Science.gov

Sample records for acid-induced writhing response

  1. Anti-Inflammatory and Analgesic Effects of Pyeongwisan on LPS-Stimulated Murine Macrophages and Mouse Models of Acetic Acid-Induced Writhing Response and Xylene-Induced Ear Edema

    PubMed Central

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-01

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance. PMID:25569097

  2. Anti-inflammatory and analgesic effects of pyeongwisan on LPS-stimulated murine macrophages and mouse models of acetic acid-induced writhing response and xylene-induced ear edema.

    PubMed

    Oh, You-Chang; Jeong, Yun Hee; Cho, Won-Kyung; Ha, Jeong-Ho; Gu, Min Jung; Ma, Jin Yeul

    2015-01-06

    Pyeongwisan (PW) is an herbal medication used in traditional East Asian medicine to treat anorexia, abdominal distension, borborygmus and diarrhea caused by gastric catarrh, atony and dilatation. However, its effects on inflammation-related diseases are unknown. In this study, we investigated the biological effects of PW on lipopolysaccharide (LPS)-mediated inflammation in macrophages and on local inflammation in vivo. We investigated the biological effects of PW on the production of inflammatory mediators, pro-inflammatory cytokines and related products as well as the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated macrophages. Additionally, we evaluated the analgesic effect on the acetic acid-induced writhing response and the inhibitory activity on xylene-induced ear edema in mice. PW showed anti-inflammatory effects by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and interleukin-1β (IL-1β). In addition, PW strongly suppressed inducible nitric oxide synthase (iNOS), a NO synthesis enzyme, induced heme oxygenase-1 (HO-1) expression and inhibited NF-κB activation and MAPK phosphorylation. Also, PW suppressed TNF-α, IL-6 and IL-1β cytokine production in LPS-stimulated peritoneal macrophage cells. Furthermore, PW showed an analgesic effect on the writhing response and an inhibitory effect on mice ear edema. We demonstrated the anti-inflammatory effects and inhibitory mechanism in macrophages as well as inhibitory activity of PW in vivo for the first time. Our results suggest the potential value of PW as an inflammatory therapeutic agent developed from a natural substance.

  3. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice

    PubMed Central

    Gupta, Ashok Kumar; Parasar, Devraj; Sagar, Amin; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Renu; Ashish; Khatri, Neeraj

    2015-01-01

    Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model. PMID:26426535

  4. Assessment of the antinociceptive effects of pregabalin alone or in combination with morphine during acetic acid-induced writhing in mice.

    PubMed

    Shamsi Meymandi, Manzumeh; Keyhanfar, Fariborz

    2013-09-01

    Visceral pain currently represents one of the most important pain treatment challenges in clinical practice, and investigators across the world are continuously designing and conducting numerous studies in search of new analgesics and new combination therapies. The current study assessed the analgesic effects of saline, pregabalin (2, 5, 17, 50, 100, and 200 mg/kg, i.p.) and morphine (0.25, 0.5, 1, 3 and 5 mg/kg) alone or in combination on acetic-acid induced abdominal contractions in mice. The number of writhes and the inhibitory effects (as percentages, %E) were calculated as antinociception indexes. These indexes indicated that both pregabalin (Prg) and morphine (Mrp) produced dose-dependent antinociception. Pregabalin at 5 mg/kg (%E=32.5±4.0) or 2 mg/kg (%E=20.8±4.5) and morphine at 0.25 mg/kg (%E=20.2±7.8) and 0.5 mg/kg (%E=43.6±4.5) exhibited antinociceptive effects, and the combination of pregabalin and morphine produced significantly greater antinociceptive effects (%E=62.4±5.8 for Prg5+Mrp0.25; %E=71.7±4.8 for Prg5+Mrp0.5; and %E=54.1±4.0 for Prg2+Mrp0.25), although this enhancement was not observed when morphine was combined with 17 mg/kg pregabalin. Pre-treatment with 2 mg/kg (i.p.) naloxone did not affect increased analgesia when combined with these drugs. A dose-response curve was established for pregabalin at a fixed morphine dose and revealed that, at low doses, pregabalin dose-dependently enhanced the antinociceptive effects, while the opposite was true at high doses (17 and 25 mg/kg). In conclusion, pregabalin can produce levels of antinociception that are similar to those of morphine in acetic acid-induced viscero-somatic pain. The enhancement of antinociception produced by the co-administration of morphine and pregabalin is termed a supra-additive interaction and occurred at low doses but not at high doses. These findings militate for increased attention and caution in clinical settings.

  5. Ge-Gen Decoction attenuates oxytocin-induced uterine contraction and writhing response: potential application in primary dysmenorrhea therapy.

    PubMed

    Yang, Lu; Chai, Cheng-Zhi; Yue, Xin-Yi; Yan, Yan; Kou, Jun-Ping; Cao, Zheng-Yu; Yu, Bo-Yang

    2016-02-01

    The uterine tetanic contraction and uterine artery blood flow reduction are possible reasons for primary dysmenorrhea (PD). In the present study, we aimed to evaluate the uterine relaxant effect and the influence on uterine artery blood velocity of Ge-Gen Decoction (GGD), a well-known Chinese herbal formula. In female ICR mice, uterine contraction was induced by oxytocin exposure following estradiol benzoate pretreatment, and the uterine artery blood velocity was detected by Doppler ultrasound. Histopathological examination of the uterine tissue samples were performed by H&E staining. Ex vivo studies demonstrated that oxytocin, posterior pituitary, or acetylcholine induced contractions in isolated mouse uterus. GGD inhibited both spontaneous and stimulated contractions. In vivo study demonstrated that GGD significantly reduced oxytocin-induced writhing responses with a maximal inhibition of 87%. Further study demonstrated that GGD normalized oxytocin-induced abnormalities of prostaglandins F2 alpha (PGF2α) and Ca(2+) in mice. In addition, injection of oxytocin induced a decrease in uterine artery blood flow velocity. Pretreatment with GGD reversed the oxytocin response on blood flow velocity. Histopathological examination showed pretreatment with GGD alleviated inflammation and edema in the uterus when compared with the model group. Both ex vivo and in vivo results indicated that GGD possessed a significant spasmolytic effect on uterine tetanic contraction as well as improvement on uterine artery blood velocity which may involve PGF2α and Ca(2+) signaling, suggesting that GGD may have a clinic potential in PD therapy.

  6. Polyunsaturated Branched-Chain Fatty Acid Geranylgeranoic Acid Induces Unfolded Protein Response in Human Hepatoma Cells

    PubMed Central

    Iwao, Chieko; Shidoji, Yoshihiro

    2015-01-01

    The acyclic diterpenoid acid geranylgeranoic acid (GGA) has been reported to induce autophagic cell death in several human hepatoma-derived cell lines; however, the molecular mechanism for this remains unknown. In the present study, several diterpenoids were examined for ability to induce XBP1 splicing and/or lipotoxicity for human hepatoma cell lines. Here we show that three groups of diterpenoids emerged: 1) GGA, 2,3-dihydro GGA and 9-cis retinoic acid induce cell death and XBP1 splicing; 2) all-trans retinoic acid induces XBP1 splicing but little cell death; and 3) phytanic acid, phytenic acid and geranylgeraniol induce neither cell death nor XBP1 splicing. GGA-induced ER stress/ unfolded protein response (UPR) and its lipotoxicity were both blocked by co-treatment with oleic acid. The blocking activity of oleic acid for GGA-induced XBP1 splicing was not attenuated by methylation of oleic acid. These findings strongly suggest that GGA at micromolar concentrations induces the so-called lipid-induced ER stress response/UPR, which is oleate-suppressive, and shows its lipotoxicity in human hepatoma cells. PMID:26186544

  7. Viscous Nonlinear Dynamics of Twist and Writhe

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.; Powers, Thomas R.; Wiggins, Chris H.

    1998-06-01

    Exploiting the ``natural'' frame of space curves, we formulate an intrinsic dynamics of a twisted elastic filament in a viscous fluid. Coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density capture the dynamic interplay of twist and writhe. These equations are used to illustrate a remarkable nonlinear phenomenon: geometric untwisting of open filaments, whereby twisting strains relax through a transient writhing instability without axial rotation. Experimentally observed writhing motions of fibers of the bacterium B. subtilis [N. H. Mendelson et al., J. Bacteriol. 177, 7060 (1995)] may be examples of this untwisting process.

  8. Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.

    PubMed

    Yi, Hong-Wei; Ma, Yu-Xiang; Wang, Xiao-Ning; Wang, Cui-Fen; Lu, Jian; Cao, Wei; Wu, Xu-Dong

    2015-04-01

    Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.

  9. The Writhe of Helical Structures in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Toeroek, T.; Berger, M. A.; Kliem, B.

    2010-01-01

    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  10. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-06-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative solar instrumentation that allowed him to make narrow-band images. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Using the concept of magnetic helicity, physicists and mathematicians describe the topology of magnetic fields, including twisting and writhing. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on a key property of helicity: conservation. I will describe the critical role that this property plays, when applied to twist and writhe, in a fundamental aspect of global solar magnetism: the hemispheric and solar cycle dependences of active region electric currents with respect to magnetic fields. With the advent of unbroken sequences of high-resolution magnetic images, such as those presently available from the Helioseismic and Magnetic Imager on Solar Dynamics Observatory, the flux of magnetic helicity through the photosphere can be observed quantitatively. As magnetic flux tubes buoy up through the convection zone, buffeted and shredded by turbulence, they break up into fragments by repeated random bifurcation. We track these rising flux fragments in the photosphere, and calculate the flux of energy and magnetic helicity there. Using a quantitative model of coronal currents, we also track connections between these fragments to calculate the energy and magnetic helicity stored at topological interfaces that are in some ways analogous to the storage of stress at faults in the Earth's crust. Comparison of these values to solar flares and interplanetary coronal mass ejections implies that this is the primary storage mechanism for energy and magnetic helicity released in those phenomena, and suggests a useful tool for quantitative prediction of geomagnetic storms.

  11. The extended polar writhe: a tool for open curves mechanics

    NASA Astrophysics Data System (ADS)

    Prior, Christopher B.; Neukirch, Sébastien

    2016-05-01

    A measure of the writhing of a curve is introduced and is used to extend the Călugăreanu decomposition for closed curves, as well as the polar decomposition for curves bound between planes. The new writhe measure is also shown to be able to assess changes in linking due to belt-trick and knotting type deformations, and further its utility is illustrated on examples taken from elastic rod parameter-continuation studies. Finally C++ and mathematica codes are made available and shown to be faster than existing algorithms for the numerical computation of the writhe.

  12. Transcriptomic response of Saccharomyces cerevisiae for its adaptation to sulphuric acid-induced stress.

    PubMed

    de Lucena, Rodrigo Mendonça; Elsztein, Carolina; de Barros Pita, Will; de Souza, Rafael Barros; de Sá Leitão Paiva Júnior, Sérgio; de Morais Junior, Marcos Antonio

    2015-11-01

    In bioethanol production plants, yeast cells are generally recycled between fermentation batches by using a treatment with sulphuric acid at a pH ranging from 2.0 to 2.5. We have previously shown that Saccharomyces cerevisiae cells exposed to sulphuric acid treatment induce the general stress response pathway, fail to activate the protein kinase A signalling cascade and requires the mechanisms of cell wall integrity and high osmolarity glycerol pathways in order to survive in this stressful condition. In the present work, we used transcriptome-wide analysis as well as physiological assays to identify the transient metabolic responses of S. cerevisiae under sulphuric acid treatment. The results presented herein indicate that survival depends on a metabolic reprogramming of the yeast cells in order to assure the yeast cell viability by preventing cell growth under this harmful condition. It involves the differential expression of a subset of genes related to cell wall composition and integrity, oxidation-reduction processes, carbohydrate metabolism, ATP synthesis and iron uptake. These results open prospects for application of this knowledge in the improvement of industrial processes based on metabolic engineering to select yeasts resistant to acid treatment.

  13. Apigenin reduce lipoteichoic acid-induced inflammatory response in rat cardiomyoblast cells.

    PubMed

    Gutiérrez-Venegas, Gloria; González-Rosas, Zeltzin

    2017-02-01

    Infective endocarditis is caused by Streptococcus sanguinis present in dental plaque, which can induce inflammatory responses in the endocardium. The present study depicts research on the properties of apigenin in embryonic mouse heart cells (H9c2) treated with lipoteichoic acid (LTA) obtained from S. sanguinis. Interleukin-1β and cyclooxygenase (COX)-2 expression were detected by reverse transcriptase polymerase chain reaction. In addition, western blot assays and immuno-fluorescence staining were used to assess translocation of nuclear factor kappa beta (NF-κB), degradation of IκB, as well as activity of the mitogen activated protein kinases: extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). Effect of apigenin on cell viability was equally assessed in other experimental series. Our results showed that apigenin blocked activation of ERK, JNK, and p38 in cardiomyocytes treated with LTA in a dose-dependent fashion. Moreover, apigenin showed no cytotoxic effects; it blocked NF-κB translocation and IκB degradation. Our findings suggested that apigenin possessed potential value in the treatment of infectious endocarditis.

  14. EGCG Attenuates Uric Acid-Induced Inflammatory and Oxidative Stress Responses by Medicating the NOTCH Pathway

    PubMed Central

    Xie, Hua; Sun, Jianqin; Chen, Yanqiu; Zong, Min; Li, Shijie; Wang, Yan

    2015-01-01

    Background. The aim of this study is to investigate whether (-)-epigallocatechin-3-gallate (EGCG) can prevent the UA-induced inflammatory effect of human umbilical vein endothelial cells (HUVEC) and the involved mechanisms in vitro. Methods. HUVEC were subjected to uric acid (UA) with or without EGCG treatment. RT-PCR and western blots were performed to determine the level of inflammation marker. The antioxidant activity was evaluated by measuring scavenged reactive oxygen species (ROS). Functional studies of the role of Notch-1 in HUVEC lines were performed using RNA interference analyses. Results. UA significantly increased the expressions of IL-6, ICAM-1, TNF-α, and MCP-1 and the production of ROS in HUVEC. Meanwhile, the expression of Notch-1 and its downstream effects significantly increased. Using siRNA, inhibition of Notch-1 signaling significantly impeded the expressions of inflammatory cytokines under UA treatment. Interestingly, EGCG suppressed the expressions of inflammatory cytokines and the generation of ROS. Western blot analysis of Notch-1 showed that EGCG significantly decreased the expressions of inflammatory cytokines through Notch-1 signaling pathways. Conclusions. In summary, our findings indicated that Notch-1 plays an important role in the UA-induced inflammatory response, and the downregulation of Notch-1 by EGCG could be an effective approach to decrease inflammation and oxidative stress induced by UA. PMID:26539255

  15. Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines

    PubMed Central

    Zhang, Xing-Mei; Zhu, Jie

    2011-01-01

    Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro-toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurodegenerative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-α, interleukin (IL)-1, IL-12 and IL-18. PMID:22131947

  16. Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain

    PubMed Central

    Guerreiro, Joana F.; Sampaio-Marques, Belém; Soares, Renata; Coelho, Ana V.; Leão, Cecília; Ludovico, Paula; Sá-Correia, Isabel

    2016-01-01

    Very high concentrations of acetic acid at low pH induce programmed cell death (PCD) in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic acid have been previously examined, the corresponding molecular players remain largely unknown in Z. bailii. Also, the reason why acetic acid concentrations known to be necrotic for S. cerevisiae induce PCD with an apoptotic phenotype in Z. bailii remains to be elucidated. In this study, a 2-DE-based expression mitochondrial proteomic analysis was explored to obtain new insights into the mechanisms involved in PCD in the Z. bailii derived hybrid strain ISA1307. This allowed the quantitative assessment of expression of protein species derived from each of the parental strains, with special emphasis on the processes taking place in the mitochondria known to play a key role in acetic acid - induced PCD. A marked decrease in the content of proteins involved in mitochondrial metabolism, in particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a concomitant increase in the abundance of proteins involved in fermentation (Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified proteins also suggest the involvement of the oxidative stress response, protein translation, amino acid and nucleotide metabolism, among other processes, in the PCD response. Overall, the results strengthen the emerging concept of the importance of metabolic regulation of yeast PCD. PMID:28357336

  17. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    PubMed

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications.

  18. The Writhe of Helical Structures in the Solar Corona

    DTIC Science & Technology

    2010-04-23

    2010 The writhe of helical structures in the solar corona T. Török1,2, M. A. Berger2,3, and B. Kliem2,4,5 1 LESIA, Observatoire de Paris, CNRS, UPMC...2009; accepted ... ABSTRACT Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of...twist and writhe helicity . Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates

  19. Conservation of writhe helicity under anti-parallel reconnection

    NASA Astrophysics Data System (ADS)

    Laing, Christian E.; Ricca, Renzo L.; Sumners, De Witt L.

    2015-03-01

    Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts.

  20. The contribution of a Ca(2+)-activated Cl(-) conductance to amino-acid-induced inward current responses of ciliated olfactory neurons of the rainbow trout.

    PubMed

    Sato, K; Suzuki, N

    2000-01-01

    To determine whether amino-acid-induced inward currents of ciliated olfactory receptor neurons (ORNs) in rainbow trout (Oncorhynchus mykiss) include a Ca(2+)-activated Cl(-) conductance, we first studied changes in reversal potential and the current/voltage relationships of the responses of ORNs to an amino acid mixture (l-alanine, l-arginine, l-glutamate and l-norvaline; all 10 mmol l(-)(1)) with different concentrations of Na(+) and Cl(-) in the perfusion and recording pipette solutions. We also examined the effects of six different Cl(-) channel blockers on the responses of ORNs using a conventional whole-cell voltage-clamp technique. The amino acid mixture and one blocker were applied focally to the cilia of ORNs using a double-barrelled micropipette and a pressure ejection system. The expected shifts in reversal potential, indicating the contribution of the Ca(2+)-activated Cl(-) conductance, occurred in both positive and negative directions depending on the external and internal Na(+) and Cl(-) concentrations. Niflumic acid, flufenamic acid, NPPB [5-nitro-2-(3-phenylpropylamino)-benzonate] and DCDPC (3', 5-dichlorodiphenylamine-2-carboxylate), at 0.5 mmol l(-)(1), reversibly blocked both the amino-acid-induced inward currents and the background activity in most ORNs. The effectiveness of these blocking agents varied from 77 to 91 % for ORNs perfused externally with standard Ringer's solution. SITS (4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonate), at 5.0 mmol l(-)(1), irreversibly inhibited the physiological response (100 % inhibition), whereas DIDS (4,4'-diisothiocyanatostilbene-2, 2'-disulphonate), at 5.0 mmol l(-)(1), had the smallest effect (45 %) of the inhibitors tested. The dose of niflumic acid inducing 50 % inhibition (IC(50)), determined specifically for the current component of the Ca(2+)-activated Cl(-) channels, was 70 micromol l(-)(1). Our results suggest that these blockers are not specific for Ca(2+)-activated Cl(-) channels and that

  1. The epsilon subunit of DNA polymerase III Is involved in the nalidixic acid-induced SOS response in Escherichia coli.

    PubMed

    Pohlhaus, Jennifer Reineke; Long, David T; O'Reilly, Erin; Kreuzer, Kenneth N

    2008-08-01

    Quinolone antibacterial drugs such as nalidixic acid target DNA gyrase in Escherichia coli. These inhibitors bind to and stabilize a normally transient covalent protein-DNA intermediate in the gyrase reaction cycle, referred to as the cleavage complex. Stabilization of the cleavage complex is necessary but not sufficient for cell killing--cytotoxicity apparently results from the conversion of cleavage complexes into overt DNA breaks by an as-yet-unknown mechanism(s). Quinolone treatment induces the bacterial SOS response in a RecBC-dependent manner, arguing that cleavage complexes are somehow converted into double-stranded breaks. However, the only proteins known to be required for SOS induction by nalidixic acid are RecA and RecBC. In hopes of identifying additional proteins involved in the cytotoxic response to nalidixic acid, we screened for E. coli mutants specifically deficient in SOS induction upon nalidixic acid treatment by using a dinD::lacZ reporter construct. From a collection of SOS partially constitutive mutants with disruptions of 47 different genes, we found that dnaQ insertion mutants are specifically deficient in the SOS response to nalidixic acid. dnaQ encodes DNA polymerase III epsilon subunit, the proofreading subunit of the replicative polymerase. The deficient response to nalidixic acid was rescued by the presence of the wild-type dnaQ gene, confirming involvement of the epsilon subunit. To further characterize the SOS deficiency of dnaQ mutants, we analyzed the expression of several additional SOS genes in response to nalidixic acid using real-time PCR. A subset of SOS genes lost their response to nalidixic acid in the dnaQ mutant strain, while two tested SOS genes (recA and recN) continued to exhibit induction. These results argue that the replication complex plays a role in modulating the SOS response to nalidixic acid and that the response is more complex than a simple on/off switch.

  2. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard.

    PubMed

    Masood, Asim; Khan, M Iqbal R; Fatma, Mehar; Asgher, Mohd; Per, Tasir S; Khan, Nafees A

    2016-07-01

    The role of gibberellic acid (GA) or sulfur (S) in stimulation of photosynthesis is known. However, information on the involvement of ethylene in GA-induced photosynthetic responses and cadmium (Cd) tolerance is lacking. This work shows that ethylene is involved in S-assimilation, photosynthetic responses and alleviation of Cd stress by GA in mustard (Brassica juncea L.). Plants grown with 200 mg Cd kg(-1) soil were less responsive to ethylene despite high ethylene evolution and showed photosynthetic inhibition. Plants receiving 10 μM GA spraying plus 100 mg S kg(-1) soil supplementation exhibited increased S-assimilation and photosynthetic responses under Cd stress. Application of GA plus S decreased oxidative stress of plants grown with Cd and limited stress ethylene formation to the range suitable for promoting sulfur use efficiency (SUE), glutathione (GSH) production and photosynthesis. The role of ethylene in GA-induced S-assimilation and reversal of photosynthetic inhibition by Cd was substantiated by inhibiting ethylene biosynthesis with the use of aminoethoxyvinylglycine (AVG). The suppression of S-assimilation and photosynthetic responses by inhibiting ethylene in GA plus S treated plants under Cd stress indicated the involvement of ethylene in GA-induced S-assimilation and Cd stress alleviation. The outcome of the study is important to unravel the interaction between GA and ethylene and their role in Cd tolerance in plants.

  3. MiRNA-194 Regulates Palmitic Acid-Induced Toll-Like Receptor 4 Inflammatory Responses in THP-1 Cells.

    PubMed

    Tian, Huiqun; Liu, Chaoqi; Zou, Xiaohua; Wu, Wei; Zhang, Changcheng; Yuan, Ding

    2015-05-13

    There is strong evidence to suggest that inflammatory responses link obesity and diseases, and the understanding of obesity-induced inflammatory mechanisms is central to the pathogenesis of diseases such asnonalcoholic fatty liver disease(NAFLD) and atherosclerosis that are modified by obesity. Based on this, anti-inflammatory treatments become a potential therapies for obesity-related diseases like NAFLD.A critical role of toll-like receptor (TLR) and its downstream molecules such as tumor necrosis factor receptor-associated factor 6(TRAF6) has been documented in inflammatory response induced by fatty acid. TLR pathway regulation provides a new insight to controlling the inflammatory response induced by fatty acid. Taken together, our study was aimed to understand the mechanism of fatty acid-mediated inflammation and look for an effective target which can prevent the inflammatory response induced by obesity. In this study, we used the saturated fatty acid palmitic acid (PA) to activate TLR4 signal pathway in human monocyte cells THP-1 that established an intracellular inflammatory model. Followed with activated TLR4, downstream molecular TRAF6 was upregulated and ultimately induced proinflammatory cytokine production. Based on this model, we also found that PA downregulated miR-194 expression with TLR4 activation. Moreover, our results showed that key signal molecular TRAF6 is a target of miR-194, overexpression of miR-194 directly decreased TRAF6 expression and attenuated the release of proinflammatory cytokine TNF-α in PA-activated monocyte THP-1. We conclude that miR-194 negatively regulates the TLR4 signal pathway which is activated by PA through directly negative TRAF6 expression.

  4. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini.

    PubMed

    Mateu, A; Ramudo, L; Manso, M A; De Dios, I

    2015-12-01

    Arachidonic acid (AA) is generally associated with inflammation in different settings. We assess the molecular mechanisms involved in the inflammatory response exerted by AA on pancreatic acini as an approach to acute pancreatitis (AP). Celecoxib (COX-2 inhibitor), TAK-242 (TLR4 inhibitor) and 15d-PGJ2 (PPARγ agonist) were used to ascertain the signaling pathways. In addition, we examine the effects of TAK-242 and 15d-PGJ2 on AP induced in rats by bile-pancreatic duct obstruction (BPDO). To carry out in vitro studies, acini were isolated from pancreas of control rats. Generation of PGE2 and TXB2, activation of pro-inflammatory pathways (MAPKs, NF-κB, and JAK/STAT3) and overexpression of CCL2 and P-selectin was found in AA-treated acini. In addition, AA up-regulated TLR4 and down-regulated PPARγ expression. Celecoxib prevented the up-regulation of CCL2 and P-selectin but did not show any effect on the AA-mediated changes in TLR4 and PPARγ expression. TAK-242, reduced the generation of AA metabolites and repressed both the cascade of pro-inflammatory events which led to CCL2 and P-selectin overexpression as well as the AA-induced PPARγ down-regulation. Thus, TLR4 acts as upstream activating pro-inflammatory and inhibiting anti-inflammatory pathways. 15d-PGJ2 down-regulated TLR4 expression and hence prevented the synthesis of AA metabolites and the inflammatory response mediated by them. Reciprocal negative cross-talk between TLR4 and PPARγ pathways is evidenced. In vivo experiments showed that TAK-242 and 15d-PGJ2 treatments reduced the inflammatory response in BPDO-induced AP. We conclude that through TLR4-dependent mechanisms, AA up-regulated CCL2 and P-selectin in pancreatic acini, partly mediated by the generation of PGE2 and TXB2, which activated pro-inflammatory pathways, but also directly by down-regulating PPARγ expression with anti-inflammatory activity. In vitro and in vivo studies support the role of TLR4 in AP and the use of TLR4 inhibitors and

  5. Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells.

    PubMed

    Kellum, John A; Song, Mingchen; Li, Jinyou

    2004-04-01

    Metabolic acidosis frequently complicates sepsis and septic shock and may be deleterious to cellular function. Different types of metabolic acidosis (e.g., hyperchloremic and lactic acidosis) have been associated with different effects on the immune response, but direct comparative studies are lacking. Murine macrophage-like RAW 264.7 cells were cultured in complete medium with lactic acid or HCl to adjust the pH between 6.5 and 7.4 and then stimulated with LPS (Escherichia coli 0111:B4; 10 ng/ml). Nitric oxide (NO), IL-6, and IL-10 levels were measured in the supernatants. RNA was extracted from the cell pellets, and RT-PCR was performed to amplify corresponding mediators. Gel shift assay was also performed to assess NF-kappa B DNA binding. Inc easing concentrations of acid caused increasing acidification of the media. Trypan blue exclusion and lactate dehydrogenase release demonstrated that acidification did not reduce cell viability. HCl significantly increased LPS-induced NO release and NF-kappa B DNA binding at pH 7.0 but not at pH 6.5. IL-6 and IL-10 expression (RNA and protein) were reduced with HCl-induced acidification, but IL-10 was reduced much more than IL-6 at low pH. By contrast, lactic acid significantly decreased LPS-induced NO, IL-6, and IL-10 expression in a dose-dependent manner. Lactic acid also inhibited LPS-induced NF-kappa B DNA binding. Two common forms of metabolic acidosis (hyperchloremic and lactic acidosis) are associated with dramatically different patterns of immune response in LPS-stimulated RAW 264.7 cells. HCl is essentially proinflammatory as assessed by NO release, IL-6-to-IL-10 ratios, and NF-kappa B DNA binding. By contrast, lactic acidosis is anti-inflammatory.

  6. Molecular characterization of the acid-inducible asr gene of Escherichia coli and its role in acid stress response.

    PubMed

    Seputiene, Vaida; Motiejūnas, Domantas; Suziedelis, Kestutis; Tomenius, Henrik; Normark, Staffan; Melefors, Ojar; Suziedeliene, Edita

    2003-04-01

    Enterobacteria have developed numerous constitutive and inducible strategies to sense and adapt to an external acidity. These molecular responses require dozens of specific acid shock proteins (ASPs), as shown by genomic and proteomic analysis. Most of the ASPs remain poorly characterized, and their role in the acid response and survival is unknown. We recently identified an Escherichia coli gene, asr (acid shock RNA), encoding a protein of unknown function, which is strongly induced by high environmental acidity (pH < 5.0). We show here that Asr is required for growth at moderate acidity (pH 4.5) as well as for the induction of acid tolerance at moderate acidity, as shown by its ability to survive subsequent transfer to extreme acidity (pH 2.0). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of acid-shocked E. coli cells harboring a plasmid-borne asr gene demonstrated that the Asr protein is synthesized as a precursor with an apparent molecular mass of 18 kDa. Mutational studies of the asr gene also demonstrated the Asr preprotein contains 102 amino acids. This protein is subjected to an N-terminal cleavage of the signal peptide and a second processing event, yielding 15- and 8-kDa products, respectively. Only the 8-kDa polypeptide was detected in acid-shocked cells containing only the chromosomal copy of the asr gene. N-terminal sequencing and site-directed mutagenesis revealed the two processing sites in the Asr protein precursor. Deletion of amino acids encompassing the processing site required for release of the 8-kDa protein resulted in an acid-sensitive phenotype similar to that observed for the asr null mutant, suggesting that the 8-kDa product plays an important role in the adaptation to acid shock. Analysis of Asr:PhoA fusions demonstrated a periplasmic location for the Asr protein after removal of the signal peptide. Homologues of the asr gene from other Enterobacteriaceae were cloned and shown to be induced in E. coli

  7. C/EBPβ: a major PML–RARA-responsive gene in retinoic acid-induced differentiation of APL cells

    PubMed Central

    Duprez, Estelle; Wagner, Katharina; Koch, Heike; Tenen, Daniel G.

    2003-01-01

    In acute promyelocytic leukemia (APL), the translocation t(15;17) induces a block at the promyelocytic stage of differentiation in an all-trans-retinoic acid (ATRA)-responsive manner. Here we report that upon treatment with ATRA, t(15;17) cells (NB4) reveal a very rapid increase in protein level and binding activity of C/EBPβ, a C/EBP family member, which was not observed in an ATRA-resistant NB4 cell line. We further provide evidence that ATRA mediates a direct increase of C/EBPβ, only in PML–RARA (promyelocytic leukemia–retinoic acid receptor α)-expressing cells. In addition, transactivation experiments indicate that the PML–RARA fusion protein, but not PML–RARA mutants defective in transactivation, strongly transactivates the C/EBPβ promoter. These results suggest that PML–RARA mediates ATRA-induced C/EBPβ expression. Finally, we demonstrate the importance of C/EBPβ in granulocytic differentiation. We show that not only does C/EBPβ induce granulocytic differentiation of non-APL myeloid cell lines independent of addition of ATRA or other cytokines, but also that C/EBPβ induction is required during ATRA-induced differentiation of APL cells. Taken together, C/EBPβ is an ATRA-dependent PML–RARA target gene involved in ATRA-induced differentiation of APL cells. PMID:14592978

  8. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I

    PubMed Central

    Park, Seung Bum; Seronello, Scott; Mayer, Wasima; Ojcius, David M.

    2016-01-01

    Hepatitis C virus (HCV) actively evades host interferon (IFN) responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I)-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP) from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP) and poly(IC). The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain) were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity. PMID:27404108

  9. Torsional Buckling and Writhing Dynamics of Elastic Cables and DNA

    SciTech Connect

    Goyal, S; Perkins, N C; Lee, C L

    2003-02-14

    Marine cables under low tension and torsion on the sea floor can undergo a dynamic buckling process during which torsional strain energy is converted to bending strain energy. The resulting three-dimensional cable geometries can be highly contorted and include loops and tangles. Similar geometries are known to exist for supercoiled DNA and these also arise from the conversion of torsional strain energy to bending strain energy or, kinematically, a conversion of twist to writhe. A dynamic form of Kirchhoff rod theory is presented herein that captures these nonlinear dynamic processes. The resulting theory is discretized using the generalized-method for finite differencing in both space and time. The important kinematics of cross-section rotation are described using an incremental rotation ''vector'' as opposed to traditional Euler angles or Euler parameters. Numerical solutions are presented for an example system of a cable subjected to increasing twist at one end. The solutions show the dynamic evolution of the cable from an initially straight element, through a buckled element in the approximate form of a helix, and through the dynamic collapse of this helix through a looped form.

  10. Hypoxia and retinoic acid-inducible NDRG1 expression is responsible for doxorubicin and retinoic acid resistance in hepatocellular carcinoma cells.

    PubMed

    Jung, Eun Uk; Yoon, Jung-Hwan; Lee, Youn-Jae; Lee, Jeong-Hoon; Kim, Bo Hyun; Yu, Su Jong; Myung, Sun Jung; Kim, Yoon Jun; Lee, Hyo-Suk

    2010-12-01

    Hypoxia may activate survival signals in cancer cells. Moreover, hypoxic cells are less sensitive than normoxic cells to doxorubicin cytotoxicity, a potent activator of the p53 tumor suppressor gene. N-myc downstream-regulated gene-1 (NDRG1) is a hypoxia- and retinoic acid-inducible protein, and has been previously implicated in carcinogenesis. As this protein is also a downstream target of p53 and hepatocellular carcinoma (HCC) cells frequently evidence resistance to retinoic acid (RA) cytotoxicity, we attempted to determine whether the suppression of NDRG1 expression may sensitize HCC cells to doxorubicin and/or RA cytotoxicity. HCC cells expressed NDRG1 protein, and the expression of this protein was hypoxia- and RA-inducible. Doxorubicin treatment induced HCC cell cytotoxicity via the activation of mitochondrial apoptotic signals, including caspase-9 activation. Hypoxic HCC cells are less sensitive to doxorubicin-induced apoptosis. The suppression of NDRG1 expression either by siRNA or flavopiridol sensitized hypoxic HCC cells to doxorubicin cytotoxicity, and this was attributed to more profound augmentation of JNK and caspase-9 activation. The suppression of NDRG1 expression also sensitized RA-resistant HCC cells to RA-induced apoptosis, and this sensitization was more apparent in hypoxic HCC cells than in normoxic cells. Glutaredoxin2 expression was down-regulated in NDRG1-suppressed HCC cells. These results show that hypoxia- and RA-inducible NDRG1 expression is responsible for doxorubicin and RA resistance in HCC cells. Thus, the selective interruption of NDRG1 signaling may prove to be therapeutically useful in HCCs, particularly in the advanced infiltrative type of tumors exposed to hypoxic environments.

  11. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.

    PubMed

    Angulo, Carlos; de la O Leyva, María; Finiti, Ivan; López-Cruz, Jaime; Fernández-Crespo, Emma; García-Agustín, Pilar; González-Bosch, Carmen

    2015-03-01

    Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is required for both tomato defence and the enhanced protection conferred by natural inducer hexanoic acid (Hx) against B. cinerea. The divaricata plants accumulated less pathogen-induced callose and presented lower levels of jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) upon infection if compared to the wild type. Glutathion-S-transferase (GST) gene expression decreased and ROS production significantly increased in Botrytis-infected divaricata plants. These results indicate that absence of α-DOX2 influences the hormonal changes, oxidative burst and callose deposition that occur upon Botrytis infection in tomato. The study of SA-deficient nahG tomato plants showed that the plants with low SA levels displayed increased resistance to Botrytis, but were unable to display Hx-IR. This supports the involvement of SA in Hx-IR. NaghG plants displayed reduced callose and ROS accumulation upon infection and an increased GST expression. This reflects a positive relationship between SA and these defensive mechanisms in tomato. Finally, Hx boosted the pathogen-induced callose in nahG plants, suggesting that this priming mechanism is SA-independent. Our results support the involvement of the oxylipins pathway and SA in tomato response to Botrytis, probably through complex crosstalk of

  12. A comparison of gene expression responses in rat whole embryo culture and in vivo: time-dependent retinoic acid-induced teratogenic response.

    PubMed

    Robinson, Joshua F; Verhoef, Aart; Pennings, Jeroen L A; Pronk, Tessa E; Piersma, Aldert H

    2012-03-01

    The whole embryo culture (WEC) model serves as a potential alternative for classical in vivo developmental toxicity testing. In the WEC, cultured rat embryos are exposed during neurulation and early organogenesis and evaluated for morphological effects. Toxicogenomic-based approaches may improve the predictive ability of WEC by providing molecular-based markers associated with chemical exposure, which can be compared across multiple parameters (e.g., exposure duration, developmental time, experimental model). Additionally, comparisons between in vitro and in vivo models may identify objective relevant molecular responses linked with developmental toxicity endpoints in vivo. In this study, using a transcriptomic approach, we compared all-trans retinoic acid (RA)-exposed and nonexposed Wistar rat embryos derived using WEC (RA, 0.5 μg/ml) or in vivo (RA, 50 mg/kg, oral gavage) to identify overlapping and nonoverlapping effects of RA on RNA expression in parallel with morphological changes. Across six time points (gestational day 10 + 2-48 h), we observed strong similarities in RA response at the gene (directionality, significance) and functional (e.g., embryonic development, cell differentiation) level which associated with RA-induced adverse morphological effects, including growth reduction as well as alterations in neural tube, limb, branchial, and mandible development. We observed differences between models in the timing of RA-induced effects on genes related to embryonic development and RA metabolism. These observations on the gene expression level were associated with specific differential morphological outcomes. This study supports the use of WEC to examine compound-induced molecular responses relative to in vivo and, furthermore, assists in defining the applicability domain of the WEC in determining complementary windows of sensitivity for developmental toxicological investigations.

  13. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.

  14. Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation.

    PubMed

    Gebe, J A; Schurr, J M

    1996-04-01

    Monte Carlo simulations are employed to investigate the thermodynamics of the first transition in writhe of a circular model filament corresponding to a 468 base-pair DNA. Parameters employed in these simulations are the torsional rigidity, C = 2.0 x 10(-19) dyne cm2, and persistence length, P = 500 A. Intersubunit interactions are modeled by a screened Coulomb potential. For a straight line of subunits this accurately approximates the nonlinear Poisson-Boltzmann potential of a cylinder with the linear charge density of DNA. Curves of relative free energy vs writhe at fixed linking difference (delta l) exhibit two minima, one corresponding to slightly writhed circles and one to slightly underwrithed figure-8's, whenever delta l lies in the transition region. The free energies of the two minima are equal when delta lc = 1.35, which defines the midpoint of the transition. At this midpoint, the free energy barrier between the two minima is found to be delta Gbar = (0.20) kBT at 298 K. Curves of mean potential energy vs writhe at fixed linking difference similarly exhibit two minima for delta l values in the transition region, and the two minimum mean potential energies are equal when delta l = 1.50. At the midpoint writhe, delta lc = 1.35, the difference in mean potential energy between the minimum free energy figure-8 and circle states is (1.3) kBT, and the difference in their entropies is 1.3 kB. Thus, the entropy of the minimum free energy figure-8 state significantly exceeds that of the circle at the midpoint of the transition. The first transition in writhe is found to occur over a rather broad range of delta l values from 0.85 to 1.85. The twist energy parameter (ET), which governs the overall free energy of supercoiling, undergoes a sigmoidal decrease, while the translational diffusion coefficient undergoes a sigmoidal increase, over this same range. The static structure factor exhibits an increase, which reflects a decrease in radius of gyration associated

  15. Comparison of molecular contours for measuring writhe in atomistic supercoiled DNA.

    PubMed

    Sutthibutpong, Thana; Harris, Sarah A; Noy, Agnes

    2015-06-09

    DNA molecular center-lines designed from atomistic-resolution structures are compared for the evaluation of the writhe in supercoiled DNA using molecular dynamics simulations of two sets of minicircles with 260 and 336 base pairs. We present a new method called WrLINE that systematically filters out local (i.e., subhelical turn) irregularities using a sliding-window averaged over a single DNA turn and that provides a measure of DNA writhe that is suitable for comparing atomistic resolution data with those obtained from measurements of the global molecular shape. In contrast, the contour traced by the base-pair origins defined by the 3DNA program largely overestimates writhe due to the helical periodicity of DNA. Nonetheless, this local modulation of the molecular axis emerges as an internal mechanism for the DNA to confront superhelical stress, where the adjustment between low and high twist is coupled to a high and low local periodicity, respectively, mimicking the different base-stacking conformational space of A and B canonical DNA forms.

  16. The linking number and the writhe of uniform random walks and polygons in confined spaces

    NASA Astrophysics Data System (ADS)

    Panagiotou, E.; Millett, K. C.; Lambropoulou, S.

    2010-01-01

    Random walks and polygons are used to model polymers. In this paper we consider the extension of the writhe, self-linking number and linking number to open chains. We then study the average writhe, self-linking and linking number of random walks and polygons over the space of configurations as a function of their length. We show that the mean squared linking number, the mean squared writhe and the mean squared self-linking number of oriented uniform random walks or polygons of length n, in a convex confined space, are of the form O(n2). Moreover, for a fixed simple closed curve in a convex confined space, we prove that the mean absolute value of the linking number between this curve and a uniform random walk or polygon of n edges is of the form O(\\sqrt{n}) . Our numerical studies confirm those results. They also indicate that the mean absolute linking number between any two oriented uniform random walks or polygons, of n edges each, is of the form O(n). Equilateral random walks and polygons are used to model polymers in θ-conditions. We use numerical simulations to investigate how the self-linking and linking number of equilateral random walks scale with their length.

  17. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine.

  18. Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Signaling induced upon a reduction in oleic acid (18:1) levels simultaneously up-regulates salicylic acid (SA)-mediated responses and inhibits jasmonic acid (JA)-inducible defenses, resulting in enhanced resistance to biotrophs but increased susceptibility to necrotrophs. SA and the signaling compon...

  19. Docosahexaenoic acid-induced unfolded protein response, cell cycle arrest, and apoptosis in vascular smooth muscle cells are triggered by Ca2+-dependent induction of oxidative stress

    PubMed Central

    Crnkovic, Slaven; Riederer, Monika; Lechleitner, Margarete; Hallström, Seth; Malli, Roland; Graier, Wolfgang F.; Lindenmann, Jörg; Popper, Helmut; Olschewski, Horst; Olschewski, Andrea; Frank, Saša

    2012-01-01

    Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca2+ release and entry of extracellular Ca2+. Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca2+ uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca2+-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs. PMID:22391221

  20. A Mixture of Persistent Organic Pollutants and Perfluorooctanesulfonic Acid Induces Similar Behavioural Responses, but Different Gene Expression Profiles in Zebrafish Larvae

    PubMed Central

    Khezri, Abdolrahman; Fraser, Thomas W. K.; Nourizadeh-Lillabadi, Rasoul; Kamstra, Jorke H.; Berg, Vidar; Zimmer, Karin E.; Ropstad, Erik

    2017-01-01

    Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently. PMID:28146072

  1. Tonicity-responsive enhancer binding protein haplodeficiency attenuates seizure severity and NF-κB-mediated neuroinflammation in kainic acid-induced seizures

    PubMed Central

    Shin, H J; Kim, H; Heo, R W; Kim, H J; Choi, W S; Kwon, H M; Roh, G S

    2014-01-01

    Kainic acid (KA)-induced seizures followed by neuronal death are associated with neuroinflammation and blood–brain barrier (BBB) leakage. Tonicity-responsive enhancer binding protein (TonEBP) is known as a transcriptional factor activating osmoprotective genes, and in brain, it is expressed in neuronal nuclei. Thus dysregulation of TonEBP may be involved in the pathology of KA-induced seizures. Here we used TonEBP heterozygote (+/−) mice to study the roles of TonEBP. Electroencephalographic study showed that TonEBP (+/−) mice reduced seizure frequency and severity compared with wild type during KA-induced status epilepticus. Immunohistochemistry and western blotting analysis showed that KA-induced neuroinflammation and BBB leakage were dramatically reduced in TonEBP (+/−) mice. Similarly, TonEBP-specific siRNA reduced glutamate-induced death in HT22 hippocampal neuronal cells. TonEBP haplodeficiency prevented KA-induced nuclear translocation of NF-κB p65 and attenuated inflammation. Our findings identify TonEBP as a critical regulator of neuroinflammation and BBB leakage in KA-induced seizures, which suggests TonEBP as a good therapeutic target. PMID:24608792

  2. Sp1 Upregulates cAMP Response Element-Binding Protein Expression During Retinoic Acid-Induced Mucous Differentiation of Normal Human Bronchial Epithelial Cells

    PubMed Central

    Hong, Jeong Soo; Kim, Seung-Wook; Koo, Ja Seok

    2010-01-01

    Cyclic 3′,5′-adenosine monophosphate (cAMP) response-element (CRE) binding protein (CREB) is an important transcription factor that is differentially regulated in cells of various types. We recently reported that RA rapidly activates CREB without using retinoic acid (RA) receptors RAR and RXR in normal human tracheobronchial epithelial (NHTBE) cells. However, little is known about RA’s role in the physiologic regulation of CREB expression in the early mucous differentiation of NHTBE cells. Here, we report that RA upregulated CREB gene expression and that using 5′-serial deletion promoter analysis and mutagenesis analyses, two Sp1-binding sites located at nucleotides −217 and −150, which flank the transcription initiation site, were essential for RA induction of CREB gene transcription. Furthermore, we found that CREs located at nucleotides −119 and −98 contributed to basal promoter activity. Interestingly, RA also upregulated Sp1 in a time- and dose-dependent manner. Knockdown of endogenous Sp1 using small interfering RNA (siRNA) decreased RA-induced CREB gene expression. However, the converse was not true: knockdown of CREB using CREB siRNA did not affect RA-induced Sp1 gene expression. We conclude that RA upregulates CREB gene expression during the early stage of NHTBE cell differentiation and that RA-inducible Sp1 plays a major role in upregulating human CREB gene expression. This result implies that cooperation of these two transcription factors play a crucial role in mediating early events of normal mucous cell differentiation of bronchial epithelial cells. PMID:17937658

  3. Analgesic properties of Epilobium angustifolium, evaluated by the hot plate test and the writhing test.

    PubMed

    Tita, B; Abdel-Haq, H; Vitalone, A; Mazzanti, G; Saso, L

    2001-01-01

    The analgesic properties of Epilobium angustifolium (Ea), a plant containing flavonoids with anti-inflammatory activity, have not been sufficiently studied so far. Thus, we decided to evaluate, by the classical hot plate test and the writhing test, the analgesic effect of a dry extract of Ea obtained by evaporating a commercially available mother tincture. In the former assay, the effect of Ea (380 mg/kg) was slightly lower than that of morphine (10 mg/kg s.c.). In the writhing test, which is more sensitive for non-steroidal analgesics, the effect of Ea was already significant (P < 0.05) at 95 mg/kg while at doses > or = 190 mg/kg, its activity was similar to that of lysine acetylsalicylate (300 mg/kg). The LD50 of this dry extract of Ea was 1.4+/-0.1 g/kg. Further studies are necessary for the identification of the active principles and the elucidation of their mechanism of action.

  4. Dynamics of Bacillus subtilis helical macrofiber morphogenesis: writhing, folding, close packing, and contraction.

    PubMed Central

    Mendelson, N H

    1982-01-01

    Helical Bacillus subtilis macrofibers are highly ordered structures consisting of individual cells packed in a geometry remarkably similar to that found in helically twisted yarns (G. A. Carnaby, in J. W. S. Hearle et al., ed., The Mechanics of Flexible Fibre Assemblies, p. 99-112, 1980; N. H. Mendelson, Proc. Natl. Acad. Sci. U.S.A. 75:2478-2482, 1978). The growth and formation of macrofibers were studied with time-lapse microscopy methods. The basic growth mode consisted of fiber elongation, folding, and the helical wrapping together of the folded portion into a tight helical fiber. This sequence was reiterated at both ends of the structure, resulting in terminal loops. Macrofiber growth was accompanied by the helical turning of the structure along its long axis. Right-handed structures turned clockwise and left-handed ones turned counterclockwise when viewed along the length of a fiber looking toward a loop end. Helical turning forced the individual cellular filaments into a close-packing arrangement during growth. Tension was evident within the structures and they writhed as they elongated. Tension was relieved by folding, which occurred when writhing became so violent that the structure touched itself, forming a loop. When the multistranded structure produced by repeated folding cycles became too rigid for additional folding, the morphogenesis of a ball-like structure began. The dynamics of helical macrofiber formation was interpreted in terms of stress-strain deformations. In view of the similarities between macrofiber structures and those found in multifilament yarns and cables, the physics of helical macrofiber structure and also growth may be suitable for analysis developed in these fields concerning the mechanics of flexible fiber assemblies (C. P. Buckley; J. W. S. Hearle; and J. J. Thwaites, in J. W. S. Hearle et al., ed., The Mechanics of Flexible Fibre Assemblies, p. 1-97, 1980). Images PMID:6806245

  5. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice

    PubMed Central

    de la Puente, Beatriz; Romero-Alejo, Elizabeth; Vela, José Miguel; Merlos, Manuel; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-01-01

    Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu) and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA) served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA) in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg) – inactive to reduce AA-induced abdominal writhing – administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion – but not saccharin preference – in AA-treated mice, thus suggesting that the reduction in saccharin preference – but not in locomotion – was specifically sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be

  6. Changes in saccharin preference behavior as a primary outcome to evaluate pain and analgesia in acetic acid-induced visceral pain in mice.

    PubMed

    de la Puente, Beatriz; Romero-Alejo, Elizabeth; Vela, José Miguel; Merlos, Manuel; Zamanillo, Daniel; Portillo-Salido, Enrique

    2015-01-01

    Reflex-based procedures are important measures in preclinical pain studies that evaluate stimulated behaviors. These procedures, however, are insufficient to capture the complexity of the pain experience, which is often associated with the depression of several innate behaviors. While recent studies have made efforts to evidence the suppression of some positively motivated behaviors in certain pain models, they are still far from being routinely used as readouts for analgesic screening. Here, we characterized and compared the effect of the analgesic ibuprofen (Ibu) and the stimulant, caffeine, in assays of acute pain-stimulated and pain-depressed behavior. Intraperitoneal injection of acetic acid (AA) served as a noxious stimulus to stimulate a writhing response or depress saccharin preference and locomotor activity (LMA) in mice. AA injection caused the maximum number of writhes between 5 and 20 minutes after administration, and writhing almost disappeared 1 hour later. AA-treated mice showed signs of depression-like behaviors after writhing resolution, as evidenced by reduced locomotion and saccharin preference for at least 4 and 6 hours, respectively. Depression-like behaviors resolved within 24 hours after AA administration. A dose of Ibu (40 mg/kg) - inactive to reduce AA-induced abdominal writhing - administered before or after AA injection significantly reverted pain-induced saccharin preference deficit. The same dose of Ibu also significantly reverted the AA-depressed LMA, but only when it was administered after AA injection. Caffeine restored locomotion - but not saccharin preference - in AA-treated mice, thus suggesting that the reduction in saccharin preference - but not in locomotion - was specifically sensitive to analgesics. In conclusion, AA-induced acute pain attenuated saccharin preference and LMA beyond the resolution of writhing behavior, and the changes in the expression of hedonic behavior, such as sweet taste preference, can be used as a more

  7. Chiral symmetry breaking of a double-stranded helical chain through bend-writhe coupling

    NASA Astrophysics Data System (ADS)

    Yanao, Tomohiro; Yoshikawa, Kenichi

    2014-06-01

    This paper explores asymmetric elasticity of a double-stranded helical chain, which serves as a minimal model of biopolymers. The model consists of two elastic chains that mutually intertwine in a right-handed manner, forming a double-stranded helix. A simple numerical experiment for structural relaxation, which reduces the total elastic energy of the model monotonically without thermal fluctuations, reveals possible asymmetric elasticity inherent in the helical chain. It is first shown that a short segment of the double-stranded helical chain has a tendency to unwind when it is bent. It is also shown that a short segment of the helical chain has a tendency to writhe in the left direction upon bending. This tendency gives rise to a propensity for a longer segment of the chain to form a left-handed superhelix spontaneously upon bending. Finally, this propensity of the helical chain to form a left-handed superhelix is proposed to be a possible origin of the uniform left-handed wrapping of DNA around nucleosome core particles in nature. The results presented here could provide deeper insights into the roles and significance of helical chirality of biopolymers.

  8. Cyclo-Gly-Pro, a cyclic dipeptide, attenuates nociceptive behaviour and inflammatory response in mice.

    PubMed

    Ferro, Jamylle Nunes de Souza; de Aquino, Fernanda Lima Torres; de Brito, Renan Guedes; dos Santos, Priscila Laíse; Quintans, Jullyana de Souza Siqueira; de Souza, Lucas Costa; de Araújo, Almair Ferreira; Diaz, Bruno Lourenço; Lucca-Júnior, Waldecy; Quintans-Júnior, Lucindo José; Barreto, Emiliano

    2015-12-01

    The present study aimed to investigate the antinociceptive and anti-inflammatory effects of the cyclic dipeptide cyclo-Gly-Pro (CGP) in mice. Antinociceptive activity was assessed by employing different pain models, such as formalin test, acetic acid-induced writhing, hot plate test, and carrageenan-induced hyperalgesia, in mice. The number of c-Fos-immunoreactive cells in the periaqueductal gray (PAG) was evaluated in CGP-treated mice. Anti-inflammatory activity was evaluated using paw oedema induced by carrageenan, compound 48/80, serotonin, and prostaglandin E2 (PGE2) and analyzed by plethysmometry. Quantitation of myeloperoxidase (MPO) in the paw was carried out to analyze the presence of neutrophils in the tissue. Intraperitoneal injection of CGP produced a significant inhibition in both neurogenic and inflammatory phases of formalin-induced pain. The antinociceptive effect of CGP, evaluated in the acetic acid-induced writhing test, was detected for up to 6 h after treatment. Further, in the hot plate test, antinociceptive behaviour was evoked by CGP, and this response was inhibited by naloxone. Animals treated with CGP did not present changes in motor performance. In CGP-treated mice there was an increase in the number of c-Fos-positive neurons in the periaqueductal gray. In another set of experiments, CGP attenuated the hyperalgesic response induced by carrageenan. Furthermore, CGP also reduced the carrageenan-increased MPO activity in paws. In addition, CGP also reduced the paw oedema evoked by compound 48/80, serotonin, and PGE2 . Taken together, these results may support a possible therapeutic application of the cyclic dipeptide cyclo-Gly-Pro toward alleviating nociception and damage caused by inflammation conditions.

  9. OBSERVATIONS FROM SDO, HINODE, AND STEREO OF A TWISTING AND WRITHING START TO A SOLAR-FILAMENT-ERUPTION CASCADE

    SciTech Connect

    Sterling, Alphonse C.; Moore, Ronald L.; Hara, Hirohisa E-mail: ron.moore@nasa.gov

    2012-12-10

    We analyze data from SDO (AIA, HMI), Hinode (SOT, XRT, EIS), and STEREO (EUVI) of a solar eruption sequence of 2011 June 1 near 16:00 UT, with an emphasis on the early evolution toward eruption. Ultimately, the sequence consisted of three emission bursts and two filament ejections. SDO/AIA 304 A images show absorbing-material strands initially in close proximity which over {approx}20 minutes form a twisted structure, presumably a flux rope with {approx}10{sup 29} erg of free energy that triggers the resulting evolution. A jump in the filament/flux rope's displacement (average velocity {approx}20 km s{sup -1}) and the first burst of emission accompanies the flux-rope formation. After {approx}20 more minutes, the flux rope/filament kinks and writhes, followed by a semi-steady state where the flux rope/filament rises at ({approx}5 km s{sup -1}) for {approx}10 minutes. Then the writhed flux rope/filament again becomes MHD unstable and violently erupts, along with rapid (50 km s{sup -1}) ejection of the filament and the second burst of emission. That ejection removed a field that had been restraining a second filament, which subsequently erupts as the second filament ejection accompanied by the third (final) burst of emission. Magnetograms from SDO/HMI and Hinode/SOT, and other data, reveal several possible causes for initiating the flux-rope-building reconnection, but we are not able to say which is dominant. Our observations are consistent with magnetic reconnection initiating the first burst and the flux-rope formation, with MHD processes initiating the further dynamics. Both filament ejections are consistent with the standard model for solar eruptions.

  10. Unsaturated fatty acids induce non-canonical autophagy

    PubMed Central

    Niso-Santano, Mireia; Malik, Shoaib Ahmad; Pietrocola, Federico; Bravo-San Pedro, José Manuel; Mariño, Guillermo; Cianfanelli, Valentina; Ben-Younès, Amena; Troncoso, Rodrigo; Markaki, Maria; Sica, Valentina; Izzo, Valentina; Chaba, Kariman; Bauvy, Chantal; Dupont, Nicolas; Kepp, Oliver; Rockenfeller, Patrick; Wolinski, Heimo; Madeo, Frank; Lavandero, Sergio; Codogno, Patrice; Harper, Francis; Pierron, Gérard; Tavernarakis, Nektarios; Cecconi, Francesco; Maiuri, Maria Chiara; Galluzzi, Lorenzo; Kroemer, Guido

    2015-01-01

    To obtain mechanistic insights into the cross talk between lipolysis and autophagy, two key metabolic responses to starvation, we screened the autophagy-inducing potential of a panel of fatty acids in human cancer cells. Both saturated and unsaturated fatty acids such as palmitate and oleate, respectively, triggered autophagy, but the underlying molecular mechanisms differed. Oleate, but not palmitate, stimulated an autophagic response that required an intact Golgi apparatus. Conversely, autophagy triggered by palmitate, but not oleate, required AMPK, PKR and JNK1 and involved the activation of the BECN1/PIK3C3 lipid kinase complex. Accordingly, the downregulation of BECN1 and PIK3C3 abolished palmitate-induced, but not oleate-induced, autophagy in human cancer cells. Moreover, Becn1+/− mice as well as yeast cells and nematodes lacking the ortholog of human BECN1 mounted an autophagic response to oleate, but not palmitate. Thus, unsaturated fatty acids induce a non-canonical, phylogenetically conserved, autophagic response that in mammalian cells relies on the Golgi apparatus. PMID:25586377

  11. Observations from Hinode and SDO of a Twisting and Writhing Start to a Solar-filament-eruption Cascade

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.; Hara, Hirohisa

    2013-01-01

    Active region eruption of 1 June 2011. Ejective eruption. GOES class C4.1 flare. SDO/AIA, various filters (94, 131, 171, 193, 211, 304, 335 Ang.) High time cadence (24 s) and high spatial resolution (0 .6 pixels). SDO/HMI line-of-sight magnetograms. Hinode observed the onset, and the later decay phase. There are two filament eruptions (filament 1 and filament 2). Filament 1 has slow rise with steps, as in several previous cases. GOES "episodes" play role of "microflares" in other events; that is, filament jumps <=> intensity peaks. Episode 1 brightening: Accompanied by filament 1 s initial motions. (Rest of talk.) Filament 1 becomes unstable, and.. Episode 2 brightening: Flare ribbons following filament 1 s fast liftoff. This destabilizes neighboring filament 2, and... Episode 3 brightening: Flare ribbons of whole system following filament 2 s eruption.Something leads to reconnection; not totally clear what. Reconnection -> twisted flux rope in approx.20 min; episode 1 microflare (flare ribbons; TC) and filament jump. Twist -> writhe, via kink instability; filament-trajectory plateau, approx. 20 min. Writhe -> jump and eruption of filament 1, via instability; episode 2 microflare (flare ribbons; TC). (E.g., Williams et al.) First eruption -> second filament eruption (episode 3 flare ribbons; TC). (E.g., Sterling, Moore; Liu et al.; Torok et al.; Schrijver & Title.). Estimate amount of free energy in newly-twisted field (cf. Moore 1988): where we have taken L and r = 50, 3 arcsec. Energy of the total system is likely 1030 ergs or more. So "no" is answer to question. Additional energy comes from remainder of sheared large loop, shear (free energy) of second filament, etc. (Normally assumed situation.) Some history of twist-induced instability in filament eruptions: e.g., Sakurai, Torok & Kliem, Fan & Gibson, Gilbert et al., van Driel-Gesztelyi et al. Criterion : Kink instability for line-tied tube (Hood & Priest): 2.5pi; for Titov & Demoulin loop (Torok et al

  12. Oleic acid-induced mucosal injury in developing piglet intestine.

    PubMed

    Velasquez, O R; Henninger, K; Fowler, M; Tso, P; Crissinger, K D

    1993-03-01

    A role for luminal nutrients, in particular products of lipid digestion, in the pathogenesis of mucosal injury to developing intestine has been postulated. We evaluated changes in mucosal permeability and light and electron microscopic histology induced by luminal perfusion with the long-chain fatty acid oleate in developing piglet intestine as a function of age and concentration of the fatty acid. 51Cr-labeled EDTA plasma-to-lumen clearance was measured in jejunum and ileum of 1-day-, 3-day-, 2-wk-, and 1-mo-old piglets during sequential perfusion with saline control (20 min); 0, 1, 5, and 10 mM oleic acid/10 mM taurocholate in saline (20 min); and normal saline (60 min). The jejunum of piglets < or = 2 wk showed significantly greater increases in mucosal permeability compared with 1-mo-old animals after perfusion with oleic acid. This effect was dependent on the luminal concentration of the fatty acid and was associated with mucosal injury evident under light and electron microscopy. In contrast, the overall response in ileum was more attenuated compared with jejunum. Thus oleic acid, a common dietary fatty acid, induces dose- and age-dependent injury in developing piglet intestine. Investigation of the mechanisms of this injury may provide the basis for dietary modifications directed at decreasing the risk of mucosal injury during enteral feeding in neonatal intestine.

  13. Two phenotypically distinct T cells are involved in ultraviolet-irradiated urocanic acid-induced suppression of the efferent delayed-type hypersensitivity response to herpes simplex virus, type 1 in vivo

    SciTech Connect

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.

    1987-09-01

    When UVB-irradiated urocanic acid, the putative photoreceptor/mediator for UVB suppression, is administered to mice it induces a dose-dependent suppression of the delayed-type hypersensitivity response to herpes simplex virus, type 1 (HSV-1), of similar magnitude to that induced by UV irradiation of mice. In this study, the efferent suppression of delayed-type hypersensitivity by UV-irradiated urocanic acid is demonstrated to be due to 2 phenotypically distinct T cells, (Thy1+, L3T4-, Ly2+) and (Thy1+, L3T4+, Ly2-). The suppression is specific for HSV-1. This situation parallels the generation of 2 distinct T-suppressor cells for HSV-1 by UV irradiation of mice and provides further evidence for the involvement of urocanic acid in the generation of UVB suppression.

  14. Salicylic-Acid-Induced Chilling- and Oxidative-Stress Tolerance in Relation to Gibberellin Homeostasis, C-Repeat/Dehydration-Responsive Element Binding Factor Pathway, and Antioxidant Enzyme Systems in Cold-Stored Tomato Fruit.

    PubMed

    Ding, Yang; Zhao, Jinhong; Nie, Ying; Fan, Bei; Wu, Shujuan; Zhang, Yu; Sheng, Jiping; Shen, Lin; Zhao, Ruirui; Tang, Xuanming

    2016-11-02

    Effects of salicylic acid (SA) on gibberellin (GA) homeostasis, C-repeat/dehydration-responsive element binding factor (CBF) pathway, and antioxidant enzyme systems linked to chilling- and oxidative-stress tolerance in tomato fruit were investigated. Mature green tomatoes (Solanum lycopersicum L. cv. Moneymaker) were treated with 0, 0.5, and 1 mM SA solution for 15 min before storage at 4 °C for 28 days. In comparison to 0 or 0.5 mM SA, 1 mM SA significantly decreased the chilling injury (CI) index in tomato fruit. In the SA-treated fruit, the upregulation of GA biosynthetic gene (GA3ox1) expression was followed by gibberellic acid (GA3) surge and DELLA protein degradation. CBF1 participated in the SA-modulated tolerance and stimulated the expression of GA catabolic gene (GA2ox1). Furthermore, 1 mM SA enhanced activities of antioxidant enzymes and, thus, reduced reactive oxygen species accumulation. Our findings suggest that SA might protect tomato fruit from CI and oxidative damage through regulating GA metabolism, CBF1 gene expression, and antioxidant enzyme activities.

  15. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    PubMed

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  16. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  17. Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration

    DTIC Science & Technology

    2004-01-01

    L., Hong, J.S. (1996) Expression of) FosB in the rat hippocampus and striatum after systemic administration of kainic acid. Neurosci. Abstr. 22...gene expression in the hippocampus . Immunohistochemical methods and electromobility gel shift assays (EMSAs) demonstrate the concerted activation of...acid-induced neurodegenerative diseases. The major focus will be on the pathophysiological changes in the hippocampus . Special attention will be given

  18. Manifold-Splitting Regularization, Self-Linking Twisting, Writhing Numbers of Space-Time Ribbons and POLYAKOV’S Proof of Fermi-Bose Transmutations

    NASA Astrophysics Data System (ADS)

    Tze, Chia-Hsiung

    We present an alternative formulation of Polyakov’s regularization of Gauss’ integral formula for a single closed Feynman path. A key element in his proof of the D=3 fermi-bose transmutations induced by topological gauge fields, this regularization is linked here with the existence and properties of a nontrivial topological invariant for a closed space ribbon. This self-linking coefficient, an integer, is the sum of two differential characteristics of the ribbon, its twisting and writhing numbers. These invariants form the basis for a physical interpretation of our regularization. Their connection to Polyakov’s spinorization is discussed. We further generalize our construction to the self-linking, twisting and writhing of higher dimensional d=n (odd) submanifolds in D=(2n+1) space-time. Our comprehensive analysis intends to supplement Polyakov’s work as it identifies a natural path to its higher dimensional mathematical and physical generalizations. Combining the theorems of White on self-linking of manifolds and of Adams on nontrivial Hopf fibre bundles and the four composition-division algebras, we argue that besides Polyakov’s case where (d, D)=(1, 3) tied to complex numbers, the potentially interesting extensions are two chiral models with (d, D)=(3, 7) and (7, 15) uniquely linked to quaternions and octonions. In Memoriam Richard P. Feynman

  19. Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.

    PubMed

    Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo

    2015-02-01

    Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts.

  20. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  1. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    PubMed

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  2. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    PubMed

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  3. Increased isoprostane levels in oleic acid-induced lung injury

    SciTech Connect

    Ono, Koichi; Koizumi, Tomonobu; Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki; Nakagawa, Rikimaru; Obata, Toru

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  4. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    PubMed

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success.

  5. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  6. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    PubMed

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  7. Computerized image analysis for acetic acid induced intraepithelial lesions

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.

    2008-03-01

    Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.

  8. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    PubMed

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p < 0.001). On the other hand, sphingomyelin, acetyl PHS, octanoyl PHS and stearoyl PHS had no anti-erosive effects. Atomic force measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  9. Acid-induced unfolding mechanism of recombinant human endostatin.

    PubMed

    Li, Bing; Wu, Xiaoyu; Zhou, Hao; Chen, Qianjie; Luo, Yongzhang

    2004-03-09

    Endostatin is a potent angiogenesis inhibitor. The structure of endostatin is unique in that its secondary structure is mainly irregular loops and beta-sheets and contains only a small fraction of alpha-helices with two pairs of disulfide bonds in a nested pattern. We choose human endostatin as a model system to study the folding mechanism of this kind. Nuclear magnetic resonance (NMR), tryptophan emission fluorescence, and circular dichroism (CD) were used to monitor the unfolding process of endostatin upon acid titration. Urea-induced unfolding was used to measure the stability of endostatin under different conditions. Our results show that endostatin is very acid-resistant; some native structure still remains even at pH 2 as evidenced by (1)H NMR. Trifluoroethanol (TFE) destabilizes native endostatin, while it makes endostatin even more acid-resistant in the low pH region. Stability measurement of endostatin suggests that endostatin is still in native structure at pH 3.5 despite the decreased stability. Acid-induced unfolding of endostatin is reversible, although it requires a long time to reach equilibrium below pH 3. Surprisingly, the alpha-helical content of endostatin is increased when it is unfolded at pH 1.6, and the alpha-helical content of the polypeptide chain of unfolded endostatin increases linearly with TFE concentration in the range of 0-30%. This observation indicates that the polypeptide chain of unfolded endostatin has an intrinsic alpha-helical propensity. Our discoveries may provide clues for refolding endostatin more efficiently. The acid-resistance property of endostatin may have biological significance in that it cannot be easily digested by proteases in an acidic environment such as in a lysosome in the cell.

  10. High dose of ascorbic acid induces cell death in mesothelioma cells.

    PubMed

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  11. Acid-induced gelation behavior of casein/whey protein solutions assessed by oscillatory rheology.

    PubMed

    Sadeghi, Mahboubeh; Madadlou, Ashkan; Khosrowshahi, Asghar; Mohammadifar, Mohammadamin

    2014-09-01

    Gelation process of acid-induced casein gels was studied using response surface method (RSM). Ratio of casein to whey proteins, incubation and heating temperatures were independent variables. Final storage modulus (G') measured 200 min after the addition of glucono-δ-lactone and the gelation time i.e. the time at which G' of gels became greater than 1 Pa were the parameters studied. Incubation temperature strongly affected both parameters. The higher the incubation temperature, the lower was the G' and the shorter the gelation time. Increased heating temperature however, increased the G' but again shortened the gelation time. Increase in G' was attributed to the formation of disulphide cross-linkages between denatured whey proteins and casein chains; whilst the latter was legitimized by considering the higher isoelectric pH of whey proteins. Maximum response (G' = 268.93 Pa) was obtained at 2.7 % w/w, 25 °C and 90 °C for casein content, incubation and heating temperatures, respectively.

  12. Involvement of cyclooxygenase-1, prostaglandin E2 and EP1 receptors in acid-induced HCO3- secretion in stomach.

    PubMed

    Takeuchi, K; Aihara, E; Sasaki, Y; Nomura, Y; Ise, F

    2006-12-01

    We investigated the cyclooxygenase (COX) isoforms as well as prostaglandin E receptor EP subtypes responsible for acid-induced gastric HCO(3)(-) secretion in rats and EP receptor-knockout (-/-) mice. Under urethane anesthesia, a chambered stomach (in the presence of omeprazole) was perfused with saline, and HCO(3)(-) secretion was measured at pH 7.0 using a pH-stat method and by adding 2 mM HCl. Mucosal acidification was achieved by exposing the stomach for 10 min to 50 or 100 mM HCl. Acidification of the mucosa increased the secretion of HCO(3)(-) in the stomach of both rats and WT mice, in an indomethacin-inhibitable manner. The acid-induced gastric HCO(3)(-) secretion was inhibited by prior administration of indomethacin and SC-560 but not rofecoxib in rats and mice. Acidification increased the PGE(2) content of the rat stomach, and this response was significantly attenuated by indomethacin and SC-560 but not rofecoxib. This response was also attenuated by ONO-8711 (EP1 antagonist) but not AE3-208 (EP4 antagonist) in rats and disappeared in EP1 (-/-) but not EP3 (-/-) mice. PGE(2) increased gastric HCO(3)(-) secretion in both rats and WT mice, and this action was inhibited by ONO-8711 and disappeared in EP1 (-/-) but not EP3 (-/-) mice. These results support a mediator role for endogenous PGs in the gastric response induced by mucosal acidification and clearly indicate that the enzyme responsible for production of PGs in this process is COX-1. They further show that the presence of EP1 receptors is essential for the increase in the secretion of HCO(3)(-) in response to mucosal acidification in the stomach.

  13. The saturated fatty acid, palmitic acid, induces anxiety-like behavior in mice

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Lawson, Marcus A.; Chiu, Gabriel S.; Blevins, Neil A.; Kwakwa, Kristin A.; Freund, Gregory G.

    2014-01-01

    Objectives Excess fat in the diet can impact neuropsychiatric functions by negatively affecting cognition, mood and anxiety. We sought to show that the free fatty acid (FFA), palmitic acid, can cause adverse biobehaviors in mice that lasts beyond an acute elevation in plasma FFAs. Methods Mice were administered palmitic acid or vehicle as a single intraperitoneal (IP) injection. Biobehaviors were profiled 2 and 24 hrs after palmitic acid treatment. Quantification of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their major metabolites was performed in cortex, hippocampus and amygdala. FFA concentration was determined in plasma. Relative fold change in mRNA expression of unfolded protein response (UPR)-associated genes was determined in brain regions. Results In a dose-dependent fashion, palmitic acid rapidly reduced mouse locomotor activity by a mechanism that did not rely on TLR4, MyD88, IL-1, IL-6 or TNFα but was dependent on fatty acid chain length. Twenty-four hrs after palmitic acid administration mice exhibited anxiety-like behavior without impairment in locomotion, food intake, depressive-like behavior or spatial memory. Additionally, the serotonin metabolite 5-HIAA was increased by 33% in the amygdala 24 hrs after palmitic acid treatment. Conclusions Palmitic acid induces anxiety-like behavior in mice while increasing amygdala-based serotonin metabolism. These effects occur at a time point when plasma FFA levels are no longer elevated. PMID:25016520

  14. Bile acid induced colonic irritation stimulates intracolonic nitric oxide release in humans.

    PubMed Central

    Casellas, F; Mourelle, M; Papo, M; Guarner, F; Antolin, M; Armengol, J R; Malagelada, J R

    1996-01-01

    AIM--To measure the intracolonic release of nitric oxide end products (nitrates plus nitrites) and eicosanoids in response to intraluminal irritation with deoxycholic acid (DCA). PATIENTS--Seven patients with irritable bowel syndrome. METHODS--The left colon was perfused with a solution with or without 3 mM deoxycholic acid. Aspirates were assayed for eicosanoids by specific radioimmuno-assay, and for nitrates plus nitrites by the Griess reaction. To confirm that stimulated colonic mucosa can produce nitric oxide (NO), ancillary studies were performed in vitro using samples of normal mucosa obtained from five surgically resected colons. Samples were incubated for 30 minutes in Kreb's solution, 3 mM DCA or DCA with 1 mM L-nitro-arginine-methyl-ester (L-NAME) to inhibit the NO synthase. Finally, NO synthase activity was measured in five samples of human colonic mucosa. RESULTS--Intracolonic release of nitrates plus nitrites was basally undetectable in six of seven patients. Bile acid considerably increased the release of prostaglandin E2 and nitrates plus nitrites (p < 0.01). By contrast, no increase in thromboxane and leukotriene was seen. In vitro mucosal incubation with DCA increased the production of NO synthase products, which was blocked by L-NAME. Activity of Ca+2 independent NO synthase was detectable in four of five samples of human colonic mucosa. CONCLUSION--The human colonic mucosa responds to bile acid induced irritation by a surge in NO generation via NO synthase. PMID:8707118

  15. Tanshinone IIA Protects Against Folic Acid-Induced Acute Kidney Injury.

    PubMed

    Jiang, Chunming; Zhu, Wei; Shao, Qiuyuan; Yan, Xiang; Jin, Bo; Zhang, Miao; Xu, Biao

    2016-01-01

    Tanshinone IIA is a diterpene extracted from Salvia miltiorrhiza, a popular and safe herb medicine that has been widely used in China and other Asian countries. Previous studies have demonstrated the pleiotropic effects of Tanshinone IIA on many disease treatments via its antitoxicity, anti-inflammation, anti-oxidative stress, as well as antifibrosis activities. However, its effect on acute kidney injury (AKI) has not been fully investigated. Here, we show for the first time that systemic administration of Tanshinone IIA can lead to improved kidney function in folic acid-induced kidney injury mice. In the acute phase of AKI, Tanshinone IIA attenuated renal tubular epithelial injury, as determined by histologic changes and the detection of Neutrophil gelatinase-associated lipocalin (NGAL) in the kidney and urine. Additionally, Tanshinone IIA treatment resulted in elevated proliferating cell nuclear antigen (PCNA) expression and decreased inflammatory cells infiltration as well as chemokine expression, suggesting that Tanshinone IIA promoted renal repair following AKI and inhibited local inflammatory response in the injured kidney. This led to decreased long-term fibrosis in the injured kidney, characterized by less accumulation of fibronectin and collagen I in tubulointerstitium. Taken together, these results suggest that Tanshinone IIA may represent a potential approach for AKI treatment.

  16. Tachykinin inhibition of acid-induced gastric hyperaemia in the rat.

    PubMed Central

    Heinemann, A.; Jocic, M.; Herzeg, G.; Holzer, P.

    1996-01-01

    1. Primary afferent neurones releasing the vasodilator, calcitonin gene-related peptide, mediate the gastric hyperaemic response to acid back-diffusion. The tachykinins neurokinin A (NKA) and substance P (SP) are located in the same neurones and are co-released with calcitonin gene-related peptide. In this study we investigated the effect and possible role of tachykinins in the acid-evoked gastric vasodilatation in urethane-anaesthetized rats. 2. Gastric acid back-diffusion, induced by perfusing the stomach with 15% ethanol in the presence of 0.05 M HCl, increased gastric mucosal blood flow by 60-90%, as determined by the hydrogen clearance technique. NKA and SP (0.14-3.78 nmol min-1 kg-1, infused intra-aortically) inhibited the gastric mucosal hyperaemic response to acid back-diffusion in a dose-dependent manner, an effect that was accompanied by aggravation of ethanol/acid-induced macroscopic haemorrhagic lesions. 3. The inhibitory effect of NKA (1.26 nmol min-1 kg-1) on the acid-induced gastric mucosal vasodilatation was prevented by the tachykinin NK2 receptor antagonists, MEN 10,627 (200 nmol kg-1) but left unaltered by the NK1 receptor antagonist, SR 140,333 (300 nmol kg-1) and the mast-cell stabilizer, ketotifen (4.6 mumol kg-1). 4. Under basal conditions, with 0.05 M HCl being perfused through the stomach, NKA (1.26 nmol min-1 kg-1) reduced gastric mucosal blood flow by about 25%, an effect that was abolished by SR 140,333 but not MEN 10,627 or ketotifen. 5. SR 140,333, MEN 10,627 or ketotifen had no significant effect on basal gastric mucosal blood flow nor did they modify the gastric mucosal hyperaemic reaction to acid back-diffusion. 6. The effect of NKA (1.26 nmol min-1 kg-1) in causing vasoconstriction and inhibiting the vasodilator response to acid back-diffusion was also seen when blood flow in the left gastric artery was measured with the ultrasonic transit time shift technique. 7. Arginine vasopressin (AVP, 0.1 nmol min-1 kg-1) induced gastric

  17. Human sweet taste receptor mediates acid-induced sweetness of miraculin.

    PubMed

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-10-04

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity.

  18. Human sweet taste receptor mediates acid-induced sweetness of miraculin

    PubMed Central

    Koizumi, Ayako; Tsuchiya, Asami; Nakajima, Ken-ichiro; Ito, Keisuke; Terada, Tohru; Shimizu-Ibuka, Akiko; Briand, Loïc; Asakura, Tomiko; Misaka, Takumi; Abe, Keiko

    2011-01-01

    Miraculin (MCL) is a homodimeric protein isolated from the red berries of Richadella dulcifica. MCL, although flat in taste at neutral pH, has taste-modifying activity to convert sour stimuli to sweetness. Once MCL is held on the tongue, strong sweetness is sensed over 1 h each time we taste a sour solution. Nevertheless, no molecular mechanism underlying the taste-modifying activity has been clarified. In this study, we succeeded in quantitatively evaluating the acid-induced sweetness of MCL using a cell-based assay system and found that MCL activated hT1R2-hT1R3 pH-dependently as the pH decreased from 6.5 to 4.8, and that the receptor activation occurred every time an acid solution was applied. Although MCL per se is sensory-inactive at pH 6.7 or higher, it suppressed the response of hT1R2-hT1R3 to other sweeteners at neutral pH and enhanced the response at weakly acidic pH. Using human/mouse chimeric receptors and molecular modeling, we revealed that the amino-terminal domain of hT1R2 is required for the response to MCL. Our data suggest that MCL binds hT1R2-hT1R3 as an antagonist at neutral pH and functionally changes into an agonist at acidic pH, and we conclude this may cause its taste-modifying activity. PMID:21949380

  19. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    PubMed

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid.

  20. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats.

    PubMed

    Yang, Zhi-Hong; Takeo, Jiro; Katayama, Masashi

    2013-06-01

    We have analyzed the effect of palmitoleic acid on short-term food intake in male rats. Administration of omega-7 palmitoleic acid by oral gavage significantly decreased food intake compared to palmitic acid, omega-9 oleic acid, or a vehicle control. Palmitoleic acid exhibited a dose-dependent effect in this context and did not cause general malaise. A triglyceride form of palmitoleate also decreased food intake, whereas olive oil, which is rich in oleic acid, did not. Palmitoleic acid accumulated within the small intestine in a dose-dependent fashion and elevated levels of the satiety hormone cholecystokinin (CCK). Both protein and mRNA levels of CCK were affected in this context. The suppression of food intake by palmitoleic acid was attenuated by intravenous injection of devazepide, a selective peripheral CCK receptor antagonist. Palmitoleic acid did not alter the expression of peroxisome proliferator-activated receptor alpha (PPARα) target genes, and a PPARα antagonist did not affect palmitoleic acid-induced satiety. This suggests that the PPARα pathway might not be involved in suppressing food intake in response to palmitoleic acid. We have shown that orally administered palmitoleic acid induced satiety, enhanced the release of satiety hormones in rats.

  1. Effect of capsaicin and cimetidine on the healing of acetic acid induced gastric ulceration in the rat.

    PubMed Central

    Kang, J Y; Teng, C H; Chen, F C

    1996-01-01

    BACKGROUND: Capsaicin protects the gastric mucosa against experimental injury while capsaicin desensitisation reduces the rate of gastric ulcer healing. The effect of exogenous capsaicin on gastric ulcer healing has not to date been reported. AIM/METHOD: To investigate the effect of capsaicin, cimetidine, and in combination, given intragastrically in the healing of acetic acid induced chronic gastric ulcer in the rat. Treatment started immediately after ulcer induction. RESULTS: At the end of one week, capsaicin, cimetidine, and in combination increased ulcer healing but the effect of combined treatment was less than that of capsaicin alone. In an in vivo gastric chamber preparation, capsaicin increased, while cimetidine decreased, gastric mucosal blood flow measured by laser Doppler flowmetry. A dose response effect in reduction of gastric mucosal blood flow could be demonstrated for cimetidine. The gastric hyperaemic effect of capsaicin was blunted by prior administration of cimetidine. In contrast, capsaicin had no effect on gastric acid secretion and its addition to cimetidine did not affect the acid suppressant effect of the latter. CONCLUSIONS: Capsaicin promotes the healing of acetic acid induced gastric ulcer, probably by its gastric hyperaemic effect. Although cimetidine also promotes ulcer healing due to its inhibitory effect on acid secretion it may have an antagonistic effect on the gastric ulcer healing effect of capsaicin by virtue of inhibition of gastric hyperaemia. PMID:8984019

  2. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    PubMed

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs.

  3. Retinoic acid induces TGFbeta-dependent autocrine fibroblast growth.

    PubMed

    Fadloun, A; Kobi, D; Delacroix, L; Dembélé, D; Michel, I; Lardenois, A; Tisserand, J; Losson, R; Mengus, G; Davidson, I

    2008-01-17

    To evaluate the role of murine TFIID subunit TAF4 in activation of cellular genes by all-trans retinoic acid (T-RA), we have characterized the T-RA response of taf4(lox/-) and taf4(-/-) embryonic fibroblasts. T-RA regulates almost 1000 genes in taf4(lox/-) cells, but less than 300 in taf4(-/-) cells showing that TAF4 is required for T-RA regulation of most, but not all cellular genes. We further show that T-RA-treated taf4(lox/-) cells exhibit transforming growth factor (TGF)beta-dependent autocrine growth and identify a set of genes regulated by loss of TAF4 and by T-RA corresponding to key mediators of the TGFbeta signalling pathway. T-RA rapidly and potently induces expression of connective tissue growth factor (CTGF) via a conserved DR2 type response element in its proximal promoter leading to serum-free autocrine growth. These results highlight the role of TAF4 as a cofactor in the cellular response to T-RA and identify the genetic programme of a novel cross talk between the T-RA and TGFbeta pathways that leads to deregulated cell growth.

  4. Anti-inflammatory, analgesic and antipyretic properties of Clitoria ternatea root.

    PubMed

    Devi, B Parimala; Boominathan, R; Mandal, Subhash C

    2003-06-01

    Clitoria ternatea roots methanol extract when given by oral route to rats was found to inhibit both the rat paw oedema caused by carrageenin and vascular permeability induced by acetic acid in rats. Moreover, the extract exhibited a significant inhibition in yeast-induced pyrexia in rats. In the acetic acid-induced writhing response, the extract markedly reduced the number of writhings at doses of 200 and 400 mg/kg (p.o.) in mice.

  5. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  6. Behavior-associated Neuronal Activation After Kainic Acid-induced Hippocampal Neurotoxicity is Modulated in Time.

    PubMed

    Aguilar-Arredondo, Andrea; López-Hernández, Fernanda; García-Velázquez, Lizbeth; Arias, Clorinda; Zepeda, Angélica

    2017-02-01

    Kainic acid-induced (KA) hippocampal damage leads to neuronal death and further synaptic plasticity. Formation of aberrant as well as of functional connections after such procedure has been documented. However, the impact of such structural plasticity on cell activation along time after damage and in face of a behavioral demand has not been explored. We evaluated if the mRNA and protein levels of plasticity-related protein synaptophysin (Syp and SYP, respectively) and activity-regulated cytoskeleton-associated protein mRNA and protein levels (Arc and Arc, respectively) in the dentate gyrus were differentially modulated in time in response to a spatial-exploratory task after KA-induced hippocampal damage. In addition, we analyzed Arc+/NeuN+ immunopositive cells in the different experimental conditions. We infused KA intrahippocampally to young-adult rats and 10 or 30 days post-lesion (dpl) animals performed a hippocampus-activating spatial-exploratory task. Our results show that Syp mRNA levels significantly increase at 10dpl and return to control levels after 30dpl, whereas SYP protein levels are diminished at 10dpl, but significantly increase at 30dpl, as compared to 10dpl. Arc mRNA and protein levels are both increased at 30dpl as compared to sham. Also the number of NeuN+/Arc+ cells significantly increases at 30dpl in the group with a spatial-exploratory demand. These results provide information on the long-term modifications associated to structural plasticity and neuronal activation in the dentate gyrus after excitotoxic damage and in face of a spatial-exploratory behavior. Anat Rec, 300:425-432, 2017. © 2016 Wiley Periodicals, Inc.

  7. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase

    PubMed Central

    Ruisanchez, Éva; Dancs, Péter; Kerék, Margit; Németh, Tamás; Faragó, Bernadett; Balogh, Andrea; Patil, Renukadevi; Jennings, Brett L.; Liliom, Károly; Malik, Kafait U.; Smrcka, Alan V.; Tigyi, Gabor; Benyó, Zoltán

    2014-01-01

    Lysophosphatidic acid (LPA) has been implicated as a mediator of several cardiovascular functions, but its potential involvement in the control of vascular tone is obscure. Here, we show that both LPA (18:1) and VPC31143 (a synthetic agonist of LPA1–3 receptors) relax intact mouse thoracic aorta with similar Emax values (53.9 and 51.9% of phenylephrine-induced precontraction), although the EC50 of LPA- and VPC31143-induced vasorelaxations were different (400 vs. 15 nM, respectively). Mechanical removal of the endothelium or genetic deletion of endothelial nitric oxide synthase (eNOS) not only diminished vasorelaxation by LPA or VPC31143 but converted it to vasoconstriction. Freshly isolated mouse aortic endothelial cells expressed LPA1, LPA2, LPA4 and LPA5 transcripts. The LPA1,3 antagonist Ki16425, the LPA1 antagonist AM095, and the genetic deletion of LPA1, but not that of LPA2, abolished LPA-induced vasorelaxation. Inhibition of the phosphoinositide 3 kinase–protein kinase B/Akt pathway by wortmannin or MK-2206 failed to influence the effect of LPA. However, pharmacological inhibition of phospholipase C (PLC) by U73122 or edelfosine, but not genetic deletion of PLCε, abolished LPA-induced vasorelaxation and indicated that a PLC enzyme, other than PLCε, mediates the response. In summary, the present study identifies LPA as an endothelium-dependent vasodilator substance acting via LPA1, PLC, and eNOS.—Ruisanchez, É., Dancs, P., Kerék, M., Németh, T., Faragó, B., Balogh, A., Patil, R., Jennings, B. L., Liliom, K., Malik, K. U., Smrcka, A. V., Tigyi, G., Benyó, Z. Lysophosphatidic acid induces vasodilation mediated by LPA1 receptors, phospholipase C, and endothelial nitric oxide synthase. PMID:24249637

  8. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  9. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation.

    PubMed

    Kauss, M Ariel; Reiterer, Gudrun; Bunaciu, Rodica P; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G(1) to S to G(2)/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G(0) cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  10. Ovarian cancer G protein-coupled receptor 1 is involved in acid-induced apoptosis of endplate chondrocytes in intervertebral discs.

    PubMed

    Yuan, Feng-Lai; Wang, Hui-Ren; Zhao, Ming-Dong; Yuan, Wei; Cao, Lu; Duan, Ping-Guo; Jiang, Yun-Qi; Li, Xi-Lei; Dong, Jian

    2014-01-01

    Ovarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a receptor for protons. We investigated the role of proton-sensing G protein-coupled receptors in the apoptosis of endplate chondrocytes induced by extracellular acid. The expression of proton-sensing G protein-coupled receptors was examined in rat lumbar endplate chondrocytes. Knockdown of OGR1 was achieved by transfecting chondrocytes with specific short hairpin RNA (shRNA) for OGR1. Apoptotic changes were evaluated by DNA fragmentation ELISA, electron microscopy, and flow cytometry. Intracellular calcium ([Ca(2+) ]i) was analyzed with laser scanning confocal microscopy. The mechanism of OGR1 in acid-induced apoptosis of endplate chondrocytes was also investigated. We found that OGR1 was predominantly expressed in rat endplate chondrocytes, and its expression was highly upregulated in response to acidosis. Knocking down OGR1 with shRNAs effectively attenuated acid-induced apoptosis of endplate chondrocytes and increased [Ca(2+) ]i. Blocking OGR1-mediated [Ca(2+) ]i elevation inhibited acid-induced calcium-sensitive proteases such as calpain and calcineurin, and also inhibited the activation of Bid, Bad, and Caspase 3 and cleavage of poly (ADP-ribose) polymerase (PARP). OGR1-mediated [Ca(2+) ]i elevation has a crucial role in apoptosis of endplate chondrocytes by regulating activation of calcium-sensitive proteases and their downstream signaling.

  11. MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    EPA Science Inventory


    MICROARRAY ANALYSIS OF DICHLOROACETIC ACID-INDUCED CHANGES IN GENE EXPRESSION

    Dichloroacetic acid (DCA) is a major by-product of water disinfection by chlorination. Several studies have demonstrated the hepatocarcinogenicity of DCA in rodents when administered in dri...

  12. Lysophosphatidic acid-induced chemotaxis of bone cells.

    SciTech Connect

    Karagiosis, Sue A.; Masiello, Lisa M.; Bollinger, Nikki; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a platelet-derived bioactive lipid that is postulated to regulate wound healing. LPA activates G protein-coupled receptors to induce Ca2+ signaling in MC3T3-E1 pre-osteoblasts, and is a potent chemotactic stimulus for these cells. Since bone fracture healing requires the migration of osteoblast progenitors, we postulate that LPA is among the factors that stimulate bone repair. UMR 106-01 cells, which express a more mature osteoblastic phenotype than MC3T3-E1 cells, did not migrate in response to LPA, although they express LPA receptors and exhibit LPA-induced Ca2+ signals. This suggests that LPA differentially induces pre-osteoblast chemotaxis, consistent with our hypothesis that LPA stimulates the motility of osteoblast progenitors during bone healing. LPA-stimulated MC3T3-E1 cells exhibit striking changes in morphology and F-actin architecture, and phosphatidylinositol-3 kinase (PI3K) is required for motility-associated cytoskeletal rearrangements in many cell types. We found a dose-dependent reduction in LPA-induced osteoblast migration when cells also were treated with the PI3K inhibitor, LY294002. Treatment of many cell types with LPA is associated with an autocrine/paracrine transactivation of the EGF receptor (EGFR) via shedding of surface-tethered EGFR ligands, a phenomenon often required for LPA-induced chemotaxis. MC3T3-E1 cells express multiple EGFR ligands (epigen, epiregulin, HB-EGF and amphiregulin) and migrated in response to EGF. However, while EGF-stimulated motility in MC3T3-E1 cells was blocked by an EGFR inhibitor, there was no significant effect on LPA-induced chemotaxis. Activation of MAP kinases is a hallmark of EGFR-mediated signaling, and EGF treatment of MC3T3-E1 cells led to a strong stimulation of ERK1/2 kinase. In contrast, LPA induced only a minor elevation in ERK activity. Thus, it is likely that the increase in ERK activity by LPA is related to cell proliferation associated with lipid treatment. We

  13. Nitrous acid induced damage in T7 DNA and phage

    SciTech Connect

    Scearce, L.M.; Masker, W.E.

    1986-05-01

    The response of bacteriophage T7 to nitrous acid damage was investigated. The T7 system allows in vitro mimicry of most aspects of in vivo DNA metabolism. Nitrous acid is of special interest since it has been previously shown to induce deletions and point mutations as well as novel adducts in DNA. T7 phage was exposed to 56 mM nitrous acid at pH 4.6 in vivo, causing a time dependent 98% decrease in survival for each 10 min duration of exposure to nitrous acid. These studies were extended to include examination of pure T7 DNA exposed in vitro to nitrous acid conditions identical to those used in the in vivo survival studies. The treated DNA was dialyzed to remove the nitrous acid and the DNA was encapsulated into empty phage heads. These in vitro packaged phage showed a survival curve analogous to the in vivo system. There was no change in survival when either in vitro or in vivo exposed phage were grown on wild type E. coli or on E. coli strains deficient in DNA repair due to mutations in DNA polymerase I, exonuclease III or a uvrA mutation. Survival was not increased when nitrous acid treated T7 were grown on E. coli induced for SOS repair. In vitro replication of nitrous acid treated DNA showed a time dependent decrease in the total amount of DNA synthesized.

  14. Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes.

    PubMed

    Tappia, Paramjit S; Maddaford, Thane G; Hurtado, Cecilia; Panagia, Vincenzo; Pierce, Grant N

    2003-01-10

    The effects of phosphatidic acid (PA), a known inotropic agent, on Ca(2+) transients and contractile activity of cardiomyocytes in congestive heart failure (CHF) due to myocardial infarction were examined. In control cells, PA induced a significant increase (25%) in active cell shortening and Ca(2+) transients. The phospholipase C (PLC) inhibitor, 2-nitro-4-carboxyphenyl N,N-diphenylcarbonate, blocked the positive inotropic action induced by PA, indicating that PA induces an increase in contractile activity and Ca(2+) transients through stimulation of PLC. Conversely, in failing cardiomyocytes there was a loss of PA-induced increase in active cell shortening and Ca(2+) transients. PA did not alter resting cell length. Both diastolic and systolic [Ca(2+)] were significantly elevated in the failing cardiomyocytes. In vitro assessment of the cardiac sarcolemmal (SL) PLC activity revealed that the impaired failing cardiomyocyte response to PA was associated with a diminished stimulation of SL PLC activity by PA. Our results identify an important defect in the PA-PLC signaling pathway in failing cardiomyocytes, which may have significant implications for the depressed contractile function during CHF.

  15. Viewpoints on Acid-Induced Inflammatory Mediators in Esophageal Mucosa

    PubMed Central

    Harnett, Karen M; Rieder, Florian; Behar, Jose

    2010-01-01

    We have focused on understanding the onset of gastroesophageal reflux disease by examining the mucosal response to the presence of acid in the esophageal lumen. Upon exposure to HCl, inflammation of the esophagus begins with activation of the transient receptor potential channel vanilloid subfamily member-1 (TRPV1) in the mucosa, and production of IL-8, substance P (SP), calcitonin gene related peptide (CGRP) and platelet activating factor (PAF). Production of SP and CGRP, but not PAF, is abolished by the neural blocker tetrodotoxin suggesting that SP and CGRP are neurally released and that PAF arises from non neural pathways. Epithelial cells contain TRPV1 receptor mRNA and protein and respond to HCl and to the TRPV1 agonist capsaicin with production of PAF. PAF, SP and IL-8 act as chemokines, inducing migration of peripheral blood leukocytes. PAF and SP activate peripheral blood leukocytes inducing the production of H2O2. In circular muscle, PAF causes production of IL-6, and IL-6 causes production of additional H2O2, through activation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidases. Among these, NADPH oxidase 5 cDNA is significantly up-regulated by exposure to PAF; H2O2 content of esophageal and lower esophageal sphincter circular muscle is elevated in human esophagitis, causing dysfunction of esophageal circular muscle contraction and reduction in esophageal sphincter tone. Thus esophageal keratinocytes, that constitute the first barrier to the refluxate, may also serve as the initiating cell type in esophageal inflammation, secreting inflammatory mediators and pro-inflammatory cytokines and affecting leukocyte recruitment and activity. PMID:21103419

  16. Antinociceptive profiles and mechanisms of orally administered coumarin in mice.

    PubMed

    Park, Soo-Hyun; Sim, Yun-Beom; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Suh, Hong-Won

    2013-01-01

    In the present study, the antinociceptive profiles of coumarin were examined in ICR mice. Coumarin administered orally (from 1 to 10 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Duration of antinociceptive action of coumarin maintained at least for 60 min. But, the cumulative response time of nociceptive behaviors induced by a subcutaneous (s.c.) formalin injection, intrathecal (i.t.) substance P (0.7 µg) or glutamate (20 µg) injection was not affected by coumarin. In addition, intracerebroventricular (i.c.v.) or intrathecal (i.t.) administration with coumarin (10-40 µg) attenuated acetic acid-induced writhing response in a dose dependent manner. Intraperitoneal (i.p.) pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by coumarin in the writhing test. Furthermore, i.c.v. or i.t. pretreatment with naloxone (5 µg) reversed the decreased acetic acid-induced writhing response. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an α2-adrenergic receptor antagonist) did not affect antinociception induced by coumarin in the writhing test. Our results suggest that coumarin exerts a selective antinociceptive property in the acetic acid-induced visceral-derived pain model. Furthermore, the antinociceptive effect of coumarin may be mediated by activation of central opioid receptors, but not serotonergic and adrenergic receptors.

  17. Acid-Induced Activation of the Urease Promoters Is Mediated Directly by the ArsRS Two-Component System of Helicobacter pylori

    PubMed Central

    Pflock, Michael; Kennard, Simone; Delany, Isabel; Scarlato, Vincenzo; Beier, Dagmar

    2005-01-01

    The nickel-containing enzyme urease is an essential colonization factor of the human gastric pathogen Helicobacter pylori which enables the bacteria to survive the low-pH conditions of the stomach. Transcription of the urease genes is positively controlled in response to increasing concentrations of nickel ions and acidic pH. Here we demonstrate that acid-induced transcription of the urease genes is mediated directly by the ArsRS two-component system. Footprint analyses identify binding sites of the phosphorylated ArsR response regulator within the ureA and ureI promoters. Furthermore, deletion of a distal upstream ArsR binding site of the ureA promoter demonstrates its role in acid-dependent activation of the promoter. In addition, acid-induced transcription of the ureA gene is unaltered in a nikR mutant, providing evidence that pH-responsive regulation and nickel-responsive regulation of the ureA promoter are mediated by independent mechanisms involving the ArsR response regulator and the NikR protein. PMID:16177315

  18. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    PubMed

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  19. SCH 58261 differentially influences quinolinic acid-induced effects in striatal and in hippocampal slices.

    PubMed

    Tebano, Maria Teresa; Domenici, Maria Rosaria; Popoli, Patrizia

    2002-08-30

    The influence of the adenosine A(2A) receptor antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-trizolo[1,5-c] pyrimidine) (50, 200 nM, 1 microM) on quinolinic acid effects has been studied in rat striatal and hippocampal slices. Quinolinic acid induced disappearance of field potentials at concentrations of 500 microM and 2 mM in hippocampal and corticostriatal slices, respectively. We found that 1 microM SCH 58261 prevented quinolinic acid-induced field potential disappearance in corticostriatal but not in hippocampal slices. This finding demonstrates that the peculiar binding profile of SCH 58261 and the predominance in the hippocampus of "atypical" adenosine A(2A) receptor population (not recognized by SCH 58261) could have a functional relevance in the occurrence of region-specific neuroprotective effects.

  20. Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro.

    PubMed

    Takigawa, Satoko; Sugano, Naoyuki; Ochiai, Kuniyasu; Arai, Noriyuki; Ota, Noriko; Ito, Koichi

    2008-12-01

    Butyric acid is detected in periodontal pockets and is thought to be involved in the initiation and progression of periodontal disease. We examined the effects of sodium bicarbonate on the butyric acid-induced epithelial cell damage. The human gingival carcinoma cell line Ca9-22 was cultured in medium that contained butyric acid with or without sodium bicarbonate. The viability of cells treated with sodium bicarbonate was significantly higher than that of cells treated with butyric acid alone. The effects of butyric acid on ICAM-1 expression were significantly improved by sodium bicarbonate. Within the limitations of this in vitro study, sodium bicarbonate was indicated to be a useful therapeutic agent to reduce the butyric acid-induced periodontal tissue damage.

  1. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii.

    PubMed

    Ludovico, Paula; Sansonetty, Filipe; Silva, Manuel T; Côrte-Real, Manuela

    2003-03-01

    Here we show that 320-800 mM acetic acid induces in Zygosaccharomyces bailii a programmed cell death (PCD) process that is inhibited by cycloheximide, is accompanied by structural and biochemical alterations typical of apoptosis, and occurs in cells with preserved mitochondrial and plasma membrane integrity (as revealed by rhodamine 123 (Rh123) and propidium iodide (PI) staining, respectively). Mitochondrial ultrastructural changes, namely decrease of the cristae number, formation of myelinic bodies and swelling were also seen. Exposure to acetic acid above 800 mM resulted in killing by necrosis. The occurrence of an acetic acid-induced active cell death process in Z. bailii reinforces the concept of a physiological role of the PCD in the normal yeast life cycle.

  2. Acid-inducible proton influx currents in the plasma membrane of murine osteoclast-like cells.

    PubMed

    Kuno, Miyuki; Li, Guangshuai; Moriura, Yoshie; Hino, Yoshiko; Kawawaki, Junko; Sakai, Hiromu

    2016-05-01

    Acidification of the resorption pits, which is essential for dissolving bone, is produced by secretion of protons through vacuolar H(+)-ATPases in the plasma membrane of bone-resorbing cells, osteoclasts. Consequently, osteoclasts face highly acidic extracellular environments, where the pH gradient across the plasma membrane could generate a force driving protons into the cells. Proton influx mechanisms during the acid exposure are largely unknown, however. In this study, we investigated extracellular-acid-inducible proton influx currents in osteoclast-like cells derived from a macrophage cell line (RAW264). Decreasing extracellular pH to <5.5 induced non-ohmic inward currents. The reversal potentials depended on the pH gradients across the membrane and were independent of concentrations of Na(+), Cl(-), and HCO3 (-), suggesting that they were carried largely by protons. The acid-inducible proton influx currents were not inhibited by amiloride, a widely used blocker for cation channels/transporters, or by 4,4'-diisothiocyanato-2,2'-stilbenesulfonate(DIDS) which blocks anion channels/transporters. Additionally, the currents were not significantly affected by V-ATPase inhibitors, bafilomycin A1 and N,N'-dicyclohexylcarbodiimide. Extracellular Ca(2+) (10 mM) did not affect the currents, but 1 mM ZnCl2 decreased the currents partially. The intracellular pH in the vicinity of the plasma membrane was dropped by the acid-inducible H(+) influx currents, which caused overshoot of the voltage-gated H(+) channels after removal of acids. The H(+) influx currents were smaller in undifferentiated, mononuclear RAW cells and were negligible in COS7 cells. These data suggest that the acid-inducible H(+) influx (H(+) leak) pathway may be an additional mechanism modifying the pH environments of osteoclasts upon exposure to strong acids.

  3. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    PubMed

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  4. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats.

  5. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    PubMed Central

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  6. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  7. The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells.

    PubMed

    Goldman, Aaron; Chen, HwuDauRw; Khan, Mohammad R; Roesly, Heather; Hill, Kimberly A; Shahidullah, Mohammad; Mandal, Amritlal; Delamere, Nicholas A; Dvorak, Katerina

    2011-01-01

    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na(+)/H(+) exchanger (NHE) and Na(+) influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM-0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na(+), subsequent loss of intracellular K(+), an increase of Ca(2+) and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na(+), K(+) and Ca(2+) changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na(+) levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na(+) concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na(+) influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis.

  8. DOSE-RESPONSE OF PERFLUOROOCTANOIC ACID-INDUCED IMMUNOMODULATION IN ADULT C57BL/6 MICE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), used in fluoropolymer production, is environmentally persistent, present in the human population worldwide, and is associated with myriad health effects under laboratory conditions. A preliminary risk assessment by the US EPA identified immunosuppre...

  9. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    PubMed Central

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  10. A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites.

    PubMed

    Al-Noori, S; Swann, J W

    2000-01-01

    Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors. In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.

  11. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    PubMed

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  12. The acid-induced folded state of Sac7d is the native state.

    PubMed Central

    Bedell, J. L.; McCrary, B. S.; Edmondson, S. P.; Shriver, J. W.

    2000-01-01

    Sac7d unfolds at low pH in the absence of salt, with the greatest extent of unfolding obtained at pH 2. We have previously shown that the acid unfolded protein is induced to refold by decreasing the pH to 0 or by addition of salt (McCrary BS, Bedell J. Edmondson SP, Shriver JW, 1998, J Mol Biol 276:203-224). Both near-ultraviolet circular dichroism spectra and ANS fluorescence enhancements indicate that the acid- and salt-induced folded states have a native fold and are not molten globular. 1H,15N heteronuclear single quantum coherence NMR spectra confirm that the native, acid-, and salt-induced folded states are essentially identical. The most significant differences in amide 1H and 15N chemical shifts are attributed to hydrogen bonding to titrating carboxyl side chains and through-bond inductive effects. The 1H NMR chemical shifts of protons affected by ring currents in the hydrophobic core of the acid- and salt-induced folded states are identical to those observed in the native. The radius of gyration of the acid-induced folded state at pH 0 is shown to be identical to that of the native state at pH 7 by small angle X-ray scattering. We conclude that acid-induced collapse of Sac7d does not lead to a molten globule but proceeds directly to the native state. The folding of Sac7d as a function of pH and anion concentration is summarized with a phase diagram that is similar to those observed for other proteins that undergo acid-induced folding except that the A-state is encompassed by the native state. These results demonstrate that formation of a molten globule is not a general property of proteins that are refolded by acid. PMID:11106160

  13. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    SciTech Connect

    Kim, Hag Dong; Jang, Chang-Young; Choe, Jeong Min; Sohn, Jeongwon; Kim, Joon

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  14. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    PubMed

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  15. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  16. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (109 CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats. PMID:27433160

  17. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Dembiński, Artur; Warzecha, Zygmunt; Ceranowicz, Piotr; Dembiński, Marcin; Cieszkowski, Jakub; Gosiewski, Tomasz; Bulanda, Małgorzata; Kuśnierz-Cabala, Beata; Gałązka, Krystyna; Konturek, Peter Christopher

    2016-01-01

    Background. Inflammatory bowel disease results from the dysregulation of immune response to environmental and microbial agents in genetically susceptible individuals. The aim of the present study was to examine the effect of rifaximin and/or Mutaflor (Escherichia coli Nissle 1917, EcN) administration on the healing of acetic acid-induced colitis. Methods. Colitis was induced in male Wistar rats by rectal enema with 3.5% acetic acid solution. Rifaximin (50 mg/kg/dose) and/or Mutaflor (10(9) CFU/dose) were given intragastrically once a day. The severity of colitis was assessed at the 8th day after induction of inflammation. Results. Treatment with rifaximin significantly accelerated the healing of colonic damage. This effect was associated with significant reversion of the acetic acid-evoked decrease in mucosal blood flow and DNA synthesis. Moreover, administration of rifaximin significantly reduced concentration of proinflammatory TNF-α and activity of myeloperoxidase in colonic mucosa. Mutaflor given alone was without significant effect on activity of colitis. In contrast, Mutaflor given in combination with rifaximin significantly enhanced therapeutic effect of rifaximin. Moreover, Mutaflor led to settle of the colon by EcN and this effect was augmented by pretreatment with rifaximin. Conclusion. Rifaximin and Mutaflor exhibit synergic anti-inflammatory and therapeutic effect in acetic acid-induced colitis in rats.

  18. Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-01-01

    A possible neuroprotective role has been recently suggested for 3H3MGCoA reductase inhibitors (statins). Here, we sought to determine neuroprotective effect of statins in quinolinic acid induced neurotoxicity in rats. Rats were surgically administered quinolinic acid and treated with Atorvastatin (10, 20 mg/kg), simvastatin (15, 30 mg/kg) and fluvastatin (5, 10 mg/kg) once daily up to 3 weeks. Atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) treatment significantly attenuated the quinolinic acid induced behavioral (locomotor activity, rotarod performance and beam walk test), biochemical (lipid peroxidation, nitrite concentration, SOD and catalase), mitochondrial enzyme complex alterations in rats suggesting their free radical scavenging potential. Additionally, atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) significantly decrease the TNF-α level and striatal lesion volume in quinolinic acid treated animals indicating their anti-inflammatory effects. In comparing the protective effect of different statins, atorvastatin is effective at both the doses while simvastatin and fluvastatins at respective lower doses were not able to produce the protective effect in quinolinic acid treated animals. These modulations can account, at least partly, for the beneficial effect of statins in our rodent model of striatal degeneration. Our findings show that statins could be explored as possible neuroprotective agents for neurodegenerative disorders such as HD.

  19. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa. PMID:26798415

  20. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  1. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-09-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  2. Deoxycholic and chenodeoxycholic bile acids induce apoptosis via oxidative stress in human colon adenocarcinoma cells.

    PubMed

    Ignacio Barrasa, Juan; Olmo, Nieves; Pérez-Ramos, Pablo; Santiago-Gómez, Angélica; Lecona, Emilio; Turnay, Javier; Antonia Lizarbe, M

    2011-10-01

    The continuous exposure of the colonic epithelium to high concentrations of bile acids may exert cytotoxic effects and has been related to pathogenesis of colon cancer. A better knowledge of the mechanisms by which bile acids induce toxicity is still required and may be useful for the development of new therapeutic strategies. We have studied the effect of deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) treatments in BCS-TC2 human colon adenocarcinoma cells. Both bile acids promote cell death, being this effect higher for CDCA. Apoptosis is detected after 30 min-2 h of treatment, as observed by cell detachment, loss of membrane asymmetry, internucleosomal DNA degradation, appearance of mitochondrial transition permeability (MPT), and caspase and Bax activation. At longer treatment times, apoptosis is followed in vitro by secondary necrosis due to impaired mitochondrial activity and ATP depletion. Bile acid-induced apoptosis is a result of oxidative stress with increased ROS generation mainly by activation of plasma membrane enzymes, such as NAD(P)H oxidases and, to a lower extent, PLA2. These effects lead to a loss of mitochondrial potential and release of pro-apoptotic factors to the cytosol, which is confirmed by activation of caspase-9 and -3, but not caspase-8. This initial apoptotic steps promote cleavage of Bcl-2, allowing Bax activation and formation of additional pores in the mitochondrial membrane that amplify the apoptotic signal.

  3. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    PubMed Central

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  4. Ginkgolic acids induce neuronal death and activate protein phosphatase type-2C.

    PubMed

    Ahlemeyer, B; Selke, D; Schaper, C; Klumpp, S; Krieglstein, J

    2001-10-26

    The standardized extract from Ginkgo biloba (EGb 761) is used for the treatment of dementia. Because of allergenic and genotoxic effects, ginkgolic acids are restricted in EGb 761 to 5 ppm. The question arises whether ginkgolic acids also have neurotoxic effects. In the present study, ginkgolic acids caused death of cultured chick embryonic neurons in a concentration-dependent manner, in the presence and in the absence of serum. Ginkgolic acids-induced death showed features of apoptosis as we observed chromatin condensation, shrinkage of the nucleus and reduction of the damage by the protein synthesis inhibitor cycloheximide, demonstrating an active type of cell death. However, DNA fragmentation detected by the terminal-transferase-mediated ddUTP-digoxigenin nick-end labeling (TUNEL) assay and caspase-3 activation, which are also considered as hallmarks of apoptosis, were not seen after treatment with 150 microM ginkgolic acids in serum-free medium, a dose which increased the percentage of neurons with chromatin condensation and shrunken nuclei to 88% compared with 25% in serum-deprived, vehicle-treated controls. This suggests that ginkgolic acid-induced death showed signs of apoptosis as well as of necrosis. Ginkgolic acids specifically increased the activity of protein phosphatase type-2C, whereas other protein phosphatases such as protein phosphatases 1A, 2A and 2B, tyrosine phosphatase, and unspecific acid- and alkaline phosphatases were inhibited or remained unchanged, suggesting protein phosphatase 2C to play a role in the neurotoxic effect mediated by ginkgolic acids.

  5. CA3 Synaptic Silencing Attenuates Kainic Acid-Induced Seizures and Hippocampal Network Oscillations123

    PubMed Central

    Yu, Lily M. Y.; Wintzer, Marie E.

    2016-01-01

    Abstract Epilepsy is a neurological disorder defined by the presence of seizure activity, manifest both behaviorally and as abnormal activity in neuronal networks. An established model to study the disorder in rodents is the systemic injection of kainic acid, an excitatory neurotoxin that at low doses quickly induces behavioral and electrophysiological seizures. Although the CA3 region of the hippocampus has been suggested to be crucial for kainic acid-induced seizure, because of its strong expression of kainate glutamate receptors and its high degree of recurrent connectivity, the precise role of excitatory transmission in CA3 in the generation of seizure and the accompanying increase in neuronal oscillations remains largely untested. Here we use transgenic mice in which CA3 pyramidal cell synaptic transmission can be inducibly silenced in the adult to demonstrate CA3 excitatory output is required for both the generation of epileptiform oscillatory activity and the progression of behavioral seizures. PMID:27022627

  6. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    PubMed

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  7. Neuroprotective effects of butterbur and rough aster against kainic Acid-induced oxidative stress in mice.

    PubMed

    Oh, Sang Hee; Sok, Dai-Eun; Kim, Mee Ree

    2005-01-01

    The separate and combined neuroprotective effects of rough aster (Aster scaber) and butterbur (Petasite japonicus) extracts against oxidative damage in the brain of mice challenged with kainic acid were examined by comparing behavioral changes and biochemical parameters of oxidative stress. Rough aster butanol extract (400 mg/kg) and/or butterbur butanol extract (150 or 400 mg/kg) were administered to male ICR mice, 6-8 weeks old, through a gavage for 4 days consecutively, and on day 4, kainic acid (50 mg/kg) was administered intraperitoneally. Compared with the vehicle-treated control, no significant changes in body and brain weight were observed in mice administered rough aster or butterbur butanol extract. Administration of kainic acid only, causing a lethality of approximately 54%, resulted in a significant decrease of total glutathione level and increase of thiobarbituric acid-reactive substances (TBARS) value in brain tissue. The administration of butterbur or rough aster extract (400 mg/kg) decreased the lethality (50%) of kainic acid to 25%, alleviated the behavioral signs of neurotoxicity, restored the cytosolic glutathione level of brain homogenate to approximately 80% (P < .05), and reduced kainic acid-induced increases in TBARS values. In contrast to no significant neuroprotection by butterbur extract at a low dose (150 mg/kg), the combination of rough aster extract and butterbur extract reduced the lethality to 12.5%. Moreover, the combination delayed the onset time of behavioral signs by twofold, and significantly preserved the level of cytosolic glutathione peroxidase and glutathione reductase activities. However, the other biochemical parameters were not altered significantly by the combination. Thus, the combination of two vegetable extracts significantly increased the neuroprotective action against kainic acid-induced neurotoxicity. Based on these findings, the combination of butterbur extract and rough aster extract contains a functional agent or

  8. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    PubMed

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  9. Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming.

    PubMed

    Sayed, Nazish; Ospino, Frank; Himmati, Farhan; Lee, Jieun; Chanda, Palas; Mocarski, Edward S; Cooke, John P

    2017-03-09

    We have revealed a critical role for innate immune signaling in nuclear reprogramming to pluripotency, and in the nuclear reprogramming required for somatic cell transdifferentiation. Activation of innate immune signaling causes global changes in the expression and activity of epigenetic modifiers to promote epigenetic plasticity. In our previous articles, we focused on the role of toll-like receptor 3 (TLR3) in this signaling pathway. Here, we define the role of another innate immunity pathway known to participate in response to viral RNA, the retinoic acid-inducible gene 1 receptor (RIG-1)-like receptor (RLR) pathway. This pathway is represented by the sensors of viral RNA, RIG-1, LGP2, and melanoma differentiation-associated protein 5 (MDA5). We first found that TLR3 deficiency only causes a partial inhibition of nuclear reprogramming to pluripotency in mouse tail-tip fibroblasts, which motivated us to determine the contribution of RLR. We found that knockdown of interferon beta promoter stimulator 1, the common adaptor protein for the RLR family, substantially reduced nuclear reprogramming induced by retroviral or by modified messenger RNA expression of Oct 4, Sox2, KLF4, and c-MYC (OSKM). Importantly, a double knockdown of both RLR and TLR3 pathway led to a further decrease in induced pluripotent stem cell (iPSC) colonies suggesting an additive effect of both these pathways on nuclear reprogramming. Furthermore, in murine embryonic fibroblasts expressing a doxycycline (dox)-inducible cassette of the genes encoding OSKM, an RLR agonist increased the yield of iPSCs. Similarly, the RLR agonist enhanced nuclear reprogramming by cell permeant peptides of the Yamanaka factors. Finally, in the dox-inducible system, RLR activation promotes activating histone marks in the promoter region of pluripotency genes. To conclude, innate immune signaling mediated by RLR plays a critical role in nuclear reprogramming. Manipulation of innate immune signaling may facilitate

  10. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: effects on transmitter release.

    PubMed

    Miralles, F; Marsal, J; Peres, J; Solsona, C

    1996-04-01

    The actions of the nonsteroidal antiinflammatory drug niflumic acid were studied on frog neuromuscular preparations by conventional electrophysiological techniques. Niflumic acid reduced the amplitude and increased the latency of endplate potentials in a concentration-dependent manner. Neuromuscular junctions pretreated with niflumic acid (0.05-0.5 mM) showed much less depression than control when they were stimulated with trains of impulses. Inhibition of acetylcholine release was reverted by raising the extracellular Ca(2+) concentration but not by simply washing out the preparations with niflumic acid-free solutions. Pretreatment with indomethacin (0.1 mM), another nonsteroidal antiinflammatory drug, did not affect the niflumic acid-induced inhibition of evoked responses. Niflumic acid (0.1 mM) did not change the amplitude of miniature endplate potentials and had a dual action on the frequency of miniatures: it decreased their frequency at 0.1 mM whereas it produced an enormous increase in the rate of spontaneous discharge at 0.5 mM. Niflumic acid (0.1 - 1 mM) reversibly increased the amplitude and affected the kinetics of presynaptic voltage-activated K+ current and Ca(2+)-activated K(+) current in a concentration-dependent manner. Niflumic acid (0.1 - 1 mM) irreversibly decreased the amplitude and reversibly affected the kinetics of the nodal Na(+) current. Indomethacin (0.1 mM) had no effect on presynaptic currents. In conclusion, niflumic acid reduces acetylcholine release by increasing presynaptic K+ currents. This may shorten the depolarizing phase of the presynaptic action potential and may reduce the entry of Ca(2+) with each impulse.

  11. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice.

    PubMed

    Kumar, Dev; Singla, Surinder K; Puri, Veena; Puri, Sanjeev

    2015-01-01

    The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) represent family of structurally-related eukaryotic transcription factors which regulate diverse array of cellular processes including immunological responses, inflammation, apoptosis, growth & development. Increased expression of NF-kB has often been seen in many diverse diseases, suggesting the importance of genomic deregulation to disease pathophysiology. In the present study we focused on acute kidney injury (AKI), which remains one of the major risk factor showing a high rate of mortality and morbidity. The pathology associated with it, however, remains incompletely known though inflammation has been reported to be one of the major risk factor in the disease pathophysiology. The role of NF-kB thus seemed pertinent. In the present study we show that high dose of folic acid (FA) induced acute kidney injury (AKI) characterized by elevation in levels of blood urea nitrogen & serum creatinine together with extensive tubular necrosis, loss of brush border and marked reduction in mitochondria. One of the salient observations of this study was a coupled increase in the expression of renal, relA, NF-kB2, and p53 genes and proteins during folic acid induced AKI (FA AKI). Treatment of mice with NF-kB inhibitor, pyrrolidine dithio-carbamate ammonium (PDTC) lowered the expression of these transcription factors and ameliorated the aberrant renal function by decreasing serum creatinine levels. In conclusion, our results suggested that NF-kB plays a pivotal role in maintaining renal function that also involved regulating p53 levels during FA AKI.

  12. Twisting and Writhing with George Ellery Hale

    NASA Astrophysics Data System (ADS)

    Canfield, Richard C.

    2013-07-01

    Early in his productive career in astronomy, George Ellery Hale developed innovative instrumentation that allowed him to image the magnetically-dominated solar chromosphere. Among the solar phenomena he discovered were sunspot vortices, which he attributed to storms akin to cyclones in our own atmosphere. Much more recently, physicists discovered a quantity that is very well conserved in ideal magnetohydrodynamics: magnetic helicity. Our contemporary understanding of Hale's vortices as a consequence of large-scale twist in sunspot magnetic fields hinges on this conservation. I will review the crucial role that this property plays in the hemispheric and solar cycle dependences of Hales vortices, as well as solar flares and CMEs.

  13. DIBROMOACETIC ACID-INDUCED ELEVATIONS OF ESTRADIOL IN THE CYCLING AND OVARIECTOMOZED/ESTRADIOL-IMPLANTED FEMALE RAT

    EPA Science Inventory

    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations of Estradiol in Both Cycling and Ovariectomized / Estradiol-implanted Female Rats

    ABSTRACT
    Haloacetic acids are one of the principal classes of disinfection by-products generated by the chlorination of mun...

  14. DIBROMOACETIC ACID-INDUCED ELEVATIONS IN CIRCULATING ESTRADIOL: EFFECTS IN BOTH CYCLING AND OVARIECTOMIZED/STEROID-PRIMED FEMALE RATS

    EPA Science Inventory

    RTD-03-031
    Goldman, JM and Murr, AS. Dibromoacetic Acid-induced Elevations in Circulating Estradiol: Effects in Both Cycling and Ovariectomized/Steroid-primed Female Rats. Reproductive Toxicology (in press).

    Abstract

    Oral exposures to high concentrations of th...

  15. Transcriptional analysis of the acid-inducible asr gene in enterobacteria.

    PubMed

    Seputiene, Vaida; Suziedelis, Kestutis; Normark, Staffan; Melefors, Ojar; Suziedeliene, Edita

    2004-09-01

    We show here that transcription of the asr gene in Escherichia coli, Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae and Enterobacter cloacae is strongly dependent on the acidification level of the growth medium, with maximal induction at pH 4.0-4.5 as determined by Northern hybridization analysis. Previous gene array analyses have also shown that asr is the most acid-induced gene in the E. coli genome. Sequence alignment of the asr promoters from different enterobacterial species identified a highly conserved region located at position -70 to -30 relative to the asr transcriptional start site. By deletion of various segments of this region in the E. coli asr promoter it was shown that sequences upstream from the -40 position were important for induction. Transcription from the E. coli asr promoter was demonstrated to be growth-phase-dependent and to require the alternative sigma factor RpoS (sigma(S)) in stationary phase. Transcription of the asr gene was also found to be subject to negative control by the nucleoid protein H-NS.

  16. CCN1 is critical for acid-induced esophageal epithelial cell transformation.

    PubMed

    Modak, Cristina; Mouazzen, Wasim; Narvaez, Reinier; Reavis, Kevin M; Chai, Jianyuan

    2010-02-19

    CCN1 is a matricellular protein involved in both wound healing and cancer cell invasion. Increased CCN1 expression has been associated with the development of Barrett's esophagus and the increased risk of progression to esophageal adenocarcinoma. In both cases, acid reflux is a major contributor. Low pH has been shown to induce CCN1 gene expression in esophageal epithelial cells. Here we demonstrated that both CCN1 and low pH could cause esophageal epithelial cell transformation, including loss of E-cadherin, disruption of cell-cell junctions, and expression of mesenchymal markers. Furthermore, knockdown of CCN1 through RNA interference sufficiently attenuated acid-driven cell phenotypic changes, while over-expression of CCN1 exacerbated these effects, indicating a critical role of CCN1 in acid-induced esophageal epithelial cell transformation. Given the pivotal role of low pH in gastro-esophageal reflux disease and its progression towards esophageal adenocarcinoma, our study identified CCN1 as a key molecule mediating this process.

  17. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    PubMed

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  18. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    PubMed

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  19. Palmitoleic acid induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine.

    PubMed

    Oyanagi, Eri; Uchida, Masataka; Miyakawa, Takeshi; Miyachi, Motohiko; Yamaguchi, Hidetaka; Nagami, Kuniatsu; Utsumi, Kozo; Yano, Hiromi

    Although palmitoleic acid (C16:1) is associated with arrhythmias, and increases in an age-dependent matter, the effects of L-carnitine, which is essential for the transport of long-chain fatty acids into the mitochondria, are unclear. It has been postulated that L-carnitine may attenuate palmitate (C16:0)-induced mitochondrial dysfunction and the apoptosis of cardiomyocytes. The aim of this study was to elucidate the activity of L-carnitine in the prevention of the palmitoleic acid-induced mitochondrial membrane permeability transition and cytochrome c release using isolated cardiac mitochondria from rats. Palmitoleoyl-CoA-induced mitochondrial respiration was not accelerated by L-carnitine treatment, and this respiration was slightly inhibited by oligomycin, which is an inhibitor of ATP synthase. Despite pretreatment with L-carnitine, the mitochondrial membrane potential decreased and mitochondrial swelling was induced by palmitoleoyl-CoA. In the presence of a combination of L-carnitine and tiron, a free radical scavenger, there was attenuated mitochondrial swelling and cytochrome c release following palmitoleoyl-CoA treatment. We concluded that palmitoleic acid, but not palmitate, induces the cardiac mitochondrial membrane permeability transition despite the presence of L-carnitine.

  20. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  1. Effect of galactose on acid induced molten globule state of Soybean Agglutinin: Biophysical approach

    NASA Astrophysics Data System (ADS)

    Alam, Parvez; Naseem, Farha; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2015-11-01

    In the present study the formation of molten globule-like unfolding intermediate Soybean Agglutinin (SBA) in acidic pH range has been established with the help of acrylamide quenching, intrinsic fluorescence, ANS fluorescence measurement, far UV CD and dynamic light scattering measurement. A marked increase in ANS fluorescence was observed at pH 2.2. Ksv of acrylamide quenching was found to be higher at pH 2.2 than that of native SBA at pH 7. Far UV CD spectra of pH induced state suggest that SBA shows significant retention of secondary structure closure to native. Hydrodynamic radius of SBA at pH 2.2 was found be more as compared to native state and also in other pH induced states. Further we checked the effect of galactose on the molten globule state of SBA. This study suggests that SBA exist as molten globule at pH 2.2 and this study will help in acid induced molten globule state of other proteins.

  2. Pulmonary vasoconstriction in oleic acid induced lung injury. A morphometric study.

    PubMed Central

    Grotjohan, H. P.; van der Heijde, R. M.; Wagenvoort, C. A.; Wagenvoort, N.; Versprille, A.

    1993-01-01

    Distribution and severity of active vasoconstriction of muscular pulmonary arteries were morphometrically assessed in anaesthetized, paralysed and mechanically ventilated pigs with respiratory distress, induced by oleic acid. Vasoconstriction was deduced from the medial thickness which was measured and expressed as a percentage of external diameter. Six pigs received oleic acid (0.12 +/- 0.07 ml/kg), dissolved 1:1 in 96% alcohol, in multiple injections of 0.1 ml. Six pigs were used as controls. After the oleic acid injections a stable hypoxaemia (PaO2 = 57 +/- 8 mmHg, at an inspiratory oxygen fraction of 0.6) and pulmonary hypertension (mean Ppa = 36 +/- 2 mmHg) were obtained for several hours. Electron microscopy revealed swelling of endothelial cells with signs of degeneration. Medial thickness was far greater in the oleic acid group than in the control group; overall mean values were 8.1 +/- 3.2 and 3.8 +/- 1.7% respectively (P < 0.001). Arteries with prominent vasoconstriction were lying in clusters. This pattern was the same in dependent and non-dependent regions. We concluded that in oleic acid induced respiratory distress active vasoconstriction of muscular pulmonary arteries is an important factor in the development of pulmonary hypertension. Besides vasoconstriction, endothelial swelling and intravascular clotting may contribute to the development of pulmonary hypertension. Images Figure 1 Figure 2 Figure 3 PMID:8398807

  3. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  4. Tiagabine treatment in kainic acid induced cerebellar lesion of dystonia rat model

    PubMed Central

    Wang, Tsui-chin; Ngampramuan, Sukonthar; Kotchabhakdi, Naiphinich

    2016-01-01

    Dystonia is a neurological disorder characterized by excessive involuntary muscle contractions that lead to twisting movements. The exaggerated movements have been studied and have implicated basal ganglia as the point of origin. In more recent studies, the cerebellum has also been identified as the possible target of dystonia, in the search for alternative treatments. Tiagabine is a selective GABA transporter inhibitor, which blocks the reuptake and recycling of GABA. The study of GABAergic drugs as an alternative treatment for cerebellar induced dystonia has not been reported. In our study, tiagabine was i.p. injected into kainic acid induced, cerebellar dystonic adult rats, and the effects were compared with non-tiagabine injected and sham-operated groups. Beam walking apparatus, telemetric electromyography (EMG) recording, and histological verification were performed to confirm dystonic symptoms in the rats on post-surgery treatment. Involuntary dystonic spasm was observed with repetitive rigidity, and twisting movements in the rats were also confirmed by a high score on the dystonic scoring and a high amplitude on the EMG data. The rats with tiagabine treatment were scored based on motor amelioration assessed via beam walking. The result of this study suggests and confirms that low dose of kainic acid microinjection is sufficient to induce dystonia from the cerebellar vermis. In addition, from the results of the EMG recording and the behavioral assessment through beam walking, tiagabine is demonstrated as being effective in reducing dystonic spasm and may be a possible alternative therapeutic drug in the treatment of dystonia. PMID:28337103

  5. Involvement of p38 MAPK and Nrf2 in phenolic acid-induced P-form phenol sulfotransferase expression in human hepatoma HepG2 cells.

    PubMed

    Yeh, Chi-Tai; Yen, Gow-Chin

    2006-05-01

    Phenolic acids have significant biological and pharmacological properties and some have demonstrated remarkable ability to alter sulfate conjugation. However, the modulation mechanisms of phenolic acids on phenol sulfotransferase expression have not been described. In the present study, we investigated the effects of phenolic acids on the expression of the Phase II P-form of phenol sulfotransferase (PST-P) in human hepatoma HepG2 cells. RT-PCR and western blot data revealed that gallic acid induced increase in PST-P expression at the mRNA and protein levels, respectively. This induction was also marked by an increase in PST-P activity. Actinomycin D and cycloheximide inhibited gallic acid-responsive PST-P mRNA expression, indicating that gallic acid is a requirement for transcription and de novo protein synthesis. Transient transfection of HepG2 cells with a reporter plasmid of the upstream region of the human PST gene caused a significant increase in reporter gene activity after gallic acid exposure. Moreover, gallic acid increased the nuclear levels of Nrf2, a transcription factor governing antioxidant response element (ARE). Electrophoretic mobility shift assay showed increased binding of nuclear proteins to ARE consensus sequence after treatment with gallic acid. While investigating the signaling pathways responsible for PST-P induction, we observed that gallic acid activated the p38 mitogen-activated protein kinase (MAPK) pathway. SB203580, a specific inhibitor of p38 MAPK, abolished gallic acid-induced PST-P protein expression. Similarly, gallic acid also caused an accumulation of Nrf2. Moreover, the protective effects of gallic acid on tert-butyl hydroperoxide-induced toxicity was partially blocked by p38 MAPK and PST-P inhibitors, further demonstrating that gallic acid attenuates oxidative stress through a pathway that involves p38 MAPK and PST-P. These results indicate that gallic acid is a potent inducer of PST-P and that PST-P induction is responsible

  6. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    PubMed

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  7. Praeruptorin D and E attenuate lipopolysaccharide/hydrochloric acid induced acute lung injury in mice.

    PubMed

    Yu, Peng-Jiu; Li, Jing-Rong; Zhu, Zheng-Guang; Kong, Huan-Yu; Jin, Hong; Zhang, Jun-Yan; Tian, Yuan-Xin; Li, Zhong-Huang; Wu, Xiao-Yun; Zhang, Jia-Jie; Wu, Shu-Guang

    2013-06-15

    Acute lung injury is a life-threatening syndrome characterized by overwhelming lung inflammation and increased microvascular permeability, which causes a high mortality rate worldwide. The dry root of Peucedanum praeruptorum Dunn has been long used to treat respiratory diseases in China. In the present study, Praeruptorin A, C, D and E (PA, PC, PD and PE), four pyranocoumarins extracted from this herb, have been investigated for the pharmacological effects in experimental lung injury mouse models. In lipopolysaccharide (LPS) challenged mice, PA and PC did not show protective effect against lung injury at the dose of 80 mg/kg. However, PD and PE significantly inhibited the infiltration of activated polymorphonuclear leukocytes (PMNs) and decreased the levels of TNF-α and IL-6 in bronchoalveolar lavage fluid at the same dose. There was no statistically significant difference between PD and PE group. Further study demonstrated that PD and PE suppressed protein extravasations in bronchoalveolar lavage fluid, attenuated myeloperoxidase (MPO) activity and the pathological changes in the lung. Both PD and PE suppressed LPS induced Nuclear Factor-kappa B (NF-κB) pathway activation in the lung by decreasing the cytoplasmic loss of Inhibitor κB-α (IκB-α) protein and inhibiting the translocation of p65 from cytoplasm to nucleus. We also extended our study to acid-induced acute lung injury and found that these two compounds protected mice from hydrochloric acid (HCl)-induced lung injury by inhibiting PMNs influx, IL-6 release and protein exudation. Taken together, these results suggested that PD and PE might be useful in the therapy of lung injury.

  8. The cumulus cell layer protects the bovine maturing oocyte against fatty acid-induced lipotoxicity.

    PubMed

    Lolicato, Francesca; Brouwers, Jos F; de Lest, Chris H A van; Wubbolts, Richard; Aardema, Hilde; Priore, Paola; Roelen, Bernard A J; Helms, J Bernd; Gadella, Bart M

    2015-01-01

    Mobilization of fatty acids from adipose tissue during metabolic stress increases the amount of free fatty acids in blood and follicular fluid and is associated with impaired female fertility. In a previous report, we described the effects of the three predominant fatty acids in follicular fluid (saturated palmitate and stearate and unsaturated oleate) on oocyte maturation and quality. In the current study, the effects of elevated fatty acid levels on cumulus cells were investigated. In a dose-dependent manner, the three fatty acids induced lipid storage in cumulus cells accompanied by an enhanced immune labeling of perilipin-2, a marker for lipid droplets. Lipidomic analysis confirmed incorporation of the administered fatty acids into triglyceride, resulting in a 3- to 6-fold increase of triglyceride content. In addition, palmitate selectively induced ceramide formation, which has been implicated in apoptosis. Indeed, of the three fatty acids tested, palmitate induced reactive oxygen species formation, caspase 3 activation, and mitochondria deterioration, leading to degeneration of the cumulus cell layers. This effect could be mimicked by addition of the ceramide-C2 analog and could be inhibited by the ceramide synthase inhibitor fumonisin-B1. Interfering with the intactness of the cumulus cell layers, either by mechanical force or by palmitate treatment, resulted in enhanced uptake of lipids in the oocyte and increased radical formation. Our results show that cumulus cells act as a barrier, protecting oocytes from in vitro induced lipotoxic effects. We suggest that this protective function of the cumulus cell layers is important for the developmental competence of the oocyte. The relevance of our findings for assisted reproduction technologies is discussed.

  9. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    PubMed

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects.

  10. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant.

  11. Antinociceptive activity of discretamine isolated from Duguetia moricandiana.

    PubMed

    Almeida, J R G S; de Lima, J T; de Oliveira, H R; de Oliveira, M R; Meira, P R M; Lúcio, A S S C; Barbosa Filho, J M; Quintans Júnior, L J

    2011-12-01

    The phytochemical study of Duguetia moricandiana Mart. (Annonaceae) yielded the isolation of the alkaloid which was identified by spectral analysis as discretamine. The evaluation of antinociceptive activity carried out by the acetic acid-induced writhing, formalin and hot plate tests in mice, suggests a potent antinociceptive effect. Discretamine (5, 10 and 20 mg kg⁻¹, i.p.) significantly reduced the number of writhes similarly at all doses tested and the number of paw licks during the first phase of formalin test when compared to control. The effect of discretamine on hot plate response provides a confirmation of its central effect. These results indicate antinociceptive properties of this alkaloid.

  12. Glucocorticoids modulate amino acid-induced translation initiation in human skeletal muscle.

    PubMed

    Liu, Zhenqi; Li, Guolian; Kimball, Scot R; Jahn, Linda A; Barrett, Eugene J

    2004-08-01

    Amino acids are unique anabolic agents in that they nutritively signal to mRNA translation initiation and serve as substrates for protein synthesis in skeletal muscle. Glucocorticoid excess antagonizes the anabolic action of amino acids on protein synthesis in laboratory animals. To examine whether excessive glucocorticoids modulate mixed amino acid-signaled translation initiation in human skeletal muscle, we infused an amino acid mixture (10% Travasol) systemically to 16 young healthy male volunteers for 6 h in the absence (n = 8) or presence (n = 8) of glucocorticoid excess (dexamethasone 2 mg orally every 6 h for 3 days). Vastus lateralis muscles were biopsied before and after amino acid infusion, and the phosphorylation of eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1), ribosomal protein S6 kinase (p70(S6K)), and eIF2alpha and the guanine nucleotide exchange activity of eIF2B were measured. Systemic infusion of mixed amino acids significantly stimulated the phosphorylation of 4E-BP1 (P < 0.04) and p70(S6K) (P < 0.001) and the dephosphorylation of eIF2alpha (P < 0.003) in the control group. Dexamethasone treatment did not alter the basal phosphorylation state of 4E-BP1, p70(S6K), or eIF2alpha; however, it abrogated the stimulatory effect of amino acid infusion on the phosphorylation of 4E-BP1 (P = 0.31) without affecting amino acid-induced phosphorylation of p70(S6K) (P = 0.002) or dephosphorylation of eIF2alpha (P = 0.003). Neither amino acid nor dexamethasone treatment altered the guanine nucleotide exchange activity of eIF2B. We conclude that changes of amino acid concentrations within the physiological range stimulate mRNA translation by enhancing the binding of mRNA to the 43S preinitiation complex, and the activity of p70(S6K) and glucocorticoid excess blocks the former action in vivo in human skeletal muscle.

  13. Repeated citalopram administration counteracts kainic acid-induced spreading of PSA-NCAM-immunoreactive cells and loss of reelin in the adult mouse hippocampus.

    PubMed

    Jaako, Külli; Aonurm-Helm, Anu; Kalda, Anti; Anier, Kaili; Zharkovsky, Tamara; Shastin, Dmitri; Zharkovsky, Alexander

    2011-09-01

    Systemic or intracerebral administration of kainic acid in rodents induces neuronal death followed by a cascade of neuroplastic changes in the hippocampus. Kainic acid-induced neuroplasticity is evidenced by alterations in hippocampal neurogenesis, dispersion of the granule cell layer and re-organisation of mossy fibres. Similar abnormalities are observed in patients with temporal lobe epilepsy and, therefore, kainic acid-induced hippocampal neuroplasticity might mimic pathological mechanisms leading to the formation of 'epileptic brain' in patients with temporal lobe epilepsy. Previous studies have demonstrated that selective serotonin re-uptake inhibitor antidepressants might reduce the severity of seizures in epileptic patients and reduce neuronal death in laboratory animal models of kainic acid-induced neurotoxicity. In the present study, we investigated whether kainic acid-induced neuroplasticity in mice is modulated by the repeated administration of citalopram, a selective serotonin reuptake inhibitor. We found that at the histopathological level, repeated citalopram treatment counteracted the kainic acid-induced neuronal loss and dispersion of young granule neurons expressing the polysialylated neural cell adhesion molecule within the granule cell layer of the hippocampus. Citalopram also counteracted the downregulation of reelin on both mRNA and protein levels induced by kainic acid administration. Our findings indicate that repeated administration of citalopram is able to prevent kainic acid-induced abnormal brain plasticity and thereby prevent the formation of an epileptic phenotype.

  14. Hot Pepper (Capsicum spp.) protects brain from sodium nitroprusside- and quinolinic acid-induced oxidative stress in vitro.

    PubMed

    Oboh, G; Rocha, J B T

    2008-06-01

    One practical way through which free radical-mediated neurodegenerative diseases could be prevented is through the consumption of food rich in antioxidants. The ability of aqueous extracts of ripe and unripe Capsicum annum, Tepin (CAT) and Capsicum chinese, Habanero (CCH) to prevent lipid peroxidation induced by sodium nitroprusside and quinolinic acid in rat brain in vitro is assessed in this study. The aqueous extract of the peppers were prepared (1 g/20 mL). Incubating rat brain homogenates with pro-oxidant (7 microM sodium nitroprusside [222.5%] and 1 mM quinolinic acid [217.4%]) caused a significant increase (P < .05) in lipid peroxidation in rat brain homogenates. However, the aqueous extract of the peppers (4.2-16.8 mg/mL) caused a significant decrease (P < .05) in the lipid peroxidation in a dose-dependent manner. However, unripe CAT (92.5-55.2%) caused the highest inhibition of sodium nitroprusside-induced lipid peroxidation, while unripe CCH caused the least inhibition (161.0-102.1%). Furthermore, unripe CAT and CCH peppers had a significantly higher (P < .05) inhibitory effect on quinolinic acid-induced lipid peroxidation in rat brain than the ripe pepper (CAT and CCH). Therefore, the protection of the brain tissues by hot pepper depends on the total phenol content in sodium nitroprusside-induced lipid peroxidation, while ripening would reduce the protective properties of hot pepper against quinolinic acid-induced lipid peroxidation. However, unripe CAT has the highest protective properties against sodium nitroprusside- and quinolinic acid-induced lipid peroxidation in rat brain.

  15. Attenuation of kainic acid-induced status epilepticus by inhibition of endocannabinoid transport and degradation in guinea pigs.

    PubMed

    Shubina, Liubov; Aliev, Rubin; Kitchigina, Valentina

    2015-03-01

    Status epilepticus (SE) is a medical emergency associated with a high rate of mortality if not treated promptly. Exogenous and endogenous cannabinoids have been shown to possess anticonvulsant properties both in vivo and in vitro. Here we study the influence of endocannabinoid metabolism on the development of kainic acid-induced SE in guinea pigs. For this purpose, the inhibitors of endocannabinoid transport, AM404, and enzymatic (fatty acid amide hydrolase) degradation, URB597, were applied. Cannabinoid CB1 receptor antagonist, AM251, was also tested. Animal behavior as well as local electric field potentials in four structures: medial septum, hippocampus, entorhinal cortex and amygdala were analyzed when AM404 (120nmol), URB597 (4.8nmol) or AM251 (20nmol) were administrated alone or together with 0.4μg of kainic acid. All substances were injected i.c.v. AM404, URB597 or AM251 administered alone did not alter markedly local field potentials of all four studied structures in the long-term compared with their basal activity. AM404 and URB597 significantly alleviated kainic acid-induced SE, decreasing behavioral manifestations, duration of seizure events and SE in general without changing the amplitude of local field potentials. AM251 did not produce distinct effects on SE in terms of our experimental paradigm. There was no apparent change of the seizure initiation pattern when kainic acid was coadministrated with AM404, URB597 or AM251. The present study provides electrophysiologic and behavioral evidences that inhibition of endocannabinoid metabolism plays a protective role against kainic acid-induced SE and may be employed for therapeutic purposes. Further investigations of the influences of cannabinoid-related compounds on SE genesis and especially epileptogenesis are required.

  16. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    PubMed

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  17. Genetic parameters for rennet- and acid-induced coagulation properties in milk from Swedish Red dairy cows.

    PubMed

    Gustavsson, F; Glantz, M; Poulsen, N A; Wadsö, L; Stålhammar, H; Andrén, A; Lindmark Månsson, H; Larsen, L B; Paulsson, M; Fikse, W F

    2014-01-01

    Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G'), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h(2)) for G' and YS in rennet and acid gels were found to be high (h(2)=0.38-0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G'acid and YSacid, both of which were strong. The high heritability (h(2)=0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and

  18. Effect of hypertonic saline treatment on the inflammatory response after hydrochloric acid-induced lung injury in pigs

    PubMed Central

    Holms, Carla Augusto; Otsuki, Denise Aya; Kahvegian, Marcia; Massoco, Cristina Oliveira; Fantoni, Denise Tabacchi; Gutierrez, Paulo Sampaio; Junior, Jose Otavio Costa Auler

    2015-01-01

    OBJECTIVES: Hypertonic saline has been proposed to modulate the inflammatory cascade in certain experimental conditions, including pulmonary inflammation caused by inhaled gastric contents. The present study aimed to assess the potential anti-inflammatory effects of administering a single intravenous dose of 7.5% hypertonic saline in an experimental model of acute lung injury induced by hydrochloric acid. METHODS: Thirty-two pigs were anesthetized and randomly allocated into the following four groups: Sham, which received anesthesia and were observed; HS, which received intravenous 7.5% hypertonic saline solution (4 ml/kg); acute lung injury, which were subjected to acute lung injury with intratracheal hydrochloric acid; and acute lung injury + hypertonic saline, which were subjected to acute lung injury with hydrochloric acid and treated with hypertonic saline. Hemodynamic and ventilatory parameters were recorded over four hours. Subsequently, bronchoalveolar lavage samples were collected at the end of the observation period to measure cytokine levels using an oxidative burst analysis, and lung tissue was collected for a histological analysis. RESULTS: Hydrochloric acid instillation caused marked changes in respiratory mechanics as well as blood gas and lung parenchyma parameters. Despite the absence of a significant difference between the acute lung injury and acute lung injury + hypertonic saline groups, the acute lung injury animals presented higher neutrophil and tumor necrosis factor alpha (TNF-α), interleukin (IL)-6 and IL-8 levels in the bronchoalveolar lavage analysis. The histopathological analysis revealed pulmonary edema, congestion and alveolar collapse in both groups; however, the differences between groups were not significant. Despite the lower cytokine and neutrophil levels observed in the acute lung injury + hypertonic saline group, significant differences were not observed among the treated and non-treated groups. CONCLUSIONS: Hypertonic saline infusion after intratracheal hydrochloric acid instillation does not have an effect on inflammatory biomarkers or respiratory gas exchange. PMID:26247671

  19. γ-Aminobutyric acid induces resistance against Penicillium expansum by priming of defence responses in pear fruit.

    PubMed

    Yu, Chen; Zeng, Lizhen; Sheng, Kuang; Chen, Fangxia; Zhou, Tao; Zheng, Xiaodong; Yu, Ting

    2014-09-15

    The results from this study showed that treatment with γ-aminobutyric acid (GABA), at 100-1000 μg/ml, induced strong resistance against blue mould rot caused by Penicillium expansum in pear fruit. Moreover, the activities of five defence-related enzymes (including chitinase, β-1,3-glucanase, phenylalnine ammonialyase, peroxidase and polyphenol oxidase) and the expression of these corresponding genes were markedly and/or promptly enhanced in the treatment with GABA and inoculation with P. expansum compared with those that were treated with GABA or inoculated with pathogen alone. In addition, the treatment of pear with GABA had little adverse effect on the edible quality of the fruit. To the best of our knowledge, this is the first report that GABA can effectively reduce fungal disease of harvested fruit. Its mechanisms may be closely correlated with the induction of fruit resistance by priming activation and expression of defence-related enzymes and genes upon challenge with pathogen.

  20. Milk fat responses to butterfat infusion during conjugated linoleic acid-induced milk fat depression in lactating dairy cows.

    PubMed

    Vyas, D; Moallem, U; Teter, B B; Fardin-Kia, A R K; Erdman, R A

    2013-04-01

    During diet-induced milk fat depression (MFD), the short and medium-chain fatty acids (SMCFA), which are synthesized de novo in the mammary gland, are reduced to a much greater extent than the long-chain fatty acids (LCFA) that originate from the circulation. Our hypothesis was that increased availability of SMCFA might rescue conjugated linoleic acid (CLA)-induced MFD in lactating dairy cows. To test that hypothesis, 4 rumen-fistulated lactating Holstein cows (128 ± 23 d in milk) were used in a 4 × 4 Latin square design with 3-wk experimental periods. Treatments were applied during the last 2 wk of each period and included 3× daily abomasal infusion of a total of (1) 230 g/d of LCFA (blend of 59% cocoa butter, 36% olive oil, and 5% palm oil); (2) 420 g/d of butterfat (BF); (3) 230 g/d of LCFA with 27 g/d of CLA (LC-CLA), containing 10 g/d of trans-10,cis-12 CLA; and (4) 420 g/d of butterfat with 27 g/d of CLA (BF-CLA). Butterfat provided 50% of C16 (115 g/d) and similar amounts of C18 FA as found in LCFA, such that the difference between the BF and LCFA treatments was 190 g/d of SMCFA. No treatment effects were observed for DMI or milk yield. Milk fat content was reduced by 41 and 32%, whereas milk fat yield was reduced by 41 and 38% with LC-CLA and BF-CLA, respectively, compared with their respective controls. Abomasal infusion of CLA reduced de novo synthesized fatty acid (DNFA; SMCFA and 50% C16:0) concentration, whereas DNFA tended to be greater with BF infusion. An interaction was observed between SMCFA and CLA as the increased availability of SMCFA reduced stearoyl-CoA-desaturase-1 gene expression, whereas it tended to reduce lipoprotein lipase (LPL), 1-acylglycerol-3-phosphate O-acyltransferase 6 (AGPAT-6), sterol regulatory element-binding protein cleavage-activating protein (SCAP), and peroxisome proliferator-activated receptor γ (PPAR-γ) gene expression in the presence of CLA. The mRNA expression of genes involved in de novo fatty acid synthesis [acetyl-coenzyme A carboxylase α (ACACA) and fatty acid synthase (FASN)], fatty acid uptake (LPL), and triglyceride synthesis [AGPAT-6 and diacylglycerol O-acyltransferase 1 (DGAT-1)] along with protein abundance of the ACC and FASN were reduced with CLA. However, the increased availability of SMCFA had no effect on lipogenic gene expression except for LPL, whose expression was increased with BF infusion. The nutritional manipulation by increasing the intestinal availability of SMCFA was not sufficient to rescue CLA-induced MFD.

  1. Antiviral activity of human oligoadenylate synthetases-like (OASL) is mediated by enhancing retinoic acid-inducible gene I (RIG-I) signaling

    PubMed Central

    Zhu, Jianzhong; Zhang, Yugen; Ghosh, Arundhati; Cuevas, Rolando A.; Forero, Adriana; Dhar, Jayeeta; Ibsen, Mikkel Søes; Schmid-Burgk, Jonathan Leo; Schmidt, Tobias; Ganapathiraju, Madhavi K.; Fujita, Takashi; Hartmann, Rune; Barik, Sailen; Hornung, Veit; Coyne, Carolyn B.; Sarkar, Saumendra N.

    2014-01-01

    SUMMARY Virus infection is sensed in the cytoplasm by retinoic acid-inducible gene I (RIG-I, also known as DDX58), which requires RNA and polyubiquitin binding to induce type I interferon (IFN), and activate cellular innate immunity. We show that the human IFN-inducible oligoadenylate synthetases-like (OASL) protein had antiviral activity and mediated RIG-I activation by mimicking polyubiquitin. Loss of OASL expression reduced RIG-I signaling and enhanced virus replication in human cells. Conversely, OASL expression suppressed replication of a number of viruses in a RIG-I-dependent manner and enhanced RIG-I-mediated IFN induction. OASL interacted and colocalized with RIG-I, and through its C-terminal ubiquitin-like domain specifically enhanced RIG-I signaling. Bone marrow derived macrophages from mice deficient for Oasl2 showed that among the two mouse orthologs of human OASL; Oasl2 is functionally similar to human OASL. Our findings show a mechanism by which human OASL contributes to host antiviral responses by enhancing RIG-I activation. PMID:24931123

  2. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice.

    PubMed

    Holland, William L; Bikman, Benjamin T; Wang, Li-Ping; Yuguang, Guan; Sargent, Katherine M; Bulchand, Sarada; Knotts, Trina A; Shui, Guanghou; Clegg, Deborah J; Wenk, Markus R; Pagliassotti, Michael J; Scherer, Philipp E; Summers, Scott A

    2011-05-01

    Obesity is associated with an enhanced inflammatory response that exacerbates insulin resistance and contributes to diabetes, atherosclerosis, and cardiovascular disease. One mechanism accounting for the increased inflammation associated with obesity is activation of the innate immune signaling pathway triggered by TLR4 recognition of saturated fatty acids, an event that is essential for lipid-induced insulin resistance. Using in vitro and in vivo systems to model lipid induction of TLR4-dependent inflammatory events in rodents, we show here that TLR4 is an upstream signaling component required for saturated fatty acid-induced ceramide biosynthesis. This increase in ceramide production was associated with the upregulation of genes driving ceramide biosynthesis, an event dependent of the activity of the proinflammatory kinase IKKβ. Importantly, increased ceramide production was not required for TLR4-dependent induction of inflammatory cytokines, but it was essential for TLR4-dependent insulin resistance. These findings suggest that sphingolipids such as ceramide might be key components of the signaling networks that link lipid-induced inflammatory pathways to the antagonism of insulin action that contributes to diabetes.

  3. A comparative study of the antitussive activity of levodropropizine and dropropizine in the citric acid-induced cough model in normal subjects.

    PubMed

    Fumagalli, G; Cordaro, C I; Vanasia, M; Balzarotti, C; Camusso, L; Caiazzo, G; Maghini, L; Mazzocchi, M; Zennaro, M

    1992-01-01

    Levodropropizine is the levo-rotatory (S)-enantiomer of dropropizine, a racemic non-opiate antitussive agent which has been used clinically for many years. Compared with the racemic drug, levodropropizine exhibits in animal models similar antitussive activity but considerably lower central nervous system (CNS) depressant effects. It is also less likely to cause sedation in treated patients. Since the comparative antitussive potency of the two drugs in clinical experimental models has not been evaluated, the authors performed a randomized, double blind, cross over investigation in which the effects of single oral doses (60 and 90 mg) of levodropropizine and dropropizine were assessed by using the citric acid-induced cough model in eight normal volunteers. Stimulation tests involved inhalation of individual cumulative doses of citric acid (6.3 to 53.3 mg) which at pre-study assessment had been found to induce reproducibly at least ten coughs over a 30 sec period. Each subject was studied by repeating the citric acid stimulation test four times (0 h, 1 h, 2 h and 6 h) on each of five different days separated by intervals of at least three days. In the absence of drug administration (control session), cough response to citric inhalation was remarkably reproducible throughout the 6 h period of observation. A marked and statistically significant reduction in cough response (to about one third--one sixth of the pre-drug values) was observed 1 h after intake for both compounds. At subsequent testing 2 h and 6 h after dosing, cough response was still depressed and did not differ significantly from that observed at 1 h.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1β, and tumor necrosis factor-α via a NF-κB-dependent mechanism in HaCaT keratinocytes.

    PubMed

    Zhou, Bing-rong; Zhang, Jia-an; Zhang, Qian; Permatasari, Felicia; Xu, Yang; Wu, Di; Yin, Zhi-qiang; Luo, Dan

    2013-01-01

    To investigate whether palmitic acid can be responsible for the induction of inflammatory processes, HaCaT keratinocytes were treated with palmitic acid at pathophysiologically relevant concentrations. Secretion levels of interleukin-6 (IL-6), tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), NF- κ B nuclear translocation, NF- κ B activation, Stat3 phosphorylation, and peroxisome proliferator-activated receptor alpha (PPAR α) mRNA and protein levels, as well as the cell proliferation ability were measured at the end of the treatment and after 24 hours of recovery. Pyrrolidine dithiocarbamate (PDTC, a selective chemical inhibitor of NF- κ B) and goat anti-human IL-6 polyclonal neutralizing antibody were used to inhibit NF- κ B activation and IL-6 production, respectively. Our results showed that palmitic acid induced an upregulation of IL-6, TNF- α , IL-1 β secretions, accompanied by NF- κ B nuclear translocation and activation. Moreover, the effect of palmitic acid was accompanied by PPAR α activation and Stat3 phosphorylation. Palmitic acid-induced IL-6, TNF- α , IL-1 β productions were attenuated by NF- κ B inhibitor PDTC. Palmitic acid was administered in amounts able to elicit significant hyperproliferation and can be attenuated by IL-6 blockage. These data demonstrate for the first time that palmitic acid can stimulate IL-6, TNF- α , IL-1 β productions in HaCaT keratinocytes and cell proliferation, thereby potentially contributing to acne inflammation and pilosebaceous duct hyperkeratinization.

  5. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    PubMed

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  6. Allicin Alleviates Inflammation of Trinitrobenzenesulfonic Acid-Induced Rats and Suppresses P38 and JNK Pathways in Caco-2 Cells

    PubMed Central

    Li, Chen; Lun, Weijian; Zhao, Xinmei; Lei, Shan; Guo, Yandong; Ma, Jiayi

    2015-01-01

    Background. Allicin has anti-inflammatory, antioxidative and proapoptotic properties. Aims. To evaluate the effects and investigate the mechanism of allicin on trinitrobenzenesulfonic acid-induced colitis, specifically with mesalazine or sulfasalazine. Methods. 80 rats were divided equally into 8 groups: control; trinitrobenzenesulfonic acid; allicin prevention; allicin; mesalazine; sulfasalazine; allicin + sulfasalazine, and mesalazine + allicin. Systemic and colonic inflammation parameters were analysed. In addition, protein and culture medium of Caco-2 cells treated with various concentrations of IL-1β or allicin were collected for investigation of IL-8, NF-κB p65 P38, ERK, and JNK. One-way ANOVA and Kruskal-Wallis H test were used for parametric and nonparametric tests, respectively. Results. Allicin reduced the body weight loss of trinitrobenzenesulfonic acid-induced rats, histological score, serum TNF-α and IL-1β levels, and colon IL-1β mRNA level and induced serum IL-4 level, particularly in combination with mesalazine. In addition, 1 ng/mL IL-1β stimulated the P38, ERK, and JNK pathways, whereas pretreatment with allicin depressed this phenomenon, except for the ERK pathway. Conclusions. The inflammation induced by trinitrobenzenesulfonic acid is mitigated significantly by allicin treatment, particularly combined with mesalazine. Allicin inhibits the P38 and JNK pathways and the expression of NF-κB which explained the potential anti-inflammatory mechanisms of allicin. PMID:25729217

  7. Protective effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats

    PubMed Central

    Mannasaheb, Basheerahmed A.A.; Kulkarni, Preeti V.; Sangreskopp, Mashood Ahmed; Savant, Chetan; Mohan, Anjana

    2015-01-01

    Introduction: Natural plants always provide core compounds for new drug development. In the present life and food style, inflammatory bowel disease has become common and needs a lead compound for its drug development. Aim: To evaluate the effect of Agave americana Linn. leaf extract in acetic acid-induced ulcerative colitis in rats based on its traditional anti-inflammatory use. Materials and Methods: Male Wistar rats were pretreated with A. americana leaf extract in the dose of 200 and 400 mg/kg p.o. daily for 7 days. On 8th day, 2 ml of 4% v/v acetic acid in saline was instilled into rats’ rectum. Prednisolone was used as standard drug and it was administered on the day of acetic acid instillation and continued for 3 days. Extract treatment was continued till 11th day. Body weight, ulcer score, colonic muscle contraction, antioxidant activity and histopathology were studied. Statistical analysis was performed using Parametric one-way analysis of variance followed by Tukey's posttest. Results: A. americana have retained total body weight significantly (P < 0.01) and decreased colon weight/length ratio. Extract have shown a significant decrease (P < 0.001) in ulcer scores, myeloperoxidase, lipid peroxidase activity. Further, extract have shown significant improvement in colonic muscle contraction, histopathology of colon etc., which is comparable with standard drug. Conclusion: A. americana possess protective effect against acetic acid-induced colitis in rats. PMID:26730148

  8. Nicotinic acid induces secretion of prostaglandin D2 in human macrophages: an in vitro model of the niacin flush.

    PubMed

    Meyers, C Daniel; Liu, Paul; Kamanna, Vaijinath S; Kashyap, Moti L

    2007-06-01

    Nicotinic acid is a safe, broad-spectrum lipid agent shown to prevent cardiovascular disease, yet its widespread use is limited by the prostaglandin D2 (PGD2) mediated niacin flush. Previous research suggests that nicotinic acid-induced PGD2 secretion is mediated by the skin, but the exact cell type remains unclear. We hypothesized that macrophages are a source of nicotinic acid-induced PGD2 secretion and performed a series of experiments to confirm this. Nicotinic acid (0.1-3 mM) induced PGD2 secretion in cultured human macrophages, but not monocytes or endothelial cells. The PGD2 secretion was dependent on the concentration of nicotinic acid and the time of exposure. Nicotinuric acid, but not nicotinamide, also induced PGD2 secretion. Pre-incubation of the cells with aspirin (100 microM) entirely prevented the nicotinic acid effects on PGD2 secretion. The PGD2 secreting effects of nicotinic acid were additive to the effects of the calcium ionophore A23187 (6 microM), but were independent of extra cellular calcium. These findings, combined with recent in vivo work, provide evidence that macrophages play a significant role in mediating the niacin flush and may lead to better strategies to eliminate this limiting side effect.

  9. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion.

    PubMed

    Graciano, Maria Fernanda; Valle, Maíra Mello; Curi, Rui; Carpinelli, Angelo Rafael

    2013-01-01

    G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.

  10. Gibberellic Acid-Induced Synthesis of Protease by Isolated Aleurone Layers of Barley 1

    PubMed Central

    Jacobsen, John V.; Varner, J. E.

    1967-01-01

    The production of protease by isolated aleurone layers of barley in response to gibberellic acid has been examined. The protease arises in the aleurone layer and is mostly released from the aleurone cells. The courses of release of amylase and protease from aleurone layers, the dose responses to gibberellic acid and the effects of inhibitors on the production of both enzymes are parallel. As is the case for amylase, protease is made de novo in response to the hormone. These data give some credence to the hypothesis that the effect of gibberellic acid is to promote the simultaneous synthesis and secretion of a group of hydrolases. PMID:16656695

  11. Loss of n-6 fatty acid induced pediatric obesity protects against acute murine colitis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary influences may affect microbiome composition and host immune responses, thereby modulating propensity toward inflammatory bowel diseases: Crohn disease and ulcerative colitis. Dietary n-6 fatty acids have been associated with ulcetative colitis in prospective studies. However, the critical d...

  12. Gibberellic Acid-Induced Aleurone Layers Responding to Heat Shock or Tunicamycin Provide Insight into the N-Glycoproteome, Protein Secretion, and Endoplasmic Reticulum Stress1[W

    PubMed Central

    Barba-Espín, Gregorio; Dedvisitsakul, Plaipol; Hägglund, Per; Svensson, Birte; Finnie, Christine

    2014-01-01

    The growing relevance of plants for the production of recombinant proteins makes understanding the secretory machinery, including the identification of glycosylation sites in secreted proteins, an important goal of plant proteomics. Barley (Hordeum vulgare) aleurone layers maintained in vitro respond to gibberellic acid by secreting an array of proteins and provide a unique system for the analysis of plant protein secretion. Perturbation of protein secretion in gibberellic acid-induced aleurone layers by two independent mechanisms, heat shock and tunicamycin treatment, demonstrated overlapping effects on both the intracellular and secreted proteomes. Proteins in a total of 22 and 178 two-dimensional gel spots changing in intensity in extracellular and intracellular fractions, respectively, were identified by mass spectrometry. Among these are proteins with key roles in protein processing and secretion, such as calreticulin, protein disulfide isomerase, proteasome subunits, and isopentenyl diphosphate isomerase. Sixteen heat shock proteins in 29 spots showed diverse responses to the treatments, with only a minority increasing in response to heat shock. The majority, all of which were small heat shock proteins, decreased in heat-shocked aleurone layers. Additionally, glycopeptide enrichment and N-glycosylation analysis identified 73 glycosylation sites in 65 aleurone layer proteins, with 53 of the glycoproteins found in extracellular fractions and 36 found in intracellular fractions. This represents major progress in characterization of the barley N-glycoproteome, since only four of these sites were previously described. Overall, these findings considerably advance knowledge of the plant protein secretion system in general and emphasize the versatility of the aleurone layer as a model system for studying plant protein secretion. PMID:24344171

  13. Three-dimensional optical tomographic brain imaging during kainic-acid-induced seizures in rats

    NASA Astrophysics Data System (ADS)

    Bluestone, Avraham Y.; Sakamoto, Kenichi; Hielscher, Andreas H.; Stewart, Mark

    2005-04-01

    In this study, we explored the potential of diffuse optical tomography for brain oximetry and describe our efforts towards imaging hemodynamic changes in rat brains during kainic-acid (KA) induced seizures. Using electrophysiological techniques we first showed that KA induces a pronounced transient hypotension in urethane anesthetized rats that is coincident with seizure activity beginning in ventral and spreading to dorsal hippocampus. We observed sustained increases in vagus and sympathetic activity during generalized limbic seizure activity, which alters blood pressure regulation and heart rhythms. Subsequently, we used optical tomographic methods to study KA induced seizures in anesthetized animals to better define the hemodynamic cerebral vascular response. We observed a lateralized increase in deoxyhemoglobin after KA injection at the time when the blood pressure (BP) was decreased. By contrast, injection of phenylephrine produced a symmetric global increase in total hemoglobin. These findings indicate that our instrument is sensitive to the local hemodynamics, both in response to a global increase in blood pressure (phenylephrine injection) and a lateralized decrease in oxyhemoglobin produced by an asymmetric response to KA; a response that may be critically important for severe autonomic nervous system alterations during seizures. The results of this study provide the impetus for combining complimentary modalities, imaging and electrophysiological, to ultimately gain a better understanding of the underlying physiology of seizure activity in the rat.

  14. Yeast acetic acid-induced programmed cell death can occur without cytochrome c release which requires metacaspase YCA1.

    PubMed

    Guaragnella, Nicoletta; Bobba, Antonella; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2010-01-04

    To investigate the role of cytochrome c (cyt c) release in yeast acetic acid-induced programmed cell death (AA-PCD), wild type (wt) and cells lacking metacaspase (Deltayca1), cytochrome c (Deltacyc1,7) and both (Deltacyc1,7Deltayca1) were compared for AA-PCD occurrence, hydrogen peroxide (H(2)O(2)) production and caspase activity. AA-PCD occurs in Deltacyc1,7 and Deltacyc1,7Deltayca1 cells slower than in wt, but similar to that in Deltayca1 cells, in which no cytochrome c release occurs. Both H(2)O(2) production and caspase activation occur in these cells with early and extra-activation in Deltacyc1,7 cells. We conclude that alternative death pathways can be activated in yeast AA-PCD, one dependent on cyt c release, which requires YCA1, and the other(s) independent on it.

  15. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    PubMed

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient.

  16. Galantamine potentiates the protective effect of rofecoxib and caffeic acid against intrahippocampal Kainic acid-induced cognitive dysfunction in rat.

    PubMed

    Kumar, Anil; Prakash, Atish; Pahwa, Deeksha

    2011-05-30

    Role of neuroinflammatory mediators particularly cyclooxygenase (COX), lipoxygenase (LOX), have been well suggested in the pathophysiology of neurodegenerative disorders. Rofecoxib is a selective cyclooxygenase 2 enzymes belongs to non-steroidal anti-inflammatory drug, commonly called as coxibs. Whereas, caffeic acid (3,4-dihydroxycinnamic acid) is one of the natural phenolic compounds and reported to inhibit 5-lipoxygenase (5-LOX) activity as one of mechanisms. Present study has been designed to investigate the effects of rofecoxib, caffeic acid and its potentiation by galantamine against intrahippocampal kainic acid-induced cognitive impairment, oxidative damage and mitochondrial respiratory enzyme alterations in rats. Kainic acid (KA) was administrated in the hippocampus region of rat brain. Various behavioral (locomotor activity and memory performances were assessed by using actophotometer and Morris water maze respectively) followed by oxidative stress, mitochondrial enzyme complex were assessed. Intrahippocampal administration of KA significantly impaired locomotor activity, memory performance, mitochondrial enzyme complexes and caused oxidative stress as compared to sham treatment. Rofecoxib (5 and 10mg/kg), caffeic acid (5 and 10mg/kg), Gal (2.5 and 5mg/kg) treatment for 14 days significantly improved locomotor activity, memory retention and oxidative defense (as evidenced by decrease lipid peroxidation, nitrite, increased superoxide dismutase activity and redox ratio) in hippocampus. Besides, alterations in the levels of mitochondrial enzymes and acetylcholine esterase enzyme were significantly restored by rofecoxib and caffeic acid as compared to control. Further, combination of rofecoxib (5mg/kg) with caffeic acid (5mg/kg) and lower dose of gal (2.5mg/kg) with rofecoxib (5mg/kg) treatments significantly potentiated their protective effect which was significant as compared to their effect per se. The results of the present study suggest that galantamine

  17. Characterization of Abscisic Acid-Induced Ethylene Production in Citrus Leaf and Tomato Fruit Tissues 1

    PubMed Central

    Riov, Joseph; Dagan, Eliahu; Goren, Raphael; Yang, Shang Fa

    1990-01-01

    Abscisic acid (ABA) significantly stimulated ethylene production in citrus (Citrus sinensis [L.] Osbeck, cv Shamouti orange) leaf discs. The extent of stimulation was dependent upon the concentration of ABA (0.1-1 milimolar) and the duration of treatment (15-300 minutes). Aging the discs before applying ABA increased ABA-induced ethylene production due to enhancement of both ethylene-forming enzyme activity and the responsiveness of ABA. Discs excised from mature leaves were much more responsive to ABA than discs excised from young or senescing leaves. ABA stimulated ethylene production shortly after application, suggesting that ABA does not enhance ethylene production via the acceleration of senescence. The stimulating effect of ABA on ethylene production resulted mainly from the enhancement of 1-aminocylopropane-1-carboxylic acid synthesis. Stimulation of ethylene production by ABA in intact citrus leaves and tomato (Lycopersicon esculentum Mill., cv Castlemart) fruit was small but could be increased by various forms of wounding. PMID:16667264

  18. Proteomic analysis of salicylic acid-induced resistance to Magnaporthe oryzae in susceptible and resistant rice.

    PubMed

    Li, Yunfeng; Zhang, Zhihui; Nie, Yanfang; Zhang, Lianhui; Wang, Zhenzhong

    2012-08-01

    To probe salicylic acid (SA)-induced sequential events at translational level and factors associated with SA response, we conducted virulence assays and proteomic profiling analysis on rice resistant and susceptible cultivars against Magnaporthe oryzae at various time points after SA treatment. The results showed that SA significantly enhanced rice resistance against M. oryzae. Proteomic analysis of SA-treated leaves unveiled 36 differentially expressed proteins implicated in various functions, including defense, antioxidative enzymes, and signal transduction. Majority of these proteins were induced except three antioxidative enzymes, which were negatively regulated by SA. Consistent with the above findings, SA increased the level of reactive oxygen species (ROS) with resistant cultivar C101LAC showing faster response to SA and producing higher level of ROS than susceptible cultivar CO39. Furthermore, we showed that nucleoside diphosphate kinase 1, which is implicated in regulation of ROS production, was strongly induced in C101LAC but not in CO39. Taken together, the findings suggest that resistant rice cultivar might possess a more sensitive SA signaling system or effective pathway than susceptible cultivar. In addition, our results indicate that SA also coordinates other cellular activities such as photosynthesis and metabolism to facilitate defense response and recovery, highlighting the complexity of SA-induced resistance mechanisms.

  19. Effects of Abscisic Acid and Ethylene on the Gibberellic Acid-Induced Synthesis of α-Amylase by Isolated Wheat Aleurone Layers 1

    PubMed Central

    Varty, Keith; Arreguín, Barbarín L.; Gómez, Miguel T.; López, Pablo Jaime T.; Gómez, Miguel Angel L.

    1983-01-01

    Gibberellic acid-induced α-amylase synthesis in wheat aleurone layers (Triticum aestivum L. var Potam S-70) escaped from transcriptional control 30 h after addition of the hormone, as evidenced by the tissue's loss of susceptibility to cordycepin. Abscisic acid inhibited the accumulation of α-amylase activity when added to the tissue during this cordycepin-insensitive phase of enzyme induction. α-Amylase synthesis was not restored by the addition of cordycepin, indicating that the response to abscisic acid was not dependent upon the continuous synthesis of a short lived RNA. When ethylene was added simultaneously or some time after abscisic acid, the accumulation of α-amylase activity was sustained or quickly restored. The loss of susceptibility to cordycepin was completely prevented when aleurone layers were incubated with a combination of gibberellic and abscisic acids from the start of the induction period. This effect of abscisic acid was not reversed by ethylene. On the basis of these observations, it is suggested that abscisic acid inhibits both the transcription and translation of α-amylase mRNA, and that only the latter site of action is susceptible to reversal by ethylene. The rate of incorporation of [methyl-14C]choline into phospholipids was also inhibited by abscisic acid. Ethylene reversed this effect. The effects of abscisic acid and ethylene on phospholipid synthesis were not dependent upon the presence of gibberellic acid. No direct relationship was found between the control of α-amylase synthesis and membrane formation by abscisic acid and ethylene. PMID:16663284

  20. Retinoic acid-induced gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 (NOD2) to negatively regulate inflammatory signaling.

    PubMed

    Morosky, Stefanie A; Zhu, Jianzhong; Mukherjee, Amitava; Sarkar, Saumendra N; Coyne, Carolyn B

    2011-08-12

    Cytoplasmic caspase recruiting domain (CARD)-containing molecules often function in the induction of potent antimicrobial responses in order to protect mammalian cells from invading pathogens. Retinoic acid-induced gene-I (RIG-I) and nucleotide binding oligomerization domain 2 (NOD2) serve as key factors in the detection of viral and bacterial pathogens, and in the subsequent initiation of innate immune signals to combat infection. RIG-I and NOD2 share striking similarities in their cellular localization, both localize to membrane ruffles in non-polarized epithelial cells and both exhibit a close association with the junctional complex of polarized epithelia. Here we show that RIG-I and NOD2 not only colocalize to cellular ruffles and cell-cell junctions, but that they also form a direct interaction that is mediated by the CARDs of RIG-I and multiple regions of NOD2. Moreover, we show that RIG-I negatively regulates ligand-induced nuclear factor-κB (NF-κB) signaling mediated by NOD2, and that NOD2 negatively regulates type I interferon induction by RIG-I. We also show that the three main Crohn disease-associated mutants of NOD2 (1007fs, R702W, G908R) form an interaction with RIG-I and negatively regulate its signaling to a greater extent than wild-type NOD2. Our results show that in addition to their role in innate immune recognition, RIG-I and NOD2 form a direct interaction at actin-enriched sites within cells and suggest that this interaction may impact RIG-I- and NOD2-dependent innate immune signaling.

  1. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis, down-regulates the CXCR4 chemokine receptor and impairs migration of chronic lymphocytic leukemia cells

    PubMed Central

    Stamatopoulos, Basile; Meuleman, Nathalie; De Bruyn, Cécile; Delforge, Alain; Bron, Dominique; Lagneaux, Laurence

    2010-01-01

    Background Chronic lymphocytic leukemia is a neoplastic disorder that arises largely as a result of defective apoptosis leading to chemoresistance. Stromal cell-derived factor-1 and its receptor, CXCR4, have been shown to play an important role in chronic lymphocytic leukemia cell trafficking and survival. Design and Methods Since histone acetylation is involved in the modulation of gene expression, we evaluated the effects of suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, on chronic lymphocytic leukemia cells and in particular on cell survival, CXCR4 expression, migration, and drug sensitization. Results Here, we showed that treatment with suberoylanilide hydroxamic acid (20 μM) for 48 hours induced a decrease in chronic lymphocytic leukemia cell viability via apoptosis (n=20, P=0.0032). Using specific caspase inhibitors, we demonstrated the participation of caspases-3, -6 and -8, suggesting an activation of the extrinsic pathway. Additionally, suberoylanilide hydroxamic acid significantly decreased CXCR4 mRNA (n=10, P=0.0010) and protein expression (n=40, P<0.0001). As a result, chronic lymphocytic leukemia cell migration in response to stromal cell-derived factor-1 (n=23, P<0.0001) or through bone marrow stromal cells was dramatically impaired. Consequently, suberoylanilide hydroxamic acid reduced the protective effect of the microenvironment and thus sensitized chronic lymphocytic leukemia cells to chemotherapy such as fludarabine. Conclusions In conclusion, suberoylanilide hydroxamic acid induces apoptosis in chronic lymphocytic leukemia cells via the extrinsic pathway and down-regulates CXCR4 expression leading to decreased cell migration. Suberoylanilide hydroxamic acid in combination with other drugs represents a promising therapeutic approach to inhibiting migration, chronic lymphocytic leukemia cell survival and potentially overcoming drug resistance. PMID:20145270

  2. Muscovy duck retinoic acid-induced gene I (MdRIG-I) functions in innate immunity against H9N2 avian influenza viruses (AIV) infections.

    PubMed

    Cheng, Yuqiang; Huang, Qingqing; Ji, Wenhui; Du, Bin; Fu, Qiang; An, Huiting; Li, Jing; Wang, Hengan; Yan, Yaxian; Ding, Chan; Sun, Jianhe

    2015-02-15

    Retinoic acid inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that senses pathogen-associated molecular patterns (PAMPs). Muscovy duck (Cairina moschata) is a large duck different from other species of ducks, and is more susceptible to some microbial pathogens. In this study, the Muscovy duck RIG-I gene (MdRIG-I) was identified. Quantitative RT-PCR showed that MdRIG-I mRNA was widely expressed in different tissues, especially in those with mucosa. RIG-I null DF-1 cells transfected with DNA constructs encoding MdRIG-I or CARDs domain can activate IRF-3 and NF-κB to up-regulated activity of IFN-β promoter. The components of the signaling pathway downstream of RIG-I in mammalian cells including IRF-3, NF-κB, IFN-β and the IFN-stimulated genes Mx-1, PKR and MDA5 were significantly up-regulated in CARDs-overexpressing-DF-1 cells. Implicating RIG-I in the antiviral response to an infection in vivo, we found that RIG-I expression in brain, spleen, lung and bursa were up-regulated in ducks challenged with H9N2 avian influenza virus (AIV), whose six internal genes were closely related to the H7N9 and H10N8 AIV. In vitro, DF-1 cells transfected with MdRIG-I plasmid can respond significantly to H9N2 AIV, evident through enhancement of IFN-β promoter activity and decreased virus titer. Altogether, these results indicated that MdRIG-I is a novel member of RLR gene family, engaging in the early stage of antiviral innate immunity.

  3. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/AKT pathway.

    PubMed

    Hur, Wonhee; Lee, Joon Ho; Kim, Sung Woo; Kim, Jung-Hee; Bae, Si Hyun; Kim, Minhyung; Hwang, Daehee; Kim, Young Seok; Park, Taesun; Um, Soo-Jong; Song, Byoung-Joon; Yoon, Seung Kew

    2015-07-01

    Mechanisms associated with the progression of non-alcoholic fatty liver disease (NAFLD) remain unclear. We attempted to identify the pattern of altered gene expression at different time points in a high fat diet (HFD)-induced NAFLD mouse model. The early up-regulated genes are mainly involved in the innate immune responses, while the late up-regulated genes represent the inflammation processes. Although recent studies have shown that microRNAs play important roles in hepatic metabolic functions, the pivotal role of microRNAs in the progression of NAFLD is not fully understood. We investigated the functions of miR-451, which was identified as a target gene in the inflammatory process in NAFLD. miR-451 expression was significantly decreased in the palmitate (PA)-exposed HepG2 cells and in liver tissues of HFD-induced non-alcoholic steatohepatitis (NASH) mice. Its decreased expressions were also observed in liver specimens of NASH patients. In vitro analysis of the effect of miR-451 on proinflammatory cytokine provided evidence for negative regulation of PA-induced interleukin (IL)-8 and tumor necrosis factor-alpha (TNF-α) production. Furthermore, miR-451 over-expression inhibited translocation of the PA-induced NF-κB p65 subunit into the nucleus. Our result showed that Cab39 is a direct target of miRNA-451 in steatotic cells. Further study showed that AMPK activated through Cab39 inhibits NF-κB transactivation induced in steatotic HepG2 cells. miR-451 over-expression in steatotic cells significantly suppressed PA-induced inflammatory cytokine. These results provide new insights into the negative regulation of miR-451 in fatty acid-induced inflammation via the AMPK/AKT pathway and demonstrate potential therapeutic applications for miR-451 in preventing the progression from simple steatosis to severely advanced liver disease.

  4. Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression

    PubMed Central

    Haybaeck, Johannes; Postruznik, Magdalena; Miller, Christine L; Dulay, Jeannette R; Llenos, Ida C; Weis, Serge

    2015-01-01

    Background Retinoids regulate gene expression in different cells and tissues at the transcriptional level. Retinoic acid transcriptionally regulates downstream regulatory molecules, including enzymes, transcription factors, cytokines, and cytokine receptors. Animal models indicate an involvement of retinoid signaling pathways in the regulation of synaptic plasticity and learning, especially in the hippocampus. Retinoic acid-inducible or induced gene 1 (RAI-1) is induced during neuronal differentiation, and was associated with the severity of the phenotype and response to medication in schizophrenic patients. Methods In the present study, we used immunohistochemistry to investigate the expression of RAI-1 in 60 brains from the Stanley Neuropathology Consortium (15 cases each from controls and from patients with schizophrenia, bipolar disorder, and major depression). Rating scores for density and intensity were determined in the dorsolateral prefrontal cortex. Results All four groups showed high interindividual variation. RAI-1-positive cells were identified as neurons and astrocytes. Significantly increased intensities in cortical neurons were noted in all three major psychiatric groups compared with controls. The density of RAI-1-positive neurons was increased (P=0.06) in schizophrenia and bipolar disorder. In bipolar disorder, RAI-1-positive astrocytes in gray matter showed a significantly increased intensity and compound value. Thus, a significant increase in the parameters measured was found in schizophrenia, bipolar disorder, and major depression. Conclusion Our study shows a significant increase in expression of RAI-1 in the brains from patients with schizophrenia, bipolar disorder, or major depression. The increased expression might reflect altered signaling pathways, like that for retinoic acid. The underlying mechanisms leading to the increased expression and its functional consequences are so far unknown, and remain to be investigated in future studies

  5. Effect of nootropic Solcoseryl on kainic acid-induced excitotoxic brain injury.

    PubMed

    Mintz, M; Knowlton, B; Myslobodsky, M S

    1993-05-01

    Solcoseryl (S) has been shown to provide significant cytoprotection in a variety of models of cerebral hypoxia. In the present study, we quantified the epileptiform effects caused by kainic acid administered into the pontine reticular formation of rats and their response to S pretreatment. Compared to saline, the agent appeared to significantly reduce the mortality of rats in the course of status epilepticus. However, S-pretreated rats manifested an increased incidence of behavioral seizures. This untoward effect is attributed to the fact that S improves the functional potential of injured tissue and retards the period of metabolic exhaustion at a time when neuronal activity should be minimized.

  6. Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice.

    PubMed

    Cheng, Licai; Yu, Yinghua; Szabo, Alexander; Wu, Yizhen; Wang, Hongqin; Camer, Danielle; Huang, Xu-Feng

    2015-05-01

    The consumption of diets rich in saturated fat largely contributes to the development of obesity in modern societies. A diet high in saturated fats can induce inflammation and impair leptin signaling in the hypothalamus. However, the role of saturated fatty acids on hypothalamic leptin signaling, and hepatic glucose and lipid metabolism remains largely undiscovered. In this study, we investigated the effects of intracerebroventricular (icv) administration of a saturated fatty acid, palmitic acid (PA, C16:0), on central leptin sensitivity, hypothalamic leptin signaling, inflammatory molecules and hepatic energy metabolism in C57BL/6J male mice. We found that the icv administration of PA led to central leptin resistance, evidenced by the inhibition of central leptin's suppression of food intake. Central leptin resistance was concomitant with impaired hypothalamic leptin signaling (JAK2-STAT3, PKB/Akt-FOXO1) and a pro-inflammatory response (TNF-α, IL1-β, IL-6 and pIκBa) in the mediobasal hypothalamus and paraventricular hypothalamic nuclei. Furthermore, the pre-administration of icv PA blunted the effect of leptin-induced decreases in mRNA expression related to gluconeogenesis (G6Pase and PEPCK), glucose transportation (GLUT2) and lipogenesis (FAS and SCD1) in the liver of mice. Therefore, elevated central PA concentrations can induce pro-inflammatory responses and leptin resistance, which are associated with disorders of energy homeostasis in the liver as a result of diet-induced obesity.

  7. Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene.

    PubMed

    Laursen, Kristian B; Mongan, Nigel P; Zhuang, Yong; Ng, Mary M; Benoit, Yannick D; Gudas, Lorraine J

    2013-07-01

    Polycomb proteins play key roles in mediating epigenetic modifications that occur during cell differentiation. The Polycomb repressive complex 2 (PRC2) mediates the tri-methylation of histone H3 lysine 27 (H3K27me3). In this study, we identify a distinguishing feature of two classes of PRC2 target genes, represented by the Nr2F1 (Coup-TF1) and the Hoxa5 gene, respectively. Both genes are transcriptionally activated by all-trans retinoic acid (RA) and display increased levels of the permissive H3K9/K14ac and tri-methylated histone H3 lysine 4 epigenetic marks in response to RA. However, while in response to RA the PRC2 and H3K27me3 marks are greatly decreased at the Hoxa5 promoter, these marks are initially increased at the Nr2F1 promoter. Functional depletion of the essential PRC2 protein Suz12 by short hairpin RNA (shRNA) technology enhanced the RA-associated transcription of Nr2F1, Nr2F2, Meis1, Sox9 and BMP2, but had no effect on the Hoxa5, Hoxa1, Cyp26a1, Cyp26b1 and RARβ2 transcript levels in wild-type embryonic stem cells. We propose that PRC2 recruitment attenuates the RA-associated transcriptional activation of a subset of genes. Such a mechanism would permit the fine-tuning of transcriptional networks during differentiation.

  8. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors

    PubMed Central

    Cunningham, Thomas J.; Colas, Alexandre

    2016-01-01

    ABSTRACT Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2−/− embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages. PMID:27793834

  9. Lysophosphatidic acid induces cell migration through the selective activation of Akt1

    PubMed Central

    Kim, Eun Kyoung; Yun, Sung Ji; Do, Kee Hun; Kim, Min Sung; Cho, Mong; Suh, Dong-Soo; Kim, Chi Dae; Kim, Jae Ho; Birnbaum, Morris J.

    2008-01-01

    Akt plays pivotal roles in many physiological responses including growth, proliferation, survival, metabolism, and migration. In the current studies, we have evaluated the isoform-specific role of akt in lysophosphatidic acid (LPA)-induced cell migration. Ascites from ovarian cancer patients (AOCP) induced mouse embryo fibroblast (MEF) cell migration in a dose-dependent manner. On the other hand, ascites from liver cirrhosis patients (ALCP) did not induce MEF cell migration. AOCP-induced MEF cell migration was completely blocked by pre-treatment of cells with LPA receptor antagonist, Ki16425. Both LPA- and AOCP-induced MEF cell migration was completely attenuated by PI3K inhibitor, LY294002. Furthermore, cells lacking Akt1 displayed defect in LPA-induced cell migration. Re-expression of Akt1 in DKO (Akt1-/-Akt2-/-) cells restored LPA-induced cell migration, whereas re-expression of Akt2 in DKO cells could not restore the LPA-induced cell migration. Finally, Akt1 was selectively phosphorylated by LPA and AOCP stimulation. These results suggest that LPA is a major factor responsible for AOCP-induced cell migration and signaling specificity of Akt1 may dictate LPA-induced cell migration. PMID:18779657

  10. Proteomic analysis on salicylic acid-induced salt tolerance in common wheat seedlings (Triticum aestivum L.).

    PubMed

    Kang, Guozhang; Li, Gezi; Zheng, Beibei; Han, Qiaoxia; Wang, Chenyang; Zhu, Yunji; Guo, Tiancai

    2012-12-01

    The influence of salicylic acid (SA) on the salt tolerance mechanism in seedlings of common wheat (Triticum aestivum L.) was investigated using physiological measurements combined with global expression profiling (proteomics). In the present study, 0.5mM SA significantly reduced NaCl-induced growth inhibition in wheat seedlings, manifesting as increased fresh weights, dry weights, and photosynthetic pigments, but decreased lipid peroxidation. Two-week-old wheat seedlings treated with 0.5mM SA, 250 mM NaCl and 250 mM NaCl+0.5mM SA for 3 days were used for the proteomic analyses. In total, 39 proteins differentially regulated by both salt and SA were revealed by 2D PAGE, and 38 proteins were identified by MALDI-TOF/TOF MS. The identified proteins were involved in various cellular responses and metabolic processes including signal transduction, stress defense, energy, metabolism, photosynthesis, and others of unknown function. All protein spots involved in signal transduction and the defense response were significantly upregulated by SA under salt stress, suggesting that these proteins could play a role in the SA-induced salt resistance in wheat seedlings.

  11. Retinoic acid induces expression of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8).

    PubMed

    Kogai, Takahiko; Liu, Yan-Yun; Richter, Laura L; Mody, Kaizeen; Kagechika, Hiroyuki; Brent, Gregory A

    2010-08-27

    Retinoic acid (RA) and thyroid hormone are critical for differentiation and organogenesis in the embryo. Mct8 (monocarboxylate transporter 8), expressed predominantly in the brain and placenta, mediates thyroid hormone uptake from the circulation and is required for normal neural development. RA induces differentiation of F9 mouse teratocarcinoma cells toward neurons as well as extraembryonal endoderm. We hypothesized that Mct8 is functionally expressed in F9 cells and induced by RA. All-trans-RA (tRA) and other RA receptor (RAR) agonists dramatically (>300-fold) induced Mct8. tRA treatment significantly increased uptake of triiodothyronine and thyroxine (4.1- and 4.3-fold, respectively), which was abolished by a selective Mct8 inhibitor, bromosulfophthalein. Sequence inspection of the Mct8 promoter region and 5'-rapid amplification of cDNA ends PCR analysis in F9 cells identified 11 transcription start sites and a proximal Sp1 site but no TATA box. tRA significantly enhanced Mct8 promoter activity through a consensus RA-responsive element located 6.6 kilobases upstream of the coding region. A chromatin immunoprecipitation assay demonstrated binding of RAR and retinoid X receptor to the RA response element. The promotion of thyroid hormone uptake through the transcriptional up-regulation of Mct8 by RAR is likely to be important for extraembryonic endoderm development and neural differentiation. This finding demonstrates cross-talk between RA signaling and thyroid hormone signaling in early development at the level of the thyroid hormone transporter.

  12. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin.

    PubMed Central

    Iinuma, S.; Farshi, S. S.; Ortel, B.; Hasan, T.

    1994-01-01

    5-Aminolaevulinic acid (ALA)-induced porphyrin biosynthesis and phototoxicity in vitro was investigated in five malignant and two normal cell lines. Intracellular protoporphyrin IX (PpIX) content was quantified by extraction and fluorescence spectroscopy. Cellular PpIX content did not always correlate with cell proliferation rate as measured by the doubling times of cell lines. Cellular efflux of PpIX was also investigated. In a bladder carcinoma cell line, the observed rapid efflux was not blocked by verapamil, an inhibitor of the P-glycoprotein efflux pump. These data support the view that cellular PpIX accumulation is a dynamic process that is determined by both the efflux of PpIX from the cells and enzyme activities in the haem biosynthesis pathway. Desferrioxamine (desferal), a modulator of PpIX biosynthesis, enhanced ALA-induced cellular PpIX content significantly in all carcinoma cell lines but not in non-malignant cell lines. The enhanced PpIX cellular accumulation is attributed to inhibition of ferrochelatase activity, the enzyme responsible for the conversion of PpIX to haem. PpIX-mediated cellular photodestruction following irradiation with an argon ion laser at 514.5 nm was determined by the 'MTT assay'. There appeared to be a 'threshold' effect of cellular PpIX content; cells that synthesised less than 140 ng/mg-1 protein exhibited very little phototoxic damage, while cell lines having greater than 140 ng PpIX/mg-1 protein [corrected] exhibited a consistent phototoxic response. Among the cell lines which did undergo phototoxic damage, there was not a strict correlation between PpIX cellular content and ALA-induced phototoxicity. Desferal enhanced the PpIX content and phototoxic effect in the responsive cells. Fluorescence microscopy of the ALA-treated cells revealed marked accumulation of PpIX in mitochondria (rhodamine 123 co-staining). That the primary site of phototoxic damage is also the mitochondria was confirmed by electron micrographs of cells

  13. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    SciTech Connect

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-11-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO{sub 2}), carbon dioxide tension, pH, and the PaO{sub 2}/fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22{sup phox} levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may

  14. Myricetin blocks lipoteichoic acid-induced COX-2 expression in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Luna, Oscar Alonso; Arreguín-Cano, Juan Antonio; Hernández-Bermúdez, Cristina

    2014-03-01

    Periodontitis is an infectious disease caused by microorganisms present in dental bacterial plaque. Lipoteichoic acid (LTA) is a component of the external membrane of Gram-positive bacteria. It causes septic shock. Ingested flavonoids have been reported to directly affect the regulation of cyclooxygenase-2 (COX-2) expression induced by bacterial toxins. In this study, we examined the effects of four flavonoids (luteolin, fisetin, morin and myricetin) on the activation of ERK1/2, p38 and AKT, and on the synthesis of COX-2 in human gingival fibroblasts treated with LTA from Streptococcus sanguinis. We found that luteolin and myricetin blocked AKT and p38 activation and that myricetin blocked LTA-induced COX-2 expression. The results of our study are important for elucidating the mechanism of action of flavonoid regulation of inflammatory responses.

  15. A novel, nongenomic mechanism underlies retinoic acid-induced growth cone turning.

    PubMed

    Farrar, Nathan R; Dmetrichuk, Jennifer M; Carlone, Robert L; Spencer, Gaynor E

    2009-11-11

    The vitamin A metabolite, retinoic acid (RA), is well known for its roles in neural development and regeneration. We have previously shown that RA can induce positive growth cone turning in regenerating neurons in vitro. In this study, we address the subcellular mechanisms underlying this chemo-attractive response, using identified central neurons from the adult mollusc, Lymnaea stagnalis. We show that the RA-induced positive growth cone turning was maintained in the presence of the transcriptional inhibitor, actinomycin D. We also physically transected the neurites from the cell body and showed that isolated growth cones retain the capacity to turn toward a gradient of RA. Moreover, this attractive turning is dependent on de novo local protein synthesis and Ca(2+) influx. Most of RA's actions during neurite outgrowth and regeneration require gene transcription, although these data show for the first time in any species, that the chemotropic action of RA in guiding neurite outgrowth, involves a novel, nongenomic mechanism.

  16. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis.

    PubMed

    Ton, Jurriaan; Jakab, Gabor; Toquin, Valérie; Flors, Victor; Iavicoli, Annalisa; Maeder, Muriel N; Métraux, Jean-Pierre; Mauch-Mani, Brigitte

    2005-03-01

    Plants treated with the nonprotein amino acid beta-aminobutyric acid (BABA) develop an enhanced capacity to resist biotic and abiotic stresses. This BABA-induced resistance (BABA-IR) is associated with an augmented capacity to express basal defense responses, a phenomenon known as priming. Based on the observation that high amounts of BABA induce sterility in Arabidopsis thaliana, a mutagenesis screen was performed to select mutants impaired in BABA-induced sterility (ibs). Here, we report the isolation and subsequent characterization of three T-DNA-tagged ibs mutants. Mutant ibs1 is affected in a cyclin-dependent kinase-like protein, and ibs2 is defective in AtSAC1b encoding a polyphosphoinositide phosphatase. Mutant ibs3 is affected in the regulation of the ABA1 gene encoding the abscisic acid (ABA) biosynthetic enzyme zeaxanthin epoxidase. To elucidate the function of the three IBS genes in plant resistance, the mutants were tested for BABA-IR against the bacterium Pseudomonas syringae pv tomato, the oomycete Hyaloperonospora parasitica, and BABA-induced tolerance to salt. All three ibs mutants were compromised in BABA-IR against H. parasitica, although to a different extent. Whereas ibs1 was reduced in priming for salicylate (SA)-dependent trailing necrosis, mutants ibs2 and ibs3 were affected in the priming for callose deposition. Only ibs1 failed to express BABA-IR against P. syringae, which coincided with a defect in priming for SA-inducible PR-1 gene expression. By contrast, ibs2 and ibs3 showed reduced BABA-induced tolerance to salt, which correlated with an affected priming for ABA-inducible gene expression. For all three ibs alleles, the defects in BABA-induced sterility and BABA-induced protection against P. syringae, H. parasitica, and salt could be confirmed in independent mutants. The data presented here introduce three novel regulatory genes involved in priming for different defense responses.

  17. Mechanisms of Motility Change on Trinitrobenzenesulfonic Acid-Induced Colonic Inflammation in Mice

    PubMed Central

    Cheon, Gab Jin; Cui, Yuan; Yeon, Dong-Soo; Kwon, Seong-Chun

    2012-01-01

    Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to clarify the altered contractility of circular and longitudinal smooth muscle layers in proximal colon of trinitrobenzen sulfonic acid (TNBS)-induced colitis mouse. Colitis was induced by direct injection of TNBS (120 mg/kg, 50% ethanol) in proximal colon of ICR mouse using a 30 G needle anesthetized with ketamin (50 mg/kg), whereas animals in the control group were injected of 50% ethanol alone. In TNBS-induced colitis, the wall of the proximal colon is diffusely thickened with loss of haustration, and showed mucosal and mucular edema with inflammatory infiltration. The colonic inflammation is significantly induced the reduction of colonic contractile activity including spontaneous contractile activity, depolarization-induced contractility, and muscarinic acetylcholine receptor-mediated contractile response in circular muscle layer compared to the longitudinal muscle layer. The inward rectification of currents, especially, important to Ca2+ and Na+ influx-induced depolarization and contraction, was markedly reduced in the TNBS-induced colitis compared to the control. The muscarinic acetylcholine-mediated contractile responses were significantly attenuated in the circular and longitudinal smooth muscle strips induced by the reduction of membrane expression of canonical transient receptor potential (TRPC) channel isoforms from the proximal colon of the TNBS-induced colitis mouse than the control. PMID:23269907

  18. Atenolol offers better protection than clonidine against cardiac injury in kainic acid-induced status epilepticus

    PubMed Central

    Read, M I; Harrison, J C; Kerr, D S; Sammut, I A

    2015-01-01

    Background and Purpose Status epilepticus is increasingly associated with cardiac injury in both clinical and animal studies. The current study examined ECG activity for up to 48 h following kainic acid (KA) seizure induction and compared the potential of atenolol and clonidine to attenuate this cardiac pathology. Experimental Approach Sprague-Dawley rats (male, 300–350 g) were implanted with ECG and electrocorticogram electrodes to allow simultaneous telemetric recordings of cardiac and cortical responses during and after KA-induced seizures. Animals were randomized into saline controls, and saline vehicle-, clonidine- or atenolol-pretreated KA groups. Key Results KA administration in the saline-pretreated group produced an immediate bradycardic response (maximal decrease of 28 ± 6%), coinciding with low-level seizure activity. As high-level seizure behaviours and EEG spiking increased, tachycardia also developed, with a maximum heart rate increase of 38 ± 7% coinciding with QTc prolongation and T wave elevation. Both clonidine and atenolol pretreatment attenuated seizure activity and reduced KA-induced changes in heart rate, QTc interval and T wave amplitude observed during both bradycardic and tachycardic phases in saline-pretreated KA animals. Clonidine, however, failed to reduce the power of EEG frequencies. Atenolol and to a lesser extent clonidine attenuated the cardiac hypercontraction band necrosis, inflammatory infiltration, and oedema at 48 h after KA, relative to the saline-KA group. Conclusions and Implications Severe seizure activity in this model was clearly associated with altered ECG activity and cardiac pathology. We suggest that modulation of sympathetic activity by atenolol provides a promising cardioprotective approach in status epilepticus. PMID:25765931

  19. Sulfuric acid-induced changes in the physiology and structure of the tracheobronchial airways

    SciTech Connect

    Gearhart, J.M.; Schlesinger, R.B.

    1989-02-01

    Sulfuric acid aerosols occur in the ambient particulate mode due to atmospheric conversion from sulfur dioxide (SO2). This paper describes the response of the rabbit tracheobronchial tree to daily exposures to sulfuric acid (H2SO4) aerosol, relating physiological and morphological parameters. Rabbits were exposed to filtered air (sham control) or to submicrometer-sized H2SO4 at 250 micrograms/m3 H2SO4, for 1 hr/day, 5 days/week, with sacrifices after 4, 8, and 12 months of acid (or sham) exposure; some rabbits were allowed a 3-month recovery after all exposures ended. H2SO4 produced a slowing of tracheobronchial mucociliary clearance during the first weeks of exposure; this change became significantly greater with continued exposures and did not improve after exposures ended. Airway hyperresponsiveness was evident by 4 months of acid exposure; the condition worsened by 8 months of exposure and appeared to stabilize after this time. Standard pulmonary mechanics parameters showed no significant trends with repeated acid exposure, except for a decline in dynamic lung compliance in animals exposed to acid for 12 months. Lung tissue samples obtained from exposed animals showed a shift toward a greater frequency of smaller airways compared to control, an increase in epithelial secretory cell density in smaller airways, and a shift from neutral to acidic glycoproteins in the secretory cells. The effect on airway diameter resolved after the exposures ceased, but the secretory cell response did not return to normal within the recovery period. No evidence of inflammatory cell infiltration was found due to H2SO4 exposure. Thus, significant alterations in the physiology of the tracheobronchial tree have been demonstrated due to repeated 1-hr exposures to a concentration of H2SO4 that is one-fourth the current 8-hr threshold limit value for exposure in the work environment.

  20. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide

    PubMed Central

    Sorrentino, Giuseppe; Haworth, Matthew; Wahbi, Said; Mahmood, Tariq; Zuomin, Shi; Centritto, Mauro

    2016-01-01

    The rate of photosynthesis (A) of plants exposed to water deficit is a function of stomatal (gs) and mesophyll (gm) conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA) plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci). Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis. PMID:26862904

  1. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants.

    PubMed

    Kovács, Judit; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2016-06-01

    The hypersensitive response (HR), a type of programmed cell death (PCD) during biotic stress is mediated by salicylic acid (SA). The aim of this work was to reveal the role of proteolysis and cysteine proteases in the execution of PCD in response of SA. Tomato plants were treated with sublethal (0.1 mM) and lethal (1 mM) SA concentrations through the root system. Treatment with 1 mM SA increased the electrolyte leakage and proteolytic activity and reduced the total protein content of roots after 6 h, while the proteolytic activity did not change in the leaves and in plants exposed to 0.1 mM SA. The expression of the papain-type cysteine protease SlCYP1, the vacuolar processing enzyme SlVPE1 and the tomato metacaspase SlMCA1 was induced within the first three hours in the leaves and after 0.5 h in the roots in the presence of 1 mM SA but the transcript levels did not increase significantly at sublethal SA. The Bax inhibitor-1 (SlBI-1), an antiapoptotic gene was over-expressed in the roots after SA treatments and it proved to be transient in the presence of sublethal SA. Protease inhibitors, SlPI2 and SlLTC were upregulated in the roots by sublethal SA but their expression remained low at 1 mM SA concentration. It is concluded that in contrast to leaves the SA-induced PCD is associated with increased proteolytic activity in the root tissues resulting from a fast up-regulation of specific cysteine proteases and down-regulation of protease inhibitors.

  2. Mechanism of fatty acids induced suppression of cardiovascular reflexes in rats.

    PubMed

    Shaltout, Hossam A; Abdel-Rahman, Abdel A

    2005-09-01

    A blunted baroreflex sensitivity (BRS), impaired heart rate variability (HRV), and high plasma nonesterified fatty acids (NEFA) are predictors of adverse cardiovascular outcomes. We tested the hypothesis that elevation of NEFA negatively impacts the cardiac baroreflex response and undertook spectral analyses and molecular studies to delineate the mechanism of action. We used two interventions to elevate serum NEFA: 1) overnight fasting (n = 7) and 2) i.v. infusion of 1.2 ml/kg intralipid 20% + heparin (I/H) over 10 min (n = 9) in conscious unrestrained male rats. Elevated NEFA caused by fasting complemented by I/H infusion were associated with a concentration-dependent reduction in spontaneous BRS measured by spectral analysis [low-frequency alpha and high-frequency alpha (HFalpha) indices] and sequence method and HRV measured by frequency domain as power of RR interval (RRI) spectra (low-frequency RRI and high-frequency RRI) and by time domain as standard deviation of beat-to-beat interval and root mean square of successive differences along with increase in blood pressure variability measured as standard deviation of mean arterial pressure and power of systolic arterial pressure spectra (low-frequency systolic arterial pressure). Because elevated NEFA suppressed the vagal component of the baroreflex response (HFalpha), we tested the hypothesis that NEFA-evoked sequestration of myocardial muscarinic receptor (M2-mAChR) contributes to the reduced BRS. High NEFA level was accompanied by increased caveolar sequestration of cardiac M2-mAChRs without changing M2-mAChR protein expression. We report the first detailed analyses of NEFA's effect on the cardiac baroreflex and show that increased caveolar sequestration of cardiac M2-mAChRs constitutes a cellular mechanism for elevated NEFA-related deleterious cardiovascular outcomes.

  3. Trans Fatty Acids Induce Vascular Inflammation and Reduce Vascular Nitric Oxide Production in Endothelial Cells

    PubMed Central

    Iwata, Naomi G.; Pham, Matilda; Rizzo, Norma O.; Cheng, Andrew M.; Maloney, Ezekiel; Kim, Francis

    2011-01-01

    Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation. PMID:22216328

  4. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  5. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    PubMed

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  6. Uncoupling protein 2 regulates palmitic acid-induced hepatoma cell autophagy.

    PubMed

    Lou, Jiaxin; Wang, Yunjiao; Wang, Xuejiang; Jiang, Ying

    2014-01-01

    Mitochondrial uncoupling protein 2 (UCP2) is suggested to have a role in the development of nonalcoholic steatohepatitis (NASH). However, the mechanism remains unclear. Autophagy is an important mediator of many pathological responses. This study aims to investigate the relationship between UCP2 and hepatoma cells autophagy in palmitic acid- (PA-) induced lipotoxicity. H4IIE cells were treated with palmitic acid (PA), and cell autophagy and apoptosis were examined. UCP2 expression, in association with LC3-II and caspase-3, which are indicators of cell autophagy and apoptosis, respectively,was measured. Results demonstrated that UCP2 was associated with autophagy during PA-induced hepatic carcinoma cells injury. Tests on reactive oxygen species (ROS) showed that UCP2 overexpression strongly decreases PA-induced ROS production and apoptosis. Conversely, UCP2 inhibition by genipin or UCP2 mRNA silencing enhances PA-induced ROS production and apoptosis. Autophagy partially participates in this progress. Moreover, UCP2 was associated with ATP synthesis during PA-induced autophagy. In conclusion, increasing UCP2 expression in hepatoma cells may contribute to cell autophagy and antiapoptotic as result of fatty acid injury. Our results may bring new insights for potential NASH therapies.

  7. Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray.

    PubMed

    Ang, S; Lee, C Z; Peck, K; Sindici, M; Matrubutham, U; Gleeson, M A; Wang, J T

    2001-03-01

    To understand the RNA expression in response to acid stress of Helicobacter pylori in genomic scale, a microarray membrane containing 1,534 open reading frames (ORFs) from strain 26695 was used. Total RNAs of H. pylori under growth conditions of pH 7.2 and 5.5 were extracted, reverse transcribed into cDNA, and labeled with biotin. Each microarray membrane was hybridized with cDNA probe from the same strain under two different pH conditions and developed by a catalyzed reporter deposition method. Gene expression of all ORFs was measured by densitometry. Among the 1,534 ORFs, 53 ORFs were highly expressed (> or = 30% of rRNA control in densitometry ratios). There were 445 ORFs which were stably expressed (<30% of rRNA in densitometry) under both pH conditions without significant variation. A total of 80 ORFs had significantly increased expression levels at low pH, while expressions of 4 ORFs were suppressed under acidic condition. The remaining 952 ORFs were not detectable under either pH condition. These data were highly reproducible and comparable to those obtained by the RNA slot blot method. Our results suggest that microarray can be used in monitoring prokaryotic gene expression in genomic scale.

  8. Identification of okadaic acid-induced phosphorylation events by a mass spectrometry approach

    SciTech Connect

    Hill, Jennifer J. . E-mail: Jennifer.Hill@nrc.gc.ca; Callaghan, Deborah A.; Ding Wen; Kelly, John F.; Chakravarthy, Balu R.

    2006-04-14

    Okadaic acid (OA) is a widely used small-molecule phosphatase inhibitor that is thought to selectively inhibit protein phosphatase 2A (PP2A). Multiple studies have demonstrated that PP2A activity is compromised in Brains of Alzheimer's disease patients. Thus, we set out to determine changes in phosphorylation that occur upon OA treatment of neuronal cells. Utilizing isotope-coded affinity tags and mass spectrometry analysis, we determined the relative abundance of proteins in a phosphoprotein enriched fraction from control and OA-treated primary cortical neurons. We identified many proteins whose phosphorylation state is regulated by OA, including glycogen synthase kinase 3{beta}, collapsin-response mediator proteins (DRP-2, DPYSL-5, and CRMP-4), and the B subunit of PP2A itself. Most interestingly, we have found that complexin 2, an important regulator of neurotransmitter release and synaptic plasticity, is phosphorylated at serine 93 upon OA treatment of neurons. This is First report of a phosphorylation site on complexin 2.

  9. Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores.

    PubMed

    Bruinsma, Maaike; Van Dam, Nicole M; Van Loon, Joop J A; Dicke, Marcel

    2007-04-01

    Jasmonic acid (JA) is a key hormone involved in plant defense responses. The effect of JA treatment of cabbage plants on their acceptability for oviposition by two species of cabbage white butterflies, Pieris rapae and P. brassicae, was investigated. Both butterfly species laid fewer eggs on leaves of JA-treated plants compared to control plants. We show that this is due to processes in the plant after JA treatment rather than an effect of JA itself. The oviposition preference for control plants is adaptive, as development time from larval hatch until pupation of P. rapae caterpillars was longer on JA-treated plants. Total glucosinolate content in leaf surface extracts was similar for control and treated plants; however, two of the five glucosinolates were present in lower amounts in leaf surface extracts of JA-treated plants. When the butterflies were offered a choice between the purified glucosinolate fraction isolated from leaf surface extracts of JA-treated plants and that from control plants, they did not discriminate. Changes in leaf surface glucosinolate profile, therefore, do not seem to explain the change in oviposition preference of the butterflies after JA treatment, suggesting that as yet unknown infochemicals are involved.

  10. Uric Acid Induces Endothelial Dysfunction by Activating the HMGB1/RAGE Signaling Pathway

    PubMed Central

    Cai, Wei; Duan, Xi-Mei; Liu, Ying; Yu, Jiao; Tang, Yun-Liang; Liu, Ze-Lin; Jiang, Shan; Zhang, Chun-Ping; Liu, Jian-Ying

    2017-01-01

    Uric acid (UA) is a risk factor for endothelial dysfunction, a process in which inflammation may play an important role. UA increases high mobility group box chromosomal protein 1 (HMGB1) expression and extracellular release in endothelial cells. HMGB1 is an inflammatory cytokine that interacts with the receptor for advanced glycation end products (RAGE), inducing an oxidative stress and inflammatory response, which leads to endothelial dysfunction. In this study, human umbilical vein endothelial cells (HUVECs) were incubated with a high concentration of UA (20 mg/dL) after which endothelial function and the expression of HMGB1, RAGE, nuclear factor kappa B (NF-κB), inflammatory cytokines, and adhesion molecules were evaluated. UA inhibited endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production in HUVECs, increased intracellular HMGB1 expression and extracellular HMGB1 secretion, and upregulated RAGE expression. UA also activated NF-κB and increased the level of inflammatory cytokines. Blocking RAGE significantly suppressed the upregulation of RAGE and HMGB1 and prevented the increase in DNA binding activity of NF-κB and the levels of inflammatory cytokines. It also blocked the decrease in eNOS expression and NO production induced by UA. Our results suggest that high concentrations of UA cause endothelial dysfunction via the HMGB1/RAGE signaling pathway. PMID:28116308

  11. Phosphatidic Acid Induces Ligand-independent Epidermal Growth Factor Receptor Endocytic Traffic through PDE4 Activation

    PubMed Central

    Norambuena, Andrés; Metz, Claudia; Jung, Juan E.; Silva, Antonia; Otero, Carolina; Cancino, Jorge; Retamal, Claudio; Valenzuela, Juan C.; Soza, Andrea

    2010-01-01

    Endocytosis modulates EGFR function by compartmentalizing and attenuating or enhancing its ligand-induced signaling. Here we show that it can also control the cell surface versus intracellular distribution of empty/inactive EGFR. Our previous observation that PKA inhibitors induce EGFR internalization prompted us to test phosphatidic acid (PA) generated by phospholipase D (PLD) as an endogenous down-regulator of PKA activity, which activates rolipram-sensitive type 4 phosphodiesterases (PDE4) that degrade cAMP. We found that inhibition of PA hydrolysis by propranolol, in the absence of ligand, provokes internalization of inactive (neither tyrosine-phosphorylated nor ubiquitinated) EGFR, accompanied by a transient increase in PA levels and PDE4s activity. This EGFR internalization is mimicked by PA micelles and is strongly counteracted by PLD2 silencing, rolipram or forskolin treatment, and PKA overexpression. Accelerated EGFR endocytosis seems to be mediated by clathrin-dependent and -independent pathways, leading to receptor accumulation in juxtanuclear recycling endosomes, also due to a decreased recycling. Internalized EGFR can remain intracellular without degradation for several hours or return rapidly to the cell surface upon discontinuation of the stimulus. This novel regulatory mechanism of EGFR, also novel function of signaling PA, can transmodulate receptor accessibility in response to heterologous stimuli. PMID:20554760

  12. All-trans retinoic acid-induced, life-threatening complete atrioventricular block.

    PubMed

    Shih, Chen-Hsiang; Wu, Hung-Bo

    2015-05-01

    We report a case of complete atrioventricular block (CAVB) with ventricular asystole and recurrent AVBs due to all-trans retinoic acid (ATRA). A 57-year-old man with acute promyelocytic leukemia was undergoing induction therapy with ATRA and developed episodic seizures with altered consciousness on the 14(th) day and then CAVB followed by cardiac arrest on the 15(th) day. Although he initially recovered after resuscitation, he suffered from recurrent CAVB, which persisted for 3 days despite immediate ATRA discontinuation. He then received ATRA retreatment with reduction of dosage, but a high-degree AVB recurred on the 5(th) day. After discontinuation of ATRA therapy, the patient recovered 3 days later without any cardiovascular event during follow-up. The serial electrocardiogram changes suggested an infra-Hisian block with possible ATRA dose-response relationship. To our knowledge, this is the first established case of ATRA-induced CAVB in the literature. We suggest clinical alertness for this life-threatening complication.

  13. Acetic acid-induced programmed cell death and release of volatile organic compounds in Chlamydomonas reinhardtii.

    PubMed

    Zuo, Zhaojiang; Zhu, Yerong; Bai, Yanling; Wang, Yong

    2012-02-01

    Acetic acid widely spreads in atmosphere, aquatic ecosystems containing residues and anoxic soil. It can inhibit aquatic plant germination and growth, and even cause programmed cell death (PCD) of yeast. In the present study, biochemical and physiological responses of the model unicellular green algae Chlamydomonas reinhardtii were examined after acetic acid stress. H(2)O(2) burst was found in C. reinhardtii after acetic acid stress at pH 5.0 for 10 min. The photosynthetic pigments were degraded, gross photosynthesis and respiration were disappeared gradually, and DNA fragmentation was also detected. Those results indicated that C. reinhardtii cells underwent a PCD but not a necrotic, accidental cell death event. It was noticed that C. reinhardtii cells in PCD released abundant volatile organic compounds (VOCs) upon acetic acid stress. Therefore, we analyzed the VOCs and tested their effects on other normal cells. The treatment of C. reinhardtii cultures with VOCs reduced the cell density and increased antioxidant enzyme activity. Therefore, a function of VOCs as infochemicals involved in cell-to-cell communication at the conditions of applied stress is suggested.

  14. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  15. Mechanisms of p-methoxycinnamic acid-induced increase in insulin secretion.

    PubMed

    Adisakwattana, S; Hsu, W H; Yibchok-anun, S

    2011-10-01

    p-Methoxycinnamic acid (p-MCA) is a cinnamic acid derivative that shows various pharmacologic actions such as hepatoprotective and antihyperglycemic activities. The present study was to elucidate the mechanisms by which p-MCA increases [Ca²⁺]i and insulin secretion in INS-1 cells. p-MCA (100 μM) increased [Ca²⁺]i in INS-1 cells. The p-MCA-induced insulin secretion and rise in [Ca²⁺]i were markedly inhibited in the absence of extracellular Ca²⁺ or in the presence of an L-type Ca²⁺ channel blocker nimodipine. These results suggested that p-MCA increased Ca²⁺ influx via the L-type Ca²⁺ channels. Diazoxide, an ATP-sensitive K⁺ channel opener, did not alter p-MCA-induced insulin secretion, nor [Ca²⁺]i response. In addition, p-MCA enhanced glucose-, glibenclamide-induced insulin secretion whereas it also potentiated the increase in insulin secretion induced by arginine, and Bay K 8644, an L-type Ca²⁺ channel agonist. Taken together, our results suggest that p-MCA stimulated insulin secretion from pancreatic β-cells by increasing Ca²⁺ influx via the L-type Ca²⁺ channels, but not through the closure of ATP-sensitive K⁺ channels.

  16. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    PubMed

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  17. Long-term acid-induced wall extension in an in-vitro system

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Cosgrove, D.; Tepfer, M.

    1987-01-01

    When frozen-thawed Avena sativa L. coleoptile and Cucumis sativa L. hypocotyl sections, under tension, are acid-treated, they undergo rapid elongation (acid-extension). The acid-extension response consists of two concurrent phases: a burst of extension which decays exponentially over 1-2 h (ExE), and a constant rate of extension (CE) which can persist for at least 6h. The extension (delta L) is closely represented by the equation: delta L = a-a e(-kt) + C t where a is the total extension of the exponential phase, k is the rate constant for ExE, and c is the rate of linear extension (CE). Low pH and high tension increased a and c, whereas temperature influenced k. The magnitude of the CE (over 50% extension/10 h), the similarity in its time course to auxin-induced growth, and the apparent yield threshold for CE indicate that CE is more likely than ExE to be the type of extension which cell walls undergo during normal auxin-induced growth.

  18. Salicylic acid-induced changes to growth and phenolic metabolism in Matricaria chamomilla plants.

    PubMed

    Kovácik, Jozef; Grúz, Jirí; Backor, Martin; Strnad, Miroslav; Repcák, Miroslav

    2009-01-01

    The influence of salicylic acid (SA) doses of 50 and 250 microM, for a period of up to 7 days, on selected physiological aspects and the phenolic metabolism of Matricaria chamomilla plants was studied. SA exhibited both growth-promoting (50 microM) and growth-inhibiting (250 microM) properties, the latter being correlated with decrease of chlorophylls, water content and soluble proteins. In terms of phenolic metabolism, it seems that the higher SA dose has a toxic effect, based on the sharp increase in phenylalanine ammonia-lyase (PAL) activity (24 h after application), which is followed by an increase in total soluble phenolics, lignin accumulation and the majority of the 11 detected phenolic acids. Guaiacol-peroxidase activity was elevated throughout the experiment in 250 microM SA-treated plants. In turn, some responses can be explained by mechanisms associated with oxidative stress tolerance; these mitigate acute SA stress (which is indicated by an increase in malondialdehyde content). However, PAL activity decreased with prolonged exposure to SA, indicating its inhibition. Accumulation of coumarin-related compounds (umbelliferone and herniarin) was not affected by SA treatments, while (Z)- and (E)-2-beta-D: -glucopyranosyloxy-4-methoxycinnamic acids increased in the 250 microM SA-treated rosettes. Free SA content in the rosettes increased significantly only in the 250 microM SA treatment, with levels tending to decrease towards the end of the experiment and the opposite trend was observed in the roots.

  19. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  20. Retinoic acid induces multiple hallmarks of the prospermatogonia-to-spermatogonia transition in the neonatal mouse.

    PubMed

    Busada, Jonathan T; Kaye, Evelyn P; Renegar, Randall H; Geyer, Christopher B

    2014-03-01

    In mammals, most neonatal male germ cells (prospermatogonia) are quiescent and located in the center of the testis cords. In response to an unknown signal, prospermatogonia transition into spermatogonia, reenter the cell cycle, divide, and move to the periphery of the testis cords. In mice, these events occur by 3-4 days postpartum (dpp), which temporally coincides with the onset of retinoic acid (RA) signaling in the neonatal testis. RA has a pivotal role in initiating germ cell entry into meiosis in both sexes, yet little is known about the mechanisms and about cellular changes downstream of RA signaling. We examined the role of RA in mediating the prospermatogonia-to-spermatogonia transition in vivo and found 24 h of precocious RA exposure-induced germ cell changes mimicking those that occur during the endogenous transition at 3-4 dpp. These changes included: 1) spermatogonia proliferation; 2) maturation of cellular organelles; and 3), expression of markers characteristic of differentiating spermatogonia. We found that germ cell exposure to RA did not lead to cellular loss from apoptosis but rather resulted in a delay of ∼2 days in their entry into meiosis. Taken together, our results indicate that exogenous RA induces multiple hallmarks of the transition of prospermatogonia to spermatogonia prior to their entry into meiosis.

  1. Response

    ERIC Educational Resources Information Center

    Higgins, Chris

    2012-01-01

    This article presents the author's response to the reviews of his book, "The Good Life of Teaching: An Ethics of Professional Practice." He begins by highlighting some of the main concerns of his book. He then offers a brief response, doing his best to address the main criticisms of his argument and noting where the four reviewers (Charlene…

  2. Inhibition of retinoic acid-induced skin irritation in calorie-restricted mice.

    PubMed

    Varani, James; Bhagavathula, Narasimharao; Aslam, Muhammad Nadeem; Fay, Kevin; Warner, Roscoe L; Hanosh, Andrew; Barron, Adam G; Miller, Richard A

    2008-01-01

    Mice on a calorie-restricted (CR) diet (total calories restricted to 70% of ad libitum; AL) for periods of time ranging from 3 to 18 months were examined for response to topical treatment with all-trans retinoic acid (RA). Daily application of a 0.1% solution of RA to the shaved skin of UM-HET3 mice on an AL diet produced a severe irritation that was evident by day 4, maximal at day 7-8 and still detectable at day 14. Skin irritation was characterized by redness, dryness, flaking and failure of the hair to grow at the treated site. In CR mice, the same treatment produced little detectable irritation. Animals were sacrificed at the end of the retinoid-treatment period (day 7 or day 14) and skin from these animals was examined histologically. In both AL and CR mice, a similar degree of epidermal hyperplasia was observed. Numerous inflammatory cells (mononuclear cells and granulocytes) were present in the skin of both groups. Occasional S100-positive cells (presumably Langerhans cells) were also observed in the epidermis of skin from both groups. S100-positive cells were also observed in the dermis. When skin from CR and AL mice was incubated in organ culture for 3 days (on day 7 after initiation of RA treatment), similar levels of four different pro-inflammatory cytokines were found in the conditioned medium. Soluble type I collagen levels were also similar. In contrast, the level of matrix metalloproteinase-9 was lower in the conditioned medium of skin from CR mice than in conditioned medium from skin cultures of AL mice. Taken together, these studies suggest that CR may provide a way to mitigate the irritation that normally accompanies RA treatment without compromising the beneficial effects of retinoid use. CR appears to exert a protective effect at the target tissue level rather than by a reduction in pro-inflammatory events, per se.

  3. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  4. Mitochondrial Toxin 3-Nitropropionic Acid Induces Cardiac and Neurotoxicity Differentially in Mice

    PubMed Central

    Gabrielson, Kathleen L.; Hogue, Barbara A.; Bohr, Vilhelm A.; Cardounel, A. J.; Nakajima, Waco; Kofler, Julia; Zweier, Jay L.; Rodriguez, E. Rene; Martin, Lee J.; de Souza-Pinto, Nadja C.; Bressler, Joseph

    2001-01-01

    We investigated the effects of 3-nitropropionic acid (3NPA), a previously characterized neurotoxin, in four strains of mice to better understand the molecular basis of variable host responses to this agent. Unexpectedly, we found significant cardiac toxicity that always accompanied the neurotoxicity in all strains of mice in acute and subacute/chronic toxicity testing. Caudate putamen infarction never occurred without cardiac toxicity. All mouse strains tested are sensitive to 3NPA although the C57BL/6 and BALB/c mice require more exposure than 129SVEMS and FVB/n mice. Cardiac toxicity alone was found in 50% of symptomatic mice tested and morphologically, the cardiac toxicity is characterized by diffuse swelling of cardiomyocytes and multifocal coagulative contraction band necrosis. In subacute to chronic exposure, atrial thrombosis, cardiac mineralization, cell loss, and fibrosis are combined with cardiomyocyte swelling and necrosis. Ultrastructurally, mitochondrial swelling occurs initially, followed by disruption of myofilaments. Biochemically, isolated heart mitochondria from the highly sensitive 129SVEMS mice have a significant reduction of succinate dehydrogenase activity, succinate oxygen consumption rates, and heart adenosine triphosphate after 3NPA treatment. The severity of morphological changes parallels the biochemical alterations caused by 3NPA, consistent with cardiac toxicity being a consequence of the effects of 3NPA on succinate dehydrogenase. These experiments show, for the first time, that 3NPA has important cardiotoxic effects as well as neurotoxic effects, and that cardiac toxicity possibly resulting from inhibition of the succinate dehydrogenase in heart mitochondria, contributes to the cause of death in 3NPA poisoning in acute and subacute/chronic studies in mice. PMID:11583977

  5. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    SciTech Connect

    Qiao, Jingbo; Paul, Pritha; Lee, Sora; Qiao, Lan; Josifi, Erlena; Tiao, Joshua R.; Chung, Dai H.

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  6. Healing Acceleration of Acetic Acid-induced Colitis by Marigold (Calendula officinalis) in Male Rats

    PubMed Central

    Tanideh, Nader; Jamshidzadeh, Akram; Sepehrimanesh, Masood; Hosseinzadeh, Masood; Koohi-Hosseinabadi, Omid; Najibi, Asma; Raam, Mozhdeh; Daneshi, Sajad; Asadi-Yousefabad, Seyedeh-Leili

    2016-01-01

    Background/Aim: Ulcerative colitis (UC) is a type of chronic inflammatory bowel disease with unknown etiology. Several therapeutic strategies such as consumption of medicinal plants have been used for its treatment. The aim of this study was to evaluate healing effects of Calendula officinalis hydroalcoholic extract in experimentally induced UC in rat. Materials and Methods: Ninety-six rats, weighing 200 ± 20 g, were randomly divided into eight equal groups. UC induced by 3% acetic acid and oral doses of C. officinalis extract, 1500 and 3000 mg/kg, and enema (gel 10% and 20%) were given. Two groups as positive controls were given asacol (enema) and oral mesalamine. Negative control groups were given normal saline and base gel. On days 3 and 7, intestinal histopathology and weight changes, plus oxidative stress indices including malondialdehyde (MDA) level and myeloperoxidase (MPO) activity were assayed. Results: A significant increase in the body weight of rats was seen in the group given C. officinalis extract 3000 mg/kg orally, oral mesalamine, and 20% intracolonic gel form of marigold extract compared with negative control and base gel groups during the experimental period. Acute inflammation and granular atrophy after UC induction were resolved completely completely by both 20% intracolonic gel and 3000 mg/kg orally. An increase in MPO activity and a decrease in MDA level in response to oral and intracolonic gel form of C. officinalis were observed 3 and and 7 days after treatment (P < 0.05). Conclusion: Our results indicate that oral and enema forms of hydroalcoholic extract of C. officinalis can be offered as are potential therapeutic agents for UC induced in rats. PMID:26831607

  7. Insulin Protects Pancreatic Acinar Cells from Palmitoleic Acid-induced Cellular Injury*

    PubMed Central

    Samad, Aysha; James, Andrew; Wong, James; Mankad, Parini; Whitehouse, John; Patel, Waseema; Alves-Simoes, Marta; Siriwardena, Ajith K.; Bruce, Jason I. E.

    2014-01-01

    Acute pancreatitis is a serious and sometimes fatal inflammatory disease where the pancreas digests itself. The non-oxidative ethanol metabolites palmitoleic acid (POA) and POA-ethylester (POAEE) are reported to induce pancreatitis caused by impaired mitochondrial metabolism, cytosolic Ca2+ ([Ca2+]i) overload and necrosis of pancreatic acinar cells. Metabolism and [Ca2+]i are linked critically by the ATP-driven plasma membrane Ca2+-ATPase (PMCA) important for maintaining low resting [Ca2+]i. The aim of the current study was to test the protective effects of insulin on cellular injury induced by the pancreatitis-inducing agents, ethanol, POA, and POAEE. Rat pancreatic acinar cells were isolated by collagenase digestion and [Ca2+]i was measured by fura-2 imaging. An in situ [Ca2+]i clearance assay was used to assess PMCA activity. Magnesium green (MgGreen) and a luciferase-based ATP kit were used to assess cellular ATP depletion. Ethanol (100 mm) and POAEE (100 μm) induced a small but irreversible Ca2+ overload response but had no significant effect on PMCA activity. POA (50–100 μm) induced a robust Ca2+ overload, ATP depletion, inhibited PMCA activity, and consequently induced necrosis. Insulin pretreatment (100 nm for 30 min) prevented the POA-induced Ca2+ overload, ATP depletion, inhibition of the PMCA, and necrosis. Moreover, the insulin-mediated protection of the POA-induced Ca2+ overload was partially prevented by the phosphoinositide-3-kinase (PI3K) inhibitor, LY294002. These data provide the first evidence that insulin directly protects pancreatic acinar cell injury induced by bona fide pancreatitis-inducing agents, such as POA. This may have important therapeutic implications for the treatment of pancreatitis. PMID:24993827

  8. Histamine H3 receptor antagonism by ABT-239 attenuates kainic acid induced excitotoxicity in mice.

    PubMed

    Bhowmik, Malay; Saini, Neeru; Vohora, Divya

    2014-09-18

    The multifaceted pathogenesis of temporal lobe epilepsy (TLE) offers a number of adjunctive therapeutic prospects. One such therapeutic strategy could be targeting H3 receptor (H3R) by selective H3R antagonists which are perceived to have antiepileptic and neuroprotective potential. Kainic acid (KA) induced seizure, a reliable model of TLE, triggers epileptogenic events resulting from initial neuronal death and ensuing recurring seizures. The present study aimed to determine whether pre-treatment with ABT-239, a novel H3R antagonist, and its combinations with sodium valproate (SVP) and TDZD-8 (glycogen synthase kinase-3β (GSK3β) inhibitor) can prevent the excitotoxic events in mice exposed to KA (10 mg/kg i.p.). ABT-239 (1 and 3 mg/kg i.p.) significantly attenuated KA-mediated behavioural and excitotoxic anomalies and restored altered expression of Bax, cleaved caspase-3, phospho-Akt (Ser473) and cAMP response element binding protein (CREB). Surprisingly, restoration of Bcl2 and phospho-GSK3β (Ser9) by ABT-239 did not reach the level of statistical significance. Co-administration of ABT-239 (1 and 3 mg/kg) with a sub-effective dose of SVP (150 mg/kg i.p.) yielded improved efficacy than when given alone. Similarly, low and high dose combinations of ABT-239 (1 and 3 mg/kg) with TDZD-8 (5 and 10 mg/kg i.p.) produced greater neuroprotection than any other treatment group. Our findings suggests a neuroprotective potential of ABT-239 and its combinations with SVP and TDZD-8 against KA-induced neurotoxicity, possibly mediated through in part each by modulating Akt/GSK3β and CREB pathways. The use of H3R antagonists as adjuvant in the treatment of human TLE might find potential utility, and can be pursued further.

  9. Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibition.

    PubMed

    Chung, Seung-Yun; Han, Seol-Heui

    2003-03-01

    The antioxidant and anti-inflammatory effects of melatonin on kainic acid (KA)-induced neurodegeneration in the hippocampus were evaluated in vivo. It has been suggested that the pineal secretory product, melatonin, protects neurons in vitro from excitotoxicity mediated by kainate-sensitive glutamate receptors, and from oxidative stress-induced DNA damage and apoptosis. In this study, we injected 10 mg/kg kainate intraperitoneally (i.p.) into adult male Sprague-Dawley rats. This results in selective neuronal degeneration accompanied by intense microglial activation and triggers DNA damage in the hippocampus. We tested the in vivo efficacy of melatonin in preventing KA-induced neurodegeneration, oxidative stress and neuroinflammation in the hippocampus. Melatonin (2.5 mg/kg, i.p.) was given 20 min before, immediately after, and 1 and 2 hr after KA administration. Rats were killed 72 hr later and their hippocampi were examined for evidence of DNA damage (in situ dUTP end-labeling, i.e. TUNEL staining), cell viability (hematoxylin and eosin staining), and microglial (isolectin-B4 histochemistry) and astroglial responses (glial fibrillary acidic protein immunohistochemistry), as well as lipid peroxidation (4-hydroxynonenal immunohistochemistry). A cumulative dose of 10 mg/kg melatonin attenuates KA-induced neuronal death, lipid peroxidation, and microglial activation, and reduces the number of DNA breaks. A possible mechanism for melatonin-mediated neuroprotection involves its antioxidant and anti-inflammatory actions. The present data suggest that melatonin is potentially useful in the treatment of acute brain pathologies associated with oxidative stress-induced neuronal damage such as epilepsy, stroke, and traumatic brain injury.

  10. Korean red ginseng ameliorates acute 3-nitropropionic acid-induced cochlear damage in mice.

    PubMed

    Tian, Chunjie; Kim, Young Ho; Kim, Young Chul; Park, Kyung Tae; Kim, Seung Won; Kim, Youn Ju; Lim, Hye Jin; Choung, Yun-Hoon

    2013-01-01

    3-Nitropropionic acid (3-NP), a mitochondrial toxin, has been reported to induce an acute cochlear damage. Korean red ginseng (KRG) is known to have protective effects from some types of hearing loss. This study aimed to observe the protective effect of KRG in an ototoxic animal model using 3-NP intratympanic injection. BALB/c mice were classified into 5 groups (n=15) and dose-dependent toxic effects after intratympanic injection with 3-NP (300-5000 mM) on the left ear were investigated to determine the appropriate toxicity level of 3-NP. For observation of the protective effects of KRG, 23 mice were grouped into 3-NP (500 mM, n=12) and KRG+3-NP groups (300 mg/kg KRG for 7 days before 500 mM 3-NP administration, n=11). Auditory brain response (ABR) and cochlear morphological evaluations were performed before and after drug administration. The ABR thresholds in the 800-5000 mM groups exceeded the maximum recording limit at 16 and 32 kHz 1 day after 3-NP administration. The ABR threshold in the 500 mM 3-NP+KRG group was significantly lower than that in the 500 mM 3-NP group from post 1 week to 1 month. The mean type II fibrocyte counts significantly differed between the control and 3-NP groups and between the 3-NP and 3-NP+KRG groups. Spiral ganglion cell degeneration in the 3-NP group was more severe than that in the 3-NP+KRG group. This animal model exhibited a dose-dependent hearing loss with histological changes. KRG administration ameliorated the deterioration of hearing by 3-NP.

  11. PGC-1β suppresses saturated fatty acid-induced macrophage inflammation by inhibiting TAK1 activation.

    PubMed

    Chen, Hongen; Liu, Yan; Li, Di; Song, Jiayi; Xia, Min

    2016-02-01

    Inflammation of infiltrated macrophages in adipose tissue is a key contributor to the initiation of adipose insulin resistance. These macrophages are exposed to high local concentrations of free fatty acids (FFAs) and can be proinflammatory activated by saturated fatty acids (SFAs). However, the regulatory mechanisms on SFA-induced macrophage inflammation are still elusive. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a member of the PGC-1 family of transcriptional coactivators and has been reported to play a key role in SFAs metabolism and in the regulation of inflammatory signaling. However, it remains unclear whether PGC-1β is involved in SFA-induced macrophage inflammation. In this study, we found that PGC-1β expression was significantly decreased in response to palmitic acid (PA) in macrophages in a dose dependent manner. PGC-1β inhibited PA induced TNFα, MCP-1, and IL-1β mRNA and protein expressions. Furthermore, PGC-1β significantly antagonized PA induced macrophage nuclear factor-κB (NF-κB) p65 and JUN N-terminal kinase activation. Mechanistically, we revealed that TGF-β-activated kinase 1 (TAK1) and its adaptor protein TAK1 binding protein 1 (TAB1) played a dominant role in the regulatory effects of PGC-1β. We confirmed that PGC-1β inhibited downstream inflammatory signals via binding with TAB1 and thus preventing TAB1/TAK1 binding and TAK1 activation. Finally, we showed that PGC-1β overexpression in PA treated macrophages improved adipocytes PI3K-Akt insulin signaling in a paracrine fashion. Collectively, our results uncovered a novel mechanism on how macrophage inflammation induced by SFAs was regulated and suggest a potential target in the treatment of obesity induced insulin resistance.

  12. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    PubMed Central

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  13. Antiperoxidative and antiinflammatory effect of Sida cordifolia Linn. on quinolinic acid induced neurotoxicity.

    PubMed

    Swathy, S S; Panicker, Seema; Nithya, R S; Anuja, M M; Rejitha, S; Indira, M

    2010-09-01

    Sida cordifolia is a plant belonging to the Malvaceae family used in many ayurvedic preparations. This study aimed at assessing the effects of ethanolic extract of Sida cordifolia root on quinolinic acid (QUIN) induced neurotoxicity and to compare its effect with the standard drug deprenyl in rat brain. Rats were divided into six groups: (1) control group (2) QUIN (55 microg/100 g bwt/day) (3) 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (4) Deprenyl (100 microg/100 g bwt/day) (5) QUIN (55 microg/100 g bwt/day) + 50% ethanolic plant extract treated group (50 mg/100 g bwt/day) (6) QUIN (55 microg/100 g bwt/day) + Deprenyl (100 microg/100 g bwt/day). At the end of the experimental period a status of lipid peroxidation products, protein peroxidation product, activities of the scavenging enzymes and the activities of the inflammatory markers were analyzed. Results revealed that the lipid peroxidation products decreased and the activities of the scavenging enzymes increased significantly in the brain of the plant extract treated group, deprenyl treated group and also in the coadminstered groups. The activities of markers of inflammatory responses such as cyclooxygenase and lipoxygenase were found to be significantly increased in the QUIN treated rats and this was decreased upon the administration of plant extract and deprenyl. In short, the study revealed that 50% ethanolic extract of Sida cordifolia has got potent antioxidant and antiinflammatory activity and the activity is comparable with the standard drug deprenyl.

  14. Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs.

    PubMed

    Wex, Eva; Bouyssou, Thierry

    2015-01-01

    Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01). Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001). In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the

  15. Butoxyacetic acid-induced hemolysis of rat red blood cells: effect of external osmolarity and cations.

    PubMed

    Udden, M M; Patton, C S

    2005-03-28

    Hemolysis is the principal toxicity of acute exposure to ethylene glycol monobutyl ether (EGBE) in rats. EGBE itself is not an active hemolytic agent, but its metabolite, butoxyacetic acid (BAA) formed as a result of dehydrogenase activity is a potent hemolysin. Here we address the role of osmolarity and cation composition of the suspending buffers in the mechanism of BAA-induced hemolysis of rat red blood cells in vitro. Rat erythrocytes were protected from BAA-induced cell swelling and hemolysis by the addition of sucrose to the suspending media. Hemolysis and cell swelling were also reduced by replacing external sodium with potassium. When calcium was not present in the suspending medium or when chelated by EGTA, hemolysis was increased after 2 h incubation with 1 mM or 2 mM BAA. Addition of as little as 0.05 mM CaCl(2) reduced hemolysis significantly while the addition of MgCl(2) had no effect. The dose-response relationship between BAA concentration and hemolysis determined in the presence or absence of calcium showed an increased effect of BAA in the absence of calcium. BAA-induced spherocytosis and cell fragmentation were more pronounced in the absence of calcium. The time course of BAA-induced hemolysis in the presence and absence of calcium demonstrated that the effect of calcium is to delay the onset of hemolysis. Increased intracellular calcium as a result of exposure to BAA was verified by atomic absorption spectroscopy. Charybdotoxin, an inhibitor of the calcium activated potassium channel, blocked the protective effect of calcium suggesting that the delay of onset of hemolysis in the presence of calcium is due to potassium loss caused by this channel. We conclude that the mode of action of BAA is to cause a colloid osmotic lysis of the rat red blood cell. Hemolysis requires external sodium and is associated with calcium uptake. Calcium appears to delay the onset of hemolysis. We speculate that: (1) BAA causes sodium and calcium to enter the cell; (2

  16. Lauric acid-induced formation of a lyotropic nematic phase of disk-shaped micelles.

    PubMed

    Colafemmina, Giuseppe; Recchia, Raffaella; Ferrante, Andrea S; Amin, Samiul; Palazzo, Gerardo

    2010-06-03

    Addition of small amounts of lauric acid (LA) to a micellar solution of sodium dodecyl sulfate (SDS, 11.5 wt %) and cocamidopropyl betaine (CAPB, 3 wt %) has a dramatic effect on the rheological properties and phase behavior of the system. The viscosity increases by more than 1 order of magnitude up to a weight ratio LA/SDS = 0.17 and decreases for further LA loading. The decrease in viscosity is associated with the formation of a birefringent liquid crystalline phase. The evolution of the system from isotropic micelles in the absence of LA to lyotropic liquid crystals up to a weight ratio LA/SDS = 0.30 was probed by a combination of (23)Na NMR quadrupolar splitting, measurements of water and surfactant self-diffusion coefficients via (1)H-PGSE-NMR, and rheology. The evolution of the water self-diffusion coefficients indicates that LA induced a dramatic increase in the anisotropy of disk-shaped micelles. Birefringent samples always showed a well developed (23)Na quadrupolar splitting with a line shape typical of monodomain samples. This suggests that the whole sample is easily oriented within the spectrometer electromagnet, as usually observed for nematic liquid crystals. Sample spinning first destroys the alignment (only a single peak is discernible in the (23)Na NMR spectrum). Then, upon prolonged spinning, the alignment develops again. This indicates that the system is composed by disklike micelles aligning themselves with their normal perpendicular to the magnetic field. On the other hand, the linear viscoelastic response close to the nematic transition shows features usually observed in wormlike micellar systems (e.g., nearly Maxwellian behavior). To reconciliate the rheological data and the NMR evidence of disklike micelles, the formation of columnar stacks of disklike micelles is proposed. The rheology of the isotropic phase can therefore be interpreted in terms of entanglements of "living columnar stacks" of disklike micelles, and the nematic phase observed

  17. Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells

    PubMed Central

    Schulz, Cathrin; Paus, Marie; Frey, Katharina; Schmid, Ramona; Kohl, Zacharias; Mennerich, Detlev; Winkler, Jürgen; Gillardon, Frank

    2011-01-01

    Background Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson's disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/− cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture. Conclusion/Significance Parkinson's disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases. PMID:21695257

  18. The effect of nedocromil sodium, sodium cromoglycate and codeine phosphate on citric acid-induced cough in dogs.

    PubMed Central

    Jackson, D. M.

    1988-01-01

    1. The effects of nedocromil sodium, sodium cromoglycate and codeine phosphate on citric acid-induced cough have been studied in conscious tracheostomised dogs. 2. Nedocromil sodium (approximately 15 mg given as an aerosol) and codeine phosphate (5 mg kg-1, i.v.) significantly increased the time to the first cough when dogs were challenged with citric acid aerosol. The mean number of coughs in the initial period of coughing fell after treatment of dogs with nedocromil sodium or with codeine phosphate, but this reduction in mean cough number was not statistically significant. 3. Neither sodium cromoglycate (approximately 15 mg given as an aerosol) nor saline had significant effect on a citric acid challenge. 4. It is concluded that nedocromil sodium, but not sodium cromoglycate, possesses an anti-tussive action that may result from inhibition of sensory nerve activity in the lung. Nedocromil sodium may prove useful in the treatment of unproductive cough in situations where the use of a centrally-acting antitussive is undesirable. PMID:2836011

  19. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.

    PubMed

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Sarma, Birinchi Kumar; Singh, Harikesh Bahadur

    2015-05-01

    Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen.

  20. Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation.

    PubMed

    Kamal, Mohammad; Foukani, Mohammed; Karoui, Romdhane

    2017-02-01

    The rheological properties of acid-induced coagulation of camel and cow milk gels following the addition of calcium chloride (CaCl2) and hydrogen phosphate dehydrate (Na2HPO4*2H2O) were investigated using a dynamic low amplitude oscillatory rheology. For a considered condition, the final values of storage modulus (G') and loss modulus (G″) of camel milk gels were significantly lower than those of cow milk gels. The increase of the added CaCl2 levels improved significantly the gelation properties of camel and cow milk gels, since a reduction in the gelation time and an increase in the gel firmness were observed. Following the addition of Na2HPO4*2H2O at 10 and 20 mM, no significant effect on the gelation rate and the firmness of camel milk gels was observed, while, a significant decrease in the gelation rate and firmness were observed for cow milk gels.

  1. Protective Effect of Cod (Gadus macrocephalus) Skin Collagen Peptides on Acetic Acid-Induced Gastric Ulcer in Rats.

    PubMed

    Niu, Huina; Wang, Zhicong; Hou, Hu; Zhang, Zhaohui; Li, Bafang

    2016-07-01

    This research was performed to explore the protective effect of cod skin collagen peptides (CCP) on gastric ulcer induced by acetic acid. The CCP were fractionated into low molecular CCP (LMCCP, Mw < 3 kDa) and high molecular CCP (HMCCP, Mw > 3 kDa). In HMCCP and LMCCP, glycine of accounted for about one-third of the total amino acids without cysteine and tryptophan, and hydrophobic amino acids accounted for about 50%. After 21 d CCP treatment (60 or 300 mg/kg, p.o./daily), the healing effects on acetic acid-induced gastric ulcers were evaluated by macroscopic measure, microscopic measure, and immune histochemistry. Moreover, the expression levels of the growth factors, such as vascular endothelial growth factor, epidermal growth factor, transforming growth factor β1 (TGFβ1), and the heat shock protein 70 (HSP70) was detected. The results showed that both LMCCP and HMCCP could significantly decrease the ulcer areas and promote the healing of the lesions. They also could improve the levels of hexosamine, glutathione, superoxide dismutase, and glutathione peroxidase, and reduce the content of malondialdehyde and inducible nitric oxide synthase. In addition, the expression level of TGFβ1 gene and HSP70 mRNA was significantly improved by the treatment. It suggested that CCP could be able to improve symptoms of gastric ulcer and probably be used in the treatment of gastric ulcer.

  2. Ellagic acid induces novel and atypical PKC isoforms and promotes caspase-3 dependent apoptosis by blocking energy metabolism.

    PubMed

    Mishra, Sudha; Vinayak, Manjula

    2014-01-01

    Antioxidant ellagic acid is a herbal polyphenolic compound shown to possess growth-inhibiting and apoptotic activities in cancer. Protein kinase C (PKC) plays an important role in cell proliferation, apoptosis, and differentiation. Apoptosis of tumor cells is induced by inactivation of glycolytic enzyme of anaerobic metabolism, lactate dehydrogenase (LDH)-A, and by activating apoptotic protein caspase-3 via PKCδ. The present study aims to analyze the role of ellagic acid on regulation of novel and atypical isozymes of PKC to modulate apoptosis and anaerobic metabolism to prevent lymphoma growth as its role on classical PKCs is reported earlier. Expression of novel and atypical isozymes of PKC, activity of PKCδ, expression and activity of caspase-3, and LDH-A have been analyzed. Expression is measured by RT-PCR, activities of PKCδ as level of its catalytic fragment, caspase-3 as level of its p17 fragment, and LDH-A by specific staining. Lymphoma bearing mice were treated with 3 different doses of ellagic acid. The treatment enhanced expression of all novel and atypical PKCs, activity and expression of caspase-3, and activity of PKCδ but decreased activity and expression of LDH-A. Our results suggest that ellagic acid induces apoptosis via novel and atypical PKCs in association with caspase-3 and induces cancer cell death by blocking the energy metabolism.

  3. Vitamin C (ascorbic acid) induced hydroxyl radical formation in copper contaminated household drinking water: role of bicarbonate concentration.

    PubMed

    Jansson, Patric J; Asplund, Klara U M; Mäkelä, Johanna C; Lindqvist, Christer; Nordström, Tommy

    2003-08-01

    We have previously shown that Vitamin C (ascorbic acid) can trigger hydroxyl radical formation in copper contaminated household drinking water. We report here that the capacity of ascorbic acid to catalyze hydroxyl radical generation in the drinking water samples is strongly dependent on the bicarbonate concentration (buffer capacity and pH) of the samples. We found that at least 50 mg/l bicarbonate was required in the water samples to maintain the pH over 5.0 after ascorbic acid addition. At this pH, that is higher than the pKa1 4.25 of ascorbic acid, a hydroxyl radical generating redox cycling reaction involving the mono-anion of vitamin C and copper could take place. The ascorbic acid induced hydroxyl radical generating reaction could easily be mimicked in Milli-Q water by supplementing the water with copper and bicarbonate. Our results demonstrate that ascorbic acid can induce a pH dependent hydroxyl radical generating reaction in copper contaminated household tap water that is buffered with bicarbonate. The impact of consuming ascorbic acid together with copper and bicarbonate containing drinking water on human health is discussed.

  4. Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells

    PubMed Central

    Fukasaku, Mitsuko; Kimura, Junko; Yamaguchi, Osamu

    2016-01-01

    Abstract Using the perforated patch voltage clamp, we investigated swelling-activated ionic channels (SACs) in rat urinary bladder smooth muscle cells. Hypo-osmotic (60%) bath solution increased a membrane current which was inhibited by the SAC inhibitor, gadolinium. The reversal potential of the hypotonicity-induced current shifted in the positive direction by increasing external K+ concentration. The hypotonicity-induced current was inhibited by extracellular acidic pH, phorbol ester and forskolin. These pharmacological properties are identical to those of arachidonic acid-induced current present in these cells, suggesting the presence of TREK-1, a four-transmembrane two pore domain K+ channel. Using RT-PCR we screened rat bladder smooth muscles and cerebellum for expression of TREK-1, TREK-2 and TRAAK mRNAs. Only TREK-1 mRNA was expressed in the bladder, while all three were expressed in the cerebellum. We conclude that a mechanosensitive K+ channel is present in rat bladder myocytes, which is activated by arachidonic acid and most likely is TREK-1. This K+ channel may have an important role in the regulation of bladder smooth muscle tone during urine storage. PMID:26911303

  5. Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells.

    PubMed

    Fukasaku, Mitsuko; Kimura, Junko; Yamaguchi, Osamu

    2016-06-08

    Using the perforated patch voltage clamp, we investigated swelling-activated ionic channels (SACs) in rat urinary bladder smooth muscle cells. Hypo-osmotic (60%) bath solution increased a membrane current which was inhibited by the SAC inhibitor, gadolinium. The reversal potential of the hypotonicity-induced current shifted in the positive direction by increasing external K(+) concentration. The hypotonicity-induced current was inhibited by extracellular acidic pH, phorbol ester and forskolin. These pharmacological properties are identical to those of arachidonic acid-induced current present in these cells, suggesting the presence of TREK-1, a four-transmembrane two pore domain K(+) channel. Using RT-PCR we screened rat bladder smooth muscles and cerebellum for expression of TREK-1, TREK-2 and TRAAK mRNAs. Only TREK-1 mRNA was expressed in the bladder, while all three were expressed in the cerebellum. We conclude that a mechanosensitive K(+) channel is present in rat bladder myocytes, which is activated by arachidonic acid and most likely is TREK-1. This K(+) channel may have an important role in the regulation of bladder smooth muscle tone during urine storage.

  6. The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells.

    PubMed

    Valenti, G; Procino, G; Carmosino, M; Frigeri, A; Mannucci, R; Nicoletti, I; Svelto, M

    2000-06-01

    Phosphorylation by kinases and dephosphorylation by phosphatase markedly affect the biological activity of proteins involved in intracellular signaling. In this study we investigated the effect of the serine/threonine phosphatase inhibitor okadaic acid on water permeability properties and on aquaporin2 (AQP2) translocation in AQP2-transfected renal CD8 cells. In CD8 cells both forskolin alone and okadaic acid alone increased the osmotic water permeability coefficient P(f) by about 4- to 5-fold. In intact cells, in vivo phosphorylation studies revealed that forskolin stimulation resulted in a threefold increase in AQP2 phosphorylation. In contrast, okadaic acid treatment promoted only a 60% increase in AQP2 phosphorylation which was abolished when this treatment was performed in the presence of 1 microM H89, a specific protein kinase A (PKA) inhibitor. Nevertheless, in this latter condition, confocal microscopy analysis revealed that AQP2 translocated and fused to the apical membrane. Okadaic acid-induced AQP2 translocation was dose dependent having its maximal effect at a concentration of 1 microM. In conclusion, our results clearly indicate that okadaic acid exerts a full forskolin-like effect independent from AQP2 phosphorylation. Thus AQP2 phosphorylation is not essential for water channel translocation in renal cells, indicating that different pathways might exist leading to AQP2 apical insertion and increase in P(f).

  7. Attenuation of Folic Acid-Induced Renal Inflammatory Injury in Platelet-Activating Factor Receptor-Deficient Mice

    PubMed Central

    Doi, Kent; Okamoto, Koji; Negishi, Kousuke; Suzuki, Yoshifumi; Nakao, Akihide; Fujita, Toshiro; Toda, Akiko; Yokomizo, Takehiko; Kita, Yoshihiro; Kihara, Yasuyuki; Ishii, Satoshi; Shimizu, Takao; Noiri, Eisei

    2006-01-01

    Platelet-activating factor (PAF), a potent lipid mediator with various biological activities, plays an important role in inflammation by recruiting leukocytes. In this study we used platelet-activating factor receptor (PAFR)-deficient mice to elucidate the role of PAF in inflammatory renal injury induced by folic acid administration. PAFR-deficient mice showed significant amelioration of renal dysfunction and pathological findings such as acute tubular damage with neutrophil infiltration, lipid peroxidation observed with antibody to 4-hydroxy-2-hexenal (day 2), and interstitial fibrosis with macrophage infiltration associated with expression of monocyte chemoattractant protein-1 and tumor necrosis factor-α in the kidney (day 14). Acute tubular damage was attenuated by neutrophil depletion using a monoclonal antibody (RB6-8C5), demonstrating the contribution of neutrophils to acute phase injury. Macrophage infiltration was also decreased when treatment with a PAF antagonist (WEB2086) was started after acute phase. In vitro chemotaxis assay using a Boyden chamber demonstrated that PAF exhibits a strong chemotactic activity for macrophages. These results indicate that PAF is involved in pathogenesis of folic acid-induced renal injury by activating neutrophils in acute phase and macrophages in chronic interstitial fibrosis. Inhibiting the PAF pathway might be therapeutic to kidney injury from inflammatory cells. PMID:16651609

  8. Nucleotide sequence and spatial expression pattern of a drought- and abscisic Acid-induced gene of tomato.

    PubMed

    Plant, A L; Cohen, A; Moses, M S; Bray, E A

    1991-11-01

    The nucleotide sequence of le16, a tomato (Lycopersicon esculentum Mill.) gene induced by drought stress and regulated by abscisic acid specifically in aerial vegetative tissue, is presented. The single open reading frame contained within the gene has the capacity to encode a polypeptide of 12.7 kilodaltons and is interrupted by a small intron. The predicted polypeptide is rich in leucine, glycine, and alanine and has an isoelectric point of 8.7. The amino terminus is hydrophobic and characteristic of signal sequences that target polypeptides for export from the cytoplasm. There is homology (47.2% identity) between the amino terminus of the LE 16 polypeptide and the corresponding amino terminal domain of the maize phospholipid transfer protein. le16 was expressed in drought-stressed leaf, petiole, and stem tissue and to a much lower extent in the pericarp of mature green tomato fruit and developing seeds. No expression was detected in the pericarp of red fruit or in drought-stressed roots. Expression of le16 was also induced in leaf tissue by a variety of other abiotic stresses including polyethylene glycol-mediated water deficit, salinity, cold stress, and heat stress. None of these stresses or direct applications of abscisic acid induced the expression of le16 in the roots of the same plants. The unique expression characteristics of this gene indicates that novel regulatory mechanisms, in addition to endogenous abscisic acid, are involved in controlling gene expression.

  9. Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model.

    PubMed

    Barbosa Bezerra, Gislaine; de Menezes de Souza, Luana; Dos Santos, Adailma Santana; de Almeida, Grace Kelly Melo; Souza, Marília Trindade Santana; Santos, Sandra Lauton; Aparecido Camargo, Enilton; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Cardoso, Juliana Cordeiro; Gomes, Silvana Vieira Floresta; Gomes, Margarete Zanardo; de Albuquerque, Ricardo Luiz Cavalcanti

    2017-01-01

    Ulcerative colitis (UC) is a common intestinal inflammatory disease with an etiology that is not well understood. Although the anti-inflammatory and anti-oxidant effects of the hydroalcoholic extract of Brazilian red propolis (HERP) have been reported in various experimental models, its protective effect in models of UC have not been evaluated. The purpose of this study was to investigate the chemopreventive effect of hydroalcoholic extract of Brazilian red propolis (HERP) in acetic acid-induced colitis (AAIC) using a rodent model. The HERP was chemically characterised by HPLC/DAD analyses. Male rats were randomly assigned into four groups: sham, vehicle (with AAIC, treated with vehicle), P10 (with AAIC, treated with 10mg/kg HERP), and P100 (with AAIC, treated with 100mg/kg HERP). Treatments were performed for 7days, and colitis was induced on day seven. Animals were euthanized 24h after colitis induction and body weight, colon length, gross and histological scores, malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations in colon tissue, and the immunohistochemical expression of inducible nitric oxide synthase (iNOS) were assessed. The major compounds found in HERP were liquiritigenin (68.8mg/g), formononetin (54.29mg/g), biochanin A (30.97mg/g), and daidzein (19.90mg/g). Rats treated with 10mg/kg HERP demonstrated significant decreases in MPO concentrations, gross and histological scores of tissue damage, and iNOS expression (p<0.05). Similarly, rats treated with 100mg/kg HERP demonstrated significant decreases in MPO levels (p<0.05) and histological scores of tissue damage (p<0.05). The results of this study indicate that oral administration of HERP attenuates AAIC in rats, which may be due to anti-inflammatory effects related to iNOS inhibition.

  10. Chronic activity wheel running reduces the severity of kainic acid-induced seizures in the rat: possible role of galanin.

    PubMed

    Reiss, J I; Dishman, R K; Boyd, H E; Robinson, J K; Holmes, P V

    2009-04-17

    Studies in both humans and rodents suggest that exercise can be neuroprotective, but the mechanisms by which this occurs are still poorly understood. Three weeks of voluntary, physical activity in rats upregulates prepro-galanin messenger RNA levels in the locus coeruleus. Galanin is a neuropeptide extensively coexisting with norepinephrine that decreases neuronal hyperexcitability both in vivo and in vitro. Thus, exercise may diminish neural hyperexcitability through a galaninergic mechanism. The current experiments tested whether voluntary activity wheel running would protect against kainic acid-evoked seizures and whether galaninergic signaling is a necessary factor in this protection. In experiment 1, rats were given access to running wheels or remained sedentary for three weeks. After this period, rats received an intraperitoneal (i.p.) injection of 0, 7, 10 or 14 mg/kg kainic acid. Exercise decreased the severity of or eliminated seizure behaviors and hippocampal c-fos expression induced by kainic acid. In experiment 2, exercising or sedentary rats were injected intracerebroventricularly (i.c.v.) with 0.2 or 0.4 microg of kainic acid following either an injection of M-40 (a galanin receptor antagonist) or saline. Exercise decreased kainic acid-induced seizures at the 0.2 microg dose, and M-40 (6 nmol) decreased this effect. In contrast, there were no detectable differences between exercising and sedentary rats in behavior at the 0.4 microg dose. The results suggest that the protective effects of exercise against seizures are at least partially mediated by regulation of neural excitability through a process involving galanin.

  11. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development.

    PubMed

    Rizzi, Massimo; Perego, Carlo; Aliprandi, Marisa; Richichi, Cristina; Ravizza, Teresa; Colella, Daniele; Velískŏvá, Jana; Moshé, Solomon L; De Simoni, M Grazia; Vezzani, Annamaria

    2003-12-01

    In adult rats, status epilepticus (SE) induces cytokine production by glia especially when seizures are associated with neuronal injury. This suggests that cytokines may play a role in seizure-induced neuronal damage. As SE-induced injury is age-specific, we used rats of different ages (with distinct susceptibilities to seizure-induced neuronal injury) to elucidate the role of cytokines in this process. Thus, we investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal injury 4 and 24 h following kainic acid-induced SE in postnatal day (PN) 9, 15, and 21 rats. At PN9, there was little activation of microglia and astrocytes at any time point studied. Interleukin-1beta (IL), tumor necrosis factor-alpha (TNF), and IL-6 or the naturally occurring IL-1 receptor antagonist (Ra) mRNA expression did not increase. No evidence of cell injury has been detected. At PN15, immunostaining of microglia and astrocytes was enhanced, but only IL-1beta mRNA expression was increased. These changes were observed 4 h after SE. Scattered injured neurons in CA3 and subiculum, but not in any other region, were present 24 h following SE. At PN21, immunostaining of microglia and astrocytes and the mRNA expression of all cytokines studied was significantly increased already 4 h after SE. At 24 h, many injured neurons were present in CA1 and CA3 regions and in 40% of rats in other forebrain areas. These data show that (i) the pattern of glia activation and cytokine gene transcription induced by SE is age-dependent and (ii) neuronal injury in the hippocampus occurs only when cytokines are induced and their synthesis precedes the appearance of neuronal damage. Thus, cytokine expression in immature brain is associated specifically with cell injury rather than with seizures per se, suggesting that proinflammatory cytokines may contribute to the occurence of SE-induced hippocampal damage.

  12. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism.

    PubMed

    Kim, Ji-Woon; Seung, Hana; Kwon, Kyung Ja; Ko, Mee Jung; Lee, Eun Joo; Oh, Hyun Ah; Choi, Chang Soon; Kim, Ki Chan; Gonzales, Edson Luck; You, Jueng Soo; Choi, Dong-Hee; Lee, Jongmin; Han, Seol-Heui; Yang, Sung Min; Cheong, Jae Hoon; Shin, Chan Young; Bahn, Geon Ho

    2014-01-01

    Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

  13. Arachidonic acid-induced Ca2+ sensitization of smooth muscle contraction through activation of Rho-kinase.

    PubMed

    Araki, S; Ito, M; Kureishi, Y; Feng, J; Machida, H; Isaka, N; Amano, M; Kaibuchi, K; Hartshorne, D J; Nakano, T

    2001-02-01

    Arachidonic acid activates isolated Rho-kinase and contracts permeabilized smooth muscle fibres. Various assays were carried out to examine the mechanism of this activation. Native Rho-kinase was activated 5-6 times by arachidonic acid but an N-terminal, constitutively-active fragment of Rho-kinase, expressed as a glutathione-S-transferase (GST) fusion protein and including the catalytic subunit (GST-Rho-kinase-CAT), was not. GST-Rho-kinase-CAT was inhibited by a C-terminal fragment of Rho-kinase and arachidonic acid removed this inhibition. These results suggest that the C-terminal part of Rho-kinase, containing the RhoA binding site and the pleckstrin homology domain, acts as an autoinhibitor. It is suggested further that activation by arachidonic acid is due to its binding to the autoinhibitory region and subsequent release from the catalytic site. Arachidonic acid, at concentrations greater than 30 microM, increases force in alpha-toxin-permeabilized femoral artery but not in Triton X-100-skinned fibres. The content of Rho-kinase in the latter was lower than in alpha-toxin-treated or intact fibres. The arachidonic acid-induced contraction was not observed at a pCa above 8.0 and was inhibited by Y-27632 and wortmannin, inhibitors of Rho-kinase and myosin light-chain kinase (MLCK), respectively. The activation of Rho-kinase and subsequent phosphorylation of the myosin phosphatase target subunit inhibits myosin phosphatase and increases myosin phosphorylation.

  14. Stability of the Acetic Acid-Induced Bladder Irritation Model in Alpha Chloralose-Anesthetized Female Cats

    PubMed Central

    Kullmann, F. Aura; Wells, Grace I.; Langdale, Christopher L.; Zheng, Jihong; Thor, Karl B.

    2013-01-01

    Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS) activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5%) to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min “quiet period” (bladder emptied without infusion) was precisely repeated every 30 minutes. Administration of vehicle (saline i.v.) occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v.) after the 8th. Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function. PMID:24040064

  15. Functional and cellular characterization of human Retinoic Acid Induced 1 (RAI1) mutations associated with Smith-Magenis Syndrome

    PubMed Central

    2010-01-01

    Background Smith-Magenis Syndrome is a contiguous gene syndrome in which the dosage sensitive gene has been identified: the Retinoic Acid Induced 1 (RAI1). Little is known about the function of human RAI1. Results We generated the full-length cDNA of the wild type protein and five mutated forms: RAI1-HA 2687delC, RAI1-HA 3103delC, RAI1 R960X, RAI1-HA Q1562R, and RAI1-HA S1808N. Four of them have been previously associated with SMS clinical phenotype. Molecular weight, subcellular localization and transcription factor activity of the wild type and mutant forms were studied by western blot, immunofluorescence and luciferase assays respectively. The wild type protein and the two missense mutations presented a higher molecular weight than expected, localized to the nucleus and activated transcription of a reporter gene. The frameshift mutations generated a truncated polypeptide with transcription factor activity but abnormal subcellular localization, and the same was true for the 1-960aa N-terminal half of RAI1. Two different C-terminal halves of the RAI1 protein (1038aa-end and 1229aa-end) were able to localize into the nucleus but had no transactivation activity. Conclusion Our results indicate that transcription factor activity and subcellular localization signals reside in two separate domains of the protein and both are essential for the correct functionality of RAI1. The pathogenic outcome of some of the mutated forms can be explained by the dissociation of these two domains. PMID:20738874

  16. The Healing Effect of Teucrium polium in Acetic Acid-Induced Ulcerative Colitis in the Dog as an Animal Model

    PubMed Central

    Mehrabani, Davood; Bahrami, Faranak; Hosseini, Seyed Vahid; Ashraf, Mohammad Javad; Tanideh, Nader; Rezaianzadeh, Abbas; Amini, Masoud; Amini, Afshin

    2012-01-01

    BACKGROUND Inflammatory bowel diseases (IBD), which include ulcerative colitis (UC) and Crohn’s disease (CD), are debilitating and chronic disorders with unpredictable courses and complicated treatment measures. Therefore, an efficient treatment protocol seems necessary as therapeutic prophylaxis for these disorders. This study aims to determine the healing effect of Teucrium polium (T. polium) in acetic acid-induced UC in an experimental dog model. METHODS From September to December 2010, eight male (20-25 kg) crossbred dogs were used for induction of UC by 6% acetic acid, transrectally. After one week, three biopsies (10, 20 and 30 cm proximal to the anal verge) were taken from the colon of each animal for histological studies. In the presence of UC, 400 mg/kg/day of T. polium extract was administered orally and transrectally (via enema) for 30 days in six of the dogs. The remaining two dogs were used as controls and did not receive T. polium. Multiple biopsies were taken 7, 14, and 30 days after discontinuation of T. polium in the same manner as before treatment. RESULTS After administration of acetic acid, we noted the presence of multiple ulcers, diffuse inflammation, PMN infiltration in the lamina propria, glandular destruction and goblet cell depletion. Treatment with T. polium restored the colonic architecture with an increased number of healthy cells and a reduction in inflammatory cells. Damage of the surface epithelial cells and mucosal layer of the lumen were reversed, which lead to faster ulcer healing. CONCLUSION T. polium may be a treatment choice for UC and can broaden the current therapy options for UC. PMID:24829634

  17. Distribution of interstitial cells of Cajal in the bladders of fetal rats with retinoic acid induced myelomeningocele

    PubMed Central

    Tekin, Ali; Karakuş, Osman Zeki; Hakgüder, Gülce; Ateş, Oğuz; Özer, Erdener; Olguner, Mustafa; Akgür, Feza Miraç

    2016-01-01

    Objective Myelomeningocele (MMC) is one of the most common reason of neurogenic bladder dysfunction in children. Although neurogenic bladder dysfunction occurrence is related with bladder innervation, also there are some changes seen in the smooth muscle and neural cells of the bladder. Interstitial cells of Cajal (ICC) are the pacemaker cells found in organs with peristaltic activity. Although it has been shown that ICC are diminished in the rat urinary bladder with traumatic spinal cord injury, there is no data about ICC in fetal rat bladders with MMC. This study has been conducted to investigate the ICC in the bladders of fetal rats with retinoic acid induced MMC. Materials and methods Time dated pregnant Wistar albino rats were divided into 3 groups. In MMC group, dams were fed with gavage solution containing 60 mg/kg all-trans retinoic acid dissolved in olive oil on 10. embryologic day. Sham group animals were fed only olive oil. Control group dams were fed with standard rat chow. Fetuses were delivered by cesarean section and harvested on 22. embryologic day. MMC was identified by observing MMC sacs at the back of the fetuses. Distribution of ICCs were evaluated using immunohistochemical staining. Results ICCs were found in all groups, which have the same morphological features that had been described earlier in the gastrointestinal tract and the bladder. The density of the ICC in the MMC group was found to be significantly decreased when compared with the control and the sham groups (p<0.05). Conclusion The density of the ICC in the urinary bladder decreased in the neurogenic bladder developed in MMC. PMID:27909623

  18. Stability of the acetic acid-induced bladder irritation model in alpha chloralose-anesthetized female cats.

    PubMed

    Kullmann, F Aura; Wells, Grace I; Langdale, Christopher L; Zheng, Jihong; Thor, Karl B

    2013-01-01

    Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS) activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5%) to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min "quiet period" (bladder emptied without infusion) was precisely repeated every 30 minutes. Administration of vehicle (saline i.v.) occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v.) after the 8(th). Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function.

  19. Protective Effect of the Methanolic Extract of Malva parviflora L. leaves on Acetic Acid-induced Ulcerative Colitis in Rats

    PubMed Central

    Dugani, Aisha; Dakhil, Bushra; Treesh, Soad

    2016-01-01

    Background/Aims: Inflammatory bowel disease (IBD) is a general term describing chronic, idiopathic relapsing, inflammatory conditions of the gastrointestinal tract of unknown etiology. Previous studies have indicated that Malva parviflora leaf extract possesses anti-inflammatory, antioxidant, and antiulcerogenic activity. activity. This work aimed to investigatee the anti-inflammatory effect of the methanolic (MEMP) and aqueous (AEMP) extracts of M. parviflora leaves on acetic acid-induced colitis in rats. Materials and Methods: 42 male Wistar albino rats were divided into seven groups (n = 6). Group I: Normal saline control group with no colitis; Group II: Acetic acid colitis group; Group III: 100 mg/kg/5 d MEMP; Group IV: 200 mg/kg/5 d.MEMP; Group V: 100 mg/kg/5 d AEMP; Group VI: 200 mg/kg/5 d AEMP; Group VII: Prednisolone group (2 mg/kg/5 d). Treatments were followed by induction of colitis using intrarectal instillation of 2 mL of 4% acetic acid. Colon damage was evaluated macroscopically (spleen weight/body weight, colon weight/length ratio) and the histological changes were also recorded. Results: The results of this study showed that acetic acid caused severe inflammation of the colon and a significant increase in spleen weight/body weight, and an increase in colon weight/length ratio compared with normal control group. Pretreatment with MEMP and AEMP for 5 days followed by induction of colitis resulted in a significant attenuation of spleen weight and colon weight/length ratio compared with acetic acid control group. Methanolic extract provided better anticolitic effect than aqueous extract; the effect was prominent at the dose of 200 mg/kg. Histopathological findings confirmed the protective effect of the MEMP. Conclusion: In conclusion, MEMP could ameliorate mucosal damage in experimentally induced colitis when given orally. PMID:27184642

  20. Palmitic acid-induced apoptosis in pancreatic β-cells is increased by liver X receptor agonist and attenuated by eicosapentaenoate.

    PubMed

    Liang, Huasheng; Zhong, Yuhua; Zhou, Shaobi; Li, Qingdi Quentin

    2011-01-01

    Saturated fatty acids are implicated in the development of diabetes via the impairment of pancreatic islet β-cell viability and function. Liver X receptors (LXRs) and eicosapentaenoate (EPA) are known regulators of fatty acid metabolism. However, their roles in the pathogenesis of diabetes remain incompletely understood. The aim of this study was to determine the effects of EPA and the LXR agonist T0901317 on saturated fatty acid (palmitic acid)-induced apoptosis in the insulinoma β-cell line INS-1, a model for insulin-secreting β-cells. T0901317 significantly promoted palmitic acid-induced apoptotic cell death in the INS-1 cells. Consistent with these results, caspase-3 activity and BAX and sterol regulatory element binding protein-1c (SREBP-1c) mRNA levels were markedly increased in INS-1 cells co-administered palmitic acid and T0901317. The production of reactive oxygen species was considerably higher in the cells cultured concurrently with T0901317 and palmitic acid than in the cells incubated with either agent alone. EPA treatment attenuated the cellular death promoted by palmitic acid and T0901317 in the INS-1 cells, disclosing a possible mediating mechanism involving the inhibition of SREBP-1c. Finally, T0901317 up-regulated the palmitic acid-induced expression of p27(KIP1), transforming growth factor beta 1, and SMAD3 proteins in INS-1 cells. These results demonstrate that palmitic acid-induced apoptosis in β-cells is enhanced by T0901317 via the activation of LXRs and is blocked by EPA via the inhibition of SREBP-1c, suggesting that the regulation of lipogenesis and lipotoxicity affecting pancreatic β-cell viability and insulin production may be a unique strategy for diabetes therapy.

  1. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    PubMed

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities.

  2. The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon.

    PubMed

    Suziedeliené, E; Suziedélis, K; Garbenciūté, V; Normark, S

    1999-04-01

    Escherichia coli responds to external acidification (pH 4.0 to 5.0) by synthesizing a newly identified, approximately 450-nucleotide RNA component. At maximal levels of induction it is one of the most abundant small RNAs in the cell and is relatively stable bacterial RNA. The acid-inducible RNA was purified, and the gene encoding it, designated asr (for acid shock RNA), mapped at 35.98 min on the E. coli chromosome. Analysis of the asr DNA sequence revealed an open reading frame coding for a 111-amino-acid polypeptide with a deduced molecular mass of approximately 11.6 kDa. According to computer-assisted analysis, the predicted polypeptide contains a typical signal sequence of 30 amino acids and might represent either a periplasmic or an outer membrane protein. The asr gene cloned downstream from a T7 promoter was translated in vivo after transcription using a T7 RNA polymerase transcription system. Expression of a plasmid-encoded asr::lacZ fusion under a native asr promoter was reduced approximately 15-fold in a complex medium, such as Luria-Bertani medium, versus the minimal medium. Transcription of the chromosomal asr was abolished in the presence of a phoB-phoR (a two-component regulatory system, controlling the pho regulon inducible by phosphate starvation) deletion mutant. Acid-mediated induction of the asr gene in the Delta(phoB-phoR) mutant strain was restored by introduction of the plasmid with cloned phoB-phoR genes. Primer extension analysis of the asr transcript revealed a region similar to the Pho box (the consensus sequence found in promoters transcriptionally activated by the PhoB protein) upstream from the determined transcription start. The asr promoter DNA region was demonstrated to bind PhoB protein in vitro. We discuss our results in terms of how bacteria might employ the phoB-phoR regulatory system to sense an external acidity and regulate transcription of the asr gene.

  3. Plectoneme tip bubbles: Coupled denaturation and writhing in supercoiled DNA

    NASA Astrophysics Data System (ADS)

    Matek, Christian; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2015-01-01

    We predict a novel conformational regime for DNA, where denaturation bubbles form at the tips of plectonemes, and study its properties using coarse-grained simulations. For negative supercoiling, this regime lies between bubble-dominated and plectoneme-dominated phases, and explains the broad transition between the two observed in experiment. Tip bubbles cause localisation of plectonemes within thermodynamically weaker AT-rich sequences, and can greatly suppress plectoneme diffusion by a pinning mechanism. They occur for supercoiling densities and forces that are typically encountered for DNA in vivo, and may be exploited for biological control of genomic processes.

  4. Bak Foong Pills induce an analgesic effect by inhibiting nociception via the somatostatin pathway in mice.

    PubMed

    Rowlands, Dewi Kenneth; Cui, Yu Gui; So, Siu Cheung; Tsang, Lai Ling; Chung, Yiu Wa; Chan, Hsiao Chang

    2012-01-01

    Dysmenorrhoea, defined as cramping pain in the lower abdomen occurring before or during menstruation, affects, to varying degrees, up to 90% of women of child-bearing age. We investigated whether BFP (Bak Foong Pills), a traditional Chinese medicine treatment for dysmenorrhoea, possesses analgesic properties. Results showed that BFP was able to significantly reduce pain responses following subchronic treatment for 3 days, but not following acute (1 h) treatment in response to acetic acid-induced writhing in C57/B6 mice. The analgesic effect was not due to inhibition of COX (cyclo-oxygenase) activity, evidenced by the lack of inhibition of prostacyclin and PGE2 (prostaglandin E2) production. Molecular analysis revealed that BFP treatment modulated the expression of a number of genes in the spinal cord of mice subjected to acetic acid writhing. RT-PCR (reverse transcription-PCR) analysis of spinal cord samples showed that both sst4 (somatostatin receptor 4) and sst2 receptor mRNA, but not μOR (μ-opiate receptor) and NK1 (neurokinin-1) receptor mRNA, were down-regulated following BFP treatment, thus implicating somatostatin involvement in BFP-induced analgesia. Administration of c-som (cyclo-somatostatin), a somatostatin antagonist, prior to acetic acid-induced writhing inhibited the analgesic effect. Thus subchronic treatment with BFP has anti-nociceptive qualities mediated via the somatostatin pathway.

  5. Identification of Novel MAGE-G1-Interacting Partners in Retinoic Acid-Induced P19 Neuronal Differentiation Using SILAC-Based Proteomics

    PubMed Central

    Liu, Yong; Chen, Yujian; Lin, Shide; Yang, Shuguang; Liu, Shaojun

    2017-01-01

    MAGE-G1 is a protein plays role in the early process of neurogenesis. However, the fundamental roles MAGE-G1 played in neurogenesis have not yet been completely understood. Finding the partners MAGE-G1 interacting with will surely contribute to the function study of MAGE-G1. In this study, using Stable Isotope Labeling by Amino acids in Cell culture-immunoprecipitation quantitative proteomics, we screened the interacting proteins of MAGE-G1 during retinoic acid -induced neuronal differentiation of P19 cells and firstly found that FSCN1 and VIME were potential novel MAGE-G1-interacting proteins. Then, the interaction between overexpressed MAGE-G1 and FSCN1 or VIME was validated by GST-pull down assay in bacteria and by co-immunoprecipitation assay in COS7 cells. Endogenous co-immunoprecipitation assay further confirmed that MAGE-G1 interacted with FSCN1 or VIME in P19 cells after a 6-day retinoic acid-induced neuronal differentiation. Those results provide a functional linkage between MAGE-G1 and FSCN1 or VIME and may facilitate a better understanding of the fundamental aspects of MAGE-G1 during neurogenesis. PMID:28374796

  6. Beta-trace Protein as a new non-invasive immunological Marker for Quinolinic Acid-induced impaired Blood-Brain Barrier Integrity

    PubMed Central

    Baranyi, Andreas; Amouzadeh-Ghadikolai, Omid; Lewinski, Dirk von; Breitenecker, Robert J.; Stojakovic, Tatjana; März, Winfried; Robier, Christoph; Rothenhäusler, Hans-Bernd; Mangge, Harald; Meinitzer, Andreas

    2017-01-01

    Quinolinic acid, a macrophage/microglia-derived excitotoxin fulfills a plethora of functions such as neurotoxin, gliotoxin, and proinflammatory mediator, and it alters the integrity and cohesion of the blood-brain barrier in several pathophysiological states. Beta-trace protein (BTP), a monomeric glycoprotein, is known to indicate cerebrospinal fluid leakage. Thus, the prior aim of this study was to investigate whether BTP might non-invasively indicate quinolinic acid-induced impaired blood-brain barrier integrity. The research hypotheses were tested in three subsamples with different states of immune activation (patients with HCV-infection and interferon-α, patients with major depression, and healthy controls). BTP has also been described as a sensitive marker in detecting impaired renal function. Thus, the renal function has been considered. Our study results revealed highest quinolinic acid and highest BTP- levels in the subsample of patients with HCV in comparison with the other subsamples with lower or no immune activation (quinolinic acid: F = 21.027, p < 0.001 [ANOVA]; BTP: F = 6.792, p < 0.01 [ANOVA]). In addition, a two-step hierarchical linear regression model showed that significant predictors of BTP levels are quinolinic acid, glomerular filtration rate and age. The neurotoxin quinolinic acid may impair blood-brain barrier integrity. BTP might be a new non-invasive biomarker to indicate quinolinic acid-induced impaired blood-brain barrier integrity. PMID:28276430

  7. Chicoric acid induces apoptosis in 3T3-L1 preadipocytes through ROS-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Xiao, Haifang; Wang, Jing; Yuan, Li; Xiao, Chunxia; Wang, Yutang; Liu, Xuebo

    2013-02-20

    Chicoric acid has been reported to possess various bioactivities. However, the antiobesity effects of chicoric acid remain poorly understood. In this study, we investigated the effects of chicoric acid on 3T3-L1 preadipocytes and its molecular mechanisms of apoptosis. Chicoric acid inhibited cell viability and induced apoptosis in 3T3-L1 preadipocytes which was characterized by chromatin condensation and poly ADP-ribose-polymerase (PARP) cleavage. Mitochondrial membrane potential (MMP) loss, Bax/Bcl-2 dysregulation, cytochrome c release, and caspase-3 activation were observed, indicating mitochondria-dependent apoptosis induced by chicoric acid. Furthermore, PI3K/Akt and MAPK (p38 MAPK, JNK, and ERK1/2) signaling pathways were involved in chicoric acid-induced apoptosis. The employment of protein kinase inhibitors LY294002, SB203580, SP600125, and U0126 revealed that PI3K/Akt signaling pathway interplayed with MAPK signaling pathways. Moreover, chicoric acid induced reactive oxygen species (ROS) generation. Pretreatment with the antioxidant N-acetylcysteine (NAC) significantly blocked cell death and changes of Akt and MAPK signalings induced by chicoric acid. In addition, chicoric acid down regulated HO-1 and COX-2 via the PI3K/Akt pathway.

  8. Developmental changes in insulin- and amino acid-induced mTOR signalling regulate muscle protein synthesis in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enhanced efficiency, with which dietary protein is used for growth in the neonate, is due to the ability of neonatal muscle to markedly increase protein synthesis in response to feeding (Davis "et al.", 1996). The stimulation of protein synthesis by feeding in neonatal muscle is independently m...

  9. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  10. Abscisic acid-regulated responses of aba2-1 under osmotic stress: the abscisic acid-inducible antioxidant defence system and reactive oxygen species production.

    PubMed

    Ozfidan, C; Turkan, I; Sekmen, A H; Seckin, B

    2012-03-01

    We investigated the interaction among abscisic acid (ABA), reactive oxygen species (ROS) and antioxidant defence system in the transduction of osmotic stress signalling using Arabidopsis thaliana WT (Columbia ecotype, WT) and an ABA-deficient mutant (aba2-1). For this, 50 μm ABA and osmotic stress, induced with 40% (w/v) polyethylene glycol (PEG8000; -0.7 MPa), were applied to WT and aba2-1 for 6, 12 or 24 h. Time course analysis was undertaken for determination of total/isoenzyme activity of the antioxidant enzymes, superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), NADPH oxidase (NOX; EC 1.6.3.1) activity; scavenging activity of the hydroxyl radical (OH˙), hydrogen peroxide (H(2) O(2) ); endogenous ABA and malondialdehyde (MDA). The highest H(2) O(2) and MDA content was found in PEG-treated groups of both genotypes, but with more in aba2-1. ABA treatment under stress reduced the accumulation of H(2) O(2) and MDA, while it promoted activity of SOD, CAT and APX. APX activity was higher than CAT activity in ABA-treated WT and aba2-1, indicating a protective role of APX rather than CAT during osmotic stress-induced oxidative damage. Treatment with ABA also significantly induced increased NOX activity. Oxidative damage was lower in ABA-treated seedlings of both genotypes, which was associated with greater activity of SOD (Mn-SOD1 and 2 and Fe-SOD isoenzymes), CAT and APX in these seedlings after 24 h of stress. These results suggest that osmotic stress effects were overcome by ABA treatment because of increased SOD, CAT, APX and NOX.

  11. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro.

    PubMed

    Carlsson, Johan A; Wold, Agnes E; Sandberg, Ann-Sofie; Östman, Sofia M

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violet low) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells.

  12. Antinociceptive activity of Helicteres isora.

    PubMed

    Venkatesh, Sama; Laxmi, K Sai; Reddy, B Madhava; Ramesh, M

    2007-02-01

    Helicteres isora root extracts were studied for antinociceptive activity on acetic acid-induced writhing test in mice, at a dose of 250 mg/kg. Petroleum ether, chloroform and aqueous ethanol extracts have shown significant activity.

  13. Yogurt containing Lactobacillus gasseri OLL 2716 (LG21 yogurt) accelerated the healing of acetic acid-induced gastric ulcer in rats.

    PubMed

    Uchida, Masayuki; Shimizu, Kimiko; Kurakazu, Keiko

    2010-01-01

    We have reported that LG21 yogurt containing Lactobacillus gasseri OLL 2716 (LG21 yogurt) inhibits the formation of HCl-induced acute gastric lesions through the generation of prostaglandin E₂. This study aimed to determine the role of viable Lactobacillus in the healing of acetic acid-induced chronic gastric ulcer. LG21 yogurt or γ-ray radiated LG21 yogurt was administered orally twice a day for 10 d at a dose of 5 ml/kg. LG21 yogurt significantly accelerated the healing of the ulcer, but γ-ray radiated LG21 yogurt did not. However, both yogurts significantly inhibited HCl-induced gastric erosive lesions and enhanced the generation of gastric mucosal prostaglandin E₂. From the above results, it was found that viable bacteria are needed to accelerate the healing of chronic gastric ulcer, but not to inhibit gastric lesions.

  14. Acid-induced crystallinity enhancement of graphite-like C3N3+xHy synthesized through a facile one-pot approach

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Guo, Qixun; He, Dingzeng; Li, Juntao; Sun, Shigang

    2017-02-01

    Graphite-like C3N3+xHy with s-triazine rings as building blocks were synthesized through a facile one-pot approach. It is surprising that the degree of crystallinity of the synthesized sample at 330 °C (sample CNH-330) was remarkably enhanced by the dilute hydrochloric acid treatment. The mechanism of the acid-induced crystallinity enhancement was preliminarily studied. XRD, FTIR, SEM, photoluminescence spectra, elemental analysis, and XPS were performed to investigate the composition and structure of the obtained samples. The remarkable enhancement of the degree of crystallinity may be attributed to the ordered formation of ammonium-salt-like structure by the reaction of HCl with dbnd NH or sbnd NH2 in CNH-330.

  15. Protective Effect of Unsaturated Fatty Acids on Palmitic Acid-Induced Toxicity in Skeletal Muscle Cells is not Mediated by PPARδ Activation.

    PubMed

    Tumova, Jana; Malisova, Lucia; Andel, Michal; Trnka, Jan

    2015-10-01

    Unsaturated free fatty acids (FFA) are able to prevent deleterious effects of saturated FFA in skeletal muscle cells although the mechanisms involved are still not completely understood. FFA act as endogenous ligands of peroxisome proliferator-activated receptors (PPAR), transcription factors regulating the expression of genes involved in lipid metabolism. The aim of this study was to determine whether activation of PPARδ, the most common PPAR subtype in skeletal muscle, plays a role in mediating the protective effect of unsaturated FFA on saturated FFA-induced damage in skeletal muscle cells and to examine an impact on mitochondrial respiration. Mouse C2C12 myotubes were treated for 24 h with different concentrations of saturated FFA (palmitic acid), unsaturated FFA (oleic, linoleic and α-linolenic acid), and their combinations. PPARδ agonist GW501516 and antagonist GSK0660 were also used. Both mono- and polyunsaturated FFA, but not GW501516, prevented palmitic acid-induced cell death. Mono- and polyunsaturated FFA proved to be effective activators of PPARδ compared to saturated palmitic acid; however, in combination with palmitic acid their effect on PPARδ activation was blocked and stayed at the levels observed for palmitic acid alone. Unsaturated FFA at moderate physiological concentrations as well as GW501516, but not palmitic acid, mildly uncoupled mitochondrial respiration. Our results indicate that although unsaturated FFA are effective activators of PPARδ, their protective effect on palmitic acid-induced toxicity is not mediated by PPARδ activation and subsequent induction of lipid regulatory genes in skeletal muscle cells. Other mechanisms, such as mitochondrial uncoupling, may underlie their effect.

  16. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: a potential mechanism for valproic acid-induced neural tube defects.

    PubMed

    Defoort, Ericka N; Kim, Perry M; Winn, Louise M

    2006-04-01

    Valproic acid, a commonly used antiepileptic agent, is associated with a 1 to 2% incidence of neural tube defects when taken during pregnancy; however, the molecular mechanism by which this occurs has not been elucidated. Previous research suggests that valproic acid exposure leads to an increase in reactive oxygen species (ROS). DNA damage due to ROS can result in DNA double-strand breaks, which can be repaired through homologous recombination (HR), a process that is not error-free and can result in detrimental genetic changes. Because the developing embryo requires tight regulation of gene expression to develop properly, we propose that the loss or dysfunction of genes involved in embryonic development through aberrant HR may ultimately cause neural tube defects. To determine whether valproic acid induces HR, Chinese hamster ovary 3-6 cells, containing a neomycin direct repeat recombination substrate, were exposed to valproic acid for 4 or 24 h. A significant increase in HR after exposure to valproic acid (5 and 10 mM) for 24 h was observed, which seems to occur through a conservative HR mechanism. We also demonstrated that exposure to valproic acid (5 and 10 mM) significantly increased intracellular ROS levels, which were attenuated by preincubation with polyethylene glycol-conjugated (PEG)-catalase. A significant change in the ratio of 8-hydroxy-2'-deoxyguanosine/2'-de-oxyguanosine, a measure of DNA oxidation, was not observed after valproic acid exposure; however, preincubation with PEG-catalase significantly blocked the increase in HR. These data demonstrate that valproic acid increases HR frequency and provides a possible mechanism for valproic acid-induced neural tube defects.

  17. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis1[OPEN

    PubMed Central

    Padilla, María N.; Begara-Morales, Juan C.; Luque, Francisco; Melguizo, Manuel; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel

    2016-01-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant’s development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  18. Photodynamic therapy with 5-aminoolevulinic acid-induced porphyrins and DMSO/EDTA for basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Warloe, Trond; Peng, Qian; Heyerdahl, Helen; Moan, Johan; Steen, Harald B.; Giercksky, Karl-Erik

    1995-03-01

    Seven hundred sixty three basal cell carcinomas (BCCs) in 122 patients were treated by photodynamic therapy by 5-aminolevulinic acid (ALA) in cream topically applied, either alone, in combination with dimethyl sulphoxide (DMSO) and ethylenediaminetetraacetic acid disodium salt (EDTA), or with DMSO as a pretreatment. After 3 hours cream exposure 40 - 200 Joules/cm2 of 630 nm laser light was given. Fluorescence imaging of biopsies showed highly improved ALA penetration depth and doubled ALA-induced porphyrin production using DMSO/EDTA. Treatment response was recorded after 3 months. After a single treatment 90% of 393 superficial lesions responded completely, independent of using DMSO/EDTA. In 363 nodulo-ulcerative lesions the complete response rate increased from 67% to above 90% with DMSO/EDTA for lesions less than 2 mm thickness and from 34% to about 50% for lesions thicker than 2 mm. Recurrence rate observed during a follow-up period longer than 12 months was 2 - 5%. PDT of superficial thin BCCs with ALA-induced porphyrins and DMSO/EDTA equals surgery and radiotherapy with respect to cure rate and recurrence. Cosmetic results of ALA-based PDT seemed to be better than those after other therapies. In patients with the nevoid BCC syndrome the complete response rate after PDT was far lower.

  19. Downstream molecular events in the altered profiles of lysophosphatidic acid-induced cAMP in senescent human diploid fibroblasts.

    PubMed

    Jang, Ik Soon; Rhim, Ji Heon; Park, Sang Chul; Yeo, Eui Ju

    2006-04-30

    Lysophosphatidic acid (LPA) is a phospholipid growth factor that acts through G-protein-coupled receptors. Previously, we demonstrated an altered profile of LPA-dependent cAMP content during the aging process of human diploid fibroblasts (HDFs). In attempts to define the molecular events associated with the age-dependent changes in cAMP profiles, we determined the protein kinase A (PKA) activity, phosphorylation of cAMP-response element binding protein (CREB), and the protein expression of CRE-regulatory genes, c-fos and COX-2 in young and senescent HDFs. We observed in senescent cells, an increase in mRNA levels of the catalytic subunit a of PKA and of the major regulatory subunit Ialpha. Senescence-associated increase of cAMP after LPA treatment correlated well with increased CREB phosphorylation accompanying activation of PKA in senescent cells. In senescent cells, after LPA treatment, the expression of c-fos and COX-2 decreased initially, followed by an increase. In young HDFs, CREB phosphorylation decreased following LPA treatment, and both c-fos and COX-2 protein levels increased rapidly. CRE-luciferase assay revealed higher basal CRE-dependent gene expression in young HDFs compared to senescent HDFs. However, LPA-dependent slope of luciferase increased more rapidly in senescent cells than in young cells, presumably due to an increase of LPA-induced CREB phosphorylation. CRE-dependent luciferase activation was abrogated in the presence of inhibitors of PKC, MEK1, p38MAPK, and PKA, in both young and senescent HDFs. We conclude that these kinase are coactivators of the expression of CRE-responsive genes in LPA-induced HDFs and that their changed activities during the aging process contribute to the final expression level of CRE-responsive genes.

  20. Characterisation of SalRAB a salicylic acid inducible positively regulated efflux system of Rhizobium leguminosarum bv viciae 3841.

    PubMed

    Tett, Adrian J; Karunakaran, Ramakrishnan; Poole, Philip S

    2014-01-01

    Salicylic acid is an important signalling molecule in plant-microbe defence and symbiosis. We analysed the transcriptional responses of the nitrogen fixing plant symbiont, Rhizobium leguminosarum bv viciae 3841 to salicylic acid. Two MFS-type multicomponent efflux systems were induced in response to salicylic acid, rmrAB and the hitherto undescribed system salRAB. Based on sequence similarity salA and salB encode a membrane fusion and inner membrane protein respectively. salAB are positively regulated by the LysR regulator SalR. Disruption of salA significantly increased the sensitivity of the mutant to salicylic acid, while disruption of rmrA did not. A salA/rmrA double mutation did not have increased sensitivity relative to the salA mutant. Pea plants nodulated by salA or rmrA strains did not have altered nodule number or nitrogen fixation rates, consistent with weak expression of salA in the rhizosphere and in nodule bacteria. However, BLAST analysis revealed seventeen putative efflux systems in Rlv3841 and several of these were highly differentially expressed during rhizosphere colonisation, host infection and bacteroid differentiation. This suggests they have an integral role in symbiosis with host plants.

  1. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    PubMed

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha.

  2. Neuroprotective effect of taurine in 3-nitropropionic acid-induced experimental animal model of Huntington's disease phenotype.

    PubMed

    Tadros, Mariane G; Khalifa, Amani E; Abdel-Naim, Ashraf B; Arafa, Hossam M M

    2005-11-01

    An experimental animal model of Huntington's disease (HD) phenotype was induced using the mycotoxin 3-nitropropionic acid (3-NP) and was well characterized behaviorally, neurochemically, morphometrically and histologically. Administration of 3-NP caused a reduction in prepulse inhibition (PPI) of acoustic startle response, locomotor hyper- and/or hypoactivity, bilateral striatal lesions, brain oxidative stress, and decreased striatal gamma-aminobutyric acid (GABA) levels. Taurine is a semi-essential beta-amino acid that was demonstrated to have both antioxidant and GABA-A agonistic activity. In this study, treatment with taurine (200 mg/kg daily for 3 days) prior to 3-NP administration reversed both reduced PPI response and locomotor hypoactivity caused by 3-NP injection. Taurine pretreatment also caused about 2-fold increase in GABA concentration compared to 3-NP-treated animals. In addition, taurine demonstrated antioxidant activity against oxidative stress induced by 3-NP administration as evidenced by the reduced striatal malondialdehyde (MDA) and elevated striatal glutathione (GSH) levels. Histochemical examination of striatal tissue showed that prior administration of taurine ahead of 3-NP challenge significantly increased succinate dehydrogenase (SDH) activity compared to 3-NP-treated animals. Histopathological examination further affirmed the neuroprotective effect of taurine in 3-NP-induced HD in rats. Taken together, one may conclude that taurine has neuroprotective role in the current HD paradigm due, at least partly, to its indirect antioxidant effect and GABA agonistic action.

  3. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2

    PubMed Central

    Wang, Yi; Qian, Yuanyuan; Fang, Qilu; Zhong, Peng; Li, Weixin; Wang, Lintao; Fu, Weitao; Zhang, Yali; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2017-01-01

    Obesity increases the risk for a number of diseases including cardiovascular diseases and type 2 diabetes. Excess saturated fatty acids (SFAs) in obesity play a significant role in cardiovascular diseases by activating innate immunity responses. However, the mechanisms by which SFAs activate the innate immune system are not fully known. Here we report that palmitic acid (PA), the most abundant circulating SFA, induces myocardial inflammatory injury through the Toll-like receptor 4 (TLR4) accessory protein MD2 in mouse and cell culture experimental models. Md2 knockout mice are protected against PA- and high-fat diet-induced myocardial injury. Studies of cell surface binding, cell-free protein–protein interactions and molecular docking simulations indicate that PA directly binds to MD2, supporting a mechanism by which PA activates TLR4 and downstream inflammatory responses. We conclude that PA is a crucial contributor to obesity-associated myocardial injury, which is likely regulated via its direct binding to MD2. PMID:28045026

  4. Protective effects of PF-4708671 against N-methyl-d-aspartic acid-induced retinal damage in rats.

    PubMed

    Hayashi, Ikumi; Aoki, Yuto; Ushikubo, Hiroko; Asano, Daiki; Mori, Asami; Sakamoto, Kenji; Nakahara, Tsutomu; Ishii, Kunio

    2016-12-01

    We previously demonstrated that rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), protects against N-methyl-d-aspartic acid (NMDA)-induced retinal damage in rats. Rapamycin inhibits mTOR activity, thereby preventing the phosphorylation of ribosomal protein S6, which is a downstream target of S6 kinase. Therefore, we aimed to determine whether PF-4708671, an inhibitor of S6 kinase, protects against NMDA-induced retinal injury. Intravitreal injection of NMDA (200 nmol/eye) caused cell loss in the ganglion cell layer and neuroinflammatory responses, such as an increase in the number of CD45-positive leukocytes and Iba1-positive microglia. Surprisingly, simultaneous injection of PF-4708671 (50 nmol/eye) with NMDA significantly attenuated these responses without affecting phosphorylated S6 levels. These results suggest that PF-4708671 and rapamycin likely protect against NMDA-induced retinal damage via distinct pathways. The neuroprotective effect of PF-4708671 is unlikely to be associated with inhibition of the S6 kinase, even though PF-4708671 is reported to be a S6 kinase inhibitor.

  5. Interaction between caspase-8 activation and endoplasmic reticulum stress in glycochenodeoxycholic acid-induced apoptotic HepG2 cells.

    PubMed

    Iizaka, Toru; Tsuji, Mayumi; Oyamada, Hideto; Morio, Yuri; Oguchi, Katsuji

    2007-11-30

    The accumulation of hydrophobic bile acid, such as glycochenodeoxycholic acid (GCDCA), in the liver has been thought to induce hepatocellular damage in human chronic cholestatic liver diseases. We previously reported that GCDCA-induced apoptosis was promoted by both mitochondria-mediated and endoplasmic reticulum (ER) stress-associated pathways in rat hepatocytes. In this study, we elucidated the relationship between these pathways in GCDCA-induced apoptotic HepG2 cells. HepG2 cells were treated with GCDCA (100-500microM) with or without a caspase-8 inhibitor, Z-IETD-fluoromethyl ketone (Z-IETD-FMK) (30microM) for 3-24h. We demonstrated the presence of both apoptotic pathways in these cells; that is, we showed increases in cleaved caspase-3 proteins, the release of cytochrome c from mitochondria, and the expression of ER resident molecular chaperone Bip mRNA and ER stress response-associated transcription factor Chop mRNA. On the other hand, pretreatment with Z-IETD-FMK significantly reduced the increases, compared with treatment with GCDCA alone. Immunofluorescence microscopic analysis showed that treatment with GCDCA increased the cleavage of BAP31, an integral membrane protein of ER, and pretreatment with Z-IETD-FMK suppressed the increase of caspase-8 and BAP31 cleavage. In conclusion, these results suggest that intact activated caspase-8 may promote and amplify the ER stress response by cleaving BAP31 in GCDCA-induced apoptotic cells.

  6. The plasma membrane H+-ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves.

    PubMed

    Liu, Yanyan; Liu, Hongtao; Pan, Qiuhong; Yang, Haoru; Zhan, Jicheng; Huang, Weidong

    2009-04-01

    The plasma membrane H(+)-ATPase (PM H(+)-ATPase, EC.3.6.1.35) plays a key role in the plant response to environmental stress. In this study, a possible mechanistic link between the PM H(+)-ATPase and salicylic acid (SA)-induced thermotolerance was investigated in pea (Pisum sativum L. cv. NingXia) leaves. The burst of free SA in response to heat acclimation (38 +/- 0.5 degrees C) was observed, and peaks appeared subsequently both in activity and amount of PM H(+)-ATPase in pea leaves during heat acclimation. Similarly, exogenous SA also triggered the two peaks in the room temperature (25 +/- 0.5 degrees C). Paclobutrazol (PAC) was employed to infiltrate onto pea leaves prior to heat acclimation treatment. The results showed that the peaks of both free SA and activity of PM H(+)-ATPase still occurred after the PAC pretreatment. In acquired thermotolerance assessment (malondialdehyde content and degree of wilting), spraying SA and fusicoccin (FC, the activator of PM H(+)-ATPase) separately could protect pea leaves from heat injury. Results from RT-PCR and western blotting analysis indicated that the increase in activity of the PM H(+)-ATPase was due to its transcriptional and translational regulation. The subcellular localizations of PM H(+)-ATPase after the FC or SA pretreatment also showed that the PM H(+)-ATPase is important to maintain the integrity of plasma membrane against the heat stress. Taken together, these results suggest PM H(+)-ATPase is related to the development of SA-induced thermotolerance in pea leaves.

  7. Chronically elevated levels of short-chain fatty acids induce T cell-mediated ureteritis and hydronephrosis1

    PubMed Central

    Park, Jeongho; Goergen, Craig J.; HogenEsch, Harm; Kim, Chang H.

    2016-01-01

    Short-chain fatty acids (SCFAs) are major products of gut microbial fermentation and profoundly affect host health and disease. SCFAs generate IL-10+ regulatory T cells, which may promote immune tolerance. However, SCFAs can also induce Th1 and Th17 cells upon immunological challenges and, therefore, also have the potential to induce inflammatory responses. Because of the seemingly paradoxical SCFA activities in regulating T cells, we investigated, in depth, the impact of elevated SCFA levels on T cells and tissue inflammation in mice. Orally administered SCFAs induced effector (Th1 and Th17) and regulatory T cells in ureter and kidney tissues, and induced T-cell mediated ureteritis leading to kidney hydronephrosis (hereafter called C2RD). Kidney hydronephrosis in C2RD was caused by ureteral obstruction, which was, in turn, induced by SCFA-induced inflammation in the ureteropelvic junction (UPJ) and proximal ureter. Oral administration of all major SCFAs, such as acetate, propionate, and butyrate, induced the disease. We found that C2RD development is dependent on mTOR activation, T cell-derived inflammatory cytokines such as IFNγ and IL-17, and gut microbiota. Young or male animals were more susceptible than old or female animals respectively. However, SCFA receptor (GPR41 or GPR43) deficiency did not affect C2RD development. Thus, SCFAs, when systemically administered at levels higher than physiological levels, cause dysregulated T cell responses and tissue inflammation in the renal system. The results provide insights into the immunological and pathological effects of chronically elevated SCFAs. PMID:26819206

  8. All-trans-retinoic acid induces integrin-independent B-cell adhesion to ADAM disintegrin domains.

    PubMed

    Bridges, Lance C; Lingo, Joshuah D; Grandon, Rachel A; Kelley, Melissa D

    2008-04-15

    Cell adhesion is an integral aspect of immunity facilitating extravasation of immune cells during homing and activation. All -trans-Retinoic acid ( t-RA) regulates leukocyte differentiation, proliferation, and transmigration. However, the role of t-RA in immune cell adhesion is poorly defined. In this study, we evaluated the impact of t-RA and its metabolism on B and T cell adhesion. Specifically, we address the impact of t-RA on the adhesive properties of the human mature B and T cell lines RPMI 8866, Daudi and Jurkats. The effect of t-RA exposure on cell adhesion to vascular cell adhesion molecule-1 (VCAM-1), a well-established integrin counter receptor involved in immunity, and to nonconventional ADAM integrin ligands was assessed. We show for the first time that t-RA potently induces B cell adhesion in an integrin-independent manner to both VCAM-1 and select ADAM disintegrin domains. Using retinoid extraction and reverse-phase HPLC analysis, we identify the retinoid that is functionally responsible for this augmented adhesion. We also provide evidence that this novel t-RA adhesive response is not prototypical of lymphocytes since both Daudi and Jurkats do not alter their adhesive properties upon t-RA treatment. Further, the t-RA metabolic profiles between these lineages is distinct with 9- cis-retinoic acid being exclusively detected in Jurkat media. This study is the first to demonstrate that t-RA directly induces B cell adhesion in an integrin-independent manner and is not contingent upon t-RA metabolism.

  9. Inhibition of serine/threonine phosphatase enhances arachidonic acid-induced [Ca2+]i via protein kinase A.

    PubMed

    Saino, Tomoyuki; Watson, Eileen L

    2009-01-01

    Arachidonic acid (AA) regulates intracellular calcium concentration ([Ca2+]i) in a variety of cell types including salivary cells. In the present study, the effects of serine/threonine phosphatases on AA-induced Ca(2+) signaling in mouse parotid acini were determined. Mice were euthanized with CO2. Treatment of acini with the serine/threonine phosphatase inhibitor calyculin A blocked both thapsigargin- and carbachol-induced Ca2+ entry but resulted in an enhancement of AA-induced Ca2+ release and entry. Effects were mimicked by the protein phosphatase-1 (PP1) inhibitor tautomycin but were inhibited by the PP2A inhibitor okadaic acid. The protein kinase A (PKA) inhibitor PKI(14-22) significantly attenuated AA-induced enhancement of Ca2+ release and entry in the presence of calyculin A, whereas it had no effect on calyculin A-induced inhibition of thapsigargin-induced Ca2+ responses. The ryanodine receptor (RyR) inhibitor, tetracaine, and StHt-31, a peptide known to competitively inhibit type II PKA regulatory subunit binding to PKA-anchoring protein (AKAP), abolished calyculin A enhancement of AA-induced Ca2+ release and entry. StHt-31 also abolished forskolin potentiation of 4-chloro-3-ethylphenol (4-CEP) and AA on Ca2+ release but had no effect on 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cAMP potentiation of 4-CEP responses. Results suggest that inhibition of PP1 results in an enhancement of AA-induced [Ca2+]i via PKA, AKAP, and RyRs.

  10. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety.

  11. A sequential treatment regimen with melatonin and all-trans retinoic acid induces apoptosis in MCF-7 tumour cells.

    PubMed Central

    Eck, K. M.; Yuan, L.; Duffy, L.; Ram, P. T.; Ayettey, S.; Chen, I.; Cohn, C. S.; Reed, J. C.; Hill, S. M.

    1998-01-01

    Neoplastic events are marked by uncontrolled cell proliferation. One major focus of cancer research has been to identify treatments that reduce or inhibit cell growth. Over the years, various compounds, both naturally occurring and chemically synthesized, have been used to inhibit neoplastic cell proliferation. Two such oncostatic agents, melatonin and retinoic acid, have been shown to suppress the growth of hormone-responsive breast cancer. Currently, separate clinical protocols exist for the administration of retinoids and melatonin as adjuvant therapies for cancer. Using the oestrogen receptor (ER)-positive MCF-7 human breast tumour cell line, our laboratory has studied the effects of a sequential treatment regimen of melatonin followed by all-trans retinoic acid (atRA) on breast tumour cell proliferation in vitro. Incubation of hormonally responsive MCF-7 and T47D cells with melatonin (10(-9) M) followed 24 h later by atRA (10(-9) M) resulted in the complete cessation of cell growth as well as a reduction in the number of cells to below the initial plating density. This cytocidal effect is in contrast to the growth-suppressive effects seen with either hormone alone. This regimen of melatonin followed by atRA induced cytocidal effects on MCF-7 cells by activating pathways leading to apoptosis (programmed cell death) as evidenced by decreased ER and Bcl-2 and increased Bax and transforming growth factor beta 1 (TGF-beta1) expression. Apoptosis was reflected morphologically by an increase in the number of lysosomal bodies and perinuclear chromatin condensation, cytoplasmic blebbing and the presence of apoptotic bodies. The apoptotic effect of this sequential treatment with melatonin and atRA appears to be both cell and regimen specific as (a) ER-negative MDA-MB-231 and BT-20 breast tumour cells were unaffected, and (b) the simultaneous administration of melatonin and atRA was not associated with apoptosis in any of the breast cancer cell lines studied. Taken

  12. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination.

    PubMed

    Li, Juan; Hettenhausen, Christian; Sun, Guiling; Zhuang, Huifu; Li, Jian-Hong; Wu, Jianqiang

    2015-01-01

    Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder) comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA). Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution.

  13. DL-beta-aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins.

    PubMed

    Eschen-Lippold, Lennart; Altmann, Simone; Rosahl, Sabine

    2010-05-01

    Inducing systemic resistance responses in crop plants is a promising alternative way of disease management. To understand the underlying signaling events leading to induced resistance, functional analyses of plants defective in defined signaling pathway steps are required. We used potato, one of the economically most-important crop plants worldwide, to examine systemic resistance against the devastating late blight pathogen Phytophthora infestans, induced by treatment with dl-beta-aminobutyric acid (BABA). Transgenic plants impaired in either the 9-lipoxygenase pathway, which produces defense-related compounds, or the 13-lipoxygenase pathway, which generates jasmonic acid-derived signals, expressed wild-type levels of BABA-induced resistance. Plants incapable of accumulating salicylic acid (SA), on the other hand, failed to mount this type of induced resistance. Consistently, treatment of these plants with the SA analog 2,6-dichloroisonicotinic acid restored BABA-induced resistance. Together, these results demonstrate the indispensability of a functional SA pathway for systemic resistance in potato induced by BABA.

  14. Salicylic acid induces vanillin synthesis through the phospholipid signaling pathway in Capsicum chinense cell cultures

    PubMed Central

    Rodas-Junco, Beatriz A; Cab-Guillen, Yahaira; Muñoz-Sanchez, J Armando; Vázquez-Flota, Felipe; Monforte-Gonzalez, Miriam; Hérnandez-Sotomayor, S M Teresa

    2013-01-01

    Signal transduction via phospholipids is mediated by phospholipases such as phospholipase C (PLC) and D (PLD), which catalyze hydrolysis of plasma membrane structural phospholipids. Phospholipid signaling is also involved in plant responses to phytohormones such as salicylic acid (SA). The relationships between phospholipid signaling, SA, and secondary metabolism are not fully understood. Using a Capsicum chinense cell suspension as a model, we evaluated whether phospholipid signaling modulates SA-induced vanillin production through the activation of phenylalanine ammonia lyase (PAL), a key enzyme in the biosynthetic pathway. Salicylic acid was found to elicit PAL activity and consequently vanillin production, which was diminished or reversed upon exposure to the phosphoinositide-phospholipase C (PI-PLC) signaling inhibitors neomycin and U73122. Exposure to the phosphatidic acid inhibitor 1-butanol altered PLD activity and prevented SA-induced vanillin production. Our results suggest that PLC and PLD-generated secondary messengers may be modulating SA-induced vanillin production through the activation of key biosynthetic pathway enzymes.

  15. Fatty acid-induced gut-brain signaling attenuates neural and behavioral effects of sad emotion in humans.

    PubMed

    Van Oudenhove, Lukas; McKie, Shane; Lassman, Daniel; Uddin, Bilal; Paine, Peter; Coen, Steven; Gregory, Lloyd; Tack, Jan; Aziz, Qasim

    2011-08-01

    Although a relationship between emotional state and feeding behavior is known to exist, the interactions between signaling initiated by stimuli in the gut and exteroceptively generated emotions remain incompletely understood. Here, we investigated the interaction between nutrient-induced gut-brain signaling and sad emotion induced by musical and visual cues at the behavioral and neural level in healthy nonobese subjects undergoing functional magnetic resonance imaging. Subjects received an intragastric infusion of fatty acid solution or saline during neutral or sad emotion induction and rated sensations of hunger, fullness, and mood. We found an interaction between fatty acid infusion and emotion induction both in the behavioral readouts (hunger, mood) and at the level of neural activity in multiple pre-hypothesized regions of interest. Specifically, the behavioral and neural responses to sad emotion induction were attenuated by fatty acid infusion. These findings increase our understanding of the interplay among emotions, hunger, food intake, and meal-induced sensations in health, which may have important implications for a wide range of disorders, including obesity, eating disorders, and depression.

  16. Hydroxytyrosol from tyrosol using hydroxyphenylacetic acid-induced bacterial cultures and evidence of the role of 4-HPA 3-hydroxylase.

    PubMed

    Liebgott, Pierre-Pol; Amouric, Agnès; Comte, Alexia; Tholozan, Jean-Luc; Lorquin, Jean

    2009-12-01

    Hydroxytyrosol (HTyr) is a potent natural antioxidant found in olive mill wastewaters. Bacterial conversion of 4-tyrosol (2-(4-hydroxyphenyl)-ethanol) to HTyr was reported in a limited number of bacterial species including Pseudomonas aeruginosa. In this work, we studied this conversion, taking as a model the newly isolated Halomonas sp. strain HTB24. It was first hypothesized that the enzyme responsible for 4-tyrosol hydroxylation in HTyr was a 4-hydroxyphenylacetic acid 3-hydroxylase (HPAH, EC 1.14.13.3), previously known to convert 4-hydroxyphenylacetic acid (4-HPA) into 3,4-dihydroxyphenylacetic acid (3,4-DHPA) in P. aeruginosa. Cloning and expression of hpaB (oxygenase component) and hpaC (reductase component) genes from P. aeruginosa confirmed this hypothesis. Furthermore, using cultures of HTB24 containing 4-tyrosol, it was shown that 4-HPA accumulation preceded 4-tyrosol hydroxylation. We further demonstrated that the synthesis of HPAH activity was induced by 4-HPA, with the latter compound being formed from 4-tyrosol oxidation by aryl-dehydrogenases. Interestingly, similar results were obtained with other 4-HPA-induced bacteria, including P. aeruginosa, Serratia marcescens, Escherichia coli, Micrococcus luteus and other Halomonas, thus demonstrating general hydroxylating activity of 4-tyrosol by the HPAH enzyme. E. coli W did not have aryl-dehydrogenase activity and hence were unable to oxidize 4-tyrosol to 4-HPA and HTyr to 3,4-DHPA, making this bacterium a good candidate for achieving better HTyr production.

  17. Oleic acid induces specific alterations in the morphology, gene expression and steroid hormone production of cultured bovine granulosa cells.

    PubMed

    Yenuganti, Vengala Rao; Viergutz, Torsten; Vanselow, Jens

    2016-06-01

    After parturition, one of the major problems related to nutritional management that is faced by the majority of dairy cows is negative energy balance (NEB). During NEB, excessive lipid mobilization takes place and hence the levels of free fatty acids, among them oleic acid, increase in the blood, but also in the follicular fluid. This accumulation can be associated with serious metabolic and reproductive disorders. In the present study, we analyzed the effects of physiological concentrations of oleic acid on cell morphology, apoptosis, necrosis, proliferation and steroid production, and on the abundance of selected transcripts in cultured bovine granulosa cells. Increasing oleic acid concentrations induced intracellular lipid droplet accumulation, thus resulting in a foam cell-like morphology, but had no effects on apoptosis, necrosis or proliferation. Oleic acid also significantly reduced the transcript abundance of the gonadotropin hormone receptors, FSHR and LHCGR, steroidogenic genes STAR, CYP11A1, HSD3B1 and CYP19A1, the cell cycle regulator CCND2, but not of the proliferation marker PCNA. In addition, treatment increased the transcript levels of the fatty acid transporters CD36 and SLC27A1, and decreased the production of 17-beta-estradiol and progesterone. From these data it can be concluded that oleic acid specifically affects morphological and physiological features and gene expression levels thus altering the functionality of granulosa cells. Suggestively, these effects might be partly due to the reduced expression of FSHR and thus the reduced responsiveness to FSH stimulation.

  18. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA).

  19. Effects of dosmalfate, a new cytoprotective agent, on acute and chronic trinitrobenzene sulphonic acid-induced colitis in rats.

    PubMed

    Villegas, Isabel; La Casa, Carmen; Orjales, Aurelio; Alarcón de la Lastra, Catalina

    2003-01-24

    Activated neutrophils and proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) are clearly involved in the pathogenesis of bowel disease. Increased expression of epidermal growth factor-receptor (EGF receptor) has been reported for the colon mucosa surrounding areas of ulceration, suggesting a pivotal role in mucosal defence and repair. In this study, we examined the effects of dosmalfate, a new flavonoid derivative compound (diosmin heptakis) with antioxidant and cytoprotective properties, on acute and chronic experimental trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. The inflammation response was assessed by neutrophil infiltration as evaluated by histology and myeloperoxidase activity. Mucosal TNF-alpha production and histological analysis of the lesions was also carried out. In addition, we studied the expression of the EGF receptor inmunohistochemically during the healing of TNBS-induced chronic colitis. A 2-day treatment with 400 or 800 mg/kg of dosmalfate ameliorated the colon damage score and the incidence of adhesions. It also significantly (P<0.05) decreased myeloperoxidase activity and colonic mucosal production of TNF-alpha. Chronic treatment (14 days) with 800 mg/kg/day of dosmalfate also had significant protective effects on TNBS-induced colitis which were reflected by significant attenuation (P<0.05) of the damage score while the inflammatory indicators were not improved. The chronic beneficial effect of dosmalfate was apparently related to the enhancement of EGF receptor expression. These findings confirm the protective effects of dosmalfate in acute and chronic experimental colitis.

  20. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  1. Protective effect of Calendula officinalis Linn. flowers against 3-nitropropionic acid induced experimental Huntington's disease in rats.

    PubMed

    Shivasharan, B D; Nagakannan, Pandian; Thippeswamy, Boreddy Shivanandappa; Veerapur, Veeresh Prabakar; Bansal, Punit; Unnikrishnan, Mazhuvancherry K

    2013-10-01

    Oxidative stress (OS) and nitric oxide mechanisms have been recently proposed in 3-nitropropionic acid (3-NP)-induced neurotoxicity. The compounds, having antioxidant, anti-inflammatory and estrogenic effects, have been suggested for neuroprotection in different experimental models. Calendula officinalis Linn. flower extract (COE) is known for its potent antioxidant, anti-inflammatory, estrogenic and neuroprotective activities. Hence, the present study was designed to evaluate the neuroprotective effect of COE on 3-NP-induced neurotoxicity in rats by observing behavioral changes, OS and striatal damage in rat brain. Adult female Wistar rats were pretreated with vehicle or COE (100 and 200 mg/kg) for 7 days, followed by cotreatment with 3-NP (15 mg/kg, intraperitoneally) for the next 7 days. At the end of the treatment schedule, rats were evaluated for alterations in sensory motor functions and short-term memory. Animals were sacrificed and brain homogenates were used for the estimation of lipid peroxidation (LPO), glutathione, total thiols, glutathione S-transferase, catalase and nitrite. A set of brain slices was used for the evaluation of neuronal damage in the striatal region of the brain. 3-NP caused significant alterations in animal behavior, oxidative defense system evidenced by raised levels of LPO and nitrite concentration, and depletion of antioxidant levels. It also produced a loss of neuronal cells in the striatal region. Treatment with COE significantly attenuated behavioral alterations, oxidative damage and striatal neuronal loss in 3-NP-treated animals. The present study shows that COE is protective against 3-NP-induced neurotoxicity in rats. The antioxidant, anti-inflammatory and estrogenic properties of COE may be responsible for its neuroprotective action.

  2. 5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines.

    PubMed

    Sharma, Sulbha; Jajoo, Anjana; Dube, Alok

    2007-09-25

    Studies were carried out on 5-aminolevulinic acid (ALA)-induced protoporphyrin (PpIX) synthesis in mice peritoneal macrophages and two human oral squamous cell carcinoma (OSCC) cell lines NT8e and 4451. Cells were treated with 200 microg/ml ALA for 15 h and PpIX accumulation was monitored by spectrofluorometry and phototoxicity to red light (630+/-20 nm) was measured by MTT assay. PpIX accumulation was higher in macrophages as compared to OSCC cells under both normal serum concentration (10%) and conditions of serum depletion. The results on phototoxicity measurements correlated well with the levels of PpIX accumulation in both macrophages and cancer cells. While red light caused 20% phototoxicity in macrophages, no phototoxicity was seen in 4451 cells at 10% serum. Decrease in serum concentration to 5% and 1% led to higher phototoxicity corresponding to 40% and 70% in macrophages and 10% and 15% in 4451 cells. Similar results were obtained in NT8e cell line. Propidium iodide staining followed by fluorescence microscopic observations on photodynamically treated co-culture of murine or human macrophages and cancer cells showed selective damage to macrophages. These results suggest that in OSCC, macrophages would contribute more to tumor PpIX level than tumor cells themselves and PDT may lead to selective killing of macrophages at the site of treatment. Since macrophages are responsible for production and secretion of various tumor growth mediators, the effect of selective macrophage killing on the outcome of PDT would be significant.

  3. Cyclic phosphatidic acid and lysophosphatidic acid induce hyaluronic acid synthesis via CREB transcription factor regulation in human skin fibroblasts.

    PubMed

    Maeda-Sano, Katsura; Gotoh, Mari; Morohoshi, Toshiro; Someya, Takao; Murofushi, Hiromu; Murakami-Murofushi, Kimiko

    2014-09-01

    Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.

  4. Oxidative stress-driven mechanisms of nordihydroguaiaretic acid-induced apoptosis in FL5.12 cells

    SciTech Connect

    Deshpande, Vaidehee S. . E-mail: vaidehee@hotmail.com; Kehrer, James P.

    2006-08-01

    Nordihydroguaiaretic acid (NDGA), a general lipoxygenase (LOX) enzyme inhibitor, induces apoptosis independently of its activity as a LOX inhibitor in murine pro-B lymphocytes (FL.12 cells) by a mechanism that is still not fully understood. Glutathione depletion, oxidative processes and mitochondrial depolarization appear to contribute to the apoptosis induced by NDGA. The current data demonstrate that NDGA (20 {mu}M)-induced apoptosis in FL5.12 cells is partially protected by N-acetylcysteine (NAC) (10 mM) and dithiothreitol (DTT) (500 {mu}M) pretreatment, confirming a role for oxidative processes. In addition, the treatment of FL5.12 cells with NDGA led to an increase in phosphorylation and activation of the MAP kinases ERK, JNK and p38. Although pretreatment with ERK inhibitors (PD98059 or U0126) abolished ERK phosphorylation in response to NDGA, neither inhibitor had any effect on NDGA-induced apoptosis. SP600125, a JNK inhibitor, did not have any effect on NDGA-induced phosphorylation of JNK nor apoptosis. Pretreatment with the p38 inhibitor SB202190 attenuated NDGA-induced apoptosis by 30% and also abolished p38 phosphorylation, compared to NDGA treatment alone. NAC, but not DTT, also decreased the phosphorylation of p38 and JNK supporting a role for oxidative processes in activating these kinases. Neither NAC nor DTT blocked the phosphorylation of ERK suggesting that this activation is not related to oxidative stress. The release of cytochrome c and activation of caspase-3 induced by NDGA were inhibited by NAC. SB202190 slightly attenuated caspase-3 activation and had no effect on the release of cytochrome c. These data suggest that several independent mechanisms, including oxidative reactions, activation of p38 kinase and cytochrome c release contribute to NDGA-induced apoptosis.

  5. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.

  6. Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver.

    PubMed

    Perez, Maria J; Velasco, Elena; Monte, Maria J; Gonzalez-Buitrago, Jose M; Marin, Jose J G

    2006-08-15

    Ethanol is able to cross the placenta, which may cause teratogenicity. Here we investigated whether ethanol consumption during pregnancy (ECDP), even at doses unable to cause malformation, might increase the susceptibility of fetal rat liver to oxidative insults. Since cholestasis is a common condition in alcoholic liver disease and pregnancy, exposure to glycochenodeoxycholic acid (GCDCA) has been used here as the oxidative insult. The mothers received drinking water without or with ethanol from 4 weeks before mating until term, when placenta, maternal liver, and fetal liver were used. Ethanol induced a decreased GSH/GSSG ratio in these organs, together with enhanced gamma-glutamylcysteine synthetase and glutathione reductase activities in both placenta and fetal liver. Lipid peroxidation in placenta and fetal liver was enhanced by ethanol, although it had no effect on caspase-3 activity. Although the basal production of reactive oxygen species (ROS) was higher by fetal (FHs) than by maternal (AHs) hepatocytes in short-term cultures, the production of ROS in response to the presence of varying GCDCA concentrations was higher in AHs and was further increased by ECDP, which was associated to a more marked impairment in mitochondrial function. Moreover, GCDCA-induced apoptosis was increased by ECDP, as revealed by enhanced Bax-alpha/Bcl-2 ratio (both in AHs and FHs) and the activity of caspase-8 (only in AHs) and caspase-3. In sum, our results indicate that although AHs are more prone than FHs to producing ROS, at doses unable to cause maternal liver damage ethanol consumption causes oxidative stress and apoptosis in fetal liver.

  7. Accelerated Ulcer Healing and Resistance to Ulcer Recurrence with Gastroprotectants in Rat Model of Acetic Acid-induced Gastric Ulcer

    PubMed Central

    Young Oh, Tae; Ok Ahn, Byung; Jung Jang, Eun; Sang Park, Joo; Jong Park, Sang; Wook Baik, Hyun; Hahm, Ki-Baik

    2008-01-01

    Quality of ulcer healing (QOUH) is defined as ideal ulcer healing featuring with the fine granular ulcer scar, high functional restoration and the resistance to recurrence. This study was designed to compare the rates of QOUH achievement in rat gastric ulcer model between acid suppressant treated group and gastroprotectant treated group accompanied with elucidations of molecular mechanisms. Serosal injection of acetic acids for generating gastric ulcer and intraperitoneal (ip) injection of recombinant interleukin 1-beta (IL-1β) for recurring healed ulcer was done in SD rats. The 72 rats were divided into three groups according to treatment as follows; Group I, no further treatment, Group II, 8 weeks treatment of omeprazole, and Group III, 8 weeks of gastroprotectant treatment. IL-1β was administered for ulcer recurrence after 28 weeks of acetic acid injection. At four weeks after gastric ulcerogenesis, 58.3% (7/12) of active gastric ulcer were converted to healing stage in Group III, but 16.7% (2/12) in Group II and none in Group I, for which significant levels of epidermal growth factor, mucin, and pS2/trefoil peptide1 were contributive to these accelerated healings of Group III. ip injections of rIL-1β (200 µg/kg) at 28 weeks after acetic acid injection led to 100% of ulcer recurrence in Group I and 75.0% in Group II, but only 16.7% of Group III rats showed ulcer recurrence. Significantly attenuated levels of inflammatory cytokines including IL-2, transforming growth factor-alpha (TNF-α), cyclooxygenase-2 (COX-2), nitrotyrosine were responsible for the resistance to ulcer recurrence in Group III. Conclusively, gastroprotectant might be prerequisite in order to achieve ideal QOUH through significant inductions of remodeling. PMID:18545642

  8. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans.

    PubMed

    Cheng, Kang; Wu, Tsuei-Ju; Wu, Kenneth K; Sturino, Claudio; Metters, Kathleen; Gottesdiener, Keith; Wright, Samuel D; Wang, Zhaoyin; O'Neill, Gary; Lai, Eseng; Waters, M Gerard

    2006-04-25

    Nicotinic acid (NA) is commonly used to treat dyslipidemia, but it elicits an adverse effect, termed flushing, which consists of cutaneous vasodilation with associated discomfort. An animal model of NA-induced flushing has been established in mice. As in humans, NA stimulated vasodilation in a dose-dependent manner, was associated with an increase of the vasodilatory prostaglandin (PG) D2 in plasma and could be blocked by pretreatment with aspirin. Two PGD2 receptors have been identified: PGD2 receptor 1 (DP1, also called DP) and PGD2 receptor 2 (DP2, sometimes termed CRTH2). DP2 does not mediate NA-induced vasodilation; the DP2-specific agonist DK-PGD2 (13,14-dihydro-15-keto-PGD2) did not induce cutaneous vasodilation, and DP2-/- mice had a normal vasodilatory response to NA. By contrast, BW245C, a DP1-selective agonist, induced vasodilation in mice, and MK-0524, a DP1-selective antagonist, blocked both PGD2- and NA-induced vasodilation. NA-induced vasodilation was also studied in DP1+/+, DP1+/-, and DP1-/- mice; although NA-induced vasodilation depended almost completely on DP1 in female mice, it depended only partially on DP1 in male mice. The residual NA-induced vasodilation in male DP-/- mice was aspirin-sensitive. Thus, in the mouse, DP1 appears to be an important component involved in NA-induced vasodilation, but other cyclooxygenase-dependent mechanisms also may be involved. A clinical study in healthy men and women demonstrated that treatment with MK-0524 reduced the symptoms of flushing and the increase in skin perfusion after the administration of NA. These studies suggest that DP1 receptor antagonism may be an effective means to suppress NA-induced flushing in humans.

  9. Oncologic Doses of Zoledronic Acid Induce Osteonecrosis of the Jaw-Like Lesions in Rice Rats (Oryzomys Palustris) with Periodontitis

    PubMed Central

    Aguirre, J. I.; Akhter, M. P.; Kimmel, D. B.; Pingel, J. E.; Williams, A.; Jorgensen, M.; Kesavalu, L.; Wronski, T. J.

    2012-01-01

    Though osteonecrosis of the jaw (ONJ) is temporally-associated with the use of nitrogen-containing bisphosphonates (N-BPs), a cause/effect relationship has not yet been established. We hypothesize that ONJ is a two-stage process in which: a) risk factors initiate pathologic processes in the oral cavity that lead to a supranormal rate of hard tissue necrosis, and b) powerful anti-resorptives reduce the rate of removal of necrotic bone sufficiently to allow its net accumulation in the jaw. To test this hypothesis, we used the rice rat model of periodontitis. At age 28 days, rats (n=15/group) were placed on a high sucrose and casein diet to exacerbate the development of periodontitis. Animals were injected SC biweekly with vehicle or alendronate (ALN, 15μg/kg), or IV once monthly with vehicle, a low dose (LD), or a high dose (HD) of zoledronic acid (ZOL) and sacrificed after 6, 12, 18, and 24 wks. Mandibles and maxillae were analyzed to determine the effects on the: a) progression of periodontitis, b) integrity of alveolar bone, c) status of bone resorption and formation, d) vascularity, and e) osteocyte viability. We found that only HD-ZOL induced ONJ-like lesions in mandibles of rice rats after 18 and 24 wks of treatment. These lesions were characterized by areas of exposed necrotic alveolar bone, osteolysis, a honey comb-like appearance of the alveolar bone, presence of bacterial colonies, and periodontal tissue destruction. In addition, inhibition of bone formation, a paradoxical abolition of the antiresorptive effect of only HD-ZOL, increased osteocyte necrosis/apoptosis, and decreased blood vessel number were found after 18 and/or 24 wks. Our study suggests that only HD-ZOL exacerbates the inflammatory response and periodontal tissue damage in rice rats, inducing bone lesions that resemble ONJ. PMID:22623376

  10. The Apoplastic Copper AMINE OXIDASE1 Mediates Jasmonic Acid-Induced Protoxylem Differentiation in Arabidopsis Roots1

    PubMed Central

    Ghuge, Sandip A.; Carucci, Andrea; Rodrigues-Pousada, Renato A.; Tisi, Alessandra; Franchi, Stefano; Tavladoraki, Paraskevi; Cona, Alessandra

    2015-01-01

    Polyamines are involved in key developmental processes and stress responses. Copper amine oxidases oxidize the polyamine putrescine (Put), producing an aldehyde, ammonia, and hydrogen peroxide (H2O2). The Arabidopsis (Arabidopsis thaliana) amine oxidase gene At4g14940 (AtAO1) encodes an apoplastic copper amine oxidase expressed at the early stages of vascular tissue differentiation in roots. Here, its role in root development and xylem differentiation was explored by pharmacological and forward/reverse genetic approaches. Analysis of the AtAO1 expression pattern in roots by a promoter::green fluorescent protein-β-glucuronidase fusion revealed strong gene expression in the protoxylem at the transition, elongation, and maturation zones. Methyl jasmonate (MeJA) induced AtAO1 gene expression in vascular tissues, especially at the transition and elongation zones. Early protoxylem differentiation was observed upon MeJA treatment along with Put level decrease and H2O2 accumulation in wild-type roots, whereas Atao1 loss-of-function mutants were unresponsive to the hormone. The H2O2 scavenger N,N1-dimethylthiourea reversed the MeJA-induced early protoxylem differentiation in wild-type seedlings. Likewise, Put, which had no effect on Atao1 mutants, induced early protoxylem differentiation in the wild type, this event being counteracted by N,N1-dimethylthiourea treatment. Consistently, AtAO1-overexpressing plants showed lower Put levels and early protoxylem differentiation concurrent with H2O2 accumulation in the root zone where the first protoxylem cells with fully developed secondary wall thickenings are found. These results show that the H2O2 produced via AtAO1-driven Put oxidation plays a role in MeJA signaling leading to early protoxylem differentiation in root. PMID:25883242

  11. Molecular cloning and characterization of two novel retinoic acid-inducible orphan G-protein-coupled receptors (GPRC5B and GPRC5C).

    PubMed

    Robbins, M J; Michalovich, D; Hill, J; Calver, A R; Medhurst, A D; Gloger, I; Sims, M; Middlemiss, D N; Pangalos, M N

    2000-07-01

    Using homology searching of public databases with a metabotropic glutamate receptor sequence from Caenorhabditis elegans, two novel protein sequences (named RAIG-2 (HGMW-approved symbol GPRC5B) and RAIG-3 (HGMW-approved symbol GPRC5C) were identified containing seven putative transmembrane domains characteristic of G-protein-coupled receptors (GPCRs). RAIG-2 and RAIG-3 encode open reading frames of 403 and 442 amino acid polypeptides, respectively, and show 58% similarity to the recently identified retinoic acid-inducible gene-1 (RAIG-1, HGMW-approved symbol RAI3). Analysis of the three protein sequences places them within the type 3 GPCR family, which includes metabotropic glutamate receptors, GABA(B) receptors, calcium-sensing receptors, and pheromone receptors. However, in contrast to other type 3 GPCRs, RAIG-1, RAIG-2, and RAIG-3 have only short N-terminal domains. RAIG-2 and RAIG-3 cDNA sequences were cloned into the mammalian expression vector pcDNA3 with c-myc or HA epitope tags inserted at their N-termini, respectively. Transient transfection experiments in HEK239T cells using these constructs demonstrated RAIG-2 and RAIG-3 expression at the cell surface. Distribution profiles of mRNA expression obtained by semiquantitative Taq-Man PCR analysis showed RAIG-2 to be predominantly expressed in human brain areas and RAIG-3 to be predominantly expressed in peripheral tissues. In addition, expression of RAIG-2 and RAIG-3 mRNA was increased following treatment with all-trans-retinoic acid in a manner similar to that previously described for RAIG-1. Finally, RAIG-2 was mapped to chromosome 16p12 (D16S405-D16S3045) and RAIG-3 to chromosome 17q25 (D17S1352-D17S785). These results suggest that RAIG-1, RAIG-2, and RAIG-3 represent a novel family of retinoic acid-inducible receptors, most closely related to the type 3 GPCR subfamily, and provide further evidence for a linkage between retinoic acid and G-protein-coupled receptor signal transduction pathways.

  12. Low Na intake suppresses expression of CYP2C23 and arachidonic acid-induced inhibition of ENaC.

    PubMed

    Sun, Peng; Lin, Dao-Hong; Wang, Tong; Babilonia, Elisa; Wang, Zhijian; Jin, Yan; Kemp, Rowena; Nasjletti, Alberto; Wang, Wen-Hui

    2006-12-01

    We previously demonstrated that arachidonic acid (AA) inhibits epithelial Na channels (ENaC) through the cytochrome P-450 (CYP) epoxygenase-dependent pathway (34). In the present study, we tested the hypothesis that low Na intake suppresses the expression of CYP2C23, which is mainly responsible for converting AA to epoxyeicosatrienoic acid (EET) in the kidney (11) and attenuates the AA-induced inhibition of ENaC. Immunostaining showed that CYP2C23 is expressed in the Tamm-Horsfall protein (THP)-positive and aquaporin 2 (AQP2)-positive tubules. This suggests that CYP2C23 is expressed in the thick ascending limb (TAL) and collecting duct (CD). Na restriction significantly suppressed the expression of CYP2C23 in the TAL and CD. Western blot also demonstrated that the expression of CYP2C23 in renal cortex and outer medulla diminished in rats on Na-deficient diet (Na-D) but increased in those on high-Na diet (4%). Moreover, the content of 11,12-epoxyeicosatrienoic acid (EET) decreased in the isolated cortical CD from rats on Na-D compared with those on a normal-Na diet (0.5%). Patch-clamp study showed that application of 15 microM AA inhibited the activity of ENaC by 77% in the CCD of rats on a Na-D for 3 days. However, the inhibitory effect of AA on ENaC was significantly attenuated in rats on Na-D for 14 days. Furthermore, inhibition of CYP epoxygenase with MS-PPOH increased the ENaC activity in the CCD of rats on a control Na diet. We also used microperfusion technique to examine the effect of MS-PPOH on Na transport in the distal nephron. Application of MS-PPOH significantly increased Na absorption in the distal nephron of control rats but had no significant effect on Na absorption in rats on Na-D for 14 days. We conclude that low Na intake downregulates the activity and expression of CYP2C23 and attenuates the inhibitory effect of AA on Na transport.

  13. Dipeptidyl peptidase IV inhibition potentiates amino acid- and bile acid-induced bicarbonate secretion in rat duodenum

    PubMed Central

    Inoue, Takuya; Wang, Joon-Ho; Higashiyama, Masaaki; Rudenkyy, Sergiy; Higuchi, Kazuhide; Guth, Paul H.; Engel, Eli; Kaunitz, Jonathan D.

    2012-01-01

    Intestinal endocrine cells release gut hormones, including glucagon-like peptides (GLPs), in response to luminal nutrients. Luminal l-glutamate (l-Glu) and 5′-inosine monophosphate (IMP) synergistically increases duodenal HCO3− secretion via GLP-2 release. Since L cells express the bile acid receptor TGR5 and dipeptidyl peptidase (DPP) IV rapidly degrades GLPs, we hypothesized that luminal amino acids or bile acids stimulate duodenal HCO3− secretion via GLP-2 release, which is enhanced by DPPIV inhibition. We measured HCO3− secretion with pH and CO2 electrodes using a perfused rat duodenal loop under isoflurane anesthesia. l-Glu (10 mM) and IMP (0.1 mM) were luminally coperfused with or without luminal perfusion (0.1 mM) or intravenous (iv) injection (3 μmol/kg) of the DPPIV inhibitor NVP728. The loop was also perfused with a selective TGR5 agonist betulinic acid (BTA, 10 μM) or the non-bile acid type TGR5 agonist 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide (CCDC; 10 μM). DPPIV activity visualized by use of the fluorogenic substrate was present on the duodenal brush border and submucosal layer, both abolished by the incubation with NVP728 (0.1 mM). An iv injection of NVP728 enhanced l-Glu/IMP-induced HCO3− secretion, whereas luminal perfusion of NVP728 had no effect. BTA or CCDC had little effect on HCO3− secretion, whereas NVP728 iv markedly enhanced BTA- or CCDC-induced HCO3− secretion, the effects inhibited by a GLP-2 receptor antagonist. Coperfusion of the TGR5 agonist enhanced l-Glu/IMP-induced HCO3− secretion with the enhanced GLP-2 release, suggesting that TGR5 activation amplifies nutrient sensing signals. DPPIV inhibition potentiated luminal l-Glu/IMP-induced and TGR5 agonist-induced HCO3− secretion via a GLP-2 pathway, suggesting that the modulation of the local concentration of the endogenous secretagogue GLP-2 by luminal compounds and DPPIV inhibition helps regulate protective duodenal HCO3− secretion

  14. Anti-inflammatory activity and gastric lesions induced by zinc-tenoxicam.

    PubMed

    Nascimento, Jorge Willian L; Santos, Luiz Henrique; Nothenberg, Michael S; Coelho, Márcio M; Oga, Seizi; Tagliati, Carlos A

    2003-06-01

    Oral administration of tenoxicam or zinc-tenoxicam complex inhibited to a similar extent carrageenin-induced paw oedema and granulomatous tissue formation in rats as well as the acetic acid induced writhing response in mice. Gastric lesions induced by oral administration of zinc-tenoxicam were reduced in number and severity when compared with those induced by tenoxicam or the co-administration of tenoxicam and zinc acetate. However, after intraperitoneal administration, both zinc-tenoxicam and tenoxicam plus zinc acetate induced a reduced number of gastric lesions as compared with tenoxicam.

  15. Anti-nociceptive Effect of 7-methoxy Coumarin from Eupatorium Triplinerve vahl (Asteraceae)

    PubMed Central

    Cheriyan, Binoy Varghese; Kadhirvelu, Parimala; Nadipelly, Jagan; Shanmugasundaram, Jaikumar; Sayeli, Vijaykumar; Subramanian, Viswanathan

    2017-01-01

    Aim: To evaluate the anti-nociceptive activity of 7-methoxy coumarin isolated from ethyl acetate fraction of the alcoholic extract of Eupatorium triplinerve Vahl. Materials and Methods: The shade dried leaves of E. triplinerve were extracted with ethyl alcohol and the extract was condensed. This extract was fractionated with n-hexane, ethyl acetate, and n-butanol. The ethyl acetate fraction was subjected to column chromatography which yielded a crystalline compound-A, which was investigated for spectral characteristics. Pharmacological studies: The isolated compound-A was subjected to behavioral studies and anti-nociceptive evaluation in mice by acetic acid induced writhing and formalin induced nociception. Results: The spectral studies indicated that the structure of compound-A complies with 7- methoxy coumarin. Pre-treatment with 7-methoxy coumarin reduced the number of abdominal constrictions in mice and decreased the time spent in paw licking and biting response in formalin assay. There were no significant behavioral changes. Conclusion: A dose dependent anti-nociceptive action of 7- methoxy coumarin was revealed by the present experiments which support the traditional use of E. triplinerve in pain and inflammatory disorders. SUMMARY Bio-guided fractionation of alcoholic extract of E. triplinerve yielded 7-methoxy coumarin.7-methoxy coumarin was evaluated for its anti-nociceptive potential by acetic acid induced writhing and formalin induced nociception assays.7-methoxy coumarin exhibited significant inhibition of acetic acid induced writhing response and the second phase of formalin nociception.The anti-nociceptive action of 7-methoxy coumarin revealed by the present experiments supports the traditional use of E. triplinerve in pain and inflammatory disorders. Abbreviation used: TLC-Thin layer chromatography, Kg-kilogram, g-gram, TXB2-Thromboxane B2, UV-Ultraviolet, IgE-Immunoglobulin E, s.c-subcutaneous, p.o-oral route PMID:28216887

  16. Challenges of a mechanistic feedback model describing nicotinic acid-induced changes in non-esterified fatty acids in rats.

    PubMed

    Ahlström, Christine; Peletier, Lambertus A; Gabrielsson, Johan

    2013-08-01

    .27 L mmol(-1) min(-1), and the turnover rate of moderator k tol 0.023 min(-1). The lower physiological limit of NEFA, which was modeled as a NiAc-independent release (k cap ) of NEFA into plasma, was estimated to 0.023 mmol L(-1) min(-1). The parameter estimates derived in this study were consistent with our previous estimates, suggesting that the model may be used for prediction of the NEFA response time-course following different modes and routes administration of NiAc or NiAc analogues. In order to avoid NiAc-induced NEFA rebound, a slow decline in the NiAc exposure pattern is needed at or below IC (50).

  17. Manuka Honey Exerts Antioxidant and Anti-Inflammatory Activities That Promote Healing of Acetic Acid-Induced Gastric Ulcer in Rats

    PubMed Central

    Almasaudi, Saad B.; Al-Hindi, Rashad R.; Abdel-dayem, Umama A.; Ali, Soad S.; Saleh, Rasha M.; Al Jaouni, Soad K.

    2017-01-01

    Gastric ulcers are a major problem worldwide with no effective treatment. The objective of this study was to evaluate the use of manuka honey in the treatment of acetic acid-induced chronic gastric ulcers in rats. Different groups of rats were treated with three different concentrations of honey. Stomachs were checked macroscopically for ulcerative lesions in the glandular mucosa and microscopically for histopathological alterations. Treatment with manuka honey significantly reduced the ulcer index and maintained the glycoprotein content. It also reduced the mucosal myeloperoxidase activity, lipid peroxidation (MDA), and the inflammatory cytokines (TNF-α, IL-1β, and IL-6) as compared to untreated control group. In addition, honey-treated groups showed significant increase in enzymatic (GPx and SOD) and nonenzymatic (GSH) antioxidants besides levels of the anti-inflammatory cytokine IL-10. Flow cytometry studies showed that treatment of animals with manuka honey has normalized cell cycle distribution and significantly lowered apoptosis in gastric mucosa. In conclusion, the results indicated that manuka honey is effective in the treatment of chronic ulcer and preservation of mucosal glycoproteins. Its effects are due to its antioxidant and anti-inflammatory properties that resulted in a significant reduction of the gastric mucosal MDA, TNF-α, IL-1β, and IL-6 and caused an elevation in IL-10 levels. PMID:28250794

  18. Role of Toll-like receptors and retinoic acid inducible gene I in endogenous production of type I interferon in dermatomyositis.

    PubMed

    Li, Ling; Dai, Tingjun; Lv, Jingwei; Ji, Kunqian; Liu, Junling; Zhang, Bin; Yan, Chuanzhu

    2015-08-15

    To explore the possible mechanisms implicated in the endogenous production of type I interferons within the muscle tissue of dermatomyositis (DM) patients. We detected the co-localization of plasmacytoid dendritic cells (pDCs) with Toll-like receptors (TLRs) and retinoic acid inducible gene (RIG)-I by immunohistochemistry and immunofluorescence. Western blotting confirmed the expression of TLRs and RIG-I. TLR-3 and RIG-I was preferentially expressed in the perifascicular atrophy fibers of DM. TLR-7 was only in inflammatory infiltrates of a few DM patients. TLR-4 and TLR-9 was expressed mainly in inflammatory infiltrates. Immunofluorescence showed extensive co-localization of BDCA-2 with TLR-9 and little co-localization with TLR-7. Western blotting showed upregulation of expression of TLRs and RIG-I in DM compared with the controls. Our findings indicate that endogenous production of type I IFN in DM is generated by pDCs, mainly through the TLR-9 pathway and in part by TLR-7. TLR-3 and RIG-I are implicated in the formation of perifascicular atrophy in DM.

  19. Increase in α-tubulin modifications in the neuronal processes of hippocampal neurons in both kainic acid-induced epileptic seizure and Alzheimer’s disease

    PubMed Central

    Vu, Hang Thi; Akatsu, Hiroyasu; Hashizume, Yoshio; Setou, Mitsutoshi; Ikegami, Koji

    2017-01-01

    Neurodegeneration includes acute changes and slow-developing alterations, both of which partly involve common cellular machinery. During neurodegeneration, neuronal processes are impaired along with dysregulated post-translational modifications (PTMs) of cytoskeletal proteins. In neuronal processes, tubulin undergoes unique PTMs including a branched form of modification called glutamylation and loss of the C-terminal tyrosine residue and the penultimate glutamic acid residue forming Δ2-tubulin. Here, we investigated the state of two PTMs, glutamylation and Δ2 form, in both acute and slow-developing neurodegenerations, using a newly generated monoclonal antibody, DTE41, which had 2-fold higher affinity to glutamylated Δ2-tubulin, than to unmodified Δ2-tubulin. DTE41 recognised glutamylated Δ2-tubulin preferentially in immunostaining than in enzyme-linked immunosorbent assay and immunoblotting. In normal mouse brain, DTE41 stained molecular layer of the cerebellum as well as synapse-rich regions in pyramidal neurons of the cerebral cortex. In kainic acid-induced epileptic seizure, DTE41-labelled signals were increased in the hippocampal CA3 region, especially in the stratum lucidum. In the hippocampi of post-mortem patients with Alzheimer’s disease, intensities of DTE41 staining were increased in mossy fibres in the CA3 region as well as in apical dendrites of the pyramidal neurons. Our findings indicate that glutamylation on Δ2-tubulin is increased in both acute and slow-developing neurodegeneration. PMID:28067280

  20. Alkali- or acid-induced changes in structure, moisture absorption ability and deacetylating reaction of β-chitin extracted from jumbo squid (Dosidicus gigas) pens.

    PubMed

    Jung, Jooyeoun; Zhao, Yanyun

    2014-01-01

    Alkali- or acid-induced structural modifications in β-chitin from squid (Dosidicus gigas, d'Orbigny, 1835) pens and their moisture absorption ability (MAA) and deacetylating reaction were investigated and compared with α-chitin from shrimp shells. β-Chitin was converted into the α-form after 3h in 40% NaOH or 1-3 h in 40% HCl solution, and α-chitin obtained from NaOH treatment had higher MAA than had native α-chitin, due to polymorphic destructions. In contrast, induced α-chitin from acid treatment of β-chitin had few polymorphic modifications, showing no significant change (P>0.05) in MAA. β-Chitin was more susceptible to alkali deacetylation than was α-chitin, and required a lower concentration of NaOH and shorter reaction time. These results demonstrate that alkali- or acid-treated β-chitin retained high susceptibility toward solvents, which in turn resulted in good biological activity of β-chitosan for use as a natural antioxidant and antimicrobial substance or application as edible coatings and films for various food applications.

  1. Effect of dietary fibers on cholic acid induced cell proliferation in the colonic epithelium of C57BL/6J mice

    SciTech Connect

    Robblee, N.M.; Bruce, W.R.; Bird, R.P.

    1986-03-01

    It has been postulated that high fat diets promote tumorigenesis by increasing the level of secondary bile acids in the colonic lumen. Dietary fibers are thought to be protective perhaps through their interaction with bile acids. In the present study, animals were fed diets containing either 0%, 5%, or 10% cellulose (C), pectin (P), or wheat bran (WB). The diets were formulated to contain either 0% (control) or 0.2% cholic acid (test). After two weeks of dietary treatment the animals were injected with (/sup 3/H)-thymidine and their colons were processed for autoradiography. The number of labeled cells (LC) in the colonic crypts was determined. Among the control diets, 10%P induced a two-fold increase in the LC. All the test groups had significantly higher LC than in their controls. However, the C group excited a higher LC than the P or WB groups (5.2 +/- 0.8 vs 3.9 +/- 0.8 or 3.9 +/- 0.6). These results were substantiated by metaphase arrest technique. The authors results show that nonfermentable fiber does not alleviate bile acid induced cell proliferative activity in the colon whereas fermentable fibers will counteract the promotional effect of a high fat diet.

  2. Improvement of derivatized amino acid detection sensitivity in micellar electrokinetic capillary chromatography by means of acid-induced pH-mediated stacking technique.

    PubMed

    Dziomba, Szymon; Bekasiewicz, Adrian; Prahl, Adam; Bączek, Tomasz; Kowalski, Piotr

    2014-10-01

    Derivatization is a frequently used sample preparation procedure applicable to the enhancement of analyte detection sensitivity. Amino acids mostly require derivatization prior to electrophoretic or chromatographic analysis, especially if spectrophotometric detection is used. This study presents an on-line preconcentration technique for derivatized amino acids. The sensitivity of the method was improved by the utilization of the proposed acid-induced pH-mediated stacking mechanism. The method is demonstrated by preconcentration of amino acids labeled with 2,4-dinitrofluorobenzene. Use of optimized conditions for a large sample volume injection (40 s, 13.8 kPa) followed by electrokinetic injection of 0.1 M HCl (20 s, 10 kV) gave a 20- to 30-fold enhancement of sensitivity. The significance of the sweeping mechanism and pseudo-isotachophoresis for the on-line sample focusing and the influence of parameters on the preconcentration process were discussed. The applicability of the elaborated method was demonstrated using human urine samples.

  3. Evidence for genetic regulation of mRNA expression of the dosage-sensitive gene retinoic acid induced-1 (RAI1) in human brain

    PubMed Central

    Chen, Li; Tao, Yu; Song, Fan; Yuan, Xi; Wang, Jian; Saffen, David

    2016-01-01

    RAI1 (retinoic acid induced-1) is a dosage-sensitive gene that causes Smith-Magenis syndrome (SMS) when mutated or deleted and Potocki-Lupski Syndrome (PTLS) when duplicated, with psychiatric features commonly observed in both syndromes. How common genetic variants regulate this gene, however, is unknown. In this study, we found that RAI1 mRNA expression in Chinese prefrontal and temporal cortex correlate with genotypes of common single nucleotide polymorphisms (SNPs) located in the RAI1 5′-upstream region. Using genotype imputation, “R2-Δ2” analysis, and data from the RegulomeDB database, we identified SNPs rs4925102 and rs9907986 as possible regulatory variants, accounting for approximately 30–40% of the variance in RAI1 mRNA expression in both brain regions. Specifically, rs4925102 and rs9907986 are predicted to disrupt the binding of retinoic acid RXR-RAR receptors and the transcription factor DEAF1 (Deformed epidermal autoregulatory factor-1), respectively. Consistent with these predictions, we observed binding of RXRα and RARα to the predicted RAI1 target in chromatin immunoprecipitation assays. Retinoic acid is crucial for early development of the central neural system, and DEAF1 is associated with intellectual disability. The observation that a significant portion of RAI1 mRNA expression is genetically controlled raises the possibility that common RAI1 5′-region regulatory variants contribute more generally to psychiatric disorders. PMID:26743651

  4. Elucidation of Acid-induced Unfolding and Aggregation of Human Immunoglobulin IgG1 and IgG2 Fc

    PubMed Central

    Latypov, Ramil F.; Hogan, Sabine; Lau, Hollis; Gadgil, Himanshu; Liu, Dingjiang

    2012-01-01

    Understanding the underlying mechanisms of Fc aggregation is an important prerequisite for developing stable and efficacious antibody-based therapeutics. In our study, high resolution two-dimensional nuclear magnetic resonance (NMR) was employed to probe structural changes in the IgG1 Fc. A series of 1H-15N heteronuclear single-quantum correlation NMR spectra were collected between pH 2.5 and 4.7 to assess whether unfolding of CH2 domains precedes that of CH3 domains. The same pH range was subsequently screened in Fc aggregation experiments that utilized molecules of IgG1 and IgG2 subclasses with varying levels of CH2 glycosylation. In addition, differential scanning calorimetry data were collected over a pH range of 3–7 to assess changes in CH2 and CH3 thermostability. As a result, compelling evidence was gathered that emphasizes the importance of CH2 stability in determining the rate and extent of Fc aggregation. In particular, we found that Fc domains of the IgG1 subclass have a lower propensity to aggregate compared with those of the IgG2 subclass. Our data for glycosylated, partially deglycosylated, and fully deglycosylated molecules further revealed the criticality of CH2 glycans in modulating Fc aggregation. These findings provide important insights into the stability of Fc-based therapeutics and promote better understanding of their acid-induced aggregation process. PMID:22084250

  5. Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs.

    PubMed

    Hay, Douglas W P; Giardina, Giuseppe A M; Griswold, Don E; Underwood, David C; Kotzer, Charles J; Bush, Brian; Potts, William; Sandhu, Punam; Lundberg, Dave; Foley, James J; Schmidt, Dulcie B; Martin, Lenox D; Kilian, David; Legos, Jeffrey J; Barone, Frank C; Luttmann, Mark A; Grugni, Mario; Raveglia, Luca F; Sarau, Henry M

    2002-01-01

    In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.

  6. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    PubMed

    Vilboux, Thierry; Ciccone, Carla; Blancato, Jan K; Cox, Gerald F; Deshpande, Charu; Introne, Wendy J; Gahl, William A; Smith, Ann C M; Huizing, Marjan

    2011-01-01

    Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.

  7. Citric acid induces cell-cycle arrest and apoptosis of human immortalized keratinocyte cell line (HaCaT) via caspase- and mitochondrial-dependent signaling pathways.

    PubMed

    Ying, Tsung-Ho; Chen, Chia-Wei; Hsiao, Yu-Ping; Hung, Sung-Jen; Chung, Jing-Gung; Yang, Jen-Hung

    2013-10-01

    Citric acid is an alpha-hydroxyacid (AHA) widely used in cosmetic dermatology and skincare products. However, there is concern regarding its safety for the skin. In this study, we investigated the cytotoxic effects of citric acid on the human keratinocyte cell line HaCaT. HaCaT cells were treated with citric acid at 2.5-12.5 mM for different time periods. Cell-cycle arrest and apoptosis were investigated by 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining, flow cytometry, western blot and confocal microscopy. Citric acid not only inhibited proliferation of HaCaT cells in a dose-dependent manner, but also induced apoptosis and cell cycle-arrest at the G2/M phase (before 24 h) and S phase (after 24 h). Citric acid increased the level of Bcl-2-associated X protein (BAX) and reduced the levels of B-cell lymphoma-2 (BCL-2), B-cell lymphoma-extra large (BCL-XL) and activated caspase-9 and caspase-3, which subsequently induced apoptosis via caspase-dependent and caspase-independent pathways. Citric acid also activated death receptors and increased the levels of caspase-8, activated BH3 interacting-domain death agonist (BID) protein, Apoptosis-inducing factor (AIF), and Endonuclease G (EndoG). Therefore, citric acid induces apoptosis through the mitochondrial pathway in the human keratinocyte cell line HaCaT. The study results suggest that citric acid is cytotoxic to HaCaT cells via induction of apoptosis and cell-cycle arrest in vitro.

  8. Increased beta-oxidation in muscle cells enhances insulin-stimulated glucose metabolism and protects against fatty acid-induced insulin resistance despite intramyocellular lipid accumulation.

    PubMed

    Perdomo, German; Commerford, S Renee; Richard, Ann-Marie T; Adams, Sean H; Corkey, Barbara E; O'Doherty, Robert M; Brown, Nicholas F

    2004-06-25

    Skeletal muscle insulin resistance may be aggravated by intramyocellular accumulation of fatty acid-derived metabolites that inhibit insulin signaling. We tested the hypothesis that enhanced fatty acid oxidation in myocytes should protect against fatty acid-induced insulin resistance by limiting lipid accumulation. L6 myotubes were transduced with adenoviruses encoding carnitine palmitoyltransferase I (CPT I) isoforms or beta-galactosidase (control). Two to 3-fold overexpression of L-CPT I, the endogenous isoform in L6 cells, proportionally increased oxidation of the long-chain fatty acids palmitate and oleate and increased insulin stimulation of [(14)C]glucose incorporation into glycogen by 60% while enhancing insulin-stimulated phosphorylation of p38MAPK. Incubation of control cells with 0.2 mm palmitate for 18 h caused accumulation of triacylglycerol, diacylglycerol, and ceramide (but not long-chain acyl-CoA) and decreased insulin-stimulated [(14)C]glucose incorporation into glycogen (60%), [(3)H]deoxyglucose uptake (60%), and protein kinase B phosphorylation (20%). In the context of L-CPT I overexpression, palmitate preincubation produced a relative decrease in insulin-stimulated incorporation of [(14)C]glucose into glycogen (60%) and [(3)H]deoxyglucose uptake (40%) but did not inhibit phosphorylation of protein kinase B. Due to the enhancement of insulin-stimulated glucose metabolism induced by L-CPT I overexpression itself, net insulin-stimulated incorporation of [(14)C]glucose into glycogen and [(3)H]deoxyglucose uptake in L-CPT I-transduced, palmitate-treated cells were significantly greater than in palmitate-treated control cells (71 and 75% greater, respectively). However, L-CPT I overexpression failed to decrease intracellular triacylglycerol, diacylglycerol, ceramide, or long-chain acyl-CoA. We propose that accelerated beta-oxidation in muscle cells exerts an insulin-sensitizing effect independently of changes in intracellular lipid content.

  9. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  10. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups

    PubMed Central

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-01-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2′-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  11. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    SciTech Connect

    Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.; Gonzalez, Raul; Ferrin, Gustavo; Hidalgo, Ana B.; Munoz-Gomariz, Elisa; Rodriguez, Blanca A.; Barrera, Pilar; Ranchal, Isidora; Duran-Prado, Mario; De la Mata, Manuel; Muntane, Jordi

    2010-01-15

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.

  12. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell

    PubMed Central

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas. PMID:28090191

  13. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell.

    PubMed

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.

  14. Rai14 (retinoic acid induced protein 14) is involved in regulating f-actin dynamics at the ectoplasmic specialization in the rat testis*.

    PubMed

    Qian, Xiaojing; Mruk, Dolores D; Cheng, C Yan

    2013-01-01

    Rai14 (retinoic acid induced protein 14) is an actin binding protein first identified in the liver, highly expressed in the placenta, the testis, and the eye. In the course of studying actin binding proteins that regulate the organization of actin filament bundles in the ectoplasmic specialization (ES), a testis-specific actin-rich adherens junction (AJ) type, Rai14 was shown to be one of the regulatory proteins at the ES. In the rat testis, Rai14 was found to be expressed by Sertoli and germ cells, structurally associated with actin and an actin cross-linking protein palladin. Its expression was the highest at the ES in the seminiferous epithelium of adult rat testes, most notably at the apical ES at the Sertoli-spermatid interface, and expressed stage-specifically during the epithelial cycle in stage VII-VIII tubules. However, Rai14 was also found at the basal ES near the basement membrane, associated with the blood-testis barrier (BTB) in stage VIII-IX tubules. A knockdown of Rai14 in Sertoli cells cultured in vitro by RNAi was found to perturb the Sertoli cell tight junction-permeability function in vitro, mediated by a disruption of F-actin, which in turn led to protein mis-localization at the Sertoli cell BTB. When Rai14 in the testis in vivo was knockdown by RNAi, defects in spermatid polarity and adhesion, as well as spermatid transport were noted mediated via changes in F-actin organization and mis-localization of proteins at the apical ES. In short, Rai14 is involved in the re-organization of actin filaments in Sertoli cells during the epithelial cycle, participating in conferring spermatid polarity and cell adhesion in the testis.

  15. Domain-confined catalytic soot combustion over Co3O4 anchored on a TiO2 nanotube array catalyst prepared by mercaptoacetic acid induced surface-grafting.

    PubMed

    Ren, Jiale; Yu, Yifu; Dai, Fangfang; Meng, Ming; Zhang, Jing; Zheng, Lirong; Hu, Tiandou

    2013-12-21

    Herein, we introduce a specially designed domain-confined macroporous catalyst, namely, the Co3O4 nanocrystals anchored on a TiO2 nanotube array catalyst, which was synthesized by using the mercaptoacetic acid induced surface-grafting method. This catalyst exhibits much better performance for catalytic soot combustion than the conventional TiO2 powder supported one in gravitational contact mode (GMC).

  16. Hop Extract Produces Antinociception by Acting on Opioid System in Mice

    PubMed Central

    Park, Soo-Hyun; Sim, Yun-Beom; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-jin; Seo, Jee-Young; Lim, Su-Min

    2012-01-01

    In the present study, the antinociceptive profiles of hop extract were characterized in ICR mice. Hop extract administered orally (from 25 to 100 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured in the acetic acid-induced writhing test. Antinociceptive action of hop extract was maintained at least for 60 min. Moreover, cumulative response time of nociceptive behaviors induced with intraplantar formalin injection was reduced by hop extract treatment during the 2nd phases. Furthermore, the cumulative nociceptive response time for intrathecal injection of substance P (0.7 µg) or glutamate (20 µg) was diminished by hop extract. Intraperitoneal pretreatment with naloxone (an opioid receptor antagonist) attenuated antinociceptive effect induced by hop extract in the writhing test. However, methysergide (a 5-HT serotonergic receptor antagonist) or yohimbine (an α2-adrenergic receptor antagonist) did not affect antinociception induced by hop extract in the writhing test. Our results suggest that hop extract shows an antinociceptive property in various pain models. Furthermore, the antinociceptive effect of hop extract may be mediated by opioidergic receptors, but not serotonergic and α2-adrenergic receptors. PMID:22802700

  17. Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures.

    PubMed

    Drexel, M; Preidt, A P; Kirchmair, E; Sperk, G

    2011-08-25

    The subiculum is the major output area of the hippocampus. It is closely interconnected with the entorhinal cortex and other parahippocampal areas. In animal models of temporal lobe epilepsy (TLE) and in TLE patients it exerts increased network excitability and may crucially contribute to the propagation of limbic seizures. Using immunohistochemistry and in situ-hybridization we now investigated neuropathological changes affecting parvalbumin and calretinin containing neurons in the subiculum and other parahippocampal areas after kainic acid-induced status epilepticus. We observed prominent losses in parvalbumin containing interneurons in the subiculum and entorhinal cortex, and in the principal cell layers of the pre- and parasubiculum. Degeneration of parvalbumin-positive neurons was associated with significant precipitation of parvalbumin-immunoreactive debris 24 h after kainic acid injection. In the subiculum the superficial portion of the pyramidal cell layer was more severely affected than its deep part. In the entorhinal cortex, the deep layers were more severely affected than the superficial ones. The decrease in number of parvalbumin-positive neurons in the subiculum and entorhinal cortex correlated with the number of spontaneous seizures subsequently experienced by the rats. The loss of parvalbumin neurons thus may contribute to the development of spontaneous seizures. On the other hand, surviving parvalbumin neurons revealed markedly increased expression of parvalbumin mRNA notably in the pyramidal cell layer of the subiculum and in all layers of the entorhinal cortex. This indicates increased activity of these neurons aiming to compensate for the partial loss of this functionally important neuron population. Furthermore, calretinin-positive fibers terminating in the molecular layer of the subiculum, in sector CA1 of the hippocampus proper and in the entorhinal cortex degenerated together with their presumed perikarya in the thalamic nucleus reuniens. In

  18. Conjugated linoleic acid-induced milk fat depression in lactating ewes is accompanied by reduced expression of mammary genes involved in lipid synthesis.

    PubMed

    Hussein, M; Harvatine, K H; Weerasinghe, W M P B; Sinclair, L A; Bauman, D E

    2013-06-01

    Conjugated linoleic acids (CLA) are produced during rumen biohydrogenation and exert a range of biological effects. The trans-10,cis-12 CLA isomer is a potent inhibitor of milk fat synthesis in lactating dairy cows and some aspects of the mechanism have been established. Conjugated linoleic acid-induced milk fat depression has also been observed in small ruminants and our objective was to examine the molecular mechanism in lactating ewes. Multiparous lactating ewes were fed a basal ration (0.55:0.45 concentrate-to-forage ratio; dry matter basis) and randomly allocated to 2 dietary CLA levels (n=8 ewes/treatment). Treatments were zero CLA (control) or 15 g/d of lipid-encapsulated CLA supplement containing cis-9,trans-11 and trans-10,cis-12 CLA isomers in equal proportions. Treatments were fed for 10 wk and the CLA supplement provided 1.5 g of trans-10,cis-12/d. No treatment effects were observed on milk yield or milk composition for protein or lactose at wk 10 of the study. In contrast, CLA treatment significantly decreased both milk fat percentage and milk fat yield (g/d) by about 23%. The de novo synthesized fatty acids (FA; C16) was increased (10%) for the CLA treatment. In agreement with the reduced de novo FA synthesis, mRNA abundance of acetyl-coenzyme A carboxylase α, FA synthase, stearoyl-CoA desaturase 1, and glycerol-3-phosphate acyltransferase 6 decreased by 25 to 40% in the CLA-treated group. Conjugated linoleic acid treatment did not significantly reduce the mRNA abundance of enzymes involved in NADPH production, but the mRNA abundance for sterol regulatory element-binding factor 1 and insulin-induced gene 1, genes involved in regulation of transcription of lipogenic enzymes, was decreased by almost 30 and 55%, respectively, with CLA treatment. Furthermore, mRNA abundance of lipoprotein lipase decreased by almost 40% due to CLA treatment

  19. Anti-inflammatory, analgesic, and antipyretic activities of virgin coconut oil.

    PubMed

    Intahphuak, S; Khonsung, P; Panthong, A

    2010-02-01

    This study investigated some pharmacological properties of virgin coconut oil (VCO), the natural pure oil from coconut [Cocos nucifera Linn (Palmae)] milk, which was prepared without using chemical or high-heat treatment. The anti-inflammatory, analgesic, and antipyretic effects of VCO were assessed. In acute inflammatory models, VCO showed moderate anti-inflammatory effects on ethyl phenylpropiolate-induced ear edema in rats, and carrageenin- and arachidonic acid-induced paw edema. VCO exhibited an inhibitory effect on chronic inflammation by reducing the transudative weight, granuloma formation, and serum alkaline phosphatase activity. VCO also showed a moderate analgesic effect on the acetic acid-induced writhing response as well as an antipyretic effect in yeast-induced hyperthermia. The results obtained suggest anti-inflammatory, analgesic, and antipyretic properties of VCO.

  20. Theacrine, a purine alkaloid with anti-inflammatory and analgesic activities.

    PubMed

    Wang, Yuanyuan; Yang, Xiaorong; Zheng, Xinqiang; Li, Jing; Ye, Chuangxing; Song, Xiaohong

    2010-09-01

    The anti-inflammatory and analgesic effects of theacrine (1, 3, 7, 9-tetramethyluric acid), a purine alkaloid which is abundantly present in Camellia kucha, were investigated. Xylene-induced ear edema, acetic acid-induced vascular permeability and lambda-carrageenan-induced paw edema were used to investigate anti-inflammatory activity, and acetic acid-induced writhing and hot-plate tests were used to determine analgesic effect. Oral administration of theacrine (8-32 mg/kg) induced dose-related anti-inflammatory and analgesic effects. On the other hand, oral caffeine administration (8-32 mg/kg) did not show an inhibitory effect on the inhibition of inflammatory response or cause analgesia. Additionally, the result of the acute toxicity test showed that the LD(50) of theacrine was 810.6 mg/kg (769.5-858.0mg/kg). The data obtained suggest theacrine possessed analgesic and anti-inflammatory activities.

  1. Preliminary pharmacological activity of the methanolic extract of Premna integrifolia barks in rats

    PubMed Central

    Khatun, Hajera; Majumder, Rajib; Al Mamun; Alam, Efte Kharul; Jami, Safkath Ibne; Alam, Badrul

    2014-01-01

    Objective: Premna integrifolia Linn (Family: Verbenaceae) synonym of Premna serratifolia has tremendous medicinal value. Preliminary pharmacological studies were performed on the methanolic extract of Premna integrifolia (MEPI) bark to investigate neuropharmacological, analgesic, and anti-inflammatory activities. Materials and methods: Neuropharmacology study was done by open field and hole cross test whereas acetic acid writhing test and formalin induced pain was done for analgesic activity of MEPI. Carrageenan induced inflammatory model was considered for anti-inflammatory activity evaluation. Results: A statistically significant (p0.05) decrease in locomotor activity was observed at all doses in the open-field and hole-cross tests. The extract significantly (p0.05) and dose dependently reduced the writhing reflex in the acetic acid-induced writhing test as well as licking response in the formalin induced inflammatory pain. At 200 mg/kg body weight dose, MEPI showed 71.16% inhibition in carrageenan induced anti-inflammatory activity. Conclusion: The finding of this study suggests that MEPI will provide scientific support for the use of this species in traditional medicine. PMID:25050319

  2. Analgesic and Antipyretic Activities of Methanol Extract and Its Fraction from the Root of Schoenoplectus grossus

    PubMed Central

    Subedi, Nirmal Kumar; Rahman, S. M. Abdur; Akbar, Mohammad Ahsanul

    2016-01-01

    The study aims to evaluate analgesic and antipyretic activities of the methanol extract and its different fractions from root of Schoenoplectus grossus using acetic acid induced writhing and radiant heat tail flick method of pain models in mice and yeast induced pyrexia in rats at the doses of 400 and 200 mg/kg. In acetic acid writhing test, the methanol extract, petroleum ether, and carbon tetrachloride fractions produced significant (P < 0.001 and P < 0.05) inhibition of writhing responses in dose dependent manner. The methanol extract at 400 and 200 mg/kg being more protective with 54% and 45.45% of inhibition compared to diclofenac sodium of 56% followed by petroleum ether fractions of 49.69% and 39.39% at the same doses. The extracts did not produce any significant antinociceptive activity in tail flick test except standard morphine. When studied on yeast induced pyrexia, methanol and petroleum ether fractions significantly lowered the rectal temperature time dependently in a manner similar to standard drug paracetamol and distinctly more significant (P < 0.001) after second hour. These findings suggest that the root extracts of S. grossus possess significant peripherally acting analgesic potential and antipyretic property. The phytochemical screening showed the presence of flavonoids, alkaloids, and tannins. PMID:26977173

  3. Analgesic, Anti-Inflammatory, and Chondroprotective Activities of Cryptolepis buchanani Extract: In Vitro and In Vivo Studies

    PubMed Central

    Hanprasertpong, Nutthiya; Teekachunhatean, Supanimit; Chaiwongsa, Rujirek; Ongchai, Siriwan; Kunanusorn, Puongtip; Sangdee, Chaichan; Panthong, Ampai; Bunteang, Samreang; Nathasaen, Narong; Reutrakul, Vichai

    2014-01-01

    Cryptolepis buchanani Roem. & Schult. is widely used in folk medicine in Southeast Asia for treating muscle tension and arthritis. This study aimed to investigate an analgesic activity of the methanol extract of C. buchanani (CBE) in acetic acid-induced writhing response in mice, and to examine its anti-inflammatory activity in ethyl phenylpropiolate- (EPP-) induced ear edema and carrageenan-induced paw edema in rats. Its effects on cartilage degradation induced by interleukin-1β (IL-1β) in porcine cartilage explant culture were also determined. This study demonstrated that CBE significantly reduced acetic acid-induced writhing response. It also inhibited edema formation in both EPP-induced ear edema and carrageenan-induced paw edema models. In cartilage explant culture, CBE significantly reduced the sulfated glycosaminoglycan and hyaluronan released into culture media while it reserved the uronic acid and collagen within the cartilage tissues. It also suppressed the matrix metalloproteinase-2 activity with no effect on cell viability. In conclusion, CBE shows analgesic, anti-inflammatory, and chondroprotective effects in this preliminary study. Therefore, CBE may be useful as an alternative treatment for osteoarthritis. PMID:25247198

  4. Immunomodulatory, analgesic and antipyretic effects of violacein isolated from Chromobacterium violaceum.

    PubMed

    Antonisamy, P; Ignacimuthu, S

    2010-03-01

    Violacein was isolated from Chromobacterium violaceum, a soil Gram negative bacterium collected from the forest water body soil sample of Kolli Hills; Tamil Nadu, India. In the present study the immunomodulatory, analgesic and antipyretic activities of violacein were investigated in wistar rats and mice. Analgesic effect was evaluated by acetic acid- induced writhing, formalin induced paw licking and hotplate tests. Immunomodulatory effect was investigated by using ovalbumin- induced active paw anaphylaxis and sheep red blood cells (SRBC)-induced DTH tests. Antipyretic activity was evaluated by yeast- induced hyperpyrexia in rats. The anti- oedema effect was compared with indomethacin. Violacein inhibited 42.9% of ovalbumin- induced edema. Further we found that violacein (40mg/kg b.w.) reduced the edema induced by sheep red blood cells. Violacein also produced significant (p<0.05) analgesic activity in acetic acid induced writhing response, formalin induced paw licking response and hot plate analysis. Treatment with violacein showed a significant (p<0.05) dose-dependent reduction in pyrexia in rats. The results suggest that violacein possesses potent immunomodulatory, analgesic and antipyretic activities.

  5. The validation of Calophyllum brasiliense ("guanandi") uses in Brazilian traditional medicine as analgesic by in vivo antinociceptive evaluation and its chemical analysis.

    PubMed

    Klein-Júnior, Luiz Carlos; Zambiasi, Daniele; Salgado, Giovana Rocha; Delle Monache, Franco; Filho, Valdir Cechinel; de Campos Buzzi, Fátima

    2017-04-08

    Calophyllum brasiliense is used as anti-inflammatory and analgesic in Brazilian traditional medicine. Thus, the main purpose of this study is to evaluate the antinociceptive effect of the chloroform fraction of C. brasiliense (CFCB) roots and to investigate its main mechanism of action. The antinociceptive effect of CFCB was evaluated in mice using acetic acid-induced writhing, formalin-induced paw licking, and hot-plate tests and capsaicin- and glutamate-induced nociception. Brasiliensic acid and 1,2-dimethoxyxanthone were isolated and evaluated in writhing test. The amount of 1,2-dimethoxyxanthone was determined in the fraction by UPLC-DAD. CFCB inhibited abdominal constrictions induced by acetic acid up to 97%, with an ID50 of 9.4 mg/kg (i.p.) and 131.8 mg/kg (p.o.). In the formalin test, CFCB impaired paw licking with an ID50 of 26.3 mg/kg for the first phase and 27.5 mg/kg for the second phase (i.p.). The painful response evoked by capsaicin and glutamate was significantly reduced (ID50 26.7 and 47.9 mg/kg, i.p.). The latency time was increased up to 76% at 60 mg/kg (i.p.) in the hot-plate test. 1,2-Dimethoxyxanthone was almost three times more potent (ID50 27.6 μmol/kg, i.p.) than brasiliensic acid (72.0 μmol/kg) in acetic acid-induced writhing test. The amount of the xanthone was estimated as 92.5 mg/g in the extract. CFCB inhibited the nociceptive response associated to several agents. TRPV1 channels play an important role in the mechanism of action of the fraction. In addition, 1,2-dimethoxyxanthone largely contributes to the antinociceptive effect of CFCB.

  6. Analgesic, anti-inflammatory and anticancer activities of extra virgin olive oil.

    PubMed

    Fezai, Myriam; Senovilla, Laura; Jemaà, Mohamed; Ben-Attia, Mossadok

    2013-01-01

    Background. In folk medicine, extra virgin olive oil (EVOO) is used as a remedy for a variety of diseases. This study investigates the in vivo antinociceptive, anti-inflammatory, and anti-cancer effects of EVOO on mice and rats. Materials and Methods. In this experimental study, using the acetic acid-induced writhing and formalin tests in mice, the analgesic effect of EVOO was evaluated. Acetylsalicylic acid and morphine were used as standard drugs, respectively. The anti-inflammatory activity was investigated by means of the carrageenan-induced paw edema model in rats using acetylsalicylic acid and dexamethasone as standard drugs. Last, the xenograft model in athymic mice was used to evaluate the anticancer effect in vivo. Results. EVOO significantly decreased acetic acid-induced abdominal writhes and reduces acute and inflammatory pain in the two phases of the formalin test. It has also a better effect than Dexamethasone in the anti-inflammatory test. Finally, the intraperitoneal administration of EVOO affects the growth of HCT 116 tumours xenografted in athymic mice. Conclusion. EVOO has a significant analgesic, anti-inflammatory, and anticancer properties. However, further detailed studies are required to determine the active component responsible for these effects and mechanism pathway.

  7. Phytochemical Screening and Evaluation of Analgesic Activity of Oroxylum indicum

    PubMed Central

    Das, B. K.; Al-Amin, M. M.; Russel, S. M.; Kabir, S.; Bhattacherjee, R.; Hannan, J. M. A.

    2014-01-01

    We aimed to study phytochemical screening and analgesic activity of ethanol extract of Oroxylum indicum. The dried powder of the barks of the plant was extracted with 95% ethanol and was subjected to various phytochemical tests to ascertain the principle constituents contained in the extract. The result revealed the presence of alkaloids, flavonoids, tannins, glycosides in the ethanol extract of Oroxylum indicum. The extract was screened for analgesic activity by using hot plate, acetic acid-induced writhing and formalin test. The ethanol extract of the plant at two different doses (250 and 500 mg/kg) showed significant (P<0.05) analgesic effect in all test methods (hot plate, acetic acid-induced writhing and formalin). The analgesic activity was compared with a standard drug (ketorolac at 10 mg/kg). Based on the present findings and previous literature review it can be concluded that flavonoids and tannins might be responsible for the analgesic activity. We suggest that ethanol extract of Oroxylum indicum might have potential chemical constituents that could be used in the future for the development of novel analgesic agent. PMID:25593396

  8. Flavonoids of Enhydra Fluctuans exhibits analgesic and anti-inflammatory activity in different animal models.

    PubMed

    Sannigrahi, Santanu; Mazumder, Upal Kanti; Pal, Dilipkumar; Mishra, Mishra Lipsa; Maity, Subhasis

    2011-07-01

    Enhydra fluctuans (Compositae), an edible semi aquatic herbaceous vegetable plant, widely used in traditional system of Indian medicine. Total flavonoids of E. fluctuans (TFEF) were screened for analgesic and anti-inflammatory activity. Analgesic activity was studied in acetic acid induced writhing response and by hot plate method in Swiss albino mice. Anti-inflammatory activity was estimated by carrageenan and histamine induced acute inflammation and Freund's complete adjuvant (FCA) induced chronic inflammation in rats. Two flavonoids, baicalein 7-O-glucoside and baicalein 7-O-diglucoside, were isolated from the ethyl acetate fraction. Oral administration of TFEF at the doses of 200 and 400 mg/kg provide 27.05 and 55.49% protection respectively in acetic acid induced writhing method. It also increased the pain threshold in mice evidenced by hot plate method. TFEF showed more potent anti-inflammatory activity. The results of this study may be attributed to high free radical scavenging and antioxidant potential of the flavonoids present in ethyl acetate fraction of Enhydra fluctuans.

  9. Evaluation of anti-inflammatory and antinociceptive effects of D-002 (beeswax alcohols).

    PubMed

    Ravelo, Yazmin; Molina, Vivian; Carbajal, Daisy; Fernández, Lilia; Fernández, Julio C; Arruzazabala, María L; Más, Rosa

    2011-04-01

    D-002, a mixture of six higher aliphatic alcohols purified from beeswax, displayed anti-inflammatory effects in carrageenan-induced pleurisy and cotton pellet granuloma in rats. The aim of the present study was to confirm the anti-inflammatory properties of D-002 and to explore its potential analgesic effects. Xylene-induced mouse ear oedema was used to assess the anti-inflammatory effect, acetic acid-induced writhing and hot plate responses for the analgesic activity, and the open field and horizontal rotarod tests for motor performance. For anti-inflammatory tests, mice were randomised into a negative vehicle control and five xylene-treated groups: the vehicle, D-002 (25, 50 and 200 mg/kg) and indomethacin 1 mg/kg (reference drug). Treatments were given for 15 days. Effects on oedema formation and myeloperoxidase (MPO) activity were tested. For analgesia and motor performance tests, mice were randomised into a vehicle control and D-002-treated groups (25, 50 and 200 mg/kg). Two sets of experiments were done, which included acute and repeat (15 days) dosing. D-002 (25, 50 and 200 mg/kg) significantly decreased xylene-induced ear oedema (44.7, 60.8 and 76.4%, respectively) and the increase of MPO activity induced by xylene (38.0, 47.0 and 57.0%, respectively), while indomethacin significantly inhibited xylene-induced oedema (59.9%) and MPO activity (57.5%). Single and repeat doses of D-002 (25, 50 and 200 mg/kg) decreased the acetic acid-induced writhing responses by 21.2, 28.2 and 40.1%, for the single doses; 25.2, 35.1 and 43.2%, respectively, for the repeat doses, but did not affect the hot plate, open field and rotarod behaviours. Aspirin 100 mg/kg significantly decreased acetic acid-induced abdominal constrictions and morphine (5 mg/kg) significantly increased the latency of the hot plate response. This study confirmed the anti-inflammatory effects of D-002 and demonstrated its analgesic effects on the acetic acid-induced writhing, but not on the hot plate

  10. The Acetic Acid Tolerance Response induces cross-protection to salt stress in Salmonella typhimurium.

    PubMed

    Greenacre, E J; Brocklehurst, T F

    2006-10-15

    Salmonella typhimurium induces an Acid Tolerance Response (ATR) upon exposure to mildly acidic conditions in order to protect itself against severe acid shock. This response can also induce cross-protection to other stresses such as heat and salt. We investigated whether both the acetic acid induced and lactic acid induced ATR in S. typhimurium provided cross-protection to a salt stress at 20 degrees C. Acid-adapted cells were challenged with both a sodium chloride (NaCl) and potassium chloride (KCl) shock and their ability to survive ascertained. Acetic acid adaptation provided cells with protection against both NaCl and KCl stress. However, lactic acid adaptation did not protect against either osmotic stressor and rendered cells hypersensitive to NaCl. These results have implications for the food industry where hurdle technology means multiple sub-lethal stresses such as mild pH and low salt are commonly used in the preservation of products.

  11. Ameliorative Effects of a Polyphenolic Fraction of Cinnamomum zeylanicum L. Bark in Animal Models of Inflammation and Arthritis.

    PubMed

    Rathi, Badal; Bodhankar, Subhash; Mohan, V; Thakurdesai, Prasad

    2013-01-01

    Cinnamon bark (Cinnamomum zeylanicum Syn C. verum, family: Lauraceae) is one of the oldest traditional medicines for inflammatory- and pain-related disorders. The objective of the present study was to evaluate the efficacy of the polyphenol fraction from Cinnamomum zeylanicum bark (CPP) in animal models of inflammation and rheumatoid arthritis. Dose-response studies of CPP (50, 100, and 200 mg/kg) used in a separate set of in vivo experiments were conducted in acute (carrageenan-induced rat paw edema), subacute (cotton pellet-induced granuloma), and sub-chronic (AIA, adjuvant-induced established polyarthrtis) models of inflammation in rats and the acetic acid-induced writhing model of pain in mice. Effects of CPP on cytokine (IL-2, IL-4, and IFNγ) release from Concanavalin (ConA)-stimulated lymphocytes were also evaluated in vitro. CPP showed a strong and dose-dependent reduction in paw volume, weight loss reversal effects against carrageenan-induced paw edema, and cotton pellet-induced granuloma models in rats. CPP (200 mg/kg p.o. for 10 days) showed a significant reduction in elevated serum TNF-α concentration without causing gastric ulcerogenicity in the AIA model in rats. CPP also demonstrated mild analgesic effects during acute treatment as evidenced by the reduction in the writhing and paw withdrawal threshold of the inflamed rat paw during the acetic acid-induced writhing model and Randall-Selitto test. CPP was found to inhibit cytokine (IL-2, IL-4, and IFNγ) release from ConA-stimulated lymphocytes in vitro. In conclusion, CPP demonstrated prominent action in animal models of inflammation and arthritis and therefore can be considered as a potential anti-rheumatic agent with disease-modifying action.

  12. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection

    PubMed Central

    Rao, Youliang; Wan, Quanyuan; Yang, Chunrong; Su, Jianguo

    2017-01-01

    Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5)-mediated antiviral responses was identified in Ctenopharyngodon idella kidney cells. LGP2 overexpression inhibits synthesis and phosphorylation of interferon regulatory factor 3/7 (IRF3/7), and mRNA levels and promoter activities of IFNs and NF-κBs in resting state and early phase of grass carp reovirus (GCRV) infection. Knockdown of LGP2 obtains opposite effects. Luciferase report assay indicates that LGP2 works at the upstream of RIG-I and MDA5. LGP2 binds to RIG-I and MDA5 with diverse domain preference and which is independent of GCRV infection. Furthermore, LGP2 restrains K63-linked ubiquitination of RIG-I and MDA5 in various degrees. These differences result in disparate repressive mechanisms of LGP2 to RIG-I- and MDA5-mediated signal activations of IFN-β promoter stimulator 1 and mediator of IRF3 activation. Interestingly, LGP2 also inhibits K48-linked RIG-I and MDA5 ubiquitination to suppress proteins degradation, which guarantees the basal protein levels for subsequently rapid signal activation. All these results reveal a mechanism that LGP2 functions as a suppressor in RLR signaling pathways to maintain cellular homeostasis in resting state and early phase during GCRV infection.

  13. Grass Carp Laboratory of Genetics and Physiology 2 Serves As a Negative Regulator in Retinoic Acid-Inducible Gene I- and Melanoma Differentiation-Associated Gene 5-Mediated Antiviral Signaling in Resting State and Early Stage of Grass Carp Reovirus Infection.

    PubMed

    Rao, Youliang; Wan, Quanyuan; Yang, Chunrong; Su, Jianguo

    2017-01-01

    Laboratory of genetics and physiology 2 (LGP2) is a key component of RIG-I-like receptors (RLRs). However, the lack of the caspase recruitment domains (CARDs) results in its controversial functional performance as a negative or positive regulator in antiviral responses. Especially, no sufficient evidence uncovers the functional mechanisms of LGP2 in RLR signaling pathways in teleost. Here, negative regulation mechanism of LGP2 in certain situations in retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5)-mediated antiviral responses was identified in Ctenopharyngodon idella kidney cells. LGP2 overexpression inhibits synthesis and phosphorylation of interferon regulatory factor 3/7 (IRF3/7), and mRNA levels and promoter activities of IFNs and NF-κBs in resting state and early phase of grass carp reovirus (GCRV) infection. Knockdown of LGP2 obtains opposite effects. Luciferase report assay indicates that LGP2 works at the upstream of RIG-I and MDA5. LGP2 binds to RIG-I and MDA5 with diverse domain preference and which is independent of GCRV infection. Furthermore, LGP2 restrains K63-linked ubiquitination of RIG-I and MDA5 in various degrees. These differences result in disparate repressive mechanisms of LGP2 to RIG-I- and MDA5-mediated signal activations of IFN-β promoter stimulator 1 and mediator of IRF3 activation. Interestingly, LGP2 also inhibits K48-linked RIG-I and MDA5 ubiquitination to suppress proteins degradation, which guarantees the basal protein levels for subsequently rapid signal activation. All these results reveal a mechanism that LGP2 functions as a suppressor in RLR signaling pathways to maintain cellular homeostasis in resting state and early phase during GCRV infection.

  14. The Synthetic Elicitor 3,5-Dichloroanthranilic Acid Induces NPR1-Dependent and NPR1-Independent Mechanisms of Disease Resistance in Arabidopsis1[W][OA

    PubMed Central

    Knoth, Colleen; Salus, Melinda S.; Girke, Thomas; Eulgem, Thomas

    2009-01-01

    Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis. PMID:19304930

  15. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis.

    PubMed

    Knoth, Colleen; Salus, Melinda S; Girke, Thomas; Eulgem, Thomas

    2009-05-01

    Immune responses of Arabidopsis (Arabidopsis thaliana) are at least partially mediated by coordinated transcriptional up-regulation of plant defense genes, such as the Late/sustained Up-regulation in Response to Hyaloperonospora parasitica (LURP) cluster. We found a defined region in the promoter of the LURP member CaBP22 to be important for this response. Using a CaBP22 promoter-reporter fusion, we have established a robust and specific high-throughput screening system for synthetic defense elicitors that can be used to trigger defined subsets of plant immune responses. Screening a collection of 42,000 diversity-oriented molecules, we identified 114 candidate LURP inducers. One representative, 3,5-dichloroanthranilic acid (DCA), efficiently induced defense reactions to the phytopathogens H. parasitica and Pseudomonas syringae. In contrast to known salicylic acid analogs, such as 2,6-dichloroisonicotinic acid (INA), which exhibit a long-lasting defense-inducing activity and are fully dependent on the transcriptional cofactor NPR1 (for Nonexpresser of Pathogenesis-Related genes1), DCA acts transiently and is only partially dependent on NPR1. Microarray analyses revealed a cluster of 142 DCA- and INA-responsive genes that show a pattern of differential expression coinciding with the kinetics of DCA-mediated disease resistance. These ACID genes (for Associated with Chemically Induced Defense) constitute a core gene set associated with chemically induced disease resistance, many of which appear to encode components of the natural immune system of Arabidopsis.

  16. Knock-out of metacaspase and/or cytochrome c results in the activation of a ROS-independent acetic acid-induced programmed cell death pathway in yeast.

    PubMed

    Guaragnella, Nicoletta; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2010-08-20

    To gain further insight into yeast acetic acid-induced programmed cell death (AA-PCD) we analyzed the effects of the antioxidant N-acetyl-L-cysteine (NAC) on cell viability, hydrogen peroxide (H(2)O(2)) production, DNA fragmentation, cytochrome c (cyt c) release and caspase-like activation in wild type (wt) and metacaspase and/or cyt c-lacking cells. We found that NAC prevents AA-PCD in wt cells, by scavenging H(2)O(2) and by inhibiting both cyt c release and caspase-like activation. This shows the occurrence of a reactive oxygen species (ROS)-dependent AA-PCD. Contrarily no NAC dependent change in AA-PCD of mutant cells was detectable, showing that a ROS-independent AA-PCD can also occur.

  17. Co-administration of α-lipoic acid and cyclosporine aggravates colon ulceration of acetic acid-induced ulcerative colitis via facilitation of NO/COX-2/miR-210 cascade.

    PubMed

    El-Gowelli, Hanan M; Saad, Evan I; Abdel-Galil, Abdel-Galil A; Ibrahim, Einas R

    2015-11-01

    In this work, α-lipoic acid and cyclosporine demonstrated significant protection against acetic acid-induced ulcerative colitis in rats. We proposed that α-lipoic acid and cyclosporine co-administration might modulate their individual effects. Induction of ulcerative colitis in rats was performed by intra-rectal acetic acid (5% v/v) administration for 3 consecutive days. Effects of individual or combined used of α-lipoic acid (35 mg/kg ip) or cyclosporine (5mg/kg sc) for 6 days starting 2 days prior to acetic acid were assessed. Acetic acid caused colon ulceration, bloody diarrhea and weight loss. Histologically, there was mucosal atrophy and inflammatory cells infiltration in submucosa, associated with depletion of colon reduced glutathione, superoxide dismutase and catalase activities and elevated colon malondialdehyde, serum C-reactive protein (C-RP) and tumor necrosis factor-α (TNF-α). Colon gene expression of cyclooxygenase-2 and miR-210 was also elevated. These devastating effects of acetic acid were abolished upon concurrent administration of α-lipoic acid. Alternatively, cyclosporine caused partial protection against acetic acid-induced ulcerative colitis. Cyclosporine did not restore colon reduced glutathione, catalase activity, serum C-RP or TNF-α. Unexpectedly, co-administration of α-lipoic acid and cyclosporine aggravated colon ulceration. Concomitant use of α-lipoic acid and cyclosporine significantly increased nitric oxide production, cyclooxygenase-2 and miR-210 gene expression compared to all other studied groups. The current findings suggest that facilitation of nitric oxide/cyclooxygenase-2/miR-210 cascade constitutes, at least partially, the cellular mechanism by which concurrent use of α-lipoic acid and cyclosporine aggravates colon damage. Collectively, the present work highlights the probable risk of using α-lipoic acid/cyclosporine combination in ulcerative colitis patients.

  18. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    PubMed

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  19. Salicylic acid-induced changes in physiological parameters and genes of the flavonoid biosynthesis pathway in Artemisia vulgaris and Dendranthema nankingense during aphid feeding.

    PubMed

    Sun, Y; Xia, X L; Jiang, J F; Chen, S M; Chen, F D; Lv, G S

    2016-02-19

    Phloem-feeding aphids cause serious damage to plants. The mechanisms of plant-aphid interactions are only partially understood and involve multiple pathways, including phytohormones. In order to investigate whether salicylic acid (SA) is involved and how it plays a part in the defense response to the aphid Macrosiphoniella sanbourni, physiological changes and gene expression profiles in response to aphid inoculation with or without SA pretreatment were compared between the aphid-resistant Artemisia vulgaris 'Variegata' and the susceptible chrysanthemum, Dendranthema nankingense. Changes in levels of reactive oxygen species, malondialdehyde (MDA), and flavonoids, and in the expression of genes involved in flavonoid biosynthesis, including PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase), CHI (chalcone isomerase), F3H (flavanone 3-hydroxylase), F3'H (flavanone 3'-hydroxylase), and DFR (dihydroflavonol reductase), were investigated. Levels of hydrogen peroxide, superoxide anions, MDA, and flavonoids, and their related gene expression, increased after aphid infestation and SA pretreatment followed by aphid infestation; the aphid-resistant A. vulgaris exhibited a more rapid response than the aphid-susceptible D. nankingense to SA treatment and aphid infestation. Taken together, our results suggest that SA could be used to increase aphid resistance in the chrysanthemum.

  20. Complex correlation between excitatory amino acid-induced increase in the intracellular Ca2+ concentration and subsequent loss of neuronal function in individual neocortical neurons in culture.

    PubMed Central

    Witt, M R; Dekermendjian, K; Frandsen, A; Schousboe, A; Nielsen, M

    1994-01-01

    Primary cultures of cerebral cortical neurons and single-cell imaging of intracellular free Ca2+ concentration ([Ca2+]i) with the ratiometric dye fura-2 were used to assess excitatory amino acid (EAA)-induced neurotoxicity; the loss of neuronal function as defined by the ability of the cells to respond to K(+)-induced depolarization by a transient increase in Ca2+ influx was measured. The responsiveness of individual neurons was measured quantitatively as the [Ca2+]i values of the second KCl (2.KCl) stimulation divided by those of the first KCl (1.KCl) stimulation, giving the value of the ratio (2.KCl/1.KCl). Exposure to EAAs led to an increase in [Ca2+]i, but no simple correlation between the increase in [Ca2+]i and neuronal responsiveness could be demonstrated. Rather, below a threshold level of [Ca2+]i (ca. 1 microM), the neuronal responsiveness was largely independent of the glutamate receptor-agonist-induced increase in [Ca2+]i. However, when [Ca2+]i increased above this threshold level, the neurons almost invariably lost the ability to respond to a K(+)-induced depolarization, particularly after exposure to glutamate. Therefore, the cortical neurons were found to be exceptionally vulnerable to the glutamate-induced loss of function when compared with the effect induced by the glutamate receptor subtype-specific agonists, N-methyl-D-aspartate, quisqualate, and 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionate. The findings suggest that the loss of neuronal membrane polarization precedes plasma membrane disruption and is a sensitive marker of EAA-induced neurodegeneration observed at the single-cell level. Images PMID:7527559

  1. Abscisic Acid-Induced Resistance against the Brown Spot Pathogen Cochliobolus miyabeanus in Rice Involves MAP Kinase-Mediated Repression of Ethylene Signaling1[C][W][OA

    PubMed Central

    De Vleesschauwer, David; Yang, Yinong; Vera Cruz, Casiana; Höfte, Monica

    2010-01-01

    The plant hormone abscisic acid (ABA) is involved in an array of plant processes, including the regulation of gene expression during adaptive responses to various environmental cues. Apart from its well-established role in abiotic stress adaptation, emerging evidence indicates that ABA is also prominently involved in the regulation and integration of pathogen defense responses. Here, we demonstrate that exogenously administered ABA enhances basal resistance of rice (Oryza sativa) against the brown spot-causing ascomycete Cochliobolus miyabeanus. Microscopic analysis of early infection events in control and ABA-treated plants revealed that this ABA-inducible resistance (ABA-IR) is based on restriction of fungal progression in the mesophyll. We also show that ABA-IR does not rely on boosted expression of salicylic acid-, jasmonic acid -, or callose-dependent resistance mechanisms but, instead, requires a functional Gα-protein. In addition, several lines of evidence are presented suggesting that ABA steers its positive effect on brown spot resistance through antagonistic cross talk with the ethylene (ET) response pathway. Exogenous ethephon application enhances susceptibility, whereas genetic disruption of ET signaling renders plants less vulnerable to C. miyabeanus attack, thereby inducing a level of resistance similar to that observed on ABA-treated wild-type plants. Moreover, ABA treatment alleviates C. miyabeanus-induced activation of the ET reporter gene EBP89, while derepression of pathogen-triggered EBP89 transcription via RNA interference-mediated knockdown of OsMPK5, an ABA-primed mitogen-activated protein kinase gene, compromises ABA-IR. Collectively, these data favor a model whereby exogenous ABA enhances resistance against C. miyabeanus at least in part by suppressing pathogen-induced ET action in an OsMPK5-dependent manner. PMID:20130100

  2. Possible modulation of N-methyl-D,L-aspartic acid induced prolactin release by testicular steroids in the adult male rhesus monkey

    SciTech Connect

    Arslan, M.; Rizvi, S.S.R.; Jahan, S.; Zaidi, P.; Shahab, M. )

    1991-01-01

    N-methyl-D,L-aspartic acid (NMA), an agonist of the neurotransmitter glutamate has been shown to acutely stimulate the release of prolactin (PRL) in intact rats and monkeys. To further investigate the role of neuroexcitatory amino acids in PRL secretion, the effects of NMA administration were examined on PRL release in long term orchidectomized adult rhesus monkeys, in both the absence and presence of testosterone. Intact and long term castrated adult male monkeys weighing between 8-13 kg, were implanted with a catheter via the saphenous vein for blood withdrawal and drug infusion. Blood samples were collected at 10 min intervals for 50 min before and 70 min after administration of the drug or vehicle. Plasma PRL concentrations were estimated using radioimmunoassay. Whereas a single iv injection of NMA induced a prompt discharge of PRL in intact monkeys, an identical dose had surprisingly no effect on PRL secretion in orchidectomized animals. On the other hand, plasma PRL increases in response to a challenge dose of thyrotropin releasing hormone were similar in magnitude in the two groups of monkeys. Testosterone replacement in orchidectomized animals by parenteral administration of testosterone enanthate reinitiated the PRL responsiveness to acute NMA stimulation. These results indicate that N-methyl-D-aspartic acid (NMDA) dependent drive to PRL release in the adult male rhesus monkey may be overtly influenced by the sex steroid milieu.

  3. Sweating treatment enhances citrus fruit disease resistance by inducing the accumulation of amino acids and salicylic acid-induced resistance pathway.

    PubMed

    Yun, Ze; Zhu, Feng; Liu, Ping; Zeng, Yunliu; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2015-04-20

    To clarify the mechanism of fruit disease resistance activated by sweating treatment, 'Guoqing NO.1' Satsuma mandarin (Citrus unshiu Marc.) fruits were treated by sweating, which is a traditional prestorage treatment in China. Subsequently, we performed inoculation and physiological characterization, two-dimensional gel electrophoresis (2-DE) proteomics analysis and metabonomics analysis based on gas chromatography coupled to mass spectrometry (GC-MS) and high-performance liquid chromatography/electrospray ionization-time of flight-mass spectrometry (HPLC-qTOF-MS). The results showed that sweating treatment significantly inhibited pathogen infection without negatively affecting the fruit commercial quality. In addition, sweating treatment rapidly promoted the accumulation of amino acids (such as proline and serine). Meanwhile, hydrogen peroxide (H2 O2 ) and salicylic acid (SA) were significantly accumulated in the sweating-treated fruit. Thereafter, some stress-response proteins and metabolites [such as ascorbate peroxidase (APX), β-1,3-glucanase, vanillic acid and rutin] which can be induced by SA were also significantly increased in the sweating-treated fruit. Taken together, the disease resistance induced by sweating treatment might be attributed to: (1) the induction of the accumulation of amino acids; and (2) the accumulation of SA and subsequent activation of SA-induced resistance pathway, which can induce the stress-response proteins and metabolites that can directly inhibit pathogen development.

  4. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis.

    PubMed

    Miura, Kenji; Okamoto, Hiroyuki; Okuma, Eiji; Shiba, Hayato; Kamada, Hiroshi; Hasegawa, Paul M; Murata, Yoshiyuki

    2013-01-01

    Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.

  5. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana.

    PubMed

    Zhao, Xiang; Wang, Jin; Yuan, Jing; Wang, Xi-Li; Zhao, Qing-Ping; Kong, Pei-Tao; Zhang, Xiao

    2015-07-01

    Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.

  6. β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-oxidation and is Inversely Correlated with Cardiometabolic Risk Factors

    PubMed Central

    Roberts, Lee D.; Boström, Pontus; O’Sullivan, John F.; Schinzel, Robert T.; Lewis, Gregory D.; Dejam, Andre; Lee, Youn-Kyoung; Palma, Melinda J.; Calhoun, Sondra; Georgiadi, Anastasia; Chen, Ming-Huei; Ramachandran, Vasan S.; Larson, Martin G.; Bouchard, Claude; Rankinen, Tuomo; Souza, Amanda L.; Clish, Clary B.; Wang, Thomas J.; Estall, Jennifer L.; Soukas, Alexander A.; Cowan, Chad A.; Spiegelman, Bruce M.; Gerszten, Robert E.

    2014-01-01

    Summary The transcriptional co-activator peroxisome proliferator-activated receptor-gamma co-activator-1 α (PGC-1α) regulates metabolic genes in skeletal muscle, and contributes substantially to the response of muscle to exercise. Muscle specific PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolic profiling approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a novel small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipose tissue and fatty acid β-oxidation in hepatocytes both in vitro and in vivo through a PPARα mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases. PMID:24411942

  7. β-Aminoisobutyric acid induces browning of white fat and hepatic β-oxidation and is inversely correlated with cardiometabolic risk factors.

    PubMed

    Roberts, Lee D; Boström, Pontus; O'Sullivan, John F; Schinzel, Robert T; Lewis, Gregory D; Dejam, Andre; Lee, Youn-Kyoung; Palma, Melinda J; Calhoun, Sondra; Georgiadi, Anastasia; Chen, Ming-Huei; Ramachandran, Vasan S; Larson, Martin G; Bouchard, Claude; Rankinen, Tuomo; Souza, Amanda L; Clish, Clary B; Wang, Thomas J; Estall, Jennifer L; Soukas, Alexander A; Cowan, Chad A; Spiegelman, Bruce M; Gerszten, Robert E

    2014-01-07

    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases.

  8. Investigation of anti-inflammatory and antinociceptive activities of Lantana trifolia.

    PubMed

    Silva, Glauce N; Martins, Fabíola R; Matheus, Maria Eline; Leitão, Suzana G; Fernandes, Patricia D

    2005-09-14

    The anti-inflammatory activity of Lantana trifolia (Verbenaceae) was determined by carrageenan, serotonin and histamine-induced rat paw edema and the analgesic activity of this plant was studied by acetic acid-induced writhings and tail flick tests in mice. Lantana trifolia extracts (at 30 mg/kg) inhibited carrageenan and histamine-induced rat paw edema. Although the extracts did not produce any effect on acetic acid-induced writhings, they all develop a significant increase on tail flick antinociceptive index (doses varying between 1 and 30 mg/kg), indicating a spinal antinociceptive effect. These results provide support for the use of Lantana trifolia in relieving inflammatory pain.

  9. Glucose Amplifies Fatty Acid-Induced Endoplasmic Reticulum Stress in Pancreatic β-Cells via Activation of mTORC1

    PubMed Central

    Bachar, Etti; Ariav, Yafa; Ketzinel-Gilad, Mali; Cerasi, Erol; Kaiser, Nurit; Leibowitz, Gil

    2009-01-01

    Background Palmitate is a potent inducer of endoplasmic reticulum (ER) stress in β-cells. In type 2 diabetes, glucose amplifies fatty-acid toxicity for pancreatic β-cells, leading to β-cell dysfunction and death. Why glucose exacerbates β-cell lipotoxicity is largely unknown. Glucose stimulates mTORC1, an important nutrient sensor involved in the regulation of cellular stress. Our study tested the hypothesis that glucose augments lipotoxicity by stimulating mTORC1 leading to increased β-cell ER stress. Principal Findings We found that glucose amplifies palmitate-induced ER stress by increasing IRE1α protein levels and activating the JNK pathway, leading to increased β-cell apoptosis. Moreover, glucose increased mTORC1 activity and its inhibition by rapamycin decreased β-cell apoptosis under conditions of glucolipotoxicity. Inhibition of mTORC1 by rapamycin did not affect proinsulin and total protein synthesis in β-cells incubated at high glucose with palmitate. However, it decreased IRE1α expression and signaling and inhibited JNK pathway activation. In TSC2-deficient mouse embryonic fibroblasts, in which mTORC1 is constitutively active, mTORC1 regulated the stimulation of JNK by ER stressors, but not in response to anisomycin, which activates JNK independent of ER stress. Finally, we found that JNK inhibition decreased β-cell apoptosis under conditions of glucolipotoxicity. Conclusions/Significance Collectively, our findings suggest that mTORC1 mediates glucose amplification of lipotoxicity, acting through activation of ER stress and JNK. Thus, mTORC1 is an important transducer of ER stress in β-cell glucolipotoxicity. Moreover, in stressed β-cells mTORC1 inhibition decreases IRE1α protein expression and JNK activity without affecting ER protein load, suggesting that mTORC1 regulates the β-cell stress response to glucose and fatty acids by modulating the synthesis and activity of specific proteins involved in the execution of the ER stress response

  10. Fish Oil Attenuates Omega-6 Polyunsaturated Fatty Acid-Induced Dysbiosis and Infectious Colitis but Impairs LPS Dephosphorylation Activity Causing Sepsis

    PubMed Central

    Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L.

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  11. Fish oil attenuates omega-6 polyunsaturated fatty acid-induced dysbiosis and infectious colitis but impairs LPS dephosphorylation activity causing sepsis.

    PubMed

    Ghosh, Sanjoy; DeCoffe, Daniella; Brown, Kirsty; Rajendiran, Ethendhar; Estaki, Mehrbod; Dai, Chuanbin; Yip, Ashley; Gibson, Deanna L

    2013-01-01

    Clinically, excessive ω-6 polyunsaturated fatty acid (PUFA) and inadequate ω-3 PUFA have been associated with enhanced risks for developing ulcerative colitis. In rodent models, ω-3 PUFAs have been shown to either attenuate or exacerbate colitis in different studies. We hypothesized that a high ω-6: ω-3 PUFA ratio would increase colitis susceptibility through the microbe-immunity nexus. To address this, we fed post-weaned mice diets rich in ω-6 PUFA (corn oil) and diets supplemented with ω-3 PUFA (corn oil+fish oil) for 5 weeks. We evaluated the intestinal microbiota, induced colitis with Citrobacter rodentium and followed disease progression. We found that ω-6 PUFA enriched the microbiota with Enterobacteriaceae, Segmented Filamentous Bacteria and Clostridia spp., all known to induce inflammation. During infection-induced colitis, ω-6 PUFA fed mice had exacerbated intestinal damage, immune cell infiltration, prostaglandin E2 expression and C. rodentium translocation across the intestinal mucosae. Addition of ω-3 PUFA on a high ω-6 PUFA diet, reversed inflammatory-inducing microbial blooms and enriched beneficial microbes like Lactobacillus and Bifidobacteria, reduced immune cell infiltration and impaired cytokine/chemokine induction during infection. While, ω-3 PUFA supplementation protected against severe colitis, these mice suffered greater mortality associated with sepsis-related serum factors such as LPS binding protein, IL-15 and TNF-α. These mice also demonstrated decreased expression of intestinal alkaline phosphatase and an inability to dephosphorylate LPS. Thus, the colonic microbiota is altered differentially through varying PUFA composition, conferring altered susceptibility to colitis. Overall, ω-6 PUFA enriches pro-inflammatory microbes and augments colitis; but prevents infection-induced systemic inflammation. In contrast, ω-3 PUFA supplementation reverses the effects of the ω-6 PUFA diet but impairs infection-induced responses

  12. Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress

    PubMed Central

    Shu, Sheng; Gao, Pan; Li, Lin; Yuan, Yinghui; Sun, Jin; Guo, Shirong

    2016-01-01

    With the aim to clarifying the role of the ABA/H2O2 signaling cascade in the regulating the antioxidant capacity of grafted cucumber plants in response to Ca(NO3)2 stress, we investigated the relationship between ABA-mediated H2O2 production and the activities of antioxidant enzymes in the leaves of pumpkin-grafted cucumber seedlings. The results showed that both ABA and H2O2 were detected in pumpkin-grafted cucumber seedlings in response to Ca(NO3)2 treatment within 0.5 h in the leaves and peaked at 3 and 6 h after Ca(NO3)2 treatment, respectively, compared to the levels under control conditions. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) in pumpkin-grafted cucumber leaves gradually increased over time and peaked at 12 h of Ca(NO3)2 stress. Furthermore, in the leaves of pumpkin-grafted cucumber seedlings, the H2O2 generation, the antioxidant enzyme activities and the expression of SOD, POD and cAPX were strongly blocked by an inhibitor of ABA under Ca(NO3)2 stress, but this effect was eliminated by the addition of exogenous ABA. Moreover, the activities and gene expressions of these antioxidant enzymes in pumpkin-grafted leaves were almost inhibited under Ca(NO3)2 stress by pretreatment with ROS scavengers. These results suggest that the pumpkin grafting-induced ABA accumulation mediated H2O2 generation, resulting in the induction of antioxidant defense systems in leaves exposed to Ca(NO3)2 stress in the ABA/H2O2 signaling pathway. PMID:27746808

  13. The transcription factors ADR1 or CAT8 are required for RTG pathway activation and evasion from yeast acetic acid-induced programmed cell death in raffinose

    PubMed Central

    Laera, Luna; Guaragnella, Nicoletta; Ždralević, Maša; Marzulli, Domenico; Liu, Zhengchang; Giannattasio, Sergio

    2016-01-01

    Yeast Saccharomyces cerevisiae grown on glucose undergoes programmed cell death (PCD) induced by acetic acid (AA-PCD), but evades PCD when grown in raffinose. This is due to concomitant relief of carbon catabolite repression (CCR) and activation of mitochondrial retrograde signaling, a mitochondria-to-nucleus communication pathway causing up-regulation of various nuclear target genes, such as CIT2, encoding peroxisomal citrate synthase, dependent on the positive regulator RTG2 in response to mitochondrial dysfunction. CCR down-regulates genes mainly involved in mitochondrial respiratory metabolism. In this work, we investigated the relationships between the RTG and CCR pathways in the modulation of AA-PCD sensitivity under glucose repression or de-repression conditions. Yeast single and double mutants lacking RTG2 and/or certain factors regulating carbon source utilization, including MIG1, HXK2, ADR1, CAT8, and HAP4, have been analyzed for their survival and CIT2 expression after acetic acid treatment. ADR1 and CAT8 were identified as positive regulators of RTG-dependent gene transcription. ADR1 and CAT8 interact with RTG2 and with each other in inducing cell resistance to AA-PCD in raffinose and controlling the nature of cell death. In the absence of ADR1 and CAT8, AA-PCD evasion is acquired through activation of an alternative factor/pathway repressed by RTG2, suggesting that RTG2 may play a function in promoting necrotic cell death in repressing conditions when RTG pathway is inactive. Moreover, our data show that simultaneous mitochondrial retrograde pathway activation and SNF1-dependent relief of CCR have a key role in central carbon metabolism reprogramming which modulates the yeast acetic acid-stress response. PMID:28357334

  14. Potentiation by sevoflurane of the gamma-aminobutyric acid-induced chloride current in acutely dissociated CA1 pyramidal neurones from rat hippocampus.

    PubMed Central

    Wu, J.; Harata, N.; Akaike, N.

    1996-01-01

    1. The effects of a new kind of volatile anaesthetic, sevoflurane (Sev), on gamma-aminobutyric acid (GABA)-gated chloride current (Icl) in single neurones dissociated from the rat hippocampal CA1 area were examined using the nystatin perforated patch recording configuration under the voltage-clamp condition. All drugs were applied with a rapid perfusion system, termed the "Y-tube' method. 2. When the concentrations were higher than 3 x 10(-4) M, Sev, itself, induced an inward current (ISev) at a holding potential (VH) of -40 mV. The concentration-response curve of ISev was bell-shaped, with a suppressed peak and plateau currents at high concentrations (above 2 x 10(-3) M). The reversal potential of ISev (ESev) was close to the theoretical Cl- equilibrium potential, indicating that ISev was carried mainly by Cl-. 3. ISev was reversibly blocked by bicuculline (Bic), an antagonist of the GABAA receptor, in a concentration-dependent manner with a half-inhibitory concentration (IC50) of 7.2 x 10(-7) M. But ISev was insensitive to strychnine (Str), an antagonist of the glycine receptor. 4. At low concentrations (between 3 x 10(-4) and 10(-3) M), Sev markedly enhanced the 10(-6) M GABA induced current (IGABA) but reduced the IGABA with accelerating desensitization accompanied by a "hump' current after washout at high concentrations (higher than 2 x 10(-3) M). 5. Sev, 10(-3) M potentiated the current induced by low concentrations of GABA (between 10(-7) and 3 x 10(-6) M) but reduced the current induced by high concentrations (higher than 10(-5) M) of GABA with a clear acceleration of IGABA desensitization. 6. Sev, like pentobarbitone (PB), pregnanolone (PGN) or diazepam (DZP), potentiated the 10(-6) M GABA-induced response without shifting the reversal potential of IGABA. 7. ISev was augmented by PB, PGN, or DZP at concentrations that maximally potentiated IGABA, suggesting that Sev enhanced IGABA at a binding site distinct from that for PB, PGN, or DZP. 8. It is concluded

  15. CD44 stimulation by fragmented hyaluronic acid induces upregulation of urokinase-type plasminogen activator and its receptor and subsequently facilitates invasion of human chondrosarcoma cells.

    PubMed

    Kobayashi, Hiroshi; Suzuki, Mika; Kanayama, Naohiro; Nishida, Takashi; Takigawa, Masaharu; Terao, Toshihiko

    2002-12-01

    It has been established that fragmented hyaluronic acid (HA), but not native high molecular weight HA, can induce angiogenesis, cell proliferation and migration. We have studied the outside-in signal transduction pathways responsible for fragmented HA-mediated cancer cell invasion. In our study, we have studied the effects of CD44 stimulation by ligation with HA upon the expression of matrix metalloproteinases (MMPs)-2 and -9 as well as urokinase-type plasminogen activator (uPA), its receptor (uPAR) and its inhibitor (PAI-1) and the subsequent induction of invasion of human chondrosarcoma cell line HCS-2/8. Our study indicates that (i) CD44 stimulation by fragmented HA upregulates expression of uPA and uPAR mRNA and protein but does not affect MMPs secretion or PAI-1 mRNA expression; (ii) the effects of HA fragments are critically HA size dependent: high molecular weight HA is inactive, but lower molecular weight fragmented HA (Mr 3.5 kDa) is active; (iii) cells can bind avidly Mr 3.5 kDa fragmented HA through a CD44 molecule, whereas cells do not effectively bind higher Mr HA; (iv) a fragmented HA induces phosphorylation of MAP kinase proteins (MEK1/2, ERK1/2 and c-Jun) within 30 min; (v) CD44 is critical for the response (activation of MAP kinase and upregulation of uPA and uPAR expression); and (vi) cell invasion induced by CD44 stimulation with a fragmented HA is inhibited by anti-CD44 mAb, MAP kinase inhibitors, neutralizing anti-uPAR pAb, anti-catalytic anti-uPA mAb or amiloride. Therefore, our study represents the first report that CD44 stimulation induced by a fragmented HA results in activation of MAP kinase and, subsequently, enhances uPA and uPAR expression and facilitates invasion of human chondrosarcoma cells.

  16. Mode of Action: Oxalate Crystal-Induced Renal Tubule Degeneration and Glycolic Acid-Induced Dysmorphogenesis—Renal and Developmental Effects of Ethylene Glycol

    SciTech Connect

    Corley, Rick A.; Meek, M E.; Carney, E W.

    2005-10-01

    Ethylene glycol can cause both renal and developmental toxicity, with metabolism playing a key role in the mode of action (MOA) for each form of toxicity. Renal toxicity is ascribed to the terminal metabolite oxalic acid, which precipitates in the kidney in the form of calcium oxalate crystals and is believed to cause physical damage to the renal tubules. The human relevance of the renal toxicity of ethylene glycol is indicated by the similarity between animals and humans of metabolic pathways, the observation of renal oxalate crystals in toxicity studies in experimental animals and human poisonings, and cases of human kidney and bladder stones related to dietary oxalates and oxalate precursors. High-dose gavage exposures to ethylene glycol also cause axial skeletal defects in rodents (but not rabbits), with the intermediary metabolite, glycolic acid, identified as the causative agent. However, the mechanism by which glycolic acid perturbs development has not been investigated sufficiently to develop a plausible hypothesis of mode of action, nor have any cases of ethylene glycol-induced developmental effects been reported in humans. Given this, and the variations in sensitivity between animal species in response, the relevance to humans of ethylene glycol-induced developmental toxicity in animals is unknown at this time.

  17. Quantitative Phosphoproteome Analysis of Lysophosphatidic Acid Induced Chemotaxis applying Dual-step ¹⁸O Labeling Coupled with Immobilized Metal-ion Affinity Chromatography

    SciTech Connect

    Ding, Shi-Jian; Wang, Yingchun; Jacobs, Jon M.; Qian, Weijun; Yang, Feng; Tolmachev, Aleksey V.; Du, Xiuxia; Wang, Wei; Moore, Ronald J.; Monroe, Matthew E.; Purvine, Samuel O.; Waters, Katrina M.; Heibeck, Tyler H.; Adkins, Joshua N.; Camp, David G.; Klemke, Richard L.; Smith, Richard D.

    2008-10-01

    Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in a variety of different cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its applications for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed 16O/18O labeling plus 16O/18O-methanol esterification labeling for quantitation, a macro- Immobilized Metal-ion Affinity Chromatography trap for phosphopeptide enrichment, and a monolithic capillary column with integrated electrospray emitter. LC separation and MS/MS is followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer and complementary searching algorithms for interpreting MS/MS spectra. Protein phosphorylation involved in various signaling pathways of cell migration were identified and quantified, such as mitogen-activated protein kinase 1, dual-specificity mitogen-activated protein kinase kinase 2, and dual-specificity tyrosine-phosphorylation regulated kinase 1b, and a number of Rho GTPase-activating proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with gradient sensing and cell chemotaxis.

  18. Post-Translational Modification and Secretion of Azelaic Acid Induced 1 (AZI1), a Hybrid Proline-Rich Protein from Arabidopsis

    PubMed Central

    Pitzschke, Andrea; Xue, Hui; Persak, Helene; Datta, Sneha; Seifert, Georg J.

    2016-01-01

    Arabidopsis EARLI-type hybrid proline-rich proteins (HyPRPs) consist of a putative N-terminal secretion signal, a proline-rich domain (PRD), and a characteristic eight-cysteine-motif (8-CM). They have been implicated in biotic and abiotic stress responses. AZI1 is required for systemic acquired resistance and it has recently been identified as a target of the stress-induced mitogen-activated protein kinase MPK3. AZI1 gel migration properties strongly indicate AZI1 to undergo major post-translational modifications. These occur in a stress-independent manner and are unrelated to phosphorylation by MAPKs. As revealed by transient expression of AZI1 in Nicotiana benthamiana and Tropaeolum majus, the Arabidopsis protein is similarly modified in heterologous plant species. Proline-rich regions, resembling arabinogalactan proteins point to a possible proline hydroxylation and subsequent O-glycosylation of AZI1. Consistently, inhibition of prolyl hydroxylase reduces its apparent protein size. AZI1 secretion was examined using Arabidopsis protoplasts and seedling exudates. Employing Agrobacterium-mediated leaf infiltration of N. benthamiana, we attempted to assess long-distance movement of AZI1. In summary, the data point to AZI1 being a partially secreted protein and a likely new member of the group of hydroxyproline-rich glycoproteins. Its dual location suggests AZI1 to exert both intra- and extracellular functions. PMID:26771603

  19. Retinoic acid-induced down-regulation of the interleukin-2 promoter via cis-regulatory sequences containing an octamer motif.

    PubMed Central

    Felli, M P; Vacca, A; Meco, D; Screpanti, I; Farina, A R; Maroder, M; Martinotti, S; Petrangeli, E; Frati, L; Gulino, A

    1991-01-01

    Retinoic acid (RA) is known to influence the proliferation and differentiation of a wide variety of transformed and developing cells. We found that RA and the specific RA receptor (RAR) ligand Ch55 inhibited the phorbol ester and calcium ionophore-induced expression of the T-cell growth factor interleukin-2 (IL-2) gene. Expression of transiently transfected chloramphenicol acetyltransferase vectors containing the 5'-flanking region of the IL-2 gene was also inhibited by RA. RA-induced down-regulation of the IL-2 enhancer is mediated by RAR, since overexpression of transfected RARs increased RA sensitivity of the IL-2 promoter. Functional analysis of chloramphenicol acetyltransferase vectors containing either internal deletion mutants of the region from -317 to +47 bp of the IL-2 enhancer or multimerized cis-regulatory elements showed that the RA-responsive element in the IL-2 promoter mapped to sequences containing an octamer motif. RAR also inhibited the transcriptional activity of the octamer motif of the immunoglobulin heavy chain enhancer. In spite of the transcriptional inhibition of the IL-2 octamer motif, RA did not decrease the in vitro DNA-binding capability of octamer-1 protein. These results identify a regulatory pathway within the IL-2 promoter which involves the octamer motif and RAR. Images PMID:1652063

  20. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    SciTech Connect

    Lim, Yong-Whan; Yoon, Seung-Yong; Choi, Jung-Eun; Kim, Sang-Min; Lee, Hui-Sun; Choe, Han; Lee, Seung-Chul; Kim, Dong-Hou

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  1. Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity.

    PubMed

    Gunes, Aydin; Inal, Ali; Alpaslan, Mehmet; Eraslan, Figen; Bagci, Esra Guneri; Cicek, Nuray

    2007-06-01

    It has been proposed that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of varying salicylic acid (SA) supply (0, 0.1, 0.5 and 1.0mM) on growth, mineral uptake, membrane permeability, lipid peroxidation, H(2)O(2) concentration, UV-absorbing substances, chlorophyll and carotenoid concentrations of NaCl (40 mM) stressed maize (Zea mays L.) was investigated. Exogenously applied SA increased plant growth significantly both in saline and non-saline conditions. As a consequence of salinity stress, lipid peroxidation, measured in terms of malondialdehyde (MDA) content and membrane permeability was decreased by SA. UV-absorbing substances (UVAS) and H(2)O(2) concentration were increased by increasing levels of SA. SA also strongly inhibited Na(+) and Cl(-) accumulation, but stimulated N, Mg, Fe, Mn and Cu concentrations of salt stressed maize plants. These results suggest that SA could be used as a potential growth regulator to improve plant salinity stress resistance.

  2. The salicylic acid-induced protection of non-climacteric unripe pepper fruit against Colletotrichum gloeosporioides is similar to the resistance of ripe fruit.

    PubMed

    Lee, Sanghyeob; Hong, Jong-Chan; Jeon, Woong Bae; Chung, Young-Soo; Sung, Soonkee; Choi, Doil; Joung, Young Hee; Oh, Boung-Jun

    2009-10-01

    The anthracnose fungus Colletotrichum gloeosporioides deleteriously affects unripe pepper fruit, but not ripe fruit. Here, we show that the induction of local acquired resistance (LAR) by salicylic acid (SA), 2,6-dichloroisonicotinic acid, or benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester pretreatment protects unripe pepper fruit against the fungus, while jasmonic acid (JA) does not. The SA-mediated LAR in the unripe fruit inhibited the fungal appressoria, resulting in protection against fungal infection. Microarray analysis revealed that 177 of 7,900 cDNA clones showed more than fourfold transcriptional accumulation in SA-treated unripe fruit. The reverse transcription-polymerase chain reaction showed that most of the SA-responsive genes (SRGs) were regulated by SA, but not by JA or ethylene-releasing ethephon. Furthermore, most of the SRGs were preferentially expressed in the ripe fruit. These results suggest that the SA-mediated transcriptional regulation of SRGs has a critical role in the resistance of ripe pepper fruit to fungal infection.

  3. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

    PubMed Central

    Zhou, Yulong; Zhang, Hongyu; Zheng, Binbin; Ye, Libing; Zhu, Sipin; Johnson, Noah R; Wang, Zhouguang; Wei, Xiaojie; Chen, Daqing; Cao, Guodong; Fu, Xiaobing; Li, Xiaokun; Xu, Hua-Zi; Xiao, Jian

    2016-01-01

    Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption. PMID:26722220

  4. Exercise, but not environmental enrichment, improves learning after kainic acid-induced hippocampal neurodegeneration in association with an increase in brain-derived neurotrophic factor.

    PubMed

    Gobbo, O L; O'Mara, S M

    2005-04-15

    Previous studies have suggested that exercise in a running wheel can be neuroprotective, perhaps due to, among others, gene-expression changes after exercise, increases in trophic proteins and/or enhanced cardiovascular responsivity. Here we ask whether physical exercise or environmental enrichment provide protection after brain damage, especially in terms of recovery of cognitive function. To evaluate the neuroprotective effect of these conditions, we used the kainic acid (KA) model of neuronal injury. Systemically-administered KA induces excitotoxicity by overstimulation of glutamate receptors, resulting in neuronal death by necrosis and apoptosis. Our results show that exercise, but not enriched environment, prior to KA-induced brain damage, improved behavioural performance in both Morris watermaze and object exploration tasks. However, prior exercise did not decrease to control levels the hyperactivity normally seen in KA-treated animals, as measured by ambulation in the open field. Furthermore, both exercise and enriched environment did not protect against neuron loss in CA1, CA2 and CA3 areas of the hippocampus, despite a substantial increase in brain-derived neutrophic factor (BDNF) levels in dentate gyrus of the exercise and KA-treated animals.

  5. Identification of genes involved in indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.) by suppression subtractive hybridization.

    PubMed

    Wei, Kang; Wang, Liyuan; Cheng, Hao; Zhang, Chengcai; Ma, Chunlei; Zhang, Liqun; Gong, Wuyun; Wu, Liyun

    2013-02-10

    The plant hormone auxin plays a key role in adventitious rooting. To increase our understanding of genes involved in adventitious root formation, we identified transcripts differentially expressed in single nodal cuttings of Camellia sinensis treated with or without indole-3-butyric acid (IBA) by suppressive subtractive hybridization (SSH). A total of 77 differentially expressed transcripts, including 70 up-regulated and 7 down-regulated sequences, were identified in tea cuttings under IBA treatment. Seven candidate transcripts were selected and analyzed for their response to IBA, and IAA by real time RT-PCR. All these transcripts were up regulated by at least two folds one day after IBA treatment. Meanwhile, IAA showed less positive effects on the expression of candidate transcripts. The full-length cDNA of a F-box/kelch gene was also isolated and found to be similar to a group of At1g23390 like genes. These unigenes provided a new source for mining genes related to adventitious root formation, which facilitate our understanding of relative fundamental metabolism.

  6. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  7. ZNF536, a Novel Zinc Finger Protein Specifically Expressed in the Brain, Negatively Regulates Neuron Differentiation by Repressing Retinoic Acid-Induced Gene Transcription▿

    PubMed Central

    Qin, Zhen; Ren, Fangli; Xu, Xialian; Ren, Yongming; Li, Hongge; Wang, Yinyin; Zhai, Yonggong; Chang, Zhijie

    2009-01-01

    Neuronal differentiation is tightly regulated by a variety of factors. In a search for neuron-specific genes, we identified a highly conserved novel zinc finger protein, ZNF536. We observed that ZNF536 is most abundant in the brain and, in particular, is expressed in the developing central nervous system and dorsal root ganglia and localized in the cerebral cortex, hippocampus, and hypothalamic area. During neuronal differentiation of P19 cells induced by retinoic acid (RA), ZNF536 expression is increased at an early stage, and it is maintained at a constant level in later stages. Overexpression of ZNF536 results in an inhibition of RA-induced neuronal differentiation, while depletion or mutation of the ZNF536 gene results in an enhancement of differentiation. We further demonstrated that ZNF536 inhibits expression of neuron-specific marker genes, possibly through the inhibition of RA response element-mediated transcriptional activity, as overexpression of RA receptor α can rescue the inhibitory role of ZNF536 in neuronal differentiation and neuron-specific gene expression. Our studies have identified a novel zinc finger protein that negatively regulates neuron differentiation. PMID:19398580

  8. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB.

    PubMed

    Zuo, Nan; Zheng, Xiaoyu; Liu, Hanzhe; Ma, Xiaoli

    2015-01-01

    Albumin-bound fatty acids is the main cause of renal damage, PPARα is responsible in the metabolism of fatty acids. Previous study found that PPARα played a protective role in fatty acids overload associated tubular injury. The aim of the present study is to investigate whether fenofibrate, a PPARα ligands, could contribute to the renoprotective action in fatty acids overload proximal tubule epithelial cells. We observed in HK-2 cells that fenofibrate significantly inhibited fatty acids bound albumin (FA-BSA) induced up-regulation of MCP-1 and IL-8. Treatment with fenofibrate attenuated renal oxidative stress induced by FA-BSA as evidenced by decreased MDA level, increased SOD activity and catalase, GPx-1 expression. FA-BSA induced apoptosis of HK-2 cells were also obviously prevented by fenofibrate. Furthermore, fenofibrate significantly increased the expression of PPARα mRNA and protein in FA-BSA treated cells. Finally, the activation of NF-kB induced by FA-BSA was markedly suppressed by fenofibrate. Taken together, our study describes a renoprotective role of fenofibrate in fatty acids associated tubular toxicity, and the transcriptional activation of PPARα and suppression of NF-kB were at least partially involved.

  9. The anti-inflammatory potential of phenolic compounds in grape juice concentrate (G8000™) on 2,4,6-trinitrobenzene sulphonic acid-induced colitis.

    PubMed

    Paiotti, Ana Paula Ribeiro; Neto, Ricardo Artigiani; Marchi, Patrícia; Silva, Roseane Mendes; Pazine, Vanessa Lima; Noguti, Juliana; Pastrelo, Mauricio Mercaldi; Gollücke, Andréa Pittelli Boiago; Miszputen, Sender Jankiel; Ribeiro, Daniel Araki

    2013-09-28

    Chronic inflammatory bowel disease is characterised by an up-regulation of the synthesis and release of a variety of pro-inflammatory mediators leading to excessive tissue injury. Flavonoids are able to inhibit enzymes and/or due to their antioxidant properties regulate the immune response. The goal of the present study was to evaluate the mechanisms of action of phenolic compounds present in grape juice on 2,4,6-trinitrobenzene sulphonic acid (TNBS)-induced colitis. A total of forty-one male Wistar rats were randomised into seven groups: negative control group; TNBS non-treated induced colitis; 2% grape juice control group; 1% grape juice 24 h after TNBS colitis induction; 1% grape juice on day 7 after colitis induction; 2% grape juice 24 h after colitis induction; 2% grape juice on day 7 after colitis induction. The 1% grape juice-treated induced colitis group showed marked clinical improvement when compared with the TNBS-induced colitis group. Rats that received 1% grape juice, on day 7 after colitis induction, presented reduced intensity of macroscopic and histological scores. Statistically significant differences (P,0·05) of TNF-a and inducible NO synthase mRNA expression were detected in the groups treated with grape juice at the 1% dose after inducing experimental colitis when compared with the TNBS group. Grape juice reduced the noxious effects induced by colitis caused by TNBS, especially at the 1% dose.

  10. AP-1 Inhibition by SR 11302 Protects Human Hepatoma HepG2 Cells from Bile Acid-Induced Cytotoxicity by Restoring the NOS-3 Expression

    PubMed Central

    González-Rubio, Sandra; Linares, Clara I.; Aguilar-Melero, Patricia; Rodríguez-Perálvarez, Manuel; Montero-Álvarez, José L.

    2016-01-01

    The harmful effects of bile acid accumulation occurring during cholestatic liver diseases have been associated with oxidative stress increase and endothelial nitric oxide synthase (NOS-3) expression decrease in liver cells. We have previously reported that glycochenodeoxycholic acid (GCDCA) down-regulates gene expression by increasing SP1 binding to the NOS-3 promoter in an oxidative stress dependent manner. In the present study, we aimed to investigate the role of transcription factor (TF) AP-1 on the NOS-3 deregulation during GCDCA-induced cholestasis. The cytotoxic response to GCDCA was characterized by 1) the increased expression and activation of TFs cJun and c-Fos; 2) a higher binding capability of these at position -666 of the NOS-3 promoter; 3) a decrease of the transcriptional activity of the promoter and the expression and activity of NOS-3; and 4) the expression increase of cyclin D1. Specific inhibition of AP-1 by the retinoid SR 11302 counteracted the cytotoxic effects induced by GCDCA while promoting NOS-3 expression recovery and cyclin D1 reduction. NOS activity inhibition by L-NAME inhibited the protective effect of SR 11302. Inducible NOS isoform was no detected in this experimental model of cholestasis. Our data provide direct evidence for the involvement of AP-1 in the NOS-3 expression regulation during cholestasis and define a critical role for NOS-3 in regulating the expression of cyclin D1 during the cell damage induced by bile acids. AP-1 appears as a potential therapeutic target in cholestatic liver diseases given its role as a transcriptional repressor of NOS-3. PMID:27490694

  11. Exposure to the polyester PET precursor—terephthalic acid induces and perpetuates DNA damage-harboring non-malignant human breast cells

    PubMed Central

    Luciani-Torres, Maria Gloria; Moore, Dan H.; Dairkee, Shanaz H.

    2015-01-01

    Identification of early perturbations induced in cells from non-cancerous breast tissue is critical for understanding possible breast cancer risk from chemical exposure. We have demonstrated previously that exposure to the ubiquitous xenoestrogens, bisphenol A (BPA) and methyl paraben, promotes the hallmarks of cancer in non-malignant human high-risk donor breast epithelial cells (HRBECs) isolated from several donors. Here we show that terephthalic acid (TPA), a major chemical precursor of polyethylene terephthalate (PET) containers used for the storage of food and beverages, increased the ERα: ERβ ratio in multiple HRBEC samples, suggesting an estrogenic effect. Although, like BPA and methyl paraben, TPA also promoted resistance to tamoxifen-induced apoptosis, unlike these chemicals instead of inducing an increased S-phase fraction, TPA treatment arrested cell proliferation. DNA-PK, ATM and members of the MRN complex, known to be involved in DNA damage sensor and effector proteins, were elevated indicating induction of DNA strand breaks. Early DNA damage checkpoint response, mediated through p53/p21, led to G1 arrest in TPA-exposed cells. Removal of TPA from the growth medium resulted in the rapid induction of BCL2, increasing the ratio of anti-: pro-apoptotic proteins, together with overexpression of Cyclin A/CDK2 proteins. Consequently, despite elevated p53pSer15 and H2AXpSer139, indicating sustained DNA damage, TPA exposed cells resumed robust growth rates seen prior to TPA exposure. The propensity for the perpetuation of DNA aberrations that activate DNA damage pathways in non-malignant breast cells justifies careful consideration of human exposure to TPA, particularly at vulnerable life stages. PMID:25411358

  12. Effects of Sinomenine on the Expression of microRNA-155 in 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

    PubMed Central

    Yi, Fengming; Bing, Yuntao; Huang, Sha; Wang, Zixi; Wang, Chunyu; Xia, Bing

    2013-01-01

    Background Sinomenine, a pure alkaloid isolated in Chinese medicine from the root of Sinomenium acutum, has been demonstrated to have anti-inflammatory and immunosuppressive effects. MicroRNAs (miRNAs) are gradually being recognized as critical mediators of disease pathogenesis via coordinated regulation of molecular effector pathways. Methodology/Findings After colitis was induced in mice by instillation of 5% (w/v) 2,4,6-trinitrobenzenesulfonic acid (TNBS), sinomenine at a dose of 100 or 200 mg/kg was orally administered once daily for 7 days. We evaluated body weight, survival rate, diarrhea score, histological score and myeloperoxidase (MPO) activity. The mRNA and protein expression levels of miR-155, c-Maf, TNF-α and IFN-γ were determined by quantitative RT-PCR and immunohistochemistry, respectively. Sinomenine (100 or 200 mg/kg)-treated mice with TNBS-induced colitis were significantly improved in terms of body weight, survival rate, diarrhea score, histological score and MPO activity compared with untreated mice. Both dosages of sinomenine significantly decreased the mRNA and protein expression levels of c-Maf, TNF-α and IFN-γ, which elevated in TNBS-induced colitis. Furthermore, sinomenine at a dose of 200 mg/kg significantly decreased the level of miR-155 expression by 71% (p = 0.025) compared with untreated TNBS-induced colitis in mice. Conclusions/Significance Our study evaluated the effects and potential mechanisms of sinomenine in the anti-inflammatory response via miRNA-155 in mice with TNBS-induced colitis. Our findings suggest that sinomenine has anti-inflammatory effects on TNBS-induced colitis by down-regulating the levels of miR-155 and several related inflammatory cytokines. PMID:24066068

  13. Kainic acid-induced neurodegeneration and activation of inflammatory processes in organotypic hippocampal slice cultures: treatment with cyclooxygenase-2 inhibitor does not prevent neuronal death.

    PubMed

    Järvelä, Juha T; Ruohonen, Saku; Kukko-Lukjanov, Tiina-Kaisa; Plysjuk, Anna; Lopez-Picon, Francisco R; Holopainen, Irma E

    2011-06-01

    In the postnatal rodent hippocampus status epilepticus (SE) leads to age- and region-specific excitotoxic neuronal damage, the precise mechanisms of which are still incompletely known. Recent studies suggest that the activation of inflammatory responses together with glial cell reactivity highly contribute to excitotoxic neuronal damage. However, pharmacological tools to attenuate their activation in the postnatal brain are still poorly elucidated. In this study, we investigated the role of inflammatory mediators in kainic acid (KA)-induced neuronal damage in organotypic hippocampal slice cultures (OHCs). A specific cyclooxygenase-2 (COX-2) inhibitor N-[2-(cyclohexyloxy)-4-nitrophenyl]-methanesulfonamide (NS-398) was used to study whether or not it could ameliorate neuronal death. Our results show that KA treatment (24 h) resulted in a dose-dependent degeneration of CA3a/b pyramidal neurons. Furthermore, COX-2 immunoreactivity was pronouncedly enhanced particularly in CA3c pyramidal neurons, microglial and astrocyte morphology changed from a resting to active appearance, the expression of the microglial specific protein, Iba1, increased, and prostaglandin E₂ (PGE₂) production increased. These indicated the activation of inflammatory processes. However, the expression of neither proinflammatory cytokines, i.e. tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), nor the anti-inflammatory cytokine IL-10 mRNA was significantly altered by KA treatment as studied by real-time PCR. Despite activation of an array of inflammatory processes, neuronal damage could not be rescued either with the combined pre- and co-treatment with a specific COX-2 inhibitor, NS-398. Our results suggest that KA induces activation of a repertoire of inflammatory processes in immature OHCs, and that the timing of anti-inflammatory treatment to achieve neuroprotection is a challenge due to developmental properties and the complexity of inflammatory processes activated by

  14. Blocking TGF-β Signaling Pathway Preserves Mitochondrial Proteostasis and Reduces Early Activation of PDGFRβ+ Pericytes in Aristolochic Acid Induced Acute Kidney Injury in Wistar Male Rats

    PubMed Central

    Pozdzik, Agnieszka A.; Giordano, Laetitia; Li, Gang; Antoine, Marie-Hélène; Quellard, Nathalie; Godet, Julie; De Prez, Eric; Husson, Cécile; Declèves, Anne-Emilie; Arlt, Volker M.; Goujon, Jean-Michel; Brochériou-Spelle, Isabelle; Ledbetter, Steven R.; Caron, Nathalie; Nortier, Joëlle L.

    2016-01-01

    Background The platelet-derived growth factor receptor β (PDGFRβ)+ perivascular cell activation becomes increasingly recognized as a main source of scar-associated kidney myofibroblasts and recently emerged as a new cellular therapeutic target. Aims In this regard, we first confirmed the presence of PDGFRβ+ perivascular cells in a human case of end-stage aristolochic acid nephropathy (AAN) and thereafter we focused on the early fibrosis events of transforming growth factor β (TGFβ) inhibition in a rat model of AAN. Materials and Methods Neutralizing anti-TGFβ antibody (1D11) and its control isotype (13C4) were administered (5 mg/kg, i.p.) at Days -1, 0, 2 and 4; AA (15 mg/kg, sc) was injected daily. Results At Day 5, 1D11 significantly suppressed p-Smad2/3 signaling pathway improving renal function impairment, reduced the score of acute tubular necrosis, peritubular capillaritis, interstitial inflammation and neoangiogenesis. 1D11 markedly decreased interstitial edema, disruption of tubular basement membrane loss of brush border, cytoplasmic edema and organelle ultrastructure alterations (mitochondrial disruption and endoplasmic reticulum edema) in proximal tubular epithelial cells. Moreover, 1D11 significantly inhibited p-PERK activation and attenuated dysregulation of unfolded protein response (UPR) pathways, endoplasmic reticulum and mitochondrial proteostasis in vivo and in vitro. Conclusions The early inhibition of p-Smad2/3 signaling pathway improved acute renal function impairment, partially prevented epithelial-endothelial axis activation by maintaining PTEC proteostasis and reduced early PDGFRβ+ pericytes-derived myofibroblasts accumulation. PMID:27379382

  15. Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences.

    PubMed

    Shinomol, George K; Bharath, M M Srinivas; Muralidhara

    2012-08-01

    We previously reported the propensity of Bacopa monnieri (BM) leaf powder to modulate endogenous levels of oxidative stress markers in the brain of prepubertal mice. In this study, we tested the hypothesis that pretreatment with an alcoholic extract of BM (BME) could provide neuroprotection against 3-nitropropionic acid (3-NPA)-induced oxidative stress under in vitro and in vivo conditions. In chemical systems, BME exhibited multiple free radical scavenging ability. Further, BME pretreatment completely abolished 3-NPA-induced oxidative stress response in brain (striatum, St) mitochondria in vitro. Likewise, pretreatment of dopaminergic (N27 cell lines) cells with BME not only abrogated the generation of reactive oxygen species (ROS) levels, but also offered marked protection against 3-NPA-mediated cytotoxicity. These findings were further validated employing a 3-NPA mice model in vivo. We determined the degree of oxidative stress induction, redox status, enzymic antioxidants, protein oxidation, and cholinergic function in various brain regions of male mice provided with BME for 10 days (prophylaxis) followed by 3-NPA challenge (75 mg/kg bw/day, i.p.). BME prophylaxis completely prevented 3-NPA-induced oxidative dysfunctions in St and other brain regions. 3-NPA-induced robust elevation of oxidative markers (malondialdehyde levels, ROS generation, hydroperoxide levels and protein carbonyls) in cytosol of brain regions was predominantly abolished among mice given BME prophylaxis. Interestingly, BME prophylaxis also prevented the depletion of reduced glutathione, thiol levels, and perturbations in antioxidant enzymes caused by 3-NPA. Collectively these findings provide evidence on the significant prophylactic neuroprotective efficacy of BME in prepubertal mice brain. Based on these data, it is hypothesized that BME can serve as a useful adjuvant in protecting brain against oxidative-mediated neurodegenerative disorders involving oxidative stress conditions.

  16. Gastric acid induces mucosal H2S release in rats by upregulating mRNA and protein expression of cystathionine gamma lyase.

    PubMed

    Mard, Seyyed Ali; Veisi, Ali; Ahangarpour, Akram; Gharib-Naseri, Mohammad Kazem

    2015-11-01

    It is well known that hydrogen sulfide (H2S) protects the gastric mucosa against gastric acid and other noxious stimulants by several mechanisms but until now the effect of gastric acid on H2S production has not been evaluated. This study was performed to determine the effect of basal and stimulated gastric acid secretion on mRNA and protein expression of cystathionine gamma lyase (CSE) and cystathionine beta synthase (CBS), and on mucosal release of H2S in rats. Seventy-two male rats were randomly assigned into 9 groups (8 in each)-control, distention, and pentagastrin-induced gastric acid secretion groups. The effects of 15% alcohol solution, propargylglycine (PAG), L-NAME, and pantoprazole were also investigated. Under anesthesia, animals underwent tracheostomy and midline laparotomy. A catheter was inserted into the stomach through the duodenum for gastric washout. At the end of the experiments, the animals were killed and the gastric mucosa was collected to measure H2S concentration and to quantify mRNA expression of CSE and CBS by quantitative real-time PCR, and expression of their proteins by western blot. Basal and stimulated gastric acid secretion increased mucosal levels of H2S, and mRNA and protein expression of CSE. Pantoprazole and L-NAME reversed H2S release and restored protein expression of CSE to the control level. Pantoprazole, but not propargylglycine, pretreatment inhibited the elevated level of protein expression of eNOS in response to distention-induced gastric acid secretion. Our findings indicated that NO mediated the stimulatory effect of gastric acid on H2S release and protein expression of CSE.

  17. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.

    PubMed

    Guaragnella, Nicoletta; Zdralević, Maša; Lattanzio, Paolo; Marzulli, Domenico; Pracheil, Tammy; Liu, Zhengchang; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2013-12-01

    In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD.

  18. Nuciferine downregulates Per-Arnt-Sim kinase expression during its alleviation of lipogenesis and inflammation on oleic acid-induced hepatic steatosis in HepG2 cells

    PubMed Central

    Zhang, Dan-Dan; Zhang, Ji-Gang; Wu, Xin; Liu, Ying; Gu, Sheng-Ying; Zhu, Guan-Hua; Wang, Yu-Zhu; Liu, Gao-Lin; Li, Xiao-Yu

    2015-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disease associated with lipotoxicity, lipid peroxidation, oxidative stress, and inflammation. Nuciferine, an active ingredient extracted from the natural lotus leaf, has been reported to be effective for the prevention and treatment of NAFLD. Per-Arnt-Sim kinase (PASK) is a nutrient responsive protein kinase that regulates lipid and glucose metabolism, mitochondrial respiration, and gene expression. The aim of the present study was to investigate the protective effect of nuciferine against NAFLD and its inhibitory effect on PASK, exploring the possible underlying mechanism of nuciferine-mediated inhibition on NAFLD. Relevant biochemical parameters (lipid accumulation, extent of oxidative stress and release of inflammation cytokines) in oleic acid (OA)-induced HepG2 cells that mimicked steatosis in vitro were measured and compared with the control. It was found that nuciferine and silenced-PASK (siRNA PASK) both inhibited triglyceride (TG) accumulation and was effective in decreasing fatty acid (FFAs). The content of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) were increased respectively by nuciferine and siRNA PASK without increase in glutathione (GSH). Malondialdehyde (MDA) was decreased respectively by nuciferine and siRNA PASK. In addition, nuciferine decreased TNF-a, IL-6 and IL-8 as well as the siRNA PASK group. IL-10 was increased by nuciferine and siRNA PASK respectively. Further investigation revealed that nuciferine and siRNA PASK could respectively regulate the expression of target genes involved in lipogenesis and inflammation, suggesting that nuciferine may be a potential therapeutic treatment for NAFLD. Furthermore, the modulated effect of nuciferine on (OA)-induced HepG2 cells lipogenesis and inflammation, which was accompanied with PASK inhibition, was also consistent with siRNA PASK, implying that PASK might play a role in nuciferine-mediated regulation on NAFLD

  19. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    PubMed

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments.

  20. Antinociceptive and Anti-Inflammatory Activities of Crude Methanolic Extract of Red Alga Bryothamnion triquetrum

    PubMed Central

    Cavalcante-Silva, Luiz Henrique Agra; da Matta, Carolina Barbosa Brito; de Araújo, Morgana Vital; Barbosa-Filho, José Maria; de Lira, Daysianne Pereira; de Oliveira Santos, Bárbara Viviana; de Miranda, George Emmanuel C.; Alexandre-Moreira, Magna Suzana

    2012-01-01

    The marine environment is an extraordinary reservoir of bioactive natural products, many of which exhibit chemical and structural features not found in terrestrial natural products. In this regard, the aim of this study was to investigate the possible antinociceptive and anti-inflammatory activities of a crude methanolic extract of the red alga Bryothamnion triquetrum (BT-MeOH) in murine models. Groups of Swiss mice of both sexes (25–30 g) were used throughout the experiments. The potential antinociceptive of BT-MeOH was evaluated by means of the following tests: acetic acid-induced writhing, hot-plate test and glutamate- and formalin-induced nociception. The anti-inflammatory activity of BT-MeOH was investigated using the zymosan A-induced peritonitis test. The tests were conducted using 100 mg/kg (p.o.) BT-MeOH, 33.3 mg/kg (p.o.) dipyrone, 35.7 mg/kg (p.o.) indomethacin and 5.7 mg/kg (s.c.) morphine. The extract and all standard drugs were administered 40 min before the nociceptive/inflammatory stimulus. In the acetic acid-induced writhing test, BT-MeOH and dipyrone inhibited the nociceptive response by 55.9% (22.2 ± 2.0 writhings; p < 0.01) and 80.9% (9.6 ± 2.1 writhings; p < 0.01). In the hot-plate test, BT-MeOH did not increase the latency time of the animals in the time evaluated. In addition, BT-MeOH inhibited glutamate-induced nociception by 50.1%. While BT-MeOH did not inhibit the neurogenic phase in formalin-induced nociception, the inflammatory phase was inhibited by 53.1% (66.8 ± 14.2 s; p < 0.01). Indomethacin inhibited the inflammatory phase by 60.2% (56.8 ± 8.7 s; p < 0.01). In the zymosan-induced peritonitis test, BT-MeOH inhibited 55.6% (6.6 ± 0.2 × 106 leukocytes/mL; p < 0.01) of leukocyte migration, while indomethacin inhibited 78.1% (3.2 ± 0.1 × 106 leukocytes/mL; p < 0.01). Based on the results obtained in this study, we conclude that BT-MeOH has peripheral antinociceptive and anti-inflammatory activities. However, more studies need

  1. "Writhing bedfellows": 1826. Two young men from antebellum South Carolina's ruling elite share "extravagant delight".

    PubMed

    Duberman, M B

    In 1826, twenty-two-year-old Jeffrey Withers, later a judge in the South Carolina Court of Appeals and a delegate to the conferences that established a provisional government for the Confederacy, wrote two letters to his young friend, Jim Hammond, who would attain prominence as governor, member of congress, senator, and major apologist for slavery. The letters discussed homosexuality in a guilt-free manner. The author suggests that this nonchalance may have been typical of this class and race in the antebellum South. The author's account of the difficulties surrounding his efforts to publish the Withers/Hammond letters provides historians with useful advise on how to deal with archivists when printing sensitive material.

  2. Perfluorododecanoic acid-induced steroidogenic inhibition is associated with steroidogenic acute regulatory protein and reactive oxygen species in cAMP-stimulated Leydig cells.

    PubMed

    Shi, Zhimin; Feng, Yixing; Wang, Jianshe; Zhang, Hongxia; Ding, Lina; Dai, Jiayin

    2010-04-01

    Perfluorododecanoic acid (PFDoA) can be detected in environmental matrices and human serum and has been shown to inhibit testicular steroidogenesis in rats. However, the mechanisms that are responsible for the toxic effects of PFDoA remain unknown. The aims of this study were to investigate the mechanism of steroidogenesis inhibition by PFDoA and to identify the molecular target of PFDoA in Leydig cells. The effects of PFDoA on steroid synthesis in Leydig cells were assessed by radioimmunoassay. The expression of key genes and proteins in steroid biosynthesis was determined by real-time PCR and Western blot analysis. Reactive oxygen species (ROS) and hydrogen peroxide (H(2)O(2)) levels were determined using bioluminescence assays. PFDoA inhibited adenosine 3',5'-cyclophosphate (cAMP)-stimulated steroidogenesis in mouse Leydig tumor cells (mLTC-1) and primary rat Leydig cells in a dose-dependent manner. However, PFDoA (1-100 microM) did not exhibit effects on cell viability and cellular ATP levels in mLTC-1 cells. PFDoA inhibited steroidogenic acute regulatory protein (StAR) promoter activity and StAR expression at the messenger RNA (mRNA) and protein levels but did not affect mRNA levels of peripheral-type benzodiazepine receptor, cholesterol side-chain cleavage enzyme, or 3beta-hydroxysteroid dehydrogenase in cAMP-stimulated mLTC-1 cells. PFDoA treatment also resulted in increased levels of mitochondrial ROS and H(2)O(2). After excessive ROS and H(2)O(2) were eliminated in PFDoA-treated mLTC-1 cells by MnTMPyP (a superoxide dismutase analog), progesterone production was partially restored and StAR mRNA and protein levels were partially recovered. These data show that PFDoA inhibits steroidogenesis in cAMP-stimulated Leydig cells by reducing the expression of StAR through a model of action involving oxidative stress.

  3. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs.

    PubMed

    Palea, Stefano; Guilloteau, Véronique; Rekik, Moéz; Lovati, Emanuela; Guerard, Marc; Guardia, Maria-Alba; Lluel, Philippe; Pietra, Claudio; Yoshiyama, Mitsuharu

    2016-01-01

    Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v.) or L-733,060 (3-10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex circuit

  4. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs

    PubMed Central

    Palea, Stefano; Guilloteau, Véronique; Rekik, Moéz; Lovati, Emanuela; Guerard, Marc; Guardia, Maria-Alba; Lluel, Philippe; Pietra, Claudio; Yoshiyama, Mitsuharu

    2016-01-01

    Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1–3 mg/kg, i.v.) or L-733,060 (3–10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex

  5. Evaluation of analgesic activity and toxicity of alkaloids in Myristica fragrans seeds in mice

    PubMed Central

    Hayfaa, A Al-Shammary; Sahar, AA Malik Al-Saadi; Awatif, M Al-Saeidy

    2013-01-01

    Aim To examine the analgesic effect of alkaloids in Myristica fragrans seed in a mouse model of acetic acid-induced visceral pain. Methods Alkaloids were extracted from ground nutmeg seed kernels with 10% acetic acid in 95% ethyl alcohol. Visceral pain was induced in male and female BALB/c mice by intraperitoneal injection of 0.6% acetic acid. Analgesic effect of alkaloids (0.5 gram or 1 gram per kilogram [g/kg], by mouth) was assessed by evaluating writhing response. Acute toxicity was tested in response to 2, 3, 4, 5, or 6 g/kg of alkaloid extract; the median lethal dose (LD50) was determined by probit analysis. Results Alkaloid extract at a dose of 1 g/kg significantly reduced the number of writhing responses in female, but not male mice; 0.5 g/kg of alkaloid extract had no effect in either sex. The LD50 was 5.1 g/kg. Signs of abnormal behavior, including hypoactivity, unstable gait, and dizziness were seen in animals given a dose of 4 g/kg or higher; abnormal behavior lasted for several hours after administration of the alkaloids. Conclusion According to the classification of Loomis and Hayes, M. fragrans seed alkaloids have analgesic activity and are slightly toxic. PMID:23946667

  6. The ruthenium NO donor, [Ru(bpy)2(NO)SO3](PF6), inhibits inflammatory pain: involvement of TRPV1 and cGMP/PKG/ATP-sensitive potassium channel signaling pathway.

    PubMed

    Staurengo-Ferrari, Larissa; Mizokami, Sandra S; Silva, Jean J; da Silva, Francisco O N; Sousa, Eduardo H S; da França, Luiz G; Matuoka, Mariana L; Georgetti, Sandra R; Baracat, Marcela M; Casagrande, Rubia; Pavanelli, Wander R; Verri, Waldiceu A

    2013-04-01

    The activation of nitric oxide (NO) production is an analgesic mechanism shared by drugs such as morphine and diclofenac. Therefore, the controlled release of low amounts of NO seems to be a promising analgesic approach. In the present study, the antinociceptive effect of the ruthenium NO donor [Ru(bpy)2(NO)SO3](PF6) (complex I) was investigated. It was observed that complex I inhibited in a dose (0.3-10mg/kg)-dependent manner the acetic acid-induced writhing response. At the dose of 1mg/kg, complex I inhibited the phenyl-p-benzoquinone-induced writhing response and formalin- and complete Freund's adjuvant-induced licking and flinch responses. Additionally, complex I also inhibited transient receptor potential cation channel subfamily V member 1 (TRPV1)-dependent overt pain-like behavior induced by capsaicin. Complex I also inhibited the carrageenin-induced mechanical hyperalgesia and increase of myeloperoxidase activity (MPO) in paw skin samples. The inhibitory effect of complex I in the carrageenin-induced hyperalgesia, MPO activity and formalin was prevented by the treatment with ODQ, KT5823 and glybenclamide, indicating that complex I inhibits inflammatory hyperalgesia by activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. The present study demonstrates the efficacy of a novel ruthenium NO donor and its analgesic mechanisms.

  7. Individual cells of Saccharomyces cerevisiae and Zygosaccharomyces bailii exhibit different short-term intracellular pH responses to acetic acid.

    PubMed

    Arneborg, N; Jespersen, L; Jakobsen, M

    2000-01-01

    The effects of perfusion with 2.7 and 26 mM undissociated acetic acid in the absence or presence of glucose on short-term intracellular pH (pH(i)) changes in individual Saccharormyces cerevisiae and Zygosaccharomyces bailii cells were studied using fluorescence-ratio-imaging microscopy and a perfusion system. In the S. cerevisiae cells, perfusion with acetic acid induced strong short-term pH(i) responses, which were dependent on the undissociated acetic acid concentration and the presence of glucose in the perfusion solutions. In the Z. bailii cells, perfusion with acetic acid induced only very weak short-term pH(i) responses, which were neither dependent on the undissociated acetic acid concentration nor on the presence of glucose in the perfusion solutions. These results clearly show that Z. bailii is more resistant than S. cerevisiae to short-term pH(i) changes caused by acetic acid.

  8. Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice.

    PubMed

    Cheng, Sin-Jhong; Chen, Chien-Chang; Yang, Hsiu-Wen; Chang, Ya-Ting; Bai, Shin-Wen; Chen, Chih-Cheng; Yen, Chen-Tung; Min, Ming-Yuan

    2011-02-09

    Application of phorbol 12,13-diacetate (PDA) caused marked enhancement of synaptic transmission of nociceptive parabrachio-amygdaloid (PBA) input onto neurons of the capsular central amygdaloid (CeAC) nucleus. The potentiation of PBA-CeAC EPSCs by PDA involved a presynaptic protein kinase C (PKC)-dependent component and a postsynaptic PKC-extracellular-regulated kinase (ERK)-dependent component. NMDA glutamatergic receptor (NMDAR)-dependent long-term potentiation (LTP) of PBA-CeAC EPSCs, which was also dependent on the PKC-ERK signaling pathway, was induced by tetanus stimulation at 100 Hz. In slices from mice subjected to acid-induced muscle pain (AIMP), phosphorylated ERK levels in the CeAC increased, and PBA-CeAC synaptic transmission was postsynaptically enhanced. The enhanced PBA-CeAC synaptic transmission in AIMP mice shared common mechanisms with the postsynaptic potentiation effect of PDA and induction of NMDAR-dependent LTP by high-frequency stimulation in normal slices, both of which required ERK activation. Since the CeAC plays an important role in the emotionality of pain, enhanced synaptic function of nociceptive (PBA) inputs onto CeAC neurons might partially account for the supraspinal mechanisms underlying central sensitization.

  9. In Vitro Screening for Antihepatic Steatosis Active Components within Coptidis Rhizoma Alkaloids Extract Using Liver Cell Extraction with HPLC Analysis and a Free Fatty Acid-Induced Hepatic Steatosis HepG2 Cell Assay.

    PubMed

    Fan, Hui; Chen, Yuan-Yuan; Bei, Wei-Jian; Wang, Lai-You; Chen, Bao-Tian; Guo, Jiao

    2013-01-01

    A high-throughput method was developed and applied to screen for the active antihepatic steatosis components within Coptidis Rhizoma Alkaloids Extract (CAE). This method was a combination of two previously described assays: HepG2 cell extraction with HPLC analysis and a free fatty acid-induced (FFA) hepatic steatosis HepG2 cell assay. Two alkaloids within CAE, berberine and coptisine, were identified by HepG2 cell extraction with HPLC analysis as high affinity components for HepG2. These alkaloids were also determined to be active and potent compounds capable of lowering triglyceride (TG) accumulation in the FFA-induced hepatic steatosis HepG2 cell assay. This remarkable inhibition of TG accumulation (P < 0.01) by berberine and coptisine occurred at concentrations of 0.2  μ g/mL and 5.0 μ g/mL, respectively. At these concentrations, the effect seen was similar to that of a CAE at 100.0  μ g/mL. Another five alkaloids within CAE, palmatine, epiberberine, jateorhizine, columbamine, and magnoline, were found to have a lower affinity for cellular components from HepG2 cells and a lower inhibition of TG accumulation. The finding of two potent and active compounds within CAE indicates that the screening method we developed is a feasible, rapid, and useful tool for studying traditional Chinese medicines (TCMs) in treating hepatic steatosis.

  10. Analgesic and Anti-inflammatory Effects of Rosa damascena Hydroalcoholic Extract and its Essential Oil in Animal Models.

    PubMed

    Hajhashemi, Valiollah; Ghannadi, Alireza; Hajiloo, Mohammad

    2010-01-01

    Extracts obtained from the petals of Rosa damascena (Rosaceae) are used in Iranian folk medicine as remedies for the treatment of some inflammatory diseases. In this study the hydroalcoholic extract and essential oil of the plant were investigated for its possible anti-inflammatory and analgesic activities. The extract was administered at the doses (p.o.) of 250, 500 and 1000 mg/kg and the doses of essential oil were 100, 200 and 400 μL/kg. The acetic acid-induced writhing response, formalin-induced paw licking time in the early and late phases and light tail flick test were used in mice to assess analgesic activity. For evaluation of anti-inflammatory effect carrageenan-induced paw edema served as a valid animal model in rats. The extract significantly attenuated the writhing responses induced by an intraperitoneal injection of acetic acid and also showed potent analgesic effect in both phases of formalin test but not in light tail flick test. In addition, the higher dose of the extract significantly (P < 0.05) reduced carrageenan-induced paw edema. Essential oil of the plant at all administered doses failed to show any analgesic or anti-inflammatory effect in above mentioned tests. These results provide support for the use of hydroalcoholic extract of Rosa damascena in relieving inflammatory pain, and insight into the development of new agents for treating inflammatory diseases.

  11. Analgesic and Anti-inflammatory Effects of Rosa damascena Hydroalcoholic Extract and its Essential Oil in Animal Models

    PubMed Central

    Hajhashemi, Valiollah; Ghannadi, Alireza; Hajiloo, Mohammad

    2010-01-01

    Extracts obtained from the petals of Rosa damascena (Rosaceae) are used in Iranian folk medicine as remedies for the treatment of some inflammatory diseases. In this study the hydroalcoholic extract and essential oil of the plant were investigated for its possible anti-inflammatory and analgesic activities. The extract was administered at the doses (p.o.) of 250, 500 and 1000 mg/kg and the doses of essential oil were 100, 200 and 400 μL/kg. The acetic acid-induced writhing response, formalin-induced paw licking time in the early and late phases and light tail flick test were used in mice to assess analgesic activity. For evaluation of anti-inflammatory effect carrageenan-induced paw edema served as a valid animal model in rats. The extract significantly attenuated the writhing responses induced by an intraperitoneal injection of acetic acid and also showed potent analgesic effect in both phases of formalin test but not in light tail flick test. In addition, the higher dose of the extract significantly (P < 0.05) reduced carrageenan-induced paw edema. Essential oil of the plant at all administered doses failed to show any analgesic or anti-inflammatory effect in above mentioned tests. These results provide support for the use of hydroalcoholic extract of Rosa damascena in relieving inflammatory pain, and insight into the development of new agents for treating inflammatory diseases. PMID:24363723

  12. Anti-inflammatory, analgesic and antipyretic effects of Lepidagathis anobrya Nees (Acanthaceae).

    PubMed

    Richard, Sawadogo Wamtinga; Marius, Lompo; Noya, Somé; Innocent Pierre, Guissou; Germaine, Nacoulma-Ouedraogo Odile

    2011-01-01

    This study investigated the general acute, anti-inflammatory, analgesic and antipyretic effects of methanol extract of Lepidagathis anobrya Nees (Acanthaceae). Carrageenan-induced rat paw edema and croton oil-induced ear edema in rats were used for the evaluation of general acute anti-inflammatory effects. Acetic acid-induced writhing response and yeast-induced hyperpyrexia in mice were used to evaluate the analgesic and antipyretic activities respectively. The extract at doses of 10, 25, 50 and 100 mgkg(-1) for carrageenan test and doses of 0.5 mg/ear for croton oil test induced a significant reduction (p < 0.001) of paw and ear edemas in rats. In the analgesic and antipyretic tests, the extract has shown a significant inhibition of writhes and hyperpyrexia with all the doses used when compared to the untreated control group. These results clearly show the anti-inflammatory, analgesic and antipyretic effects of the methanol extract of Lepidagathis anobrya and give the scientific basis for its traditional use. Further studies are needed to clarify the mechanism of action and the components responsible for these pharmacological effects.

  13. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d

  14. Tranexamic Acid-Induced Fixed Drug Eruption

    PubMed Central

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary. PMID:26288438

  15. Conjugated Linoleic Acid Induces Human Adipocyte Delipidation

    PubMed Central

    Brown, J. Mark; Boysen, Maria Sandberg; Chung, Soonkyu; Fabiyi, Olowatoyin; Morrison, Ron F.; Mandrup, Susanne; McIntosh, Michael K.

    2005-01-01

    Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8. PMID:15067015

  16. Tranexamic Acid-Induced Fixed Drug Eruption.

    PubMed

    Matsumura, Natsuko; Hanami, Yuka; Yamamoto, Toshiyuki

    2015-01-01

    A 33-year-old male showed multiple pigmented patches on his trunk and extremities after he took tranexamic acid for common cold. He stated that similar eruptions appeared when he was treated with tranexamic acid for influenza 10 months before. Patch test showed positive results at 48 h and 72 h by 1% and 10% tranexamic acid at the lesional skin only. To our knowledge, nine cases of fixed drug eruption induced by tranexamic acid have been reported in Japan. Tranexamic acid is a safe drug and frequently used because of its anti-fibrinolytic and anti-inflammatory effects, but caution of inducing fixed drug eruption should be necessary.

  17. Ursodeoxycholic acid induced generalized fixed drug eruption.

    PubMed

    Ozkol, Hatice Uce; Calka, Omer; Dulger, Ahmet Cumhur; Bulut, Gulay

    2014-09-01

    Fixed drug eruption (FDE) is a rare form of drug allergies that recur at the same cutaneous or mucosal site in every usage of drug. Single or multiple round, sharply demarcated and dusky red plaques appear soon after drug exposure. Ursodeoxycholic acid (UDCA: 3α,7β-dihydroxy-5β-cholanic acid) is used for the treatment of cholestatic liver diseases. Some side effects may be observed, such as diarrhea, dyspepsia, pruritus and headaches. We encountered only three cases of lichenoid reaction regarding the use of UDCA among previous studies. In this article, we reported a generalized FDE case related to UDCA intake in a 59-year-old male patient with cholestasis for the first time in the literature.

  18. Lysophosphatidic acid induces osteocyte dendrite outgrowth.

    PubMed

    Karagiosis, Sue A; Karin, Norman J

    2007-05-25

    Osteocytes elaborate an extensive mechanosensory network in bone matrix and communicate intercellularly via gap junctions established at dendrite termini. We developed a method to measure osteocyte dendritogenesis in vitro using a modified transwell assay and determined that the lipid growth factor lysophosphatidic acid (LPA) is a potent stimulator of dendrite outgrowth in MLO-Y4 osteocytes. The stimulatory effects were dose-dependent with maximal outgrowth observed within a physiological range of LPA. LPA-treated osteocytes exhibited distinct rearrangements of the actin cytoskeleton and a more stellate morphology than control cells. LPA also promoted osteocyte chemotaxis, suggesting a shared molecular mechanism between dendrite outgrowth and cell motility. The LPA-induced increase in dendrite formation was blocked by the specific LPA-receptor antagonist Ki16425 and by pertussis toxin. Bone cells in vivo encounter platelet-derived LPA in regions of bone damage, and we postulate that this lipid factor is important for re-establishing osteocyte connectivity during fracture repair.

  19. Antinociceptive and anti-inflammatory effects of essential oil extracted from Chamaecyparis obtusa in mice.

    PubMed

    Park, Yujin; Jung, Seung Min; Yoo, Seung-Ah; Kim, Wan-Uk; Cho, Chul-Soo; Park, Bum-Jin; Woo, Jong-Min; Yoon, Chong-Hyeon

    2015-12-01

    Essential oil extracted from Chamaecyparis obtusa (EOCO) consists of several monoterpenes with anti-inflammatory effects. Monoterpenes are expected to have an analgesic effect through inhibition of pro-inflammatory mediators. The present study investigated the anti-nociceptive and anti-inflammatory effects of EOCO in animal models of pain. Intraperitoneal injection with EOCO (5 or 10mg/kg), aspirin (positive control, 300mg/kg), or DMSO (negative control) was performed 1h before the nociception tests: acetic acid-induced writhing response, formalin test, and hot plate test in mice, and acidic saline-induced allodynia in rats. The expression of pro-inflammatory cytokines and pro-inflammatory enzymes in formalin-injected paws was determined by ELISA and western blotting, respectively. Treatment with EOCO significantly reduced acetic acid-induced writhing and paw-licking time in late response of the formalin tests. The anti-nociceptive effect was comparable with aspirin. However, EOCO did not affect the reaction time of licking of the hind paws or jumping in hot plate test and the mechanical withdrawal thresholds in acidic saline-induced allodynia model. Formalin-injected paws of mice treated with EOCO revealed the down-regulated expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase, and cyclooxygenase-2, as compared with those of control mice. These data showed the anti-nociceptive and anti-inflammatory effects of EOCO. The pain-relieving effect might be attributed to inhibition of peripheral pain in association with inflammatory response. EOCO could be a useful therapeutic strategy to manage pain and inflammatory diseases.

  20. Stearic acid-induced cardiac lipotoxicity is independent of cellular lipid and is mitigated by the fatty acids oleic and capric acid but not by the PPAR agonist troglitazone.

    PubMed

    Rabkin, Simon W; Lodhia, Parth; Lodha, Parth

    2009-08-01

    The objective of this study was to examine the potential of stearic acid to induce cardiomyocyte cell death and the hypothesis that the amount of cellular lipid is a determinant of cell death. In cardiomyocytes from embryonic chick heart, stearic acid (SA) produced a significant (P < 0.001) concentration-dependent increase in cell death with an ED(50) of 71 microM. In contrast, capric (C10:0) or oleic acid (OA; C18:1), at < 200 microM, did not alter cell viability. Stearic acid-induced cell death was significantly reduced by OA and to a lesser extent by capric acid. Neither OA nor capric acid altered cell death produced by potassium cyanide and deoxyglucose. Stearic acid (100 microM) induced a significant (P < 0.05) twofold increase in cellular lipid as assessed by Nile blue and Sudan Black staining. A role for cellular lipid in cardiomyocyte death was excluded because OA increased cellular lipid, at concentrations that did not induce cell death; OA did not alter SA-induced cellular fat stores but reduced cell death; and the PPARgamma; agonist troglitazone at concentrations that reduced cellular lipid content did not alter cell death. High concentrations of troglitazone, however, induced cell death. In summary, SA is a potent inducer of cardiac cell death and intracellular lipid accumulation. The amount of intracellular lipid, however, is not a determinant of cardiomyocyte cell death. Troglitazone has potential cardiotoxicity at high doses but, at lower concentrations, does not prevent cardiac lipotoxicity, which can be completely prevented by low concentrations of oleic acid.

  1. Stimulation of large-conductance calcium-activated potassium channels inhibits neurogenic contraction of human bladder from patients with urinary symptoms and reverses acetic acid-induced bladder hyperactivity in rats.

    PubMed

    La Fuente, José M; Fernández, Argentina; Cuevas, Pedro; González-Corrochano, Rocío; Chen, Mao Xiang; Angulo, Javier

    2014-07-15

    We have analysed the effects of large-conductance calcium-activated potassium channel (BK) stimulation on neurogenic and myogenic contraction of human bladder from healthy subjects and patients with urinary symptoms and evaluated the efficacy of activating BK to relief bladder hyperactivity in rats. Bladder specimens were obtained from organ donors and from men with benign prostatic hyperplasia (BPH). Contractions elicited by electrical field stimulation (EFS) and carbachol (CCh) were evaluated in isolated bladder strips. in vivo cystometric recordings were obtained in anesthetized rats under control and acetic acid-induced hyperactive conditions. Neurogenic contractions of human bladder were potentiated by blockade of BK and small-conductance calcium-activated potassium channels (SK) but were unaffected by the blockade of intermediate calcium-activated potassium channels (IK). EFS-induced contractions were inhibited by BK stimulation with NS-8 or NS1619 or by SK/IK stimulation with NS309 (3µM). CCh-induced contractions were not modified by blockade or stimulation of BK, IK or SK. The anti-cholinergic agent, oxybutynin (0.3µM) inhibited either neurogenic or CCh-induced contractions. Neurogenic contractions of bladders from BPH patients were less sensitive to BK inhibition and more sensitive to BK activation than healthy bladders. The BK activator, NS-8 (5mg/kg; i.v.), reversed bladder hyperactivity induced by acetic acid in rats, while oxybutynin was ineffective. NS-8 did not significantly impact blood pressure or heart rate. BK stimulation specifically inhibits neurogenic contractions in patients with urinary symptoms and relieves bladder hyperactivity in vivo without compromising bladder contractile capacity or cardiovascular safety, supporting its potential therapeutic use for relieving bladder overactivity.

  2. Synthesis of new 2,3-dihydroquinazolin-4(1H)-one derivatives for analgesic and anti-inflammatory evaluation.

    PubMed

    El-Sabbagh, Osama I; Ibrahim, Samy M; Baraka, Mohamed M; Kothayer, Hend

    2010-05-01

    Starting from isatoic anhydrides, several new 2,3-dihydroquinazolin-4(1H)-one derivatives bearing chalcone or pyrazole or thiazole moieties at the third position were synthesized. The analgesic and anti-inflammatory activities for most compounds were studied at a dose level of 50 mg/kg via the acetic-acid-induced writhing-response method and carrageenan-induced edema method, respectively. The study showed that the chalcones bearing a 4-chlorophenyl group 4c or 4-nitrophenyl group 4b were the most active ones as analgesics. Both chalcone 4c and N-phenyl pyrazole bearing 4-methoxy phenyl group 5b showed a higher anti-inflammatory activity than celecoxib but still lower than that of diclofenac sodium. Moreover, the chalcone 4c has nearly the same ulcerogenic index as the selective cyclooxygenase-2 inhibitor celecoxib.

  3. Analgesic, neuropharmacological, anti-diarrheal, and cytotoxic activities of the extract of Solanum sisymbriifolium (Lam.) leaves

    PubMed Central

    Apu, Apurba Sarker; Bhuyan, Shakhawat Hossan; Matin, Maima; Hossain, Faruq; Khatun, Farjana; Taiab, Abu; Jamaluddin

    2013-01-01

    Objective: The present study was undertaken to evaluate the possible analgesic, neuropharmacological, anti-diarrheal, and cytotoxic activities of the ethanol extract of leaves of Solanum sisymbriifolium Lam. (Family: Solanaceae). Materials and Methods: The analgesic activity was measured by acetic acid-induced writhing inhibition test. The neuropharmacological activities were evaluated using hole cross, hole board, and elevated plus-maze test and the anti-diarrheal activity was assessed using castor oil-induced diarrhea inhibition method. Brine shrimp lethality bioassay was carried out for assessing the cytotoxicity of the ethanol extract of the leaves. Except cytotoxic activity, all the tests were conducted on mice. Results: The extract at oral doses of 200 and 400 mg/kg body weight showed highly significant (p<0.001) decrease in number of writhing, 52.1±0.66 and 4.4±0.64 compared with the control (78.6±0.29) with the percentage of inhibitions of writhing response were found to be 33.72% and 94.40%, respectively. Compare with the control, the extract at both doses showed significant sedative effect in hole cross test. In hole board test, the extract exhibited highly significant (p<0.001) anxiolytic activity at dose of (200 mg/kg), while the same activity was observed at dose of 400 mg/kg in elevated plus-maze test. The extract showed highly significant (p<0.001) anti-diarrheal activity in a dose-dependent manner. With the extract, significant lethality to brine shrimp was found with LC50 value of 61.66±0.9 μg/ml, which was comparable with the positive control (LC50: 11.89±0.8 µg/ml). Conclusion: The results from the present studies support the traditional uses of this plant part and could form the basis of further investigation including compound isolation. PMID:25050287

  4. Responsible drinking

    MedlinePlus

    Alcohol use disorder - responsible drinking; Drinking alcohol responsibly; Drinking in moderation; Alcoholism - responsible drinking ... If you drink alcohol, health care providers advise limiting how much ... drinking in moderation, or responsible drinking. Responsible ...

  5. Antinociceptive effect of Ferula assa-foetida oleo-gum-resin in mice

    PubMed Central

    Bagheri, S.M.; Dashti-R, M.H.; Morshedi, A.

    2014-01-01

    Ferula assa-foetida L. is distributed throughout central Asia and Mediterranean area and grows wildly in Iran and Afghanistan. Asafoetida is an oleo-gum-resin that is the exudates of the roots of Ferula assa-foetida and some other Ferula species. In Iranian traditional medicine, asafoetida is considered to be sedative, analgesic, carminative, antispasmodic, diuretic, antihelmintic, emmenagogue and expectorant. The aim of this study was to evaluate the antinociceptive effect of asafoetida in mice. The analgesic activity of asafoetida (25, 50 and 100 mg/kg) was compared with that of sodium diclofenac (30 mg/kg) or morphine sulfate (8 mg/kg) by using hot plate and acetic acid induced writhing tests. In hot plate test, the percentage of maximum possible effect (%MPE) against the thermal stimulus at 15 min post treatment time point for all doses of asafoetida was significantly greater than the control group. The number of writhes in all three doses of asafoetida was significantly less than the control group. GraphPad Prism 5 software was used to analyze the behavioral responses. Data were analyzed using repeated measure one-way ANOVA and P<0.05 was considered as the significant level. According to our findings, asafoetida exhibited a significant antinociceptive effect on chronic and acute pain in mice. These effects probably involve central opioid pathways and peripheral anti-inflammatory action. PMID:25657791

  6. Phytochemical Screening and Antinociceptive and Antidiarrheal Activities of Hydromethanol and Petroleum Benzene Extract of Microcos paniculata Barks

    PubMed Central

    Moushome, Rafath Ara; Akter, Mst. Irin

    2016-01-01

    Introduction. Microcos paniculata is traditionally used for treating diarrhea, wounds, cold, fever, hepatitis, dyspepsia, and heat stroke. Objective. To investigate the qualitative phytochemical constituents of hydromethanol (HMPB) and petroleum benzene extract of Microcos paniculata barks (PBMPB) and to evaluate their antinociceptive and antidiarrheal activities. Methods. Phytochemical constituents and antinociceptive and antidiarrheal activities were determined and evaluated by different tests such as Molisch's, Fehling's, Mayer's, Wagner's, Dragendorff's, frothing, FeCl3, alkali, Pew's, and Salkowski's test, general test of glycosides, Baljet and NH4OH test, formalin-induced paw licking, acetic acid-induced writhing, tail immersion, and hot plate tests, and castor oil and MgSO4 induced diarrheal tests. Results. These extracts revealed the presence of saponins, flavonoids, and triterpenoids and significantly (⁎P < 0.05, versus control) reduced paw licking and abdominal writhing of mice. At 30 min after their administration, PBMPB revealed significant increase in latency (⁎P < 0.05, versus control) in tail immersion test. In hot plate test, HMPB and PBMPB 200 mg/kg showed significant increase in response latency (⁎P < 0.05, versus control) at 30 min after their administration. Moreover, both extracts significantly (⁎P < 0.05, versus control) inhibited percentage of diarrhea in antidiarrheal models. Conclusion. Study results indicate that M. paniculata may provide a source of plant compounds with antinociceptive and antidiarrheal activities. PMID:27777944

  7. Study of pharmacological activities of methanol extract of Jatropha gossypifolia fruits

    PubMed Central

    Apu, Apurba Sarker; Hossain, Faruq; Rizwan, Farhana; Bhuyan, Shakhawat Hossan; Matin, Maima; Jamaluddin, A.T.M

    2012-01-01

    Objective: The present study was carried out to investigate the possible in vivo analgesic, neuropharmacological and anti-diarrheal activities of the methanol extract of Jatropha gossypifolia fruits. Materials and Methods: The analgesic activity was measured by acetic acid induced writhing inhibition test. The neuropharmacological activities were evaluated by hole cross, hole-board, and elevated plus-maze (EPM) tests and the anti-diarrheal activity was assessed by castor oil induced diarrhea inhibition method. Findings: The extract showed highly significant (P < 0.001) analgesic activity with % inhibitions of writhing response at doses 200 and 400 mg/kg body weight were 77.86% and 71.25%, respectively. The extract at both doses showed significant (P < 0.05) sedative effect in-hole cross test. In-hole board test, the extract showed highly significant (P < 0.001) anxiolytic activity at lower dose whereas this activity was observed at higher dose in EPM test. The extract also showed highly significant (P < 0.001) anti-diarrheal activity. Conclusion: The findings of the study clearly indicate the presence of significant analgesic, neuropharmacological and anti-diarrheal properties of the plant, which demands further investigation including, compound isolation. PMID:24808665

  8. Controlled noxious chemical stimulation: responses of rat trigeminal brainstem neurones to CO2 pulses applied to the nasal mucosa.

    PubMed

    Anton, F; Peppel, P; Euchner, I; Handwerker, H O

    1991-02-25

    The nasal mucosa of halothane-anesthetized rats was stimulated with defined CO2 pulses. Recordings were performed from single trigeminal brainstem neurons to characterize their responses to this controlled chemical irritation. All cells examined with this stimulus displayed graded discharges to increasing concentrations of CO2. Enhanced responses were obtained in a group of neurons when the duration of the interstimulus interval was increased. The application of chemical irritants, notably mustard oil or acetic acid induced vigorous ongoing discharges in all cells tested. The CO2 stimulation method described here thus provides an ideal model for the quantitative physiological and pharmacological examination of chemically induced nociception.

  9. Analgesic and anti-inflammatory activities of Torenia concolor Lindley var. formosana Yamazaki and betulin in mice.

    PubMed

    Lin, Ying-Chih; Cheng, Hao-Yuan; Huang, Tai-Hung; Huang, Hsin-Wei; Lee, Yi-Hsuan; Peng, Wen-Huang

    2009-01-01

    The present study was intended to examine the analgesic effect of the 70% methanol extract of Torenia concolor Lindley var. formosana Yamazaki (TC(MeOH)) and betulin using models of acetic acid-induced writhing response and formalin test. In addition, we investigated the anti-inflammatory effect of TC(MeOH) and betulin using model of lambda-carrageenan-induced paw edema. We observed the activities of antioxidant enzymes (SOD, GPx and GR) in the liver and the levels of malondialdehyde (MDA) and nitric oxide (NO) in the edema paw. The results showed that TC(MeOH) (1.0 and 2.0 g/kg) and betulin (30 and 90 mg/kg), significantly inhibited the acetic acid-induced writhing response. TC(MeOH) (2.0 g/kg) and betulin (30 and 90 mg/kg) significantly inhibited formalin-induced licking time during both the early and late phases. TC(MeOH) (0.5, 1.0 and 2.0 g/kg) and betulin (30 and 90 mg/kg) also significantly decreased the paw edema at the 4th hour after lambda-carrageenan injection. Furthermore, TC(MeOH) and betulin treatment also significantly increased the activities of SOD, GR and GPx in the liver while decreasing the level of MDA in the edema paw. Finally, betulin (30 and 90 mg/kg) also caused considerable reduction of NO level in the edema paw. Taken together, the present results indicated that TC(MeOH) and betulin possessed analgesic and anti-inflammatory effects. The anti-inflammatory mechanism of TC(MeOH) and betulin may be related to decreasing the levels of MDA and NO in the edema paw by increasing the activities of antioxidant enzymes in the liver.

  10. Analgesic and hypnotic activities of Laghupanchamula: A preclinical study

    PubMed Central

    Ghildiyal, Shivani; Gautam, Manish K.; Joshi, Vinod K.; Goel, Raj K.

    2014-01-01

    Background: In Ayurvedic classics, two types of Laghupanchamula -five plant roots (LP) have been mentioned containing four common plants viz. Kantakari, Brihati, Shalaparni, and Prinshniparni and the fifth plant is either Gokshura (LPG) or Eranda (LPE). LP has been documented to have Shothahara (anti-inflammatory), Shulanashka (analgesic), Jvarahara (antipyretic), and Rasayana (rejuvenator) activities. Aim: To evaluate the acute toxicity (in mice), analgesic and hypnotic activity (in rats) of 50% ethanolic extract of LPG (LPGE) and LPE (LPEE). Materials and Methods: LPEG and LPEE were prepared separately by using 50% ethanol following the standard procedures. A graded dose (250, 500 and 1000 mg/kg) response study for both LPEE and LPGE was carried out for analgesic activity against rat tail flick response which indicated 500 mg/kg as the optimal effective analgesic dose. Hence, 500 mg/kg dose of LPEE and LPGE was used for hot plate test and acetic acid induced writhing model in analgesic activity and for evaluation of hypnotic activity. Results: Both the extracts did not produce any acute toxicity in mice at single oral dose of 2.0 g/kg. Both LPGE and LPEE (250, 500, and 1000 mg/kg) showed dose-dependent elevation in pain threshold and peak analgesic effect at 60 min as evidenced by increased latency period in tail-flick method by 25.1-62.4% and 38.2-79.0% respectively. LPGE and LPEE (500 mg/kg) increased reaction time in hot-plate test at peak 60 min analgesic effect by 63.2 and 85.8% and reduction in the number of acetic acid-induced writhes by 55.9 and 65.8% respectively. Both potentiated pentobarbitone-induced hypnosis as indicated by increased duration of sleep in treated rats. Conclusion: The analgesic and hypnotic effects of LP formulations authenticate their uses in Ayurvedic system of Medicine for painful conditions. PMID:25364205

  11. Potent Anti-inflammatory and Analgesic Actions of the Chloroform Extract of Dendropanax morbifera Mediated by the Nrf2/HO-1 Pathway.

    PubMed

    Akram, Muhammad; Kim, Kyeong-A; Kim, Eun-Sun; Syed, Ahmed Shah; Kim, Chul Young; Lee, Jong Soo; Bae, Ok-Nam

    2016-01-01

    Dendropanax morbifera LEVEILLE (DP) has been used in traditional Korean medicines to treat a variety of inflammatory diseases. Although the in vitro anti-inflammatory potential of this plant is understood, its in vivo efficacy and underlying molecular mechanism of anti-inflammatory effects are largely unknown. We elucidated the anti-inflammatory and analgesic activities and the underlying molecular mechanisms of DP using in vitro and in vivo models. Lipopolysaccharide (LPS)-stimulated murine macrophages were used to analyze the in vitro anti-inflammatory potential of DP extract and to elucidate the underlying mechanisms. In vivo animal models of phorbol 12-myristate 13-acetate (TPA)-induced ear edema and acetic acid-induced writhing response tests were used to analyze the in vivo anti-inflammatory effects and anti-nociceptive effects of DP extract, respectively. Methanolic extract of DP (DPME) significantly inhibited the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-activated macrophages. Among the five sub-fractions, the chloroform fraction (DP-C) showed the most potent suppressive effects against pro-inflammatory mediators and cytokines in LPS-stimulated macrophages. These effects were attributed to inhibition of nuclear factor-κB (NF-κB) nuclear translocation and c-Jun N terminal kinase (JNK) 1/2 phosphorylation and to activation of NF-E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling. DP-C exhibited strong protective in vivo effects in TPA-induced ear edema mouse model and acetic acid-induced writhing response test. Our data suggest that DP-C has potent anti-inflammatory and analgesic activities and may be a promising treatment against a variety of inflammatory diseases.

  12. Analgesic and Anti-Inflammatory Activities of Rosa taiwanensis Nakai in Mice

    PubMed Central

    Tsai, Der-Shiang; Huang, Mei-Hsuen; Tsai, Jen-Chieh; Chang, Yuan-Shuang; Chiu, Yung-Jia; Lin, Yen-Chang

    2015-01-01

    Abstract In this study, we evaluated the analgesic and anti-inflammatory activities of a 70% ethanol extract from Rosa taiwanensis Nakai (RTEtOH). The analgesic effect was determined using acetic acid-induced writhing response and formalin test. The anti-inflammatory activity was evaluated by λ-carrageenan-induced paw edema in mice. The anti-inflammatory mechanism of RTEtOH was examined by measuring the levels of cyclooxygenase-2 (COX-2), nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and malondialdehyde (MDA) in the paw edema tissue and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GRd) in the liver tissue. The betulinic acid and oleanolic acid contents of RTEtOH were assayed by HPLC. The results showed that RTEtOH decreased the acetic acid-induced writhing responses (1.0 g/kg) and the late phase of the formalin-induced licking time (0.5 and 1.0 g/kg). In the anti-inflammatory models, RTEtOH (0.5 and 1.0 g/kg) reduced the paw edema at 3, 4, and 5 h after λ-carrageenan administration. Moreover, the anti-inflammatory mechanisms might be due to the decreased levels of COX-2, TNF-α, IL-1β, and IL-6, as well as the inhibition of NO and MDA levels through increasing the activities of SOD, GPx, and GRd. The contents of two active compounds, betulinic acid and oleanolic acid, were quantitatively determined. This study demonstrated the analgesic and anti-inflammatory activities of RTEtOH and provided evidence to support its therapeutic use in inflammatory diseases. PMID:25494361

  13. Linoleic acid-induced expression of inducible nitric oxide synthase and cyclooxygenase II via p42/44 mitogen-activated protein kinase and nuclear factor-kappaB pathway in retinal pigment epithelial cells.

    PubMed

    Fang, I-Mo; Yang, Chang-Hao; Yang, Chung-May; Chen, Muh-Shy

    2007-11-01

    High linoleic acid (LA) intake is known to correlate with age-related macular degeneration (AMD), but the molecular mechanisms remain unclear. This study was conducted to investigate the effects of LA on expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) and their associated signaling pathways in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were treated with different concentrations of LA. Expressions of iNOS and COX-2 were examined using semiquantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Concentrations of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in the culture medium were determined by enzyme-link immunosorbent assay (ELISA). Activation of p42/44, p38, JNK mitogen-activated protein kinase (MAPK) and nuclear factors (NF)-kappaB were evaluated by Western blot analysis and electrophoretic mobility shift assay (EMSA). We found that LA induced expression of iNOS and COX-2 in RPE cells at the mRNA and protein levels in a time-and dose-dependent manner. Upregulation of iNOS and COX-2 resulted in increased production of NO and PGE(2). Moreover, LA caused degradation of IkappaB and increased NF-kappaB DNA binding activity. Effects of LA-induced iNOS and COX-2 expression were inhibited by a NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC). LA activated p42/44, but not p38 or JNK MAPK. Inhibition of p42/44 activity by PD98059 significantly reduced LA-induced activation of NF-kappaB. Linoleic acid-induced expression of iNOS and COX-2 as well as PGE(2) and NO release in RPE cells were sequentially mediated through activation of p42/p44, MAPK, then NF-kappaB. These results may provide new insights into both mechanisms of LA action on RPE cells and pathogenesis of age-related macular degeneration.

  14. Anti-nociceptive Activity of Ethnomedicinally Important Analgesic Plant Isodon rugosus Wall. ex Benth: Mechanistic Study and Identifications of Bioactive Compounds

    PubMed Central

    Zeb, Anwar; Ahmad, Sajjad; Ullah, Farhat; Ayaz, Muhammad; Sadiq, Abdul

    2016-01-01

    Isodon rugosus Wall. ex Benth. is extensively used as traditional medicine for the management of various types of pain including tooth ache, gastric pain, abdominal pain, ear ache, and generalized body pain. The current study is designed to scientifically verify the purported uses of I. rugosus as analgesic agent and to figure out its possible mechanism of action. Bioactive compounds responsible for analgesic activity were identified using GC and GC-MS analysis. Analgesic potentials were evaluated using acetic acid induced writhing, hot plate test, and formalin induced paw licking test. In acetic acid induced writhing chloroform fraction (Ir.Chf) exhibited 53% analgesia while formalin test displayed 61% inhibition at phase-I and 45% at phase-II respectively at a dose of 100 mg/kg. Similarly, in hot plate test Ir.Chf displayed average reaction time of 7 min at 15, 30, 45, and 60 min intervals. The possible mechanism of action was found to be the central pathway via opioidergic receptors as the mice showed morphine like analgesic activity at pre-administration of naloxone (opioid antagonist) in hot plate and formalin tests. In GC-MS analysis, 83 compounds were identified among which eight compounds including benzyl alcohol, sebacic acid, myristic acid, phytol, sugiol, Tocopherol, α-Amyrin, and stigmasterol were sorted out as previously reported analgesic compounds. Current study revealed that analgesic potential of I. rugosus can attributed to the presence of analgesic compounds. It may also be concluded that opioids receptors are involved in the analgesic mechanism of I. rugosus due to effective antagonism of nalaxone. PMID:27458379

  15. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses.

    PubMed

    Atkinson, Nicky J; Lilley, Catherine J; Urwin, Peter E

    2013-08-01

    In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination.

  16. Antinociceptive effect of aqueous extracts from the bark of Croton guatemalensis Lotsy in mice.

    PubMed

    Del Carmen, Rejón-Orantes José; Willam, Hernández Macías John; Del Carmen, Grajales Morales Azucena; Nataly, Jiménez-García; Stefany, Coutiño Ochoa Samantha; Anahi, Cañas Avalos; Domingo, Parcero Torres Jorge; Leonardo, Gordillo Páez; Miguel, Pérez de la Mora

    2016-01-01

    Croton guatemalensis Lotsy (CGL), known as "copalchi" in Chiapas, Mexico, is used for the treatment of fever, abdominal pain and malaria and also as a remedy for chills and for treating rheumatism. The aim of this study was to evaluate whether aqueous extracts from the bark of this plant possesses indeed antinociceptive properties by using two different animal models of nociception, the acetic acid-induced writhing test and the hot plate model. The results showed that i.p. administration of this extract (0, 100, 200 and 400 mg/kg) 30 min prior testing had significant dose-dependent antinociceptive effects in the acetic acid-induced writhing test and that the reduction of writhings (85.5 % as compared to the control) at the highest dose tested is similar to that exhibited by dipyrone (250 mg/kg). This effect was not reversed by naloxone, a non-selective opioid receptor antagonist, suggesting that the endogenous opioid system does not underlie the antinociceptive effects of CGL in the acetic acid-induced writhing test. No effects were however observed in the hot-plate model. Our results indicate that aqueous extracts from Croton guatemalensis bark contain pharmacologically active constituents endowed with antinociceptive activity. It is suggested that cyclooxygenase inhibition might be at least partially involved in the antinociceptive effects of this extract.

  17. Antinociceptive effect of aqueous extracts from the bark of Croton guatemalensis Lotsy in mice

    PubMed Central

    del Carmen, Rejón-Orantes José; Willam, Hernández Macías John; del Carmen, Grajales Morales Azucena; Nataly, Jiménez-García; Stefany, Coutiño Ochoa Samantha; Anahi, Cañas Avalos; Domingo, Parcero Torres Jorge; Leonardo, Gordillo Páez; Miguel, Pérez de la Mora

    2016-01-01

    Croton guatemalensis Lotsy (CGL), known as “copalchi” in Chiapas, Mexico, is used for the treatment of fever, abdominal pain and malaria and also as a remedy for chills and for treating rheumatism. The aim of this study was to evaluate whether aqueous extracts from the bark of this plant possesses indeed antinociceptive properties by using two different animal models of nociception, the acetic acid-induced writhing test and the hot plate model. The results showed that i.p. administration of this extract (0, 100, 200 and 400 mg/kg) 30 min prior testing had significant dose-dependent antinociceptive effects in the acetic acid-induced writhing test and that the reduction of writhings (85.5 % as compared to the control) at the highest dose tested is similar to that exhibited by dipyrone (250 mg/kg). This effect was not reversed by naloxone, a non-selective opioid receptor antagonist, suggesting that the endogenous opioid system does not underlie the antinociceptive effects of CGL in the acetic acid-induced writhing test. No effects were however observed in the hot-plate model. Our results indicate that aqueous extracts from Croton guatemalensis bark contain pharmacologically active constituents endowed with antinociceptive activity. It is suggested that cyclooxygenase inhibition might be at least partially involved in the antinociceptive effects of this extract. PMID:27051428

  18. Dependence of RIG-I Nucleic Acid-Binding and ATP Hydrolysis on Activation of Type I Interferon Response

    PubMed Central

    Baek, Yu Mi; Yoon, Soojin; Hwang, Yeo Eun

    2016-01-01

    Exogenous nucleic acids induce an innate immune response in mammalian host cells through activation of the retinoic acid-inducible gene I (RIG-I). We evaluated RIG-I protein for RNA binding and ATPase stimulation with RNA ligands to investigate the correlation with the extent of immune response through RIG-I activation in cells. RIG-I protein favored blunt-ended, double-stranded RNA (dsRNA) ligands over sticky-ended dsRNA. Moreover, the presence of the 5'-triphosphate (5'-ppp) moiety in dsRNA further enhanced binding affinity to RIG-I. Two structural motifs in RNA, blunt ends in dsRNA and 5'-ppp, stimulated the ATP hydrolysis activity of RIG-I. These structural motifs also strongly induced IFN expression as an innate immune response in cells. Therefore, we suggest that IFN induction through RIG-I activation is mainly determined by structural motifs in dsRNA that increase its affinity for RIG-I protein and stimulate ATPase activity in RIG-I. PMID:27574504

  19. Rights & Responsibilities.

    ERIC Educational Resources Information Center

    Online-Offline, 2000

    2000-01-01

    This theme issue guides teachers and students to annotated listings of Web sites, CD-ROMs and computer software, videos, books, and additional resources that deal with topics related to rights and responsibilities. Sidebar features discuss animal rights, handling money responsibly, and taking responsibility for the environment. (Contains Three…

  20. Antioxidant, Antinociceptive and Anti-inflammatory Activities of Ethanolic Extract of Leaves of Alocasia indica (Schott.).

    PubMed

    Mulla, Wa; Kuchekar, Sb; Thorat, Vs; Chopade, Ar; Kuchekar, Bs

    2010-04-01

    Extracts obtained from the leaves of various Alocasia species have been used in India as folk remedy for the treatment of various inflammatory ailments including rheumatism and bruise. The ethanolic extract of leaves of Alocasia indica Schott. was evaluated by using different in vitro antioxidant models of screening like scavenging of 1, 1-diphenyl-2-picryl hydrazyl (DPPH) radical, nitric oxide radical, superoxide anion radical, and hydroxyl radical. The antinociceptive activity was tested by acetic acid-induced writhing response, hot plate method, and tail flick method in albino rats. The anti-inflammatory potential of gels of ethanolic extract has been determined by using carrageenan-induced paw edema assay, formalin-induced paw edema assay, arachidonic acid-induced ear edema assay, and xylene-induced ear edema assay. The extract showed remarkable antioxidant activity in all models, comparable to the standard reference drug ascorbic acid. The ethanolic extract of Alocasia indica and its gels produced dose-dependent antinociceptive and anti-inflammatory activity, respectively. This finding suggests that ethanolic extract of A. indica possess potent antinociceptive and anti-inflammatory activity possibly due to its free radical scavenging properties.

  1. Antinociceptive Activity of Melicope ptelefolia Ethanolic Extract in Experimental Animals

    PubMed Central

    Sulaiman, Mohd Roslan; Mohd Padzil, Azyyati; Shaari, Khozirah; Khalid, Syamimi; Shaik Mossadeq, Wan Mastura; Mohamad, Azam Shah; Ahmad, Syahida; Akira, Ahmad; Israf, Daud; Lajis, Nordin

    2010-01-01

    Melicope ptelefolia is a medicinal herb commonly used in Malaysia to treat fever, pain, wounds, and itches. The present study was conducted to evaluate the antinociceptive activity of the Melicope ptelefolia ethanolic extract (MPEE) using animal models of nociception. The antinociceptive activity of the extract was assessed using acetic acid-induced abdominal writhing, hot-plate, and formalin-induced paw licking tests. Oral administration of MPEE produced significant dose-dependent antinociceptive effects when tested in mice and rats using acetic acid-induced abdominal constriction test and on the second phase of the formalin-induced paw licking test, respectively. It was also demonstrated that MPEE had no effect on the response latency time to the heat stimulus in the thermal model of the hot-plate test. In addition, the antinociception produced by MPEE was not blocked by naloxone. Furthermore, oral administration of MPEE did not produce any effect in motor performance of the rota-rod test and in acute toxicity study no abnormal behaviors as well as mortality were observed up to a dose level of the extract of 5 g/kg. These results indicated that MPEE at all doses investigated which did not produce any sedative and toxic effects exerted pronounce antinociceptive activity that acts peripherally in experimental animals. PMID:21274262

  2. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome

    PubMed Central

    Hölzel, Michael; Huang, Sidong; Koster, Jan; Øra, Ingrid; Lakeman, Arjan; Caron, Huib; Nijkamp, Wouter; Xie, Jing; Callens, Tom; Asgharzadeh, Shahab; Seeger, Robert C.; Messiaen, Ludwine; Versteeg, Rogier; Bernards, René

    2010-01-01

    Summary Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional co-activator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1 deficient neuroblastomas. PMID:20655465

  3. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves

    PubMed Central

    Calabrò, Emanuele; Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Magazù, Salvatore; Ientile, Riccardo

    2012-01-01

    AIM: To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS: Neuron-like cells, obtained by retinoic-acid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS: Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity