity, lung histopathology, the protein expression level of CB2, MAPKs (ERK1/2, p38MAPK, and JNK1/2), and NF-κBp65. After rats were pretreated with JWH133, PQ-induced lung edema and lung histopathological changes were significantly attenuated. PQ-induced TNF-α and IL-1β secretion in BALF, increases of PaO2 in arterial blood, and MPO levels in the lung tissue were significantly reduced. JWH133 could efficiently activate CB2, while inhibiting MAPKs and NF-κB activation. The results suggested that activating CB2 receptor exerted protective activity against PQ-induced ALI, and it potentially contributed to the suppression of the activation of MAPKs and NF-κB pathways. PMID:24963491

  10. Captopril pretreatment protects the lung against severe acute pancreatitis induced injury via inhibiting angiotensin II production and suppressing Rho/ROCK pathway.

    PubMed

    Yu, Qi-Hong; Guo, Jie-Fang; Chen, Yan; Guo, Xiao-Rong; Du, Yi-Qi; Li, Zhao-Shen

    2016-09-01

    Acute pancreatitis (AP) usually causes acute lung injury, which is also known as acute pancreatitis associated lung injury (APALI). This study aimed to investigate whether captopril pretreatment was able to protect lung against APALI via inhibiting angiotensin II (Ang II) production and suppressing Rho/ROCK (Rho kinase) pathway in rats. Severe AP (SAP) was introduced to rats by bile-pancreatic duct retrograde injection of 5% sodium taurocholate. Rats were randomly divided into three groups. In the sham group, sham operation was performed; in the SAP group, SAP was introduced; in the pre-cpl + SAP group, rats were intragastrically injected with 5 mg/kg captopril 1 hour prior to SAP induction. Pathological examination of the lung and pancreas, evaluation of pulmonary vascular permeability by wet/dry ratio and Evans Blue staining, detection of serum amylase, Western blot assay for Ang II receptor type 1 (AT1), RhoA, ROCK (Rho kinase), and MLCK (myosin light chain kinase) were performed after the animals were sacrificed at 24 hours. After the surgery, characteristic findings of pancreatitis were observed, accompanied by lung injury. The serum amylase, Ang II, and lung expression of AT1, RhoA, ROCK, and MLCK increased dramatically in SAP rats. However, captopril pretreatment improved the histological changes, reduced the pathological score of the pancreas and lung, inhibited serum amylase and Ang II production, and decreased expression of AT1, RhoA, ROCK, and MLCK in the lung. These findings suggest that captopril pretreatment is able to protect the lung against APALI, which is, at least partially, related to the inhibition of Ang II production and the suppression of the Rho/ROCK pathway.

  11. Captopril pretreatment protects the lung against severe acute pancreatitis induced injury via inhibiting angiotensin II production and suppressing Rho/ROCK pathway.

    PubMed

    Yu, Qi-Hong; Guo, Jie-Fang; Chen, Yan; Guo, Xiao-Rong; Du, Yi-Qi; Li, Zhao-Shen

    2016-09-01

    Acute pancreatitis (AP) usually causes acute lung injury, which is also known as acute pancreatitis associated lung injury (APALI). This study aimed to investigate whether captopril pretreatment was able to protect lung against APALI via inhibiting angiotensin II (Ang II) production and suppressing Rho/ROCK (Rho kinase) pathway in rats. Severe AP (SAP) was introduced to rats by bile-pancreatic duct retrograde injection of 5% sodium taurocholate. Rats were randomly divided into three groups. In the sham group, sham operation was performed; in the SAP group, SAP was introduced; in the pre-cpl + SAP group, rats were intragastrically injected with 5 mg/kg captopril 1 hour prior to SAP induction. Pathological examination of the lung and pancreas, evaluation of pulmonary vascular permeability by wet/dry ratio and Evans Blue staining, detection of serum amylase, Western blot assay for Ang II receptor type 1 (AT1), RhoA, ROCK (Rho kinase), and MLCK (myosin light chain kinase) were performed after the animals were sacrificed at 24 hours. After the surgery, characteristic findings of pancreatitis were observed, accompanied by lung injury. The serum amylase, Ang II, and lung expression of AT1, RhoA, ROCK, and MLCK increased dramatically in SAP rats. However, captopril pretreatment improved the histological changes, reduced the pathological score of the pancreas and lung, inhibited serum amylase and Ang II production, and decreased expression of AT1, RhoA, ROCK, and MLCK in the lung. These findings suggest that captopril pretreatment is able to protect the lung against APALI, which is, at least partially, related to the inhibition of Ang II production and the suppression of the Rho/ROCK pathway. PMID:27638402

  12. Protective effects of patchouli alcohol isolated from Pogostemon cablin on lipopolysaccharide-induced acute lung injury in mice

    PubMed Central

    SU, ZUQING; LIAO, JINBIN; LIU, YUHONG; LIANG, YONGZHUO; CHEN, HAIMING; CHEN, XIAOYING; LAI, XIAOPING; FENG, XUEXUAN; WU, DIANWEI; ZHENG, YIFENG; ZHANG, XIAOJUN; LI, YUCUI

    2016-01-01

    Patchouli alcohol (PA) is a tricyclic sesquiterpene isolated from Pogostemon cablin, which exerts anti-inflammatory, anti-influenza and cognitive-enhancing bioactivities. The present study aimed to investigate the protective effects of PA on acute lung injury (ALI) induced by intratracheal instillation of lipopolysaccharide (LPS) in mice. Dexamethasone was used as a positive drug for protection against LPS-induced ALI. The results of the present study demonstrated that pretreatment with PA significantly increased survival rate, attenuated histopathologic damage and lung edema, and decreased the protein content in the bronchoalveolar lavage fluid (BALF) of mice with ALI. Furthermore, PA significantly inhibited the expression levels of proinflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the BALF, downregulated the levels of myeloperoxidase and malondialdehyde, and upregulated the activity levels of superoxide dismutase and glutathione peroxidase in lung tissue. These results indicated that PA may exert potent protective effects against LPS-induced ALI in mice, the mechanisms of which are possibly associated with the anti-inflammatory and antioxidative activities of PA. PMID:26893665

  13. Asiaticoside attenuates lipopolysaccharide-induced acute lung injury via down-regulation of NF-κB signaling pathway.

    PubMed

    Qiu, Jiaming; Yu, Lijun; Zhang, Xingxing; Wu, Qianchao; Wang, Di; Wang, Xiuzhi; Xia, Cheng; Feng, Haihua

    2015-05-01

    Asiaticoside (AS), a triterpene glycoside isolated from Centella asiatica, has been shown to possess potent anti-inflammatory activity. However, the detailed molecular mechanisms of AS on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in mice are scanty. The purpose of this study was to evaluate the effect of AS on LPS-induced mouse ALI via down-regulation of NF-κB signaling pathway. We investigated the efficacy of AS on cytokine levels induced by LPS in bronchoalveolar lavage fluid (BALF) and RAW 264.7 cells. The production of cytokine (TNF-α and IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). The lung wet-to-dry weight ratios were measured in LPS-challenged mice, and lung histopathologic changes observed via paraffin section were assessed. To further study the mechanism of AS protective effects on ALI, the activation of NF-κB p65 subunit and the degradation of IκBα were tested by western blot assay. We found that AS treatment at 15, 30 or 45mg/kg dose-dependently attenuated LPS-induced pulmonary inflammation by reducing inflammatory infiltration, histopathological changes, descended cytokine production, and pulmonary edema initiated by LPS. Furthermore, our results suggested that AS suppressed inflammatory responses in LPS-induced ALI through inhibition of the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα, and might be a new preventive agent of ALI in the clinical setting.

  14. Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury.

    PubMed

    Xu, Yunyun; Xiang, Jian; Zhao, He; Liang, Hansi; Huang, Jie; Li, Yan; Pan, Jian; Zhou, Huiting; Zhang, Xueguang; Wang, Jiang Huai; Liu, Zhuang; Wang, Jian

    2016-09-01

    Human amniotic fluid stem (hAFS) cells have generated a great deal of excitement in cell-based therapies and regenerative medicine. Here, we examined the effect of hAFS cells labeled with dual-polymer-coated UCNP-PEG-PEI nanoparticles in a murine model of acute lung injury (ALI). We observed hAFS cells migration to the lung using highly sensitive in vivo upconversion luminescence (UCL) imaging. We demonstrated that hAFS cells remained viable and retained their ability to differentiate even after UCNP-PEG-PEI labeling. More importantly, hAFS cells displayed remarkable positive effects on ALI-damaged lung tissue repair compared with mouse bone marrow mesenchymal stem cells (mBMSCs), which include recovery of the integrity of alveolar-capillary membrane, attenuation of transepithelial leukocyte and neutrophil migration, and down-regulation of proinflammatory cytokine and chemokine expression. Our work highlights a promising role for imaging-guided hAFS cell-based therapy in ALI. PMID:27244692

  15. A genetic variant of cortactin linked to acute lung injury impairs lamellipodia dynamics and endothelial wound healing.

    PubMed

    Choi, Sangwook; Camp, Sara M; Dan, Arkaprava; Garcia, Joe G N; Dudek, Steven M; Leckband, Deborah E

    2015-11-01

    Inflammatory mediators released in acute lung injury (ALI) trigger the disruption of interendothelial junctions, leading to loss of vascular barrier function, protein-rich pulmonary edema, and severe hypoxemia. Genetic signatures that predict patient recovery or disease progression are poorly defined, but recent genetic screening of ALI patients has identified an association between lung inflammatory disease and a single nucleotide polymorphism (SNP) in the gene for the actin-binding and barrier-regulatory protein cortactin. This study investigated the impact of this disease-linked cortactin variant on wound healing processes that may contribute to endothelial barrier restoration. A microfabricated platform was used to quantify wound healing in terms of gap closure speed, lamellipodia dynamics, and cell velocity. Overexpression of wild-type cortactin in endothelial cells (ECs) improved directional cell motility and enhanced lamellipodial protrusion length, resulting in enhanced gap closure rates. By contrast, the cortactin SNP impaired wound closure and cell locomotion, consistent with the observed reduction in lamellipodial protrusion length and persistence. Overexpression of the cortactin SNP in lung ECs mitigated the barrier-enhancing activity of sphingosine 1-phosphate. These findings suggest that this common cortactin variant may functionally contribute to ALI predisposition by impeding endothelial wound healing.

  16. Inhalation of glycopyrronium inhibits cigarette smoke-induced acute lung inflammation in a murine model of COPD.

    PubMed

    Shen, Liang-liang; Liu, Ya-nan; Shen, Hui-juan; Wen, Chong; Jia, Yong-liang; Dong, Xin-wei; Jin, Fang; Chen, Xiao-ping; Sun, Yun; Xie, Qiang-min

    2014-02-01

    Glycopyrronium bromide (GB) is a muscarinic receptor antagonist that has been used as a long-acting bronchodilator in chronic obstructive pulmonary disease (COPD) patients. The aim of this study was to investigate the anti-inflammatory activity of inhaled GB in a cigarette smoke-induced acute lung inflammation mouse model. We found that aerosol pre-treatment with GB suppresses the accumulation of neutrophils and macrophages in the bronchoalveolar lavage fluid (BALF) in cigarette smoke (CS)-exposed mice. GB at doses of 300 and 600 μg/ml significantly inhibited the CS-induced increases in the mRNA and protein expression levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1 and transforming growth factor (TGF)-β1 in lung tissues and the BALF. Moreover, GB at a dose of 600 μg/ml significantly inhibited the CS-induced changes in glutathione (GSH) and myeloperoxidase (MPO) activities in the BALF, decreased the CS-induced expression of matrix metalloproteinases (MMP)-9, and increased the CS-induced expression of tissue inhibitor of metalloproteinases (TIMP)-1, as determined through the immunohistochemical staining of lung tissue. Our results demonstrate the beneficial effects of inhaled GB on the inflammatory reaction in COPD. PMID:24389380

  17. Rapamycin attenuates acute lung injury induced by LPS through inhibition of Th17 cell proliferation in mice

    PubMed Central

    Yan, Zhao; Xiaoyu, Zhang; Zhixin, Song; Di, Qi; Xinyu, Deng; Jing, Xia; Jing, He; Wang, Deng; Xi, Zhong; Chunrong, Zhang; Daoxin, Wang

    2016-01-01

    Th17 cells have been confirmed to increase neutrophils through cytokine secretions. ALI/ARDS are characterized as neutrophil infiltration in inflammation cases; however, there is conflicting information concerning the role of Th17 cells in ALI/ARDS, as well as their potential treatment value. We measured Th17-linear cytokines in the plasma of patients with sepsis-related ARDS. The consistently high levels of IL-17 and IL-22 in the nonsurvivors suggested that overreaction of the Th17-mediated immune response may be a risk factor for poor outcomes. Th17 linear cytokines were also increased in an LPS-induced murine model of acute lung injury, along with neutrophil accumulation. The mice that completely lacked IL-17 failed to accumulate and activate neutrophils. Lung inflammation was obviously attenuated in the IL-17−/− mice. Meanwhile, the neutrophil count was markedly increased in the healthy WT mice challenged with recombinant IL-22 and IL-17. Rapamycin attenuated lung injury by inhibiting the differentiation of Th17 cells through RORγt and STAT3 dysfunction. Furthermore, we demonstrated that SOCS3 and Gfi1, which were responsible for the molecular suppression of RORγt and STAT3, were up-regulated by rapamycin. These results point toward a pivotal view to treatment of ALI through weakening the proliferation of Th17 cells with rapamycin. PMID:26888095

  18. Comparative analysis between the alveolar recruitment maneuver and breath stacking technique in patients with acute lung injury

    PubMed Central

    Porto, Elias Ferreira; Tavolaro, Kelly Cristiani; Kumpel, Claudia; Oliveira, Fernanda Augusta; Sousa, Juciaria Ferreira; de Carvalho, Graciele Vieira; de Castro, Antonio Adolfo Mattos

    2014-01-01

    Objective To compare the effectiveness of the alveolar recruitment maneuver and the breath stacking technique with respect to lung mechanics and gas exchange in patients with acute lung injury. Methods Thirty patients were distributed into two groups: Group 1 - breath stacking; and Group 2 - alveolar recruitment maneuver. After undergoing conventional physical therapy, all patients received both treatments with an interval of 1 day between them. In the first group, the breath stacking technique was used initially, and subsequently, the alveolar recruitment maneuver was applied. Group 2 patients were initially subjected to alveolar recruitment, followed by the breath stacking technique. Measurements of lung compliance and airway resistance were evaluated before and after the use of both techniques. Gas analyses were collected before and after the techniques were used to evaluate oxygenation and gas exchange. Results Both groups had a significant increase in static compliance after breath stacking (p=0.021) and alveolar recruitment (p=0.03), but with no significant differences between the groups (p=0.95). The dynamic compliance did not increase for the breath stacking (p=0.22) and alveolar recruitment (p=0.074) groups, with no significant difference between the groups (p=0.11). The airway resistance did not decrease for either groups, i.e., breath stacking (p=0.91) and alveolar recruitment (p=0.82), with no significant difference between the groups (p=0.39). The partial pressure of oxygen increased significantly after breath stacking (p=0.013) and alveolar recruitment (p=0.04), but there was no significant difference between the groups (p=0.073). The alveolar-arterial O2 difference decreased for both groups after the breath stacking (p=0.025) and alveolar recruitment (p=0.03) interventions, and there was no significant difference between the groups (p=0.81). Conclusion Our data suggest that the breath stacking and alveolar recruitment techniques are effective in

  19. Selective NF-kappaB inhibition, but not dexamethasone, decreases acute lung injury in a newborn piglet airway inflammation model.

    PubMed

    von Bismarck, Philipp; Klemm, Karsten; García Wistädt, Carlos-Francisco; Winoto-Morbach, Supandi; Schütze, Stefan; Krause, Martin F

    2009-08-01

    Acute respiratory failure in neonates (e.g. ARDS, meconium aspiration pneumonitis, pneumonia) is characterized by an excessive inflammatory response, governing the migration of polymorpho-nuclear leukocytes (PMNLs) into lung tissue and causing consecutive impairment of gas exchange and lung function. Critical to this inflammatory response is the activation of nuclear factor-kappaB (NF-kappaB) that is required for transcription of the genes for many pro-inflammatory mediators. We asked whether the inhibition of NF-kappaB activity using either a selective inhibitor (IKK-NBD peptide) or dexamethasone would be more effective in decreasing NF-kappaB activity and chemokine expression in pulmonary cells. Changes in lung function were repeatedly assessed for 24h following induction of acute respiratory failure and therapeutic intervention. We conducted a randomized, controlled, prospective animal study with mechanically ventilated newborn piglets which underwent repeated airway lavage (20+/-2 [SEM]) to remove surfactant and to induce lung inflammation. Admixed to 100 mg kg(-1) surfactant, piglets then received either IKK-NBD peptide (S+IKK), a selective inhibitor of NF-kappaB activation, its control peptide without intrinsic activity, dexamethasone (S+Dexa), its solvent aqua, or an air bolus only (all groups n=8). After 24h of mechanical ventilation, the following differences were measured: PaO(2)/FiO(2) (S+IKK 230+/-9 mm Hg vs. S+Dexa 188+/-14, p<0.05); ventilation efficiency index (0.18+/-0.01 [3800/(PIP-PEEP)(*)f(*)PaCO(2)] vs. 0.14+/-0.01, p<0.05); extravascular lung water (24+/-1 ml kg(-1) vs. 29+/-2, p<0.05); PMNL in BAL fluid (112+/-21 cells microl(-1) vs. 208+/-34, p<0.05), IL-8 (351+/-117 pg ml(-1) vs. 491+/-144, p=ns) and leukotriene B(4) (23+/-7 pg ml(-1) vs. 71+/-11, p<0.01) in BAL fluid. NF-kappaB activity in the nucleus of pulmonary cells differed by 32+/-5% vs. 55+/-3, p<0.001. Differences between these two intervention groups were more pronounced in the

  20. Lower diffusing capacity with chronic bronchitis predicts higher risk of acute exacerbation in chronic obstructive lung disease

    PubMed Central

    Lee, Hwa Young; Kim, Jin Woo; Lee, Sang Haak; Yoon, Hyoung Kyu; Shim, Jae Jeong; Park, Jeong-Woong; Lee, Jae-Hyung; Yoo, Kwang Ha; Jung, Ki-Suck

    2016-01-01

    Background This study was designed to evaluate the effect of chronic bronchitis (CB) symptoms and degree of emphysema in a multicenter Korean cohort. Methods From April 2012 to May 2015, patients diagnosed with chronic obstructive lung disease (COPD) who were aged above 40 years at 46 hospitals throughout Korea were enrolled. All of the patients were classified according to CB symptoms and the diffusing capacity of the lung for carbon monoxide (DLCO); demographic data, symptom scores, and the result of lung function tests and exacerbations were then analyzed. Results A total of 812 patients were enrolled. Among these patients, 285 (35.1%) had CB symptoms. A total of 51% of patients had high DLCO without CB symptoms [CB (−) high DLCO], 24.9% had CB symptoms only [CB (+) high DLCO], 14.2% had low DLCO only [CB (−) low DLCO], and 10.2% had both low DLCO and CB [CB (+) low DLCO]. Patients with CB (+) low DLCO showed a significantly lower post-bronchodilator (BD) forced expiratory volume for 1 second (FEV1) and more severe dyspnea than patients with CB (−) high DLCO. On multivariate analysis, the risk of acute exacerbation was two times higher [odds ratio (OR) 2.06; 95% confidence interval (CI): 1.18–3.62; P=0.01] in the CB (+) low DLCO group than in the CB (−) high DLCO group. Conclusions In this COPD cohort, patients showed distinct clinical characteristics and outcomes according to the presence of CB and degree of DLCO. CB and low DLCO were associated with the risk of acute exacerbation. PMID:27293847

  1. Role of toll-like receptor 4 in acute neutrophilic lung inflammation induced by intratracheal bacterial products in mice

    PubMed Central

    Yamada, Wakako; Tasaka, Sadatomo; Koh, Hidefumi; Shimizu, Mie; Ogawa, Yuko; Hasegawa, Naoki; Miyasho, Taku; Yamaguchi, Kazuhiro; Ishizaka, Akitoshi

    2008-01-01

    Background Toll-like receptors (TLRs) represent a conserved family of innate immune recognition receptors. Among TLRs, TLR4 is important for the recognition of Gram-negative bacteria, whereas TLR2 recognizes cell wall constituents of Gram-positive microorganisms, such as peptidoglycan (PGN). Methods To evaluate the role of TLR4 in the pathogenesis of acute lung injury induced by Escherichia coli endotoxin (lipopolysaccharide; LPS) or PGN, we compared inflammatory cell accumulation in bronchoalveolar lavage (BAL) fluid and lung pathology between C3H/HeJ (TLR4 mutant) and wild-type C3H/HeN mice. The levels of proinflammatory cytokines and chemokines in plasma and BAL fluid and nuclear factor-κB (NF-κB) translocation in the lung were also evaluated. Results In C3H/HeJ mice, LPS-induced neutrophil emigration was significantly decreased compared with C3H/HeN mice, whereas PGN-induced neutrophil emigration did not differ. Differential cell count in BAL fluid revealed comparable neutrophil recruitment in the alveolar space. In TLR4 mutant mice, LPS-induced upregulation of tumor necrosis factor-alpha (TNF-α), KC, and CXCL10 in plasma and BAL fluid was attenuate, which was not different after PGN. NF-κB translocation in the lung was significantly decreased in C3H/HeJ compared with C3H/HeN mice, whereas PGN-induced NF-κB translocation was not different. Conclusion These results suggest that TLR4 mediates inflammatory cascade induced by Gram-negative bacteria that is locally administered. PMID:22096342

  2. Influence of acute lung volume change on contractile properties of human diaphragm.

    PubMed

    Polkey, M I; Hamnegård, C H; Hughes, P D; Rafferty, G F; Green, M; Moxham, J

    1998-10-01

    The effect of stimulus frequency on the in vivo pressure generating capacity of the human diaphragm is unknown at lung volumes other than functional residual capacity. The transdiaphragmatic pressure (Pdi) produced by a pair of phrenic nerve stimuli may be viewed as the sum of the Pdi elicited by the first (T1 Pdi) and second (T2 Pdi) stimuli. We used bilateral anterior supramaximal magnetic phrenic nerve stimulation and a digital subtraction technique to obtain the T2 Pdi at interstimulus intervals of 999, 100, 50, 33, and 10 ms in eight normal subjects at lung volumes between residual volume and total lung capacity. The reduction in T2 Pdi that we observed as lung volume increased was greatest at long interstimulus intervals, whereas the T2 Pdi obtained with short interstimulus intervals remained relatively stable over the 50% of vital capacity around functional residual capacity. For all interstimulus intervals, the total pressure produced by the pair decreased as a function of increasing lung volume. These data demonstrate that, in the human diaphragm, hyperinflation has a disproportionately severe effect on the summation of pressure responses elicited by low-frequency stimulations; this effect is distinct from and additional to the known length-tension relationship. PMID:9760323

  3. A Critical Role for P2X7 Receptor-Induced VCAM-1 Shedding and Neutrophil Infiltration during Acute Lung Injury.

    PubMed

    Mishra, Amarjit; Guo, Yujie; Zhang, Li; More, Sunil; Weng, Tingting; Chintagari, Narendranath Reddy; Huang, Chaoqun; Liang, Yurong; Pushparaj, Samuel; Gou, Deming; Breshears, Melanie; Liu, Lin

    2016-10-01

    Pulmonary neutrophils are the initial inflammatory cells that are recruited during lung injury and are crucial for innate immunity. However, pathological recruitment of neutrophils results in lung injury. The objective of this study is to determine whether the novel neutrophil chemoattractant, soluble VCAM-1 (sVCAM-1), recruits pathological levels of neutrophils to injury sites and amplifies lung inflammation during acute lung injury. The mice with P2X7 receptor deficiency, or treated with a P2X7 receptor inhibitor or anti-VCAM-1 Abs, were subjected to a clinically relevant two-hit LPS and mechanical ventilation-induced acute lung injury. Neutrophil infiltration and lung inflammation were measured. Neutrophil chemotactic activities were determined by a chemotaxis assay. VCAM-1 shedding and signaling pathways were assessed in isolated lung epithelial cells. Ab neutralization of sVCAM-1 or deficiency or antagonism of P2X7R reduced neutrophil infiltration and proinflammatory cytokine levels. The ligands for sVCAM-1 were increased during acute lung injury. sVCAM-1 had neutrophil chemotactic activities and activated alveolar macrophages. VCAM-1 is released into the alveolar airspace from alveolar epithelial type I cells through P2X7 receptor-mediated activation of the metalloproteinase ADAM-17. In conclusion, sVCAM-1 is a novel chemoattractant for neutrophils and an activator for alveolar macrophages. Targeting sVCAM-1 provides a therapeutic intervention that could block pathological neutrophil recruitment, without interfering with the physiological recruitment of neutrophils, thus avoiding the impairment of host defenses. PMID:27559050

  4. Ventilation defects observed with hyperpolarized 3He magnetic resonance imaging in a mouse model of acute lung injury.

    PubMed

    Thomas, Abe C; Nouls, John C; Driehuys, Bastiaan; Voltz, James W; Fubara, Boma; Foley, Julie; Bradbury, J Alyce; Zeldin, Darryl C

    2011-05-01

    Regions of diminished ventilation are often evident during functional pulmonary imaging studies, including hyperpolarized gas magnetic resonance imaging (MRI), positron emission tomography, and computed tomography (CT). The objective of this study was to characterize the hypointense regions observed via (3)He MRI in a murine model of acute lung injury. LPS at doses ranging from 15-50 μg was intratracheally administered to C57BL/6 mice under anesthesia. Four hours after exposure to either LPS or saline vehicle, mice were imaged via hyperpolarized (3)He MRI. All images were evaluated to identify regions of hypointense signals. Lungs were then characterized by conventional histology, or used to obtain tissue samples from regions of normal and hypointense (3)He signals and analyzed for cytokine content. The characterization of (3)He MRI images identified three distinct types of hypointense patterns: persistent defects, atelectatic defects, and dorsal lucencies. Persistent defects were associated with the administration of LPS. The number of persistent defects depended on the dose of LPS, with a significant increase in mean number of defects in 30-50-μg LPS-dosed mice versus saline-treated control mice. Atelectatic defects predominated in LPS-dosed mice under conditions of low-volume ventilation, and could be reversed with deep inspiration. Dorsal lucencies were present in nearly all mice studied, regardless of the experimental conditions, including control animals that did not receive LPS. A comparison of (3)He MRI with histopathology did not identify tissue abnormalities in regions of low (3)He signal, with the exception of a single region of atelectasis in one mouse. Furthermore, no statistically significant differences were evident in concentrations of IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, MIP-2, chemokine (C-X-C motif) ligand 1 (KC), TNFα, and monocyte chemotactic protein (MCP)-1 between hypointense and normally ventilated lung regions in LPS

  5. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung

    SciTech Connect

    Pickrell, J.A.; Gregory, R.E.; Cole, D.J.; Hahn, F.F.; Henderson, R.F.

    1987-04-01

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a /sup 14/C-globin substrate. The 48-hr exposures to O/sub 3/ at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O/sub 3/ resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O/sub 3/, which correlated with inflammatory cells noted histologically. At 1.5 ppm O/sub 3/, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O/sub 3/ exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema.

  6. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    PubMed

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis.

  7. ASSESSMENT OF ACUTE LUNG INJURY INDUCED BY PM 2.5 SAMPLES FROM TWO CITIES IN GERMANY WITH DIFFERING INCIDENCE OF ALLERGIES AND ASTHMA

    EPA Science Inventory

    ASSESSMENT OF ACUTE LUNG INJURY INDUCED BY PM 2.5 SAMPLES FROM TWO CITIES IN GERMANY WITH DIFFERING INCIDENCE OF ALLERGIES AND ASTHMA.

    LR Bishop, J Heinrich*, MK Selgrade & MI Gilmour.
    Experimental Toxicology Division, ORD/ NHEERL, U.S. EPA, RTP, NC. *GSF, Neuherberg,...

  8. OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM)

    EPA Science Inventory

    OXIDATIVE STRESS PARTICIPATES IN ACUTE LUNG INJURY AND ACTIVATION OF MITOGEN ACTIVATED PROTEIN KINASES (MAPK) FOLLOWING AIR POLLUTION PARTICLE EXPOSURE (PM). E S Roberts1, R Jaskot2, J Richards2, and K L Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC a...

  9. Acute effects of inhaled isoproterenol on the mechanical characteristics of the lungs in normal man

    PubMed Central

    McFadden, E. R.; Newton-Howes, Jan; Pride, N. B.

    1970-01-01

    We investigated the effects of isoproterenol on the pulmonary mechanics of eight healthy male subjects. We measured the flow-volume, pressure-volume, resistance-volume, and pressure-flow relationships of the lungs of our subjects in addition to the forced expiratory volume (FEV1). The results of this study confirm earlier observations that isoproterenol produces a considerable decrease in airway resistance but only small changes in maximum expiratory flow. Measurements of static pressure-volume curves showed that isoproterenol caused a temporary decrease in the elastic recoil pressure of the lungs. In five men there were mean falls in recoil pressure of 4.1 cm H2O at 85% total lung capacity (TLC), 2.6 cm H2O at 75% TLC, and 1.5 cm H2O at 50% TLC. We postulate that the reason for the relatively small increments in maximum expiratory flow after isoproterenol is primarily that the effects of airway dilatation are in large part negated by the reduction in lung recoil pressure, which results in a fall in the maximum effective driving force for expiratory air flow, and secondly that there is an increase in the compliance of the flow-limiting airways. These studies emphasize that tests of maximum flow and of airway resistance should not be regarded as invariably interchangeable in the assessment of airway reactions or mild disease of the airways. PMID:5443178

  10. Integrative Metabolome and Transcriptome Profiling Reveals Discordant Energetic Stress between Mouse Strains with Differential Sensitivity to Acrolein-Induced Acute Lung Injury

    PubMed Central

    Fabisiak, James P.; Medvedovic, Mario; Alexander, Danny C.; McDunn, Jonathan E.; Concel, Vincent J.; Bein, Kiflai; Jang, An Soo; Brendt, Annerose; Vuga, Louis J.; Brant, Kelly A.; Pope-Varsalona, Hannah; Dopico, Richard A.; Ganguly, Koustav; Upadhyay, Swapna; Li, Qian; Hu, Zhen; Kaminski, Naftali; Leikauf, George D.

    2012-01-01

    A respiratory irritant, acrolein is generated by overheating cooking oils or by domestic cooking using biomass fuels, and is in tobacco smoke, an occupational health hazard in the restaurant workplace. To better understand the metabolic role of the lung and to generate insights into the pathogenesis of acrolein-induced acute lung injury, SM/J (sensitive) and 129×1/SvJ (resistant) inbred mouse strains were exposed and the lung metabolome was integrated with the transcriptome profile. A total of 280 small molecules were identified and mean values (log 2 >0.58 or <−0.58, .p<0.05) were considered different for between-strain comparisons or within-strain responses to acrolein treatment. At baseline, 24 small molecules increased and 33 small molecules decreased in the SM/J mouse lung as compared to 129×1/SvJ mouse lung. Notable among the increased compounds was malonyl carnitine. Following acrolein exposure, several compounds indicative of glycolysis and branched chain amino acid metabolism increased similarly in both strains, whereas SM/J mice were less effective in generating metabolites related to fatty acid β-oxidation. These findings suggest management of energetic stress varies between these strains, and that the ability to evoke auxiliary energy generating pathways rapidly and effectively may be critical in enhancing survival during acute lung injury in mice. PMID:21823223

  11. Small Cell Lung Cancer Patient with Profound Hyponatremia and Acute Neurological Symptoms: An Effective Treatment with Fludrocortisone

    PubMed Central

    Jaal, Jana; Jõgi, Tõnu; Altraja, Alan

    2015-01-01

    Hyponatremia is a frequent electrolyte abnormality in patients with small cell lung cancer (SCLC). Being usually asymptomatic, hyponatremia may cause symptoms like nausea, fatigue, disorientation, headache, muscle cramps, or even seizures, particularly if severe and rapid decrease of serum sodium levels occurs. Here we report a case of SCLC patient with severe hyponatremia and acute neurological symptoms that developed 2 days after the first course of second-line chemotherapy, most probably due to the release of antidiuretic hormone (ADH, also known as arginine vasopressin) during lysis of the tumour cells. Initial treatment consisted of continuous administration of hypertonic saline that resulted in improvement of patient's neurological status. However, to obtain a persistent increase in serum sodium level, pharmacological intervention with oral fludrocortisone 0.1 mg twice daily was needed. We can therefore conclude that mineralocorticoids may be used to correct hyponatremia in SCLC patients when appropriate. PMID:26240768

  12. [Renal infarction and acute arterial obstruction of the lower extremity encountered after surgery for primary lung cancer].

    PubMed

    Tamaki, Masafumi; Miura, Kazumasa; Norimura, Shoko; Kenzaki, Koichirou; Yosizawa, Kiyoshi

    2013-02-01

    The patient was 68-year-old who underwent left upper lobectomy and lymph node dissection. On the 4th postoperative day, he developed vomiting and lumbar pain. On 5th postoperative day, he complained of pain, sensory paralysis and cold sensation of the right lower extremity. Computed tomography(CT)examination revealed left renal infarction and acute arterial obstruction of the right common iliac artery. Emergency thrombectomy of the right lower extremity was performed. Postoperatively, he received anticoagulant therapy and was able to leave the hospital on the 20th postoperative day. Attention should be paid to the infarction of abdominal organs when developing abdominal symptoms after lung cancer surgery in elderly patients.

  13. The effect of matrix metalloproteinase-3 deficiency on pulmonary surfactant in a mouse model of acute lung injury.

    PubMed

    Yamashita, Cory M; Cybulskie, Candice; Milos, Scott; Zuo, Yi Y; McCaig, Lynda A; Veldhuizen, Ruud A W

    2016-06-01

    The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3(-/-) mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3(-/-) mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3(-/-) mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS.

  14. Inhibition of Acute Lung Injury by TNFR-Fc through Regulation of an Inflammation-Oxidative Stress Pathway

    PubMed Central

    Yujie, Hu; Weifeng, Li; Zhenhui, Guo; Wenjie, Huang

    2016-01-01

    Background Acute lung injury (ALI), characterized by disruption of the lung alveolar-capillary membrane barrier and resultant pulmonary edema, and associated with a proteinaceous alveolar exudate, is a leading cause of morbidity and mortality. Currently, inflammation-oxidative stress interaction between TNF-α and NF-κB was identified as a key pathway of ALI. We hypothesized that a TNFR-Fc fusion protein would have beneficial effects in experimental ALI, and sought to test this idea in mice by blocking TNF-α. Methods and Results Intratracheal instillation of lipopolysaccharide (LPS) into the lungs of ALI mice led to histiocyte apoptosis, and detection of serum and bronchoalveolar lavage fluid (BALF) cytokines, feedback between NF-κB and TNF-α, lung albumin leakage, lung damage, IκB kinase (IKK) and NF-κB activation, I-κB degradation, and oxidative injury. LPS administration raised pulmonary inflammation as reflected by increased inflammatory cytokines, alveoli protein concentration, and ALI scores. IKK is phosphorylated following LPS challenge, leading to I-κB degradation and NF-κB p65 phosphorylation. Furthermore, NF-κB is translocated into the nucleus and up-regulates TNF-α gene transcription. Infusion of TNFR-Fc 24h before LPS challenge significantly abrogated the increase of inflammatory cytokines, especially serum TNF-α concentration, as well as pulmonary alveoli protein levels, and diminished IKK and NF-κB activation and I-κB degradation. The nuclear translocation of NF-κB was inhibited, following by down-regulation of TNF-α gene transcription. In addition, LPS intratracheal instillation induced marked oxidative damage, such as a decrease in total anti-oxidation products and an increase in malondialdehyde (MDA), as well as up-regulation of oxidation enzymes. Histologic analysis and apoptosis scores revealed that the extent of tissue lesions was significantly reduced, but not abrogated, by TNF-α blockade. Conclusion Treatment with LPS alone

  15. Protective effect of Xuebijing injection against acute lung injury induced by left ventricular ischemia/reperfusion in rabbits

    PubMed Central

    JI, MINGLI; WANG, YUXIA; WANG, LEI; CHEN, LIPING; LI, JING

    2016-01-01

    Xuebijing (XBJ) is a Chinese herbal preparation. Previous studies have demonstrated that XBJ injection is able to inhibit the uncontrolled release of endogenous inflammatory mediators, attenuate inflammation, and alleviate organ damage. However, there are no relevant reports on the protective effect of XBJ against left ventricular ischemia/reperfusion (I/R)-induced acute lung injury (ALI). Therefore, the aim of the present study was to evaluate the protective effect of XBJ on ALI induced by left ventricular I/R, and provide evidence for the clinical application of XBJ. In the present study, 120 healthy rabbits of mixed gender were randomly assigned to a normal control group, ischemia group, I/R group (I/RG) and XBJ-injection treatment group (TG). In addition, each group was further divided into three subgroups (n=10/subgroup), namely, 30 min pre-ischemia, 30 min post-ischemia and 30 min post-reperfusion subgroups. Blood samples (5 ml) were collected from the jugularis externa and carotis communis of the rabbits at the three time points, and a blood gas analyzer was used to measure the arterial partial pressure of oxygen (PaO2) and carbon dioxide (PaCO2). Following sacrifice, the lungs of the rabbits were removed and a bronchoalveolar lavage (BAL) was immediately performed. An enzyme-linked immunosorbent assay was used to measure the expression levels of tumor necrosis factor-α (TNF-α) in the BAL fluid (BALF) and peripheral blood. In addition, the lower lobe of the right lung was removed in order to measure the protein expression levels of intercellular adhesion molecule-1 (ICAM-1) and TNF-α. The results demonstrated that in the rabbits of the TG PaO2 was increased, PaCO2 was decreased, the lung tissue congestion edema was attenuated, the expression levels of TNF-α in the peripheral blood and BALF were reduced and the protein expression levels of ICAM-1 and TNF-α in the lung tissue samples were decreased, as compared with those in the I/RG rabbits. These

  16. The clinical usefulness of extravascular lung water and pulmonary vascular permeability index to diagnose and characterize pulmonary edema: a prospective multicenter study on the quantitative differential diagnostic definition for acute lung injury/acute respiratory distress syndrome

    PubMed Central

    2012-01-01

    Introduction Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is characterized by features other than increased pulmonary vascular permeability. Pulmonary vascular permeability combined with increased extravascular lung water content has been considered a quantitative diagnostic criterion of ALI/ARDS. This prospective, multi-institutional, observational study aimed to clarify the clinical pathophysiological features of ALI/ARDS and establish its quantitative diagnostic criteria. Methods The extravascular lung water index (EVLWI) and the pulmonary vascular permeability index (PVPI) were measured using the transpulmonary thermodilution method in 266 patients with PaO2/FiO2 ratio ≤ 300 mmHg and bilateral infiltration on chest radiography, in 23 ICUs of academic tertiary referral hospitals. Pulmonary edema was defined as EVLWI ≥ 10 ml/kg. Three experts retrospectively determined the pathophysiological features of respiratory insufficiency by considering the patients' history, clinical presentation, chest computed tomography and radiography, echocardiography, EVLWI and brain natriuretic peptide level, and the time course of all preceding findings under systemic and respiratory therapy. Results Patients were divided into the following three categories on the basis of the pathophysiological diagnostic differentiation of respiratory insufficiency: ALI/ARDS, cardiogenic edema, and pleural effusion with atelectasis, which were noted in 207 patients, 26 patients, and 33 patients, respectively. EVLWI was greater in ALI/ARDS and cardiogenic edema patients than in patients with pleural effusion with atelectasis (18.5 ± 6.8, 14.4 ± 4.0, and 8.3 ± 2.1, respectively; P < 0.01). PVPI was higher in ALI/ARDS patients than in cardiogenic edema or pleural effusion with atelectasis patients (3.2 ± 1.4, 2.0 ± 0.8, and 1.6 ± 0.5; P < 0.01). In ALI/ARDS patients, EVLWI increased with increasing pulmonary vascular permeability (r = 0.729, P < 0.01) and was weakly

  17. High tidal volume mechanical ventilation-induced lung injury in rats is greater after acid instillation than after sepsis-induced acute lung injury, but does not increase systemic inflammation: an experimental study

    PubMed Central

    2011-01-01

    Background To examine whether acute lung injury from direct and indirect origins differ in susceptibility to ventilator-induced lung injury (VILI) and resultant systemic inflammatory responses. Methods Rats were challenged by acid instillation or 24 h of sepsis induced by cecal ligation and puncture, followed by mechanical ventilation (MV) with either a low tidal volume (Vt) of 6 mL/kg and 5 cm H2O positive end-expiratory pressure (PEEP; LVt acid, LVt sepsis) or with a high Vt of 15 mL/kg and no PEEP (HVt acid, HVt sepsis). Rats sacrificed immediately after acid instillation and non-ventilated septic animals served as controls. Hemodynamic and respiratory variables were monitored. After 4 h, lung wet to dry (W/D) weight ratios, histological lung injury and plasma mediator concentrations were measured. Results Oxygenation and lung compliance decreased after acid instillation as compared to sepsis. Additionally, W/D weight ratios and histological lung injury scores increased after acid instillation as compared to sepsis. MV increased W/D weight ratio and lung injury score, however this effect was mainly attributable to HVt ventilation after acid instillation. Similarly, effects of HVt on oxygenation were only observed after acid instillation. HVt during sepsis did not further affect oxygenation, compliance, W/D weight ratio or lung injury score. Plasma interleukin-6 and tumour necrosis factor-α concentrations were increased after acid instillation as compared to sepsis, but plasma intercellular adhesion molecule-1 concentration increased during sepsis only. In contrast to lung injury parameters, no additional effects of HVt MV after acid instillation on plasma mediator concentrations were observed. Conclusions During MV more severe lung injury develops after acid instillation as compared to sepsis. HVt causes VILI after acid instillation, but not during sepsis. However, this differential effect was not observed in the systemic release of mediators. PMID:22204611

  18. Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice

    PubMed Central

    Tao, Jin; Nie, Yan; Ma, Xiaoyao; Ding, Guoyu; Gao, Jie; Jiang, Min

    2016-01-01

    Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for “clearing heat and relieving toxicity” and its ability to “diffuse the lung and relieve sore throat.” However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI. PMID:27579049

  19. Interferon Regulatory Factor-1 Mediates Alveolar Macrophage Pyroptosis During LPS-Induced Acute Lung Injury in Mice

    PubMed Central

    Wu, Dongdong; Pan, Pinhua; Su, Xiaoli; Zhang, Lemeng; Qin, Qingwu; Tan, Hongyi; Huang, Li; Li, Yuanyuan

    2016-01-01

    ABSTRACT Previously, we demonstrated that pyroptosis in alveolar macrophages (AMs) plays an essential role in lipopolysaccharide (LPS)-induced acute lung injury. However, the underlying mechanism remains largely unclear. Here, we show that the absence of interferon regulatory factor 1 (IRF-1) in genetic knock-out mice strongly abrogates pyroptosis in AMs and alleviates the LPS-induced lung injury and systemic inflammation. Our study demonstrates that IRF-1 contributes to caspase-1 activation and apoptosis-associated speck-like protein containing a caspase activation and recruitment domain pyroptosome formation in AMs and leads to downstream inflammatory cytokine release, including that of IL-1β, IL-18, and HMGB1. The nuclear translocation of IRF-1 is linked to the presence of toll-like receptor 4 (TLR4). Our findings suggest that pyroptosis and the downstream inflammatory response in AMs induced by LPS is a process that is dependent on TLR4-mediated up-regulation of IRF-1. In summary, IRF-1 plays a key role in controlling caspase-1-dependent pyroptosis and inflammation. PMID:26939040

  20. Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice.

    PubMed

    Tao, Jin; Nie, Yan; Hou, Yuanyuan; Ma, Xiaoyao; Ding, Guoyu; Gao, Jie; Jiang, Min; Bai, Gang

    2016-01-01

    Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for "clearing heat and relieving toxicity" and its ability to "diffuse the lung and relieve sore throat." However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI. PMID:27579049

  1. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1

    PubMed Central

    Vettorazzi, Sabine; Bode, Constantin; Dejager, Lien; Frappart, Lucien; Shelest, Ekaterina; Klaßen, Carina; Tasdogan, Alpaslan; Reichardt, Holger M.; Libert, Claude; Schneider, Marion; Weih, Falk; Henriette Uhlenhaut, N.; David, Jean-Pierre; Gräler, Markus; Kleiman, Anna; Tuckermann, Jan P.

    2015-01-01

    Acute lung injury (ALI) is a severe inflammatory disease for which no specific treatment exists. As glucocorticoids have potent immunosuppressive effects, their application in ALI is currently being tested in clinical trials. However, the benefits of this type of regimen remain unclear. Here we identify a mechanism of glucocorticoid action that challenges the long-standing dogma of cytokine repression by the glucocorticoid receptor. Contrarily, synergistic gene induction of sphingosine kinase 1 (SphK1) by glucocorticoids and pro-inflammatory stimuli via the glucocorticoid receptor in macrophages increases circulating sphingosine 1-phosphate levels, which proves essential for the inhibition of inflammation. Chemical or genetic inhibition of SphK1 abrogates the therapeutic effects of glucocorticoids. Inflammatory p38 MAPK- and mitogen- and stress-activated protein kinase 1 (MSK1)-dependent pathways cooperate with glucocorticoids to upregulate SphK1 expression. Our findings support a critical role for SphK1 induction in the suppression of lung inflammation by glucocorticoids, and therefore provide rationales for effective anti-inflammatory therapies. PMID:26183376

  2. Gradual versus abrupt weaning from respiratory support in acute respiratory failure and advanced chronic obstructive lung disease.

    PubMed

    Ashutosh, K

    1983-10-01

    Two methods of weaning from mechanical ventilation were compared in 18 instances of acute respiratory failure requiring mechanical ventilation for more than 30 days in patients with advanced chronic obstructive lung disease. All patients were ventilated using intermittent mandatory ventilation. Abrupt weaning (AW) consisted of abruptly discontinuing mechanical ventilation when the patients were considered ready for unassisted breathing. Gradual weaning (GW) involved a gradual reduction in the rate of intermittent mandatory ventilation before starting unassisted breathing. Gradual or abrupt weaning alone was used for weaning in five and four instances, respectively. Both methods were used in nine other instances. In the 14 instances when GW was tried, weaning was successful in three. In the 13 instances when AW was tried, weaning was successful in nine. The time in which mechanical ventilation was required was 64 +/- 31 (SD) days with GW and 42 +/- 12 (SD) days with AW. There was no difference in age, pulmonary function, or arterial blood gas results between the patients being weaned by the different methods. I conclude that GW offers no advantage over AW in weaning patients with advanced chronic obstructive lung disease requiring prolonged mechanical ventilation.

  3. Identification of distinct genes associated with seawater aspiration‑induced acute lung injury by gene expression profile analysis.

    PubMed

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-10-01

    Seawater aspiration‑induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration‑induced ALI. Adult male Sprague‑Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration‑induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine‑cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration‑induced ALI. In conclusion, activation of the cytokine‑cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration‑induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL‑6 may be considered a biomarker in seawater aspiration‑induced ALI. PMID:27509884

  4. Identification of distinct genes associated with seawater aspiration-induced acute lung injury by gene expression profile analysis

    PubMed Central

    Liu, Wei; Pan, Lei; Zhang, Minlong; Bo, Liyan; Li, Congcong; Liu, Qingqing; Wang, Li; Jin, Faguang

    2016-01-01

    Seawater aspiration-induced acute lung injury (ALI) is a syndrome associated with a high mortality rate, which is characterized by severe hypoxemia, pulmonary edema and inflammation. The present study is the first, to the best of our knowledge, to analyze gene expression profiles from a rat model of seawater aspiration-induced ALI. Adult male Sprague-Dawley rats were instilled with seawater (4 ml/kg) in the seawater aspiration-induced ALI group (S group) or with distilled water (4 ml/kg) in the distilled water negative control group (D group). In the blank control group (C group) the rats' tracheae were exposed without instillation. Subsequently, lung samples were examined by histopathology; total protein concentration was detected in bronchoalveolar lavage fluid (BALF); lung wet/dry weight ratios were determined; and transcript expression was detected by gene sequencing analysis. The results demonstrated that histopathological alterations, pulmonary edema and total protein concentrations in BALF were increased in the S group compared with in the D group. Analysis of differential gene expression identified up and downregulated genes in the S group compared with in the D and C groups. A gene ontology analysis of the differential gene expression revealed enrichment of genes in the functional pathways associated with neutrophil chemotaxis, immune and defense responses, and cytokine activity. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the cytokine-cytokine receptor interaction pathway was one of the most important pathways involved in seawater aspiration-induced ALI. In conclusion, activation of the cytokine-cytokine receptor interaction pathway may have an essential role in the progression of seawater aspiration-induced ALI, and the downregulation of tumor necrosis factor superfamily member 10 may enhance inflammation. Furthermore, IL-6 may be considered a biomarker in seawater aspiration-induced ALI. PMID:27509884

  5. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12-13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6-11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  6. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12–13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6–11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  7. Immunoadjuvant Therapy and Noninvasive Ventilation for Acute Respiratory Failure in Lung Tuberculosis: A Case Study

    PubMed Central

    Flores-Franco, René Agustín; Olivas-Medina, Dahyr Alberto; Pacheco-Tena, Cesar Francisco; Duque-Rodríguez, Jorge

    2015-01-01

    Acute respiratory failure caused by pulmonary tuberculosis is a rare event but with a high mortality even while receiving mechanical ventilatory support. We report the case of a young man with severe pulmonary tuberculosis refractory to conventional therapy who successfully overcame the critical period of his condition using noninvasive ventilation and immunoadjuvant therapy that included three doses of etanercept 25 mg subcutaneously. We conclude that the use of etanercept along with antituberculosis treatment appears to be safe and effective in patients with pulmonary tuberculosis presenting with acute respiratory failure. PMID:26273486

  8. Acute lung function responses to ambient acid aerosol exposures in children

    SciTech Connect

    Raizenne, M.E.; Burnett, R.T.; Stern, B.; Franklin, C.A.; Spengler, J.D.

    1989-02-01

    We examined the relationship between lung function changes and ambient acid aerosol episodes in children attending a residential summer camp. Young females (112) performed daily spirometry, and 96 were assessed on one occasion for airway hyperresponsiveness using a methacholine bronchoprovocation test. Air quality measurements were performed on site and four distinct acid aerosol episodes were observed during the 41-day study. The maximum values observed during the 41-day study were: O/sub 3/ at 143 ppb; H/sub 2/SO/sub 4/ at 47.7 micrograms/m/sup 3/; and (H+) at 550 nmole/m/sup 3/. Maximum decrements of 3.5 and 7% for FEV1 and PEF, respectively, were observed to be associated with the air pollution episodes. There was some evidence of a differential lung function response to the episodes where children with a positive response to a methacholine challenge had larger decrements compared to their nonresponsive counterparts.

  9. Acute lung function responses to ambient acid aerosol exposures in children.

    PubMed

    Raizenne, M E; Burnett, R T; Stern, B; Franklin, C A; Spengler, J D

    1989-02-01

    We examined the relationship between lung function changes and ambient acid aerosol episodes in children attending a residential summer camp. Young females (112) performed daily spirometry, and 96 were assessed on one occasion for airway hyperresponsiveness using a methacholine bronchoprovocation test. Air quality measurements were performed on site and four distinct acid aerosol episodes were observed during the 41-day study. The maximum values observed during the 41-day study were: O3 at 143 ppb; H2SO4 at 47.7 micrograms/m3; and [H+] at 550 nmole/m3. Maximum decrements of 3.5 and 7% for FEV1 and PEF, respectively, were observed to be associated with the air pollution episodes. There was some evidence of a differential lung function response to the episodes where children with a positive response to a methacholine challenge had larger decrements compared to their nonresponsive counterparts.

  10. Probability of Treatment Following Acute Drop in Lung Function in Children with Cystic Fibrosis is related to baseline pulmonary function

    PubMed Central

    Morgan, Wayne J.; Wagener, Jeffrey S.; Yegin, Ashley; Pasta, David J.; Millar, Stefanie J.; Konstan, Michael W.

    2014-01-01

    Objective To hypothesize whether the association between high forced expiratory volume in 1 second (FEV1) and increased rate of decline in FEV1 in children with cystic fibrosis could be due to less frequent intervention after acute drops (sudden decline events) in FEV1. Study design Patients with CF aged 6-17 years enrolled in ESCF were assessed for a sudden decline event, defined as a 10% relative drop in FEV1 % predicted from an average of 3 consecutive stable baseline spirometries. The likelihood of therapeutic intervention within 14 days before and 56 days after this event was then related to their baseline FEV1 % predicted age-specific decile using a logistic regression adjusting for age group (6-12y, 13-17y) and presence of Pseudomonas aeruginosa on respiratory culture. Results 10,888 patients had at least one sudden decline event in FEV1. Patients in the highest FEV1 decile were significantly less likely than those in the lowest decile to receive intravenous antibiotics (odds ratio [OR], 0.14; 95% confidence interval [CI], 0.11-0.18; P<.001) or be hospitalized (OR, 0.18; 95% CI, 0.14-0.23; P<.001) following decline. Conclusions Children and adolescents with high baseline lung function are less likely to receive a therapeutic intervention following an acute drop in FEV1, which may explain their greater rate of FEV1 decline. PMID:23810128

  11. Activation of AMPK attenuates LPS-induced acute lung injury by upregulation of PGC1α and SOD1

    PubMed Central

    Wang, Guizuo; Song, Yang; Feng, Wei; Liu, Lu; Zhu, Yanting; Xie, Xinming; Pan, Yilin; Ke, Rui; Li, Shaojun; Li, Fangwei; Yang, Lan; Li, Manxiang

    2016-01-01

    Evidence suggests that an imbalance between oxidation and antioxidation is involved in the pathogenesis of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Activation of AMP-activated protein kinase (AMPK) has been shown to inhibit the occurrence of ALI/ARDS. However, it is unknown whether activation of AMPK benefits ALI/ARDS by restoration of the oxidant and antioxidant balance, and which mechanisms are responsible for this process. The present study aimed to address these issues. Lipopolysaccharide (LPS) induced pronounced pathological changes of ALI in mice; these were accompanied by elevated production of malondialdehyde (MDA) and decreased activity of superoxide dismutase (SOD) compared with control mice. Prior treatment of mice with the AMPK agonist metformin significantly suppressed the LPS-induced development of ALI, reduced the elevation of MDA and increased the activity of SOD. Further analysis indicated that activation of AMPK also stimulated the protein expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and superoxide dismutase 1 (SOD1). This study suggests that activation of AMPK by metformin inhibits oxidative stress by upregulation of PGC1α and SOD1, thereby suppressing the development of ALI/ARDS, and has potential value in the clinical treatment of such conditions. PMID:27602077

  12. The Endothelial Glycocalyx: Emerging Concepts in Pulmonary Edema and Acute Lung Injury

    PubMed Central

    Collins, Stephen R.; Blank, Randal S.; Deatherage, Lindy S.; Dull, Randal O.

    2013-01-01

    The endothelial glycocalyx is a dynamic layer of macromolecules at the luminal surface of vascular endothelium that is involved in fluid homeostasis and regulation. Its role in vascular permeability and edema formation is emerging but is still not well understood. In this special article, we highlight key concepts of endothelial dysfunction with regards to the glycocalyx and provide new insights into the glycocalyx as a mediator of processes central to the development of pulmonary edema and lung injury. PMID:23835455

  13. Comparative acute toxicity of four nickel compounds to F344 rat lung.

    PubMed

    Benson, J M; Henderson, R F; McClellan, R O; Hanson, R L; Rebar, A H

    1986-08-01

    Nickel subsulfide (Ni3S2), nickel chloride (NiCl2), nickel sulfate (NiSO4), and nickel oxide (NiO) are compounds of widely differing solubility encountered in the nickel-refining and electroplating industries. Inhalation is a common route of exposure and toxicity to the respiratory tract is possible. The purpose of this study was to evaluate the biochemical, cytological, and morphological changes in lung following administration of these compounds by intratracheal instillation. F344/Crl rats were administered a single dose of nickel compound containing 0.0, 0.01, 0.10, or 1.0 mumol Ni by intratracheal instillation. Rats were sacrificed at 1 or 7 days after compound administration, with half the animals in each exposure group taken for determination of nickel lung burden and the remaining half used for evaluation of biochemical, cytological, and histological changes. In the latter group, the right lung was lavaged and the fluid obtained was analyzed for indicators of pulmonary inflammation: lactate dehydrogenase (LDH), beta-glucuronidase (BG), total protein (TP), glutathione reductase (GR), glutathione peroxidase (GP), and sialic acid (SA). Total and differential cell counts on cells recovered in lavage fluid were also determined. The left lobe was examined for morphological changes. Clearance of nickel from the lung was most rapid for NiCl2 and NiSO4, followed by Ni3S2 and NiO. Minimal changes in all parameters were observed at 1 day after exposure. No significant changes in any parameter occurred in rats exposed to NiO, while Ni3S2, NiSO4, and NiCl2 caused increased in LDH, BG, TP, GR, SA, and total nucleated cells at 7 days.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3758551

  14. Kidney-lung connections in acute and chronic diseases: current perspectives.

    PubMed

    Visconti, Luca; Santoro, Domenico; Cernaro, Valeria; Buemi, Michele; Lacquaniti, Antonio

    2016-06-01

    Lung and kidney functions are intimately related in both health and disease. The regulation of acid-base equilibrium, modification of partial pressure of carbon dioxide and bicarbonate concentration, and the control of blood pressure and fluid homeostasis all closely depend on renal and pulmonary activities. These interactions begin in fetal age and are often responsible for the genesis and progression of diseases. In gestational age, urine is a fundamental component of the amniotic fluid, acting on pulmonary maturation and growth. Moreover, in the first trimester of pregnancy, kidney is the main source of proline, contributing to collagen synthesis and lung parenchyma maturation. Pathologically speaking, the kidneys could become damaged by mediators of inflammation or immuno-mediated factors related to a primary lung pathology or, on the contrary, it could be the renal disease that determines a consecutive pulmonary damage. Furthermore, non immunological mechanisms are frequently involved in renal and pulmonary diseases, as observed in chronic pathologies such as sleep apnea syndrome, pulmonary hypertension, progressive renal disease and hemodialysis. Kidney damage has also been related to mechanical ventilation. The aim of this review is to describe pulmonary-renal interactions and their related pathologies, underscoring the need for a close collaboration between intensivists, pneumologists and nephrologists. PMID:26940339

  15. Multiple lung abscesses caused by Actinomyces graevenitzii mimicking acute pulmonary coccidioidomycosis.

    PubMed

    Nagaoka, Kentaro; Izumikawa, Koichi; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Ohkusu, Kiyofumi; Kohno, Shigeru

    2012-09-01

    Actinomyces graevenitzii is a newly recognized Actinomyces species that is seldom isolated from clinical specimens. A case of multiple pulmonary abscesses mimicking acute pulmonary coccidioidomycosis is described in this study, and the findings indicate that this organism is an opportunistic human pathogen.

  16. Bioinforrnatics of Gene Expression Profiling Data Provide Mechanistic Understanding of Acute Ozone-Induced Lung injury

    EPA Science Inventory

    Acute ozone-induced pulmonary injury and inflammation are well characterized. A few studies have used gene expression profiling to determine the types of changes induced by ozone; however the mechanisms or the pathways involved are less well understood. We presumed that robust bi...

  17. Multiple Lung Abscesses Caused by Actinomyces graevenitzii Mimicking Acute Pulmonary Coccidioidomycosis

    PubMed Central

    Nagaoka, Kentaro; Yamamoto, Yoshihiro; Yanagihara, Katsunori; Ohkusu, Kiyofumi; Kohno, Shigeru

    2012-01-01

    Actinomyces graevenitzii is a newly recognized Actinomyces species that is seldom isolated from clinical specimens. A case of multiple pulmonary abscesses mimicking acute pulmonary coccidioidomycosis is described in this study, and the findings indicate that this organism is an opportunistic human pathogen. PMID:22760049

  18. Meta-analysis of high doses of ambroxol treatment for acute lung injury/acute respiratory distress syndrome based on randomized controlled trials.

    PubMed

    Wu, Xiangdong; Li, Suwei; Zhang, Jiuzhi; Zhang, Yongli; Han, Lili; Deng, Qiuming; Wan, Xianyao

    2014-11-01

    This study seeks to evaluate the potential benefits of high doses of ambroxol treatment for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) by conducting a meta-analysis based on randomized controlled trials (RCTs). We searched the Pubmed, Embase, China National Knowledge Infrastructure, and Wanfang databases through December 2013. Only RCTs evaluating high doses of ambroxol (≥15 mg/kg or 1000 mg/day) treatment for patients with ALI/ARDS were selected. We included 10 RCTs involving 508 patients. Adjuvant treatment with high doses of ambroxol increased PaO(2)/FiO(2) (weight mean differences [WMD] = 69.18, 95% confidence intervals [CI]: 41.71-96.65), PO(2) (WMD = 11.74, 95% CI: 8.50-14.99), and SaO(2) (WMD = 2.15, 95% CI: 1.60-2.71) compared with usual treatment. Treatment with high doses of ambroxol appeared to reduce serum tumor necrosis factor-α level (WMD -7.92 µg/L; 95% CI, -10.94 to -4.9) and interleukin-6 level (WMD = -20.65 µg/L, 95% CI: -24.74 to -16.55) and to increase serum superoxide dismutase level (WMD = 19.07 NU/mL, 95% CI: 6.16-31.97). The findings suggest that treatment with high doses of ambroxol appears to improve PaO(2)/FiO(2), PO(2), and SaO(2), and the benefits might be related to ambroxol's anti-oxidant and anti-inflammatory properties.

  19. Meta-analysis of high doses of ambroxol treatment for acute lung injury/acute respiratory distress syndrome based on randomized controlled trials.

    PubMed

    Wu, Xiangdong; Li, Suwei; Zhang, Jiuzhi; Zhang, Yongli; Han, Lili; Deng, Qiuming; Wan, Xianyao

    2014-11-01

    This study seeks to evaluate the potential benefits of high doses of ambroxol treatment for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) by conducting a meta-analysis based on randomized controlled trials (RCTs). We searched the Pubmed, Embase, China National Knowledge Infrastructure, and Wanfang databases through December 2013. Only RCTs evaluating high doses of ambroxol (≥15 mg/kg or 1000 mg/day) treatment for patients with ALI/ARDS were selected. We included 10 RCTs involving 508 patients. Adjuvant treatment with high doses of ambroxol increased PaO(2)/FiO(2) (weight mean differences [WMD] = 69.18, 95% confidence intervals [CI]: 41.71-96.65), PO(2) (WMD = 11.74, 95% CI: 8.50-14.99), and SaO(2) (WMD = 2.15, 95% CI: 1.60-2.71) compared with usual treatment. Treatment with high doses of ambroxol appeared to reduce serum tumor necrosis factor-α level (WMD -7.92 µg/L; 95% CI, -10.94 to -4.9) and interleukin-6 level (WMD = -20.65 µg/L, 95% CI: -24.74 to -16.55) and to increase serum superoxide dismutase level (WMD = 19.07 NU/mL, 95% CI: 6.16-31.97). The findings suggest that treatment with high doses of ambroxol appears to improve PaO(2)/FiO(2), PO(2), and SaO(2), and the benefits might be related to ambroxol's anti-oxidant and anti-inflammatory properties. PMID:25174313

  20. Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome.

    PubMed

    Eisner, M D; Thompson, T; Hudson, L D; Luce, J M; Hayden, D; Schoenfeld, D; Matthay, M A

    2001-07-15

    In patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), a recent ARDS Network randomized controlled trial demonstrated that a low tidal volume (VT) mechanical ventilation strategy (6 ml/kg) reduced mortality by 22% compared with traditional mechanical ventilation (12 ml/kg). In this study, we examined the relative efficacy of low VT mechanical ventilation among 902 patients with different clinical risk factors for ALI/ARDS who participated in ARDS Network randomized controlled trials. The clinical risk factor for ALI/ARDS was associated with substantial variation in mortality. The risk of death (before discharge home with unassisted breathing) was highest in patients with sepsis (43%); intermediate in subjects with pneumonia (36%), aspiration (37%), and other risk factors (35%); and lowest in those with trauma (11%) (p < 0.0001). Despite these differences in mortality, there was no evidence that the efficacy of the low VT strategy varied by clinical risk factor (p = 0.76, for interaction between ventilator group and risk factor). There was also no evidence of differential efficacy of low VT ventilation in the other study outcomes: proportion of patients achieving unassisted breathing (p = 0.59), ventilator-free days (p = 0.58), or development of nonpulmonary organ failure (p = 0.44). Controlling for demographic and clinical covariates did not appreciably affect these results. After reclassifying the clinical risk factors as pulmonary versus nonpulmonary predisposing conditions and infection-related versus non-infection-related conditions, there was still no evidence that the efficacy of low VT ventilation differed among clinical risk factor subgroups. In conclusion, we found no evidence that the efficacy of the low VT ventilation strategy differed among clinical risk factor subgroups for ALI/ARDS.

  1. Lung texture in serial thoracic CT scans: correlation with radiologist-defined severity of acute changes following radiation therapy

    NASA Astrophysics Data System (ADS)

    Cunliffe, Alexandra R.; Armato, Samuel G., III; Straus, Christopher; Malik, Renuka; Al-Hallaq, Hania A.

    2014-09-01

    This study examines the correlation between the radiologist-defined severity of normal tissue damage following radiation therapy (RT) for lung cancer treatment and a set of mathematical descriptors of computed tomography (CT) scan texture (‘texture features’). A pre-therapy CT scan and a post-therapy CT scan were retrospectively collected under IRB approval for each of the 25 patients who underwent definitive RT (median dose: 66 Gy). Sixty regions of interest (ROIs) were automatically identified in the non-cancerous lung tissue of each post-therapy scan. A radiologist compared post-therapy scan ROIs with pre-therapy scans and categorized each as containing no abnormality, mild abnormality, moderate abnormality, or severe abnormality. Twenty texture features that characterize gray-level intensity, region morphology, and gray-level distribution were calculated in post-therapy scan ROIs and compared with anatomically matched ROIs in the pre-therapy scan. Linear regression and receiver operating characteristic (ROC) analysis were used to compare the percent feature value change (ΔFV) between ROIs at each category of visible radiation damage. Most ROIs contained no (65%) or mild abnormality (30%). ROIs with moderate (3%) or severe (2%) abnormalities were observed in 9 patients. For 19 of 20 features, ΔFV was significantly different among severity levels. For 12 features, significant differences were observed at every level. Compared with regions with no abnormalities, ΔFV for these 12 features increased, on average, by 1.5%, 12%, and 30%, respectively, for mild, moderate, and severe abnormalitites. Area under the ROC curve was largest when comparing ΔFV in the highest severity level with the remaining three categories (mean AUC across features: 0.84). In conclusion, 19 features that characterized the severity of radiologic changes from pre-therapy scans were identified. These features may be used in future studies to quantify acute normal lung tissue damage

  2. Boussignac CPAP system for brain death confirmation with apneic test in case of acute lung injury/adult respiratory distress syndrome – series of cases

    PubMed Central

    Wieczorek, Andrzej; Gaszynski, Tomasz

    2015-01-01

    Introduction There are some patients with severe respiratory disturbances like adult respiratory distress syndrome (ARDS) and suspicion of brain death, for whom typical performance of the apneic test is difficult to complete because of quick desaturation and rapid deterioration without effective ventilation. To avoid failure of brain death confirmation and possible loss of organ donation another approach to apneic test is needed. We present two cases of patients with clinical symptoms of brain death, with lung pathology (acute lung injury, ARDS, lung embolism and lung infection), in whom apneic tests for recognizing brain death were difficult to perform. During typical performance of apneic test involving the use of oxygen catheter for apneic oxygenation we observed severe desaturation with growing hypotension and hemodynamic destabilization. But with the use of Boussignac CPAP system all necessary tests were successfully completed, confirming the patient’s brain death, which gave us the opportunity to perform procedures for organ donation. The main reason of apneic test difficulties was severe gas exchange disturbances secondary to ARDS. Thus lack of positive end expiratory pressure during classical performance of apneic test leads to quick desaturation and rapid hemodynamic deterioration, limiting the observation period below dedicated at least 10-minute interval. Conclusion The Boussignac CPAP system may be an effective tool for performing transparent apneic test in case of serious respiratory disturbances, especially in the form of acute lung injury or ARDS. PMID:26124664

  3. Tetrahydroberberrubine attenuates lipopolysaccharide-induced acute lung injury by down-regulating MAPK, AKT, and NF-κB signaling pathways.

    PubMed

    Yu, Xiu; Yu, Sulan; Chen, Ling; Liu, Han; Zhang, Jian; Ge, Haixia; Zhang, Yuanyuan; Yu, Boyang; Kou, Junping

    2016-08-01

    Acute lung injury (ALI) is a life-threatening syndrome that is characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality worldwide. Here, we studied the protective effect of tetrahydroberberrubine (THBru), a berberine derivative, on a mouse model of lipopolysaccharide (LPS)-induced acute lung injury that was established in our previous studies. The results showed that a single oral administration of THBru significantly decreased the lung wet to dry weight (W/D) ratio at doses of 2, 10 and 50mg/kg administered 1h prior to LPS challenge (30mg/kg, intravenous injection). Histopathological changes, such as pulmonary edema, infiltration of inflammatory cells and coagulation, were also attenuated by THBru. In addition, THBru markedly decreased the total cell counts, total protein and nitrate/nitrite content in bronchoalveolar lavage fluid (BALF), significantly decreased tumor necrosis factor-α (TNF-α) and nitrate/nitrite content in the plasma, and reduced the myeloperoxidase (MPO) activity in the lung tissues. Additionally, THBru (10μM) significantly decreased the content of TNF-α and nitric oxide (NO) in LPS-induced THP-1 cells in vitro. Moreover, THBru significantly suppressed the activation of the MAPKs JNK and p38, AKT, and the NF-κB subunit p65 in LPS-induced THP-1 cells. These findings confirm that THBru attenuates LPS-induced acute lung injury by inhibiting the release of inflammatory cytokines and suppressing the activation of MAPKs, AKT, and NF-κB signaling pathways, which implicates it as a potential therapeutic agent for ALI or sepsis. PMID:27470389

  4. Acute respiratory changes and pulmonary inflammation involving a pathway of TGF-β1 induction in a rat model of chlorine-induced lung injury.

    PubMed

    Wigenstam, Elisabeth; Elfsmark, Linda; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2016-10-15

    We investigated acute and delayed respiratory changes after inhalation exposure to chlorine (Cl2) with the aim to understand the pathogenesis of the long-term sequelae of Cl2-induced lung-injury. In a rat model of nose-only exposure we analyzed changes in airway hyperresponsiveness (AHR), inflammatory responses in airways, expression of pro-inflammatory markers and development of lung fibrosis during a time-course from 5h up to 90days after a single inhalation of Cl2. A single dose of dexamethasone (10mg/kg) was administered 1h following Cl2-exposure. A 15-min inhalation of 200ppm Cl2 was non-lethal in Sprague-Dawley rats. At 24h post exposure, Cl2-exposed rats displayed elevated numbers of leukocytes with an increase of neutrophils and eosinophils in bronchoalveolar lavage (BAL) and edema was shown both in lung tissue and the heart. At 24h, the inflammasome-associated cytokines IL-1β and IL-18 were detected in BAL. Concomitant with the acute inflammation a significant AHR was detected. At the later time-points, a delayed inflammatory response was observed together with signs of lung fibrosis as indicated by increased pulmonary macrophages, elevated TGF-β expression in BAL and collagen deposition around airways. Dexamethasone reduced the numbers of neutrophils in BAL at 24h but did not influence the AHR. Inhalation of Cl2 in rats leads to acute respiratory and cardiac changes as well as pulmonary inflammation involving induction of TGF-β1. The acute inflammatory response was followed by sustained macrophage response and lack of tissue repair. It was also found that pathways apart from the acute inflammatory response contribute to the Cl2-induced respiratory dysfunction. PMID:27586366

  5. Neu-164 and Neu-107, two novel antioxidant and anti-myeloperoxidase compounds, inhibit acute cigarette smoke-induced lung inflammation.

    PubMed

    Thatcher, Thomas H; Hsiao, Hsi-Min; Pinner, Elhanan; Laudon, Moshe; Pollock, Stephen J; Sime, Patricia J; Phipps, Richard P

    2013-07-15

    Cigarette smoke is a profound proinflammatory stimulus that causes acute lung inflammation and chronic lung disease, including chronic obstructive pulmonary disease (COPD, emphysema, and chronic bronchitis), via a variety of mechanisms, including oxidative stress. Cigarette smoke contains high levels of free radicals, whereas inflammatory cells, including macrophages and neutrophils, express enzymes, including NADPH oxidase, nitric oxide synthase, and myeloperoxidase, that generate reactive oxygen species in situ and contribute to inflammation and tissue damage. Neu-164 and Neu-107 are small-molecule inhibitors of myeloperoxidase, as well as potent antioxidants. We hypothesized that Neu-164 and Neu-107 would inhibit acute cigarette smoke-induced inflammation. Adult C57BL/6J mice were exposed to mainstream cigarette smoke for 3 days to induce acute inflammation and were treated daily by inhalation with Neu-164, Neu-107, or dexamethasone as a control. Inflammatory cells and cytokines were assessed by bronchoalveolar lavage and histology. mRNA levels of endogenous antioxidant genes heme oxygenase-1 and glutamate-cysteine ligase modifier subunit were determined by qPCR. Cigarette smoke exposure induced acute lung inflammation with accumulation of neutrophils and upregulation of proinflammatory cytokines, including IL-6, macrophage inflammatory protein-2, and keratinocyte-derived cytokine. Both Neu-164 and Neu-107 significantly reduced the accumulation of inflammatory cells and the expression of inflammatory cytokines as effectively as dexamethasone. Upregulation of endogenous antioxidant genes was dampened. Neu-164 and Neu-107 inhibit acute cigarette smoke-induced inflammation by scavenging reactive oxygen species in cigarette smoke and by inhibiting further oxidative stress caused by inflammatory cells. These compounds may have promise in preventing or treating lung disease associated with chronic smoke exposure, including COPD.

  6. Acute Coronary Artery Air Embolism Following CT-Guided Lung Biopsy

    SciTech Connect

    Mansour, Asem AbdelRaouf, Salah; Qandeel, Monther; Swaidan, Maisa

    2005-01-15

    CT-guided needle biopsy is a common procedure for obtaining a tissue diagnosis and consequently correctly managing patients. This procedure has many potential complications, ranging from simple pneumothorax or self-limiting hemoptysis to life-threatening pulmonary hemorrhage and air embolism. Though the latter is a rare complication of CT-guided needle biopsy, it has attracted a lot of interest. We report a case of right coronary air embolism resulting in myocardial infarction after a CT-guided percutaneous needle biopsy of the lung.

  7. Treatment of sepsis and ARDS with extracorporeal membrane oxygenation and interventional lung assist membrane ventilator in a patient with acute lymphoblastic leukemia.

    PubMed

    Gorjup, Vojka; Fister, Misa; Noc, Marko; Rajic, Vladan; Ribaric, Suada Filekovic

    2012-07-01

    We report an 18-year-old ice skater with acute lymphoblast leukemia. She developed Staphylococcus epidermidis bacteremia, severe sepsis, septic shock, and ARDS following chemotherapy-induced severe bone marrow failure. She was successfully treated with extraordinary life support measures, which included extracorporeal membrane oxygenation, double lumen lung ventilation for management of hemoptysis, and lung assist membrane ventilation. After 57 days of ICU treatment and a year of rehabilitation, the patient has fully regained her functional status, is now finishing high school, and is ice skating again.

  8. 99MTc-Hexamethylpropyleneamine Oxime Imaging for Early Detection of Acute Lung Injury in Rats Exposed to Hyperoxia or Lipopolysaccharide Treatment.

    PubMed

    Audi, Said H; Clough, Anne V; Haworth, Steven T; Medhora, Meetha; Ranji, Mahsa; Densmore, John C; Jacobs, Elizabeth R

    2016-10-01

    Tc-Hexamethylpropyleneamine oxime (HMPAO) is a clinical single-photon emission computed tomography biomarker of tissue oxidoreductive state. Our objective was to investigate whether HMPAO lung uptake can serve as a preclinical marker of lung injury in two well-established rat models of human acute lung injury (ALI).Rats were exposed to >95% O2 (hyperoxia) or treated with intratracheal lipopolysaccharide (LPS), with first endpoints obtained 24 h later. HMPAO was administered intravenously before and after treatment with the glutathione-depleting agent diethyl maleate (DEM), scintigraphy images were acquired, and HMPAO lung uptake was quantified from the images. We also measured breathing rates, heart rates, oxygen saturation, bronchoalveolar lavage (BAL) cell counts and protein, lung homogenate glutathione (GSH) content, and pulmonary vascular endothelial filtration coefficient (Kf).For hyperoxia rats, HMPAO lung uptake increased after 24 h (134%) and 48 h (172%) of exposure. For LPS-treated rats, HMPAO lung uptake increased (188%) 24 h after injury and fell with resolution of injury. DEM reduced HMPAO uptake in hyperoxia and LPS rats by a greater fraction than in normoxia rats. Both hyperoxia exposure (18%) and LPS treatment (26%) increased lung homogenate GSH content, which correlated strongly with HMPAO uptake. Neither of the treatments had an effect on Kf at 24 h. LPS-treated rats appeared healthy but exhibited mild tachypnea, BAL, and histological evidence of inflammation, and increased wet and dry lung weights. These results suggest the potential utility of HMPAO as a tool for detecting ALI at a phase likely to exhibit minimal clinical evidence of injury.

  9. The protective effect of infliximab against carbon tetrachloride-induced acute lung injury

    PubMed Central

    Kurt, Aysel; Tumkaya, Levent; Yuce, Suleyman; Turut, Hasan; Cure, Medine Cumhur; Sehitoglu, Ibrahim; Kalkan, Yildiray; Pusuroglu, Gokhan; Cure, Erkan

    2016-01-01

    Objective(s): Carbon tetrachloride (CCl4) causes pulmonary toxicity. Infliximab (Ib) is a potent inhibitor of tumor necrosis factor-alpha (TNF-α). We aimed to investigate whether Ib has a protective effect on CCl4 induced lung injury. Materials and Methods: Rats were divided into control, CCl4, and CCl4+Ib groups. A single dose of 2 ml/kg CCI4 was administered to CCI4 group and a single dose of 7 mg/kg Ib was given to CCl4+Ib group 24 hr before applying CCI4. Results: TNF-α, malondialdehyde (MDA), nitric oxide (NO) and caspase-3 levels of the CCl4 group were markedly higher than both the control and CCl4+Ib groups. The CCI4+Ib group had lower histopathological injury than the CCl4 group. Conclusion: Ib as a strong TNF-α blocker decreases the production of proinflammatory cytokines, MDA, and oxidative stress leading to a protective effect against CCl4 induced lung tissue injury. PMID:27482351

  10. The impact of acute lung injury, ECMO and transfusion on oxidative stress and plasma selenium levels in an ovine model.

    PubMed

    McDonald, Charles I; Fung, Yoke Lin; Shekar, Kiran; Diab, Sara D; Dunster, Kimble R; Passmore, Margaret R; Foley, Samuel R; Simonova, Gabriela; Platts, David; Fraser, John F

    2015-04-01

    The purpose of this study was to determine the effects of smoke induced acute lung injury (S-ALI), extracorporeal membrane oxygenation (ECMO) and transfusion on oxidative stress and plasma selenium levels. Forty ewes were divided into (i) healthy control (n=4), (ii) S-ALI control (n=7), (iii) ECMO control (n=7), (iv) S-ALI+ECMO (n=8) and (v) S-ALI+ECMO+packed red blood cell (PRBC) transfusion (n=14). Plasma thiobarbituric acid reactive substances (TBARS), selenium and glutathione peroxidase (GPx) activity were analysed at baseline, after smoke injury (or sham) and 0.25, 1, 2, 6, 7, 12 and 24h after initiation of ECMO. Peak TBARS levels were similar across all groups. Plasma selenium decreased by 54% in S-ALI sheep (1.36±0.20 to 0.63±0.27μmol/L, p<0.0001), and 72% in sheep with S-ALI+ECMO at 24h (1.36±0.20 to 0.38±0.19, p<0.0001). PRBC transfusion had no effect on TBARS, selenium levels or glutathione peroxidase activity in plasma. While ECMO independently increased TBARS in healthy sheep to levels which were similar to the S-ALI control, the addition of ECMO after S-ALI caused a negligible increase in TBARS. This suggests that the initial lung injury was the predominant feature in the TBARS response. In contrast, the addition of ECMO in S-ALI sheep exacerbated reductions in plasma selenium beyond that of S-ALI or ECMO alone. Clinical studies are needed to confirm the extent and duration of selenium loss associated with ECMO.

  11. Respiratory care year in review 2011: long-term oxygen therapy, pulmonary rehabilitation, airway management, acute lung injury, education, and management.

    PubMed

    Dunne, Patrick J; Macintyre, Neil R; Schmidt, Ulrich H; Haas, Carl F; Jones-Boggs Rye, Kathy; Kauffman, Garry W; Hess, Dean R

    2012-04-01

    For the busy clinician, educator, or manager, it is becoming an increasing challenge to filter the literature to what is relevant to one's practice and then update one's practice based on the current evidence. The purpose of this paper is to review the recent literature related to long-term oxygen therapy, pulmonary rehabilitation, airway management, acute lung injury and acute respiratory distress syndrome, respiratory care education, and respiratory care management. These topics were chosen and reviewed in a manner that is most likely to have interest to the readers of Respiratory Care. PMID:22472499

  12. [Ultrastructural changes in the lung in acute adult respiratory distress syndrome].

    PubMed

    Szemenyei, K; Széll, K; Kádas, L

    1980-04-01

    Morphological alterations of the lung in respiratory distress syndrome of adults (ARDS) were analyzed in 10 cases with traumatic-and septic shock, laryngitis subglottica descendens and bronchopneumonia. For the better understanding of the pathomechanism of the disease in addition to the standard methods, first of all ultrastructural alterations were studied. Two phases of the morphologic alterations could be distinguished, the phase of the destruction and the phase of the repair. These two processes are not sharply distinguishable. Genesis of the characteristic histological alterations (damage to the epithelial and endothelial cells, formation of hyaline membranes, microcoagulation, proliferation of the type II pneumocytes and fibroblasts, fibrosis) is discussed, with regard to the data of the literature.

  13. Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lung injury

    PubMed Central

    Chen, Hong-Hwa; Chang, Chia-Lo; Lin, Kun-Chen; Sung, Pei-Hsun; Chai, Han-Tan; Zhen, Yen-Yi; Chen, Yi-Ching; Wu, Ying-Chung; Leu, Steve; Tsai, Tzu-Hsien; Chen, Chih-Hung; Chang, Hsueh-Wen; Yip, Hon-Kan

    2014-01-01

    This study investigated whether combining melatonin and apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) was superior to ADMSC alone in ameliorating sepsis-induced acute lung injury. Adult male Sprague-Dawley rats (n=50) were randomized equally into five groups: sham controls (SC), sepsis induced by cecal-ligation and puncture (CLP), CLP-melatonin, CLP-A-ADMSC, and CLP-melatonin-A-ADMSC. Circulating interleukin (IL)-6 at 6, 18, and 72 hrs, were highest in CLP and lowest in SC groups, higher in CLP-melatonin than CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups, higher in CLP-A-ADMSC than CLP-melatonin-A-ADMSC groups (all p<0.001). Immune reactivity (indicated by circulating cytotoxic-, and regulatory-T cells) and WBC count at 72 h exhibited the same pattern as that of circulating IL-6 (all p<0.001). Changes in histological scoring of lung parenchyma and the number of CD68+ and CD14+ cells showed a similar pattern compared to that of IL-6 level in all groups (all p<0.001). Changes in protein expressions of inflammatory (oxidative stress, RANTES, TNF-α, NF-κB, MMP-9, MIP-1, IL-1β), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), fibrotic (Smad3, TGF-β) markers and those of reactive-oxygen-species (NOX-1, NOX-2) displayed an identical pattern compared to that of circulating IL-6 in all groups (all p<0.001). Anti-oxidative capacities (GR+, GPx+, HO-1, NQO-1+) and angiogenesis marker (CXCR4+ cells) were lowest in SC group but highest in CLP-melatonin-A-ADMSC group, lower in CLP than CLP-melatonin and CLP-A-ADMSC groups, and lower in CLP-melatonin than CLP-A-ADMSC groups (all p<0.001). In conclusion, combined melatonin and A-ADMSC were superior to A-ADMSC alone in protecting the lung from sepsis-induced injury. PMID:25360211

  14. Acute lung function response to cotton dust in atopic and non-atopic individuals.

    PubMed Central

    Sepulveda, M J; Castellan, R M; Hankinson, J L; Cocke, J B

    1984-01-01

    Acute spirometric responses to inhaled cotton dust were examined in a population of 226 healthy, non-asthmatic adults whose atopic status had been evaluated by skin prick tests to 10 common environmental allergens. Exposure to cotton dust occurred in model cardrooms where elutriated dust levels were carefully controlled (1.02 mg/m3). Atopy, defined as positive prick tests to at least two allergens, was observed in 26% of subjects. Significant forced expiratory volume in one second (FEV1) decrements occurred after exposure to cotton dust independent of atopic status (p less than 0.001). The mean FEV1 decline in atopic subjects, however, was significantly greater than in non-atopic subjects (p less than 0.05). Degree of atopy, as measured by number of positive skin tests, also exhibited a significant association with cotton induced decrements in FEV1 (p less than 0.05). These data suggest that atopy may be an important determinant of the magnitude of the acute pulmonary response to cotton dust. This may reflect the non-specific airways hyperresponsiveness that has been described in non-asthmatic, atopic individuals. PMID:6498112

  15. Role of tachykinins in ozone-induced acute lung injury in guinea pigs

    SciTech Connect

    Tepper, J.S.; Costa, D.L.; Fitzgerald, S.; Doerfler, D.L.; Bromberg, P.A. )

    1993-09-01

    To examine the hypothesis that the acute reversible changes caused by ozone (O3) exposure are mediated by tachykinin release, guinea pigs were depleted of tachykinins by use of repeated capsaicin (CAP) injections before O3 exposure in an attempt to prevent O3-induced functional changes. Unexpectedly, CAP pretreatment caused divergent results in the functional responses to O3. Ventilatory measurements obtained from CAP-pretreated O3-exposed (CAP-O3) animals were exacerbated rather than diminished compared with the effects of O3 alone. Similarly, lavage fluid protein accumulation was enhanced in the CAP-O3 group compared with the O3-exposed group. In better agreement with our initial hypothesis, the CAP-O3 group was less responsive than the O3-exposed animals to histamine aerosol challenge. Additionally, Evans blue dye accumulation, a hallmark of tachykinin release, was increased in O3-exposed animals and was partially blocked in the CAP-O3 group. These data suggest that tachykinin-containing sensory fibers are unlikely to mediate the acute effects of O3 exposure on tidal breathing and lavage fluid protein accumulation but may play a role in causing post-O3 airway hyperreactivity and protein extravasation into the trachea.

  16. Release of Severe Acute Respiratory Syndrome Coronavirus Nuclear Import Block Enhances Host Transcription in Human Lung Cells

    PubMed Central

    Tilton, Susan C.; Menachery, Vineet D.; Gralinski, Lisa E.; Schäfer, Alexandra; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo M.; Chang, Jean; Luna, Maria L.; Long, Casey E.; Shukla, Anil K.; Bankhead, Armand R.; Burkett, Susan E.; Zornetzer, Gregory; Tseng, Chien-Te Kent; Metz, Thomas O.; Pickles, Raymond; McWeeney, Shannon; Smith, Richard D.; Katze, Michael G.; Waters, Katrina M.; Baric, Ralph S.

    2013-01-01

    The severe acute respiratory syndrome coronavirus accessory protein ORF6 antagonizes interferon signaling by blocking karyopherin-mediated nuclear import processes. Viral nuclear import antagonists, expressed by several highly pathogenic RNA viruses, likely mediate pleiotropic effects on host gene expression, presumably interfering with transcription factors, cytokines, hormones, and/or signaling cascades that occur in response to infection. By bioinformatic and systems biology approaches, we evaluated the impact of nuclear import antagonism on host expression networks by using human lung epithelial cells infected with either wild-type virus or a mutant that does not express ORF6 protein. Microarray analysis revealed significant changes in differential gene expression, with approximately twice as many upregulated genes in the mutant virus samples by 48 h postinfection, despite identical viral titers. Our data demonstrated that ORF6 protein expression attenuates the activity of numerous karyopherin-dependent host transcription factors (VDR, CREB1, SMAD4, p53, EpasI, and Oct3/4) that are critical for establishing antiviral responses and regulating key host responses during virus infection. Results were confirmed by proteomic and chromatin immunoprecipitation assay analyses and in parallel microarray studies using infected primary human airway epithelial cell cultures. The data strongly support the hypothesis that viral antagonists of nuclear import actively manipulate host responses in specific hierarchical patterns, contributing to the viral pathogenic potential in vivo. Importantly, these studies and modeling approaches not only provide templates for evaluating virus antagonism of nuclear import processes but also can reveal candidate cellular genes and pathways that may significantly influence disease outcomes following severe acute respiratory syndrome coronavirus infection in vivo. PMID:23365422

  17. Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review

    PubMed Central

    McIntyre, Lauralyn A.; Moher, David; Fergusson, Dean A.; Sullivan, Katrina J.; Mei, Shirley H. J.; Lalu, Manoj; Marshall, John; Mcleod, Malcolm; Griffin, Gilly; Grimshaw, Jeremy; Turgeon, Alexis; Avey, Marc T.; Rudnicki, Michael A.; Jazi, Mazen; Fishman, Jason; Stewart, Duncan J.

    2016-01-01

    The Acute Respiratory Distress Syndrome (ARDS) is a devastating clinical condition that is associated with a 30–40% risk of death, and significant long term morbidity for those who survive. Mesenchymal stromal cells (MSC) have emerged as a potential novel treatment as in pre-clinical models they have been shown to modulate inflammation (a major pathophysiological hallmark of ARDS) while enhancing bacterial clearance and reducing organ injury and death. A systematic search of MEDLINE, EMBASE, BIOSIS and Web of Science was performed to identify pre-clinical studies that examined the efficacy MSCs as compared to diseased controls for the treatment of Acute Lung Injury (ALI) (the pre-clinical correlate of human ARDS) on mortality, a clinically relevant outcome. We assessed study quality and pooled results using random effect meta-analysis. A total of 54 publications met our inclusion criteria of which 17 (21 experiments) reported mortality and were included in the meta-analysis. Treatment with MSCs, as compared to controls, significantly decreased the overall odds of death in animals with ALI (Odds Ratio 0.24, 95% Confidence Interval 0.18–0.34, I2 8%). Efficacy was maintained across different types of animal models and means of ALI induction; MSC origin, source, route of administration and preparation; and the clinical relevance of the model (timing of MSC administration, administration of fluids and or antibiotics). Reporting of standard MSC characterization for experiments that used human MSCs and risks of bias was generally poor, and although not statistically significant, a funnel plot analysis for overall mortality suggested the presence of publication bias. The results from our meta-analysis support that MSCs substantially reduce the odds of death in animal models of ALI but important reporting elements were sub optimal and limit the strength of our conclusions. PMID:26821255

  18. Anti-Human Tissue Factor Antibody Ameliorated Intestinal Ischemia Reperfusion-Induced Acute Lung Injury in Human Tissue Factor Knock-In Mice

    PubMed Central

    Mura, Marco; Li, Li; Cypel, Marcelo; Soderman, Avery; Picha, Kristen; Yang, Jing; Liu, Mingyao

    2008-01-01

    Background Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS). Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. Methodology/Principal Findings Human tissue factor knock-in (hTF-KI) transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859) were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v.) attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. Conclusions This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies. PMID:18231608

  19. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status.

    PubMed

    Huang, Xianfeng; Liu, Yuanyuan; Lu, Yingxun; Ma, Chunhua

    2015-05-01

    Acute lung injury (ALI) represents a clinical syndrome that results from complex responses of the lung to a multitude of direct and indirect insults. This study aims to evaluate the possible mechanisms responsible for the anti-inflammatory effects of eugenol (EUL) on lipopolysaccharide (LPS)-induced inflammatory reaction in ALI. ALI was induced in mice by intratracheal instillation of LPS (0.5 mg/kg), and EUL (5, and 10 mg/kg) was injected intraperitoneally 1h prior to LPS administration. After 6h, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The findings suggest that the protective mechanism of EUL may be attributed partly to decreased production of proinflammatory cytokines through the regulating inflammation and redox status. The results support that use of EUL is beneficial in the treatment of ALI.

  20. Protective effect of quercetin on acute lung injury in rats with sepsis and its influence on ICAM-1 and MIP-2 expression.

    PubMed

    Meng, L; Lv, Z; Yu, Z Z; Xu, D; Yan, X

    2016-07-29

    This study aimed to explore the protective effect of quercetin on acute lung injury (ALI) in rats with sepsis and the related mechanism. Rats were administered different doses of quercetin intraperitoneally, and blood samples and lung tissue were collected at 24 h after treatment. Arterial blood gases, lung water content, protein content, and cell counts in bronchoalveolar lavage fluid (BALF) were measured. Morphological changes in lung tissue pathology were observed under a light microscope. Serum intercellular adhesion molecule (ICAM)-1 and macrophage inflammatory protein 2 (MIP-2) levels were detected and ICAM-1 and MIP-2 mRNA expression in lung tissue was determined. Compared with that in the control model group, arterial blood gases, lung water content, protein content, and cell counts in BALF improved in the high- and low-dose quercetin groups (P < 0.05), with maximal improvement observed for the high-dose quercetin (P < 0.05). Lesions on the lungs improved in the high- and low-dose quercetin groups than those in the control model group, and the high-dose quercetin group showed better improvement than the low-dose group (P < 0.05). Compared with that in the sham-operated group, both serum and lung tissue ICAM-1 and MIP-2 expression increased significantly in the model group (P < 0.05). The quercetin groups presented lower ICAM-1 and MIP-2 expression than the control model group, with the lowest expression observed in the high-dose group (P < 0.05). Quercetin may protect against ALI in rats with sepsis by inhibiting ICAM-1 and MIP-2 expression.

<