Science.gov

Sample records for acid-sensitive ion channels

  1. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  2. The bile acid-sensitive ion channel (BASIC), the ignored cousin of ASICs and ENaC.

    PubMed

    Wiemuth, Dominik; Assmann, Marc; Gründer, Stefan

    2014-01-01

    The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na(+) channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.

  3. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels.

    PubMed

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Kim, Young Chul; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin; Ji, Il Woon

    2016-09-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K(+) channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K(+) current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K(+) channels (TASK-2). NIOK in the presence of K(+) channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

  4. Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

    PubMed Central

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin

    2016-01-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K+ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K+ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K+ channels (TASK-2). NIOK in the presence of K+ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery. PMID:27610042

  5. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels.

    PubMed

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Kim, Young Chul; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin; Ji, Il Woon

    2016-09-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K(+) channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K(+) current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K(+) channels (TASK-2). NIOK in the presence of K(+) channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery. PMID:27610042

  6. Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

    PubMed Central

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin

    2016-01-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K+ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K+ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K+ channels (TASK-2). NIOK in the presence of K+ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

  7. Cardiac ion channels

    PubMed Central

    Priest, Birgit T; McDermott, Jeff S

    2015-01-01

    Ion channels are critical for all aspects of cardiac function, including rhythmicity and contractility. Consequently, ion channels are key targets for therapeutics aimed at cardiac pathophysiologies such as atrial fibrillation or angina. At the same time, off-target interactions of drugs with cardiac ion channels can be the cause of unwanted side effects. This manuscript aims to review the physiology and pharmacology of key cardiac ion channels. The intent is to highlight recent developments for therapeutic development, as well as elucidate potential mechanisms for drug-induced cardiac side effects, rather than present an in-depth review of each channel subtype. PMID:26556552

  8. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  9. Ion channels and cancer.

    PubMed

    Kunzelmann, Karl

    2005-06-01

    Membrane ion channels are essential for cell proliferation and appear to have a role in the development of cancer. This has initially been demonstrated for potassium channels and is meanwhile also suggested for other cation channels and Cl- channels. For some of these channels, like voltage-gated ether à go-go and Ca2+-dependent potassium channels as well as calcium and chloride channels, a cell cycle-dependent function has been demonstrated. Along with other membrane conductances, these channels control the membrane voltage and Ca2+ signaling in proliferating cells. Homeostatic parameters, such as the intracellular ion concentration, cytosolic pH and cell volume, are also governed by the activity of ion channels. Thus it will be an essential task for future studies to unravel cell cycle-specific effects of ion channels and non-specific homeostatic functions. When studying the role of ion channels in cancer cells, it is indispensable to choose experimental conditions that come close to the in vivo situation. Thus, environmental parameters, such as low oxygen pressure, acidosis and exposure to serum proteins, have to be taken into account. In order to achieve clinical application, more studies on the original cancer tissue are required, and improved animal models. Finally, it will be essential to generate more potent and specific inhibitors of ion channels to overcome the shortcomings of some of the current approaches.

  10. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  11. Phosphoinositides regulate ion channels

    PubMed Central

    Hille, Bertil; Dickson, Eamonn J.; Kruse, Martin; Vivas, Oscar; Suh, Byung-Chang

    2014-01-01

    Phosphoinositides serve as signature motifs for different cellular membranes and often are required for the function of membrane proteins. Here, we summarize clear evidence supporting the concept that many ion channels are regulated by membrane phosphoinositides. We describe tools used to test their dependence on phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate, and consider mechanisms and biological meanings of phosphoinositide regulation of ion channels. This lipid regulation can underlie changes of channel activity and electrical excitability in response to receptors. Since different intracellular membranes have different lipid compositions, the activity of ion channels still in transit towards their final destination membrane may be suppressed until they reach an optimal lipid environment. PMID:25241941

  12. Ion channels in microbes

    PubMed Central

    Martinac, Boris; Saimi, Yoshiro; Kung, Ching

    2008-01-01

    Summary Studies of ion channels have for long been dominated by the animalcentric, if not anthropocentric view of physiology. The structures and activities of ion channels had, however, evolved long before the appearance of complex multicellular organisms on Earth. The diversity of ion channels existing in cellular membranes of prokaryotes is a good example. Though at first it may appear as a paradox that most of what we know about the structure of eukaryotic ion channels is based on the structure of bacterial channels, this should not be surprising given the evolutionary relatedness of all living organisms and suitability of microbial cells for structural studies of biological macromolecules in a laboratory environment. Genome sequences of the human as well as various microbial, plant and animal organisms unambiguously established the evolutionary links, whereas crystallographic studies of the structures of major types of ion channels published over the last decade clearly demonstrated the advantage of using microbes as experimental organisms. The purpose of this review is not only to provide an account of acquired knowledge on microbial ion channels but also to show that the study of microbes and their ion channels may also hold a key to solving unresolved molecular mysteries in the future. PMID:18923187

  13. Ion channels in plants

    PubMed Central

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels.1 He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula,1,2 known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC).1 PMID:23221742

  14. A new method for the removal of toxic metal ions from acid-sensitive biomaterial

    SciTech Connect

    Seki, Hideshi; Suzuki, Akira

    1997-06-01

    A new method (competitive adsorption method) for the removal of toxic heavy metals from acid-sensitive biomaterials was proposed and it was applied to the removal of cadmium from the midgut gland (MG) of scallop, Patinopecten yessoensis. Insolubilized humic acid, which has been developed in the laboratory, was used as a competitive adsorbent. A metal-complexation model was used to determine the adsorption characteristics of cadmium onto MG. Furthermore, the model was applied to the competitive adsorption system. The results showed that the competitive adsorption method enabled the simultaneous removal of toxic cadmium from both liquid and MG phase under mild acidic condition (pH 5).

  15. Ion channeling revisited

    SciTech Connect

    Doyle, Barney Lee; Corona, Aldo; Nguyen, Anh

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  16. Ion Channels in Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Palmer, Lawrence G.

    Ion channels in epithelial cells serve to move ions, and in some cases fluid, between compartments of the body. This function of the transfer of material is fundamentally different from that of the transfer of information, which is the main job of most channels in excitable cells. Nevertheless the basic construction of the channels is similar in many respects in the two tissue types. This chapter reviews the nature of channels in epithelia and discusses how their functions have evolved to accomplish the basic tasks for which they are responsible. I will focus on three channel types: epithelial Na+ channels, inward-rectifier K+ channels, and CFTR Cl- channels.

  17. Ion channel therapeutics for pain

    PubMed Central

    Skerratt, Sarah E; West, Christopher W

    2015-01-01

    Pain is a complex disease which can progress into a debilitating condition. The effective treatment of pain remains a challenge as current therapies often lack the desired level of efficacy or tolerability. One therapeutic avenue, the modulation of ion channel signaling by small molecules, has shown the ability to treat pain. However, of the 215 ion channels that exist in the human genome, with 85 ion channels having a strong literature link to pain, only a small number of these channels have been successfully drugged for pain. The focus of future research will be to fully explore the possibilities surrounding these unexplored ion channels. Toward this end, a greater understanding of ion channel modulation will be the greatest tool we have in developing the next generation of drugs for the treatment of pain. PMID:26218246

  18. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  19. Ultrasound modulates ion channel currents.

    PubMed

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3-4.9 W/cm(2)) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  20. Ultrasound modulates ion channel currents

    PubMed Central

    Kubanek, Jan; Shi, Jingyi; Marsh, Jon; Chen, Di; Deng, Cheri; Cui, Jianmin

    2016-01-01

    Transcranial focused ultrasound (US) has been demonstrated to stimulate neurons in animals and humans, but the mechanism of this effect is unknown. It has been hypothesized that US, a mechanical stimulus, may mediate cellular discharge by activating mechanosensitive ion channels embedded within cellular membranes. To test this hypothesis, we expressed potassium and sodium mechanosensitive ion channels (channels of the two-pore-domain potassium family (K2P) including TREK-1, TREK-2, TRAAK; NaV1.5) in the Xenopus oocyte system. Focused US (10 MHz, 0.3–4.9 W/cm2) modulated the currents flowing through the ion channels on average by up to 23%, depending on channel and stimulus intensity. The effects were reversible upon repeated stimulation and were abolished when a channel blocker (ranolazine to block NaV1.5, BaCl2 to block K2P channels) was applied to the solution. These data reveal at the single cell level that focused US modulates the activity of specific ion channels to mediate transmembrane currents. These findings open doors to investigations of the effects of  US on ion channels expressed in neurons, retinal cells, or cardiac cells, which may lead to important medical applications. The findings may also pave the way to the development of sonogenetics: a non-invasive, US-based analogue of optogenetics. PMID:27112990

  1. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  2. Ion channel screening technologies today.

    PubMed

    Terstappen, Georg C

    2005-01-01

    For every heartbeat, movement and thought, ion channels have to open and close, and thus, it is not surprising that malfunctioning of these membrane proteins leads to serious diseases. Today, only 7% of all marketed drugs act on ion channels but the systematic exploitation of this important target class has started mainly enabled by novel screening technologies. Thus, the discovery of selective and state-dependent drugs is on the horizon, hopefully leading to effective novel medicines.:

  3. Marine Toxins Targeting Ion Channels

    PubMed Central

    Arias, Hugo R.

    2006-01-01

    This introductory minireview points out the importance of ion channels for cell communication. The basic concepts on the structure and function of ion channels triggered by membrane voltage changes, the so-called voltage-gated ion channels (VGICs), as well as those activated by neurotransmitters, the so-called ligand-gated ion channel (LGICs), are introduced. Among the most important VGIC superfamiles, we can name the voltage-gated Na+ (NaV), Ca2+ (CaV), and K+ (KV) channels. Among the most important LGIC super families, we can include the Cys-loop or nicotinicoid, the glutamate-activated (GluR), and the ATP-activated (P2XnR) receptor superfamilies. Ion channels are transmembrane proteins that allow the passage of different ions in a specific or unspecific manner. For instance, the activation of NaV, CaV, or KV channels opens a pore that is specific for Na+, Ca2+, or K+, respectively. On the other hand, the activation of certain LGICs such as nicotinic acetylcholine receptors, GluRs, and P2XnRs allows the passage of cations (e.g., Na+, K+, and/or Ca2+), whereas the activation of other LGICs such as type A γ-butyric acid and glycine receptors allows the passage of anions (e.g., Cl− and/or HCO3−). In this regard, the activation of NaV and CaV as well as ligand-gated cation channels produce membrane depolarization, which finally leads to stimulatory effects in the cell, whereas the activation of KV as well as ligand-gated anion channels induce membrane hyperpolarization that finally leads to inhibitory effects in the cell. The importance of these ion channel superfamilies is emphasized by considering their physiological functions throughout the body as well as their pathophysiological implicance in several neuronal diseases. In this regard, natural molecules, and especially marine toxins, can be potentially used as modulators (e.g., inhibitors or prolongers) of ion channel functions to treat or to alleviate a specific ion channel-linked disease (e

  4. Ion Channels in Brain Metastasis

    PubMed Central

    Klumpp, Lukas; Sezgin, Efe C.; Eckert, Franziska; Huber, Stephan M.

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial–mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood–brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  5. Ion Channels in Brain Metastasis.

    PubMed

    Klumpp, Lukas; Sezgin, Efe C; Eckert, Franziska; Huber, Stephan M

    2016-01-01

    Breast cancer, lung cancer and melanoma exhibit a high metastatic tropism to the brain. Development of brain metastases severely worsens the prognosis of cancer patients and constrains curative treatment options. Metastasizing to the brain by cancer cells can be dissected in consecutive processes including epithelial-mesenchymal transition, evasion from the primary tumor, intravasation and circulation in the blood, extravasation across the blood-brain barrier, formation of metastatic niches, and colonization in the brain. Ion channels have been demonstrated to be aberrantly expressed in tumor cells where they regulate neoplastic transformation, malignant progression or therapy resistance. Moreover, many ion channel modulators are FDA-approved drugs and in clinical use proposing ion channels as druggable targets for future anti-cancer therapy. The present review article aims to summarize the current knowledge on the function of ion channels in the different processes of brain metastasis. The data suggest that certain channel types involving voltage-gated sodium channels, ATP-release channels, ionotropic neurotransmitter receptors and gap junction-generating connexins interfere with distinct processes of brain metastazation. PMID:27618016

  6. Src mediates endocytosis of TWIK-related acid-sensitive K+ 1 channels in PC12 cells in response to nerve growth factor.

    PubMed

    Matsuoka, Hidetada; Inoue, Masumi

    2015-08-15

    TWIK-related acid-sensitive K(+) (TASK) channels produce background K(+) currents. We elucidated that TASK1 channels in rat adrenal medullary cells and PC12 cells are internalized in a clathrin-dependent manner in response to nerve growth factor (NGF). Here, the molecular mechanism for this internalization in PC12 cells was explored. The combination of enzyme inhibitors with tropomyosin receptor kinase A mutants revealed that the internalization was mediated by both phospholipase C and phosphatidylinositol 3-kinase pathways that converge on protein kinase C with the consequent activation of Src, a nonreceptor tyrosine kinase. The NGF-induced endocytosis of TASK1 channels did not occur in the presence of the Src inhibitor or with the expression of a kinase-dead Src mutant. Additionally, NGF induced a transient colocalization of Src with the TASK1 channel, but not the TASK1 mutant, in which tyrosine at 370 was replaced with phenylalanine. This TASK1 mutant showed no increase in tyrosine phosphorylation and markedly diminished internalization in response to NGF. We concluded that NGF induces endocytosis of TASK1 channels via tyrosine phosphorylation in its carboxyl terminus.

  7. Demystifying Mechanosensitive Piezo Ion Channels.

    PubMed

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  8. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H2O2 via Flufenamic Acid-Sensitive Channels and KATP Channels

    PubMed Central

    Lee, Christian R.; Witkovsky, Paul; Rice, Margaret E.

    2011-01-01

    Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels to regulate SNr output. PMID:21503158

  9. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons.

    PubMed

    Diochot, Sylvie; Baron, Anne; Rash, Lachlan D; Deval, Emmanuel; Escoubas, Pierre; Scarzello, Sabine; Salinas, Miguel; Lazdunski, Michel

    2004-04-01

    From a systematic screening of animal venoms, we isolated a new toxin (APETx2) from the sea anemone Anthopleura elegantissima, which inhibits ASIC3 homomeric channels and ASIC3-containing heteromeric channels both in heterologous expression systems and in primary cultures of rat sensory neurons. APETx2 is a 42 amino-acid peptide crosslinked by three disulfide bridges, with a structural organization similar to that of other sea anemone toxins that inhibit voltage-sensitive Na+ and K+ channels. APETx2 reversibly inhibits rat ASIC3 (IC50=63 nM), without any effect on ASIC1a, ASIC1b, and ASIC2a. APETx2 directly inhibits the ASIC3 channel by acting at its external side, and it does not modify the channel unitary conductance. APETx2 also inhibits heteromeric ASIC2b+3 current (IC50=117 nM), while it has less affinity for ASIC1b+3 (IC50=0.9 microM), ASIC1a+3 (IC50=2 microM), and no effect on the ASIC2a+3 current. The ASIC3-like current in primary cultured sensory neurons is partly and reversibly inhibited by APETx2 with an IC50 of 216 nM, probably due to the mixed inhibitions of various co-expressed ASIC3-containing channels. PMID:15044953

  10. Microbial Senses and Ion Channels

    NASA Astrophysics Data System (ADS)

    Kung, Ching; Zhou, Xin-Liang; Su, Zhen-Wei; Haynes, W. John; Loukin, Sephan H.; Saimi, Yoshiro

    The complexity of animals and plants is due largely to cellular arrangement. The structures and activities of macromolecules had, however, evolved in early microbes long before the appearance of this complexity. Among such molecules are those that sense light, heat, force, water, and ligands. Though historically and didactically associated with the nervous system, ion channels also have deep evolutionary roots. For example, force sensing with channels, which likely began as water sensing through membrane stretch generated by osmotic pressure, must be ancient and is universal in extant species. Extant microbial species, such as the model bacterium Escherichia coli and yeast Saccharomyces cerevisiae, are equipped with stretch-activated channels. The ion channel proteins MscL and MscS show clearly that these bacterial channels receive stretch forces from the lipid bilayer. TRPY1, the mechanosensitive channel in yeast, is being developed towards a similar basic understanding of channels of the TRP (transientreceptor- potential) superfamily. TRPY1 resides in the vacuolar membrane and releases Ca2+ from the vacuole to the cytoplasm upon hyperosmotic shock. Unlike in most TRP preparations from animals, the mechanosensitivity of TRPY1 can be examined directly under patch clamp in either whole-vacuole mode or excised patch mode. The combination of direct biophysical examination in vitro with powerful microbial genetics in vivo should complement the study of mechanosensations of complex animals and plants.

  11. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets. PMID:27535998

  12. A Latin American Perspective on Ion Channels.

    PubMed

    Elgoyhen, Ana Belén; Barajas-López, Carlos

    2016-09-01

    Ion channels, both ligand- and voltage-gated, play fundamental roles in many physiologic processes. Alteration in ion channel function underlies numerous pathologies, including hypertension, diabetes, chronic pain, epilepsy, certain cancers, and neuromuscular diseases. In addition, an increasing number of inherited and de novo ion channel mutations have been shown to contribute to disease states. Ion channels are thus a major class of pharmacotherapeutic targets.

  13. Ion channels meet auxin action.

    PubMed

    Fuchs, I; Philippar, K; Hedrich, R

    2006-05-01

    The regulation of cell division and elongation in plants is accomplished by the action of different phytohormones. Auxin as one of these growth regulators is known to stimulate cell elongation growth in the aerial parts of the plant. Here, auxin enhances cell enlargement by increasing the extensibility of the cell wall and by facilitating the uptake of osmolytes such as potassium ions into the cell. Starting in the late 1990s, the auxin regulation of ion channels mediating K+ import into the cell has been studied in great detail. In this article we will focus on the molecular mechanisms underlying the modulation of K+ transport by auxin and present a model to explain how the regulation of K+ channels is involved in auxin-induced cell elongation growth. PMID:16807828

  14. Ion channels in analgesia research.

    PubMed

    Rosenbaum, Tamara; Simon, Sidney A; Islas, Leon D

    2010-01-01

    Several recent techniques have allowed us to pinpoint the receptors responsible for the detection of nociceptive stimuli. Among these receptors, ion channels play a fundamental role in the recognition and transduction of stimuli that can cause pain. During the last decade, compelling evidence has been gathered on the role of the TRPV1 channel in inflammatory and neuropathic states. Activation of TRPV1 in nociceptive neurons results in the release of neuropeptides and transmitters, leading to the generation of action potentials that will be sent to higher CNS areas, where they will often be perceived as pain. Its activation will also evoke the peripheral release of pro-inflammatory compounds that may sensitize other neurons to physical, thermal, or chemical stimuli. For these reasons, and because its continuous activation causes analgesia, TRPV1 is now considered a viable drug target for clinical use in the management of pain. Using the TRPV1 channel as an example, here we describe some basic biophysical approaches used to study the properties of ion channels involved in pain and in analgesia.

  15. Validation of ion channel targets.

    PubMed

    Gerlach, Aaron C; Antonio, Brett M

    2015-01-01

    A prerequisite for a successful target-based drug discovery program is a robust data set that increases confidence in the validation of the molecular target and the therapeutic approach. Given the significant time and resource investment required to carry a drug to market, early selection of targets that can be modulated safely and effectively forms the basis for a strong portfolio and pipeline. In this article we present some of the more useful scientific approaches that can be applied toward the validation of ion channel targets, a molecular family with a history of clinical success in therapeutic areas such as cardiovascular, respiratory, pain and neuroscience.

  16. High throughput screening technologies for ion channels

    PubMed Central

    Yu, Hai-bo; Li, Min; Wang, Wei-ping; Wang, Xiao-liang

    2016-01-01

    Ion channels are involved in a variety of fundamental physiological processes, and their malfunction causes numerous human diseases. Therefore, ion channels represent a class of attractive drug targets and a class of important off-targets for in vitro pharmacological profiling. In the past decades, the rapid progress in developing functional assays and instrumentation has enabled high throughput screening (HTS) campaigns on an expanding list of channel types. Chronologically, HTS methods for ion channels include the ligand binding assay, flux-based assay, fluorescence-based assay, and automated electrophysiological assay. In this review we summarize the current HTS technologies for different ion channel classes and their applications. PMID:26657056

  17. Simulations of ion channels--watching ions and water move.

    PubMed

    Sansom, M S; Shrivastava, I H; Ranatunga, K M; Smith, G R

    2000-08-01

    Ion channels mediate electrical excitability in neurons and muscle. Three-dimensional structures for model peptide channels and for a potassium (K+) channel have been combined with computer simulations to permit rigorous exploration of structure-function relations of channels. Water molecules and ions within transbilayer pores tend to diffuse more slowly than in bulk solutions. In the narrow selectivity filter of the bacterial K+ channel (i.e. the region of the channel that discriminates between different species of ions) a column of water molecules and K+ ions moves in a concerted fashion. By combining atomistic simulations (in which all atoms of the channel molecule, water and ions are treated explicitly) with continuum methods (in which the description of the channel system is considerably simplified) it is possible to simulate some of the physiological properties of channels.

  18. Ion Channel Engineering: Perspectives and Strategies

    PubMed Central

    Subramanyam, Prakash; Colecraft, Henry M.

    2014-01-01

    Ion channels facilitate the passive movement of ions down an electrochemical gradient and across lipid bilayers in cells. This phenomenon is essential for life, and underlies many critical homeostatic processes in cells. Ion channels are diverse and differ with respect to how they open and close (gating), and their ionic conductance/selectivity (permeation). Fundamental understanding of ion channel structure-function mechanisms, their physiological roles, how their dysfunction leads to disease, their utility as biosensors, and development of novel molecules to modulate their activity are important and active research frontiers. In this review, we focus on ion-channel engineering approaches that have been applied to investigate these aspects of ion channel function, with a major emphasis on voltage-gated ion channels. PMID:25205552

  19. ICEPO: the ion channel electrophysiology ontology

    PubMed Central

    Hinard, V.; Britan, A.; Rougier, J.S.; Bairoch, A.; Abriel, H.; Gaudet, P.

    2016-01-01

    Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site: ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use. PMID:27055825

  20. ICEPO: the ion channel electrophysiology ontology.

    PubMed

    Hinard, V; Britan, A; Rougier, J S; Bairoch, A; Abriel, H; Gaudet, P

    2016-01-01

    Ion channels are transmembrane proteins that selectively allow ions to flow across the plasma membrane and play key roles in diverse biological processes. A multitude of diseases, called channelopathies, such as epilepsies, muscle paralysis, pain syndromes, cardiac arrhythmias or hypoglycemia are due to ion channel mutations. A wide corpus of literature is available on ion channels, covering both their functions and their roles in disease. The research community needs to access this data in a user-friendly, yet systematic manner. However, extraction and integration of this increasing amount of data have been proven to be difficult because of the lack of a standardized vocabulary that describes the properties of ion channels at the molecular level. To address this, we have developed Ion Channel ElectroPhysiology Ontology (ICEPO), an ontology that allows one to annotate the electrophysiological parameters of the voltage-gated class of ion channels. This ontology is based on a three-state model of ion channel gating describing the three conformations/states that an ion channel can adopt: closed, open and inactivated. This ontology supports the capture of voltage-gated ion channel electrophysiological data from the literature in a structured manner and thus enables other applications such as querying and reasoning tools. Here, we present ICEPO (ICEPO ftp site:ftp://ftp.nextprot.org/pub/current_release/controlled_vocabularies/), as well as examples of its use.

  1. Ion channel probes for scanning ion conductance microscopy.

    PubMed

    Zhou, Yi; Bright, Leonard K; Shi, Wenqing; Aspinwall, Craig A; Baker, Lane A

    2014-12-23

    The sensitivity and selectivity of ion channels provide an appealing opportunity for sensor development. Here, we describe ion channel probes (ICPs), which consist of multiple ion channels reconstituted into lipid bilayers suspended across the opening of perflourinated glass micropipets. When incorporated with a scanning ion conductance microscope (SICM), ICPs displayed a distance-dependent current response that depended on the number of ion channels in the membrane. With distance-dependent current as feedback, probes were translated laterally, to demonstrate the possibility of imaging with ICPs. The ICP platform yields several potential advantages for SICM that will enable exciting opportunities for incorporation of chemical information into imaging and for high-resolution imaging.

  2. Ion channels versus ion pumps: the principal difference, in principle

    PubMed Central

    Gadsby, David C.

    2009-01-01

    Two kinds of border guards control the incessant traffic of ions across cell membranes: ion channels and ion pumps. When open, channels let selected ions diffuse rapidly down electrical and concentration gradients, whereas ion pumps labour tirelessly to maintain the gradients, by consuming energy to slowly move ions against them. Because of their diametrically opposed tasks and their divergent speeds, channels and pumps have traditionally been viewed as completely different entities, as alike as chalk and cheese. But new structural and mechanistic information about both classes of these molecular machines challenges this comfortable separation, forcing its reevaluation. PMID:19339978

  3. Ion Channels in Innate and Adaptive Immunity

    PubMed Central

    Feske, Stefan; Wulff, Heike; Skolnik, Edward Y.

    2016-01-01

    Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy. PMID:25861976

  4. Ion channels, channelopathies, and tooth formation.

    PubMed

    Duan, X

    2014-02-01

    The biological functions of ion channels in tooth development vary according to the nature of their gating, the species of ions passing through those gates, the number of gates, localization of channels, tissue expressing the channel, and interactions between cells and microenvironment. Ion channels feature unique and specific ion flux in ameloblasts, odontoblasts, and other tooth-specific cell lineages. Both enamel and dentin have active chemical systems orchestrating a variety of ion exchanges and demineralization and remineralization processes in a stage-dependent manner. An important role for ion channels is to regulate and maintain the calcium and pH homeostasis that are critical for proper enamel and dentin biomineralization. Specific functions of chloride channels, TRPVs, calcium channels, potassium channels, and solute carrier superfamily members in tooth formation have been gradually clarified in recent years. Mutations in these ion channels or transporters often result in disastrous changes in tooth development. The channelopathies of tooth include altered eruption (CLCN7, KCNJ2, TRPV3), root dysplasia (CLCN7, KCNJ2), amelogenesis imperfecta (KCNJ1, CFTR, AE2, CACNA1C, GJA1), dentin dysplasia (CLCN5), small teeth (CACNA1C, GJA1), tooth agenesis (CLCN7), and other impairments. The mechanisms leading to tooth channelopathies are primarily related to pH regulation, calcium homeostasis, or other alterations of the niche for tooth eruption and development. PMID:24076519

  5. Modeling ion channels: Past, present, and future

    PubMed Central

    2014-01-01

    Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule. PMID:24935742

  6. Cardiac ion channels in health and disease.

    PubMed

    Amin, Ahmad S; Tan, Hanno L; Wilde, Arthur A M

    2010-01-01

    Cardiac electrical activity depends on the coordinated propagation of excitatory stimuli through the heart and, as a consequence, the generation of action potentials in individual cardiomyocytes. Action potential formation results from the opening and closing (gating) of ion channels that are expressed within the sarcolemma of cardiomyocytes. Ion channels possess distinct genetic, molecular, pharmacologic, and gating properties and exhibit dissimilar expression levels within different cardiac regions. By gating, ion channels permit ion currents across the sarcolemma, thereby creating the different phases of the action potential (e.g., resting phase, depolarization, repolarization). The importance of ion channels in maintaining normal heart rhythm is reflected by the increased incidence of arrhythmias in inherited diseases that are linked to mutations in genes encoding ion channels or their accessory proteins and in acquired diseases that are associated with changes in ion channel expression levels or gating properties. This review discusses ion channels that contribute to action potential formation in healthy hearts and their role in inherited and acquired diseases. PMID:19875343

  7. Equivalence of trans paths in ion channels

    NASA Astrophysics Data System (ADS)

    Alvarez, Juan; Hajek, Bruce

    2006-04-01

    We explore stochastic models for the study of ion transport in biological cells. Analysis of these models explains and explores an interesting feature of ion transport observed by biophysicists. Namely, the average time it takes ions to cross certain ion channels is the same in either direction, even if there is an electric potential difference across the channels. It is shown for simple single ion models that the distribution of a path (i.e., the history of location versus time) of an ion crossing the channel in one direction has the same distribution as the time-reversed path of an ion crossing the channel in the reverse direction. Therefore, not only is the mean duration of these paths equal, but other measures, such as the variance of passage time or the mean time a path spends within a specified section of the channel, are also the same for both directions of traversal. The feature is also explored for channels with interacting ions. If a system of interacting ions is in reversible equilibrium (net flux is zero), then the equivalence of the left-to-right trans paths with the time-reversed right-to-left trans paths still holds. However, if the system is in equilibrium, but not reversible equilibrium, then such equivalence need not hold.

  8. Understanding autoimmunity: The ion channel perspective.

    PubMed

    RamaKrishnan, Anantha Maharasi; Sankaranarayanan, Kavitha

    2016-07-01

    Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.

  9. Ion permeation mechanism of the potassium channel

    NASA Astrophysics Data System (ADS)

    Åqvist, Johan; Luzhkov, Victor

    2000-04-01

    Ion-selective channels enable the specific permeation of ions through cell membranes and provide the basis of several important biological functions; for example, electric signalling in the nervous system. Although a large amount of electrophysiological data is available, the molecular mechanisms by which these channels can mediate ion transport remain a significant unsolved problem. With the recently determined crystal structure of the representative K+ channel (KcsA) from Streptomyces lividans, it becomes possible to examine ion conduction pathways on a microscopic level. K+ channels utilize multi-ion conduction mechanisms, and the three-dimensional structure also shows several ions present in the channel. Here we report results from molecular dynamics free energy perturbation calculations that both establish the nature of the multiple ion conduction mechanism and yield the correct ion selectivity of the channel. By evaluating the energetics of all relevant occupancy states of the selectivity filter, we find that the favoured conduction pathway involves transitions only between two main states with a free difference of about 5 kcal mol-1. Other putative permeation pathways can be excluded because they would involve states that are too high in energy.

  10. Discovery of functional antibodies targeting ion channels.

    PubMed

    Wilkinson, Trevor C I; Gardener, Matthew J; Williams, Wendy A

    2015-04-01

    Ion channels play critical roles in physiology and disease by modulation of cellular functions such as electrical excitability, secretion, cell migration, and gene transcription. Ion channels represent an important target class for drug discovery that has been largely addressed, to date, using small-molecule approaches. A significant opportunity exists to target these channels with antibodies and alternative formats of biologics. Antibodies display high specificity and affinity for their target antigen, and they have the potential to target ion channels very selectively. Nevertheless, isolating antibodies to this target class is challenging due to the difficulties in expression and purification of ion channels in a format suitable for antibody drug discovery in addition to the complexity of screening for function. In this article, we will review the current state of ion channel biologics discovery and the progress that has been made. We will also highlight the challenges in isolating functional antibodies to these targets and how these challenges may be addressed. Finally, we also illustrate successful approaches to isolating functional monoclonal antibodies targeting ion channels by way of a number of case studies drawn from recent publications.

  11. Ion Channel Probes for Scanning Ion Conductance Microscopy

    PubMed Central

    2015-01-01

    The sensitivity and selectivity of ion channels provide an appealing opportunity for sensor development. Here, we describe ion channel probes (ICPs), which consist of multiple ion channels reconstituted into lipid bilayers suspended across the opening of perflourinated glass micropipets. When incorporated with a scanning ion conductance microscope (SICM), ICPs displayed a distance-dependent current response that depended on the number of ion channels in the membrane. With distance-dependent current as feedback, probes were translated laterally, to demonstrate the possibility of imaging with ICPs. The ICP platform yields several potential advantages for SICM that will enable exciting opportunities for incorporation of chemical information into imaging and for high-resolution imaging. PMID:25425190

  12. Silicon-Based Ion Channel Platforms

    NASA Astrophysics Data System (ADS)

    Wilk, S. J.; Petrossian, L.; Goryll, M.; Tang, J. M.; Eisenberg, R. S.; Saraniti, M.; Goodnick, S. M.; Thornton, T. J.

    We demonstrate that silicon substrates can be used as a universal platform for recording the electrical activity of ion channels inserted into suspended bilayers. The bilayers span narrow openings etched into silicon substrates using standard microelectronics processing techniques. Reversible Ag/AgCl electrodes are integrated around the circumference of the opening and provide long-term stable measurements of the ion channel currents. To demonstrate the utility of the silicon platform we have measured the electrical activity of OmpF porin ion channel proteins inserted into a lipid bilayer formed using the Montal — Mueller method. Systematic measurements of the lipid giga-seal characteristics are presented, including ac conductance measurements and statistical analysis in order to resolve the conductance of individual ion-channels.

  13. Alcohol intoxication: Ion channels and genetics

    SciTech Connect

    Harris, A.R.; Allan, A.M. )

    1989-04-01

    Acute in vitro exposure to ethanol and other intoxicant-anesthetics activates {gamma}-aminobutyric acid (GABA)-stimulated chloride channels and inhibits voltage-dependent calcium and sodium channels of isolated brain membranes. The question of whether these neurochemical actions are responsible for intoxication in vivo has been addressed using animal populations displaying genetic differences in sensitivity to alcohol and benzodiazepine intoxication. These genetic approaches include inbred strains, selected lines, recombinant inbred strains, and heterogeneous stocks. Genetic differences in ion channel function provide strong evidence for a role of the GABA-stimulated chloride channel in ethanol and benzodiazepine intoxication; the role of calcium and sodium channels is less clear.

  14. Models of permeation in ion channels

    NASA Astrophysics Data System (ADS)

    Kuyucak, Serdar; Sparre Andersen, Olaf; Chung, Shin-Ho

    2001-11-01

    Ion channels are formed by specific proteins embedded in the cell membrane and provide pathways for fast and controlled flow of selected ions down their electrochemical gradient. This activity generates action potentials in nerves, muscles and other excitable cells, and forms the basis of all movement, sensation and thought processes in living beings. While the functional properties of ion channels are well known from physiological studies, lack of structural knowledge has hindered development of realistic theoretical models necessary for understanding and interpretation of these properties. Recent determination of the molecular structures of potassium and mechanosensitive channels from x-ray crystallography has finally broken this impasse, heralding a new age in ion channel studies where study of structure-function relationships takes a central stage. In this paper, we present a critical review of various approaches to modelling of ion transport in membrane channels, including continuum theories, Brownian dynamics, and classical and ab initio molecular dynamics. Strengths and weaknesses of each approach are discussed and illustrated with applications to some specific ion channels.

  15. Hypoxia. 4. Hypoxia and ion channel function

    PubMed Central

    Polak, Jan

    2011-01-01

    The ability to sense and respond to oxygen deprivation is required for survival; thus, understanding the mechanisms by which changes in oxygen are linked to cell viability and function is of great importance. Ion channels play a critical role in regulating cell function in a wide variety of biological processes, including neuronal transmission, control of ventilation, cardiac contractility, and control of vasomotor tone. Since the 1988 discovery of oxygen-sensitive potassium channels in chemoreceptors, the effect of hypoxia on an assortment of ion channels has been studied in an array of cell types. In this review, we describe the effects of both acute and sustained hypoxia (continuous and intermittent) on mammalian ion channels in several tissues, the mode of action, and their contribution to diverse cellular processes. PMID:21178108

  16. Screening technologies for ion channel drug discovery.

    PubMed

    Terstappen, Georg C; Roncarati, Renza; Dunlop, John; Peri, Ravikumar

    2010-05-01

    For every movement, heartbeat and thought, ion channels need to open and close. It is therefore not surprising that their malfunctioning leads to serious diseases. Currently, only approximately 10% of drugs, with a market value in excess of US$10 billion, act on ion channels. The systematic exploitation of this target class has started, enabled by novel assay technologies and fundamental advances of the structural and mechanistic understanding of channel function. The latter, which was rewarded with the Nobel Prize in 2003, has opened up an avenue for rational drug design. In this review we provide an overview of the current repertoire of screening technologies that has evolved to drive ion channel-targeted drug discovery towards new medicines of the future.

  17. Single-Channel Recording of Ligand-Gated Ion Channels.

    PubMed

    Plested, Andrew J R

    2016-01-01

    Single-channel recordings reveal the microscopic properties of individual ligand-gated ion channels. Such recordings contain much more information than measurements of ensemble behavior and can yield structural and functional information about the receptors that participate in fast synaptic transmission in the brain. With a little care, a standard patch-clamp electrophysiology setup can be adapted for single-channel recording in a matter of hours. Thenceforth, it is a realistic aim to record single-molecule activity with microsecond resolution from arbitrary cell types, including cell lines and neurons. PMID:27480725

  18. The Origins of Transmembrane Ion Channels

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  19. Studying mechanosensitive ion channels using liposomes.

    PubMed

    Martinac, Boris; Rohde, Paul R; Battle, Andrew R; Petrov, Evgeny; Pal, Prithwish; Foo, Alexander Fook; Vásquez, Valeria; Huynh, Thuan; Kloda, Anna

    2010-01-01

    Mechanosensitive (MS) ion channels are the primary molecular transducers of mechanical force into electrical and/or chemical intracellular signals in living cells. They have been implicated in innumerable mechanosensory physiological processes including touch and pain sensation, hearing, blood pressure control, micturition, cell volume regulation, tissue growth, or cellular turgor control. Much of what we know about the basic physical principles underlying the conversion of mechanical force acting upon membranes of living cells into conformational changes of MS channels comes from studies of MS channels reconstituted into artificial liposomes. Using bacterial MS channels as a model, we have shown by reconstituting these channels into liposomes that there is a close relationship between the physico-chemical properties of the lipid bilayer and structural dynamics bringing about the function of these channels.

  20. Regulation of Ion Channels by Pyridine Nucleotides

    PubMed Central

    Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni

    2014-01-01

    Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881

  1. Tuning Photochromic Ion Channel Blockers

    PubMed Central

    2011-01-01

    Photochromic channel blockers provide a conceptually simple and convenient way to modulate neuronal activity with light. We have recently described a family of azobenzenes that function as tonic blockers of Kv channels but require UV-A light to unblock and need to be actively switched by toggling between two different wavelengths. We now introduce red-shifted compounds that fully operate in the visible region of the spectrum and quickly turn themselves off in the dark. Furthermore, we have developed a version that does not block effectively in the dark-adapted state, can be switched to a blocking state with blue light, and reverts to the inactive state automatically. Photochromic blockers of this type could be useful for the photopharmacological control of neuronal activity under mild conditions. PMID:22860175

  2. Mitochondrial Ion Channels in Cancer Transformation

    PubMed Central

    Madamba, Stephen M.; Damri, Kevin N.; Dejean, Laurent M.; Peixoto, Pablo M.

    2015-01-01

    Cancer transformation involves reprograming of mitochondrial function to avert cell death mechanisms, monopolize energy metabolism, accelerate mitotic proliferation, and promote metastasis. Mitochondrial ion channels have emerged as promising therapeutic targets because of their connection to metabolic and apoptotic functions. This mini review discusses how mitochondrial channels may be associated with cancer transformation and expands on the possible involvement of mitochondrial protein import complexes in pathophysiological process. PMID:26090338

  3. Silicon-based ion channel sensor

    NASA Astrophysics Data System (ADS)

    Goryll, M.; Wilk, S.; Laws, G. M.; Thornton, T.; Goodnick, S.; Saraniti, M.; Tang, J.; Eisenberg, R. S.

    2003-09-01

    In this paper we present a method to fabricate an aperture in a silicon wafer that can be used to suspend a freestanding lipid bilayer membrane. The design offers the feature of scalability of the aperture size into the submicron range. Lipid bilayer membranes formed across the aperture in the oxidized silicon substrate show a gigaohm sealing resistance. The stability of these membranes allowed the insertion of a nanometer-sized ion channel protein (OmpF porin) and the measurement of voltage dependent gating that can be expected from a working porin ion channel.

  4. The Earliest Ion Channels in Protocellular Membranes

    NASA Technical Reports Server (NTRS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    2010-01-01

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously selfassemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their structures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological reality, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  5. The earliest ion channels in protocellular membranes

    NASA Astrophysics Data System (ADS)

    Mijajlovic, Milan; Pohorille, Andrew; Wilson, Michael; Wei, Chenyu

    Cellular membranes with their hydrophobic interior are virtually impermeable to ions. Bulk of ion transport through them is enabled through ion channels. Ion channels of contemporary cells are complex protein molecules which span the membrane creating a cylindrical pore filled with water. Protocells, which are widely regarded as precursors to modern cells, had similarly impermeable membranes, but the set of proteins in their disposal was much simpler and more limited. We have been, therefore, exploring an idea that the first ion channels in protocellular membranes were formed by much smaller peptide molecules that could spontaneously self-assemble into short-lived cylindrical bundles in a membrane. Earlier studies have shown that a group of peptides known as peptaibols is capable of forming ion channels in lipid bilayers when they are exposed to an electric field. Peptaibols are small, non-genetically encoded peptides produced by some fungi as a part of their system of defense against bacteria. They are usually only 14-20 residues long, which is just enough to span the membrane. Their sequence is characterized by the presence of non-standard amino acids which, interestingly, are also expected to have existed on the early earth. In particular, the presence of 2-aminoisobutyric acid (AIB) gives peptaibols strong helix forming propensities. Association of the helices inside membranes leads to the formation of cylindrical bundles, typically containing 4 to 10 monomers. Although peptaibols are excellent candidates for models of the earliest ion channels their struc-tures, which are stabilized only by van der Waals forces and occasional hydrogen bonds between neighboring helices, are not very stable. Although it might properly reflect protobiological real-ity, it is also a major obstacle in studying channel behavior. For this reason we focused on two members of the peptaibol family, trichotoxin and antiamoebin, which are characterized by a single conductance level. This

  6. Conductance of Ion Channels - Theory vs. Experiment

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  7. Targeting ion channels in cystic fibrosis.

    PubMed

    Mall, Marcus A; Galietta, Luis J V

    2015-09-01

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause a characteristic defect in epithelial ion transport that plays a central role in the pathogenesis of cystic fibrosis (CF). Hence, pharmacological correction of this ion transport defect by targeting of mutant CFTR, or alternative ion channels that may compensate for CFTR dysfunction, has long been considered as an attractive approach to a causal therapy of this life-limiting disease. The recent introduction of the CFTR potentiator ivacaftor into the therapy of a subgroup of patients with specific CFTR mutations was a major milestone and enormous stimulus for seeking effective ion transport modulators for all patients with CF. In this review, we discuss recent breakthroughs and setbacks with CFTR modulators designed to rescue mutant CFTR including the common mutation F508del. Further, we examine the alternative chloride channels TMEM16A and SLC26A9, as well as the epithelial sodium channel ENaC as alternative targets in CF lung disease, which remains the major cause of morbidity and mortality in patients with CF. Finally, we will focus on the hurdles that still need to be overcome to make effective ion transport modulation therapies available for all patients with CF irrespective of their CFTR genotype.

  8. Automated Parallel Recordings of Topologically Identified Single Ion Channels

    PubMed Central

    Kawano, Ryuji; Tsuji, Yutaro; Sato, Koji; Osaki, Toshihisa; Kamiya, Koki; Hirano, Minako; Ide, Toru; Miki, Norihisa; Takeuchi, Shoji

    2013-01-01

    Although ion channels are attractive targets for drug discovery, the systematic screening of ion channel-targeted drugs remains challenging. To facilitate automated single ion-channel recordings for the analysis of drug interactions with the intra- and extracellular domain, we have developed a parallel recording methodology using artificial cell membranes. The use of stable lipid bilayer formation in droplet chamber arrays facilitated automated, parallel, single-channel recording from reconstituted native and mutated ion channels. Using this system, several types of ion channels, including mutated forms, were characterised by determining the protein orientation. In addition, we provide evidence that both intra- and extracellular amyloid-beta fragments directly inhibit the channel open probability of the hBK channel. This automated methodology provides a high-throughput drug screening system for the targeting of ion channels and a data-intensive analysis technique for studying ion channel gating mechanisms. PMID:23771282

  9. More Than a Pore: Ion Channel Signaling Complexes

    PubMed Central

    Fakler, Bernd; Kaczmarek, Leonard K.; Isom, Lori L.

    2014-01-01

    Voltage- and ligand-gated ion channels form the molecular basis of cellular excitability. With >400 members and accounting for ∼1.5% of the human genome, ion channels are some of the most well studied of all proteins in heterologous expression systems. Yet, ion channels often exhibit unexpected properties in vivo because of their interaction with a variety of signaling/scaffolding proteins. Such interactions can influence the function and localization of ion channels, as well as their coupling to intracellular second messengers and pathways, thus increasing the signaling potential of these ion channels in neurons. Moreover, functions have been ascribed to ion channels that are largely independent of their ion-conducting roles. Molecular and functional dissection of the ion channel proteome/interactome has yielded new insights into the composition of ion channel complexes and how their dysregulation leads to human disease. PMID:25392484

  10. Spiking synchronization of ion channel clusters on an axon

    NASA Astrophysics Data System (ADS)

    Zeng, Shangyou; Tang, Yi; Jung, Peter

    2007-07-01

    Ion channels are distributed in clusters in squid giant axons, rat retinal nerve fiber layers, pyramidal cell dendrites of Apteronotus, etc. Ion channel clusters along the unmyelinated axon generate spontaneous spiking due to ion channel noise. Ion channel clusters are coupled by the axonal cable, and spontaneous spiking of each ion channel cluster can be synchronized. This paper considers the spiking synchronization of two ion channel clusters coupled by an axon. It is shown that axonal parameters affect the spiking synchronization exponentially and ion channel clusters have maximal spiking synchronization when they have the same size. It is further shown that there is an optimal length of the ion channel clusters with maximal spiking synchronization and the optimal length accords with the length of the node of Ranvier in the myelinated axon.

  11. The Ligand Gated Ion Channel Database.

    PubMed

    Le Novère, N; Changeux, J P

    1999-01-01

    The ligand gated ion channels (LGICs) are ionotropic receptors to neurotransmitters. Their physiological effect is carried out by the opening of an ionic channel upon binding of a particular neurotransmitter. These LGICs constitute superfamilies of receptors formed by homologous subunits. A database has been developed to handle the growing wealth of cloned subunits. This database contains nucleic acid sequences, protein sequences, as well as multiple sequence alignments and phylogenetic studies. This database is accessible via the worldwide web (http://www.pasteur.fr/units/neubiomol/LGIC.h tml), where it is continuously updated. A downloadable version is also available [currently v0.1 (98.06)].

  12. Carbon-based ion and molecular channels

    NASA Astrophysics Data System (ADS)

    Sint, Kyaw; Wang, Boyang; Kral, Petr

    2008-03-01

    We design ion and molecular channels based on layered carboneous materials, with chemically-functionalized pore entrances. Our molecular dynamics simulations demonstrate that these ultra-narrow pores, with diameters around 1 nm, are highly selective to the charges and sizes of the passing (Na^+ and Cl^-) ions and short alkanes. We demonstrate that the molecular flows through these pores can be easily controlled by electrical and mechanical means. These artificial pores could be integrated in fluidic nanodevices and lab-on-a-chip techniques with numerous potential applications. [1] Kyaw Sint, Boyang Wang and Petr Kral, submitted. [2] Boyang Wang and Petr Kral, JACS 128, 15984 (2006).

  13. Mechanosensitive Ion Channels in Cardiovascular Physiology

    PubMed Central

    Teng, Jinfeng; Loukin, Steve; Kung, Ching

    2014-01-01

    EC coupling is subjected to a mechanical feedback, which originates from physical force-sensing ion channels in the pericardium and elsewhere. Reviewed here are the most recent developments that greatly advanced our understanding of these mechanosensitive (MS) channels, including TRPs and K2p’s. Patch clamp has continued to demonstrate the direct channel activation by membrane stretch. Crystallography and cryo-electron microscopy have revealed the structures of several MS channels at atomic resolution. Some have been purified to homogeneity, reconstituted into lipid bilayer, and still retain their ability to respond to stretch force. A force-from-lipid (FFL) theory has been advanced that emphasizes the strong binding between channel proteins and lipids. Through these bonds, the sharp lateral tension (akin to surface tension) of the bilayer can transmit added force to the channel protein. Like temperature sensitivity, sensitivity to mechanical force is far more pervasive than we previously realize, and is especially important to the beating heart. PMID:26778915

  14. Endogenous ion channel complexes: the NMDA receptor.

    PubMed

    Frank, René A W

    2011-06-01

    Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.

  15. [Preeclampsia, cellular migration and ion channels].

    PubMed

    Del Mónaco, Silvana M; Marino, Gabriela; Assef, Yanina; Kotsias, Basilio A

    2008-01-01

    The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia; it is aldosterone, vasopressin, insulin and catecholamine-inducible, modulated by estrogens and progesterone and blocked by amiloride and its analogs. Multiple proteases are involved in the proteolytic processing and activation of ENaC subunits and aldosterone alters the protease-protease inhibitors balance. ENaC is also expressed in human placenta; although its function is not well known, the Na+ conductive properties may participate in electrolyte and extracellular volume homeostasis. The activity of ENaC channels and other ion channels and transporters is regulated by the state of actin filaments; on the other hand, changes in volume influence the actin cytoskeleton. Thus, there is an interaction between ENaC and components of the apical membrane cytoskeleton. In addition to their role in cellular homeostasis and electrical properties, Na+ currents through ENaC and other sodium channels are involved in cell migration, well documented in normal and cancer cells. In this work we presented evidences supporting the hypothesis that ENaC channels are required for the migration of BeWo cells, a human hormone-synthesizing trophoblastic cell line that express the three subunits of the ENaC channels. BeWo cell line has also been used as a model to investigate the placental transport mechanisms. PMID:18977715

  16. [Preeclampsia, cellular migration and ion channels].

    PubMed

    Del Mónaco, Silvana M; Marino, Gabriela; Assef, Yanina; Kotsias, Basilio A

    2008-01-01

    The syncytiotrophoblast acts in human placenta as a transporting barrier regulating the transference of nutrients, solutes and water between maternal and fetal blood. This transepithelial transport involves movement of Na+ and its contribution to the osmotic pressure is an important determinant of the extracellular fluid volume. ENaC is a channel that mediates entry of Na+ from the luminal fluid into the cells in many reabsorbing epithelia; it is aldosterone, vasopressin, insulin and catecholamine-inducible, modulated by estrogens and progesterone and blocked by amiloride and its analogs. Multiple proteases are involved in the proteolytic processing and activation of ENaC subunits and aldosterone alters the protease-protease inhibitors balance. ENaC is also expressed in human placenta; although its function is not well known, the Na+ conductive properties may participate in electrolyte and extracellular volume homeostasis. The activity of ENaC channels and other ion channels and transporters is regulated by the state of actin filaments; on the other hand, changes in volume influence the actin cytoskeleton. Thus, there is an interaction between ENaC and components of the apical membrane cytoskeleton. In addition to their role in cellular homeostasis and electrical properties, Na+ currents through ENaC and other sodium channels are involved in cell migration, well documented in normal and cancer cells. In this work we presented evidences supporting the hypothesis that ENaC channels are required for the migration of BeWo cells, a human hormone-synthesizing trophoblastic cell line that express the three subunits of the ENaC channels. BeWo cell line has also been used as a model to investigate the placental transport mechanisms.

  17. Flipping the Photoswitch: Ion Channels Under Light Control.

    PubMed

    McKenzie, Catherine K; Sanchez-Romero, Inmaculada; Janovjak, Harald

    2015-01-01

    Nature has incorporated small photochromic molecules, colloquially termed 'photoswitches', in photoreceptor proteins to sense optical cues in phototaxis and vision. While Nature's ability to employ light-responsive functionalities has long been recognized, it was not until recently that scientists designed, synthesized and applied synthetic photochromes to manipulate many of which open rapidly and locally in their native cell types, biological processes with the temporal and spatial resolution of light. Ion channels in particular have come to the forefront of proteins that can be put under the designer control of synthetic photochromes. Photochromic ion channel controllers are comprised of three classes, photochromic soluble ligands (PCLs), photochromic tethered ligands (PTLs) and photochromic crosslinkers (PXs), and in each class ion channel functionality is controlled through reversible changes in photochrome structure. By acting as light-dependent ion channel agonists, antagonist or modulators, photochromic controllers effectively converted a wide range of ion channels, including voltage-gated ion channels, 'leak channels', tri-, tetra- and pentameric ligand-gated ion channels, and temperature-sensitive ion channels, into man-made photoreceptors. Control by photochromes can be reversible, unlike in the case of 'caged' compounds, and non-invasive with high spatial precision, unlike pharmacology and electrical manipulation. Here, we introduce design principles of emerging photochromic molecules that act on ion channels and discuss the impact that these molecules are beginning to have on ion channel biophysics and neuronal physiology.

  18. Acid-sensing ion channels under hypoxia

    PubMed Central

    Yingjun, Guo; Xun, Qu

    2013-01-01

    Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na+ channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on. PMID:23764948

  19. Structure and selectivity in bestrophin ion channels

    DOE PAGES

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activationmore » by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.« less

  20. Structure and selectivity in bestrophin ion channels

    SciTech Connect

    Yang, Tingting; Liu, Qun; Kloss, Brian; Bruni, Renato; Kalathur, Ravi C.; Guo, Youzhong; Kloppmann, Edda; Rost, Burkhard; Colecraft, Henry M.; Hendrickson, Wayne A.

    2014-09-25

    Human bestrophin 1 (hBest1) is a calcium-activated chloride channel from the retinal pigment epithelium, where it can suffer mutations associated with vitelliform macular degeneration, or Best disease. We describe the structure of a bacterial homolog (KpBest) of hBest1 and functional characterizations of both channels. KpBest is a pentamer that forms a five-helix transmembrane pore, closed by three rings of conserved hydrophobic residues, and has a cytoplasmic cavern with a restricted exit. From electrophysiological analysis of structure-inspired mutations in KpBest and hBest1, we find a subtle control of ion selectivity in the bestrophins, including reversal of anion/cation selectivity, and dramatic activation by mutations at the exit restriction. Lastly, a homology model of hBest1 shows the locations of disease-causing mutations and suggests possible roles in regulation.

  1. Gated Ion Channel-Based Biosensor Device

    NASA Astrophysics Data System (ADS)

    Separovic, Frances; Cornell, Bruce A.

    A biosensor device based on the ion channel gramicidin A (gA) incorporated into a bilayer membrane is described. This generic immunosensing device utilizes gA coupled to an antibody and assembled in a lipid membrane. The membrane is chemically tethered to a gold electrode, which reports on changes in the ionic conduction of the lipid bilayer. Binding of a target molecule in the bathing solution to the antibody causes the gramicidin channels to switch from predominantly conducting dimers to predominantly nonconducting monomers. Conventional a.c. impedance spectroscopy between the gold and a counter electrode in the bathing solution is used to measure changes in the ionic conductivity of the membrane. This approach permits the quantitative detection of a range of target species, including bacteria, proteins, toxins, DNA sequences, and drug molecules.

  2. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  3. Potassium Versus Sodium Selectivity in Monovalent Ion Channel Selectivity Filters.

    PubMed

    Lim, Carmay; Dudev, Todor

    2016-01-01

    Transport of Na(+) and K(+) ions across the cell membrane is carried out by specialized pore-forming ion channel proteins, which exert tight control on electrical signals in cells by regulating the inward/outward flow of the respective cation. As Na(+) and K(+) ions are both present in the body fluids, their respective ion channels should discriminate with high fidelity between the two competing metal ions, conducting the native cation while rejecting its monovalent contender (and other ions present in the cellular/extracellular milieu). Indeed, monovalent ion channels are characterized by remarkable metal selectivity. This striking ion selectivity of monovalent ion channels is astonishing in view of the close similarity between Na(+) and K(+): both are spherical alkali cations with the same charge, analogous chemical and physical properties, and similar ionic radii. The monovalent ion channel selectivity filters (SFs), which dictate the selectivity of the channel, differ in oligomericity, composition, overall charge, pore size, and solvent accessibility. This diversity of SFs raises the following intriguing questions: (1) What factors govern the metal competition in these SFs? (2) Which of these factors are exploited in achieving K(+) or Na(+) selectivity in the different types of monovalent channel SFs? These questions are addressed herein by summarizing results from recent studies. The results show that over billions of years of evolution, the SFs of potassium and sodium ion channels have adapted to the specific physicochemical properties of the cognate ion, using various strategies to enable them to efficiently select the native ion among its contenders.

  4. Theory of the ion-channel laser

    SciTech Connect

    Whittum, D.H.

    1990-09-01

    A relativistic electron beam propagating through a plasma in the ion-focussed regime exhibits an electromagnetic instability with peak growth rate near a resonant frequency {omega}{approximately}2 {gamma}{sup 2} {omega}{beta}, where {gamma} is the Lorentz factor and {omega}{beta} is the betatron frequency. The physical basis for this instability is that an ensemble of relativistic simple harmonic oscillators, weakly driven by an electromagnetic wave, will lose energy to the wave through axial bunching. This bunching'' corresponds to the development of an rf component in the beam current, and a coherent centroid oscillation. The subject of this thesis is the theory of a laser capitalizing on this electromagnetic instability. A historical perspective is offered. The basic features of relativistic electron beam propagation in the ion-focussed regime are reviewed. The ion-channel laser (ICL) instability is explored theoretically through an eikonal formalism, analgous to the KMR'' formalism for the free-electron laser (FEL). The dispersion relation is derived, and the dependence of growth rate on three key parameters is explored. Finite temperature effects are assessed. From this work it is found that the typical gain length for amplification is longer than the Rayleigh length and we go on to consider three mechanisms which will tend to guide waveguide. First, we consider the effect of the ion channel as a dielectric waveguide. We consider next the use of a conducting waveguide, appropriate for a microwave amplifier. Finally, we examine a form of optical guiding'' analgous to that found in the FEL. The eikonal formalism is used to model numerically the instability through and beyond saturation. Results are compared with the numerical simulation of the full equations of motion, and with the analytic scalings. The analytical requirement on detuning spread is confirmed.

  5. Single-Molecule Ion Channel Conformational Dynamics in Living Cells

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter

    2014-03-01

    Stochastic and inhomogeneous conformational changes regulate the function and dynamics of ion channels that are crucial for cell functions, neuronal signaling, and brain functions. Such complexity makes it difficult, if not impossible, to characterize ion channel dynamics using conventional electrical recording alone since that the measurement does not specifically interrogate the associated conformational changes but rather the consequences of the conformational changes. Recently, new technology developments on single-molecule spectroscopy, and especially, the combined approaches of using single ion channel patch-clamp electrical recording and single-molecule fluorescence imaging have provided us the capability of probing ion channel conformational changes simultaneously with the electrical single channel recording. By combining real-time single-molecule fluorescence imaging measurements with real-time single-channel electric current measurements in artificial lipid bilayers and in living cell membranes, we were able to probe single ion-channel-protein conformational changes simultaneously, and thus providing an understanding the dynamics and mechanism of ion-channel proteins at the molecular level. The function-regulating and site-specific conformational changes of ion channels are now measurable under physiological conditions in real-time, one molecule at a time. We will focus our discussion on the new development and results of real-time imaging of the dynamics of gramicidin, colicin, and NMDA receptor ion channels in lipid bilayers and living cells. Our results shed light on new perspectives of the intrinsic interplay of lipid membrane dynamics, solvation dynamics, and the ion channel functions.

  6. Ion channels, phosphorylation and mammalian sperm capacitation.

    PubMed

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-05-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.

  7. Ion channels, phosphorylation and mammalian sperm capacitation

    PubMed Central

    Visconti, Pablo E; Krapf, Dario; de la Vega-Beltrán, José Luis; Acevedo, Juan José; Darszon, Alberto

    2011-01-01

    Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies. PMID:21540868

  8. Kinetics of ion transport through supramolecular channels in single crystals.

    PubMed

    Assouma, Cyrille D; Crochet, Aurélien; Chérémond, Yvens; Giese, Bernd; Fromm, Katharina M

    2013-04-22

    Single-crystal to single-crystal transformations are possible by ion-exchange and transport reactions through supramolecular channels that are composed of crown ether molecules and use trihalide ions as scaffolds. Kinetic measurements of ion transport at different temperatures provide activation energy data and show that a very fast exchange of K(+) ions with Na(+) ions occurs.

  9. Na+ Channel β Subunits: Overachievers of the Ion Channel Family

    PubMed Central

    Brackenbury, William J.; Isom, Lori L.

    2011-01-01

    Voltage-gated Na+ channels (VGSCs) in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B–SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSCα subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin superfamily of cell adhesion molecules and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of physiopathologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independently of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy. PMID:22007171

  10. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    PubMed

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. PMID:27513962

  11. Microvillar ion channels: cytoskeletal modulation of ion fluxes.

    PubMed

    Lange, K

    2000-10-21

    The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical

  12. Plant Ion Channels: Gene Families, Physiology, and Functional Genomics Analyses

    PubMed Central

    Ward, John M.; Mäser, Pascal; Schroeder, Julian I.

    2016-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization-and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide–gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport. PMID:18842100

  13. Chapter Five - Ubiquitination of Ion Channels and Transporters.

    PubMed

    Lamothe, S M; Zhang, S

    2016-01-01

    Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal, and smooth muscle cells, neurons, and endocrine cells. Their dysfunction underlies the pathology of various diseases. Thus, the tight regulation of these transmembrane proteins is essential for cell physiology. While the ubiquitin system is involved in many aspects of cellular processes, this chapter focuses on the ubiquitin-mediated degradation of ion channels and transporters. Ubiquitination of ion channels and transporters is multifaceted and occurs at various cellular compartments such as the plasma membrane and the endoplasmic reticulum. While various molecules are involved in the ubiquitination of ion channels and transporters, E3 ubiquitin ligases play a central role in selectively targeting substrates for ubiquitination and will be a major focus in this chapter. To date, the Nedd4 family of E3 ubiquitin ligases and their regulations of ion channels and transporters have been extensively studied. In this chapter, we will first review Nedd4/Nedd4-2 and their regulations. We will then discuss how E3 ubiquitin ligases, especially Nedd4-2, regulate various ion channels and transporters including epithelial Na(+) channels, voltage-gated Na(+) channels, KCNQ and hERG K(+) channels, Cl(-) channels such as CFTR, transporters such as Na(+)/K(+) ATPase, and gap junctions. Furthermore, diseases caused by improper ubiquitination of ion channels and transporters will be discussed to highlight the process of ubiquitination and its biological as well as clinical significance. PMID:27378758

  14. Chapter Five - Ubiquitination of Ion Channels and Transporters.

    PubMed

    Lamothe, S M; Zhang, S

    2016-01-01

    Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal, and smooth muscle cells, neurons, and endocrine cells. Their dysfunction underlies the pathology of various diseases. Thus, the tight regulation of these transmembrane proteins is essential for cell physiology. While the ubiquitin system is involved in many aspects of cellular processes, this chapter focuses on the ubiquitin-mediated degradation of ion channels and transporters. Ubiquitination of ion channels and transporters is multifaceted and occurs at various cellular compartments such as the plasma membrane and the endoplasmic reticulum. While various molecules are involved in the ubiquitination of ion channels and transporters, E3 ubiquitin ligases play a central role in selectively targeting substrates for ubiquitination and will be a major focus in this chapter. To date, the Nedd4 family of E3 ubiquitin ligases and their regulations of ion channels and transporters have been extensively studied. In this chapter, we will first review Nedd4/Nedd4-2 and their regulations. We will then discuss how E3 ubiquitin ligases, especially Nedd4-2, regulate various ion channels and transporters including epithelial Na(+) channels, voltage-gated Na(+) channels, KCNQ and hERG K(+) channels, Cl(-) channels such as CFTR, transporters such as Na(+)/K(+) ATPase, and gap junctions. Furthermore, diseases caused by improper ubiquitination of ion channels and transporters will be discussed to highlight the process of ubiquitination and its biological as well as clinical significance.

  15. Computer-Aided Drug Discovery and Design Targeting Ion Channels.

    PubMed

    Zhang, Qiansen; Gao, Zhaobing; Yang, Huaiyu

    2016-01-01

    Ion channels are widely expressed in living cells and play critical roles in various cellular biological functions. Dysfunctional ion channels can cause a variety of diseases, making ion channels attractive targets for drug discovery. Computational approaches, such as molecular docking and molecular dynamic simulations, provide economic and efficient tools for finding modulators of ion channels and for elucidating the action mechanisms of small molecules. In this review, we focus primarily on four types of ion channels (voltage-gated, ligand-gated, acid-sensing, and virus matrix 2 ion channels). The current advancements in computer-aided drug discovery and design targeting ion channels are summarized. First, ligand-based studies for drug design are briefly outlined. Then, we focus on the structurebased studies targeting pore domains, endogenous binding sites and allosteric sites of ion channels. Moreover, we also review the contribution of computational methods to the field of ligand binding and unbinding pathways of ion channels. Finally, we propose future developments for the field. PMID:26975507

  16. Ion channels and the control of blood pressure

    PubMed Central

    Baker, Emma H

    2000-01-01

    Ion channels exist in all cells and are enormously varied in structure, function and regulation. Some progress has been made in understanding the role that ion channels play in the control of blood pressure, but the discipline is still in its infancy. Ion channels provide many different targets for intervention in disorders of blood pressure and exciting advances have been made in this field. It is possible that new drugs, as well as antisense nucleotide technology or gene therapy directed towards ion channels, may form a new class of treatments for high and low blood pressure in the future. PMID:10718773

  17. Channelpedia: An Integrative and Interactive Database for Ion Channels

    PubMed Central

    Ranjan, Rajnish; Khazen, Georges; Gambazzi, Luca; Ramaswamy, Srikanth; Hill, Sean L.; Schürmann, Felix; Markram, Henry

    2011-01-01

    Ion channels are membrane proteins that selectively conduct ions across the cell membrane. The flux of ions through ion channels drives electrical and biochemical processes in cells and plays a critical role in shaping the electrical properties of neurons. During the past three decades, extensive research has been carried out to characterize the molecular, structural, and biophysical properties of ion channels. This research has begun to elucidate the role of ion channels in neuronal function and has subsequently led to the development of computational models of ion channel function. Although there have been substantial efforts to consolidate these findings into easily accessible and coherent online resources, a single comprehensive resource is still lacking. The success of these initiatives has been hindered by the sheer diversity of approaches and the variety in data formats. Here, we present “Channelpedia” (http://channelpedia.net), which is designed to store information related to ion channels and models and is characterized by an efficient information management framework. Composed of a combination of a database and a wiki-like discussion platform Channelpedia allows researchers to collaborate and synthesize ion channel information from literature. Equipped to automatically update references, Channelpedia integrates and highlights recent publications with relevant information in the database. It is web based, freely accessible and currently contains 187 annotated ion channels with 45 Hodgkin–Huxley models. PMID:22232598

  18. Bioinspired Artificial Sodium and Potassium Ion Channels.

    PubMed

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge

  19. Bioinspired Artificial Sodium and Potassium Ion Channels.

    PubMed

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge.

  20. Phenotype variation and newcomers in ion channel disorders.

    PubMed

    Bulman, D E

    1997-01-01

    Ion channels are part of a large family of macromolecules whose functions include the control and maintenance of electrical potential across cell membranes, secretion and signal transduction. Close inspection of the physiological processes involved in channel function and the secondary structure of various ion channels has served as a basis for subdividing ion channels into a number of superfamilies. The voltage-gated ion channels are one of these superfamilies. Recent work has shown that mutations in various ion channel genes are responsible for a number of neuromuscular and neurological disorders. Correlation of the various mutations with the clinical phenotype is providing us with insight into the pathophysiology of these channel proteins. Interestingly, different mutations within the same gene may cause quite distinct clinical disorders, while mutations in different channel genes may result in very similar phenotypes (genetic heterogeneity). Examples of phenotypic variation and genetic heterogeneity are presented in the context of the periodic paralytic disorders of skeletal muscle, episodic ataxia, migraine, long QT syndrome and paroxysmal dyskinesia. Some of these disorders are known to be caused by mutations in ion channel genes, while in the episodic movement disorders, ion channel genes are considered excellent candidate genes.

  1. United in Diversity: Mechanosensitive Ion Channels in Plants

    PubMed Central

    Hamilton, Eric S.; Schlegel, Angela M.; Haswell, Elizabeth S.

    2015-01-01

    Mechanosensitive (MS) ion channels are a common mechanism for perceiving and responding to mechanical force. This class of mechanoreceptors is capable of transducing membrane tension directly into ion flux. In plant systems, MS ion channels have been proposed to play a wide array of roles, from the perception of touch and gravity to the osmotic homeostasis of intracellular organelles. Three families of plant MS ion channels have been identified: the MscS-like (MSL), Mid1-complementing activity (MCA), and two-pore potassium (TPK) families. Channels from these families vary widely in structure and function, localize to multiple cellular compartments, and conduct chloride, calcium, and/or potassium ions. However, they are still likely to represent only a fraction of the MS ion channel diversity in plant systems. PMID:25494462

  2. Engineered ion channels as emerging tools for chemical biology.

    PubMed

    Mayer, Michael; Yang, Jerry

    2013-12-17

    Over the last 25 years, researchers have developed exogenously expressed, genetically engineered, semi-synthetic, and entirely synthetic ion channels. These structures have sufficient fidelity to serve as unique tools that can reveal information about living organisms. One of the most exciting success stories is optogenetics: the use of light-gated channels to trigger action potentials in specific neurons combined with studies of the response from networks of cells or entire live animals. Despite this breakthrough, the use of molecularly engineered ion channels for studies of biological systems is still in its infancy. Historically, researchers studied ion channels in the context of their own function in single cells or in multicellular signaling and regulation. Only recently have researchers considered ion channels and pore-forming peptides as responsive tools to report on the chemical and physical changes produced by other biochemical processes and reactions. This emerging class of molecular probes has a number of useful characteristics. For instance, these structures can greatly amplify the signal of chemical changes: the binding of one molecule to a ligand-gated ion channel can result in flux of millions of ions across a cell membrane. In addition, gating occurs on sub-microsecond time scales, resulting in fast response times. Moreover, the signal is complementary to existing techniques because the output is ionic current rather than fluorescence or radioactivity. And finally, ion channels are also localized at the membrane of cells where essential processes such as signaling and regulation take place. This Account highlights examples, mostly from our own work, of uses of ion channels and pore-forming peptides such as gramicidin in chemical biology. We discuss various strategies for preparing synthetically tailored ion channels that range from de novo designed synthetic molecules to genetically engineered or simply exogenously expressed or reconstituted wild

  3. Trails of Kilovolt Ions Created by Subsurface Channeling

    SciTech Connect

    Redinger, Alex; Standop, Sebastian; Michely, Thomas; Rosandi, Yudi; Urbassek, Herbert M.

    2010-02-19

    Using scanning tunneling microscopy, we observe the damage trails produced by keV noble-gas ions incident at glancing angles onto Pt(111). Surface vacancies and adatoms aligned along the ion trajectory constitute the ion trails. Atomistic simulations reveal that these straight trails are produced by nuclear (elastic) collisions with surface layer atoms during subsurface channeling of the projectiles. In a small energy window around 5 keV, Xe{sup +} ions create vacancy grooves that mark the ion trajectory with atomic precision. The asymmetry of the adatom production on the two sides of the projectile path is traced back to the asymmetry of the ion's subsurface channel.

  4. Current recordings of ion channel proteins immobilized on resin beads.

    PubMed

    Hirano, Minako; Takeuchi, Yuko; Aoki, Takaaki; Yanagida, Toshio; Ide, Toru

    2009-04-15

    Current ion channel current measurement techniques are cumbersome, as they require many steps and much time. This is especially true when reconstituting channels into liposomes and incorporating them into lipid bilayers. Here, we report a novel method that measures ion channel current more efficiently than current methods. We applied our method to KcsA and MthK channels by binding them to cobalt affinity gel beads with histidine tags and then forming a lipid bilayer membrane on the bead. This allowed channels to incorporate into the bilayer and channel currents to be measured quickly and easily. The efficiency was such that currents could be recorded with extremely low amounts of protein. In addition, the channel direction could be determined by the histidine tag. This method has the potential to be applied to various channel proteins and channel research in general.

  5. Energetics of ion conduction through the K+ channel

    NASA Astrophysics Data System (ADS)

    Bernèche, Simon; Roux, Benoît

    2001-11-01

    K+ channels are transmembrane proteins that are essential for the transmission of nerve impulses. The ability of these proteins to conduct K+ ions at levels near the limit of diffusion is traditionally described in terms of concerted mechanisms in which ion-channel attraction and ion-ion repulsion have compensating effects, as several ions are moving simultaneously in single file through the narrow pore. The efficiency of such a mechanism, however, relies on a delicate energy balance-the strong ion-channel attraction must be perfectly counterbalanced by the electrostatic ion-ion repulsion. To elucidate the mechanism of ion conduction at the atomic level, we performed molecular dynamics free energy simulations on the basis of the X-ray structure of the KcsA K+ channel. Here we find that ion conduction involves transitions between two main states, with two and three K+ ions occupying the selectivity filter, respectively; this process is reminiscent of the `knock-on' mechanism proposed by Hodgkin and Keynes in 1955. The largest free energy barrier is on the order of 2-3kcalmol-1, implying that the process of ion conduction is limited by diffusion. Ion-ion repulsion, although essential for rapid conduction, is shown to act only at very short distances. The calculations show also that the rapidly conducting pore is selective.

  6. Potassium channels as multi-ion single-file pores

    PubMed Central

    1978-01-01

    A literature review reveals many lines of evidence that both delayed rectifier and inward rectifier potassium channels are multi-ion pores. These include unidirectional flux ratios given by the 2--2.5 power of the electrochemical activity ratio, very steeply voltage-dependent block with monovalent blocking ions, relief of block by permeant ions added to the side opposite from the blocking ion, rectification depending on E--EK, and a minimum in the reversal potential or conductance as external K+ ions are replaced by an equivalent concentration of T1+ ions. We consider a channel with a linear sequence of energy barriers and binding sites. The channel can be occupied by more than one ion at a time, and ions hop in single file into vacant sites with rate constants that depend on barrier heights, membrane potential, and interionic repulsion. Such multi-ion models reproduce qualitatively the special flux properties of potassium channels when the barriers for hopping out of the pore are larger than for hopping between sites within the pore and when there is repulsion between ions. These conditions also produce multiple maxima in the conductance-ion activity relationship. In agreement with Armstrong's hypothesis (1969. J. Gen. Physiol. 54:553--575), inward rectification may be understood in terms of block by an internal blocking cation. Potassium channels must have at least three sites and often contain at least two ions at a time. PMID:722275

  7. Ion channels enable electrical communication within bacterial communities

    PubMed Central

    Prindle, Arthur; Liu, Jintao; Asally, Munehiro; Ly, San; Garcia-Ojalvo, Jordi; Süel, Gürol M.

    2016-01-01

    The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signaling. However, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighboring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signaling in cellular communities. PMID:26503040

  8. Ion channels enable electrical communication in bacterial communities.

    PubMed

    Prindle, Arthur; Liu, Jintao; Asally, Munehiro; Ly, San; Garcia-Ojalvo, Jordi; Süel, Gürol M

    2015-11-01

    The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signalling; however, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighbouring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signalling in cellular communities. PMID:26503040

  9. Improvement in fusion reactor performance due to ion channeling

    SciTech Connect

    Emmert, G.A.; El-Guebaly, L.A.; Kulcinski, G.L.; Santarius, J.F.; Sviatoslavsky, I.N.; Meade, D.M.

    1994-11-01

    Ion channeling is a recent idea for improving the performance of fusion reactors by increasing the fraction of the fusion power deposited in the ions. In this paper the authors assess the effect of ion channeling on D-T and D-{sup 3}He reactors. The figures of merit used are the fusion power density and the cost of electricity. It is seen that significant ion channeling can lead to about a 50-65% increase in the fusion power density. For the Apollo D-{sup 3}He reactor concept the reduction in the cost of electricity can be as large as 30%.

  10. Ion Channels in Obesity: Pathophysiology and Potential Therapeutic Targets

    PubMed Central

    Vasconcelos, Luiz H. C.; Souza, Iara L. L.; Pinheiro, Lílian S.; Silva, Bagnólia A.

    2016-01-01

    Obesity is a multifactorial disease related to metabolic disorders and associated with genetic determinants. Currently, ion channels activity has been linked to many of these disorders, in addition to the central regulation of food intake, energetic balance, hormone release and response, as well as the adipocyte cell proliferation. Therefore, the objective of this work is to review the current knowledge about the influence of ion channels in obesity development. This review used different sources of literature (Google Scholar, PubMed, Scopus, and Web of Science) to assess the role of ion channels in the pathophysiology of obesity. Ion channels present diverse key functions, such as the maintenance of physiological homeostasis and cell proliferation. Cell biology and pharmacological experimental evidences demonstrate that proliferating cells exhibit ion channel expression, conductance, and electrical properties different from the resting cells. Thereby, a large variety of ion channels has been identified in the pathogenesis of obesity such as potassium, sodium, calcium and chloride channels, nicotinic acetylcholine receptor and transient receptor potential channels. The fundamental involvement of these channels on the generation of obesity leads to the progress in the knowledge about the mechanisms responsible for the obesity pathophysiology, consequently emerging as new targets for pharmacological modulation. PMID:27065858

  11. Novel screening techniques for ion channel targeting drugs

    PubMed Central

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  12. Novel screening techniques for ion channel targeting drugs.

    PubMed

    Obergrussberger, Alison; Stölzle-Feix, Sonja; Becker, Nadine; Brüggemann, Andrea; Fertig, Niels; Möller, Clemens

    2015-01-01

    Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation. PMID:26556400

  13. Mechanosensitive ion channels in cultured sensory neurons of neonatal rats.

    PubMed

    Cho, Hawon; Shin, Jieun; Shin, Chan Young; Lee, Soon-Youl; Oh, Uhtaek

    2002-02-15

    Mechanosensitive (MS) ion channels are present in a variety of cells. However, very little is known about the ion channels that account for mechanical sensitivity in sensory neurons. We identified the two most frequently encountered but distinct types of MS channels in 1390 of 2962 membrane patches tested in cultured dorsal root ganglion neurons. The two MS channels exhibited different thresholds, thus named as low-threshold (LT) and high-threshold (HT) MS channels, and sensitivity to pressure. The two channels retained different single-channel conductances and current-voltage relationships: LT and HT channels elicited large- and small-channel conductance with outwardly rectifying and linear I-V relationships, respectively. Both LT and HT MS channels were permeable to monovalent cations and Ca2+ and were blocked by gadolinium, a blocker of MS channels. Colchicine and cytochalasin D markedly reduced the activities of the two MS channels, indicating that cytoskeletal elements support the mechanosensitivity. Both types of MS channels were found primarily in small sensory neurons with diameters of <30 microm. Furthermore, HT MS channels were sensitized by a well known inducer of mechanical hyperalgesia, prostaglandin E2, via the protein kinase A pathway. We identified two distinct types of MS channels in sensory neurons that probably give rise to the observed MS whole-cell currents and transduce mechanical stimuli to neural signals involved in somatosensation, including pain.

  14. Electrical Heart Defibrillation with Ion Channel Blockers

    NASA Astrophysics Data System (ADS)

    Feeney, Erin; Clark, Courtney; Puwal, Steffan

    Heart disease is the leading cause of mortality in the United States. Rotary electrical waves within heart muscle underlie electrical disorders of the heart termed fibrillation; their propagation and breakup leads to a complex distribution of electrical activation of the tissue (and of the ensuing mechanical contraction that comes from electrical activation). Successful heart defibrillation has, thus far, been limited to delivering large electrical shocks to activate the entire heart and reset its electrical activity. In theory, defibrillation of a system this nonlinear should be possible with small electrical perturbations (stimulations). A successful algorithm for such a low-energy defibrillator continues to elude researchers. We propose to examine in silica whether low-energy electrical stimulations can be combined with antiarrhythmic, ion channel-blocking drugs to achieve a higher rate of defibrillation and whether the antiarrhythmic drugs should be delivered before or after electrical stimulation has commenced. Progress toward a more successful, low-energy defibrillator will greatly minimize the adverse effects noted in defibrillation and will assist in the development of pediatric defibrillators.

  15. Nerve membrane ion channels as the target site of insecticides.

    PubMed

    Narahashi, Toshio

    2002-08-01

    Most insecticides are potent neurotoxicants that act on various neuroreceptors and ion channels. However, the major target receptors are limited to sodium channels, GABA receptors, and nicotinic acetylcholine receptors. DDT and pyrethroids act similarly on sodium channels to keep them open leading to hyperexcitation. Indoxacarb inhibits sodium channels and certain subtypes of nicotinic receptors. Dieldrin, lindane and fipronil block GABA receptors. Imidacloprid modulates nicotinic receptors in a complex manner. Spinosad's major target site appears to be nicotinic receptors.

  16. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    PubMed

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively.

  17. Ion channel gene expression predicts survival in glioma patients.

    PubMed

    Wang, Rong; Gurguis, Christopher I; Gu, Wanjun; Ko, Eun A; Lim, Inja; Bang, Hyoweon; Zhou, Tong; Ko, Jae-Hong

    2015-08-03

    Ion channels are important regulators in cell proliferation, migration, and apoptosis. The malfunction and/or aberrant expression of ion channels may disrupt these important biological processes and influence cancer progression. In this study, we investigate the expression pattern of ion channel genes in glioma. We designate 18 ion channel genes that are differentially expressed in high-grade glioma as a prognostic molecular signature. This ion channel gene expression based signature predicts glioma outcome in three independent validation cohorts. Interestingly, 16 of these 18 genes were down-regulated in high-grade glioma. This signature is independent of traditional clinical, molecular, and histological factors. Resampling tests indicate that the prognostic power of the signature outperforms random gene sets selected from human genome in all the validation cohorts. More importantly, this signature performs better than the random gene signatures selected from glioma-associated genes in two out of three validation datasets. This study implicates ion channels in brain cancer, thus expanding on knowledge of their roles in other cancers. Individualized profiling of ion channel gene expression serves as a superior and independent prognostic tool for glioma patients.

  18. Traveling ion channel density waves affected by a conservation law.

    PubMed

    Peter, Ronny; Zimmermann, Walter

    2006-07-01

    A model of mobile, charged ion channels embedded in a biomembrane is investigated. The ion channels fluctuate between an opened and a closed state according to a simple two-state reaction scheme whereas the total number of ion channels is a conserved quantity. Local transport mechanisms suggest that the ion channel densities are governed by electrodiffusionlike equations that have to be supplemented by a cable-type equation describing the dynamics of the transmembrane voltage. It is shown that the homogeneous distribution of ion channels may become unstable to either a stationary or an oscillatory instability. The nonlinear behavior immediately above threshold of an oscillatory bifurcation occurring at finite wave number is analyzed in terms of amplitude equations. Due to the conservation law imposed on ion channels, large-scale modes couple to the finite-wave-number instability and have thus to be included in the asymptotic analysis near the onset of pattern formation. A modified Ginzburg-Landau equation extended by long-wavelength stationary excitations is established, and it is highlighted how the global conservation law affects the stability of traveling ion channel density waves.

  19. Ion Channels as Drug Targets in Central Nervous System Disorders

    PubMed Central

    Waszkielewicz, A.M; Gunia, A; Szkaradek, N; Słoczyńska, K; Krupińska, S; Marona, H

    2013-01-01

    Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na+ channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 – for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca2+ channels are not any more divided to T, L, N, P/Q, and R, but they are described as Cav1.1-Cav3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs. PMID:23409712

  20. Markov modeling of ion channels: implications for understanding disease.

    PubMed

    Lampert, Angelika; Korngreen, Alon

    2014-01-01

    Ion channels are the bridge between the biochemical and electrical domains of our life. These membrane crossing proteins use the electric energy stored in transmembrane ion gradients, which are produced by biochemical activity to generate ionic currents. Each ion channel can be imagined as a small power plant similar to a hydroelectric power station, in which potential energy is converted into electric current. This current drives basically all physiological mechanisms of our body. It is clear that a functional blueprint of these amazing cellular power plants is essential for understanding the principle of all aspects of physiology, particularly neurophysiology. The golden path toward this blueprint starts with the biophysical investigation of ion channel activity and continues through detailed numerical modeling of these channels that will eventually lead to a full system-level description of cellular and organ physiology. Here, we discuss the first two stages of this process focusing on voltage-gated channels, particularly the voltage-gated sodium channel which is neurologically and pathologically important. We first detail the correlations between the known structure of the channel and its activity and describe some pathologies. We then provide a hands-on description of Markov modeling for voltage-gated channels. These two sections of the chapter highlight the dichotomy between the vast amounts of electrophysiological data available on voltage-gated channels and the relatively meager number of physiologically relevant models for these channels.

  1. Ion selectivity in the ryanodine receptor and other calcium channels.

    NASA Astrophysics Data System (ADS)

    Gillespie, Dirk

    2006-03-01

    Biological ion channels passively conduct ions across cell membranes, some with great specificity. Calcium channels are selective channels that range in their Ca^2+ affinity depending on the channel's physiological role. For example, the L-type calcium channel has micromolar affinity while the ryanodine receptor (RyR) has millimolar affinity. On the other hand, both of these channels have the chemically-similar EEEE and DDDD amino acid motifs in their selectivity filters. An electrodiffusion model of RyR that reproduces and predicts >50 data curves will be presented. In this model, ions are charged, hard spheres and the chemical potential is computed using density functional theory of fluids. Ion selectivity arises from a competition between the need for cations to screen the negative charges of the channel and the crowding of ions in the tiny space of the channel. Charge/space competition implies that selectivity increases as the channel volume decreases (thereby increasing the protein charge density), something that has recently been experimentally confirmed in mutant channels. Dielectric properties can also increase selectivity. In Monte Carlo simulations, Ca^2+ affinity is much higher when the channel protein has a low dielectric constant. This counterintuitive result occurs because calcium channel selectivity filters are lined with negatively-charged (acidic) amino acids (EEEE or DDDD). These permanent negative charges induce negative polarization charge at the protein/lumen interface. The total negative charge of the protein (polarization plus permanent) is increased, resulting in increased ion densities, increased charge/space competition, and there in increased Ca^2+ affinity. If no negative protein charges were present, cations would induce enough positive polarization charge to prevent flux.

  2. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  3. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  4. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  5. Diversity of folds in animal toxins acting on ion channels.

    PubMed Central

    Mouhat, Stéphanie; Jouirou, Besma; Mosbah, Amor; De Waard, Michel; Sabatier, Jean-Marc

    2004-01-01

    Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds. PMID:14674883

  6. Superposition properties of interacting ion channels.

    PubMed Central

    Keleshian, A M; Yeo, G F; Edeson, R O; Madsen, B W

    1994-01-01

    Quantitative analysis of patch clamp data is widely based on stochastic models of single-channel kinetics. Membrane patches often contain more than one active channel of a given type, and it is usually assumed that these behave independently in order to interpret the record and infer individual channel properties. However, recent studies suggest there are significant channel interactions in some systems. We examine a model of dependence in a system of two identical channels, each modeled by a continuous-time Markov chain in which specified transition rates are dependent on the conductance state of the other channel, changing instantaneously when the other channel opens or closes. Each channel then has, e.g., a closed time density that is conditional on the other channel being open or closed, these being identical under independence. We relate the two densities by a convolution function that embodies information about, and serves to quantify, dependence in the closed class. Distributions of observable (superposition) sojourn times are given in terms of these conditional densities. The behavior of two channel systems based on two- and three-state Markov models is examined by simulation. Optimized fitting of simulated data using reasonable parameters values and sample size indicates that both positive and negative cooperativity can be distinguished from independence. PMID:7524711

  7. Ion channel profiling to advance drug discovery and development.

    PubMed

    Zou, Beiyan

    2015-11-01

    In vitro pharmacological profiling provides crucial information to eliminate drug candidates with potential toxicity early in drug discovery and reduce failure in later stages. It has become a common practice in industry to test lead compounds against a panel of ion channel targets for selectivity and safety liability at early drug discovery stages. Ion channel profiling technologies include binding assays, flux assays, fluorescent membrane potential assays, automated and conventional electrophysiology. Instead of examining compound effects on individual ion channel targets, automated current clamp, optical electrophysiology, and multi-electrode assays have evolved to investigate the integrated compound effects on cardiac myocytes. This review aims to provide an overview of ion channel profiling for cardiac safety and comparisons of various technologies.

  8. Modulation of TRP ion channels by venomous toxins.

    PubMed

    Siemens, Jan; Hanack, Christina

    2014-01-01

    Venoms are evolutionarily fine-tuned mixtures of small molecules, peptides, and proteins-referred to as toxins-that have evolved to specifically modulate and interfere with the function of diverse molecular targets within the envenomated animal. Many of the identified toxin targets are membrane receptors and ion channels. Due to their high specificity, toxins have emerged as an invaluable tool set for the molecular characterization of ion channels, and a selected group of toxins even have been developed into therapeutics. More recently, TRP ion channels have been included as targets for venomous toxins. In particular, a number of apparently unrelated peptide toxins target the capsaicin receptor TRPV1 to produce inflammatory pain. These toxins have turned out to be invaluable for structural and functional characterizations of the capsaicin receptor. If toxins will serve similar roles for other TRP ion channels, only future will tell.

  9. Mechanosensitivity of ion channels based on protein–lipid interactions

    PubMed Central

    Yoshimura, Kenjiro; Sokabe, Masahiro

    2010-01-01

    Ion channels form a group of membrane proteins that pass ions through a pore beyond the energy barrier of the lipid bilayer. The structure of the transmembrane segment of membrane proteins is influenced by the charges and the hydrophobicity of the surrounding lipids and the pressure on its surface. A mechanosensitive channel is specifically designed to change its conformation in response to changes in the membrane pressure (tension). However, mechanosensitive channels are not the only group that is sensitive to the physical environment of the membrane: voltage-gated channels are also amenable to the lipid environment. In this article, we review the structure and gating mechanisms of the mechanosensitive channels and voltage-gated channels and discuss how their functions are affected by the physical properties of the lipid bilayer. PMID:20356872

  10. Inositol trisphosphate receptor and ion channel models based on single-channel data

    NASA Astrophysics Data System (ADS)

    Gin, Elan; Wagner, Larry E.; Yule, David I.; Sneyd, James

    2009-09-01

    The inositol trisphosphate receptor (IPR) plays an important role in controlling the dynamics of intracellular Ca2+. Single-channel patch-clamp recordings are a typical way to study these receptors as well as other ion channels. Methods for analyzing and using this type of data have been developed to fit Markov models of the receptor. The usual method of parameter fitting is based on maximum-likelihood techniques. However, Bayesian inference and Markov chain Monte Carlo techniques are becoming more popular. We describe the application of the Bayesian methods to real experimental single-channel data in three ion channels: the ryanodine receptor, the K+ channel, and the IPR. One of the main aims of all three studies was that of model selection with different approaches taken. We also discuss the modeling implications for single-channel data that display different levels of channel activity within one recording.

  11. Molecular Modeling of Mechanosensory Ion Channel Structural and Functional Features

    PubMed Central

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-01-01

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex. PMID:20877470

  12. Molecular modeling of mechanosensory ion channel structural and functional features.

    PubMed

    Gessmann, Renate; Kourtis, Nikos; Petratos, Kyriacos; Tavernarakis, Nektarios

    2010-09-16

    The DEG/ENaC (Degenerin/Epithelial Sodium Channel) protein family comprises related ion channel subunits from all metazoans, including humans. Members of this protein family play roles in several important biological processes such as transduction of mechanical stimuli, sodium re-absorption and blood pressure regulation. Several blocks of amino acid sequence are conserved in DEG/ENaC proteins, but structure/function relations in this channel class are poorly understood. Given the considerable experimental limitations associated with the crystallization of integral membrane proteins, knowledge-based modeling is often the only route towards obtaining reliable structural information. To gain insight into the structural characteristics of DEG/ENaC ion channels, we derived three-dimensional models of MEC-4 and UNC-8, based on the available crystal structures of ASIC1 (Acid Sensing Ion Channel 1). MEC-4 and UNC-8 are two DEG/ENaC family members involved in mechanosensation and proprioception respectively, in the nematode Caenorhabditis elegans. We used these models to examine the structural effects of specific mutations that alter channel function in vivo. The trimeric MEC-4 model provides insight into the mechanism by which gain-of-function mutations cause structural alterations that result in increased channel permeability, which trigger cell degeneration. Our analysis provides an introductory framework to further investigate the multimeric organization of the DEG/ENaC ion channel complex.

  13. Ion selectivity strategies of sodium channel selectivity filters.

    PubMed

    Dudev, Todor; Lim, Carmay

    2014-12-16

    CONSPECTUS: Sodium ion channels selectively transport Na(+) cations across the cell membrane. These integral parts of the cell machinery are implicated in regulating the cardiac, skeletal and smooth muscle contraction, nerve impulses, salt and water homeostasis, as well as pain and taste perception. Their malfunction often results in various channelopathies of the heart, brain, skeletal muscles, and lung; thus, sodium channels are key drug targets for various disorders including cardiac arrhythmias, heart attack, stroke, migraine, epilepsy, pain, cancer, and autoimmune disorders. The ability of sodium channels to discriminate the native Na(+) among other competing ions in the surrounding fluids is crucial for proper cellular functions. The selectivity filter (SF), the narrowest part of the channel's open pore, lined with amino acid residues that specifically interact with the permeating ion, plays a major role in determining Na(+) selectivity. Different sodium channels have different SFs, which vary in the symmetry, number, charge, arrangement, and chemical type of the metal-ligating groups and pore size: epithelial/degenerin/acid-sensing ion channels have generally trimeric SFs lined with three conserved neutral serines and/or backbone carbonyls; eukaryotic sodium channels have EKEE, EEKE, DKEA, and DEKA SFs with an invariant positively charged lysine from the second or third domain; and bacterial voltage-gated sodium (Nav) channels exhibit symmetrical EEEE SFs, reminiscent of eukaryotic voltage-gated calcium channels. How do these different sodium channel SFs achieve high selectivity for Na(+) over its key rivals, K(+) and Ca(2+)? What factors govern the metal competition in these SFs and which of these factors are exploited to achieve Na(+) selectivity in the different sodium channel SFs? The free energies for replacing K(+) or Ca(2+) bound inside different model SFs with Na(+), evaluated by a combination of density functional theory and continuum dielectric

  14. Dysfunctional HCN ion channels in neurological diseases

    PubMed Central

    DiFrancesco, Jacopo C.; DiFrancesco, Dario

    2015-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current) in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation, and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials, and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic, and physiopathological

  15. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    SciTech Connect

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong; Alam, Amer; Shi, Ning; Jiang, Youxing

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only the channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.

  16. Ion channels that control fertility in mammalian spermatozoa.

    PubMed

    Navarro, Betsy; Kirichok, Yuriy; Chung, Jean-Ju; Clapham, David E

    2008-01-01

    Whole-cell voltage clamp of mammalian spermatozoa was first achieved in 2006. This technical advance, combined with genetic deletion strategies, makes unambiguous identification of sperm ion channel currents possible. This review summarizes the ion channel currents that have been directly measured in mammalian sperm, and their physiological roles in fertilization. The predominant currents are a Ca2+-selective current requiring expression of the 4 mCatSper genes, and a rectifying K+ current with properties most similar to mSlo3. Intracellular alkalinization activates both channels and induces hyperactivated motility.

  17. Mass-dependent channel electron multiplier operation. [for ion detection

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Burch, J. L.; Oran, W. A.

    1977-01-01

    The absolute counting efficiency and pulse height distributions of a continuous-channel electron multiplier used in the detection of hydrogen, argon and xenon ions are assessed. The assessment technique, which involves the post-acceleration of 8-eV ion beams to energies from 100 to 4000 eV, provides information on counting efficiency versus post-acceleration voltage characteristics over a wide range of ion mass. The charge pulse height distributions for H2 (+), A (+) and Xe (+) were measured by operating the experimental apparatus in a marginally gain-saturated mode. It was found that gain saturation occurs at lower channel multiplier operating voltages for light ions such as H2 (+) than for the heavier ions A (+) and Xe (+), suggesting that the technique may be used to discriminate between these two classes of ions in electrostatic analyzers.

  18. Selective activation of mechanosensitive ion channels using magnetic particles.

    PubMed

    Hughes, Steven; McBain, Stuart; Dobson, Jon; El Haj, Alicia J

    2008-08-01

    This study reports the preliminary development of a novel magnetic particle-based technique that permits the application of highly localized mechanical forces directly to specific regions of an ion-channel structure. We demonstrate that this approach can be used to directly and selectively activate a mechanosensitive ion channel of interest, namely TREK-1. It is shown that manipulation of particles targeted against the extended extracellular loop region of TREK-1 leads to changes in whole-cell currents consistent with changes in TREK-1 activity. Responses were absent when particles were coated with RGD (Arg-Gly-Asp) peptide or when magnetic fields were applied in the absence of magnetic particles. It is concluded that changes in whole-cell current are the result of direct force application to the extracellular loop region of TREK-1 and thus these results implicate this region of the channel structure in mechano-gating. It is hypothesized that the extended loop region of TREK-1 may act as a tension spring that acts to regulate sensitivity to mechanical forces, in a nature similar to that described for MscL. The development of a technique that permits the direct manipulation of mechanosensitive ion channels in real time without the need for pharmacological drugs has huge potential benefits not only for basic biological research of ion-channel gating mechanisms, but also potentially as a tool for the treatment of human diseases caused by ion-channel dysfunction.

  19. TRPC Family of Ion Channels and Mechanotransduction

    NASA Astrophysics Data System (ADS)

    Hamill, Owen P.; Maroto, Rosario

    Here we review recent evidence that indicates members of the canonical transient receptor potential (TRPC) channel family form mechanosensitive (MS) channels. The MS functions of TRPCs may be mechanistically related to their better known functions as store-operated (SOCs) and receptor-operated channels (ROCs). In particular, mechanical forces may be conveyed to TRPC channels through "conformational coupling" and/or "Ca2+ influx factor" mechanisms that are proposed to transmit information regarding the status of internal Ca2+ stores to SOCs located in the plasma membrane. Furthermore, all TRPCs are regulated by receptors coupled to phospholipases (e.g., PLC and PLA2) that may themselves display mechanosensitivity and modulate channel activity via their generation of lipidic second messengers (e.g., diacylglycerol, lysophospholipids and arachidonic acid). Accordingly, there may be several nonexclusive mechanisms by which mechanical forces may regulate TRPC channels, including direct sensitivity to bilayer deformations (e.g., involving changes in lipid packing, bilayer thickness and/or lateral pressure profile), physical coupling to internal membranes and/or cytoskeletal proteins, and sensitivity to lipidic second messengers generated by MS enzymes. Various strategies that can be used to separate out different MS gating mechanisms and their possible role in each of the TRPCs are discussed.

  20. Critical issues in multiscale simulation of ion channels

    NASA Astrophysics Data System (ADS)

    Jakobsson, Eric

    2004-03-01

    The ion permeation process in individual protein channels involves phenomena over a wide range of time scales, ranging from the sub-femtosecond time scale for electronic polarization and to hundreds of milliseconds for the slowest gating motions---a range of about 15 powers of ten. Even with Moore's Law increasing computer power by a factor of two every 18 months, brute force computing will not suffice; we must develop integrated multiscale methods. This paper reports on our recent work in several aspects of multiscale simulation of ion permeation: 1) Accurate calculation of protonation states for titratable residues, as exemplified by calculation of ionization states of residues in the permeation pathway of bacterial porin. In this channel with multiple titratable residues we find that comprehensive accounting for all combinations of electrostatic interactions is necessary to compute correct protonation states, and show also that the correct protonation assignment is necessary for the crystal structure to be stable in molecular dynamics simulations, 2) Reduced dimension Brownian dynamics simulations of ion random walk in ion channels, as exemplified by simulations of potassium channels, 3) software engineering for integrated automated multiscale calculations of ion flux, and 4) extension of simulation methodology to the simulation of synthetic channels, as exemplified by simulations of water and ion permeation and structures in simulated nanotubes. In the nanotube simulations we find that confinement in a nanotube of a critical diameter induces high-temperature freezing of water, suggesting a possible method for gating nanoscale proton-conducting nanoscale semiconductors.

  1. The Ion Channel Inverse Problem: Neuroinformatics Meets Biophysics

    PubMed Central

    Cannon, Robert C; D'Alessandro, Giampaolo

    2006-01-01

    Ion channels are the building blocks of the information processing capability of neurons: any realistic computational model of a neuron must include reliable and effective ion channel components. Sophisticated statistical and computational tools have been developed to study the ion channel structure–function relationship, but this work is rarely incorporated into the models used for single neurons or small networks. The disjunction is partly a matter of convention. Structure–function studies typically use a single Markov model for the whole channel whereas until recently whole-cell modeling software has focused on serial, independent, two-state subunits that can be represented by the Hodgkin–Huxley equations. More fundamentally, there is a difference in purpose that prevents models being easily reused. Biophysical models are typically developed to study one particular aspect of channel gating in detail, whereas neural modelers require broad coverage of the entire range of channel behavior that is often best achieved with approximate representations that omit structural features that cannot be adequately constrained. To bridge the gap so that more recent channel data can be used in neural models requires new computational infrastructure for bringing together diverse sources of data to arrive at best-fit models for whole-cell modeling. We review the current state of channel modeling and explore the developments needed for its conclusions to be integrated into whole-cell modeling. PMID:16933979

  2. The ion channel inverse problem: neuroinformatics meets biophysics.

    PubMed

    Cannon, Robert C; D'Alessandro, Giampaolo

    2006-08-25

    Ion channels are the building blocks of the information processing capability of neurons: any realistic computational model of a neuron must include reliable and effective ion channel components. Sophisticated statistical and computational tools have been developed to study the ion channel structure-function relationship, but this work is rarely incorporated into the models used for single neurons or small networks. The disjunction is partly a matter of convention. Structure-function studies typically use a single Markov model for the whole channel whereas until recently whole-cell modeling software has focused on serial, independent, two-state subunits that can be represented by the Hodgkin-Huxley equations. More fundamentally, there is a difference in purpose that prevents models being easily reused. Biophysical models are typically developed to study one particular aspect of channel gating in detail, whereas neural modelers require broad coverage of the entire range of channel behavior that is often best achieved with approximate representations that omit structural features that cannot be adequately constrained. To bridge the gap so that more recent channel data can be used in neural models requires new computational infrastructure for bringing together diverse sources of data to arrive at best-fit models for whole-cell modeling. We review the current state of channel modeling and explore the developments needed for its conclusions to be integrated into whole-cell modeling. PMID:16933979

  3. [Interaction of melittin with ion channels of excitable membranes].

    PubMed

    Zherelova, O M; Kabanova, N V; Kazachenko, V N; Chaĭlakhian, L M

    2007-01-01

    The effect of the neurotoxin melittin on the activation of ion channels of excitable membrane, the plasmalemma of Characeae algae cells, isolated membrane patches of neurons of mollusc L. stagnalis and Vero cells was studied by the method of intracellular perfusion and the patch-clamp technique in inside-out configuration. It was shown that melittin disturbs the conductivity of plasmalemma and modifieds Ca(2+)-channels of plant membrane. The leakage current that appears by the action of melittin can be restored by substituting calmodulin for melittin. Melittin modifies K(+)-channels of animal cell membrane by disrupting the phospholipid matrix and forms conductive structures in the membrane by interacting with channel proteins, which is evidenced by the appearance of additional ion channels.

  4. [Interaction of melittin with ion channels of excitable membranes].

    PubMed

    Zherelova, O M; Kabanova, N V; Kazachenko, V N; Chaĭlakhian, L M

    2007-01-01

    The effect of the neurotoxin melittin on the activation of ion channels of excitable membrane, the plasmalemma of Characeae algae cells, isolated membrane patches of neurons of mollusc L. stagnalis and Vero cells was studied by the method of intracellular perfusion and the patch-clamp technique in inside-out configuration. It was shown that melittin disturbs the conductivity of plasmalemma and modifieds Ca(2+)-channels of plant membrane. The leakage current that appears by the action of melittin can be restored by substituting calmodulin for melittin. Melittin modifies K(+)-channels of animal cell membrane by disrupting the phospholipid matrix and forms conductive structures in the membrane by interacting with channel proteins, which is evidenced by the appearance of additional ion channels. PMID:17477057

  5. Noise analysis of ionization kinetics in a protein ion channel

    NASA Astrophysics Data System (ADS)

    Bezrukov, Sergey M.; Kasianowicz, John J.

    1993-08-01

    We observed excess current noise generated by the reversible ionization of sites in a transmembrane protein ion channel, which is analogous to current fluctuations found recently in solid state microstructure electronic devices. Specifically the current through fully open single channels formed by Staphylococcus aureus α-toxin shows pH dependent fluctuations. We show that noise analysis of the open channel current can be used to evaluate the ionization rate constants, the number of sites participating in the ionization process, and the effect of recharging a single site on the channel conductance.

  6. Ion Channel Gene Expression in the Inner Ear

    PubMed Central

    Sokolowski, Bernd H.A.; Morton, Cynthia C.; Giersch, Anne B.S.

    2007-01-01

    The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms. Electronic supplementary material The online version of this article (doi:10.1007/s10162-007-0082-y) contains supplementary material, which is available to authorized users. PMID:17541769

  7. Ion fluxes through nanopores and transmembrane channels

    NASA Astrophysics Data System (ADS)

    Bordin, J. R.; Diehl, A.; Barbosa, M. C.; Levin, Y.

    2012-03-01

    We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2006-10240-4 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.

  8. Emergence of ion channel modal gating from independent subunit kinetics.

    PubMed

    Bicknell, Brendan A; Goodhill, Geoffrey J

    2016-09-01

    Many ion channels exhibit a slow stochastic switching between distinct modes of gating activity. This feature of channel behavior has pronounced implications for the dynamics of ionic currents and the signaling pathways that they regulate. A canonical example is the inositol 1,4,5-trisphosphate receptor (IP3R) channel, whose regulation of intracellular Ca(2+) concentration is essential for numerous cellular processes. However, the underlying biophysical mechanisms that give rise to modal gating in this and most other channels remain unknown. Although ion channels are composed of protein subunits, previous mathematical models of modal gating are coarse grained at the level of whole-channel states, limiting further dialogue between theory and experiment. Here we propose an origin for modal gating, by modeling the kinetics of ligand binding and conformational change in the IP3R at the subunit level. We find good agreement with experimental data over a wide range of ligand concentrations, accounting for equilibrium channel properties, transient responses to changing ligand conditions, and modal gating statistics. We show how this can be understood within a simple analytical framework and confirm our results with stochastic simulations. The model assumes that channel subunits are independent, demonstrating that cooperative binding or concerted conformational changes are not required for modal gating. Moreover, the model embodies a generally applicable principle: If a timescale separation exists in the kinetics of individual subunits, then modal gating can arise as an emergent property of channel behavior. PMID:27551100

  9. Emerging concepts in the pharmacogenomics of arrhythmias: ion channel trafficking

    PubMed Central

    Harkcom, William T; Abbott, Geoffrey W

    2010-01-01

    Continuous, rhythmic beating of the heart requires exquisite control of expression, localization and function of cardiac ion channels – the foundations of the cardiac myocyte action potential. Disruption of any of these processes can alter the shape of the action potential, predisposing to cardiac arrhythmias. These arrhythmias can manifest in a variety of ways depending on both the channels involved and the type of disruption (i.e., gain or loss of function). As much as 1% of the population of developed countries is affected by cardiac arrhythmia each year, and a detailed understanding of the mechanism of each arrhythmia is crucial to developing and prescribing the proper therapies. Many of the antiarrhythmic drugs currently on the market were developed before the underlying cause of the arrhythmia was known, and as a result lack specificity, causing side effects. The majority of the available drugs target the conductance of cardiac ion channels, either by blocking or enhancing current through the channel. In recent years, however, it has become apparent that specific targeting of ion channel conductance may not be the most effective means for treatment. Here we review increasing evidence that suggests defects in ion channel trafficking play an important role in the etiology of arrhythmias, and small molecule approaches to correct trafficking defects will likely play an important role in the future of arrhythmia treatment. PMID:20670193

  10. EPR Studies of Gating Mechanisms in Ion Channels

    PubMed Central

    Chakrapani, Sudha

    2015-01-01

    Ion channels open and close in response to diverse stimuli, and the molecular events underlying these processes are extensively modulated by ligands of both endogenous and exogenous origin. In the past decade, high-resolution structures of several channel types have been solved, providing unprecedented details of the molecular architecture of these membrane proteins. Intrinsic conformational flexibility of ion channels critically governs their functions. However, the dynamics underlying gating mechanisms and modulations are obscured in the information from crystal structures. While nuclear magnetic resonance spectroscopic methods allow direct measurements of protein dynamics, they are limited by the large size of these membrane protein assemblies in detergent micelles or lipid membranes. Electron paramagnetic resonance (EPR) spectroscopy has emerged as a key biophysical tool to characterize structural dynamics of ion channels and to determine stimulus-driven conformational transition between functional states in a physiological environment. This review will provide an overview of the recent advances in the field of voltage- and ligand-gated channels and highlight some of the challenges and controversies surrounding the structural information available. It will discuss general methods used in site-directed spin labeling and EPR spectroscopy and illustrate how findings from these studies have narrowed the gap between high-resolution structures and gating mechanisms in membranes, and have thereby helped reconcile seemingly disparate models of ion channel function. PMID:25950970

  11. The 22nd Ion Channel Meeting, September 2011, France

    PubMed Central

    Goaillard, Jean-Marc; Groc, Laurent; Lévi, Sabine; Mantegazza, Massimo; Matifat, Fabrice; Morel, Jean-Luc; Baron-Forster, Anne

    2012-01-01

    The 22nd Ion Channel Meeting was organized by the French Ion Channel Society (Association Canaux Ioniques) from the 25th to the 28th of September 2011 on the French Riviera (Giens). This year again, more than one hundred researchers from France, Europe and extra-European countries gathered to present and discuss their recent advances and future challenges in the ion channels and transporters field. The scientific committee organized a plenary lecture and five thematic symposia by inviting international researchers to present their recent outstanding work on themes as diverse as muscular channelopathies, regulation of channels by extracellular matrix, receptor-channels interactions, localization and distribution of ion channels, their involvement in the cell life and death, and finally how they participate in the evolution and adaptability of cellular excitability. These presentations are summarized in this meeting report. Two sessions of oral communications selected from submitted abstracts and two poster sessions were also organized to present the ongoing work of young researchers worldwide. PMID:22647366

  12. Ion/water channels for embryo implantation barrier.

    PubMed

    Liu, Xin-Mei; Zhang, Dan; Wang, Ting-Ting; Sheng, Jian-Zhong; Huang, He-Feng

    2014-05-01

    Successful implantation involves three distinct processes, namely the embryo apposition, attachment, and penetration through the luminal epithelium of the endometrium to establish a vascular link to the mother. After penetration, stromal cells underlying the epithelium differentiate and surround the embryo to form the embryo implantation barrier, which blocks the passage of harmful substances to the embryo. Many ion/water channel proteins were found to be involved in the process of embryo implantation. First, ion/water channel proteins play their classical role in establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane. Second, most of ion/water channel proteins are regulated by steroid hormone (estrogen or progesterone), which may have important implications to the embryo implantation. Last but not least, these proteins do not limit themselves as pure channels but also function as an initiator of a series of consequences once activated by their ligand/stimulator. Herein, we discuss these new insights in recent years about the contribution of ion/water channels to the embryo implantation barrier construction during early pregnancy. PMID:24789983

  13. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed. PMID:26103632

  14. Metal bridges to probe membrane ion channel structure and function.

    PubMed

    Linsdell, Paul

    2015-06-01

    Ion channels are integral membrane proteins that undergo important conformational changes as they open and close to control transmembrane flux of different ions. The molecular underpinnings of these dynamic conformational rearrangements are difficult to ascertain using current structural methods. Several functional approaches have been used to understand two- and three-dimensional dynamic structures of ion channels, based on the reactivity of the cysteine side-chain. Two-dimensional structural rearrangements, such as changes in the accessibility of different parts of the channel protein to the bulk solution on either side of the membrane, are used to define movements within the permeation pathway, such as those that open and close ion channel gates. Three-dimensional rearrangements – in which two different parts of the channel protein change their proximity during conformational changes – are probed by cross-linking or bridging together two cysteine side-chains. Particularly useful in this regard are so-called metal bridges formed when two or more cysteine side-chains form a high-affinity binding site for metal ions such as Cd2+ or Zn2+. This review describes the use of these different techniques for the study of ion channel dynamic structure and function, including a comprehensive review of the different kinds of conformational rearrangements that have been studied in different channel types via the identification of intra-molecular metal bridges. Factors that influence the affinities and conformational sensitivities of these metal bridges, as well as the kinds of structural inferences that can be drawn from these studies, are also discussed.

  15. The functional network of ion channels in T lymphocytes

    PubMed Central

    Cahalan, Michael D.; Chandy, K. George

    2011-01-01

    Summary For more than 25 years, it has been widely appreciated that Ca2+ influx is essential to trigger T-lymphocyte activation. Patch clamp analysis, molecular identification, and functional studies using blockers and genetic manipulation have shown that a unique contingent of ion channels orchestrates the initiation, intensity, and duration of the Ca2+ signal. Five distinct types of ion channels – Kv1.3, KCa3.1, Orai1+ stromal interacting molecule 1 (STIM1) [Ca2+-release activating Ca2+ (CRAC) channel], TRPM7, and Clswell – comprise a network that performs functions vital for ongoing cellular homeostasis and for T-cell activation, offering potential targets for immunomodulation. Most recently, the roles of STIM1 and Orai1 have been revealed in triggering and forming the CRAC channel following T-cell receptor engagement. Kv1.3, KCa3.1, STIM1, and Orai1 have been found to cluster at the immunological synapse following contact with an antigen-presenting cell; we discuss how channels at the synapse might function to modulate local signaling. Immuno-imaging approaches are beginning to shed light on ion channel function in vivo. Importantly, the expression pattern of Ca2+ and K+ channels and hence the functional network can adapt depending upon the state of differentiation and activation, and this allows for different stages of an immune response to be targeted specifically. PMID:19754890

  16. Molecular Dynamical Study on Ion Channeling through Peptide Nanotube

    NASA Astrophysics Data System (ADS)

    Sumiya, Norihito; Igami, Daiki; Takeda, Kyozaburo

    2011-12-01

    We theoretically study the possibility of ion channeling through peptide nanotubes (PNTs). After designing the minimal peptide nanorings (PNRs) and their aggregated form (peptide nanotubes, PNT) computationally, we carry out molecular dynamics (MD) calculations for cation channeling. The present MD calculations show that cation channeling through PNTs occurs. Furthermore, inter-ring hydrogen bonds (HBs) survive and maintain the tubular form of PNTs during cation channeling. We introduce mobility such that cation channeling can be evaluated quantitatively. As the ionic radius of the cation becomes smaller, the effective relaxation time τ becomes larger. Accordingly, mobilities of 10-2˜10-3[cm2/volt/sec] are calculated. In contrast, when an anion (F-) passes through the PNT, the inter-ring HBs are broken, thus inducing breakdown of the peptide backbone. Consequently, H atoms from the broken HBs surround the channeling anion (F-) and halt its motion.

  17. Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel.

    PubMed

    Hilf, Ricarda J C; Bertozzi, Carlo; Zimmermann, Iwan; Reiter, Alwin; Trauner, Dirk; Dutzler, Raimund

    2010-11-01

    The flow of ions through cation-selective members of the pentameric ligand-gated ion channel family is inhibited by a structurally diverse class of molecules that bind to the transmembrane pore in the open state of the protein. To obtain insight into the mechanism of channel block, we have investigated the binding of positively charged inhibitors to the open channel of the bacterial homolog GLIC by using X-ray crystallography and electrophysiology. Our studies reveal the location of two regions for interactions, with larger blockers binding in the center of the membrane and divalent transition metal ions binding to the narrow intracellular pore entry. The results provide a structural foundation for understanding the interactions of the channel with inhibitors that is relevant for the entire family.

  18. Divalent ion trapping inside potassium channels of human T lymphocytes

    PubMed Central

    1989-01-01

    Using the patch-clamp whole-cell recording technique, we investigated the influence of external Ca2+, Ba2+, K+, Rb+, and internal Ca2+ on the rate of K+ channel inactivation in the human T lymphocyte-derived cell line, Jurkat E6-1. Raising external Ca2+ or Ba2+, or reducing external K+, accelerated the rate of the K+ current decay during a depolarizing voltage pulse. External Ba2+ also produced a use-dependent block of the K+ channels by entering the open channel and becoming trapped inside. Raising internal Ca2+ accelerated inactivation at lower concentrations than external Ca2+, but increasing the Ca2+ buffering with BAPTA did not affect inactivation. Raising [K+]o or adding Rb+ slowed inactivation by competing with divalent ions. External Rb+ also produced a use-dependent removal of block of K+ channels loaded with Ba2+ or Ca2+. From the removal of this block we found that under normal conditions approximately 25% of the channels were loaded with Ca2+, whereas under conditions with 10 microM internal Ca2+ the proportion of channels loaded with Ca2+ increased to approximately 50%. Removing all the divalent cations from the external and internal solution resulted in the induction of a non-selective, voltage-independent conductance. We conclude that Ca2+ ions from the outside or the inside can bind to a site at the K+ channel and thereby block the channel or accelerate inactivation. PMID:2786551

  19. Roles of Ion Channels in the Environmental Responses of Plants

    NASA Astrophysics Data System (ADS)

    Furuichi, Takuya; Kawano, Tomonori; Tatsumi, Hitoshi; Sokabe, Masahiro

    When plant cells are exposed to environmental stresses or perceive internal signal molecules involved in growth and development, ion channels are transiently activated to convert these stimuli into intracellular signals. Among the ions taken up by plant cells, Ca2+ plays an essential role as an intracellular second messenger in plants; the cytoplasmic free Ca2+ concentration ([Ca2+]c) is therefore strictly regulated. Signal transduction pathways mediated by changes in [Ca2+]c - termed Ca2+ signaling - are initiated by the activation of Ca2+-permeable channels in many cases. To date, a large body of electrophysiological and recent molecular biological studies have revealed that plants possess Ca2+ channels belonging to distinct types with different gating mechanisms, and a variety of genes for Ca2+-permeable channels have been isolated and functionally characterized. Topics in this chapter focus on long-distance signal translocation in plants and the characteristics of a variety of plant Ca2+-permeable channels including voltage-dependent Ca2+-permeable channels, cyclic nucleotide-gated cation channels, ionotropic glutamate receptors and mechanosensitive channels. We discuss their roles in environmental responses and in the regulation of growth and development.

  20. Ion selectivity and gating mechanisms of FNT channels

    PubMed Central

    Waight, Andrew B.; Czyzewski, Bryan K.; Wang, Da-Neng

    2013-01-01

    The phospholipid bilayer has evolved to be a protective and selective barrier by which the cell maintains high concentrations of life sustaining organic and inorganic material. As gatekeepers responsible for an immense amount of bidirectional chemical traffic between the cytoplasm and extracellular milieu, ion channels have been studied in detail since their postulated existence nearly three-quarters of a century ago. Over the past fifteen years, we have begun to understand how selective permeability can be achieved for both cationic and anionic ions. Our mechanistic knowledge has expanded recently with studies of a large family of anion channels, the Formate Nitrite Transport (FNT) family. This family has proven amenable to structural studies at a resolution high enough to reveal intimate details of ion selectivity and gating. With five representative members having yielded a total of 15 crystal structures, this family represents one of the richest sources of structural information for anion channels. PMID:23773802

  1. Functional properties of ion channels and transporters in tumour vascularization

    PubMed Central

    Fiorio Pla, Alessandra; Munaron, Luca

    2014-01-01

    Vascularization is crucial for solid tumour growth and invasion, providing metabolic support and sustaining metastatic dissemination. It is now accepted that ion channels and transporters play a significant role in driving the cancer growth at all stages. They may represent novel therapeutic, diagnostic and prognostic targets for anti-cancer therapies. On the other hand, although the expression and role of ion channels and transporters in the vascular endothelium is well recognized and subject of recent reviews, only recently has their involvement in tumour vascularization been recognized. Here, we review the current literature on ion channels and transporters directly involved in the angiogenic process. Particular interest will be focused on tumour angiogenesis in vivo as well as in the different steps that drive this process in vitro, such as endothelial cell proliferation, migration, adhesion and tubulogenesis. Moreover, we compare the ‘transportome’ system of tumour vascular network with the physiological one. PMID:24493751

  2. Ion channels in artificial bolaamphiphile membranes deposited on sensor chips: optical detection in an ion-channel-based biosensor

    NASA Astrophysics Data System (ADS)

    Schalkhammer, Thomas G. M.; Weiss-Wichert, Christof; Smetazko, Michaela M.; Valina-Saba, Miriam

    1997-06-01

    Signal amplification using labels should be replaced by a technique monitoring the biochemical binding event directly. The use of a ligand coupled to an artificial gated membrane ion channel is a new promising strategy. Binding of protein- or DNA/RNA-analytes at ligand modified peptide channels results in an on/off-response of the channel current due to channel closure or distortion. The sensor consists of stable transmembrane channels with a ligand bound covalently at the peptide channel entrance, a sensor chip with a photostructurized hydrophobic polymer frame, a hydrophilic ion conducting membrane support, a lipid membrane incorporating the engineered ion channels, and a current amplifier or a sensitive fluorescence monitor. Detection of channel opening or closure can ether be obtained by directly monitoring membrane conductivity or a transient change of pH or ion concentration within the membrane compartment. This change can be induced by electrochemical or optical means and its decay is directly correlated to the permeability of the membrane. The ion concentration in the sub membrane compartment was monitored by incorporation of fluorescent indicator dyes. To obtain the stable sensor membrane the lipid layer had to be attached on a support and the floating of the second lipid membrane on top of the first one had to be prevented. Both problems do not occur using our new circular C44-C76 bolaamphiphilic lipids consisting of a long hydrophobic core region and two hydrophilic heads. Use of maleic ester-head groups enabled us to easily modify the lipids with amines, thioles, alcohols, phosphates, boronic acid as well as fluorescent dyes. The properties of these membranes were studied using LB and fluorescence techniques. Based on this detection principle miniaturized sensor chips with significantly enhanced sensitivity and large multi analyte arrays are under construction.

  3. Identification and characterization of a bacterial hydrosulphide ion channel

    SciTech Connect

    Czyzewski, Bryan K.; Wang, Da-Neng

    2012-10-26

    The hydrosulphide ion (HS{sup -}) and its undissociated form, hydrogen sulphide (H{sub 2}S), which are believed to have been critical to the origin of life on Earth, remain important in physiology and cellular signalling. As a major metabolite in anaerobic bacterial growth, hydrogen sulphide is a product of both assimilatory and dissimilatory sulphate reduction. These pathways can reduce various oxidized sulphur compounds including sulphate, sulphite and thiosulphate. The dissimilatory sulphate reduction pathway uses this molecule as the terminal electron acceptor for anaerobic respiration, in which process it produces excess amounts of H{sub 2}S. The reduction of sulphite is a key intermediate step in all sulphate reduction pathways. In Clostridium and Salmonella, an inducible sulphite reductase is directly linked to the regeneration of NAD{sup +}, which has been suggested to have a role in energy production and growth, as well as in the detoxification of sulphite. Above a certain concentration threshold, both H{sub 2}S and HS{sup -} inhibit cell growth by binding the metal centres of enzymes and cytochrome oxidase, necessitating a release mechanism for the export of this toxic metabolite from the cell. Here we report the identification of a hydrosulphide ion channel in the pathogen Clostridium difficile through a combination of genetic, biochemical and functional approaches. The HS{sup -} channel is a member of the formate/nitrite transport family, in which about 50 hydrosulphide ion channels form a third subfamily alongside those for formate (FocA) and for nitrite (NirC). The hydrosulphide ion channel is permeable to formate and nitrite as well as to HS{sup -} ions. Such polyspecificity can be explained by the conserved ion selectivity filter observed in the channel's crystal structure. The channel has a low open probability and is tightly regulated, to avoid decoupling of the membrane proton gradient.

  4. Modeling ion channel dynamics through reflected stochastic differential equations.

    PubMed

    Dangerfield, Ciara E; Kay, David; Burrage, Kevin

    2012-05-01

    Ion channels are membrane proteins that open and close at random and play a vital role in the electrical dynamics of excitable cells. The stochastic nature of the conformational changes these proteins undergo can be significant, however current stochastic modeling methodologies limit the ability to study such systems. Discrete-state Markov chain models are seen as the "gold standard," but are computationally intensive, restricting investigation of stochastic effects to the single-cell level. Continuous stochastic methods that use stochastic differential equations (SDEs) to model the system are more efficient but can lead to simulations that have no biological meaning. In this paper we show that modeling the behavior of ion channel dynamics by a reflected SDE ensures biologically realistic simulations, and we argue that this model follows from the continuous approximation of the discrete-state Markov chain model. Open channel and action potential statistics from simulations of ion channel dynamics using the reflected SDE are compared with those of a discrete-state Markov chain method. Results show that the reflected SDE simulations are in good agreement with the discrete-state approach. The reflected SDE model therefore provides a computationally efficient method to simulate ion channel dynamics while preserving the distributional properties of the discrete-state Markov chain model and also ensuring biologically realistic solutions. This framework could easily be extended to other biochemical reaction networks.

  5. Ferroelectric active models of ion channels in biomembranes.

    PubMed

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  6. Ion channels and the transduction of light signals

    NASA Technical Reports Server (NTRS)

    Spalding, E. P.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Studies of biological light-sensing mechanisms are revealing important roles for ion channels. Photosensory transduction in plants is no exception. In this article, the evidence that ion channels perform such signal-transducing functions in the complex array of mechanisms that bring about plant photomorphogenesis will be reviewed and discussed. The examples selected for discussion range from light-gradient detection in unicellular algae to the photocontrol of stem growth in Arabidopsis. Also included is some discussion of the technical aspects of studies that combine electrophysiology and photobiology.

  7. Narrow conducting channels defined by helium ion beam damage

    SciTech Connect

    Cheeks, T.L.; Roukes, M.L.; Scherer, A.; Craighead, H.G.

    1988-11-14

    We have developed a new technique for patterning narrow conducting channels in GaAs-AlGaAs two-dimensional electron gas (2DEG) materials. A low-energy He ion beam successfully patterned narrow wires with little or no etching of the thin GaAs cap. The damage propagation of the He ion even at low energies was sufficient to decrease the mobility of the 2DEG located deep within the structure. The damage can be removed by a low-temperature anneal but remains stable at room temperature. Conducting channels as narrow as 300 nm have been fabricated and measured using low-temperature magnetoresistance.

  8. Collective Diffusion Model for Ion Conduction through Microscopic Channels

    PubMed Central

    Liu, Yingting; Zhu, Fangqiang

    2013-01-01

    Ion conduction through microscopic channels is of central importance in both biology and nanotechnology. To better understand the current-voltage (I-V) dependence of ion channels, here we describe and prove a collective diffusion model that quantitatively relates the spontaneous ion permeation at equilibrium to the stationary ionic fluxes driven by small voltages. The model makes it possible to determine the channel conductance in the linear I-V range from equilibrium simulations without the application of a voltage. To validate the theory, we perform molecular-dynamics simulations on two channels—a conical-shaped nanopore and the transmembrane pore of an α-hemolysin—under both equilibrium and nonequilibrium conditions. The simulations reveal substantial couplings between the motions of cations and anions, which are effectively captured by the collective coordinate in the model. Although the two channels exhibit very different linear ranges in the I-V curves, in both cases the channel conductance at small voltages is in reasonable agreement with the prediction from the equilibrium simulation. The simulations also suggest that channel charges, rather than geometric asymmetry, play a more prominent role in current rectification. PMID:23442858

  9. Regulation of heartbeat by G protein-coupled ion channels.

    PubMed

    Brown, A M

    1990-12-01

    The coupling of ion channels to receptors by G proteins is the subject of this American Physiological Society Walter B. Cannon Memorial "Physiology in Perspective" Lecture. This subject is particularly appropriate because it includes a molecular explanation of a homeostatic mechanism involving the autonomic nervous system and the latter subject preoccupied Dr. Cannon during most of his career. With the use of reconstitution methods, we and others have shown that heterotrimeric guanine nucleotide-binding (G) proteins couple receptors to ion channels by both membrane-delimited, direct pathways and cytoplasmic second messenger pathways. Furthermore, one set of receptors may be coupled to as many as three different sets of ion channels to form networks. Dual G protein pathways lead to the prediction of biphasic ion current responses in cell signaling, and this prediction was confirmed. In sinoatrial pacemaker cells, the pacemaking hyperpolarization-activated inward current (If) is directly regulated by the G proteins Gs and Go, and the two can act simultaneously. This could explain the classical observation that vagal inhibition of heart rate is greater during sympathetic stimulation. Because deactivation of the muscarinic response occurs much faster than the G protein alpha-subunit hydrolyzes guanosine 5'-triphosphate, we looked for accessory cellular factors. A surprising result was that the small monomeric ras G protein blocked the muscarinic pathway. The significance of this observation is unknown, but it appears that small and large G proteins may interact in ion channel signaling pathways.

  10. Regulation of heartbeat by G protein-coupled ion channels.

    PubMed

    Brown, A M

    1990-12-01

    The coupling of ion channels to receptors by G proteins is the subject of this American Physiological Society Walter B. Cannon Memorial "Physiology in Perspective" Lecture. This subject is particularly appropriate because it includes a molecular explanation of a homeostatic mechanism involving the autonomic nervous system and the latter subject preoccupied Dr. Cannon during most of his career. With the use of reconstitution methods, we and others have shown that heterotrimeric guanine nucleotide-binding (G) proteins couple receptors to ion channels by both membrane-delimited, direct pathways and cytoplasmic second messenger pathways. Furthermore, one set of receptors may be coupled to as many as three different sets of ion channels to form networks. Dual G protein pathways lead to the prediction of biphasic ion current responses in cell signaling, and this prediction was confirmed. In sinoatrial pacemaker cells, the pacemaking hyperpolarization-activated inward current (If) is directly regulated by the G proteins Gs and Go, and the two can act simultaneously. This could explain the classical observation that vagal inhibition of heart rate is greater during sympathetic stimulation. Because deactivation of the muscarinic response occurs much faster than the G protein alpha-subunit hydrolyzes guanosine 5'-triphosphate, we looked for accessory cellular factors. A surprising result was that the small monomeric ras G protein blocked the muscarinic pathway. The significance of this observation is unknown, but it appears that small and large G proteins may interact in ion channel signaling pathways. PMID:1701981

  11. Crystal orientation mapping via ion channeling: An alternative to EBSD.

    PubMed

    Langlois, C; Douillard, T; Yuan, H; Blanchard, N P; Descamps-Mandine, A; Van de Moortèle, B; Rigotti, C; Epicier, T

    2015-10-01

    A new method, which we name ion CHanneling ORientation Determination (iCHORD), is proposed to obtain orientation maps on polycrystals via ion channeling. The iChord method exploits the dependence between grain orientation and ion beam induced secondary electron image contrast. At each position of the region of interest, intensity profiles are obtained from a series of images acquired with different orientations with respect to the ion beam. The profiles are then compared to a database of theoretical profiles of known orientation. The Euler triplet associated to the most similar theoretical profile gives the orientation at that position. The proof-of-concept is obtained on a titanium nitride sample. The potentialities of iCHORD as an alternative to EBSD are then discussed. PMID:26094201

  12. Charge state dependence of channeled ion energy loss

    NASA Astrophysics Data System (ADS)

    Golovchenko, J. A.; Goland, A. N.; Rosner, J. S.; Thorn, C. E.; Wegner, H. E.; Knudsen, H.; Moak, C. D.

    1981-02-01

    The charge state dependence of channeled ion energy loss has been determined for a series of ions ranging from fluorine to chlorine along the <110> direction in a silicon crystal. Energy losses for both bare ions and ions partially clothed with bound electrons at EA≅3 MeV/amu have been measured. The energy-loss rate for bare ions follows a strict Z21 scaling and agrees reasonably well with quantal perturbation calculations without the need for polarization or Bloch corrections. An explanation for this result is discussed. The clothed-ion energy losses appear to demonstrate screening effects that agree qualitatively with simple estimates. The angular dependence of the observed energy-loss effects is also presented.

  13. Single Channel Activity from Ion Channels in Engineered Tethered Bilayer Membrane Arrays

    NASA Astrophysics Data System (ADS)

    Keizer, Henk; Fine, Daniel; K"{O}Per, Ingo; Anderson, Peter

    2005-11-01

    The demand for rapid in situ detection of chemical and biological analytes at high sensitivity has increased interest in the development of biosensors like the commercially available compact glucose sensor. Engineered membrane bound ion channels are promising biological receptors since they would allow for the stochastic detection of analytes at high sensitivity, they can be mutated to alter sensitivity, and they produce a well-defined read-out that is inherently suitable for digitization. In order to perform stochastic sensing it is necessary to be able to measure the ion currents associated with single ion channel opening and closing events. Although sensors based on supported bilayers containing various pore forming proteins have been described, none of these systems have recorded single channel activity. Here we describe the measurement of stochastic activity from synthetic single ion channels, based on the nicotinic acetylcholine receptor (nAChR) from Torpedo californica, inserted into individual pixels of a microelectrode array device. The limited size of the gold sense pad surface, 100x100 μm, and the electrical stability of the overlying lipid bilayer membrane make each pixel sensitive enough to measure single ion channel currents in the picoampere range.

  14. Theoretical and computational models of biological ion channels

    NASA Astrophysics Data System (ADS)

    Roux, Benoit

    2004-03-01

    A theoretical framework for describing ion conduction through biological molecular pores is established and explored. The framework is based on a statistical mechanical formulation of the transmembrane potential (1) and of the equilibrium multi-ion potential of mean forces through selective ion channels (2). On the basis of these developments, it is possible to define computational schemes to address questions about the non-equilibrium flow of ions through ion channels. In the case of narrow channels (gramicidin or KcsA), it is possible to characterize the ion conduction in terms of the potential of mean force of the ions along the channel axis (i.e., integrating out the off-axis motions). This has been used for gramicidin (3) and for KcsA (4,5). In the case of wide pores (i.e., OmpF porin), this is no longer a good idea, but it is possible to use a continuum solvent approximations. In this case, a grand canonical monte carlo brownian dynamics algorithm was constructed for simulating the non-equilibrium flow of ions through wide pores. The results were compared with those from the Poisson-Nernst-Planck mean-field electrodiffusion theory (6-8). References; 1. B. Roux, Biophys. J. 73:2980-2989 (1997); 2. B. Roux, Biophys. J. 77, 139-153 (1999); 3. Allen, Andersen and Roux, PNAS (2004, in press); 4. Berneche and Roux. Nature, 414:73-77 (2001); 5. Berneche and Roux. PNAS, 100:8644-8648 (2003); 6. W. Im and S. Seefeld and B. Roux, Biophys. J. 79:788-801 (2000); 7. W. Im and B. Roux, J. Chem. Phys. 115:4850-4861 (2001); 8. W. Im and B. Roux, J. Mol. Biol. 322:851-869 (2002).

  15. Optimum ion channel properties in the squid giant axon.

    PubMed

    Adair, Robert K

    2004-04-01

    Evolutionary pressures are presumed to act so as to maximize the efficiency of biological systems. However, the utility of that premise is marred by the difficulties in defining and evaluating both the efficiency of systems and the character of the available variation space. Following Hodgkin and Adrian, we examine the character of voltage gated ion channels in the nonmyelinated giant axons of the squid and find that both the channel densities and channel transition rates have values that nearly optimize signal sensitivity as well as signal velocity.

  16. Optimum ion channel properties in the squid giant axon

    NASA Astrophysics Data System (ADS)

    Adair, Robert K.

    2004-04-01

    Evolutionary pressures are presumed to act so as to maximize the efficiency of biological systems. However, the utility of that premise is marred by the difficulties in defining and evaluating both the efficiency of systems and the character of the available variation space. Following Hodgkin and Adrian, we examine the character of voltage gated ion channels in the nonmyelinated giant axons of the squid and find that both the channel densities and channel transition rates have values that nearly optimize signal sensitivity as well as signal velocity.

  17. Brownian Dynamics: Simulation for Ion Channel Permeation1

    NASA Astrophysics Data System (ADS)

    Chung, Shin-Ho; Krishnamurthy, Vikram

    All living cells are surrounded by a thin membrane, composed of two layers of phospholipid molecules, called the lipid bilayer. This thin membrane effectively confines some ions and molecules inside and exchanges others with outside and acts as a hydrophobic, low dielectric barrier to hydrophilic molecules. Because of a large difference between the dielectric constants of the membrane and electrolyte solutions, no charged particles, such as Na+, K+, and Cl- ions, can jump across the membrane. The amount of energy needed to transport one monovalent ion, in either direction across the membrane, known as the Born energy, is enormously high. For a living cell to function, however, the proper ionic gradient has to be maintained, and ions at times must move across the membrane to maintain the potential difference across the membrane and to generate synaptic and action potentials. The delicate tasks of regulating the transport of ions across the membrane are carried out by biological nanotubes called "ion channels," water-filled conduits inserted across the cell membrane through which ions can freely move in and out when the gates are open. These ion channels can be viewed as biological sub-nanotubes, the typical pore diameters of which are ~10-9 m or 10 Å.

  18. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    SciTech Connect

    Fritsch, Sebastian; Ivanov, Ivaylo; Wang, Hailong; Cheng, Xiaolin

    2010-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a 11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2 ) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2 A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.

  19. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    PubMed

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  20. A TRPV family ion channel required for hearing in Drosophila.

    PubMed

    Kim, Janghwan; Chung, Yun Doo; Park, Dae-Young; Choi, SooKyung; Shin, Dong Wook; Soh, Heun; Lee, Hye Won; Son, Wonseok; Yim, Jeongbin; Park, Chul-Seung; Kernan, Maurice J; Kim, Changsoo

    2003-07-01

    The many types of insect ear share a common sensory element, the chordotonal organ, in which sound-induced antennal or tympanal vibrations are transmitted to ciliated sensory neurons and transduced to receptor potentials. However, the molecular identity of the transducing ion channels in chordotonal neurons, or in any auditory system, is still unknown. Drosophila that are mutant for NOMPC, a transient receptor potential (TRP) superfamily ion channel, lack receptor potentials and currents in tactile bristles but retain most of the antennal sound-evoked response, suggesting that a different channel is the primary transducer in chordotonal organs. Here we describe the Drosophila Nanchung (Nan) protein, an ion channel subunit similar to vanilloid-receptor-related (TRPV) channels of the TRP superfamily. Nan mediates hypo-osmotically activated calcium influx and cation currents in cultured cells. It is expressed in vivo exclusively in chordotonal neurons and is localized to their sensory cilia. Antennal sound-evoked potentials are completely absent in mutants lacking Nan, showing that it is an essential component of the chordotonal mechanotransducer.

  1. Contributions of intracellular ions to kv channel voltage sensor dynamics.

    PubMed

    Goodchild, Samuel J; Fedida, David

    2012-01-01

    Voltage-sensing domains (VSDs) of Kv channels control ionic conductance through coupling of the movement of charged residues in the S4 segment to conformational changes at the cytoplasmic region of the pore domain, that allow K(+) ions to flow. Conformational transitions within the VSD are induced by changes in the applied voltage across the membrane field. However, several other factors not directly linked to the voltage-dependent movement of charged residues within the voltage sensor impact the dynamics of the voltage sensor, such as inactivation, ionic conductance, intracellular ion identity, and block of the channel by intracellular ligands. The effect of intracellular ions on voltage sensor dynamics is of importance in the interpretation of gating current measurements and the physiology of pore/voltage sensor coupling. There is a significant amount of variability in the reported kinetics of voltage sensor deactivation kinetics of Kv channels attributed to different mechanisms such as open state stabilization, immobilization, and relaxation processes of the voltage sensor. Here we separate these factors and focus on the causal role that intracellular ions can play in allosterically modulating the dynamics of Kv voltage sensor deactivation kinetics. These considerations are of critical importance in understanding the molecular determinants of the complete channel gating cycle from activation to deactivation.

  2. Ion channel networks in the control of cerebral blood flow.

    PubMed

    Longden, Thomas A; Hill-Eubanks, David C; Nelson, Mark T

    2016-03-01

    One hundred and twenty five years ago, Roy and Sherrington made the seminal observation that neuronal stimulation evokes an increase in cerebral blood flow.(1) Since this discovery, researchers have attempted to uncover how the cells of the neurovascular unit-neurons, astrocytes, vascular smooth muscle cells, vascular endothelial cells and pericytes-coordinate their activity to control this phenomenon. Recent work has revealed that ionic fluxes through a diverse array of ion channel species allow the cells of the neurovascular unit to engage in multicellular signaling processes that dictate local hemodynamics.In this review we center our discussion on two major themes: (1) the roles of ion channels in the dynamic modulation of parenchymal arteriole smooth muscle membrane potential, which is central to the control of arteriolar diameter and therefore must be harnessed to permit changes in downstream cerebral blood flow, and (2) the striking similarities in the ion channel complements employed in astrocytic endfeet and endothelial cells, enabling dual control of smooth muscle from either side of the blood-brain barrier. We conclude with a discussion of the emerging roles of pericyte and capillary endothelial cell ion channels in neurovascular coupling, which will provide fertile ground for future breakthroughs in the field. PMID:26661232

  3. Energetics of Multi-Ion Conduction Pathways in Potassium Ion Channels

    PubMed Central

    2013-01-01

    Potassium ion channels form pores in cell membranes, allowing potassium ions through while preventing the passage of sodium ions. Despite numerous high-resolution structures, it is not yet possible to relate their structure to their single molecule function other than at a qualitative level. Over the past decade, there has been a concerted effort using molecular dynamics to capture the thermodynamics and kinetics of conduction by calculating potentials of mean force (PMF). These can be used, in conjunction with the electro-diffusion theory, to predict the conductance of a specific ion channel. Here, we calculate seven independent PMFs, thereby studying the differences between two potassium ion channels, the effect of the CHARMM CMAP forcefield correction, and the sensitivity and reproducibility of the method. Thermodynamically stable ion–water configurations of the selectivity filter can be identified from all the free energy landscapes, but the heights of the kinetic barriers for potassium ions to move through the selectivity filter are, in nearly all cases, too high to predict conductances in line with experiment. This implies it is not currently feasible to predict the conductance of potassium ion channels, but other simpler channels may be more tractable. PMID:24353479

  4. Ion Channels in Regulation of Neuronal Regenerative Activities

    PubMed Central

    Chen, Dongdong; Yu, Shan Ping; Wei, Ling

    2014-01-01

    The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treating neurodegenerative diseases because of the regenerative capability of stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones and axon outgrowth after injury. PMID:24399572

  5. Pressure effects on stopping power of solids for channeled ions

    NASA Astrophysics Data System (ADS)

    Pathak, A. P.; Cruz, S. A.; Soullard, J.

    2005-01-01

    Pressure effects on the energy loss of swift channeled ions through silicon are considered. This is accomplished by estimating the changes in orbital charge densities and the corresponding mean ionization potentials, induced by increasing pressure. The bulk density for the compressed material is obtained from available experimental information on the corresponding equation of state for pressures up to 11.3 GPa, beyond which a structural phase transformation occurs. The high pressure is simulated by first caging the individual Si atom in a small spherical volume V and estimated as P=-partial derivative E/partial derivative V, where E is the total electronic energy for a particular confinement volume. The energy is selfconsistently calculated through a recently developed shell-wise version of the Thomas-Fermi-Dirac-Weizsacker density functional, which compares favorably with ab initio calculations on the basis of a cluster model where the Si atom is surrounded by neon (helium) atoms (in a molecular scheme). The resulting individual electronic shell charge densities are then averaged along planar channels to find the effective charge densities needed in the channeling energy loss calculations for channeled ions. The position dependence of the energy loss in the channels for the free and high-pressure case is calculated for 5 Me V protons and alpha particles along the (110) planar channels.

  6. Ion Channels as Single Molecular Sensors: Extracting Information from Noise

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor

    2001-03-01

    Ion channels are the evolution's solution to participate in electrical signaling. A question that has been haunting the Stochastic Resonance (SR) community ever since its first evidence in biological systems in the early nineties is whether -- and how -- SR occurs in single and/or coupled ion channels. Up to this very date, there exists no convincing experimental proof that SR actually takes place in a realistic ion channel such as the Shaker IR potassium-selective channel. The idea, however, that the environmental noise assists in a beneficial manner the transduction of electric encoded information is appealing; i.e. the occurrence of SR on this most fundamental level of biological complexity should not come as too big a surprise. In order to elucidate this prominent challenge we theoretically have investigated SR for a simple, yet realistic enough model of a voltage-gated ion channel. In doing so, we model the process of successive opening and closing events by a continuous time, two-state random point process with experimentally determined residence time distributions. Using measures of information theory such as the rate of information gain we have shown that SR indeed occurs when the closed state of the channel is predominantly dwelled. With increasing opening probability noise deteriorates the rate of information transfer that eventually assumes a robust behavior, which is essentially insensitive to noise. (I. Goychuk and P. Hänggi, Phys. Rev. E 61), 4272 (2000); Eur. Biophys. J. 29, 345 (2000). Moreover, we study additional SR measures such as the spectral amplification and the signal-to-noise ratio. In a next step, we generalize this investigation to account also for non-Markovian conductance fluctuations with nonexponential residence time distributions and study their consequences for the likelihood for SR to persist.

  7. Electrical pumping of potassium ions against an external concentration gradient in a biological ion channel

    NASA Astrophysics Data System (ADS)

    Queralt-Martín, María; García-Giménez, Elena; Aguilella, Vicente M.; Ramirez, Patricio; Mafe, Salvador; Alcaraz, Antonio

    2013-07-01

    We show experimentally and theoretically that significant currents can be obtained with a biological ion channel, the OmpF porin of Escherichia coli, using zero-average potentials as driving forces. The channel rectifying properties can be used to pump potassium ions against an external concentration gradient under asymmetric pH conditions. The results are discussed in terms of the ionic selectivity and rectification ratio of the channel. The physical concepts involved may be applied to separation processes with synthetic nanopores and to bioelectrical phenomena.

  8. Molecular Motions in Ion Channels: a Possible Link to Noise in Single Channels

    NASA Astrophysics Data System (ADS)

    Tieleman, D. Peter

    2003-05-01

    Molecular dynamics simulations of proteins and lipid bilayers give detailed information on molecular motions on a timescale of up to a microsecond. Collective motions of proteins are thought to play a functionally important role in many water-soluble proteins and simulations of potassium channel structures show that ion transport might be linked to structural fluctuations in key areas of the protein. I describe simulations of two model channels —a channel consisting of parallel alpha-helices formed by the antimicrobial peptide alamethicin, and the bacterial porin OmpF, a large beta-barrel protein that forms three water-filled pores that allow transport of small molecules. Structural fluctuations in alamethicin during ion transport are hypothesized to be a possible source of high-frequency noise observed in single-channel conductance measurements. In a model of the alamethicin channel on a 100 ns time scale almost all the structural fluctuations are in individual helices with no evidence for collective motions of the channel as a whole. In porins, single channel measurements can obtain information on the interaction between permeating molecules and the protein. I present recent simulations that study the interactions between glucose and alanine with OmpF.

  9. Ion channel noise can explain firing correlation in auditory nerves.

    PubMed

    Moezzi, Bahar; Iannella, Nicolangelo; McDonnell, Mark D

    2016-10-01

    Neural spike trains are commonly characterized as a Poisson point process. However, the Poisson assumption is a poor model for spiking in auditory nerve fibres because it is known that interspike intervals display positive correlation over long time scales and negative correlation over shorter time scales. We have therefore developed a biophysical model based on the well-known Meddis model of the peripheral auditory system, to produce simulated auditory nerve fibre spiking statistics that more closely match the firing correlations observed in empirical data. We achieve this by introducing biophysically realistic ion channel noise to an inner hair cell membrane potential model that includes fractal fast potassium channels and deterministic slow potassium channels. We succeed in producing simulated spike train statistics that match empirically observed firing correlations. Our model thus replicates macro-scale stochastic spiking statistics in the auditory nerve fibres due to modeling stochasticity at the micro-scale of potassium channels. PMID:27480847

  10. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    SciTech Connect

    Fritsch, Sebastian M; Ivanov, Ivaylo N; Wang, Hailong; Cheng, Xiaolin

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  11. A paradox concerning ion permeation of the delayed rectifier potassium ion channel in squid giant axons.

    PubMed Central

    Clay, J R

    1991-01-01

    1. The fully activated current-voltage relation (I-V) of the delayed rectifier potassium ion channel in squid giant axons has a non-linear dependence upon the driving force, V-EK, as I have previously demonstrated, where V is membrane potential and EK is the equilibrium potential for potassium ions. 2. The non-linearity of the I-V relation and its dependence upon external potassium ion concentration are both well described, phenomenologically, by the Goldman-Hodgkin-Katz (GHK) flux equation, as I have also previously demonstrated. As illustrated below, this result can be modelled using the Eyring rate theory of single-file diffusion of ions through a channel in the low-occupancy limit of the theory. 3. The GHK equation analysis and the low-occupancy limit of the Eyring rate theory are both consistent with the independence principle for movement of ions through the channel, which is at odds with tracer flux ratio results from the delayed rectifier, published elsewhere. Those results suggest that the channel is multiply occupied by two, or perhaps three, ions. 4. The resolution of this paradox is provided by a triple-binding site, multiple-occupancy model in which only one vacancy, at most, is allowed in the channel. This model predicts current-voltage relations which are consistent with the data (and with the phenomenological prediction of the GHK flux equation). The model is also consistent, approximately, with the tracer flux ratio results. PMID:1822560

  12. A microscopic view of ion conduction through the K+ channel

    NASA Astrophysics Data System (ADS)

    Bernèche, Simon; Roux, Benoît

    2003-07-01

    Recent results from x-ray crystallography and molecular dynamics free-energy simulations have revealed the existence of a number of specific cation-binding sites disposed along the narrow pore of the K+ channel from Streptomyces lividans (KcsA), suggesting that K+ ions might literally "hop" in single file from one binding site to the next as permeation proceeds. In support of this view, it was found that the ion configurations correspond to energy wells of similar depth and that ion translocation is opposed only by small energy barriers. Although such features of the multiion potential energy surface are certainly essential for achieving a high throughput rate, diffusional and dissipative dynamical factors must also be taken into consideration to understand how rapid conduction of K+ is possible. To elucidate the mechanism of ion conduction, we established a framework theory enabling the direct simulation of nonequilibrium fluxes by extending the results of molecular dynamics over macroscopically long times. In good accord with experimental measurements, the simulated maximum conductance of the channel at saturating concentration is on the order of 550 and 360 pS for outward and inward ions flux, respectively, with a unidirectional flux-ratio exponent of 3. Analysis of the ion-conduction process reveals a lack of equivalence between the cation-binding sites in the selectivity filter. molecular dynamics | Brownian dynamics | potential of mean force | membrane potential | Poisson-Boltzmann equation

  13. Convergence of ion channel genome content in early animal evolution

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.

    2015-01-01

    Multicellularity has evolved multiple times, but animals are the only multicellular lineage with nervous systems. This fact implies that the origin of nervous systems was an unlikely event, yet recent comparisons among extant taxa suggest that animal nervous systems may have evolved multiple times independently. Here, we use ancestral gene content reconstruction to track the timing of gene family expansions for the major families of ion-channel proteins that drive nervous system function. We find that animals with nervous systems have broadly similar complements of ion-channel types but that these complements likely evolved independently. We also find that ion-channel gene family evolution has included large loss events, two of which were immediately followed by rounds of duplication. Ctenophores, cnidarians, and bilaterians underwent independent bouts of gene expansion in channel families involved in synaptic transmission and action potential shaping. We suggest that expansions of these family types may represent a genomic signature of expanding nervous system complexity. Ancestral nodes in which nervous systems are currently hypothesized to have originated did not experience large expansions, making it difficult to distinguish among competing hypotheses of nervous system origins and suggesting that the origin of nerves was not attended by an immediate burst of complexity. Rather, the evolution of nervous system complexity appears to resemble a slow fuse in stem animals followed by many independent bouts of gene gain and loss. PMID:25675537

  14. Epithelial Sodium and Acid-Sensing Ion Channels

    NASA Astrophysics Data System (ADS)

    Kellenberger, Stephan

    The epithelial Na+ channel (ENaC) and acid-sensing ion channels (ASICs) are non-voltage-gated Na+ channels that form their own subfamilies within the ENaC/degenerin ion channel family. ASICs are sensors of extracellular pH, and ENaC, whose main function is trans-epithelial Na+ transport, can sense extra- and intra-cellular Na+. In aldosterone-responsive epithelial cells of the kidney, ENaC plays a critical role in the control of sodium balance, blood volume and blood pressure. In airway epithelia, ENaC has a distinct role in controlling fluid reabsorption at the air-liquid interface, thereby determining the rate of mucociliary transport. In taste receptor cells of the tongue, ENaC is involved in salt taste sensation. ASICs have emerged as key sensors for extracellular protons in central and peripheral neurons. Although not all of their physiological and pathological functions are firmly established yet, there is good evidence for a role of ASICs in the brain in learning, expression of fear, and in neurodegeneration after ischaemic stroke. In sensory neurons, ASICs are involved in nociception and mechanosensation. ENaC and ASIC subunits share substantial sequence homology and the conservation of several functional domains. This chapter summarises our current understanding of the physiological functions and of the mechanisms of ion permeation, gating and regulation of ENaC and ASICs.

  15. 50 years of ion channeling in materials science

    NASA Astrophysics Data System (ADS)

    Vantomme, André

    2016-03-01

    In the early days of ion beam analysis, i.e. the early 60s, channeling was discovered and brought to maturity via a combined effort in experimental, computational and theoretical research. It was soon realized that the probability for nuclear interaction (such as nuclear scattering, nuclear reactions, ionization followed by X-ray emission…) would significantly decrease when steering the ion beam along a crystallographic direction of a single crystal. Hence, this effect would be optimally suited to investigate a wide range of materials properties related to their crystal structure, such as defects, elastic strain, the lattice site of impurities, as well as phonon-related properties. In this paper, I will briefly review some of the pioneering work, which led to the discovery and theoretical understanding of ion channeling. Subsequently, a number of applications will be discussed where the strength of the ion beam analysis technique allows deducing information which is often hardly (or not) attainable by other techniques. Throughout the paper, I will reflect on the future of channeling in materials research, and pay special attention to potential pitfalls, challenges and opportunities.

  16. Redox Regulation of Ion Channels in the Pulmonary Circulation

    PubMed Central

    Weir, Edward Kenneth

    2015-01-01

    Abstract Significance: The pulmonary circulation is a low-pressure, low-resistance, highly compliant vasculature. In contrast to the systemic circulation, it is not primarily regulated by a central nervous control mechanism. The regulation of resting membrane potential due to ion channels is of integral importance in the physiology and pathophysiology of the pulmonary vasculature. Recent Advances: Redox-driven ion conductance changes initiated by direct oxidation, nitration, and S-nitrosylation of the cysteine thiols and indirect phosphorylation of the threonine and serine residues directly affect pulmonary vascular tone. Critical Issues: Molecular mechanisms of changes in ion channel conductance, especially the identification of the sites of action, are still not fully elucidated. Future Directions: Further investigation of the interaction between redox status and ion channel gating, especially the physiological significance of S-glutathionylation and S-nitrosylation, could result in a better understanding of the physiological and pathophysiological importance of these mediators in general and the implications of such modifications in cellular functions and related diseases and their importance for targeted treatment strategies. Antioxid. Redox Signal. 22, 465–485. PMID:24702125

  17. Ion transport through a T-intersection of nanofluidic channels

    NASA Astrophysics Data System (ADS)

    Daiguji, Hirofumi; Adachi, Takuma; Tatsumi, Naoya

    2008-08-01

    Ion transport through a T-intersection of two silica nanochannels (a main channel, 5-μm long and 30-nm wide, and a subchannel, 5-μm long and 15-nm wide) with a surface charge distribution was investigated based on continuum dynamics calculations. The surface charge within 250nm of the intersection in the main channel and the entire subchannel was positive and that in the main channel outside this intersection region was negative. This nanofluidic system is analogous to a p-n-p transistor. The calculation results revealed that, by adjusting the electric potentials at the ends of the nanochannels, the ionic current could be (1) cut off, (2) regulated in the main channel, (3) diverged into the main and subchannels, (4) turned from the main channel to the subchannel, and (5) merged into the subchannel. A series connection of this nanofluidic system can therefore be used in biotechnological applications for electrophoretic separation and for sorting of ions and biomolecules.

  18. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    PubMed Central

    Nasiripourdori, Adak; Taly, Valérie; Grutter, Thomas; Taly, Antoine

    2011-01-01

    Ligand-gated ion channels (LGIC) play a central role in inter-cellular communication. This key function has two consequences: (i) these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii) they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted. PMID:22069709

  19. Stretch-Activated Ion Channels: What Are They?

    PubMed Central

    Sachs, Frederick

    2010-01-01

    Mechanosensitive ion channels (MSCs) exist in all cells, but mechanosensitivity is a phenotype not a genotype. Specialized mechanoreceptors such as the hair cells of the cochlea require elaborate mechanical impedance matching to couple the channels to the external stress. In contrast, MSCs in nonspecialized cells appear activated by stress in the bilayer local to the channel—within about three lipids. Local mechanical stress can be produced by far-field tension, amphipaths, phase separations, the cytoskeleton, the extracellular matrix, and the adhesion energy between the membrane and a patch pipette. Understanding MSC function requires understanding the stimulus. PMID:20134028

  20. Lipid bilayer array for simultaneous recording of ion channel activities

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  1. Dengue virus M protein C-terminal peptide (DVM-C) forms ion channels.

    PubMed

    Premkumar, A; Horan, C R; Gage, P W

    2005-03-01

    A chemically synthesized peptide consisting of the C-terminus of the M protein of the Dengue virus type 1 strain Singapore S275/90 (DVM-C) produced ion channel activity in artificial lipid bilayers. The channels had a variable conductance and were more permeable to sodium and potassium ions than to chloride ions and more permeable to chloride ions than to calcium ions. Hexamethylene amiloride (100 microM) and amantadine (10 microM), blocked channels formed by DVM-C. Ion channels may play an important role in the life cycle of many viruses and drugs that block these channels may prove to be useful antiviral agents.

  2. Estimates of maximum trappable ion beam power in plasma channels

    NASA Astrophysics Data System (ADS)

    Watrous, J. J.; Olson, R. E.

    Conservation laws and solutions to the equations of motion for single particles have been used to obtained greatest lower bounds on the ion beam power that can be injected into and confined within plasma channels. These bounds are use in the evaluation of proposed light ion driven ICF experiments and reactor concepts. Simple estimates of trappable power based on conservation laws will be compared with estimates based on solutions to the equation of motion. Consequences of the results of these calculations to current design studies will be discussed.

  3. Binding of Capsaicin to the TRPV1 Ion Channel.

    PubMed

    Darré, Leonardo; Domene, Carmen

    2015-12-01

    Transient receptor potential (TRP) ion channels constitute a notable family of cation channels involved in the ability of an organisms to detect noxious mechanical, thermal, and chemical stimuli that give rise to the perception of pain, taste, and changes in temperature. One of the most experimentally studied agonist of TRP channels is capsaicin, which is responsible for the burning sensation produced when chili pepper is in contact with organic tissues. Thus, understanding how this molecule interacts and regulates TRP channels is essential to high impact pharmacological applications, particularly those related to pain treatment. The recent publication of a three-dimensional structure of the vanilloid receptor 1 (TRPV1) in the absence and presence of capsaicin from single particle electron cryomicroscopy experiments provides the opportunity to explore these questions at the atomic level. In the present work, molecular docking and unbiased and biased molecular dynamics simulations were employed to generate a structural model of the capsaicin-channel complex. In addition, the standard free energy of binding was estimated using alchemical transformations coupled with conformational, translational, and orientational restraints on the ligand. Key binding modes consistent with previous experimental data are identified, and subtle but essential dynamical features of the binding site are characterized. These observations shed some light into how TRPV1 interacts with capsaicin, and may help to refine design parameters for new TRPV1 antagonists, and potentially guide further developments of TRP channel modulators. PMID:26502196

  4. Binding of Capsaicin to the TRPV1 Ion Channel.

    PubMed

    Darré, Leonardo; Domene, Carmen

    2015-12-01

    Transient receptor potential (TRP) ion channels constitute a notable family of cation channels involved in the ability of an organisms to detect noxious mechanical, thermal, and chemical stimuli that give rise to the perception of pain, taste, and changes in temperature. One of the most experimentally studied agonist of TRP channels is capsaicin, which is responsible for the burning sensation produced when chili pepper is in contact with organic tissues. Thus, understanding how this molecule interacts and regulates TRP channels is essential to high impact pharmacological applications, particularly those related to pain treatment. The recent publication of a three-dimensional structure of the vanilloid receptor 1 (TRPV1) in the absence and presence of capsaicin from single particle electron cryomicroscopy experiments provides the opportunity to explore these questions at the atomic level. In the present work, molecular docking and unbiased and biased molecular dynamics simulations were employed to generate a structural model of the capsaicin-channel complex. In addition, the standard free energy of binding was estimated using alchemical transformations coupled with conformational, translational, and orientational restraints on the ligand. Key binding modes consistent with previous experimental data are identified, and subtle but essential dynamical features of the binding site are characterized. These observations shed some light into how TRPV1 interacts with capsaicin, and may help to refine design parameters for new TRPV1 antagonists, and potentially guide further developments of TRP channel modulators.

  5. The screw-helical voltage gating of ion channels.

    PubMed Central

    Keynes, R D; Elinder, F

    1999-01-01

    In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain. PMID:10343407

  6. Crystal structure of a heterotetrameric NMDA receptor ion channel.

    PubMed

    Karakas, Erkan; Furukawa, Hiro

    2014-05-30

    N-Methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors, which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity. Here, we show the crystal structure of the intact heterotetrameric GluN1-GluN2B NMDA receptor ion channel at 4 angstroms. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers with the twofold symmetry axis running through the entire molecule composed of an amino terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD). The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not in non-NMDA receptors.

  7. Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.

    PubMed

    Mamad-Hemouch, Hajar; Ramoul, Hassen; Abou Taha, Mohammad; Bacri, Laurent; Huin, Cécile; Przybylski, Cédric; Oukhaled, Abdelghani; Thiébot, Bénédicte; Patriarche, Gilles; Jarroux, Nathalie; Pelta, Juan

    2015-11-11

    Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered.

  8. Ion channels and drug transporters as targets for anthelmintics

    PubMed Central

    Greenberg, Robert M.

    2014-01-01

    Infections with parasitic helminths such as schistosomes and soil-transmitted nematodes are hugely prevalent and responsible for a major portion of the global health and economic burdens associated with neglected tropical diseases. In addition, many of these parasites infect livestock and plants used in agriculture, resulting in further impoverishment. Treatment and control of these pathogens rely on anthelmintic drugs, which are few in number, and against which drug resistance can develop rapidly. The neuromuscular system of the parasite, and in particular, the ion channels and associated receptors underlying excitation and signaling, have proven to be outstanding targets for anthelmintics. This review will survey the different ion channels found in helminths, focusing on their unique characteristics and pharmacological sensitivities. It will also briefly review the literature on helminth multidrug efflux that may modulate parasite susceptibility to anthelmintics and may prove useful targets for new or repurposed agents that can enhance parasite drug susceptibility and perhaps overcome drug resistance. PMID:25554739

  9. Microstructured apertures in planar glass substrates for ion channel research.

    PubMed

    Fertig, Niels; George, Michael; Klau, Michèle; Meyer, Christine; Tilke, Armin; Sobotta, Constanze; Blick, Robert H; Behrends, Jan C

    2003-01-01

    We have developed planar glass chip devices for patch clamp recording. Glass has several key advantages as a substrate for planar patch clamp devices. It is a good dielectric, is well-known to interact strongly with cell membranes and is also a relatively in-expensive material. In addition, it is optically neutral. However, microstructuring processes for glass are less well established than those for silicon-based substrates. We have used ion-track etching techniques to produce micron-sized apertures into borosilicate and quartz-glass coverslips. These apertures, which can be easily produced in arrays, have been used for high resolution recording of single ion channels as well as for whole-cell current recordings from mammalian cell lines. An additional attractive application that is greatly facilitated by the combination of planar geometry with the optical neutrality of the substrate is single-molecule fluorescence recording with simultaneous single-channel measurements. PMID:12825296

  10. Automatable lipid bilayer formation for ion channel studies

    NASA Astrophysics Data System (ADS)

    Poulos, Jason L.; Bang, Hyunwoo; Jeon, Tae-Joon; Schmidt, Jacob J.

    2008-08-01

    Transmembrane proteins and ion channels are important drug targets and have been explored as single molecule sensors. For these proteins to function normally they must be integrated within lipid bilayers; however, the labor and skill required to create artificial lipid bilayers have the limited the possible applications utilizing these proteins. In order to reduce the complexity and cost of lipid bilayer formation and measurement, we have modified a previously published lipid bilayer formation technique using mechanically contacted monolayers so that the process is automatable, requiring minimal operator input. Measurement electronics are integrated with the fluid handling system, greatly reducing the time and operator feedback characteristically required of traditional bilayer experiments. To demonstrate the biological functionality of the resultant bilayers and the system's capabilities as a membrane platform, the ion channel gramicidin A was incorporated and measured with this system.

  11. LGICdb: the ligand-gated ion channel database.

    PubMed

    Le Novère, N; Changeux, J P

    2001-01-01

    Ligand-Gated Ion Channels (LGIC) are polymeric transmembrane proteins involved in the fast response to numerous neurotransmitters. All these receptors are formed by homologous subunits and the last two decades revealed an unexpected wealth of genes coding for these subunits. The Ligand-Gated Ion Channel database (LGICdb) has been developed to handle this increasing amount of data. The database aims to provide only one entry for each gene, containing annotated nucleic acid and protein sequences. The repository is carefully structured and the entries can be retrieved by various criteria. In addition to the sequences, the LGICdb provides multiple sequence alignments, phylogenetic analyses and atomic coordinates when available. The database is accessible via the World Wide Web (http://www.pasteur.fr/recherche/banques/LGIC /LGIC.html), where it is continuously updated. The version 16 (September 2000) available for download contained 333 entries covering 34 species.

  12. Amino acid-sensing ion channels in plants

    SciTech Connect

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  13. Patch-Clamp Technologies for Ion Channel Research

    NASA Astrophysics Data System (ADS)

    Sigworth, Fred J.; Klemic, Kathryn G.

    The electrical activity of living cells can be monitored in various ways, but for the study of ion channels and the drugs that affect them, the patch-clamp techniques are the most sensitive. In this chapter the principles of patch-clamp recording are reviewed, and recent developments in microfabricated patch-clamp electrodes are described.Technical challenges and prospects for the future are discussed.

  14. Genistein as antiviral drug against HIV ion channel.

    PubMed

    Sauter, Daniel; Schwarz, Silvia; Wang, Kai; Zhang, Ronghua; Sun, Bing; Schwarz, Wolfgang

    2014-06-01

    Various drugs found in Chinese herbs are well known for their antiviral potency. We have tested several flavonoids with respect to their potency to block the viral protein U of the human immunodeficiency type 1 virus, which is believed to form a cation-permeable ion channel in the infected cell. We used Xenopus oocytes with heterologously expressed viral protein U as model system to test the efficacy of the drugs in voltage-clamp experiments. This method had been demonstrated in the past as a useful tool to screen drugs for their potency in inhibition of ion channel activity. The viral protein U-mediated current could be inhibited by Ba(2+) with a K1/2 value of 1.6 mM. Therefore, we determined viral protein U-mediated current as current component blocked by 10 mM Ba(2+). We screened several flavonoids with respect to their effects on this current. The flavonols quercetin and kaempferol, and the flavanols (-)epigallochatechin and (-)epichatechin were ineffective. The flavanone naringenin showed at 20 µM slight (about 10%) inhibition. The most potent drug was the isoflavon genistein which exhibited at 20 µM significant inhibition of about 40% with a K1/2 value of 81 ± 4 µM. We suggest that viral ion channels, in general, may be a good target for development of antiviral agents, and that, in particular, isoflavons may be candidates for development of drugs targeting viral protein U.

  15. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  16. Automated ion channel screening: patch clamping made easy.

    PubMed

    Farre, Cecilia; Stoelzle, Sonja; Haarmann, Claudia; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2007-04-01

    Efficient high resolution techniques are required for screening efforts and research targeting ion channels. The conventional patch clamp technique, a high resolution but low efficiency technique, has been established for 25 years. Recent advances have opened up new possibilities for automated patch clamping. This new technology meets the need of drug developers for higher throughput and facilitates new experimental approaches in ion channel research. Specifically, Nanion's electrophysiology workstations, the Port-a-Patch and the Patchliner, have been successfully introduced as high-quality automated patch clamp platforms for industry as well as academic users. Both platforms give high quality patch clamp recordings, capable of true giga-seals and stable recordings, accessible to the user without the need for years of practical training. They also offer sophisticated experimental possibilities, such as accurate and fast ligand application, temperature control and internal solution exchange. This article describes the chip-based patch clamp technology and its usefulness in ion channel drug screening and academic research.

  17. Regulation of lysosomal ion homeostasis by channels and transporters.

    PubMed

    Xiong, Jian; Zhu, Michael X

    2016-08-01

    Lysosomes are the major organelles that carry out degradation functions. They integrate and digest materials compartmentalized by endocytosis, phagocytosis or autophagy. In addition to more than 60 hydrolases residing in the lysosomes, there are also ion channels and transporters that mediate the flux or transport of H(+), Ca(2+), Na(+), K(+), and Cl(-) across the lysosomal membranes. Defects in ionic exchange can lead to abnormal lysosome morphology, defective vesicle trafficking, impaired autophagy, and diseases such as neurodegeneration and lysosomal storage disorders. The latter are characterized by incomplete lysosomal digestion and accumulation of toxic materials inside enlarged intracellular vacuoles. In addition to degradation, recent studies have revealed the roles of lysosomes in metabolic pathways through kinases such as mechanistic target of rapamycin (mTOR) and transcriptional regulation through calcium signaling molecules such as transcription factor EB (TFEB) and calcineurin. Owing to the development of new approaches including genetically encoded fluorescence probes and whole endolysosomal patch clamp recording techniques, studies on lysosomal ion channels have made remarkable progress in recent years. In this review, we will focus on the current knowledge of lysosome-resident ion channels and transporters, discuss their roles in maintaining lysosomal function, and evaluate how their dysfunction can result in disease. PMID:27430889

  18. Peptidomimetic Star Polymers for Targeting Biological Ion Channels

    PubMed Central

    Chen, Rong; Lu, Derong; Xie, Zili; Feng, Jing; Jia, Zhongfan; Ho, Junming; Coote, Michelle L.; Wu, Yingliang; Monteiro, Michael J.; Chung, Shin-Ho

    2016-01-01

    Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery. PMID:27007701

  19. Peptidomimetic Star Polymers for Targeting Biological Ion Channels.

    PubMed

    Chen, Rong; Lu, Derong; Xie, Zili; Feng, Jing; Jia, Zhongfan; Ho, Junming; Coote, Michelle L; Wu, Yingliang; Monteiro, Michael J; Chung, Shin-Ho

    2016-01-01

    Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery.

  20. The Concise Guide to Pharmacology 2013/14: Ion Channels

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Catterall, William A; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528239

  1. Energetics of double-ion occupancy in the gramicidin A channel.

    PubMed

    Li, Yuhui; Andersen, Olaf S; Roux, Benoît

    2010-11-01

    To understand the energetics of double-ion occupancy in gramicidin A (gA) channels, the 2D potential of mean force (PMF) is calculated for two ions at different positions along the channel axis. The cross sections of this 2D PMF are compared with available one-ion PMFs to highlight the effect of one ion on the permeation dynamics of the other. It is found that, if the first ion stays on one side in the channel, the second ion has to pass over an additional barrier to move into the outer binding site. At the same time, both outer and inner binding sites for the second ion become shallower than those in the one-ion PMF. The calculated ion-ion repulsion for a doubly occupied channel is about 2 kcal/mol, in good agreement with previous experimental estimates. The number of water molecules inside the channel and their dipole moment are calculated to interpret the energetics of double-ion occupancy. As the first ion moves into the outer binding site and then further into the channel, the oxygen atoms of the single-file water column in the channel are oriented to point toward the ion. The observed dipole moment distribution of a singly occupied channel has only one sharp peak, and the water alignment is essentially perfect once the ion is in the inner binding site. For this reason, there is an energy penalty to accommodate a second ion at the opposite end of the channel.

  2. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    PubMed

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  3. Ion channels in the central regulation of energy and glucose homeostasis

    PubMed Central

    Sohn, Jong-Woo

    2013-01-01

    Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance. PMID:23734095

  4. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.

    PubMed

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  5. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization.

    PubMed

    Krauson, Aram J; Carattino, Marcelo D

    2016-05-20

    Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization. PMID:27015804

  6. Molecular dynamics simulations of water within models of ion channels.

    PubMed Central

    Breed, J; Sankararamakrishnan, R; Kerr, I D; Sansom, M S

    1996-01-01

    The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models. Images FIGURE 1 FIGURE 5 FIGURE 7 PMID:8785323

  7. Structural basis for ion permeation mechanism in pentameric ligand-gated ion channels

    PubMed Central

    Sauguet, Ludovic; Poitevin, Frédéric; Murail, Samuel; Van Renterghem, Catherine; Moraga-Cid, Gustavo; Malherbe, Laurie; Thompson, Andrew W; Koehl, Patrice; Corringer, Pierre-Jean; Baaden, Marc; Delarue, Marc

    2013-01-01

    To understand the molecular mechanism of ion permeation in pentameric ligand-gated ion channels (pLGIC), we solved the structure of an open form of GLIC, a prokaryotic pLGIC, at 2.4 Å. Anomalous diffraction data were used to place bound anions and cations. This reveals ordered water molecules at the level of two rings of hydroxylated residues (named Ser6′ and Thr2′) that contribute to the ion selectivity filter. Two water pentagons are observed, a self-stabilized ice-like water pentagon and a second wider water pentagon, with one sodium ion between them. Single-channel electrophysiology shows that the side-chain hydroxyl of Ser6′ is crucial for ion translocation. Simulations and electrostatics calculations complemented the description of hydration in the pore and suggest that the water pentagons observed in the crystal are important for the ion to cross hydrophobic constriction barriers. Simulations that pull a cation through the pore reveal that residue Ser6′ actively contributes to ion translocation by reorienting its side chain when the ion is going through the pore. Generalization of these findings to the pLGIC family is proposed. PMID:23403925

  8. Computer Simulation Studies of Ion Channels at High Temperatures

    NASA Astrophysics Data System (ADS)

    Song, Hyun Deok

    The gramicidin channel is the smallest known biological ion channel, and it exhibits cation selectivity. Recently, Dr. John Cuppoletti's group at the University of Cincinnati showed that the gramicidin channel can function at high temperatures (360 ˜ 380K) with significant currents. This finding may have significant implications for fuel cell technology. In this thesis, we have examined the gramicidin channel at 300K, 330K, and 360K by computer simulation. We have investigated how the temperature affects the current and differences in magnitude of free energy between the two gramicidin forms, the helical dimer (HD) and the double helix (DH). A slight decrease of the free energy barrier inside the gramicidin channel and increased diffusion at high temperatures result in an increase of current. An applied external field of 0.2V/nm along the membrane normal results in directly observable ion transport across the channels at high temperatures for both HD and DH forms. We found that higher temperatures also affect the probability distribution of hydrogen bonds, the bending angle, the distance between dimers, and the size of the pore radius for the helical dimer structure. These findings may be related to the gating of the gramicidin channel. Methanococcus jannaschii (MJ) is a methane-producing thermophile, which was discovered at a depth of 2600m in a Pacific Ocean vent in 1983. It has the ability to thrive at high temperatures and high pressures, which are unfavorable for most life forms. There have been some experiments to study its stability under extreme conditions, but still the origin of the stability of MJ is not exactly known. MJ0305 is the chloride channel protein from the thermophile MJ. After generating a structure of MJ0305 by homology modeling based on the Ecoli ClC templates, we examined the thermal stability, and the network stability from the change of network entropy calculated from the adjacency matrices of the protein. High temperatures increase the

  9. Acid-sensing ion channels: trafficking and synaptic function

    PubMed Central

    2013-01-01

    Extracellular acidification occurs in the brain with elevated neural activity, increased metabolism, and neuronal injury. This reduction in pH can have profound effects on brain function because pH regulates essentially every single biochemical reaction. Therefore, it is not surprising to see that Nature evolves a family of proteins, the acid-sensing ion channels (ASICs), to sense extracellular pH reduction. ASICs are proton-gated cation channels that are mainly expressed in the nervous system. In recent years, a growing body of literature has shown that acidosis, through activating ASICs, contributes to multiple diseases, including ischemia, multiple sclerosis, and seizures. In addition, ASICs play a key role in fear and anxiety related psychiatric disorders. Several recent reviews have summarized the importance and therapeutic potential of ASICs in neurological diseases, as well as the structure-function relationship of ASICs. However, there is little focused coverage on either the basic biology of ASICs or their contribution to neural plasticity. This review will center on these topics, with an emphasis on the synaptic role of ASICs and molecular mechanisms regulating the spatial distribution and function of these ion channels. PMID:23281934

  10. Ion Channels in the Eye: Involvement in Ocular Pathologies.

    PubMed

    Giblin, Jonathan P; Comes, Nuria; Strauss, Olaf; Gasull, Xavier

    2016-01-01

    The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology.

  11. Modelling modal gating of ion channels with hierarchical Markov models

    PubMed Central

    Fackrell, Mark; Crampin, Edmund J.; Taylor, Peter

    2016-01-01

    Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available. In this paper, we develop a modular approach for building such a model in an iterative process. First, stochastic switching between modes and stochastic opening and closing within modes are represented in separate aggregated Markov models. Second, the continuous-time hierarchical Markov model, a new modelling framework proposed here, then enables us to combine these components so that in the integrated model both mode switching as well as the kinetics within modes are appropriately represented. A mathematical analysis reveals that the behaviour of the hierarchical Markov model naturally depends on the properties of its components. We also demonstrate how a hierarchical Markov model can be parametrized using experimental data and show that it provides a better representation than a previous model of the same dataset. Because evidence is increasing that modal gating reflects underlying molecular properties of the channel protein, it is likely that biophysical processes are better captured by our new approach than in earlier models.

  12. Ion Channels in the Eye: Involvement in Ocular Pathologies.

    PubMed

    Giblin, Jonathan P; Comes, Nuria; Strauss, Olaf; Gasull, Xavier

    2016-01-01

    The eye is the sensory organ of vision. There, the retina transforms photons into electrical signals that are sent to higher brain areas to produce visual sensations. In the light path to the retina, different types of cells and tissues are involved in maintaining the transparency of avascular structures like the cornea or lens, while others, like the retinal pigment epithelium, have a critical role in the maintenance of photoreceptor function by regenerating the visual pigment. Here, we have reviewed the roles of different ion channels expressed in ocular tissues (cornea, conjunctiva and neurons innervating the ocular surface, lens, retina, retinal pigment epithelium, and the inflow and outflow systems of the aqueous humor) that are involved in ocular disease pathophysiologies and those whose deletion or pharmacological modulation leads to specific diseases of the eye. These include pathologies such as retinitis pigmentosa, macular degeneration, achromatopsia, glaucoma, cataracts, dry eye, or keratoconjunctivitis among others. Several disease-associated ion channels are potential targets for pharmacological intervention or other therapeutic approaches, thus highlighting the importance of these channels in ocular physiology and pathophysiology. PMID:27038375

  13. Modelling modal gating of ion channels with hierarchical Markov models

    PubMed Central

    Fackrell, Mark; Crampin, Edmund J.; Taylor, Peter

    2016-01-01

    Many ion channels spontaneously switch between different levels of activity. Although this behaviour known as modal gating has been observed for a long time it is currently not well understood. Despite the fact that appropriately representing activity changes is essential for accurately capturing time course data from ion channels, systematic approaches for modelling modal gating are currently not available. In this paper, we develop a modular approach for building such a model in an iterative process. First, stochastic switching between modes and stochastic opening and closing within modes are represented in separate aggregated Markov models. Second, the continuous-time hierarchical Markov model, a new modelling framework proposed here, then enables us to combine these components so that in the integrated model both mode switching as well as the kinetics within modes are appropriately represented. A mathematical analysis reveals that the behaviour of the hierarchical Markov model naturally depends on the properties of its components. We also demonstrate how a hierarchical Markov model can be parametrized using experimental data and show that it provides a better representation than a previous model of the same dataset. Because evidence is increasing that modal gating reflects underlying molecular properties of the channel protein, it is likely that biophysical processes are better captured by our new approach than in earlier models. PMID:27616917

  14. Crystal structures of a double-barrelled fluoride ion channel

    PubMed Central

    Stockbridge, Randy B.; Kolmakova-Partensky, Ludmila; Shane, Tania; Koide, Akiko; Koide, Shohei; Miller, Christopher; Newstead, Simon

    2016-01-01

    To contend with hazards posed by environmental fluoride, microorganisms export this anion through F--specific ion channels of the Fluc family1–4. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including extreme selectivity for F- over Cl- and dual-topology dimeric assembly5–6. To understand the chemical basis for F- permeation and how the antiparallel subunits convene to form a F--selective pore, we solved crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F- present, to a maximum resolution of 2.1 Å. The structures reveal a surprising “double-barrelled” channel architecture in which two F- ion pathways span the membrane and the dual-topology arrangement includes a centrally coordinated cation, most likely Na+. F- selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings. PMID:26344196

  15. Voltage-Gated Ion Channels in Cancer Cell Proliferation

    PubMed Central

    Rao, Vidhya R.; Perez-Neut, Mathew; Kaja, Simon; Gentile, Saverio

    2015-01-01

    Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl−, Na+. Traditionally, voltage-gated ion channels (VGIC) are known to play fundamental roles in controlling rapid bioelectrical signaling including action potential and/or contraction. However, several investigations have revealed that these classes of proteins can also contribute significantly to cell mitotic biochemical signaling, cell cycle progression, as well as cell volume regulation. All these functions are critically important for cancer cell proliferation. Interestingly, a variety of distinct VGICs are expressed in different cancer cell types, including metastasis but not in the tissues from which these tumors were generated. Given the increasing evidence suggesting that VGIC play a major role in cancer cell biology, in this review we discuss the role of distinct VGIC in cancer cell proliferation and possible therapeutic potential of VIGC pharmacological manipulation. PMID:26010603

  16. A parallel finite element simulator for ion transport through three-dimensional ion channel systems.

    PubMed

    Tu, Bin; Chen, Minxin; Xie, Yan; Zhang, Linbo; Eisenberg, Bob; Lu, Benzhuo

    2013-09-15

    A parallel finite element simulator, ichannel, is developed for ion transport through three-dimensional ion channel systems that consist of protein and membrane. The coordinates of heavy atoms of the protein are taken from the Protein Data Bank and the membrane is represented as a slab. The simulator contains two components: a parallel adaptive finite element solver for a set of Poisson-Nernst-Planck (PNP) equations that describe the electrodiffusion process of ion transport, and a mesh generation tool chain for ion channel systems, which is an essential component for the finite element computations. The finite element method has advantages in modeling irregular geometries and complex boundary conditions. We have built a tool chain to get the surface and volume mesh for ion channel systems, which consists of a set of mesh generation tools. The adaptive finite element solver in our simulator is implemented using the parallel adaptive finite element package Parallel Hierarchical Grid (PHG) developed by one of the authors, which provides the capability of doing large scale parallel computations with high parallel efficiency and the flexibility of choosing high order elements to achieve high order accuracy. The simulator is applied to a real transmembrane protein, the gramicidin A (gA) channel protein, to calculate the electrostatic potential, ion concentrations and I - V curve, with which both primitive and transformed PNP equations are studied and their numerical performances are compared. To further validate the method, we also apply the simulator to two other ion channel systems, the voltage dependent anion channel (VDAC) and α-Hemolysin (α-HL). The simulation results agree well with Brownian dynamics (BD) simulation results and experimental results. Moreover, because ionic finite size effects can be included in PNP model now, we also perform simulations using a size-modified PNP (SMPNP) model on VDAC and α-HL. It is shown that the size effects in SMPNP can

  17. Identification of the Energetic Plume Ion Escape Channel at Mars

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Liemohn, M. W.; Fraenz, M.; Barabash, S.

    2013-12-01

    Mars lacks a global dipole magnetic field. The resulting induced magnetosphere arising from Mars' atmosphere's direct interaction with the solar wind differs significantly from that of Venus. The weak gravitational field of Mars creates scale heights so large that the exosphere extends out beyond the Induced Magnetosphere Boundary (IMB), where newly ionized exospheric oxygen is exposed to high speed shocked solar wind flow and the associated strong convective electric field (E). The weaker Interplanetary Magnetic Field (IMF) at Mars, combined with this strong electric field, should be expected to result in heavy pickup ions with gyroradii much larger than the radius of Mars. Test particle models and hybrid models have predicted that these pickup ions create an energetic plume of escaping planetary ions that may have a flux on the same order of magnitude as the flow of planetary ions down the central tail loss channel. This study presents an analysis of data from the Ion Mass Analyzer aboard European Space Agency's Mars Express (MEX) to identify the presence of this energetic ion plume. We searched through the time period when Mars Global Surveyor (MGS) was operating simultaneously with MEX, and selected hundreds of time intervals when IMF proxies from MGS show the convective electric field to be aligned with the orbit of MEX. We then examined plots of the MEX orbit during these intervals and selected times when MEX was positioned on the +E side of Mars and outside the nominal IMB. Finally, from these intervals we identified the cases in which oxygen ions were detected with energies above 2 keV. The result is a set of several direct measurements of the energetic plume.

  18. Stochastic resonance in ion channels characterized by information theory.

    PubMed

    Goychuk, I; Hänggi, P

    2000-04-01

    We identify a unifying measure for stochastic resonance (SR) in voltage dependent ion channels which comprises periodic (conventional), aperiodic, and nonstationary SR. Within a simplest setting, the gating dynamics is governed by two-state conductance fluctuations, which switch at random time points between two values. The corresponding continuous time point process is analyzed by virtue of information theory. In pursuing this goal we evaluate for our dynamics the tau information, the mutual information, and the rate of information gain. As a main result we find an analytical formula for the rate of information gain that solely involves the probability of the two channel states and their noise averaged rates. For small voltage signals it simplifies to a handy expression. Our findings are applied to study SR in a potassium channel. We find that SR occurs only when the closed state is predominantly dwelled upon. Upon increasing the probability for the open channel state the application of an extra dose of noise monotonically deteriorates the rate of information gain, i.e., no SR behavior occurs.

  19. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    PubMed Central

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  20. Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents

    PubMed Central

    Zeng, Xuhui; Yao, Jing; Yuchi, Ming; Ding, Jiuping

    2012-01-01

    Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level. PMID:22536358

  1. Focusing in multiwell potentials: applications to ion channels.

    PubMed

    Ponzoni, L; Celardo, G L; Borgonovi, F; Kaplan, L; Kargol, A

    2013-05-01

    We investigate nonequilibrium stationary distributions induced by stochastic dichotomous noise in double-well and multiwell models of ion channel gating kinetics. The channel kinetics is analyzed using both overdamped Langevin equations and master equations. With the Langevin equation approach we show a nontrivial focusing effect due to the external stochastic noise, namely, the concentration of the probability distribution in one of the two wells of a double-well system or in one or more of the wells of the multiwell model. In the multiwell system, focusing in the outer wells is shown to be achievable under physiological conditions, while focusing in the central wells has proved possible so far only at very low temperatures. We also discuss the strength of the focusing effect and obtain the conditions necessary for maximal focusing to appear. These conditions cannot be predicted by a simple master equation approach.

  2. Molecular candidates for cardiac stretch-activated ion channels

    PubMed Central

    Reed, Alistair; Kohl, Peter; Peyronnet, Rémi

    2014-01-01

    The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further

  3. Ion Channel Conductance Measurements on a Silicon-Based Platform

    NASA Astrophysics Data System (ADS)

    Wilk, S. J.; Aboud, S.; Petrossian, L.; Goryll, M.; Tang, J. M.; Eisenberg, R. S.; Saraniti, M.; Goodnick, S. M.; Thornton, T. J.

    2006-05-01

    Conductance measurements of the transmembrane porin protein OmpF as a function of pH and bath concentration have been made with both a microfabricated silicon substrate device and a commercially available polystyrene aperture. Ion transport through the channel was simulated in atomic detail: the measured current was compared with theoretically calculated current, using a Brownian Dynamics kernel coupled to the Poisson equation by a P3M force field. The explicit protein structure and fixed charge distribution in the protein are calculated using the molecular dynamics code, GROMACS. Reasonable agreement is obtained in the simulated versus measured conductance over the range of experimental concentrations studied.

  4. Receptors, Ion Channels, and Signaling Mechanisms Underlying Microglial Dynamics*

    PubMed Central

    Madry, Christian; Attwell, David

    2015-01-01

    Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved. PMID:25855789

  5. Cardiac ion channel safety profiling on the IonWorks Quattro automated patch clamp system.

    PubMed

    Cao, Xueying; Lee, Yan Tony; Holmqvist, Mats; Lin, Yingxin; Ni, Yucheng; Mikhailov, Dmitri; Zhang, Haiyan; Hogan, Christopher; Zhou, Liping; Lu, Qiang; Digan, Mary Ellen; Urban, Laszlo; Erdemli, Gül

    2010-12-01

    The normal electrophysiologic behavior of the heart is determined by the integrated activity of specific cardiac ionic currents. Mutations in genes encoding the molecular components of individual cardiac ion currents have been shown to result in multiple cardiac arrhythmia syndromes. Presently, 12 genes associated with inherited long QT syndrome (LQTS) have been identified, and the most common mutations are in the hKCNQ1 (LQT1, Jervell and Lange-Nielson syndrome), hKCNH2 (LQT2), and hSCN5A (LQT3, Brugada syndrome) genes. Several drugs have been withdrawn from the market or received black box labeling due to clinical cases of QT interval prolongation, ventricular arrhythmias, and sudden death. Other drugs have been denied regulatory approval owing to their potential for QT interval prolongation. Further, off-target activity of drugs on cardiac ion channels has been shown to be associated with increased mortality in patients with underlying cardiovascular diseases. Since clinical arrhythmia risk is a major cause for compound termination, preclinical profiling for off-target cardiac ion channel interactions early in the drug discovery process has become common practice in the pharmaceutical industry. In the present study, we report assay development for three cardiac ion channels (hKCNQ1/minK, hCa(v)1.2, and hNa(v)1.5) on the IonWorks Quattro™ system. We demonstrate that these assays can be used as reliable pharmacological profiling tools for cardiac ion channel inhibition to assess compounds for cardiac liability during drug discovery.

  6. Transition from heating to cooling of channeled ion beams

    SciTech Connect

    Toepffer, Christian

    2006-06-15

    Experiments showing a transverse heating or cooling of channeled ion beams are explained in terms of electron capture and loss processes between the projectile ions and the target. Such processes violate reversibility as the projectile captures electrons from occupied bound states and loses them to unoccupied weakly bound or continuum states. The transition probabilities for the transfer of electrons are calculated in the impact parameter Born approximation. Their dependence on the distance from the crystal strings is determined by scale factors which depend in turn on the relative velocity and the binding energies of the transferred electrons in the projectile and in the crystal, respectively. The appearance of transverse heating and cooling depends on the relative size of the scale factors for capture and loss. The transition from heating to cooling as function of velocity is described in good agreement with the experiments.

  7. Parameterization of ion channeling half-angles and minimum yields

    NASA Astrophysics Data System (ADS)

    Doyle, Barney L.

    2016-03-01

    A MS Excel program has been written that calculates ion channeling half-angles and minimum yields in cubic bcc, fcc and diamond lattice crystals. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different power functions of the arguments. The program then offers an extremely convenient way to calculate axial and planar half-angles, minimum yields, effects on half-angles and minimum yields of amorphous overlayers. The program can calculate these half-angles and minimum yields for axes and [h k l] planes up to (5 5 5). The program is open source and available at

  8. Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.

    PubMed

    Jorgensen, Christian; Furini, Simone; Domene, Carmen

    2016-09-20

    Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684. PMID:27653480

  9. Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.

    PubMed

    Jorgensen, Christian; Furini, Simone; Domene, Carmen

    2016-09-20

    Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684.

  10. An industrial perspective on utilizing functional ion channel assays for high throughput screening.

    PubMed

    Worley, Jennings F; Main, Martin J

    2002-01-01

    The ability to apply large-scale screening formats to measures of ion channel function offers immense opportunities for drug discovery and academic research. Technologies have been developed over the last several years that now provide the ability to screen large numbers of compounds and natural products on ion channel function to find novel drugs. Application of these technologies has vastly improved the capabilities of ion channel drug discovery and provides an avenue to accelerate discoveries of ion channel biology. These advances have largely arisen from the development and application of instruments and reporters of membrane potential and ion movements in cells used to measure functional activity of ion channels. This article endeavors to describe the practical applications of these technologies in developing, validating, and implementing high throughput screening assay formats to different types of ion channels.

  11. Molecular basis of ion permeability in a voltage-gated sodium channel.

    PubMed

    Naylor, Claire E; Bagnéris, Claire; DeCaen, Paul G; Sula, Altin; Scaglione, Antonella; Clapham, David E; Wallace, B A

    2016-04-15

    Voltage-gated sodium channels are essential for electrical signalling across cell membranes. They exhibit strong selectivities for sodium ions over other cations, enabling the finely tuned cascade of events associated with action potentials. This paper describes the ion permeability characteristics and the crystal structure of a prokaryotic sodium channel, showing for the first time the detailed locations of sodium ions in the selectivity filter of a sodium channel. Electrostatic calculations based on the structure are consistent with the relative cation permeability ratios (Na(+) ≈ Li(+) ≫ K(+), Ca(2+), Mg(2+)) measured for these channels. In an E178D selectivity filter mutant constructed to have altered ion selectivities, the sodium ion binding site nearest the extracellular side is missing. Unlike potassium ions in potassium channels, the sodium ions in these channels appear to be hydrated and are associated with side chains of the selectivity filter residues, rather than polypeptide backbones. PMID:26873592

  12. Cooperation of Hydrophobic Gating, Knock-on Effect, and Ion Binding Determines Ion Selectivity in the p7 Channel.

    PubMed

    Padhi, Siladitya; Priyakumar, U Deva

    2016-05-19

    Ion channels selectively allow certain ions to pass through at much higher rates than others, and thereby modulate ionic concentrations across cell membranes. The current molecular dynamics study elucidates the intricate mechanisms that render ion selectivity to the viral channel p7 by employing free energy calculations. Free energy barriers of 5.4 and 19.4 kcal mol(-1) for K(+) and Ca(2+), respectively, explain the selectivity of the channel reported in experiments. Initially, the permeating ions encounter a hydrophobic barrier followed by stabilization in an ion-binding site. Electrostatic repulsion between the permeating ions propels one of the ions out of the binding site to complete the process of permeation. K(+) and Ca(2+) are seen to exhibit different modes of binding toward a ring of asparagine residues, which serves as the binding site. The findings illustrate how the overall selectivity of a channel can be achieved by a combination of subtle differences. PMID:27111292

  13. Ion Channel Formation by Tau Protein: Implications for Alzheimer’s Disease and Tauopathies

    PubMed Central

    2015-01-01

    Tau is a microtubule associated protein implicated in the pathogenesis of several neurodegenerative diseases. Because of the channel forming properties of other amyloid peptides, we employed planar lipid bilayers and atomic force microscopy to test tau for its ability to form ion permeable channels. Our results demonstrate that tau can form such channels, but only under acidic conditions. The channels formed are remarkably similar to amyloid peptide channels in their appearance, physical and electrical size, permanence, lack of ion selectivity, and multiple channel conductances. These channels differ from amyloid channels in their voltage dependence and resistance to blockade by zinc ion. These channels could explain tau’s pathologic role in disease by lowering membrane potential, dysregulating calcium, depolarizing mitochondria, or depleting energy stores. Tau might also combine with amyloid beta peptides to form toxic channels. PMID:26575330

  14. Computational studies of transport in ion channels using metadynamics.

    PubMed

    Furini, Simone; Domene, Carmen

    2016-07-01

    Molecular dynamics simulations have played a fundamental role in numerous fields of science by providing insights into the structure and dynamics of complex systems at the atomistic level. However, exhaustive sampling by standard molecular dynamics is in most cases computationally prohibitive, and the time scales accessible remain significantly shorter than many biological processes of interest. In particular, in the study of ion channels, realistic models to describe permeation and gating require accounting for large numbers of particles and accurate interaction potentials, which severely limits the length of the simulations. To overcome such limitations, several advanced methods have been proposed among which is metadynamics. In this algorithm, an external bias potential to accelerate sampling along selected collective variables is introduced. This bias potential discourages visiting regions of the configurational space already explored. In addition, the bias potential provides an estimate of the free energy as a function of the collective variables chosen once the simulation has converged. In this review, recent contributions of metadynamics to the field of ion channels are discussed, including how metadynamics has been used to search for transition states, predict permeation pathways, treat conformational flexibility that underlies the coupling between gating and permeation, or compute free energy of permeation profiles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  15. Interaction of a polar molecule with an ion channel

    NASA Astrophysics Data System (ADS)

    Levadny, V.; Aguilella, V. M.; Aguilella-Arzo, M.; Belaya, M.

    2004-10-01

    The binding of a polar macromolecule to a large ion channel is studied theoretically, paying special attention to the influence of external conditions (applied voltage and ion strength of solution). The molecule behavior in bound state is considered as random thermal fluctuations within a limited fraction of its phase space. The mean duration of molecule binding (residence time τr ) is represented as the mean first passage time to reach the boundary of that restricted domain. By invoking the adiabatic approximation we reduce the problem to one dimension with the angle between macromolecule dipole and channel axes being the key variable of the problem. The model accounts for experimental measurements of τr for the antibiotic Ampicillin within the bacterial porin OmpF of Escherichia coli. By assuming that the electrical interaction between Ampicillin dipole and OmpF ionizable groups affects the fluctuations, we find that the biased residence time-voltage dependence observed in experiments is the result of the strong transversal electric field in OmpF constriction with a tilt ˜30° aside the cis side.

  16. Glutamate Receptor Ion Channels: Structure, Regulation, and Function

    PubMed Central

    Wollmuth, Lonnie P.; McBain, Chris J.; Menniti, Frank S.; Vance, Katie M.; Ogden, Kevin K.; Hansen, Kasper B.; Yuan, Hongjie; Myers, Scott J.; Dingledine, Ray

    2010-01-01

    The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors. PMID:20716669

  17. Interaction of a polar molecule with an ion channel

    SciTech Connect

    Levadny, V.; Aguilella, V.M.; Aguilella-Arzo, M.; Belaya, M.

    2004-10-01

    The binding of a polar macromolecule to a large ion channel is studied theoretically, paying special attention to the influence of external conditions (applied voltage and ion strength of solution). The molecule behavior in bound state is considered as random thermal fluctuations within a limited fraction of its phase space. The mean duration of molecule binding (residence time {tau}{sub r}) is represented as the mean first passage time to reach the boundary of that restricted domain. By invoking the adiabatic approximation we reduce the problem to one dimension with the angle between macromolecule dipole and channel axes being the key variable of the problem. The model accounts for experimental measurements of {tau}{sub r} for the antibiotic Ampicillin within the bacterial porin OmpF of Escherichia coli. By assuming that the electrical interaction between Ampicillin dipole and OmpF ionizable groups affects the fluctuations, we find that the biased residence time-voltage dependence observed in experiments is the result of the strong transversal electric field in OmpF constriction with a tilt {approx}30 deg. aside the cis side.

  18. Receptor for protons: First observations on Acid Sensing Ion Channels.

    PubMed

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'.

  19. Computational Tools for Interpreting Ion Channel pH-Dependence

    PubMed Central

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) – Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone. PMID:25915903

  20. Computational Tools for Interpreting Ion Channel pH-Dependence.

    PubMed

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone. PMID:25915903

  1. Structure of the TRPA1 ion channel suggests regulatory mechanisms

    PubMed Central

    Paulsen, Candice E.; Armache, Jean-Paul; Gao, Yuan; Cheng, Yifan; Julius, David

    2015-01-01

    The TRPA1 ion channel (a.k.a the ‘wasabi receptor’) is a detector of noxious chemical agents encountered in our environment or produced endogenously during tissue injury or drug metabolism. These include a broad class of electrophiles that activate the channel through covalent protein modification. TRPA1 antagonists hold potential for treating neurogenic inflammatory conditions provoked or exacerbated by irritant exposure. Despite compelling reasons to understand TRPA1 function, structural mechanisms underlying channel regulation remain obscure. Here, we use single-particle electron cryo-microscopy to determine the structure of full-length human TRPA1 to ~4Å resolution in the presence of pharmacophores, including a potent antagonist. A number of unexpected features are revealed, including an extensive coiled-coil assembly domain stabilized by polyphosphate co-factors and a highly integrated nexus that converges on an unpredicted TRP-like allosteric domain. These findings provide novel insights into mechanisms of TRPA1 regulation, and establish a blueprint for structure-based design of analgesic and anti-inflammatory agents. PMID:25855297

  2. Computational Tools for Interpreting Ion Channel pH-Dependence.

    PubMed

    Sazanavets, Ivan; Warwicker, Jim

    2015-01-01

    Activity in many biological systems is mediated by pH, involving proton titratable groups with pKas in the relevant pH range. Experimental analysis of pH-dependence in proteins focusses on particular sidechains, often with mutagenesis of histidine, due to its pKa near to neutral pH. The key question for algorithms that predict pKas is whether they are sufficiently accurate to effectively narrow the search for molecular determinants of pH-dependence. Through analysis of inwardly rectifying potassium (Kir) channels and acid-sensing ion channels (ASICs), mutational effects on pH-dependence are probed, distinguishing between groups described as pH-coupled or pH-sensor. Whereas mutation can lead to a shift in transition pH between open and closed forms for either type of group, only for pH-sensor groups does mutation modulate the amplitude of the transition. It is shown that a hybrid Finite Difference Poisson-Boltzmann (FDPB) - Debye-Hückel continuum electrostatic model can filter mutation candidates, providing enrichment for key pH-coupled and pH-sensor residues in both ASICs and Kir channels, in comparison with application of FDPB alone.

  3. Targeting Ion Channels: An Important Therapeutic Implication in Gastrointestinal Dysmotility in Patients With Spinal Cord Injury

    PubMed Central

    Radulovic, Miroslav; Anand, Preeti; Korsten, Mark A; Gong, Bing

    2015-01-01

    Gastrointestinal (GI) dysmotility is a severe, and common complication in patients with spinal cord injury (SCI). Current therapeutic methods using acetylcholine analogs or laxative agents have unwanted side effects, besides often fail to have desired effect. Various ion channels such as ATP-sensitive potassium (KATP) channel, calcium ions (Ca2+)-activated potassium ions (K+) channels, voltage-sensitive Ca2+ channels and chloride ion (Cl−) channels are abundantly expressed in GI tissues, and play an important role in regulating GI motility. The release of neurotransmitters from the enteric nerve terminal, innervating GI interstitial cells of Cajal (ICC), and smooth muscle cells (SMC), causes inactivation of K+ and Cl− channels, increasing Ca2+ influx into cytoplasm, resulting in membrane depolarization and smooth muscle contraction. Thus, agents directly regulating ion channels activity either in ICC or in SMC may affect GI peristalsis and would be potential therapeutic target for the treatment of GI dysmotility with SCI. PMID:26424038

  4. Ion exchange phase transitions in water-filled channels with charged walls.

    PubMed

    Zhang, J; Kamenev, A; Shklovskii, B I

    2006-05-01

    Ion transport through narrow water-filled channels is impeded by a high electrostatic barrier. The latter originates from the large ratio of the dielectric constants of the water and the surrounding media. We show that "doping," i.e., immobile charges attached to the walls of the channel, substantially reduces the barrier. This explains why most of the biological ion channels are "doped." We show that at rather generic conditions the channels may undergo ion exchange phase transitions (typically of the first order). Upon such a transition a finite latent concentration of ions may either enter or leave the channel, or be exchanged between the ions of different valences. We discuss possible implications of these transitions for the Ca-vs-Na selectivity of biological Ca channels. We also show that transport of divalent Ca ions is assisted by their fractionalization into two separate excitations.

  5. Hydrogen peroxide affects ion channels in lily pollen grain protoplasts.

    PubMed

    Breygina, M A; Abramochkin, D V; Maksimov, N M; Yermakov, I P

    2016-09-01

    Ion homeostasis plays a central role in polarisation and polar growth. In several cell types ion channels are controlled by reactive oxygen species (ROS). One of the most important cells in the plant life cycle is the male gametophyte, which grows under the tight control of both ion fluxes and ROS balance. The precise relationship between these two factors in pollen tubes has not been completely elucidated, and in pollen grains it has never been studied to date. In the present study we used a simple model - protoplasts obtained from lily pollen grains at the early germination stage - to reveal the effect of H2 O2 on cation fluxes crucial for pollen germination. Here we present direct evidence for two ROS-sensitive currents on the pollen grain plasma membrane: the hyperpolarisation-activated calcium current, which is strongly enhanced by H2 O2 , and the outward potassium current, which is modestly enhanced by H2 O2 . We used low concentrations of H2 O2 that do not cause an intracellular oxidative burst and do not damage cells, as demonstrated with fluorescent staining. PMID:27115728

  6. The Role of Ion Channels in Microglial Activation and Proliferation – A Complex Interplay between Ligand-Gated Ion Channels, K+ Channels, and Intracellular Ca2+

    PubMed Central

    Stebbing, Martin James; Cottee, Jennifer Marie; Rana, Indrajeetsinh

    2015-01-01

    Microglia are often referred to as the immune cells of the brain. They are most definitely involved in immune responses to invading pathogens and inflammatory responses to tissue damage. However, recent results suggest microglia are vital for normal functioning of the brain. Neuroinflammation, as well as more subtle changes, in microglial function has been implicated in the pathogenesis of many brain diseases and disorders. Upon sensing alterations in their local environment, microglia change their shape and release factors that can modify the excitability of surrounding neurons. During neuroinflammation, microglia proliferate and release NO, reactive oxygen species, cytokines and chemokines. If inflammation resolves then their numbers normalize again via apoptosis. Microglia express a wide array of ion channels and different types are implicated in all of the cellular processes listed above. Modulation of microglial ion channels has shown great promise as a therapeutic strategy in several brain disorders. In this review, we discuss recent advances in our knowledge of microglial ion channels and their roles in responses of microglia to changes in the extracellular milieu. PMID:26557116

  7. Ion Channel Mimetic Chronopotentiometric Polymeric Membrane Ion Sensor for Surface Confined Protein Detection

    PubMed Central

    Xu, Yida

    2008-01-01

    The operation of ion channel sensors is mimicked with functionalized polymeric membrane electrodes, using a surface confined affinity reaction to impede the electrochemically imposed ion transfer kinetics of a marker ion. A membrane surface biotinylated by covalent attachment to the polymeric backbone is used here to bind to the protein avidin as a model system. The results indicate that the protein accumulates on the ion-selective membrane surface, partially blocking the current induced ion transfer across the membrane/aqueous sample interface, and subsequently decreases the potential jump in the so-called super-Nernstian step that is characteristic of a surface depletion of the marker ion. The findings suggest that such a potential drop could be utilized to measure the concentration of protein in the sample. Because the sensitivity of protein sensing is dependent on the effective blocking of the active surface area, it can be improved with a hydrophilic nanopore membrane applied on top of the biotinylated ion-selective membrane surface. Based on cyclic voltammetry characterization, the nanoporous membrane electrodes can indeed be understood as a recessed nanoelectrode array. The results show that the measuring range for protein sensing on nanopore electrodes is shifted to lower concentrations by more than one order of magnitude, which is explained with the reduction of surface area by the nanopore membrane and the related more effective hemispherical diffusion pattern. PMID:19067579

  8. Integration of isolated cell membrane patches in nanomachined apertures for single ion channel recording

    NASA Astrophysics Data System (ADS)

    Niels, Fertig; Behrends, Jan; Blick, Robert

    2001-03-01

    We apply nanostructuring techniques to machine apertures in semiconductor materials with the aim of single channel recording of ion channels in cell membranes. This approach will overcome many limitations of the classical patch-clamp technique. The integration of nanostructured devices 'on-chip' promises novel types of experiments on single ion channels. We investigate the microscopic contact of a cell/semiconductor hybrid and demonstrate single channel recording.

  9. The Monte-Carlo Simulation of the Permeability of K Ion Channels

    NASA Astrophysics Data System (ADS)

    An, Hai-Long; Zhan, Yong; Liu, Jin-Wei; Zhang, Su-Hua; Zhao, Tong-Jun

    In this paper, by introducing the collision model of the K ion channel, the maximum value of ions inward the channel per second, the average velocity of ions in the channels and the average time of every ion passing through the channel are obtained. Moreover they are reconciled with the experimental data. Base on the experimental data, the empiristic potential function is deduced. With the Monte-Carlo simulation, the curve of average velocity versus time and average displacement versus time are calculated by resolving the over-damping Langevin equation with Gaussian-white noise. They are according with the experimental dada well.

  10. ModFossa: A library for modeling ion channels using Python.

    PubMed

    Ferneyhough, Gareth B; Thibealut, Corey M; Dascalu, Sergiu M; Harris, Frederick C

    2016-06-01

    The creation and simulation of ion channel models using continuous-time Markov processes is a powerful and well-used tool in the field of electrophysiology and ion channel research. While several software packages exist for the purpose of ion channel modeling, most are GUI based, and none are available as a Python library. In an attempt to provide an easy-to-use, yet powerful Markov model-based ion channel simulator, we have developed ModFossa, a Python library supporting easy model creation and stimulus definition, complete with a fast numerical solver, and attractive vector graphics plotting. PMID:26932271

  11. Multi-ion conduction bands in a simple model of calcium ion channels

    NASA Astrophysics Data System (ADS)

    Kaufman, I.; Luchinsky, D. G.; Tindjong, R.; McClintock, P. V. E.; Eisenberg, R. S.

    2013-04-01

    We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. With increasing Qf, there are distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of almost zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, are related to the saturated calcium occupancies of P = 1 and P = 2, respectively and demonstrate self-sustained conductivity. Despite the model's limitations, its M1 and M2 bands show high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels. The non-selective band M0 can be identified with a non-selective cation channel, or with OmpF porin.

  12. Multi-ion free energy landscapes underscore the microscopic mechanism of ion selectivity in the KcsA channel

    PubMed Central

    Medovoy, David; Perozo, Eduardo; Roux, Benoît

    2016-01-01

    Potassium (K+) channels are transmembrane proteins that passively and selectively allow K+ ions to flow through them, after opening in response to an external stimulus. One of the most critical functional aspects of their function is their ability to remain very selective for K+ over Na+ while allowing high-throughput ion conduction at a rate close to the diffusion limit. Classically, it is assumed that the free energy difference between K+ and Na+ in the pore relative to the bulk solution is the critical quantity at the origin of selectivity. This is the thermodynamic view of ion selectivity. An alternative view assumes that kinetic factor play the dominant role. Recent results from a number of studies have also highlighted the great importance of the multi-ion single file on the selectivity of K+ channels. The data indicate that having multiple K+ ions bound simultaneously is required for selective K+ conduction, and that a reduction in the number of bound K+ ions destroys the multi-ion selectivity mechanism utilized by K+ channels. In the present study, multi-ion potential of mean force molecular dynamics computations are carried out to clarify the mechanism of ion selectivity in the KcsA channel. The computations show that the multi-ion character of the permeation process is a critical element for establishing the selective ion conductivity through K+-channels. PMID:26896693

  13. Reactive derivatives of gramicidin enable light- and ion-modulated ion channels

    NASA Astrophysics Data System (ADS)

    Macrae, Michael X.; Blake, Steven; Mayer, Thomas; Mayer, Michael; Yang, Jerry

    2009-08-01

    Detection of chemical processes on a single molecule scale is the ultimate goal of sensitive analytical assays. We have explored methods to detect chemical analytes in solution using synthetic derivatives of gramicidin A (gA). We exploited the functional properties of an ion channel-forming peptideg--gA--to report changes in the local environment near the opening of these semi-synthetic nanopores upon exposure to specific external stimuli. These peptide-based nanosensors detect reaction-induced changes in the chemical or physical properties of functional groups presented at the opening of the pore. This paper discusses the development of gA-based sensors for detecting external factors such as metal ions in solution or for detecting specific wavelengths of light. We propose that gA-based ion channel sensors offer tremendous potential for ultra sensitive functional detection since a single chemical modification of each individual sensing element can lead to readily detectable changes in channel conductance.

  14. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.

    PubMed

    Guo, Wei; Tian, Ye; Jiang, Lei

    2013-12-17

    Both scientists and engineers are interested in the design and fabrication of synthetic nanofluidic architectures that mimic the gating functions of biological ion channels. The effort to build such structures requires interdisciplinary efforts at the intersection of chemistry, materials science, and nanotechnology. Biological ion channels and synthetic nanofluidic devices have some structural and chemical similarities, and therefore, they share some common features in regulating the traverse ionic flow. In the past decade, researchers have identified two asymmetric ion transport phenomena in synthetic nanofluidic structures, the rectified ionic current and the net diffusion current. The rectified ionic current is a diode-like current-voltage response that occurs when switching the voltage bias. This phenomenon indicates a preferential direction of transport in the nanofluidic system. The net diffusion current occurs as a direct product of charge selectivity and is generated from the asymmetric diffusion through charged nanofluidic channels. These new ion transport phenomena and the elaborate structures that occur in biology have inspired us to build functional nanofluidic devices for both fundamental research and practical applications. In this Account, we review our recent progress in the design and fabrication of biomimetic solid-state nanofluidic devices with asymmetric ion transport behavior. We demonstrate the origin of the rectified ionic current and the net diffusion current. We also identify several influential factors and discuss how to build these asymmetric features into nanofluidic systems by controlling (1) nanopore geometry, (2) surface charge distribution, (3) chemical composition, (4) channel wall wettability, (5) environmental pH, (6) electrolyte concentration gradient, and (7) ion mobility. In the case of the first four features, we build these asymmetric features directly into the nanofluidic structures. With the final three, we construct

  15. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  16. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  17. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    PubMed

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  18. Non-Michaelis-Menten kinetics model for conductance of low-conductance potassium ion channels.

    PubMed

    Tolokh, Igor S; Tolokh, Illya I; Cho, Hee Cheol; D'Avanzo, Nazzareno; Backx, Peter H; Goldman, Saul; Gray, C G

    2005-02-01

    A reduced kinetics model is proposed for ion permeation in low-conductance potassium ion channels with zero net electrical charge in the selectivity filter region. The selectivity filter is assumed to be the only conductance-determining part of the channel. Ion entry and exit rate constants depend on the occupancy of the filter due to ion-ion interactions. The corresponding rates are assumed slow relative to the rates of ion motion between binding sites inside the filter, allowing a reduction of the kinetics model of the filter by averaging the entry and exit rate constants over the states with a particular occupancy number. The reduced kinetics model for low-conductance channels is described by only three states and two sets of effective rate constants characterizing transitions between these states. An explicit expression for the channel conductance as a function of symmetrical external ion concentration is derived under the assumption that the average electrical mobility of ions in the selectivity filter region in a limited range of ion concentrations does not depend on these concentrations. The simplified conductance model is shown to provide a good description of the experimentally observed conductance-concentration curve for the low-conductance potassium channel Kir2.1, and also predicts the mean occupancy of the selectivity filter of this channel. We find that at physiological external ion concentrations this occupancy is much lower than the value of two ions observed for one of the high-conductance potassium channels, KcsA.

  19. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  20. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels. PMID:27480225

  1. Investigation of Semiconductor Surface Structure by Transmission Ion Channeling.

    NASA Astrophysics Data System (ADS)

    Lyman, Paul Francis

    The primary thrust of this dissertation is the investigation of the composition and structure of two important surface systems on Si, and the study of how this structure evolves under the influence of ion bombardment or film growth. I have studied the initial stages of oxidation of Si immediately following removal of a surface oxide by an HF etch. I have also studied the structure of Ge deposited on clean Si(100) at low temperatures. These systems are of considerable technological interest, but were chosen because they naturally pose fundamental questions regarding physical and chemical processes at surfaces. In the study of the oxidation of Si, I have focused on the influence of the bombarding ion beam in altering the structure and composition of the surface layer. Thus, the system then provides a natural vehicle to study ion-induced chemistry. In the study of low-temperature growth of Ge, I have focused on the structure of the Ge layer and the evolution of that structure upon further deposition or upon heating. This simple system is a model one for observing strained semiconductor heteroepitaxial growth. The primary probe for these studies was transmission channeling of MeV ions. The sensitivity of this technique to correlations between the substrate and an overlayer allowed us to make the following observations. The O, Si and H bound in the thin oxide formed after an HF etch and H_2O rinse occupy preferred positions with respect to the Si matrix. Upon ion bombardment, the O further reacts with the Si (the reaction proceeds linearly with the ion fluence) and the portion of the H that is uncorrelated to the substrate is preferentially desorbed. For the case of Ge growth on Si(100)-(2 x 1) at room temperature, a substantial fraction of the Ge films is strained to occupy sites having the lattice constant of the Si substrate (pseudomorphic growth). A model for film growth is proposed in which pseudomorphic domains constitute roughly half of the Ge films up to a

  2. The Ion Channel TRPA1 Is Required for Chronic Itch

    PubMed Central

    Wilson, Sarah R.; Nelson, Aislyn M.; Batia, Lyn; Morita, Takeshi; Estandian, Daniel; Owens, David M.; Lumpkin, Ellen A.; Bautista, Diana M.

    2013-01-01

    Chronic itch is a debilitating condition that affects one in 10 people. Little is known about the molecules that mediate chronic itch in primary sensory neurons and skin. We demonstrate that the ion channel TRPA1 is required for chronic itch. Using a mouse model of chronic itch, we show that scratching evoked by impaired skin barrier is abolished in TRPA1-deficient animals. This model recapitulates many of the pathophysiological hallmarks of chronic itch that are observed in prevalent human diseases such as atopic dermatitis and psoriasis, including robust scratching, extensive epidermal hyperplasia, and dramatic changes in gene expression in sensory neurons and skin. Remarkably, TRPA1 is required for both transduction of chronic itch signals to the CNS and for the dramatic skin changes triggered by dry-skin-evoked itch and scratching. These data suggest that TRPA1 regulates both itch transduction and pathophysiological changes in the skin that promote chronic itch. PMID:23719797

  3. Sensitizing the Slit Diaphragm with TRPC6 ion channels.

    PubMed

    Möller, Clemens C; Flesche, Jan; Reiser, Jochen

    2009-05-01

    Physiologic permeability of the glomerular capillary depends on the normal structure of podocyte foot processes forming a functioning slit diaphragm in between. Mutations in several podocyte genes as well as specific molecular pathways have been identified as the cause for progressive kidney failure with urinary protein loss. Podocyte injury is a hallmark of glomerular disease, which is generally displayed by the rearrangement of the podocyte slit diaphragm and the actin cytoskeleton. Recent studies demonstrate a unique role for the Ca(2+)-permeable ion channel protein TRPC6 as a regulator of glomerular ultrafiltration. In both genetic and acquired forms of proteinuric kidney disease, dysregulation of podocyte TRPC6 plays a pathogenic role. This article illustrates how recent findings add to emerging concepts in podocyte biology, particularly mechanosensation and signaling at the slit diaphragm.

  4. Ion selectivity from local configurations of ligands in solutions and ion channels

    PubMed Central

    Asthagiri, D.; Dixit, P.D.; Merchant, S.; Paulaitis, M.E.; Pratt, L.R.; Rempe, S.B.; Varma, S.

    2010-01-01

    Probabilities of numbers of ligands proximal to an ion lead to simple, general formulae for the free energy of ion selectivity between different media. That free energy does not depend on the definition of an inner shell for ligand-counting, but other quantities of mechanistic interest do. If analysis is restricted to a specific coordination number, then two distinct probabilities are required to obtain the free energy in addition. The normalizations of those distributions produce partition function formulae for the free energy. Quasi-chemical theory introduces concepts of chemical equilibrium, then seeks the probability that is simplest to estimate, that of the most probable coordination number. Quasi-chemical theory establishes the utility of distributions of ligand-number, and sharpens our understanding of quasi-chemical calculations based on electronic structure methods. This development identifies contributions with clear physical interpretations, and shows that evaluation of those contributions can establish a mechanistic understanding of the selectivity in ion channels. PMID:23750043

  5. Targeting ion channels for the treatment of gastrointestinal motility disorders

    PubMed Central

    Beyder, Arthur

    2012-01-01

    Gastrointestinal (GI) functional and motility disorders are highly prevalent and responsible for long-term morbidity and sometimes mortality in the affected patients. It is estimated that one in three persons has a GI functional or motility disorder. However, diagnosis and treatment of these widespread conditions remains challenging. This partly stems from the multisystem pathophysiology, including processing abnormalities in the central and peripheral (enteric) nervous systems and motor dysfunction in the GI wall. Interstitial cells of Cajal (ICCs) are central to the generation and propagation of the cyclical electrical activity and smooth muscle cells (SMCs) are responsible for electromechanical coupling. In these and other excitable cells voltage-sensitive ion channels (VSICs) are the main molecular units that generate and regulate electrical activity. Thus, VSICs are potential targets for intervention in GI motility disorders. Research in this area has flourished with advances in the experimental methods in molecular and structural biology and electrophysiology. However, our understanding of the molecular mechanisms responsible for the complex and variable electrical behavior of ICCs and SMCs remains incomplete. In this review, we focus on the slow waves and action potentials in ICCs and SMCs. We describe the constituent VSICs, which include voltage-gated sodium (NaV), calcium (CaV), potassium (KV, KCa), chloride (Cl–) and nonselective ion channels (transient receptor potentials [TRPs]). VSICs have significant structural homology and common functional mechanisms. We outline the approaches and limitations and provide examples of targeting VSICs at the pores, voltage sensors and alternatively spliced sites. Rational drug design can come from an integrated view of the structure and mechanisms of gating and activation by voltage or mechanical stress. PMID:22282704

  6. Ligand action on sodium, potassium, and calcium channels: role of permeant ions.

    PubMed

    Zhorov, Boris S; Tikhonov, Denis B

    2013-03-01

    Ion channels are targets for many naturally occurring toxins and small-molecule drugs. Despite great progress in the X-ray crystallography of ion channels, we still do not have a complete understanding of the atomistic mechanisms of channel modulation by ligands. In particular, the importance of the simultaneous interaction of permeant ions with the ligand and the channel protein has not been the focus of much attention. Considering these interactions often allows one to rationalize the highly diverse experimental data within the framework of relatively simple structural models. This has been illustrated in earlier studies on the action of local anesthetics, sodium channel activators, as well as blockers of potassium and calcium channels. Here, we discuss the available data with a view to understanding the use-, voltage-, and current carrying cation-dependence of the ligand action, paradoxes in structure--activity relationships, and effects of mutations in these ion channels.

  7. Lipid Agonism, The PIP2 Paradigm of Ligand-Gated Ion Channels

    PubMed Central

    Hansen, Scott B.

    2015-01-01

    The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane and what does it mean for a lipid to activate or regulate an ion channel? How does lipid-binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels. PMID:25633344

  8. Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs.

    PubMed

    Moreno, Jonathan D; Lewis, Timothy J; Clancy, Colleen E

    2016-01-01

    Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there has been an explosion in mathematical models to describe ion channel function. As experimental data has become richer, models have concomitantly been improved to better represent ion channel kinetic processes, although these improvements have generally resulted in more model complexity and an increase in the number of parameters necessary to populate the models. Models have also been developed to explicitly model drug interactions with ion channels. Recent models of drug-channel interactions account for the discrete kinetics of drug interaction with distinct ion channel state conformations, as it has become clear that such interactions underlie complex emergent kinetics such as use-dependent block. Here, we describe an approach for developing a model for ion channel drug interactions. The method describes the process of extracting rate constants from experimental electrophysiological function data to use as initial conditions for the model parameters. We then describe implementation of a parameter optimization method to refine the model rate constants describing ion channel drug kinetics. The algorithm takes advantage of readily available parallel computing tools to speed up the optimization. Finally, we describe some potential applications of the platform including the potential for gaining fundamental mechanistic insights into ion channel function and applications to in silico drug screening and development. PMID:26963710

  9. Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs

    PubMed Central

    Moreno, Jonathan D.; Lewis, Timothy J.; Clancy, Colleen E.

    2016-01-01

    Since the first Hodgkin and Huxley ion channel model was described in the 1950s, there has been an explosion in mathematical models to describe ion channel function. As experimental data has become richer, models have concomitantly been improved to better represent ion channel kinetic processes, although these improvements have generally resulted in more model complexity and an increase in the number of parameters necessary to populate the models. Models have also been developed to explicitly model drug interactions with ion channels. Recent models of drug-channel interactions account for the discrete kinetics of drug interaction with distinct ion channel state conformations, as it has become clear that such interactions underlie complex emergent kinetics such as use-dependent block. Here, we describe an approach for developing a model for ion channel drug interactions. The method describes the process of extracting rate constants from experimental electrophysiological function data to use as initial conditions for the model parameters. We then describe implementation of a parameter optimization method to refine the model rate constants describing ion channel drug kinetics. The algorithm takes advantage of readily available parallel computing tools to speed up the optimization. Finally, we describe some potential applications of the platform including the potential for gaining fundamental mechanistic insights into ion channel function and applications to in silico drug screening and development. PMID:26963710

  10. Effect of entrance channel on dynamics of heavy ions collision

    NASA Astrophysics Data System (ADS)

    Naderi, D.

    2016-01-01

    A combined dynamical model using concept of dinuclear systems (DNS) and one-dimensional (1D) Langevin equations was applied to investigate the effect of entrance channel on dynamics of heavy ions collision. The 30Si+170Er, 16O+184W and 19F+181Ta reactions which formed the compound nucleus 200Pb have been considered to study this effect. We studied these reactions dynamically and calculated the ratio of evaporation residue cross-section to fusion cross-section (σER/σFus) as a tool for investigation of entrance channel effect. Results of combined model are compared with available experimental data and results of 1D Langevin equations. Obtained results based on combined model are in better agreement with experimental data in comparison with results of Langevin equations. We concluded for 30Si+170Er and 19F+181Ta reactions the results of combined model that support the quasi-fission process are different relative to Langevin dynamical approach, whereas for 16O+184W system the two models give similar results.

  11. Mutant SOD1 forms ion channel: implications for ALS pathophysiology.

    PubMed

    Allen, Michael J; Lacroix, Jérome J; Ramachandran, Srinivasan; Capone, Ricardo; Whitlock, Jenny L; Ghadge, Ghanashyam D; Arnsdorf, Morton F; Roos, Raymond P; Lal, Ratnesh

    2012-03-01

    Point mutations in the gene encoding copper-zinc superoxide dismutase (SOD1) impart a gain-of-function to this protein that underlies 20-25% of all familial amyotrophic lateral sclerosis (FALS) cases. However, the specific mechanism of mutant SOD1 toxicity has remained elusive. Using the complementary techniques of atomic force microscopy (AFM), electrophysiology, and cell and molecular biology, here we examine the structure and activity of A4VSOD1, a mutant SOD1. AFM of A4VSOD1 reconstituted in lipid membrane shows discrete tetrameric pore-like structure with outer and inner diameters 12.2 and 3.0nm respectively. Electrophysiological recordings show distinct ionic conductances across bilayer for A4VSOD1 and none for wildtype SOD1. Mouse neuroblastoma cells exposed to A4VSOD1 undergo membrane depolarization and increases in intracellular calcium. These results provide compelling new evidence that a mutant SOD1 is capable of disrupting cellular homeostasis via an unregulated ion channel mechanism. Such a "toxic channel" mechanism presents a new therapeutic direction for ALS research. PMID:21930207

  12. Biophysics, pathophysiology, and pharmacology of ion channel gating pores

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Chahine, Mohamed

    2014-01-01

    Voltage sensor domains (VSDs) are a feature of voltage gated ion channels (VGICs) and voltage sensitive proteins. They are composed of four transmembrane (TM) segments (S1–S4). Currents leaking through VSDs are called omega or gating pore currents. Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the S4 segment and the gating charge transfer center (GCTC). The GCTC separates the intracellular and extracellular water crevices. The disruption of S4–GCTC interactions allows these crevices to communicate and create a fast activating and non-inactivating alternative cation-selective permeation pathway of low conductance, or a gating pore. Gating pore currents have recently been shown to cause periodic paralysis phenotypes. There is also increasing evidence that gating pores are linked to several other familial diseases. For example, gating pores in Nav1.5 and Kv7.2 channels may underlie mixed arrhythmias associated with dilated cardiomyopathy (DCM) phenotypes and peripheral nerve hyperexcitability (PNH), respectively. There is little evidence for the existence of gating pore blockers. Moreover, it is known that a number of toxins bind to the VSD of a specific domain of Na+ channels. These toxins may thus modulate gating pore currents. This focus on the VSD motif opens up a new area of research centered on developing molecules to treat a number of cell excitability disorders such as epilepsy, cardiac arrhythmias, and pain. The purpose of the present review is to summarize existing knowledge of the pathophysiology, biophysics, and pharmacology of gating pore currents and to serve as a guide for future studies aimed at improving our understanding of gating pores and their pathophysiological roles. PMID:24772081

  13. Ion permeation in K⁺ channels occurs by direct Coulomb knock-on.

    PubMed

    Köpfer, David A; Song, Chen; Gruene, Tim; Sheldrick, George M; Zachariae, Ulrich; de Groot, Bert L

    2014-10-17

    Potassium channels selectively conduct K(+) ions across cellular membranes with extraordinary efficiency. Their selectivity filter exhibits four binding sites with approximately equal electron density in crystal structures with high K(+) concentrations, previously thought to reflect a superposition of alternating ion- and water-occupied states. Consequently, cotranslocation of ions with water has become a widely accepted ion conduction mechanism for potassium channels. By analyzing more than 1300 permeation events from molecular dynamics simulations at physiological voltages, we observed instead that permeation occurs via ion-ion contacts between neighboring K(+) ions. Coulomb repulsion between adjacent ions is found to be the key to high-efficiency K(+) conduction. Crystallographic data are consistent with directly neighboring K(+) ions in the selectivity filter, and our model offers an intuitive explanation for the high throughput rates of K(+) channels.

  14. Ion channel genes and human neurological disease: Recent progress, prospects, and challenges

    PubMed Central

    Cooper, Edward C.; Jan, Lily Yeh

    1999-01-01

    What do epilepsy, migraine headache, deafness, episodic ataxia, periodic paralysis, malignant hyperthermia, and generalized myotonia have in common? These human neurological disorders can be caused by mutations in genes for ion channels. Many of the channel diseases are “paroxysmal disorders” whose principal symptoms occur intermittently in individuals who otherwise may be healthy and active. Some of the ion channels that cause human neurological disease are old acquaintances previously cloned and extensively studied by channel specialists. In other cases, however, disease-gene hunts have led the way to the identification of new channel genes. Progress in the study of ion channels has made it possible to analyze the effects of human neurological disease-causing channel mutations at the level of the single channel, the subcellular domain, the neuronal network, and the behaving organism. PMID:10220366

  15. Multiple Scales in the Simulation of Ion Channels and Proteins

    PubMed Central

    Eisenberg, Bob

    2010-01-01

    Computation of living processes creates great promise for the everyday life of mankind and great challenges for physical scientists. Simulations molecular dynamics have great appeal to biologists as a natural extension of structural biology. Once a biologist sees a structure, she/he wants to see it move. Molecular biology has shown that a small number of atoms, sometimes even one messenger ion, like Ca2+, can control biological function on the scale of cells, organs, tissues, and organisms. Enormously concentrated ions—at number densities of ~20 M—in protein channels and enzymes are responsible for many of the characteristics of living systems, just as highly concentrated ions near electrodes are responsible for many of the characteristics of electrochemical systems. Here we confront the reality of the scale differences of ions. We show that the scale differences needed to simulate all the atoms of biological cells are 107 in linear dimension, 1021 in three dimensions, 109 in resolution, 1011 in time, and 1013 in particle number (to deal with concentrations of Ca2+). These scales must be dealt with simultaneously if the simulation is to deal with most biological functions. Biological function extends across all of them, all at once in most cases. We suggest a computational approach using explicit multiscale analysis instead of implicit simulation of all scales. The approach is based on an energy variational principle EnVarA introduced by Chun Liu to deal with complex fluids. Variational methods deal automatically with multiple interacting components and scales. When an additional component is added to the system, the resulting Euler Lagrange field equations change form automatically—by algebra alone—without additional unknown parameters. Multifaceted interactions are solutions of the resulting equations. We suggest that ionic solutions should be viewed as complex fluids with simple components. Highly concentrated solutions—dominated by interactions of

  16. The nature of ion and water barrier crossings in a simulated ion channel.

    PubMed Central

    Chiu, S. W.; Novotny, J. A.; Jakobsson, E.

    1993-01-01

    state of matter" characteristic of the channel contents appears to have some properties typical of the solid and some typical of the liquid state. The magnitude of the local friction and nature of the ion solvation are similar to the liquid state, but the periodicities of structure, free energy, and dynamics are somewhat solid-like. The alignment of water dipoles in the channel bears some resemblance to the orientational ordering of a nematic liquid crystal, but unlike a nematic liquid crystal, the waters have a degree of translational order as well. Thus, the "channel state" is not adequately described by analogy to either the solid or liquid states or to liquid crystals but must be dealt with as its own characteristic type of condensed matter. PMID:7679301

  17. Beyond ion-conduction: Channel-dependent and -independent roles of TRP channels during development and tissue homeostasis.

    PubMed

    Vrenken, Kirsten S; Jalink, Kees; van Leeuwen, Frank N; Middelbeek, Jeroen

    2016-06-01

    Transient receptor potential (TRP) channels comprise a family of cation channels implicated in a variety of cellular processes, including proliferation, cell migration and cell survival. As a consequence, members of this ion family play prominent roles during embryonic development, tissue maintenance and cancer progression. Although most TRP channels are non-selective, many cellular responses, mediated by TRP channels, appear to be calcium-dependent. In addition, there is mounting evidence for channel-independent roles for TRP channels. In this review, we will discuss how both these channel-dependent and -independent mechanisms affect cellular programs essential during embryonic development, and how perturbations in these pathways contribute to a variety of pathologies. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  18. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance

    PubMed Central

    Lórenz-Fonfría, Víctor A.; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-01-01

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(−) and 1,648(+) cm−1. These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance. PMID:26460012

  19. Temporal evolution of helix hydration in a light-gated ion channel correlates with ion conductance.

    PubMed

    Lórenz-Fonfría, Víctor A; Bamann, Christian; Resler, Tom; Schlesinger, Ramona; Bamberg, Ernst; Heberle, Joachim

    2015-10-27

    The discovery of channelrhodopsins introduced a new class of light-gated ion channels, which when genetically encoded in host cells resulted in the development of optogenetics. Channelrhodopsin-2 from Chlamydomonas reinhardtii, CrChR2, is the most widely used optogenetic tool in neuroscience. To explore the connection between the gating mechanism and the influx and efflux of water molecules in CrChR2, we have integrated light-induced time-resolved infrared spectroscopy and electrophysiology. Cross-correlation analysis revealed that ion conductance tallies with peptide backbone amide I vibrational changes at 1,665(-) and 1,648(+) cm(-1). These two bands report on the hydration of transmembrane α-helices as concluded from vibrational coupling experiments. Lifetime distribution analysis shows that water influx proceeded in two temporally separated steps with time constants of 10 μs (30%) and 200 μs (70%), the latter phase concurrent with the start of ion conductance. Water efflux and the cessation of the ion conductance are synchronized as well, with a time constant of 10 ms. The temporal correlation between ion conductance and hydration of helices holds for fast (E123T) and slow (D156E) variants of CrChR2, strengthening its functional significance.

  20. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step.

    PubMed Central

    Andersen, O S

    1983-01-01

    The permeability characteristics of gramicidin A channels are generally considered to reflect accurately the intrinsic properties of the channels themselves; i.e., the aqueous convergence regions are assumed to be negligible barriers for ion movement through the channels. The validity of this assumption has been examined by an analysis of gramicidin A single-channel current-voltage characteristics up to very high potentials (500 mV). At low permeant ion concentrations the currents approach a voltage-independent limiting value, whose magnitude is proportional to the permeant ion concentration. The magnitude of this current is decreased by experimental maneuvers that decrease the aqueous diffusion coefficient of the ions. It is concluded that the magnitude of this limiting current is determined by the diffusive ion movement through the aqueous convergence regions up to the channel entrance. It is further shown that the small-signal (ohmic) permeability properties also reflect the existence of the aqueous diffusion limitation. These results have considerable consequences for the construction of kinetic models for ion movement through gramicidin A channels. It is shown that the simple two-site-three-barrier model commonly used to interpret gramicidin A permeability data may lead to erroneous conclusions, as biionic potentials will be concentration dependent even when the channel is occupied by at most one ion. The aqueous diffusion limitation must be considered explicitly in the analysis of gramicidin A permeability characteristics. Some implications for understanding the properties of ion-conducting channels in biological membranes will be considered. PMID:6188502

  1. Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels*

    PubMed Central

    Redaelli, Elisa; Cassulini, Rita Restano; Silva, Deyanira Fuentes; Clement, Herlinda; Schiavon, Emanuele; Zamudio, Fernando Z.; Odell, George; Arcangeli, Annarosa; Clare, Jeffrey J.; Alagón, Alejandro; de la Vega, Ricardo C. Rodríguez; Possani, Lourival D.; Wanke, Enzo

    2010-01-01

    Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs. PMID:19955179

  2. Robust ion current oscillations under a steady electric field: An ion channel analog.

    PubMed

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1/f power spectrum. PMID:27627366

  3. Robust ion current oscillations under a steady electric field: An ion channel analog

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Wang, Yunshan; Senapati, Satyajyoti; Schiffbauer, Jarrod; Yossifon, Gilad; Chang, Hsueh-Chia

    2016-08-01

    We demonstrate a nonlinear, nonequilibrium field-driven ion flux phenomenon, which unlike Teorell's nonlinear multiple field theory, requires only the application of one field: robust autonomous current-mass flux oscillations across a porous monolith coupled to a capillary with a long air bubble, which mimics a hydrophobic protein in an ion channel. The oscillations are driven by the hysteretic wetting dynamics of the meniscus when electro-osmotic flow and pressure driven backflow, due to bubble expansion, compete to approach zero mass flux within the monolith. Delayed rupture of the film around the advancing bubble cuts off the electric field and switches the monolith mass flow from the former to the latter. The meniscus then recedes and repairs the rupture to sustain an oscillation for a range of applied fields. This generic mechanism shares many analogs with current oscillations in cell membrane ion channel. At sufficiently high voltage, the system undergoes a state transition characterized by appearance of the ubiquitous 1 /f power spectrum.

  4. From foe to friend: using animal toxins to investigate ion channel function

    PubMed Central

    Salvatierra, Juan; Wagner, Jordan; Klint, Julie K; King, Glenn F; Olivera, Baldomero M; Bosmans, Frank

    2014-01-01

    Ion channels are vital contributors to cellular communication in a wide range of organisms, a distinct feature that renders this ubiquitous family of membrane-spanning proteins a prime target for toxins found in animal venom. For many years, the unique properties of these naturally-occurring molecules have enabled researchers to probe the structural and functional features of ion channels and to define their physiological roles in normal and diseased tissues. To illustrate their considerable impact on the ion channel field, this review will highlight fundamental insights into toxin-channel interactions as well as recently developed toxin screening methods and practical applications of engineered toxins. PMID:25088688

  5. Mechanistic Insights into the Modulation of Voltage-Gated Ion Channels by Inhalational Anesthetics.

    PubMed

    Covarrubias, Manuel; Barber, Annika F; Carnevale, Vincenzo; Treptow, Werner; Eckenhoff, Roderic G

    2015-11-17

    General anesthesia is a relatively safe medical procedure, which for nearly 170 years has allowed life saving surgical interventions in animals and people. However, the molecular mechanism of general anesthesia continues to be a matter of importance and debate. A favored hypothesis proposes that general anesthesia results from direct multisite interactions with multiple and diverse ion channels in the brain. Neurotransmitter-gated ion channels and two-pore K+ channels are key players in the mechanism of anesthesia; however, new studies have also implicated voltage-gated ion channels. Recent biophysical and structural studies of Na+ and K+ channels strongly suggest that halogenated inhalational general anesthetics interact with gates and pore regions of these ion channels to modulate function. Here, we review these studies and provide a perspective to stimulate further advances.

  6. Shielding analysis for a heavy ion beam chamber with plasma channels for ion transport

    SciTech Connect

    Sawan, M.E.; Peterson, R.R.; Yu, S.

    2000-06-28

    Neutronics analysis has been performed to assess the shielding requirements for the insulators and final focusing magnets in a modified HYLIFE-II target chamber that utilizes pre-formed plasma channels for heavy ion beam transport. Using 65 cm thick Flibe jet assemblies provides adequate shielding for the electrical insulator units. Additional shielding is needed in front of the final focusing superconducting quadrupole magnets. A shield with a thickness varying between 45 and 90 cm needs to be provided in front of the quadrupole unit. The final laser mirrors located along the channel axis are in the direct line-of-sight of source neutrons. Neutronics calculations were performed to determine the constraints on the placement of these mirrors to be lifetime components.

  7. Ion channel gene expression in lung adenocarcinoma: potential role in prognosis and diagnosis.

    PubMed

    Ko, Jae-Hong; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Eun A; Zhou, Tong

    2014-01-01

    Ion channels are known to regulate cancer processes at all stages. The roles of ion channels in cancer pathology are extremely diverse. We systematically analyzed the expression patterns of ion channel genes in lung adenocarcinoma. First, we compared the expression of ion channel genes between normal and tumor tissues in patients with lung adenocarcinoma. Thirty-seven ion channel genes were identified as being differentially expressed between the two groups. Next, we investigated the prognostic power of ion channel genes in lung adenocarcinoma. We assigned a risk score to each lung adenocarcinoma patient based on the expression of the differentially expressed ion channel genes. We demonstrated that the risk score effectively predicted overall survival and recurrence-free survival in lung adenocarcinoma. We also found that the risk scores for ever-smokers were higher than those for never-smokers. Multivariate analysis indicated that the risk score was a significant prognostic factor for survival, which is independent of patient age, gender, stage, smoking history, Myc level, and EGFR/KRAS/ALK gene mutation status. Finally, we investigated the difference in ion channel gene expression between the two major subtypes of non-small cell lung cancer: adenocarcinoma and squamous-cell carcinoma. Thirty ion channel genes were identified as being differentially expressed between the two groups. We suggest that ion channel gene expression can be used to improve the subtype classification in non-small cell lung cancer at the molecular level. The findings in this study have been validated in several independent lung cancer cohorts.

  8. Forward Trafficking of Ion Channels: What the Clinician Needs to Know

    PubMed Central

    Smyth, James W.; Shaw, Robin M.

    2010-01-01

    Each heartbeat requires precisely orchestrated action potential propagation through the myocardium achieved by coordination of about a million ion channels on the surface of each cardiomyocyte. Specific ion channels must occur within discrete subdomains of the sarcolemma in order to exert their electrophysiological effects with highest efficiency (e.g. voltage-gated Ca2+ channels at T-tubules and gap junctions at intercalated discs). Regulation of ion channel movement to their appropriate membrane subdomain is an exciting research frontier with opportunity for novel therapeutic manipulation of ion channels in the treatment of heart disease. While much research has generally focused upon internalization and subsequent degradation of ion channels, the field of forward trafficking of de novo ion channels from the cell interior to the sarcolemma has now emerged as a key regulatory step in cardiac electrophysiological function. In this brief review, we provide an overview of the current understanding of the cellular biology governing the forward trafficking of ion channels. PMID:20621620

  9. Electrochemical evaluation of chemical selectivity of glutamate receptor ion channel proteins with a multi-channel sensor.

    PubMed

    Sugawara, M; Hirano, A; Rehák, M; Nakanishi, J; Kawai, K; Sato, H; Umezawa, Y

    1997-01-01

    A new method for evaluating chemical selectivity of agonists towards receptor ion channel proteins is proposed by using glutamate receptor (GluR) ion channel proteins and their agonists N-methyl-D-aspartic acid (NMDA), L-glutamate, and (2S, 3R, 4S) isomer of 2-(carboxycyclopropyl)glycine (L-CCG-IV). Integrated multi-channel currents, corresponding to the sum of total amount of ions passed through the multiple open channels, were used as a measure of agonists' selectivity to recognize ion channel proteins and induce channel currents. GluRs isolated from rat synaptic plasma membranes were incorporated into planar bilayer lipid membranes (BLMs) formed by the folding method. The empirical factors that affect the selectivity were demonstrated: (i) the number of GluRs incorporated into BLMs varied from one membrane to another; (ii) each BLM contained different subtypes of GluRs (NMDA and/or non-NMDA subtypes); and (iii) the magnitude of multi-channel responses induced by L-glutamate at negative applied potentials was larger than at positive potentials, while those by NMDA and L-CCG-IV were linearly related to applied potentials. The chemical selectivity among NMDA, L-glutamate and L-CCG-IV for NMDA subtype of GluRs was determined with each single BLM in which only NMDA subtype of GluRs was designed to be active by inhibiting the non-NMDA subtypes using a specific antagonist DNQX. The order of selectivity among the relevant agonists for the NMDA receptor subtype was found to be L-CCG-IV > L-glutamate > NMDA, which is consistent with the order of binding affinity of these agonists towards the same NMDA subtypes. The potential use of this approach for evaluating chemical selectivity towards non-NMDA receptor subtypes of GluRs and other receptor ion channel proteins is discussed.

  10. Organic toxins as tools to understand ion channel mechanisms and structure.

    PubMed

    Morales-Lázaro, Sara Luz; Hernández-García, Enrique; Serrano-Flores, Barbara; Rosenbaum, Tamara

    2015-01-01

    Ion channels constitute a varied class of membrane proteins with pivotal roles in cellular physiology and that are fundamental for neuronal signaling, hormone secretion and muscle contractility. Hence, it is not unanticipated that toxins from diverse organisms have evolved to modulate the activity of ion channels. For instance, animals such as cone snails, scorpions, spiders and snakes use toxins to immobilize and capture their prey by affecting ion channel function. This is a beautiful example of an evolutionary process that has led to the development of an injection apparatus from predators and to the existence of toxins with high affinity and specificity for a given target. Toxins have been used in the field of ion channel biophysics for several decades to gain insight into the gating mechanisms and the structure of ion channels. Through the use of these peptides, much has been learned about the ion conduction pathways, voltage-sensing mechanisms, pore sizes, kinetics, inactivation processes, etc. This review examines an assortment of toxins that have been used to study different ion channels and describes some key findings about the structure-function relationships in these proteins through the details of the toxin-ion channel interactions.

  11. Acid stress mediated adaptive divergence in ion channel function during embryogenesis in Rana arvalis

    PubMed Central

    Shu, Longfei; Laurila, Anssi; Räsänen, Katja

    2015-01-01

    Ion channels and pumps are responsible for ion flux in cells, and are key mechanisms mediating cellular function. Many environmental stressors, such as salinity and acidification, are known to severely disrupt ionic balance of organisms thereby challenging fitness of natural populations. Although ion channels can have several vital functions during early life-stages (e.g. embryogenesis), it is currently not known i) how developing embryos maintain proper intracellular conditions when exposed to environmental stress and ii) to what extent environmental stress can drive intra-specific divergence in ion channels. Here we studied the moor frog, Rana arvalis, from three divergent populations to investigate the role of different ion channels and pumps for embryonic survival under acid stress (pH 4 vs 7.5) and whether populations adapted to contrasting acidities differ in the relative role of different ion channel/pumps. We found that ion channels that mediate Ca2+ influx are essential for embryonic survival under acidic pH, and, intriguingly, that populations differ in calcium channel function. Our results suggest that adaptive divergence in embryonic acid stress tolerance of amphibians may in part be mediated by Ca2+ balance. We suggest that ion flux may mediate adaptive divergence of natural populations at early life-stages in the face of environmental stress. PMID:26381453

  12. Cardiac Mechano-Gated Ion Channels and Arrhythmias.

    PubMed

    Peyronnet, Rémi; Nerbonne, Jeanne M; Kohl, Peter

    2016-01-22

    Mechanical forces will have been omnipresent since the origin of life, and living organisms have evolved mechanisms to sense, interpret, and respond to mechanical stimuli. The cardiovascular system in general, and the heart in particular, is exposed to constantly changing mechanical signals, including stretch, compression, bending, and shear. The heart adjusts its performance to the mechanical environment, modifying electrical, mechanical, metabolic, and structural properties over a range of time scales. Many of the underlying regulatory processes are encoded intracardially and are, thus, maintained even in heart transplant recipients. Although mechanosensitivity of heart rhythm has been described in the medical literature for over a century, its molecular mechanisms are incompletely understood. Thanks to modern biophysical and molecular technologies, the roles of mechanical forces in cardiac biology are being explored in more detail, and detailed mechanisms of mechanotransduction have started to emerge. Mechano-gated ion channels are cardiac mechanoreceptors. They give rise to mechano-electric feedback, thought to contribute to normal function, disease development, and, potentially, therapeutic interventions. In this review, we focus on acute mechanical effects on cardiac electrophysiology, explore molecular candidates underlying observed responses, and discuss their pharmaceutical regulation. From this, we identify open research questions and highlight emerging technologies that may help in addressing them.

  13. Unconventional secretory processing diversifies neuronal ion channel properties

    PubMed Central

    Hanus, Cyril; Geptin, Helene; Tushev, Georgi; Garg, Sakshi; Alvarez-Castelao, Beatriz; Sambandan, Sivakumar; Kochen, Lisa; Hafner, Anne-Sophie; Langer, Julian D; Schuman, Erin M

    2016-01-01

    N-glycosylation – the sequential addition of complex sugars to adhesion proteins, neurotransmitter receptors, ion channels and secreted trophic factors as they progress through the endoplasmic reticulum and the Golgi apparatus – is one of the most frequent protein modifications. In mammals, most organ-specific N-glycosylation events occur in the brain. Yet, little is known about the nature, function and regulation of N-glycosylation in neurons. Using imaging, quantitative immunoblotting and mass spectrometry, we show that hundreds of neuronal surface membrane proteins are core-glycosylated, resulting in the neuronal membrane displaying surprisingly high levels of glycosylation profiles that are classically associated with immature intracellular proteins. We report that while N-glycosylation is generally required for dendritic development and glutamate receptor surface expression, core-glycosylated proteins are sufficient to sustain these processes, and are thus functional. This atypical glycosylation of surface neuronal proteins can be attributed to a bypass or a hypo-function of the Golgi apparatus. Core-glycosylation is regulated by synaptic activity, modulates synaptic signaling and accelerates the turnover of GluA2-containing glutamate receptors, revealing a novel mechanism that controls the composition and sensing properties of the neuronal membrane. DOI: http://dx.doi.org/10.7554/eLife.20609.001 PMID:27677849

  14. Properties of the stochastic energization-relaxation channel model for vectorial ion transport.

    PubMed Central

    Muneyuki, E; Fukami, T A

    2000-01-01

    A model for the primary active transport by an ion pump protein is proposed. The model, the "energization-relaxation channel model," describes an ion pump as a multiion channel that undergoes stochastic transitions between two conformational states by external energy supply. When the potential profile along ion transport pathway is asymmetrical, a net ion flux is induced by the transitions. In this model, the coupling of the conformational change and ion transport is stochastic and loose. The model qualitatively reproduces known properties of active transport such as the effect of ion concentration gradient and membrane potential on the rate of transport and the inhibition of ion transport at high ion concentration. We further examined the effect of various parameters on the ion transport properties of this model. The efficiency of the coupling was almost 100% under some conditions. PMID:10692306

  15. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    PubMed

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  16. Highly Sensitive and Patchable Pressure Sensors Mimicking Ion-Channel-Engaged Sensory Organs.

    PubMed

    Chun, Kyoung-Yong; Son, Young Jun; Han, Chang-Soo

    2016-04-26

    Biological ion channels have led to much inspiration because of their unique and exquisite operational functions in living cells. Specifically, their extreme and dynamic sensing abilities can be realized by the combination of receptors and nanopores coupled together to construct an ion channel system. In the current study, we demonstrated that artificial ion channel pressure sensors inspired by nature for detecting pressure are highly sensitive and patchable. Our ion channel pressure sensors basically consisted of receptors and nanopore membranes, enabling dynamic current responses to external forces for multiple applications. The ion channel pressure sensors had a sensitivity of ∼5.6 kPa(-1) and a response time of ∼12 ms at a frequency of 1 Hz. The power consumption was recorded as less than a few μW. Moreover, a reliability test showed stability over 10 000 loading-unloading cycles. Additionally, linear regression was performed in terms of temperature, which showed no significant variations, and there were no significant current variations with humidity. The patchable ion channel pressure sensors were then used to detect blood pressure/pulse in humans, and different signals were clearly observed for each person. Additionally, modified ion channel pressure sensors detected complex motions including pressing and folding in a high-pressure range (10-20 kPa).

  17. Storable droplet interface lipid bilayers for cell-free ion channel studies.

    PubMed

    Jung, Sung-Ho; Choi, Sangbaek; Kim, Young-Rok; Jeon, Tae-Joon

    2012-01-01

    An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in -80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies. PMID:21909672

  18. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  19. Non-silent story on synonymous sites in voltage-gated ion channel genes.

    PubMed

    Zhou, Tong; Ko, Eun A; Gu, Wanjun; Lim, Inja; Bang, Hyoweon; Ko, Jae-Hong

    2012-01-01

    Synonymous mutations are usually referred to as "silent", but increasing evidence shows that they are not neutral in a wide range of organisms. We looked into the relationship between synonymous codon usage bias and residue importance of voltage-gated ion channel proteins in mice, rats, and humans. We tested whether translationally optimal codons are associated with transmembrane or channel-forming regions, i.e., the sites that are particularly likely to be involved in the closing and opening of an ion channel. Our hypothesis is that translationally optimal codons are preferred at the sites within transmembrane domains or channel-forming regions in voltage-gated ion channel genes to avoid mistranslation-induced protein misfolding or loss-of-function. Using the Mantel-Haenszel procedure, which applies to categorical data, we found that translationally optimal codons are more likely to be used at transmembrane residues and the residues involved in channel-forming. We also found that the conservation level at synonymous sites in the transmembrane region is significantly higher than that in the non-transmembrane region. This study provides evidence that synonymous sites in voltage-gated ion channel genes are not neutral. Silent mutations at channel-related sites may lead to dysfunction of the ion channel.

  20. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function.

    PubMed

    Carraretto, Luca; Teardo, Enrico; Checchetto, Vanessa; Finazzi, Giovanni; Uozumi, Nobuyuki; Szabo, Ildiko

    2016-03-01

    Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future. PMID:26751960

  1. Ion channel remodeling in vascular smooth muscle during hypertension: Implications for novel therapeutic approaches

    PubMed Central

    Joseph, Biny K.; Thakali, Keshari M.; Moore, Christopher L.; Rhee, Sung W.

    2013-01-01

    Ion channels are multimeric, transmembrane proteins that selectively mediate ion flux across the plasma membrane in a variety of cells including vascular smooth muscle cells (VSMCs). The dynamic interplay of Ca2+ and K+ channels on the plasma membrane of VSMCs plays a pivotal role in modulating the vascular tone of small arteries and arterioles. The abnormally-elevated arterial tone observed in hypertension thus points to an aberrant expression and function of Ca2+ and K+ channels in the VSMCs. In this short review, we focus on the three well-studied ion channels in VSMCs, namely the L-type Ca2+ (CaV1.2) channels, the voltage-gated K+ (KV) channels, and the large-conductance Ca2+-activated K+ (BK) channels. First, we provide a brief overview on the physiological role of vascular CaV1.2, KV and BK channels in regulating arterial tone. Second, we discuss the current understanding of the expression changes and regulation of CaV1.2, KV and BK channels in the vasculature during hypertension. Third, based on available proof-of-concept studies, we describe the potential therapeutic approaches targeting these vascular ion channels in order to restore blood pressure to normotensive levels. PMID:23376354

  2. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  3. Cancer as a channelopathy: ion channels and pumps in tumor development and progression

    PubMed Central

    Litan, Alisa; Langhans, Sigrid A.

    2015-01-01

    Increasing evidence suggests that ion channels and pumps not only regulate membrane potential, ion homeostasis, and electric signaling in excitable cells but also play important roles in cell proliferation, migration, apoptosis and differentiation. Consistent with a role in cell signaling, channel proteins and ion pumps can form macromolecular complexes with growth factors, and cell adhesion and other signaling molecules. And while cancer is still not being cataloged as a channelopathy, as the non-traditional roles of ion pumps and channels are being recognized, it is increasingly being suggested that ion channels and ion pumps contribute to cancer progression. Cancer cell migration requires the regulation of adhesion complexes between migrating cells and surrounding extracellular matrix (ECM) proteins. Cell movement along solid surfaces requires a sequence of cell protrusions and retractions that mainly depend on regulation of the actin cytoskeleton along with contribution of microtubules and molecular motor proteins such as mysoin. This process is triggered and modulated by a combination of environmental signals, which are sensed and integrated by membrane receptors, including integrins and cadherins. Membrane receptors transduce these signals into downstream signaling pathways, often involving the Rho GTPase protein family. These pathways regulate the cytoskeletal rearrangements necessary for proper timing of adhesion, contraction and detachment of cells in order to find their way through extracellular spaces. Migration and adhesion involve continuous modulation of cell motility, shape and volume, in which ion channels and pumps play major roles. Research on cancer cells suggests that certain ion channels may be involved in aberrant tumor growth and channel inhibitors often lead to growth arrest. This review will describe recent research into the role of ion pumps and ion channels in cell migration and adhesion, and how they may contribute to tumor development

  4. Nonlinear study of an ion-channel guiding free-electron laser

    SciTech Connect

    Ouyang, Zhengbiao; Zhang, Shi-Chang

    2015-04-15

    A nonlinear model and simulations of the output power of an ion-channel guiding free-electron laser (FEL) are presented in this paper. Results show that the nonlinear output power of an ion-channel guiding FEL is comparable to that of an axial guide magnetic field FEL. Compared to an axial guide magnetic field FEL, an ion-channel guiding FEL substantially weakens the negative effect of the electron-beam energy spread on the output power due to its advantageous focusing mechanism on the electron motion.

  5. Hopping-mediated anion transport through a mannitol-based rosette ion channel.

    PubMed

    Saha, Tanmoy; Dasari, Sathish; Tewari, Debanjan; Prathap, Annamalai; Sureshan, Kana M; Bera, Amal K; Mukherjee, Arnab; Talukdar, Pinaki

    2014-10-01

    Artificial anion selective ion channels with single-file multiple anion-recognition sites are rare. Here, we have designed, by hypothesis, a small molecule that self-organizes to form a barrel rosette ion channel in the lipid membrane environment. Being amphiphilic in nature, this molecule forms nanotubes through intermolecular hydrogen bond formation, while its hydrophobic counterpart is stabilized by hydrophobic interactions in the membrane. The anion selectivity of the channel was investigated by fluorescence-based vesicle assay and planar bilayer conductance measurements. The ion transport by a modified hopping mechanism was demonstrated by molecular dynamics simulation studies. PMID:25203165

  6. Relevance of quantum mechanics on some aspects of ion channel function.

    PubMed

    Roy, Sisir; Llinás, Rodolfo

    2009-06-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger-Langevin equation for this kind of system within the framework of stochastic quantization. The Planck's constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter.

  7. Ion binding in the Open HCN Pacemaker Channel Pore: Fast Mechanisms to Shape “Slow” Channels

    PubMed Central

    Lyashchenko, Alex K.; Tibbs, Gareth R.

    2008-01-01

    IH pacemaker channels carry a mixed monovalent cation current that, under physiological ion gradients, reverses at ∼−34 mV, reflecting a 4:1 selectivity for K over Na. However, IH channels display anomalous behavior with respect to permeant ions such that (a) open channels do not exhibit the outward rectification anticipated assuming independence; (b) gating and selectivity are sensitive to the identity and concentrations of externally presented permeant ions; (c) the channels' ability to carry an inward Na current requires the presence of external K even though K is a minor charge carrier at negative voltages. Here we show that open HCN channels (the hyperpolarization-activated, cyclic nucleotide sensitive pore forming subunits of IH) undergo a fast, voltage-dependent block by intracellular Mg in a manner that suggests the ion binds close to, or within, the selectivity filter. Eliminating internal divalent ion block reveals that (a) the K dependence of conduction is mediated via K occupancy of site(s) within the pore and that asymmetrical occupancy and/or coupling of these sites to flux further shapes ion flow, and (b) the kinetics of equilibration between K-vacant and K-occupied states of the pore (10–20 μs or faster) is close to the ion transit time when the pore is occupied by K alone (∼0.5–3 μs), a finding that indicates that either ion:ion repulsion involving Na is adequate to support flux (albeit at a rate below our detection threshold) and/or the pore undergoes rapid, permeant ion-sensitive equilibration between nonconducting and conducting configurations. Biophysically, further exploration of the Mg site and of interactions of Na and K within the pore will tell us much about the architecture and operation of this unusual pore. Physiologically, these results suggest ways in which “slow” pacemaker channels may contribute dynamically to the shaping of fast processes such as Na-K or Ca action potentials. PMID:18270171

  8. Quantised transistor response to ion channels revealed by nonstationary noise analysis

    NASA Astrophysics Data System (ADS)

    Becker-Freyseng, C.; Fromherz, P.

    2011-11-01

    We report on the quantised response of a field-effect transistor to molecular ion channels in a biomembrane. HEK293-type cells overexpressing the Shaker B potassium channel were cultured on a silicon chip. An enhanced noise of the transistor is observed when the ion channels are activated. The analysis of the fluctuations in terms of binomial statistics identifies voltage quanta of about 1 μV on the gate. They are attributed to the channel currents that affect the gate voltage according to the Green's function of the cell-chip junction.

  9. Probing conformational changes of gramicidin ion channels by single-molecule patch-clamp fluorescence microscopy

    SciTech Connect

    Harms, Gregory S.; Orr, Galya; Montal, Mauricio; Thrall, Brian D.; Colson, Steve D.; Lu, H Peter

    2003-09-01

    Stochastic and inhomogeneous conformational changes often regulate the dynamics of ion channels. Such inhomogeneity makes it difficult, if not impossible; to be characterized not only by ensemble-averaged experiments by also by single-channel patch recording that does not specifically probe the associated conformational changes. Here, we report on our work using a new approach combining single-molecule fluorescence spectroscopy and single-channel patch recording to investigate conformational changes of individual gramicidin ion channels. We observed fluorescence self-quenching and single-pair fluorescence resonance energy transfer (spFRET) from dye-labeled gramicidin dimmers within the channel was open. We also observed that the efficiency of self-quenching and spFRETS is widely distributed when the channel is closed. Our results strongly suggest a hitherto undetectable correlation of multiple conformational states of the gramicidin channel associated with closed and open states under physiologically-related conditions.

  10. Gramicidins A, B, and C form structurally equivalent ion channels.

    PubMed Central

    Sawyer, D B; Williams, L P; Whaley, W L; Koeppe, R E; Andersen, O S

    1990-01-01

    The membrane structure of the naturally occurring gramicidins A, B, and C was investigated using circular dichroism (CD) spectroscopy and single-channel recording techniques. All three gramicidins form channels with fairly similar properties (Bamberg, E., K. Noda, E. Gross, and P. Läuger. 1976. Biochim. Biophys. Acta. 419:223-228.). When incorporated into lysophosphatidylcholine micelles, however, the CD spectrum of gramicidin B is different from that of gramicidin A or C (cf. Prasad, K. U., T. L. Trapane, D. Busath, G. Szabo, and D. W. Urry. 1983. Int. J. Pept. Protein Res. 22:341-347.). The structural identity of the channels formed by gramicidin B has, therefore, been uncertain. We find that when gramicidins A and B are incorporated into dipalmitoylphosphatidylcholine vesicles, their CD spectra are fairly similar, suggesting that the two channel structures could be similar. In planar bilayers, gramicidins A, B, and C all form hybrid channels with each other. The properties of the hybrid channels are intermediate to those of the symmetric channels, and the appearance rates of the hybrid channels (relative to the symmetric channels) corresponds to what would be predicted if all three gramicidin molecules were to form structurally equivalent channels. These results allow us to interpret the different behavior of channels formed by the three gramicidins solely on the basis of the amino acid substitution at position 11. PMID:1705449

  11. Transient Receptor Potential Ion Channels Control Thermoregulatory Behaviour in Reptiles

    PubMed Central

    Seebacher, Frank; Murray, Shauna A.

    2007-01-01

    Biological functions are governed by thermodynamics, and animals regulate their body temperature to optimise cellular performance and to avoid harmful extremes. The capacity to sense environmental and internal temperatures is a prerequisite for the evolution of thermoregulation. However, the mechanisms that enable ectothermic vertebrates to sense heat remain unknown. The recently discovered thermal characteristics of transient receptor potential ion channels (TRP) render these proteins suitable to act as temperature sensors. Here we test the hypothesis that TRPs are present in reptiles and function to control thermoregulatory behaviour. We show that the hot-sensing TRPV1 is expressed in a crocodile (Crocodylus porosus), an agamid (Amphibolurus muricatus) and a scincid (Pseudemoia entrecasteauxii) lizard, as well as in the quail and zebrafinch (Coturnix chinensis and Poephila guttata). The TRPV1 genes from all reptiles form a unique clade that is delineated from the mammalian and the ancestral Xenopus sequences by an insertion of two amino acids. TRPV1 and the cool-sensing TRPM8 are expressed in liver, muscle (transversospinalis complex), and heart tissues of the crocodile, and have the potential to act as internal thermometer and as external temperatures sensors. Inhibition of TRPV1 and TRPM8 in C. porosus abolishes the typically reptilian shuttling behaviour between cooling and heating environments, and leads to significantly altered body temperature patterns. Our results provide the proximate mechanism of thermal selection in terrestrial ectotherms, which heralds a fundamental change in interpretation, because TRPs provide the mechanism for a tissue-specific input into the animals' thermoregulatory response. PMID:17356692

  12. Protein-protein interactions among ion channels regulate ion transport in the kidney.

    PubMed

    Boulpaep, E

    2009-01-01

    Epithelial ion transport in various organs has long been known to be controlled by extracellular agonists acting via membrane receptors or by intracellular messengers. Evidence is mounting for regulation of transport by direct interaction among membrane proteins or between a membrane transport protein and membrane-attached proteins. The membrane protein CFTR (Cystic Fibrosis Transmembrane Regulator) is widely expressed along the length of the nephron, but its role as a chloride channel does not appear to be critical for renal handling of salt and water. It is well established that the inward rectifying K channels (ROMK = Kir 1.1) in the thick ascending limb of Henle and in principal cells of the collecting duct are inhibited by millimolar concentrations of cytosolic Mg-ATP. However, the mechanism of this inhibition has been an enigma. We propose that the ATP-Binding Cassette (ABC) protein CFTR is a cofactor for Kir 1.1 regulation. Indeed, Mg-ATP sensitivity of Kir 1.1 is completely absent in two different mouse models of cystic fibrosis. In addition, the open-closed state of CFTR appears to provide a molecular gating switch that prevents or facilitates the ATP sensing of Kir 1.1. Does Mg-ATP sensing by the CFTR- Kir 1.1 complex play a role in coupling metabolism to ion transport? Physiological intracellular ATP concentrations in tubule cells are in the millimolar range, a saturating concentration for the gating of Kir 1.1 by Mg-ATP. Therefore, Kir 1.1 channels would be closed and unable to contribute to regulation of potassium secretion unless some other process modulated the CFTR-dependent ATP-sensitivity of Kir 1.1. The third component of the metabolic sensor-effector complex for Kir 1.1 regulation is most likely the AMP-regulated serine-threonine kinase, AMP kinase (AMPK). Changing levels in AMP rather than in ATP constitute the metabolic signal "sensed" by tubule cells. Because AMPK inhibits CFTR by modulating CFTR channel gating, we propose that renal K

  13. Molecular Dynamics Simulation of the Antiamoebin Ion Channel: Linking Structure and Conductance

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Wei, Chenyu; Bjelkmar, Paer; Wallace, B. A.; Pohorille, Andrew

    2011-01-01

    Molecular dynamics simulations were carried out in order to ascertain which of the potential multimeric forms of the transmembrane peptaibol channel, antiamoebin, is consistant with its measured conductance. Estimates of the conductance obtained through counting ions that cross the channel and by solving the Nernst-Planck equation yield consistent results, indicating that the motion of ions inside the channel can be satisfactorily described as diffusive.The calculated conductance of octameric channels is markedly higher than the conductance measured in single channel recordings, whereas the tetramer appears to be non-conducting. The conductance of the hexamer was estimated to be 115+/-34 pS and 74+/-20 pS, at 150 mV and 75 mV, respectively, in satisfactory agreement with the value of 90 pS measured at 75 mV. On this basis we propose that the antiamoebin channel consists of six monomers. Its pore is large enough to accommodate K(+) and Cl(-) with their first solvation shells intact. The free energy barrier encountered by K(+) is only 2.2 kcal/mol whereas Cl(-) encounters a substantially higher barrier of nearly 5 kcal/mol. This difference makes the channel selective for cations. Ion crossing events are shown to be uncorrelated and follow Poisson statistics. keywords: ion channels, peptaibols, channel conductance, molecular dynamics

  14. Dynamics of ponderomotive ion acceleration in a laser-plasma channel

    SciTech Connect

    Kovalev, V. F.; Bychenkov, V. Yu.

    2015-04-15

    Analytical solution to the Cauchy problem for the kinetic equation describing the radial acceleration of ions under the action of the ponderomotive force of a laser beam undergoing guided propagation in transparent plasma is constructed. Spatial and temporal dependences of the ion distribution function and the integral ion characteristics, such as the density, average velocity, and energy spectrum, are obtained for an axisymmetric laser-plasma channel. The formation of a density peak near the channel boundary and the effect of ion flow breaking for a quasi-stationary laser beam are described analytically.

  15. Unraveling the mechanism of selective ion transport in hydrophobic subnanometer channels

    PubMed Central

    Li, Hui; Francisco, Joseph S.; Zeng, Xiao Cheng

    2015-01-01

    Recently reported synthetic organic nanopore (SONP) can mimic a key feature of natural ion channels, i.e., selective ion transport. However, the physical mechanism underlying the K+/Na+ selectivity for the SONPs is dramatically different from that of natural ion channels. To achieve a better understanding of the selective ion transport in hydrophobic subnanometer channels in general and SONPs in particular, we perform a series of ab initio molecular dynamics simulations to investigate the diffusivity of aqua Na+ and K+ ions in two prototype hydrophobic nanochannels: (i) an SONP with radius of 3.2 Å, and (ii) single-walled carbon nanotubes (CNTs) with radii of 3–5 Å (these radii are comparable to those of the biological potassium K+ channels). We find that the hydration shell of aqua Na+ ion is smaller than that of aqua K+ ion but notably more structured and less yielding. The aqua ions do not lower the diffusivity of water molecules in CNTs, but in SONP the diffusivity of aqua ions (Na+ in particular) is strongly suppressed due to the rugged inner surface. Moreover, the aqua Na+ ion requires higher formation energy than aqua K+ ion in the hydrophobic nanochannels. As such, we find that the ion (K+ vs. Na+) selectivity of the (8, 8) CNT is ∼20× higher than that of SONP. Hence, the (8, 8) CNT is likely the most efficient artificial K+ channel due in part to its special interior environment in which Na+ can be fully solvated, whereas K+ cannot. This work provides deeper insights into the physical chemistry behind selective ion transport in nanochannels. PMID:26283377

  16. Electric field modulation of the membrane potential in solid-state ion channels.

    PubMed

    Guan, Weihua; Reed, Mark A

    2012-12-12

    Biological ion channels are molecular devices that allow a rapid flow of ions across the cell membrane. Normal physiological functions, such as generating action potentials for cell-to-cell communication, are highly dependent on ion channels that can open and close in response to external stimuli for regulating ion permeation. Mimicking these biological functions using synthetic structures is a rapidly progressing yet challenging area. Here we report the electric field modulation of the membrane potential phenomena in mechanically and chemically robust solid-state ion channels, an abiotic analogue to the voltage-gated ion channels in living systems. To understand the complex physicochemical processes in the electric field regulated membrane potential behavior, both quasi-static and transient characteristics of converting transmembrane ion gradients into electric potential are investigated. It is found that the transmembrane potential can be adequately tuned by an external electrical stimulation, thanks to the unique properties of the voltage-regulated selective ion transport through a nanoscale channel.

  17. Overcharging below the nanoscale: Multivalent cations reverse the ion selectivity of a biological channel

    NASA Astrophysics Data System (ADS)

    García-Giménez, Elena; Alcaraz, Antonio; Aguilella, Vicente M.

    2010-02-01

    We report charge inversion within a nanoscopic biological protein ion channel in salts of multivalent ions. The presence of positive divalent and trivalent counterions reverses the cationic selectivity of the OmpF channel, a general diffusion porin located in the outer membrane of E. coli. We discuss the conditions under which charge inversion can be inferred from the change in sign of the measured quantity, the channel zero current potential. By comparing experimental results in protein channels whose charge has been modified after site-directed mutagenesis, the predictions of current theories of charge inversion are critically examined. It is emphasized that charge inversion does not necessarily increase with the bare surface charge density of the interface and that even this concept of surface charge density may become meaningless in some biological ion channels. Thus, any theory based on electrostatic correlations or chemical binding should explicitly take into account the particular structure of the charged interface.

  18. Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels.

    PubMed

    Novak, Pavel; Gorelik, Julia; Vivekananda, Umesh; Shevchuk, Andrew I; Ermolyuk, Yaroslav S; Bailey, Russell J; Bushby, Andrew J; Moss, Guy W J; Rusakov, Dmitri A; Klenerman, David; Kullmann, Dimitri M; Volynski, Kirill E; Korchev, Yuri E

    2013-09-18

    Direct electrical access to presynaptic ion channels has hitherto been limited to large specialized terminals such as the calyx of Held or hippocampal mossy fiber bouton. The electrophysiology and ion-channel complement of far more abundant small synaptic terminals (≤ 1 μm) remain poorly understood. Here we report a method based on superresolution scanning ion conductance imaging of small synapses in culture at approximately 100-150 nm 3D resolution, which allows presynaptic patch-clamp recordings in all four configurations (cell-attached, inside-out, outside-out, and whole-cell). Using this technique, we report presynaptic recordings of K(+), Na(+), Cl(-), and Ca(2+) channels. This semiautomated approach allows direct investigation of the distribution and properties of presynaptic ion channels at small central synapses. PMID:24050398

  19. Permeation in ion channels: the interplay of structure and theory.

    PubMed

    Miloshevsky, Gennady V; Jordan, Peter C

    2004-06-01

    Combined with high-resolution atomic-level crystal structures of channel forming peptides, theory has become a powerful tool for illuminating factors influencing permeation. Here, advantages and limitations of the more familiar continuum and molecular modeling techniques are briefly outlined. These methods are applied to issues of permeation in two different channel families: gramicidin and K(+) channels. Using structural data, theory provides verifiable atomic-level insights into permeation dynamics, channel conductance and molecular selectivity mechanisms. Not only can theory confirm experimental inference, it can also sometimes provide structural perspectives in advance of experiment.

  20. Ion channels in plants: from bioelectricity, via signaling, to behavioral actions.

    PubMed

    Baluška, František; Mancuso, Stefano

    2013-01-01

    In his recent opus magnum review paper published in the October issue of Physiology Reviews, Rainer Hedrich summarized the field of plant ion channels. (1) He started from the earliest electric recordings initiated by Charles Darwin of carnivorous Dionaea muscipula, (1,2) known as Venus flytrap, and covered the topic extensively up to the most recent discoveries on Shaker-type potassium channels, anion channels of SLAC/SLAH families, and ligand-activated channels of glutamate receptor-like type (GLR) and cyclic nucleotide-gated channels (CNGC). (1.)

  1. Gasotransmitter regulation of ion channels: a key step in O2 sensing by the carotid body.

    PubMed

    Prabhakar, Nanduri R; Peers, Chris

    2014-01-01

    Carotid bodies detect hypoxia in arterial blood, translating this stimulus into physiological responses via the CNS. It is long established that ion channels are critical to this process. More recent evidence indicates that gasotransmitters exert powerful influences on O2 sensing by the carotid body. Here, we review current understanding of hypoxia-dependent production of gasotransmitters, how they regulate ion channels in the carotid body, and how this impacts carotid body function.

  2. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

    NASA Astrophysics Data System (ADS)

    Posson, David J.; Rusinova, Radda; Andersen, Olaf S.; Nimigean, Crina M.

    2015-09-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K+ channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca2+-activated K+ channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K+. Thus, Ca2+-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  3. Structural mechanism for the regulation of HCN ion channels by the accessory protein TRIP8b

    PubMed Central

    DeBerg, Hannah A.; Bankston, John R.; Rosenbaum, Joel C.; Brzovic, Peter S.; Zagotta, William N.; Stoll, Stefan

    2015-01-01

    Summary Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels underlie the cationic Ih current present in many neurons. The direct binding of cAMP to HCN channels increases the rate and extent of channel opening and results in a depolarizing shift in the voltage dependence of activation. TRIP8b is an accessory protein that regulates the cell surface expression and dendritic localization of HCN channels and reduces the cyclic nucleotide dependence of these channels. Here we use electron paramagnetic resonance (EPR) to show that TRIP8b binds to the apo state of the cyclic nucleotide-binding domain (CNBD) of HCN2 channels without changing the overall domain structure. With EPR and nuclear magnetic resonance (NMR), we locate TRIP8b relative to the HCN channel and identify the binding interface on the CNBD. These data provide a structural framework for understanding how TRIP8b regulates the cyclic nucleotide dependence of HCN channels. PMID:25800552

  4. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel.

    PubMed

    Posson, David J; Rusinova, Radda; Andersen, Olaf S; Nimigean, Crina M

    2015-01-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K(+). Thus, Ca(2+)-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  5. Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse.

    PubMed Central

    Chen, W; Lee, R C

    1994-01-01

    The effects of large magnitude transmembrane potential pulses on voltage-gated Na and K channel behavior in frog skeletal muscle membrane were studied using a modified double vaseline-gap voltage clamp. The effects of electroconformational damage to ionic channels were separated from damage to lipid bilayer (electroporation). A 4 ms transmembrane potential pulse of -600 mV resulted in a reduction of both Na and K channel conductivities. The supraphysiologic pulses also reduced ionic selectivity of the K channels against Na+ ions, resulting in a depolarization of the membrane resting potential. However, TTX and TEA binding effects were unaltered. The kinetics of spontaneous reversal of the electroconformational damage of channel proteins was found to be dependent on the magnitude of imposed membrane potential pulse. These results suggest that muscle and nerve dysfunction after electrical shock may be in part caused by electroconformational damage to voltage-gated ion channels. PMID:7948676

  6. Regulation of photosynthesis by ion channels in cyanobacteria and higher plants.

    PubMed

    Checchetto, Vanessa; Teardo, Enrico; Carraretto, Luca; Formentin, Elide; Bergantino, Elisabetta; Giacometti, Giorgio Mario; Szabo, Ildiko

    2013-12-01

    Photosynthesis converts light energy into chemical energy, and supplies ATP and NADPH for CO2 fixation into carbohydrates and for the synthesis of several compounds which are essential for autotrophic growth. Oxygenic photosynthesis takes place in thylakoid membranes of chloroplasts and photosynthetic prokaryote cyanobacteria. An ancestral photoautotrophic prokaryote related to cyanobacteria has been proposed to give rise to chloroplasts of plants and algae through an endosymbiotic event. Indeed, photosynthetic complexes involved in the electron transport coupled to H(+) translocation and ATP synthesis are similar in higher plants and cyanobacteria. Furthermore, some of the protein and solute/ion conducting machineries also share common structure and function. Electrophysiological and biochemical evidence support the existence of ion channels in the thylakoid membrane in both types of organisms. By allowing specific ion fluxes across thylakoid membranes, ion channels have been hypothesized to either directly or indirectly regulate photosynthesis, by modulating the proton motive force. Recent molecular identification of some of the thylakoid-located channels allowed to obtain genetic proof in favor of such hypothesis. Furthermore, some ion channels of the envelope membrane in chloroplasts have also been shown to impact on this light-driven process. Here we give an overview of thylakoid/chloroplast located ion channels of higher plants and of cyanobacterium Synechocystis sp. PCC 6803. We focus on channels shown to be implicated in the regulation of photosynthesis and discuss the possible mechanisms of action.

  7. Ion Channels Made from a Single Membrane-Spanning DNA Duplex

    PubMed Central

    2016-01-01

    Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA–lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity. PMID:27324157

  8. Modeling the Influence of Ion Channels on Neuron Dynamics in Drosophila

    PubMed Central

    Berger, Sandra D.; Crook, Sharon M.

    2015-01-01

    Voltage gated ion channels play a major role in determining a neuron's firing behavior, resulting in the specific processing of synaptic input patterns. Drosophila and other invertebrates provide valuable model systems for investigating ion channel kinetics and their impact on firing properties. Despite the increasing importance of Drosophila as a model system, few computational models of its ion channel kinetics have been developed. In this study, experimentally observed biophysical properties of voltage gated ion channels from the fruitfly Drosophila melanogaster are used to develop a minimal, conductance based neuron model. We investigate the impact of the densities of these channels on the excitability of the model neuron. Changing the channel densities reproduces different in situ observed firing patterns and induces a switch from integrator to resonator properties. Further, we analyze the preference to input frequency and how it depends on the channel densities and the resulting bifurcation type the system undergoes. An extension to a three dimensional model demonstrates that the inactivation kinetics of the sodium channels play an important role, allowing for firing patterns with a delayed first spike and subsequent high frequency firing as often observed in invertebrates, without altering the kinetics of the delayed rectifier current. PMID:26635592

  9. Structural analysis of calmodulin binding to ion channels demonstrates the role of its plasticity in regulation.

    PubMed

    Kovalevskaya, Nadezda V; van de Waterbeemd, Michiel; Bokhovchuk, Fedir M; Bate, Neil; Bindels, René J M; Hoenderop, Joost G J; Vuister, Geerten W

    2013-11-01

    The Ca²⁺-binding protein calmodulin (CaM) is a well-known regulator of ion-channel activity. Consequently, the Protein Data Bank contains many structures of CaM in complex with different fragments of ion channels that together display a variety of binding modes. In addition to the canonical interaction, in which CaM engages its target with both its domains, many of the ion-channel-CaM complexes demonstrate alternative non-canonical binding modes that depend on the target and experimental conditions. Based on these findings, several mechanisms of ion-channel regulation by CaM have been proposed, all exploiting its plasticity and flexibility in interacting with its targets. In this review, we focus on complexes of CaM with either the voltage-gated calcium channels; the voltage-gated sodium channels or the small conductance calcium-activated potassium channels, for which both structural and functional data are available. For each channel, the functional relevance of these structural data and possible mechanism of calcium-dependent (in)activation and/or facilitation are discussed in detail. PMID:23609407

  10. Effective diameters of ion channels formed by homologs of the antibiotic chrysospermin.

    PubMed

    Ternovsky, V I; Grigoriev, P A; Berestovsky, G N; Schlegel, R; Dornberger, K; Gräfe, U

    1997-01-01

    Radii of ion channels formed in the lipid bilayer by 4 homologs of the alamethicin-like antibiotic, chrysospermin, were determined using hydrophilic nonelectrolytes. It is shown that the replacement of isovaline amino acid at position 15 of the polypeptide chain by alpha-aminoisobutyric acid results in the decrease in the channel effective radius from 1.2 +/- 0.15 to 0.94 +/- 0.1 nm and a respective 2.5-fold decrease in channel conductance.

  11. PSIONplus: Accurate Sequence-Based Predictor of Ion Channels and Their Types

    PubMed Central

    Gao, Jianzhao; Cui, Wei; Sheng, Yajun; Ruan, Jishou; Kurgan, Lukasz

    2016-01-01

    Ion channels are a class of membrane proteins that attracts a significant amount of basic research, also being potential drug targets. High-throughput identification of these channels is hampered by the low levels of availability of their structures and an observation that use of sequence similarity offers limited predictive quality. Consequently, several machine learning predictors of ion channels from protein sequences that do not rely on high sequence similarity were developed. However, only one of these methods offers a wide scope by predicting ion channels, their types and four major subtypes of the voltage-gated channels. Moreover, this and other existing predictors utilize relatively simple predictive models that limit their accuracy. We propose a novel and accurate predictor of ion channels, their types and the four subtypes of the voltage-gated channels called PSIONplus. Our method combines a support vector machine model and a sequence similarity search with BLAST. The originality of PSIONplus stems from the use of a more sophisticated machine learning model that for the first time in this area utilizes evolutionary profiles and predicted secondary structure, solvent accessibility and intrinsic disorder. We empirically demonstrate that the evolutionary profiles provide the strongest predictive input among new and previously used input types. We also show that all new types of inputs contribute to the prediction. Results on an independent test dataset reveal that PSIONplus obtains relatively good predictive performance and outperforms existing methods. It secures accuracies of 85.4% and 68.3% for the prediction of ion channels and their types, respectively, and the average accuracy of 96.4% for the discrimination of the four ion channel subtypes. Standalone version of PSIONplus is freely available from https://sourceforge.net/projects/psion/ PMID:27044036

  12. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.

    PubMed

    Goldwyn, Joshua H; Imennov, Nikita S; Famulare, Michael; Shea-Brown, Eric

    2011-04-01

    The random transitions of ion channels between conducting and nonconducting states generate a source of internal fluctuations in a neuron, known as channel noise. The standard method for modeling the states of ion channels nonlinearly couples continuous-time Markov chains to a differential equation for voltage. Beginning with the work of R. F. Fox and Y.-N. Lu [Phys. Rev. E 49, 3421 (1994)], there have been attempts to generate simpler models that use stochastic differential equation (SDEs) to approximate the stochastic spiking activity produced by Markov chain models. Recent numerical investigations, however, have raised doubts that SDE models can capture the stochastic dynamics of Markov chain models.We analyze three SDE models that have been proposed as approximations to the Markov chain model: one that describes the states of the ion channels and two that describe the states of the ion channel subunits. We show that the former channel-based approach can capture the distribution of channel noise and its effects on spiking in a Hodgkin-Huxley neuron model to a degree not previously demonstrated, but the latter two subunit-based approaches cannot. Our analysis provides intuitive and mathematical explanations for why this is the case. The temporal correlation in the channel noise is determined by the combinatorics of bundling subunits into channels, but the subunit-based approaches do not correctly account for this structure. Our study confirms and elucidates the findings of previous numerical investigations of subunit-based SDE models. Moreover, it presents evidence that Markov chain models of the nonlinear, stochastic dynamics of neural membranes can be accurately approximated by SDEs. This finding opens a door to future modeling work using SDE techniques to further illuminate the effects of ion channel fluctuations on electrically active cells. PMID:21599202

  13. Permeation Redux: Thermodynamics and Kinetics of Ion Movement through Potassium Channels

    PubMed Central

    Horn, Richard; Roux, Benoît; Åqvist, Johan

    2014-01-01

    The fundamental biophysics underlying the selective movement of ions through ion channels was launched by George Eisenman in the 1960s, using glass electrodes. This minireview examines the insights from these early studies and the explosive progress made since then. PMID:24806917

  14. Toxic β-Amyloid (Aβ) Alzheimer's Ion Channels: From Structure to Function and Design

    NASA Astrophysics Data System (ADS)

    Nussinov, Ruth

    2012-02-01

    Full-length amyloid beta peptides (Aβ1-40/42) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. Recent biophysical and cell biological studies suggest a direct mechanism of amyloid beta toxicity -- ion channel mediated loss of calcium homeostasis. Truncated amyloid beta fragments (Aβ11-42 and Aβ17-42), commonly termed as non-amyloidogenic are also found in amyloid plaques of Alzheimer's disease (AD) and in the preamyloid lesions of Down's syndrome (DS), a model system for early onset AD study. Very little is known about the structure and activity of these smaller peptides although they could be key AD and DS pathological agents. Using complementary techniques of explicit solvent molecular dynamics (MD) simulations, atomic force microscopy (AFM), channel conductance measurements, cell calcium uptake assays, neurite degeneration and cell death assays, we have shown that non-amyloidogenic Aβ9-42 and Aβ17-42 peptides form ion channels with loosely attached subunits and elicit single channel conductances. The subunits appear mobile suggesting insertion of small oligomers, followed by dynamic channel assembly and dissociation. These channels allow calcium uptake in APP-deficient cells and cause neurite degeneration in human cortical neurons. Channel conductance, calcium uptake and neurite degeneration are selectively inhibited by zinc, a blocker of amyloid ion channel activity. Thus truncated Aβ fragments could account for undefined roles played by full length Aβs and provide a novel mechanism of AD and DS pathology. The emerging picture from our large-scale simulations is that toxic ion channels formed by β-sheets are highly polymorphic, and spontaneously break into loosely interacting dynamic units (though still maintaining ion channel structures as imaged with AFM), that associate and dissociate leading to toxic ion flux. This sharply contrasts intact conventional gated ion channels that consist of tightly

  15. Channel waveguides on RbTiOPO4 by Cs+ ion exchange.

    PubMed

    Cugat, J; Solé, R; Carvajal, J J; Mateos, X; Massons, J; Lifante, G; Díaz, F; Aguiló, M

    2013-02-01

    In this Letter we report Cs(+) ion exchange channel waveguides on RbTiOPO(4) (RTP) for what we believe is the first time. A Ti channel mask was fabricated on an RTP substrate by conventional photolithography. The ion exchange process was carried out in a CsNO(3) melt, and the channels produced ranged from 6 to 11 μm in width. The near-field pattern of the modes was recorded, and type II second harmonic generation in waveguide regime was obtained, producing 512.5 nm green light. The optical characterization shows optical losses of 3.8 dB/cm.

  16. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    NASA Astrophysics Data System (ADS)

    Tindjong, R.; Luchinsky, D. G.; McClintock, P. V. E.; Kaufman, I.; Eisenberg, R. S.

    2009-04-01

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  17. Charge Fluctuations and Boundary Conditions of Biological Ion Channels: Effect on the Ionic Transition Rate

    SciTech Connect

    Tindjong, R.; McClintock, P. V. E.; Luchinsky, D. G.; Kaufman, I.; Eisenberg, R. S.

    2009-04-23

    A self-consistent solution is derived for the Poisson-Nernst-Planck (PNP) equation, valid both inside a biological ion channel and in the adjacent bulk fluid. An iterative procedure is used to match the two solutions together at the channel mouth. Charge fluctuations at the mouth are modeled as shot noise flipping the height of the potential barrier at the selectivity site. The resultant estimates of the conductivity of the ion channel are in good agreement with Gramicidin experimental measurements and they reproduce the observed current saturation with increasing concentration.

  18. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation.

    PubMed

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L; Bayliss, Douglas A; Viana, Félix

    2014-09-11

    Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold-sensitive neurons, combining bacterial artificial chromosome (BAC) transgenesis with a molecular-profiling approach in fluorescence-activated cell sorting (FACS)-purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3, and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  19. Peering into the birth canal during ion channel parturition.

    PubMed

    Trimmer, James S

    2004-10-14

    Recent studies have provided detailed structures of the N-terminal T1 domain of Kv channel alpha subunits that mediates contranslational subunit assembly. In this issue of Neuron, Kosolapov et al. probe T1 domain structure within the ribosomal tunnel. They find that the T1 domain forms secondary structure within the tunnel, in preparation for its immediate role in governing channel assembly upon exit.

  20. Peculiarities of temperature dependent ion beam sputtering and channeling of crystalline bismuth.

    PubMed

    Langegger, Rupert; Hradil, Klaudia; Steiger-Thirsfeld, Andreas; Bertagnolli, Emmerich; Lugstein, Alois

    2014-08-01

    In this paper, we report on the surface evolution of focused ion beam treated single crystalline Bi(001) with respect to different beam incidence angles and channeling effects. 'Erosive' sputtering appears to be the dominant mechanism at room temperature (RT) and diffusion processes during sputtering seem to play only a minor role for the surface evolution of Bi. The sputtering yield of Bi(001) shows anomalous behavior when increasing the beam incidence angle along particular azimuthal angles of the specimen. The behavior of the sputtering yield could be related to channeling effects and the relevant channeling directions are identified. Dynamic annealing processes during ion irradiation retain the crystalline quality of the Bi specimen allowing ion channeling at RT. Lowering the specimen temperature to T = -188 °C reduces dynamic annealing processes and thereby disables channeling effects. Furthermore unexpected features are observed at normal beam incidence angle. Spike-like features appear during the ion beam induced erosion, whose growth directions are not determined by the ion beam but by the channeling directions of the Bi specimen.

  1. Implicit Water Simulations of Non-Equilibrium Charge Transport in Ion Channels

    NASA Astrophysics Data System (ADS)

    Ravaioli, U.; van der Straaten, T. A.; Kathawala, G.

    Ion channels are natural nano-channels found in the membranes of all living cells, which exhibit a broad range of specific device-like functions to help regulate cell physiology. The study of charge transport in ion channels is imperative to understand how charge regulation is accomplished at the molecular level if one is to develop nanoscale artificial systems that mimic biological function and detection. Although Molecular Dynamics is the most popular approach to simulate ion channel behavior, the computational cost of representing all water molecules and ions in the system is prohibitive to study the timescales required to resolve ionic current and lead to structure design. A hierarchy of models of decreasing complexity is needed to address simulation of different time and space scales, similar to the set of models developed to study transport in semiconductors. This paper discusses the application of Monte Carlo and Drift-diffusion methods to simulate transport in ion channels, using the ompF porin channel as a prototype.

  2. Simulation Studies of Ion Permeation and Selectivity in Voltage-Gated Sodium Channels.

    PubMed

    Ing, C; Pomès, R

    2016-01-01

    Voltage-gated ion channels are responsible for the generation and propagation of action potentials in electrically excitable cells. Molecular dynamics simulations have become a useful tool to study the molecular basis of ion transport in atomistic models of voltage-gated ion channels. The elucidation of several three-dimensional structures of bacterial voltage-gated sodium channels (Nav) in 2011 and 2012 opened the way to detailed computational investigations of this important class of membrane proteins. Here we review the numerous simulation studies of Na(+) permeation and selectivity in bacterial Nav channels published in the past 5years. These studies use a variety of simulation methodologies differing in force field parameters, molecular models, sampling algorithms, and simulation times. Although results disagree on the details of ion permeation mechanisms, they concur in the presence of two primary Na(+) binding sites in the selectivity filter and support a loosely coupled knock-on mechanism of Na(+) permeation. Comparative studies of Na(+), K(+), and Ca(2+) permeation reveal sites within Nav channels that are Na(+) selective, yet a consensus model of selectivity has not been established. We discuss the agreement between simulation and experimental results and propose strategies that may be used to resolve discrepancies between simulation studies in order to improve future computational studies of permeation and selectivity in ion channels. PMID:27586286

  3. Human PIEZO1 Ion Channel Functions as a Split Protein

    PubMed Central

    Bae, Chilman; Suchyna, Thomas M.; Ziegler, Lynn; Sachs, Frederick; Gottlieb, Philip A.

    2016-01-01

    PIEZO1 is a mechanosensitive eukaryotic cation-selective channel that rapidly inactivates in a voltage-dependent manner. We previously showed that a fluorescent protein could be encoded within the hPIEZO1 sequence without loss of function. In this work, we split the channel into two at this site and asked if coexpression would produce a functional channel or whether gating and permeation might be contained in either segment. The split protein was expressed in two segments by a bicistronic plasmid where the first segment spanned residues 1 to 1591, and the second segment spanned 1592 to 2521. When the “split protein” is coexpressed, the parts associate to form a normal channel. We measured the whole-cell, cell-attached and outside-out patch currents in transfected HEK293 cells. Indentation produced whole-cell currents monotonic with the stimulus. Single channel recordings showed voltage-dependent inactivation. The Boltzmann activation curve for outside-out patches had a slope of 8.6/mmHg vs 8.1 for wild type, and a small leftward shift in the midpoint (32 mmHg vs 41 mmHg). The association of the two channel domains was confirmed by FRET measurements of mCherry on the N-terminus and EGFP on the C-terminus. Neither of the individual protein segments produced current when expressed alone. PMID:26963637

  4. Ion channels in synaptic vesicles from Torpedo electric organ.

    PubMed Central

    Rahamimoff, R; DeRiemer, S A; Sakmann, B; Stadler, H; Yakir, N

    1988-01-01

    A simple method has been developed for fusing synaptic vesicles into spherical structures 20-50 micron in diameter. The method has been applied to purified cholinergic synaptic vesicles from Torpedo electric organ, and the membrane properties of these fused structures have been studied by the "cell"-attached version of the patch clamp technique. A large conductance potassium-preferring channel, termed the P channel, was consistently observed in preparations of fused synaptic vesicles. The selectivity of the channel for potassium over sodium was approximately equal to 2.8-fold. Two major conductance levels were observed during P-channel activity, and their relative proportion was dependent on the voltage applied to the membrane through the patch pipette. P channels were not seen in fused preparations of purified Torpedo lipids, nor was the frequency of their occurrence increased in preparations enriched with plasma membrane or nonvesicular membranes. We suggest, therefore, that the P channels are components of the synaptic vesicle membrane. Their function in synaptic transmission physiology is still unknown. Images PMID:2455900

  5. Regulation of Intestinal Glucose Absorption by Ion Channels and Transporters.

    PubMed

    Chen, Lihong; Tuo, Biguang; Dong, Hui

    2016-01-14

    The absorption of glucose is electrogenic in the small intestinal epithelium. The major route for the transport of dietary glucose from intestinal lumen into enterocytes is the Na⁺/glucose cotransporter (SGLT1), although glucose transporter type 2 (GLUT2) may also play a role. The membrane potential of small intestinal epithelial cells (IEC) is important to regulate the activity of SGLT1. The maintenance of membrane potential mainly depends on the activities of cation channels and transporters. While the importance of SGLT1 in glucose absorption has been systemically studied in detail, little is currently known about the regulation of SGLT1 activity by cation channels and transporters. A growing line of evidence suggests that cytosolic calcium ([Ca(2+)]cyt) can regulate the absorption of glucose by adjusting GLUT2 and SGLT1. Moreover, the absorption of glucose and homeostasis of Ca(2+) in IEC are regulated by cation channels and transporters, such as Ca(2+) channels, K⁺ channels, Na⁺/Ca(2+) exchangers, and Na⁺/H⁺ exchangers. In this review, we consider the involvement of these cation channels and transporters in the regulation of glucose uptake in the small intestine. Modulation of them may be a potential strategy for the management of obesity and diabetes.

  6. Substrate Regulation of Single Potassium and Chloride Ion Channels in Arabidopsis Plasma Membrane

    PubMed Central

    Lew, Roger R.

    1991-01-01

    Patch clamp measurements of excised inside-out patches of Arabidopsis thaliana plasma membrane reveal at least two ion channels which conduct either potassium or chloride. The conductance of the potassium channel ranged from 5 to 70 picosiemens depending on KCl concentration. The conductance increased linearly with increasing cytoplasmic-side [KCl]; the extent of this dependence declined as extracytoplasmic-side [KCl] was increased. This indicates that substrate regulation of the potassium channel is a consequence of the molecular architecture of the channel: in particular, multi-ion binding sites within the channel pore. The chloride channel conductance (ranging from 5-40 picosiemens) was independent of cytoplasmic-side [KCl] until a threshold concentration of about 300 millimolar was reached. Such behavior is expected only if the channel is allosterically regulated by cytoplasmic-side K+ and/or Cl−. The median open times of either channel (about 200 milliseconds for the potassium channel and 20 milliseconds for the chloride channel) were unaffected by substrate concentrations. PMID:16668031

  7. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  8. Step density model of laser sustained ion channel and Coulomb explosion

    SciTech Connect

    Rajouria, Satish Kumar; Malik, H. K.; Tripathi, V. K.; Kumar, Pawan

    2015-02-15

    An analytical model of laser sustained ion channel in plasma is developed, assuming electron density to be zero in the inner region and constant outside. The radius of the channel is such that the ponderomotive force on electrons at the channel boundary is balanced by the channel space charge force. The laser is TM eigen mode of the system with Bessel function profile in the interior and modified Bessel function outside. The channel radius increases with laser intensity and the ratio of laser frequency to plasma frequency. Ion Coulomb explosion of the channel, on longer time scale, produces ion energy distribution, an increasing function of energy with a sharp cutoff equal to electron ponderomotive energy at the channel boundary. At peak laser intensity ≈2×10{sup 19}W/cm{sup 2} at 1 μm wavelength and spot size of 8 μm, the cutoff ion energy in a plasma of density ∼10{sup 19}cm{sup −3} is ∼0.73 MeV.

  9. Robustness, Death of Spiral Wave in the Network of Neurons under Partial Ion Channel Block

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Huang, Long; Wang, Chun-Ni; Pu, Zhong-Sheng

    2013-02-01

    The development of spiral wave in a two-dimensional square array due to partial ion channel block (Potassium, Sodium) is investigated, the dynamics of the node is described by Hodgkin—Huxley neuron and these neurons are coupled with nearest neighbor connection. The parameter ratio xNa (and xK), which defines the ratio of working ion channel number of sodium (potassium) to the total ion channel number of sodium (and potassium), is used to measure the shift conductance induced by channel block. The distribution of statistical variable R in the two-parameter phase space (parameter ratio vs. poisoning area) is extensively calculated to mark the parameter region for transition of spiral wave induced by partial ion channel block, the area with smaller factors of synchronization R is associated the parameter region that spiral wave keeps alive and robust to the channel poisoning. Spiral wave keeps alive when the poisoned area (potassium or sodium) and degree of intoxication are small, distinct transition (death, several spiral waves coexist or multi-arm spiral wave emergence) occurs under moderate ratio xNa (and xK) when the size of blocked area exceeds certain thresholds. Breakup of spiral wave occurs and multi-arm of spiral waves are observed when the channel noise is considered.

  10. Conduits of life's spark: a perspective on ion channel research since the birth of neuron.

    PubMed

    Isacoff, Ehud Y; Jan, Lily Y; Minor, Daniel L

    2013-10-30

    Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn? PMID:24183018

  11. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance. PMID:15783362

  12. Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

    PubMed

    Mafé, Salvador; Pellicer, Julio

    2005-02-01

    We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than K+. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

  13. Molecular simulation studies of hydrophobic gating in nanopores and ion channels.

    PubMed

    Trick, Jemma L; Aryal, Prafulla; Tucker, Stephen J; Sansom, Mark S P

    2015-04-01

    Gating in channels and nanopores plays a key role in regulating flow of ions across membranes. Molecular simulations provide a 'computational microscope' which enables us to examine the physical nature of gating mechanisms at the level of the single channel molecule. Water enclosed within the confines of a nanoscale pore may exhibit unexpected behaviour. In particular, if the molecular surfaces lining the pore are hydrophobic this promotes de-wetting of the pore. De-wetting is observed as stochastic liquid-vapour transitions within a pore, and may lead to functional closure of a pore to the flow of ions and/or water. Such behaviour was first observed in simulations of simple model nanopores and referred to as 'hydrophobic gating'. Simulations of both the nicotinic acetylcholine receptor and of TWIK-1 potassium channels (the latter alongside experimental studies) suggest hydrophobic gating may occur in some biological ion channels. Current studies are focused on designing hydrophobic gates into biomimetic nanopores.

  14. Mechanosensitive ion channels investigated simultaneously by scanning probe microscopy and patch clamp.

    PubMed

    Langer, Matthias G

    2007-01-01

    Mechanosensitive ion channels play an important role for the perception of mechanical signals such as touch, balance, or sound. Here, a new experimental strategy is presented providing well-defined access to single mechanosensitive ion channels in living cells. As a representative example, the investigation of mechanosensitive transduction channels in cochlear hair cells is discussed in detail including all essential technical aspects. Three different techniques were combined: atomic force microscopy (AFM) as a device for local mechanical stimulation, patch clamp for recording the current response of mechanosensitive ion channels, and differential interference contrast (DIC) microscopy equipped with an upright water-immersion objective lens. A major challenge was to adapt the mechanical design of the AFM setup to the small working distance of the light microscope and the electrical design of the AFM electronics. Various protocols for the preparation and investigation of the organ of Corti with AFM are presented. PMID:18827992

  15. Insights into the function of ion channels by computational electrophysiology simulations.

    PubMed

    Kutzner, Carsten; Köpfer, David A; Machtens, Jan-Philipp; de Groot, Bert L; Song, Chen; Zachariae, Ulrich

    2016-07-01

    Ion channels are of universal importance for all cell types and play key roles in cellular physiology and pathology. Increased insight into their functional mechanisms is crucial to enable drug design on this important class of membrane proteins, and to enhance our understanding of some of the fundamental features of cells. This review presents the concepts behind the recently developed simulation protocol Computational Electrophysiology (CompEL), which facilitates the atomistic simulation of ion channels in action. In addition, the review provides guidelines for its application in conjunction with the molecular dynamics software package GROMACS. We first lay out the rationale for designing CompEL as a method that models the driving force for ion permeation through channels the way it is established in cells, i.e., by electrochemical ion gradients across the membrane. This is followed by an outline of its implementation and a description of key settings and parameters helpful to users wishing to set up and conduct such simulations. In recent years, key mechanistic and biophysical insights have been obtained by employing the CompEL protocol to address a wide range of questions on ion channels and permeation. We summarize these recent findings on membrane proteins, which span a spectrum from highly ion-selective, narrow channels to wide diffusion pores. Finally we discuss the future potential of CompEL in light of its limitations and strengths. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.

  16. Using total internal reflection fluorescence microscopy to observe ion channel trafficking and assembly.

    PubMed

    Schwarzer, Sarah; Mashanov, Gregory I; Molloy, Justin E; Tinker, Andrew

    2013-01-01

    Ion channels are integral membrane proteins that allow the flow of ions across membranes down their electrochemical gradients and are a major determinant of cellular excitability. They play an important role in a variety of biological processes as diverse as insulin release from beta cells in the pancreas through to cardiac and smooth muscle contraction. We have used total internal reflection fluorescence (TIRF) microscopy to watch ion channels being transported in vesicles along microtubules within the cytoplasm of the cell. Furthermore, we can directly observe the fusion of these vesicles with the plasma membrane and the release and radial dispersion of single ion channels into the membrane. Finally, automated single-particle tracking of these objects allowed us to determine their diffusional behavior.

  17. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells.

    PubMed

    Tilley, Drew C; Eum, Kenneth S; Fletcher-Taylor, Sebastian; Austin, Daniel C; Dupré, Christophe; Patrón, Lilian A; Garcia, Rita L; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E; Sack, Jon T

    2014-11-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  18. Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels.

    PubMed

    Gupta, Kanchan; Zamanian, Maryam; Bae, Chanhyung; Milescu, Mirela; Krepkiy, Dmitriy; Tilley, Drew C; Sack, Jon T; Yarov-Yarovoy, Vladimir; Kim, Jae Il; Swartz, Kenton J

    2015-01-01

    Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments. PMID:25948544

  19. Engineering a Transmembrane Nanopore Ion Channel from a Membrane Breaker Peptide.

    PubMed

    Lella, Muralikrishna; Mahalakshmi, Radhakrishnan

    2016-07-01

    Re-engineering nature's molecules is an ideal strategy to obtain explicit functionality such as synthetic molecular machines, yet novel strategies for producing engineered molecular channels are few. Here we report a peptide engineering strategy through sequence reversal, which we applied on the first transmembrane peptide of the mycobacteriophage membranoporin protein holin. We have successfully redesigned the membrane rupture property of this peptide to form specific nanopore ion channels. We report the structural characterization and electrophysiology measurements of a library of 28-residue engineered membrane peptides, with remarkable ion channel behavior. We further identify that key residues at the peptide terminus, the central proline, charge distribution, and hydropathy index of the peptide together contribute to the channel properties that we measure. Our sequence reversal strategy for peptide engineering to successfully obtain nanopore channels can pave the way for better biobased design of controlled nanopores, using only natural amino acids. PMID:27257735

  20. Mechanistic signs of double-barreled structure in a fluoride ion channel.

    PubMed

    Last, Nicholas B; Kolmakova-Partensky, Ludmila; Shane, Tania; Miller, Christopher

    2016-01-01

    The Fluc family of F(-) ion channels protects prokaryotes and lower eukaryotes from the toxicity of environmental F(-). In bacteria, these channels are built as dual-topology dimers whereby the two subunits assemble in antiparallel transmembrane orientation. Recent crystal structures suggested that Fluc channels contain two separate ion-conduction pathways, each with two F(-) binding sites, but no functional correlates of this unusual architecture have been reported. Experiments here fill this gap by examining the consequences of mutating two conserved F(-)-coordinating phenylalanine residues. Substitution of each phenylalanine specifically extinguishes its associated F(-) binding site in crystal structures and concomitantly inhibits F(-) permeation. Functional analysis of concatemeric channels, which permit mutagenic manipulation of individual pores, show that each pore can be separately inactivated without blocking F(-) conduction through its symmetry-related twin. The results strongly support dual-pathway architecture of Fluc channels. PMID:27449280

  1. C-fiber recovery cycle supernormality depends on ion concentration and ion channel permeability.

    PubMed

    Tigerholm, Jenny; Petersson, Marcus E; Obreja, Otilia; Eberhardt, Esther; Namer, Barbara; Weidner, Christian; Lampert, Angelika; Carr, Richard W; Schmelz, Martin; Fransén, Erik

    2015-03-10

    Following each action potential, C-fiber nociceptors undergo cyclical changes in excitability, including a period of superexcitability, before recovering their basal excitability state. The increase in superexcitability during this recovery cycle depends upon their immediate firing history of the axon, but also determines the instantaneous firing frequency that encodes pain intensity. To explore the mechanistic underpinnings of the recovery cycle phenomenon a biophysical model of a C-fiber has been developed. The model represents the spatial extent of the axon including its passive properties as well as ion channels and the Na/K-ATPase ion pump. Ionic concentrations were represented inside and outside the membrane. The model was able to replicate the typical transitions in excitability from subnormal to supernormal observed empirically following a conducted action potential. In the model, supernormality depended on the degree of conduction slowing which in turn depends upon the frequency of stimulation, in accordance with experimental findings. In particular, we show that activity-dependent conduction slowing is produced by the accumulation of intraaxonal sodium. We further show that the supernormal phase results from a reduced potassium current Kdr as a result of accumulation of periaxonal potassium in concert with a reduced influx of sodium through Nav1.7 relative to Nav1.8 current. This theoretical prediction was supported by data from an in vitro preparation of small rat dorsal root ganglion somata showing a reduction in the magnitude of tetrodotoxin-sensitive relative to tetrodotoxin -resistant whole cell current. Furthermore, our studies provide support for the role of depolarization in supernormality, as previously suggested, but we suggest that the basic mechanism depends on changes in ionic concentrations inside and outside the axon. The understanding of the mechanisms underlying repetitive discharges in recovery cycles may provide insight into mechanisms

  2. Molecular dynamics and brownian dynamics investigation of ion permeation and anesthetic halothane effects on a proton-gated ion channel.

    PubMed

    Cheng, Mary Hongying; Coalson, Rob D; Tang, Pei

    2010-11-24

    Bacterial Gloeobacter violaceus pentameric ligand-gated ion channel (GLIC) is activated to cation permeation upon lowering the solution pH. Its function can be modulated by anesthetic halothane. In the present work, we integrate molecular dynamics (MD) and Brownian dynamics (BD) simulations to elucidate the ion conduction, charge selectivity, and halothane modulation mechanisms in GLIC, based on recently resolved X-ray crystal structures of the open-channel GLIC. MD calculations of the potential of mean force (PMF) for a Na(+) revealed two energy barriers in the extracellular domain (R109 and K38) and at the hydrophobic gate of transmembrane domain (I233), respectively. An energy well for Na(+) was near the intracellular entrance: the depth of this energy well was modulated strongly by the protonation state of E222. The energy barrier for Cl(-) was found to be 3-4 times higher than that for Na(+). Ion permeation characteristics were determined through BD simulations using a hybrid MD/continuum electrostatics approach to evaluate the energy profiles governing the ion movement. The resultant channel conductance and a near-zero permeability ratio (P(Cl)/P(Na)) were comparable to experimental data. On the basis of these calculations, we suggest that a ring of five E222 residues may act as an electrostatic gate. In addition, the hydrophobic gate region may play a role in charge selectivity due to a higher dehydration energy barrier for Cl(-) ions. The effect of halothane on the Na(+) PMF was also evaluated. Halothane was found to perturb salt bridges in GLIC that may be crucial for channel gating and open-channel stability, but had no significant impact on the single ion PMF profiles.

  3. K3 fragment of amyloidogenic beta(2)-microglobulin forms ion channels: implication for dialysis related amyloidosis.

    PubMed

    Mustata, Mirela; Capone, Ricardo; Jang, Hyunbum; Arce, Fernando Teran; Ramachandran, Srinivasan; Lal, Ratnesh; Nussinov, Ruth

    2009-10-21

    Beta(2)-microglobulin (beta(2)m) amyloid deposits are linked to dialysis-related amyloidosis (DRA) in hemodialysis patients. The mechanism by which beta(2)m causes DRA is not understood. It is also unclear whether only the full-length beta(2)m induces pathophysiology or if proteolytic fragments are sufficient for inducing this effect. Ser20-Lys41 (K3) is a digestion fragment of full-length beta(2)m. Solid state NMR (ssNMR) combined with X-ray diffraction and atomic force microscopy (AFM) revealed the characteristic oligomeric amyloid conformation of the U-turn beta-strand-turn-beta-strand motif stacked in parallel and stabilized by intermolecular interactions also shown by Abeta(9-40)/Abeta(17-42) and the CA150 WW domain. Here we use the K3 U-turn atomic coordinates and molecular dynamic (MD) simulations to model K3 channels in the membrane. Consistent with previous AFM imaging of other amyloids that show channel-like structures in the membrane, in the simulations K3 also forms ion channels with 3-6 loosely attached mobile subunits. We carry out AFM, single channel electrical recording, and fluorescence imaging experiments. AFM images display 3D ion channel topography with shapes, morphologies, and dimensions consistent with the theoretical model. Electrical conductance measurements indicate multiple single channel conductances, suggesting that various K3 oligomer sizes can constitute the channel structure. Fluorescence measurements in kidney cells show channel-mediated cell calcium uptake. These results suggest that the beta(2)m-induced DRA can be mediated by ion channels formed by its K3 fragment. Because the beta-strand-turn-beta-strand motif appears to be a universal amyloid feature, its ability to form ion channels further suggests that the motif may play a generic role in toxicity.

  4. Atomic mutagenesis in ion channels with engineered stoichiometry

    PubMed Central

    Lueck, John D; Mackey, Adam L; Infield, Daniel T; Galpin, Jason D; Li, Jing; Roux, Benoît; Ahern, Christopher A

    2016-01-01

    C-type inactivation of potassium channels fine-tunes the electrical signaling in excitable cells through an internal timing mechanism that is mediated by a hydrogen bond network in the channels' selectively filter. Previously, we used nonsense suppression to highlight the role of the conserved Trp434-Asp447 indole hydrogen bond in Shaker potassium channels with a non-hydrogen bonding homologue of tryptophan, Ind (Pless et al., 2013). Here, molecular dynamics simulations indicate that the Trp434Ind hydrogen bonding partner, Asp447, unexpectedly 'flips out' towards the extracellular environment, allowing water to penetrate the space behind the selectivity filter while simultaneously reducing the local negative electrostatic charge. Additionally, a protein engineering approach is presented whereby split intein sequences are flanked by endoplasmic reticulum retention/retrieval motifs (ERret) are incorporated into the N- or C- termini of Shaker monomers or within sodium channels two-domain fragments. This system enabled stoichiometric control of Shaker monomers and the encoding of multiple amino acids within a channel tetramer. DOI: http://dx.doi.org/10.7554/eLife.18976.001 PMID:27710770

  5. TRP ion channels in thermosensation, thermoregulation and metabolism

    PubMed Central

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022

  6. TRP ion channels in thermosensation, thermoregulation and metabolism.

    PubMed

    Wang, Hong; Siemens, Jan

    2015-01-01

    In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control. PMID:27227022

  7. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes.

    PubMed

    Ger, Mao-Feng; Rendon, Gloria; Tilson, Jeffrey L; Jakobsson, Eric

    2010-10-06

    Voltage-gated and ligand-gated ion channels are used in eukaryotic organisms for the purpose of electrochemical signaling. There are prokaryotic homologues to major eukaryotic channels of these sorts, including voltage-gated sodium, potassium, and calcium channels, Ach-receptor and glutamate-receptor channels. The prokaryotic homologues have been less well characterized functionally than their eukaryotic counterparts. In this study we identify likely prokaryotic functional counterparts of eukaryotic glutamate receptor channels by comprehensive analysis of the prokaryotic sequences in the context of known functional domains present in the eukaryotic members of this family. In particular, we searched the nonredundant protein database for all proteins containing the following motif: the two sections of the extracellular glutamate binding domain flanking two transmembrane helices. We discovered 100 prokaryotic sequences containing this motif, with a wide variety of functional annotations. Two groups within this family have the same topology as eukaryotic glutamate receptor channels. Group 1 has a potassium-like selectivity filter. Group 2 is most closely related to eukaryotic glutamate receptor channels. We present analysis of the functional domain architecture for the group of 100, a putative phylogenetic tree, comparison of the protein phylogeny with the corresponding species phylogeny, consideration of the distribution of these proteins among classes of prokaryotes, and orthologous relationships between prokaryotic and human glutamate receptor channels. We introduce a construct called the Evolutionary Domain Network, which represents a putative pathway of domain rearrangements underlying the domain composition of present channels. We believe that scientists interested in ion channels in general, and ligand-gated ion channels in particular, will be interested in this work. The work should also be of interest to bioinformatics researchers who are interested in the use

  8. Stochastic pumping of ions based on colored noise in bacterial channels under acidic stress

    NASA Astrophysics Data System (ADS)

    López, M. Lidón; Queralt-Martín, María; Alcaraz, Antonio

    2016-07-01

    Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells.Fluctuation-driven ion transport can be obtained in bacterial channels with the aid of different types of colored noise including the biologically relevant Lorentzian one. Using the electrochemical rectification of the channel current as a ratchet mechanism we observe transport of ions up to their concentration gradient under conditions similar to that met in vivo, namely moderate pH gradients and asymmetrically charged lipid membranes. We find that depending on the direction of the concentration gradient the channel can pump either cations or anions from the diluted side to the concentrated one. We discuss the possible relevance of this phenomenon for the pH homeostasis of bacterial cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02638a

  9. High quality ion channel analysis on a chip with the NPC technology.

    PubMed

    Brüggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2003-10-01

    In evaluating ion channel function, electrophysiology, e.g., patch clamping, provides the highest information content. For the analysis of ion channel-modulating compounds, one variant of the patch-clamp technique, the whole-cell configuration, is particularly useful. We present here patch-clamp recordings in the whole-cell configuration and single channel recordings performed with planar patch-clamp chips, which are microstructured from borosilicate glass substrate. The chips are used in the Port-a-Patch, an ion channel research/screening instrument that enables automated patch-clamp experiments on a single cell. A software runs the experiment by executing user-determined protocols for cell positioning, as well as for electrical stimulation and current readout. In various electrophysiological experiments, the high quality of recordings and the versatility of the perfusion of the recorded cells are demonstrated. Quantitative pharmacological experiments are performed on sodium channels expressed in HEK cells using solution volumes in the low microliter range. The exceptionally low volume consumption in the experiments make the system attractive for work on rare or expensive compounds. Due to the low volumes necessary, a rapid solution exchange is facilitated, which is shown on RBL cells. The patch-clamp chip enables a rapid and precise perfusion, allowing sophisticated investigations on ion channel function with the Port-a-Patch. PMID:15090239

  10. Dispersion characteristics of the electromagnetic waves in a relativistic electron beam guided by the ion channel

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Ghasemi, Maede; Sedaghat, Zeinab; Mahdian, Zeinab

    2010-05-15

    In this article, the dispersion characteristics of the paraxial (near axis) electromagnetic (EM) waves in a relativistic electron beam guided by the ion channel are investigated. Equilibrium fields such as ion-channel electrostatic field and self-fields of relativistic electron beam are included in this formalism. In accordance with the equilibrium field structure, radial and azimuthal waves are selected as base vectors for EM waves. It is shown that the dispersion of the radially polarized EM and space charge waves are influenced by the equilibrium fields, but azimuthally polarized wave remain unaffected. In some wave number domains, the radially polarized EM and fast space charge waves are coupled. In these regions, instability is analyzed as a function of equilibrium structure. It is shown that the total equilibrium radial force due to the ion channel and electron beam and also relativistic effect play a key role in the coupling of the radially polarized EM wave and space charge wave. Furthermore, some asymptotic behaviors such as weak and strong ion channel, nonrelativistic case and cutoff frequencies are discussed. This instability could be used as an amplification mechanism for radially polarized EM waves in a beam-plasma system where a relativistic electron beam is guided by the ion channel.

  11. Combining molecular dynamics and an electrodiffusion model to calculate ion channel conductance.

    PubMed

    Wilson, Michael A; Nguyen, Thuy Hien; Pohorille, Andrew

    2014-12-14

    Establishing the relation between the structures and functions of protein ion channels, which are protein assemblies that facilitate transmembrane ion transport through water-filled pores, is at the forefront of biological and medical sciences. A reliable way to determine whether our understanding of this relation is satisfactory is to reproduce the measured ionic conductance over a broad range of applied voltages. This can be done in molecular dynamics simulations by way of applying an external electric field to the system and counting the number of ions that traverse the channel per unit time. Since this approach is computationally very expensive we develop a markedly more efficient alternative in which molecular dynamics is combined with an electrodiffusion equation. This alternative approach applies if steady-state ion transport through channels can be described with sufficient accuracy by the one-dimensional diffusion equation in the potential given by the free energy profile and applied voltage. The theory refers only to line densities of ions in the channel and, therefore, avoids ambiguities related to determining the surface area of the channel near its endpoints or other procedures connecting the line and bulk ion densities. We apply the theory to a simple, model system based on the trichotoxin channel. We test the assumptions of the electrodiffusion equation, and determine the precision and consistency of the calculated conductance. We demonstrate that it is possible to calculate current/voltage dependence and accurately reconstruct the underlying (equilibrium) free energy profile, all from molecular dynamics simulations at a single voltage. The approach developed here applies to other channels that satisfy the conditions of the electrodiffusion equation. PMID:25494790

  12. Controlled fabrication of ion track nanowires and channels

    NASA Astrophysics Data System (ADS)

    Spohr, Reimar; Zet, Cristian; Eberhard Fischer, Bernd; Kiesewetter, Helge; Apel, Pavel; Gunko, Igor; Ohgai, Takeshi; Westerberg, Lars

    2010-03-01

    We describe a system for fabricating prescribed numbers of ion track nanochannels and nanowires from a few hundred down to one. It consists of two parts: first, a mobile tape transport system, which, in connection with an ion beam from a heavy-ion accelerator (nuclear charge Z above 18 and specific energy between 1 and 10 MeV/nucleon) tuned down to low flux density by means of defocusing and a set of sensitive fluorescence screens, can fabricate a series of equidistant irradiation spots on a tape, whereby each spot corresponds to a preset number of ion tracks. The tape transport system uses films of 36 mm width and thicknesses between 5 and 100 μm. The aiming precision of the system depends on the diameter of the installed beam-defining aperture, which is between 50 and 500 μm. The distance between neighboring irradiation spots on the tape is variable and typically set to 25 mm. After reaching the preset number of ion counts the irradiation is terminated, the tape is marked and moved to the next position. The irradiated frames are punched out to circular membranes with the irradiation spot in the center. The second part of the setup is a compact conductometric system with 10 picoampere resolution consisting of a computer controlled conductometric cell, sealing the membrane hermetically between two chemically inert half-chambers containing electrodes and filling/flushing openings, and is encased by an electrical shield and a thermal insulation. The ion tracks can be etched to a preset diameter and the system can be programmed to electroreplicate nanochannels in a prescribed sequence of magnetic/nonmagnetic metals, alloys or semiconductors. The goal of our article is to make the scientific community aware of the special features of single-ion fabrication and to demonstrate convincingly the significance of controlled etching and electro-replication.

  13. Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions.

    PubMed Central

    Chen, D P; Xu, L; Tripathy, A; Meissner, G; Eisenberg, B

    1999-01-01

    Current was measured from single open channels of the calcium release channel (CRC) of cardiac sarcoplasmic reticulum (over the range +/-180 mV) in pure and mixed solutions (e.g., biionic conditions) of the alkali metal ions Li+, K+, Na+, Rb+, Cs+, ranging in concentration from 25 mM to 2 M. The current-voltage (I-V) relations were analyzed by an extension of the Poisson-Nernst-Planck (PNP) formulation of electrodiffusion, which includes local chemical interaction described by an offset in chemical potential, which likely reflects the difference in dehydration/solvation/rehydration energies in the entry/exit steps of permeation. The theory fits all of the data with few adjustable parameters: the diffusion coefficient of each ion species, the average effective charge distribution on the wall of the pore, and an offset in chemical potential for lithium and sodium ions. In particular, the theory explains the discrepancy between "selectivities" defined by conductance sequence and "selectivities" determined by the permeability ratios (i.e., reversal potentials) in biionic conditions. The extended PNP formulation seems to offer a successful combined treatment of selectivity and permeation. Conductance selectivity in this channel arises mostly from friction: different species of ions have different diffusion coefficients in the channel. Permeability selectivity of an ion is determined by its electrochemical potential gradient and local chemical interaction with the channel. Neither selectivity (in CRC) seems to involve different electrostatic interaction of different ions with the channel protein, even though the ions have widely varying diameters. PMID:10049318

  14. Optical electrophysiology for probing function and pharmacology of voltage-gated ion channels

    PubMed Central

    Zhang, Hongkang; Reichert, Elaine; Cohen, Adam E

    2016-01-01

    Voltage-gated ion channels mediate electrical dynamics in excitable tissues and are an important class of drug targets. Channels can gate in sub-millisecond timescales, show complex manifolds of conformational states, and often show state-dependent pharmacology. Mechanistic studies of ion channels typically involve sophisticated voltage-clamp protocols applied through manual or automated electrophysiology. Here, we develop all-optical electrophysiology techniques to study activity-dependent modulation of ion channels, in a format compatible with high-throughput screening. Using optical electrophysiology, we recapitulate many voltage-clamp protocols and apply to Nav1.7, a channel implicated in pain. Optical measurements reveal that a sustained depolarization strongly potentiates the inhibitory effect of PF-04856264, a Nav1.7-specific blocker. In a pilot screen, we stratify a library of 320 FDA-approved compounds by binding mechanism and kinetics, and find close concordance with patch clamp measurements. Optical electrophysiology provides a favorable tradeoff between throughput and information content for studies of NaV channels, and possibly other voltage-gated channels. DOI: http://dx.doi.org/10.7554/eLife.15202.001 PMID:27215841

  15. Probing Ion Channel Conformational Dynamics Using Simultaneous Single-Molecule Ultrafast Spectroscopy and Patch-Champ Electric Recording

    SciTech Connect

    Harms, Gregory S.; Orr, Galya; Lu, H Peter

    2004-03-08

    A new approach to probing single-molecule ion channel kinetics and conformational dynamics, patch-clamp confocal fluorescence microscopy (PCCFM), uses simultaneous ultrafast fluorescence spectroscopy and single-channel electric current recording.

  16. Nasal Potential Difference Measurements to Assess CFTR Ion Channel Activity

    PubMed Central

    Clancy, Jean-Paul; Wilschanski, Michael

    2013-01-01

    Nasal potential difference is used to measure the voltage across the nasal epithelium, which results from transepithelial ion transport and reflects in part CFTR function. The electrophysiologic abnormality in cystic fibrosis was first described 30 years ago and correlates with features of the CF phenotype. NPD is an important in vivo research and diagnostic tool, and is used to assess the efficacy of new treatments such as gene therapy and ion transport modulators. This chapter will elaborate on the electrophysiological principles behind the test, the equipment required, the methods, and the analysis of the data. PMID:21594779

  17. Supramolecular Assemblies and Localized Regulation of Voltage-Gated Ion Channels

    PubMed Central

    Dai, Shuiping; Hall, Duane D.; Hell, Johannes W.

    2009-01-01

    This review addresses the localized regulation of voltage-gated ion channels by phosphorylation. Comprehensive data on channel regulation by associated protein kinases, phosphatases, and related regulatory proteins are mainly available for voltage-gated Ca2+ channels, which form the main focus of this review. Other voltage-gated ion channels and especially Kv7.1-3 (KCNQ1-3), the large- and small-conductance Ca2+-activated K+ channels BK and SK2, and the inward-rectifying K+ channels Kir3 have also been studied to quite some extent and will be included. Regulation of the L-type Ca2+ channel Cav1.2 by PKA has been studied most thoroughly as it underlies the cardiac fight-or-flight response. A prototypical Cav1.2 signaling complex containing the β2 adrenergic receptor, the heterotrimeric G protein Gs, adenylyl cyclase, and PKA has been identified that supports highly localized via cAMP. The type 2 ryanodine receptor as well as AMPA- and NMDA-type glutamate receptors are in close proximity to Cav1.2 in cardiomyocytes and neurons, respectively, yet independently anchor PKA, CaMKII, and the serine/threonine phosphatases PP1, PP2A, and PP2B, as is discussed in detail. Descriptions of the structural and functional aspects of the interactions of PKA, PKC, CaMKII, Src, and various phosphatases with Cav1.2 will include comparisons with analogous interactions with other channels such as the ryanodine receptor or ionotropic glutamate receptors. Regulation of Na+ and K+ channel phosphorylation complexes will be discussed in separate papers. This review is thus intended for readers interested in ion channel regulation or in localization of kinases, phosphatases, and their upstream regulators. PMID:19342611

  18. Dopamine modulates the kinetics of ion channels gated by excitatory amino acids in retinal horizontal cells.

    PubMed Central

    Knapp, A G; Schmidt, K F; Dowling, J E

    1990-01-01

    Upon exposure to dopamine, cultured teleost retinal horizontal cells become more responsive to the putative photoreceptor neurotransmitter L-glutamate and to its analog kainate. We have recorded unitary and whole-cell currents to determine the mechanism by which dopamine enhances ion channels activated by these agents. In single-channel recordings from cell-attached patches with agonist in the patch pipette, the frequency of 5- to 10-pS unitary events, but not their amplitude, increased by as much as 150% after application of dopamine to the rest of the cell. The duration of channel openings also increased somewhat, by 20-30%. In whole-cell experiments, agonists with and without dopamine were applied to voltage-clamped horizontal cells by slow superfusion. Analysis of whole-cell current variance as a function of mean current indicated that dopamine increased the probability of channel opening for a give agonist concentration without changing the amount of current passed by an individual channel. For kainate, noise analysis additionally demonstrated that dopamine did not alter the number of functional channels. Dopamine also increased a slow spectral component of whole-cell currents elicited by kainate or glutamate, suggesting a change in the open-time kinetics of the channels. This effect was more pronounced for currents induced by glutamate than for those induced by kainate. We conclude that dopamine potentiates the activity of horizontal cell glutamate receptors by altering the kinetics of the ion channel to favor the open state. PMID:1689053

  19. In situ, Reversible Gating of a Mechanosensitive Ion Channel through Protein-Lipid Interactions

    PubMed Central

    Dimitrova, Anna; Walko, Martin; Hashemi Shabestari, Maryam; Kumar, Pravin; Huber, Martina; Kocer, Armagan

    2016-01-01

    Understanding the functioning of ion channels, as well as utilizing their properties for biochemical applications requires control over channel activity. Herein we report a reversible control over the functioning of a mechanosensitive ion channel by interfering with its interaction with the lipid bilayer. The mechanosensitive channel of large conductance from Escherichia coli is reconstituted into liposomes and activated to its different sub-open states by titrating lysophosphatidylcholine (LPC) into the lipid bilayer. Activated channels are closed back by the removal of LPC out of the membrane by bovine serum albumin (BSA). Electron paramagnetic resonance spectra showed the LPC-dose-dependent gradual opening of the channel pore in the form of incrementally increasing spin label mobility and decreasing spin-spin interaction. A method to reversibly open and close mechanosensitive channels to distinct sub-open conformations during their journey from the closed to the fully open state enables detailed structural studies to follow the conformational changes during channel functioning. The ability of BSA to revert the action of LPC opens new perspectives for the functional studies of other membrane proteins that are known to be activated by LPC. PMID:27708587

  20. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.

    PubMed

    Basu, Ipsita; Chattopadhyay, Amitabha; Mukhopadhyay, Chaitali

    2014-01-01

    Hydrophobic mismatch which is defined as the difference between the lipid hydrophobic thickness and the peptide hydrophobic length is known to be responsible in altering the lipid/protein dynamics. Gramicidin A (gA), a 15 residue β helical peptide which is well recognized to form ion conducting channels in lipid bilayer, may change its structure and function in a hydrophobic mismatched condition. We have performed molecular dynamics simulations of gA dimer in phospholipid bilayers to investigate whether or not the conversion from channel to non-channel form of gA dimer would occur under extreme negative hydrophobic mismatch. By varying the length of lipid bilayers from DLPC (1, 2-Dilauroyl-sn-glycero-3-phosphocholine) to DAPC (1, 2-Diarachidoyl-sn-glycero-3-phosphocholine), a broad range of mismatch was considered from nearly matching to extremely negative. Our simulations revealed that though the ion-channel conformation is retained by gA under a lesser mismatched situation, in extremely negative mismatched situation, in addition to bilayer thinning, the conformation of gA is changed and converted to a non-channel one. Our results demonstrate that although the channel conformation of Gramicidin A is the most stable structure, it is possible for gA to change its conformation from channel to non-channel depending upon the local environment of host bilayers.

  1. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels

    PubMed Central

    1991-01-01

    In this study, single-channel recordings of high-conductance Ca(2+)- activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)- blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed- blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening. PMID:2056305

  2. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.

    PubMed

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca(2+) may cause more unstable discrete Ca(2+) fluxes than that of monovalent Na(+). Two different methods-called the SMIB and multiscale methods-are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  3. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels

    NASA Astrophysics Data System (ADS)

    Liu, Jinn-Liang; Eisenberg, Bob

    2015-07-01

    Numerical methods are proposed for an advanced Poisson-Nernst-Planck-Fermi (PNPF) model for studying ion transport through biological ion channels. PNPF contains many more correlations than most models and simulations of channels, because it includes water and calculates dielectric properties consistently as outputs. This model accounts for the steric effect of ions and water molecules with different sizes and interstitial voids, the correlation effect of crowded ions with different valences, and the screening effect of polarized water molecules in an inhomogeneous aqueous electrolyte. The steric energy is shown to be comparable to the electrical energy under physiological conditions, demonstrating the crucial role of the excluded volume of particles and the voids in the natural function of channel proteins. Water is shown to play a critical role in both correlation and steric effects in the model. We extend the classical Scharfetter-Gummel (SG) method for semiconductor devices to include the steric potential for ion channels, which is a fundamental physical property not present in semiconductors. Together with a simplified matched interface and boundary (SMIB) method for treating molecular surfaces and singular charges of channel proteins, the extended SG method is shown to exhibit important features in flow simulations such as optimal convergence, efficient nonlinear iterations, and physical conservation. The generalized SG stability condition shows why the standard discretization (without SG exponential fitting) of NP equations may fail and that divalent Ca2 + may cause more unstable discrete Ca2 + fluxes than that of monovalent Na+. Two different methods—called the SMIB and multiscale methods—are proposed for two different types of channels, namely, the gramicidin A channel and an L-type calcium channel, depending on whether water is allowed to pass through the channel. Numerical methods are first validated with constructed models whose exact solutions are

  4. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  5. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis.

    PubMed

    Bachin, Dmitry; Nazarenko, Lyudmila V; Mironov, Kirill S; Pisareva, Tatiana; Allakhverdiev, Suleyman I; Los, Dmitry A

    2015-06-01

    Calcium plays an essential role in a variety of stress responses of eukaryotic cells; however, its function in prokaryotes is obscure. Bacterial ion channels that transport Ca(2+) are barely known. We investigated temperature-induced changes in intracellular concentration of Ca(2+), Na(+) and K(+) in the cyanobacterium Synechocystis sp. strain PCC 6803 and its mutant that is defective in mechanosensitive ion channel MscL. Concentration of cations rapidly and transiently increased in wild-type cells in response to cold and heat treatments. These changes in ionic concentrations correlated with the changes in cytoplasmic volume that transiently decreased in response to temperature treatments. However, no increase in ionic concentrations was observed in the MscL-mutant cells. It implies that MscL functions as a non-specific ion channel, and it participates in regulation of cell volume under temperature-stress conditions.

  6. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  7. Generalized Langevin models of molecular dynamics simulations with applications to ion channels

    NASA Astrophysics Data System (ADS)

    Gordon, Dan; Krishnamurthy, Vikram; Chung, Shin-Ho

    2009-10-01

    We present a new methodology, which combines molecular dynamics and stochastic dynamics, for modeling the permeation of ions across biological ion channels. Using molecular dynamics, a free energy profile is determined for the ion(s) in the channel, and the distribution of random and frictional forces is measured over discrete segments of the ion channel. The parameters thus determined are used in stochastic dynamics simulations based on the nonlinear generalized Langevin equation. We first provide the theoretical basis of this procedure, which we refer to as "distributional molecular dynamics," and detail the methods for estimating the parameters from molecular dynamics to be used in stochastic dynamics. We test the technique by applying it to study the dynamics of ion permeation across the gramicidin pore. Given the known difficulty in modeling the conduction of ions in gramicidin using classical molecular dynamics, there is a degree of uncertainty regarding the validity of the MD-derived potential of mean force (PMF) for gramicidin. Using our techniques and systematically changing the PMF, we are able to reverse engineer a modified PMF which gives a current-voltage curve closely matching experimental results.

  8. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    NASA Technical Reports Server (NTRS)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  9. Exome sequencing of ion channel genes reveals complex variant profiles confounding personal risk assessment in epilepsy

    PubMed Central

    Klassen, Tara; Davis, Caleb; Goldman, Alica; Burgess, Dan; Chen, Tim; Wheeler, David; McPherson, John; Bourquin, Traci; Lewis, Lora; Villasana, Donna; Morgan, Margaret; Muzny, Donna; Gibbs, Richard; Noebels, Jeffrey

    2011-01-01

    Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders. PMID:21703448

  10. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  11. Ion channels and calcium signaling in motile cilia

    PubMed Central

    Doerner, Julia F; Delling, Markus; Clapham, David E

    2015-01-01

    The beating of motile cilia generates fluid flow over epithelia in brain ventricles, airways, and Fallopian tubes. Here, we patch clamp single motile cilia of mammalian ependymal cells and examine their potential function as a calcium signaling compartment. Resting motile cilia calcium concentration ([Ca2+] ~170 nM) is only slightly elevated over cytoplasmic [Ca2+] (~100 nM) at steady state. Ca2+ changes that arise in the cytoplasm rapidly equilibrate in motile cilia. We measured CaV1 voltage-gated calcium channels in ependymal cells, but these channels are not specifically enriched in motile cilia. Membrane depolarization increases ciliary [Ca2+], but only marginally alters cilia beating and cilia-driven fluid velocity within short (~1 min) time frames. We conclude that beating of ependymal motile cilia is not tightly regulated by voltage-gated calcium channels, unlike that of well-studied motile cilia and flagella in protists, such as Paramecia and Chlamydomonas. DOI: http://dx.doi.org/10.7554/eLife.11066.001 PMID:26650848

  12. Noise and stochastic resonance in voltage-gated ion channels

    PubMed Central

    Adair, Robert K.

    2003-01-01

    Using Monte Carlo techniques, I calculate the effects of internally generated noise on information transfer through the passage of action potential spikes along unmyelinated axons in a simple nervous system. I take the Hodgkin–Huxley (HH) description of Na and K channels in squid giant axons as the basis of the calculations and find that most signal transmission noise is generated by fluctuations in the channel open and closed populations. To bring the model closer to conventional descriptions in terms of thermal noise energy, kT, and to determine gating currents, I express the HH equations in the form of simple relations from statistical mechanics where the states are separated by a Gibbs energy that is modified by the action of the transmembrane potential on dipole moments held by the domains. Using the HH equations, I find that the output response (in the probability of action potential spikes) from small input potential pulses across the cell membrane is increased by added noise but falls off when the input noise becomes large, as in stochastic resonance models. That output noise response is sharply reduced by a small increase in the membrane polarization potential or a moderate increase in the channel densities. Because any reduction of noise incurs metabolic and developmental costs to an animal, the natural noise level is probably optimal and any increase in noise is likely to be harmful. Although these results are specific to signal transmission in unmyelinated axons, I suggest that the conclusions are likely to be general. PMID:14506291

  13. Probing ion channel conformational dynamics using simultaneous single-molecule ultrafast spectroscopy and patch-clamp electric recording

    NASA Astrophysics Data System (ADS)

    Harms, Greg; Orr, Galya; Lu, H. Peter

    2004-03-01

    An approach to probing single-molecule ion channel kinetics and conformational dynamics, patch-clamp confocal fluorescence microscopy (PCCFM), uses simultaneous ultrafast fluorescence spectroscopy and single-channel electric current recording. PCCFM is applied to determine single-channel conformational dynamics by probing single-pair fluorescence resonant energy transfer, fluorescence self-quenching, and anisotropy of the dye-labeled gramicidin ion channel incorporated in an artificial lipid bilayer. Hidden conformational changes were observed, which strongly suggests that multiple intermediate conformation states are involved in gramicidin ion channel dynamics.

  14. A statistical mechanical model of cell membrane ion channels in electric fields: The mean-field approximation

    NASA Astrophysics Data System (ADS)

    Yang, Y. S.; Thompson, C. J.; Anderson, V.; Wood, A. W.

    A statistical mechanical model of cell membrane ion channels is proposed which incorporates interactions between ion channels and external electric fields. The model provides a physical explanation of trans-membrane ion transport. Under a mean-field approximation, the maximum fractions of open potassium and sodium channels are obtained by solving a self-consistent nonlinear algebraic equation. Using known parameters for the squid giant axon, the model gives excellent agreement with experimental measurements for potassium and sodium trans-membrane conductance. The numerical results imply that the chemical potential of open channels and the interaction energy between channels are well above the thermal noise.

  15. Voltage Gated Ion Channel Function: Gating, Conduction, and the Role of Water and Protons

    PubMed Central

    Kariev, Alisher M.; Green, Michael E.

    2012-01-01

    Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na+ into the cell and K+ out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a “gating current”, a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12–13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the “gate” of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K+ channels, although Na+ channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned

  16. Voltage gated ion channel function: gating, conduction, and the role of water and protons.

    PubMed

    Kariev, Alisher M; Green, Michael E

    2012-01-01

    Ion channels, which are found in every biological cell, regulate the concentration of electrolytes, and are responsible for multiple biological functions, including in particular the propagation of nerve impulses. The channels with the latter function are gated (opened) by a voltage signal, which allows Na(+) into the cell and K(+) out. These channels have several positively charged amino acids on a transmembrane domain of their voltage sensor, and it is generally considered, based primarily on two lines of experimental evidence, that these charges move with respect to the membrane to open the channel. At least three forms of motion, with greatly differing extents and mechanisms of motion, have been proposed. There is a "gating current", a capacitative current preceding the channel opening, that corresponds to several charges (for one class of channel typically 12-13) crossing the membrane field, which may not require protein physically crossing a large fraction of the membrane. The coupling to the opening of the channel would in these models depend on the motion. The conduction itself is usually assumed to require the "gate" of the channel to be pulled apart to allow ions to enter as a section of the protein partially crosses the membrane, and a selectivity filter at the opposite end of the channel determines the ion which is allowed to pass through. We will here primarily consider K(+) channels, although Na(+) channels are similar. We propose that the mechanism of gating differs from that which is generally accepted, in that the positively charged residues need not move (there may be some motion, but not as gating current). Instead, protons may constitute the gating current, causing the gate to open; opening consists of only increasing the diameter at the gate from approximately 6 Å to approximately 12 Å. We propose in addition that the gate oscillates rather than simply opens, and the ion experiences a barrier to its motion across the channel that is tuned by

  17. Proton or helium ion beam written channel waveguides in Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Yicun; Zhang, Chao; Vanga, Sudheer Kumar; Bettiol, A. A.; Chen, Feng

    2013-10-01

    We report on the fabrication of channel waveguides in Nd:YAG ceramics, using either focused proton beam writing (PBW) or He beam writing (HeBW) techniques. Energies of ions used in the writing process were at 1 MeV and 2 MeV, respectively, with different writing fluence. High quality channel waveguides were produced in both H+ and He+ implanted regions. Characteristics of the waveguides were explored, and refractive index distribution of the waveguide was reconstructed.

  18. Long-range interactions, voltage sensitivity, and ion conduction in S4 segments of excitable channels.

    PubMed Central

    Leuchtag, H R

    1994-01-01

    Forces acting on the S4 segments of the channel, the voltage-sensing structures, are analyzed. The conformational change in the Na channel is modeled as a helix-coil transition in the four S4 segments, coupled to the membrane voltage by electrical forces. In the model, repulsions between like charges make the S4 segment unstable, but field-dependent forces hold it in an alpha-helix configuration at resting potential. At threshold depolarization, the S4 helices cooperatively expand into random coils, breaking the hydrogen bonds connecting adjacent loops of the alpha helices. Exposed electron pairs left on the carbonyl oxygens constitute sites at which cations can bind selectively. The first hydrogen bond to break is at the channel exterior, then the second breaks, and so on in a zipper-like motion along the entire segment. The Na+ ions hop from one site to the next until all H bonds are broken and all sites are filled with ions. This completes the pathway over which the permeant ions move through the channel, driven by the electrochemical potential difference across the membrane. This microscopic mechanism is consistent with the thermodynamic explanation of ion-channel gating previously formulated as the ferroelectric-superionic transition hypothesis. PMID:7510528

  19. Ninety-six-well planar lipid bilayer chip for ion channel recording fabricated by hybrid stereolithography.

    PubMed

    Suzuki, Hiroaki; Le Pioufle, Bruno; Takeuchi, Shoji

    2009-02-01

    We present a micro fluidic chip for parallel ion channel recording in a large array of artificial planar lipid bilayer membranes. To realize a composite structure that features an array of recording wells with free-standing microapertures for lipid bilayer reconstitution, the device was fabricated by the hybrid stereolithography technology, in which a Parylene film with pre-formed microapertures was inserted during the rapid stereolithography process. We designed and tested a hybrid chip that has 96 (12x8) addressable recording wells to demonstrate recording of ion channel current in high-throughput manner. Measurement was done by sequentially moving the recording electrode, and, as a result, the channel current of model membrane protein was detected in 44 wells out of 96. We also showed that this hybrid fabrication process was capable of integrating micropatterned electrodes suitable for automated recording. These results support the efficiency of our present architecture of the parallel ion channel recording chip toward realization of the high-throughput screening of ion channel proteins in the artificial lipid bilayer system.

  20. Ion Channel Macromolecular Complexes in Cardiomyocytes: Roles in Sudden Cardiac Death

    PubMed Central

    Abriel, Hugues; Rougier, Jean-Sébastien; Jalife, José

    2015-01-01

    The movement of ions across specific channels embedded on the membrane of individual cardiomyocytes is crucial for the generation and propagation of the cardiac electrical impulse. Emerging evidence over the last 20 years strongly suggests that the normal electrical function of the heart is the result of dynamic interactions of membrane ion channels working in an orchestrated fashion as part of complex molecular networks. Such networks work together with exquisite temporal precision to generate each action potential and contraction. Macromolecular complexes play crucial roles in transcription, translation, oligomerization, trafficking, membrane retention, glycosylation, posttranslational modification, turnover, function and degradation of all cardiac ion channels known to date. In addition, the accurate timing of each cardiac beat and contraction demands, a comparable precision on the assembly and organizations of sodium, calcium and potassium channel complexes within specific subcellular microdomains, where physical proximity allows for prompt and efficient interaction. This review article, part of the Compendium on Sudden Cardiac Death, discusses the major issues related to the role of ion channel macromolecular assemblies in normal cardiac electrical function and the mechanisms of arrhythmias leading to sudden cardiac death. It provides an idea of how these issues are being addressed in the laboratory and in the clinic, which important questions remain unanswered, and what future research will be needed to improve knowledge and advance therapy. PMID:26044251

  1. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  2. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  3. Strontium and Barium in aqueous solution and an ion channel blocking site

    NASA Astrophysics Data System (ADS)

    Chaudhari, Mangesh; Rempe, Susan

    Ion hydration structure and free energy establish criteria for understanding selective ion binding in potassium (K +) ion channels, and may be significant to understanding blocking mechanisms as well. Recently, we investigated the hydration properties of Ba2 +, the most potent blocker of K + channels among the simple metal ions. Here, we use a similar method of combining ab-initio molecular dynamics simulations, statistical mechanical theory, and electronic structure calculations to probe the fundamental hydration properties of Sr2 +, which does not block bacterial K + channels. The radial distribution of water around Sr2 + suggests a stable 8-fold geometry in the local hydration environment, similar to Ba2 +. While the predicted hydration free energy of -331.8 kcal/mol is comparable with the experimental results of -334 kcal/mol, the value is significantly more favorable than the -305 kcal/mol hydration free energy of Ba2 +. When placed in an innermost K + channel blocking site, the solvation free energies and lowest energy structures for both Sr2 + and Ba2 + are nearly unchanged compared with their respective hydration properties. That result suggests that difference in blocking behavior may arise due to kinetic properties associated with exchange of water ligands for channel ligands instead of equilibrium thermodynamic properties.

  4. Effects of Bisphenol A on ion channels: Experimental evidence and molecular mechanisms.

    PubMed

    Soriano, Sergi; Ripoll, Cristina; Alonso-Magdalena, Paloma; Fuentes, Esther; Quesada, Ivan; Nadal, Angel; Martinez-Pinna, Juan

    2016-07-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) produced in huge quantities in the manufacture of polycarbonate plastics and epoxy resins. It is present in most humans in developed countries, acting as a xenoestrogen and it is considered an environmental risk factor associated to several diseases. Among the whole array of identified mechanisms by which BPA can interfere with physiological processes in living organisms, changes on ion channel activity is one of the most poorly understood. There is still little evidence about BPA regulation of ion channel expression and function. However, this information is key to understand how BPA disrupts excitable and non-excitable cells, including neurons, endocrine cells and muscle cells. This report is the result of a comprehensive literature review on the effects of BPA on ion channels. We conclude that there is evidence to say that these important molecules may be key end-points for EDCs acting as xenoestrogens. However, more research on channel-mediated BPA effects is needed. Particularly, mechanistic studies to unravel the pathophysiological actions of BPA on ion channels at environmentally relevant doses. PMID:26930576

  5. Finite element simulation of the gating mechanism of mechanosensitive ion channels

    NASA Astrophysics Data System (ADS)

    Bavi, Navid; Qin, Qinghua; Martinac, Boris

    2013-08-01

    In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.

  6. Ion channel models based on self-assembling cyclic peptide nanotubes

    PubMed Central

    Montenegro, Javier

    2013-01-01

    CONSPECTUS Compartmentalization and isolation from external media facilitates the sophisticated functionality and connectivity of all the different biological processes accomplished by living entities. The lipid bilayer membranes are the dynamic structural motifs selected by Nature to individualize cells and keep ions, proteins, biopolymers and metabolites confined in the appropriate location. However, cellular interaction with the exterior and the regulation of its internal environment requires the assistance of minimal energy short cuts for the transport of molecules across membranes. Ion channels and pores stand out from all other possible transport mechanisms due to their high selectivity and efficiency in discriminating and transporting ions or molecules across membrane barriers. Nevertheless, the complexity of these smart “membrane holes” has been a significant driving force to develop artificial structures with comparable performance to the natural systems. The emergence of the broad range of supramolecular interactions as efficient tools for the rational design and preparation of stable 3D superstructures has boosted the possibilities and stimulated the creativity of chemists to design synthetic mimics of natural active macromolecules and even to develop artificial functions and properties. In this account we highlight results from our laboratories on the construction of artificial ion channel models that exploit the self-assembling of flat cyclic peptides into supramolecular nanotubes. The straightforward synthesis of the cyclic peptide monomers and the complete control over the internal diameter and external surface properties of the resulting hollow tubular suprastructure make CPs the optimal candidates for the fabrication of ion channels. Ion channel activities and selective transport of small molecules are examples of the huge potential of cyclic peptide nanotubes for the construction of functional transmembrane ion channels or pores. Our

  7. (De)constructing the ryanodine receptor: modeling ion permeation and selectivity of the calcium release channel.

    PubMed

    Gillespie, Dirk; Xu, Le; Wang, Ying; Meissner, Gerhard

    2005-08-18

    Biological ion channels are proteins that passively conduct ions across membranes that are otherwise impermeable to ions. Here, we present a model of ion permeation and selectivity through a single, open ryanodine receptor (RyR) ion channel. Combining recent mutation data with electrodiffusion of finite-sized ions, the model reproduces the current/voltage curves of cardiac RyR (RyR2) in KCl, LiCl, NaCl, RbCl, CsCl, CaCl(2), MgCl(2), and their mixtures over large concentrations and applied voltage ranges. It also reproduces the reduced K(+) conductances and Ca(2+) selectivity of two skeletal muscle RyR (RyR1) mutants (D4899N and E4900Q). The model suggests that the selectivity filter of RyR contains the negatively charged residue D4899 that dominates the permeation and selectivity properties and gives RyR a DDDD locus similar to the EEEE locus of the L-type calcium channel. In contrast to previously applied barrier models, the current model describes RyR as a multi-ion channel with approximately three monovalent cations in the selectivity filter at all times. Reasons for the contradicting occupancy predictions are discussed. In addition, the model predicted an anomalous mole fraction effect for Na(+)/Cs(+) mixtures, which was later verified by experiment. Combining these results, the binding selectivity of RyR appears to be driven by the same charge/space competition mechanism of other highly charged channels.

  8. Influence of finite radial geometry on the growth rate of ion-channel free electron laser

    SciTech Connect

    Bahmani, Mohammad; Hamzehpour, Hossein; Hasanbeigi, Ali

    2013-11-15

    The influence of finite radial geometry on the instability of a tenuous relativistic electron beam propagating in an ion-channel in a waveguide is investigated. The instability analysis is based on the linearized Vlasov-Maxwell equations for the perturbation about a self-consistent beam equilibrium. With the help of characteristic method the dispersion relation for the TE-mode is derived and analyzed through the numerical solutions. It is found that the positioning of the beam radius R{sub b} relative to the waveguide radius R{sub c}, and the ion-channel frequency can have a large influence on the maximum growth rate and corresponding wave number.

  9. Focused ion-beam writing of channel waveguides in bismuth germanate crystal for telecommunication bands

    NASA Astrophysics Data System (ADS)

    He, Ruiyun; Vanga, Sudheer Kumar; Bettiol, Andrew A.; Chen, Feng

    2015-05-01

    We report on the fabrication of channel waveguides in bismuth germanate (BGO) crystal using focused ion-beam writing. 1 and 2 MeV He+ ions with different fluences are utilized to directly write waveguides in BGO crystal. The guiding properties of the BGO waveguides are explored at the wavelengths of 632.8 nm, 1.31 μm and 1.55 μm, showing that the channel waveguides support light guidance from visible to telecommunication bands along both transverse-electric and transverse-magnetic polarizations.

  10. Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel

    PubMed Central

    Brettmann, Joshua B.; Urusova, Darya; Tonelli, Marco; Silva, Jonathan R.; Henzler-Wildman, Katherine A.

    2015-01-01

    Flux-dependent inactivation that arises from functional coupling between the inner gate and the selectivity filter is widespread in ion channels. The structural basis of this coupling has only been well characterized in KcsA. Here we present NMR data demonstrating structural and dynamic coupling between the selectivity filter and intracellular constriction point in the bacterial nonselective cation channel, NaK. This transmembrane allosteric communication must be structurally different from KcsA because the NaK selectivity filter does not collapse under low-cation conditions. Comparison of NMR spectra of the nonselective NaK and potassium-selective NaK2K indicates that the number of ion binding sites in the selectivity filter shifts the equilibrium distribution of structural states throughout the channel. This finding was unexpected given the nearly identical crystal structure of NaK and NaK2K outside the immediate vicinity of the selectivity filter. Our results highlight the tight structural and dynamic coupling between the selectivity filter and the channel scaffold, which has significant implications for channel function. NaK offers a distinct model to study the physiologically essential connection between ion conduction and channel gating. PMID:26621745

  11. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain.

    PubMed

    Xie, Y; Zacharias, E; Hoff, P; Tegtmeier, F

    1995-07-01

    Anoxic depolarization (AD) and failure of ion homeostasis play an important role in ischemia-induced neuronal injury. In the present study, different drugs with known ion-channel-modulating properties were examined for their ability to interfere with cardiac-arrest-elicited AD and with the changes in the extracellular ion activity in rat brain. Our results indicate that only drugs primarily blocking membrane Na+ permeability (NBQX, R56865, and flunarizine) delayed the occurrence of AD, while compounds affecting cellular Ca2+ load (MK-801 and nimodipine) did not influence the latency time. The ischemia-induced [Na+]e reduction was attenuated by R56865. Blockade of the ATP-sensitive K+ channels with glibenclamide reduced the [K+]e increase upon ischemia, indicating an involvement of the KATP channels in ischemia-induced K+ efflux. The KATP channel opener cromakalim did not affect the AD or the [K+]e concentration. The ischemia-induced rapid decline of extracellular calcium was attenuated by receptor-operated Ca2+ channel blockers MK-801 and NBQX, but not by the voltage-operated Ca2+ channel blocker nimodipine, R56865, and flunarizine. PMID:7540620

  12. The unc-8 and sup-40 genes regulate ion channel function in Caenorhabditis elegans motorneurons

    SciTech Connect

    Shreffler, W.; Magardino, T.; Shekdar, K.; Wolinsky, E.

    1995-03-01

    Two Caenorhabditis elegans genes, unc-8 and sup-40, have been newly identified, by genetic criteria, as regulating ion channel function in motorneurons. Two dominant unc-8 alleles cause motorneuron swelling similar to that of other neuronal types in dominant mutants of the deg-1 gene family, which is homologous to a mammalian gene family encoding amiloride-sensitive sodium channel subunits. As for previously identified deg-1 family members, unc-8 dominant mutations are recessively suppressed by mutations in the mec-6 gene, which probably encodes a second type of channel component. An unusual dominant mutation, sup-41 (lb125), also co-suppresses unc-8 and deg-1, suggesting the existence of yet another common component of ion channels containing unc-8 or deg-1 subunits. Dominant, transacting, intragenic suppressor mutations have been isolated for both unc-8 and deg-1, consistent with the idea that, like their mammalian homologues, the two gene products function as multimers. The sup-40 (lb130) mutation dominantly suppresses unc-8 motorneuron swelling and produces a novel swelling phenotype in hypodermal nuclei. sup-40 may encode an ion channel component or regulator that can correct the osmotic defect caused by abnormal unc-8 channels. 37 refs., 6 figs., 3 tabs.

  13. Ion passage pathways and thermodynamics of the amphotericin B membrane channel.

    PubMed

    Resat, Haluk; Baginski, Maciej

    2002-07-01

    Amphotericin B is a polyene macrolide antibiotic used to treat systemic fungal infections. Amphotericin B's chemotherapeutic action requires the formation of transmembrane channels, which are known to transmit monovalent ions. We have investigated the ion passage pathways through the pore of a realistic model structure of the channel and computed the associated thermodynamic properties. Our calculations combined the free energy computations using the Poisson equation with a continuum solvent model and the molecular simulations in which solvent molecules were present explicitly. It was found that there are no substantial structural barriers to a single sodium or chloride ion passage. Thermodynamic free energy calculations showed that the path along which the ions prefer to move is off center from the channel's central axis. In accordance with experiments, Monte Carlo molecular simulations established that sodium ions can pass through the pore. When it encounters a chloride anion in the channel, the sodium cation prefers to form a solvent-bridged pair configuration with the anion. PMID:12122476

  14. Simulation of a prebunched free-electron laser with planar wiggler and ion channel guiding

    SciTech Connect

    Rouhani, M. H.; Maraghechi, B.

    2010-02-15

    A one-dimensional and nonlinear simulation of a free-electron laser with a prebunched electron beam, a planar wiggler, and ion-channel guiding is presented. Using Maxwell's equations and full Lorentz force equation of motion for the electron beam, a set of coupled nonlinear differential equations is derived in slowly varying amplitude and wave number approximation and is solved numerically. This set of equations describes self-consistently the longitudinal dependence of radiation amplitude, growth rates, space-charge amplitude, and wave numbers together with the evolution of the electron beam. Because of using full Lorentz force equation of motion, it is possible to treat the injection of the beam into the wiggler. The electron beam is assumed cold, propagates with a relativistic velocity, ions are assumed immobile, and slippage is ignored. The effect of prebunched electron beam on saturation is studied. Ion-channel density is varied and the results for groups I and II orbits are compared with the case when the ion channel is absent. It is found that by using an ion channel/a prebunched electron beam growth rate can be increased, saturation length can be decreased, and the saturated amplitude of the radiation can be increased.

  15. Using Electronic Properties of Adamantane Derivatives to Analyze their Ion Channel Interactions: Implications for Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Bonacum, Jason

    2013-03-01

    The derivatives of adamantane, which is a cage-like diamondoid structure, can be used as pharmaceuticals for the treatment of various diseases and disorders such as Alzheimer's disease. These drugs interact with ion channels, and they act by electronically and physically hindering the ion transport. The electronic properties of each compound influence the location and level of ion channel hindrance, and the specific use of each compound depends on the functional groups that are attached to the adamantane base chain. Computational analysis and molecular simulations of these different derivatives and the ion channels can provide useful insight into the effect that the functional groups have on the properties of the compounds. Using this information, conclusions can be made about the pharmaceutical mechanisms, as well as how to improve them or create new beneficial compounds. Focusing on the electronic properties, such as the dipole moments of the derivatives and amino acids in the ion channels, can provide more efficient predictions of how these drugs work and how they can be enhanced. Department of Energy Grant DE-FG02-06ER46304

  16. Bayesian Statistical Inference in Ion-Channel Models with Exact Missed Event Correction.

    PubMed

    Epstein, Michael; Calderhead, Ben; Girolami, Mark A; Sivilotti, Lucia G

    2016-07-26

    The stochastic behavior of single ion channels is most often described as an aggregated continuous-time Markov process with discrete states. For ligand-gated channels each state can represent a different conformation of the channel protein or a different number of bound ligands. Single-channel recordings show only whether the channel is open or shut: states of equal conductance are aggregated, so transitions between them have to be inferred indirectly. The requirement to filter noise from the raw signal further complicates the modeling process, as it limits the time resolution of the data. The consequence of the reduced bandwidth is that openings or shuttings that are shorter than the resolution cannot be observed; these are known as missed events. Postulated models fitted using filtered data must therefore explicitly account for missed events to avoid bias in the estimation of rate parameters and therefore assess parameter identifiability accurately. In this article, we present the first, to our knowledge, Bayesian modeling of ion-channels with exact missed events correction. Bayesian analysis represents uncertain knowledge of the true value of model parameters by considering these parameters as random variables. This allows us to gain a full appreciation of parameter identifiability and uncertainty when estimating values for model parameters. However, Bayesian inference is particularly challenging in this context as the correction for missed events increases the computational complexity of the model likelihood. Nonetheless, we successfully implemented a two-step Markov chain Monte Carlo method that we called "BICME", which performs Bayesian inference in models of realistic complexity. The method is demonstrated on synthetic and real single-channel data from muscle nicotinic acetylcholine channels. We show that parameter uncertainty can be characterized more accurately than with maximum-likelihood methods. Our code for performing inference in these ion channel

  17. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.

    PubMed

    Hirano-Iwata, Ayumi; Ishinari, Yutaka; Yoshida, Miyu; Araki, Shun; Tadaki, Daisuke; Miyata, Ryusuke; Ishibashi, Kenichi; Yamamoto, Hideaki; Kimura, Yasuo; Niwano, Michio

    2016-05-24

    Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins.

  18. Reconstitution of Human Ion Channels into Solvent-free Lipid Bilayers Enhanced by Centrifugal Forces.

    PubMed

    Hirano-Iwata, Ayumi; Ishinari, Yutaka; Yoshida, Miyu; Araki, Shun; Tadaki, Daisuke; Miyata, Ryusuke; Ishibashi, Kenichi; Yamamoto, Hideaki; Kimura, Yasuo; Niwano, Michio

    2016-05-24

    Artificially formed bilayer lipid membranes (BLMs) provide well-defined systems for functional analyses of various membrane proteins, including ion channels. However, difficulties associated with the integration of membrane proteins into BLMs limit the experimental efficiency and usefulness of such BLM reconstitution systems. Here, we report on the use of centrifugation to more efficiently reconstitute human ion channels in solvent-free BLMs. The method improves the probability of membrane fusion. Membrane vesicles containing the human ether-a-go-go-related gene (hERG) channel, the human cardiac sodium channel (Nav1.5), and the human GABAA receptor (GABAAR) channel were formed, and the functional reconstitution of the channels into BLMs via vesicle fusion was investigated. Ion channel currents were recorded in 67% of the BLMs that were centrifuged with membrane vesicles under appropriate centrifugal conditions (14-55 × g). The characteristic channel properties were retained for hERG, Nav1.5, and GABAAR channels after centrifugal incorporation into the BLMs. A comparison of the centrifugal force with reported values for the fusion force revealed that a centrifugal enhancement in vesicle fusion was attained, not by accelerating the fusion process but by accelerating the delivery of membrane vesicles to the surface of the BLMs, which led to an increase in the number of membrane vesicles that were available for fusion. Our method for enhancing the probability of vesicle fusion promises to dramatically increase the experimental efficiency of BLM reconstitution systems, leading to the realization of a BLM-based, high-throughput platform for functional assays of various membrane proteins. PMID:27224486

  19. Ion Channels, from Fantasy to Fact in Fifty Years1

    NASA Astrophysics Data System (ADS)

    Jordan, Peter C.

    Biologists have long recognized that the transport of ions and of neutral species across cell membranes is central to physiological function. Cells rely on their biomembranes, which separate the cytoplasm from the extracellular medium, to maintain the two electrolytes at very different composition. Specialized molecules, essentially biological nanodevices, have evolved to selectively control the movement of all the major physiological species. As should be clear, there have to be at least two distinct modes of transport. To maintain the disequilibrium, there must be molecular assemblies that drive ions and other permeable species against their electrochemical potential gradients. Such devices require energy input, typically coupling a vectorial pump with a chemical reaction, the dephosphorylation of ATP (adenosine triphosphate). These enzymes (biochemical catalysts) control highly concerted, and relatively slow, process, with turnovers of ≫ 100 s¡ 1.

  20. Disease-associated changes in the expression of ion channels, ion receptors, ion exchangers and Ca{sup 2+}-handling proteins in heart hypertrophy

    SciTech Connect

    Zwadlo, Carolin; Borlak, Juergen . E-mail: borlak@item.fraunhofer.de

    2005-09-15

    The molecular pathology of cardiac hypertrophy is multifactorial with transcript regulation of ion channels, ion exchangers and Ca{sup 2+}-handling proteins being speculative. We therefore investigated disease-associated changes in gene expression of various ion channels and their receptors as well as ion exchangers, cytoskeletal proteins and Ca{sup 2+}-handling proteins in normotensive and spontaneously hypertensive (SHR) rats. We also compared experimental findings with results from hypertrophic human hearts, previously published (Borlak, J., and Thum, T., 2003. Hallmarks of ion channel gene expression in end-stage heart failure. FASEB J. 17, 1592-1608). We observed significant (P < 0.05) induction in transcript level of ATP-driven ion exchangers (Atp1A1, NCX-1, SERCA2a), ion channels (L-type Ca{sup 2+}-channel, K{sub ir}3.4, Na{sub v}1.5) and RyR-2 in hypertrophic hearts, while gene expression was repressed in diseased human hearts. Further, the genes coding for calreticulin and calmodulin, PMCA 1 and 4 as well as {alpha}-skeletal actin were significantly (P < 0.05) changed in hypertrophic human heart, but were unchanged in hypertrophic left ventricles of the rat heart. Notably, transcript level of {alpha}- and {beta}-MHC, calsequestrin, K{sub ir}6.1 (in the right ventricle only), phospholamban as well as troponin T were repressed in both diseased human and rat hearts. Our study enabled an identification of disease-associated candidate genes. Their regulation is likely to be the result of an imbalance between pressure load/stretch force and vascular tonus and the observed changes may provide a rational for the rhythm disturbances observed in patients with cardiac hypertrophy.

  1. Rutherford Backscattering Spectrometry Channeling Study of Ion-Irradiated 6H-SiC

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; McCready, David E.

    1999-04-01

    Studies damage accumulation and defect annealing (up to 1170 K) using in-situ 2.0 MeV He Rutherford Backscattering Spectrometry combined with ion channeling methods. Observes that the defect concentration at the damage peak increases sigmoidally with increasing ion fluence during irradiation at low temperatures and that the isochronal recovery of the damage induced at low temperatures follows an exponential dependence on temperature.

  2. The Transport Properties of the Cell Membrane Ion Channels in Electric Fields: Bethe Lattice Treatment

    NASA Astrophysics Data System (ADS)

    Erdem, Rıza; Ekiz, Cesur

    2007-11-01

    The interactive two-state model of cell membrane ion channels in an electric field is formulated on the Bethe lattice by means of the exact recursion relations. The probability of channel opening or maximum fractions of open potassium and sodium channels are obtained by solving a non-linear algebraic equation. Using known parameters for the conventional mean-field theory the model gives a good agreement with the experiment both at low and high trans-membrane potential values. For intermediate voltages, the numerical results imply that collective effects are introduced by trans-membrane voltage.

  3. Monte Carlo simulation for statistical mechanics model of ion-channel cooperativity in cell membranes

    NASA Astrophysics Data System (ADS)

    Erdem, Riza; Aydiner, Ekrem

    2009-03-01

    Voltage-gated ion channels are key molecules for the generation and propagation of electrical signals in excitable cell membranes. The voltage-dependent switching of these channels between conducting and nonconducting states is a major factor in controlling the transmembrane voltage. In this study, a statistical mechanics model of these molecules has been discussed on the basis of a two-dimensional spin model. A new Hamiltonian and a new Monte Carlo simulation algorithm are introduced to simulate such a model. It was shown that the results well match the experimental data obtained from batrachotoxin-modified sodium channels in the squid giant axon using the cut-open axon technique.

  4. Cardiac ion channel modulation by the hypoglycaemic agent rosiglitazone.

    PubMed

    Hancox, J C

    2011-06-01

    The hypoglycaemic thiazolidinedione rosiglitazone is used clinically in the treatment of type 2 diabetes. However, in 2010, information relating to rosiglitazone-associated increased cardiovascular risk led the European Medicines Agency to recommend suspension of marketing authorizations for rosiglitazone-containing anti-diabetes drugs, while the US Food and Drug Administration recommended significant restriction on the agent's use. Two timely studies in this issue of the British Journal of Phrarmacology provide new information regarding modification of cardiac cellular electrophysiology by rosiglitazone. Szentandrássy et al. demonstrate canine ventricular action potential modification and concentration-dependent suppression of L-type Ca current and of transient outward and rapid delayed rectifier K currents. Jeong et al. demonstrate concentration-dependent inhibition of recombinant K(v) 4.3 channels, providing mechanistic insight into the likely molecular basis of transient outward K current inhibition by the compound. Further studies using diabetic models would be of value to determine whether, in a diabetic setting, rosiglitazone modification of these channels could affect the risk of arrhythmia at clinically relevant drug concentrations. PMID:21561443

  5. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel

    PubMed Central

    Malvezzi, Mattia; Chalat, Madhavan N.; Janjusevic, Radmila; Picollo, Alessandra; Terashima, Hiroyuki; Menon, Anant K.; Accardi, Alessio

    2014-01-01

    Phospholipid scramblases disrupt the lipid asymmetry of the plasma membrane, externalizing phosphatidylserine to trigger blood coagulation and mark apoptotic cells. Recently, members of the TMEM16 family of Ca2+-gated channels have been shown to be involved in Ca2+-dependent scrambling. It is however controversial whether they are scramblases or channels regulating scrambling. Here we show that purified afTMEM16, from Aspergillus fumigatus, is a dual-function protein: it is a Ca2+-gated channel, with characteristics of other TMEM16 homologues, and a Ca2+-dependent scramblase, with the expected properties of mammalian phospholipid scramblases. Remarkably, we find that a single Ca2+ site regulates separate transmembrane pathways for ions and lipids. Two other purified TMEM16-channel homologues do not mediate scrambling, suggesting that the family diverged into channels and channel/scramblases. We propose that the spatial separation of the ion and lipid pathways underlies the evolutionary divergence of the TMEM16 family, and that other homologues, such as TMEM16F, might also be dual-function channel/scramblases. PMID:23996062

  6. High-Threshold Mechanosensitive Ion Channels Blocked by a Novel Conopeptide Mediate Pressure-Evoked Pain

    PubMed Central

    Drew, Liam J.; Rugiero, Francois; Cesare, Paolo; Gale, Jonathan E.; Abrahamsen, Bjarke; Bowden, Sarah; Heinzmann, Sebastian; Robinson, Michelle; Brust, Andreas; Colless, Barbara; Lewis, Richard J.; Wood, John N.

    2007-01-01

    Little is known about the molecular basis of somatosensory mechanotransduction in mammals. We screened a library of peptide toxins for effects on mechanically activated currents in cultured dorsal root ganglion neurons. One conopeptide analogue, termed NMB-1 for noxious mechanosensation blocker 1, selectively inhibits (IC50 1 µM) sustained mechanically activated currents in a subset of sensory neurons. Biotinylated NMB-1 retains activity and binds selectively to peripherin-positive nociceptive sensory neurons. The selectivity of NMB-1 was confirmed by the fact that it has no inhibitory effects on voltage-gated sodium and calcium channels, or ligand-gated channels such as acid-sensing ion channels or TRPA1 channels. Conversely, the tarantula toxin, GsMTx-4, which inhibits stretch-activated ion channels, had no effects on mechanically activated currents in sensory neurons. In behavioral assays, NMB-1 inhibits responses only to high intensity, painful mechanical stimulation and has no effects on low intensity mechanical stimulation or thermosensation. Unexpectedly, NMB-1 was found to also be an inhibitor of rapid FM1-43 loading (a measure of mechanotransduction) in cochlear hair cells. These data demonstrate that pharmacologically distinct channels respond to distinct types of mechanical stimuli and suggest that mechanically activated sustained currents underlie noxious mechanosensation. NMB-1 thus provides a novel diagnostic tool for the molecular definition of channels involved in hearing and pressure-evoked pain. PMID:17565368

  7. Simulating Current-Voltage Relationships for a Narrow Ion Channel Using the Weighted Ensemble Method.

    PubMed

    Adelman, Joshua L; Grabe, Michael

    2015-04-14

    Ion channels are responsible for a myriad of fundamental biological processes via their role in controlling the flow of ions through water-filled membrane-spanning pores in response to environmental cues. Molecular simulation has played an important role in elucidating the mechanism of ion conduction, but connecting atomistically detailed structural models of the protein to electrophysiological measurements remains a broad challenge due to the computational cost of reaching the necessary time scales. Here, we introduce an enhanced sampling method for simulating the conduction properties of narrow ion channels using the Weighted ensemble (WE) sampling approach. We demonstrate the application of this method to calculate the current–voltage relationship as well as the nonequilibrium ion distribution at steady-state of a simple model ion channel. By direct comparisons with long brute force simulations, we show that the WE simulations rigorously reproduce the correct long-time scale kinetics of the system and are capable of determining these quantities using significantly less aggregate simulation time under conditions where permeation events are rare.

  8. Ion permeation in normal and batrachotoxin-modified Na+ channels in the squid giant axon

    PubMed Central

    1991-01-01

    Na+ permeation through normal and batrachotoxin (BTX)-modified squid axon Na+ channels was characterized. Unmodified and toxin-modified Na+ channels were studied simultaneously in outside-out membrane patches using the cut-open axon technique. Current-voltage relations for both normal and BTX-modified channels were measured over a wide range of Na+ concentrations and voltages. Channel conductance as a function of Na+ concentration curves showed that within the range 0.015-1 M Na+ the normal channel conductance is 1.7-2.5-fold larger than the BTX-modified conductance. These relations cannot be fitted by a simple Langmuir isotherm. Channel conductance at low concentrations was larger than expected from a Michaelis-Menten behavior. The deviations from the simple case were accounted for by fixed negative charges located in the vicinity of the channel entrances. Fixed negative charges near the pore mouths would have the effect of increasing the local Na+ concentration. The results are discussed in terms of energy profiles with three barriers and two sites, taking into consideration the effect of the fixed negative charges. Either single- or multi-ion pore models can account for all the permeation data obtained in both symmetric and asymmetric conditions. In a temperature range of 5-15 degrees C, the estimated Q10 for the conductance of the BTX-modified Na+ channel was 1.53. BTX appears not to change the Na+ channel ion selectively (for the conditions used) or the surface charge located near the channel entrances. PMID:1645396

  9. Ion permeation properties of the glutamate receptor channel in cultured embryonic Drosophila myotubes.

    PubMed Central

    Chang, H; Ciani, S; Kidokoro, Y

    1994-01-01

    Ion permeation properties of the glutamate receptor channel in cultured myotubes of Drosophila embryos were studied using the inside-out configuration of the patch-clamp technique. Lowering the NaCl concentration in the bath (intracellular solution), while maintaining that of the external solution constant, caused a shift of the reversal potential in the positive direction, thus indicating a higher permeability of the channel to Na+ than to Cl- (PCl/PNa < 0.04), and suggesting that the channel is cation selective. With 145 mM Na+ on both sides of the membrane, the single-channel current-voltage relation was almost linear in the voltage range between -80 and +80 mV, the conductance showing some variability in the range between 140 and 170 pS. All monovalent alkali cations tested, as well as NH4+, permeated the channel effectively. Using the Goldman-Hodgkin-Katz equation for the reversal potential, the permeability ratios with respect to Na+ were estimated to be: 1.32 for K+, 1.18 for NH4+, 1.15 for Rb+, 1.09 for Cs+, and 0.57 for Li+. Divalent cations, i.e. Mg2+ and Ca2+, in the external solution depressed not only the inward but also the outward Na+ currents, although reversal potential measurements indicated that both ions have considerably higher permeabilities than Na+ (PMg/PNa = 2.31; PCa/PNa = 9.55). The conductance-activity relation for Na+ was described by a hyperbolic curve. The maximal conductance was about 195 pS and the half-saturating activity 45 mM. This result suggests that Na+ ions bind to sites in the channel. All data were fitted by a model based on the Eyring's reaction rate theory, in which the receptor channel is a one-ion pore with three energy barriers and two internal sites. PMID:7519261

  10. Automated Electrophysiology Makes the Pace for Cardiac Ion Channel Safety Screening

    PubMed Central

    Möller, Clemens; Witchel, Harry

    2011-01-01

    The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening. PMID:22131974

  11. Structure and function of glutamate receptor ion channels.

    PubMed

    Mayer, Mark L; Armstrong, Neali

    2004-01-01

    A vast number of proteins are involved in synaptic function. Many have been cloned and their functional role defined with varying degrees of success, but their number and complexity currently defy any molecular understanding of the physiology of synapses. A beacon of success in this medieval era of synaptic biology is an emerging understanding of the mechanisms underlying the activity of the neurotransmitter receptors for glutamate. Largely as a result of structural studies performed in the past three years we now have a mechanistic explanation for the activation of channel gating by agonists and partial agonists; the process of desensitization, and its block by allosteric modulators, is also mostly explained; and the basis of receptor subtype selectivity is emerging with clarity as more and more structures are solved. In the space of months we have gone from cartoons of postulated mechanisms to hard fact. It is anticipated that this level of understanding will emerge for other synaptic proteins in the coming decade.

  12. Function and regulation of TRPP2 ion channel revealed by a gain-of-function mutant.

    PubMed

    Arif Pavel, Mahmud; Lv, Caixia; Ng, Courtney; Yang, Lei; Kashyap, Parul; Lam, Clarissa; Valentino, Victoria; Fung, Helen Y; Campbell, Thomas; Møller, Simon Geir; Zenisek, David; Holtzman, Nathalia G; Yu, Yong

    2016-04-26

    Mutations in polycystin-1 and transient receptor potential polycystin 2 (TRPP2) account for almost all clinically identified cases of autosomal dominant polycystic kidney disease (ADPKD), one of the most common human genetic diseases. TRPP2 functions as a cation channel in its homomeric complex and in the TRPP2/polycystin-1 receptor/ion channel complex. The activation mechanism of TRPP2 is unknown, which significantly limits the study of its function and regulation. Here, we generated a constitutively active gain-of-function (GOF) mutant of TRPP2 by applying a mutagenesis scan on the S4-S5 linker and the S5 transmembrane domain, and studied functional properties of the GOF TRPP2 channel. We found that extracellular divalent ions, including Ca(2+), inhibit the permeation of monovalent ions by directly blocking the TRPP2 channel pore. We also found that D643, a negatively charged amino acid in the pore, is crucial for channel permeability. By introducing single-point ADPKD pathogenic mutations into the GOF TRPP2, we showed that different mutations could have completely different effects on channel activity. The in vivo function of the GOF TRPP2 was investigated in zebrafish embryos. The results indicate that, compared with wild type (WT), GOF TRPP2 more efficiently rescued morphological abnormalities, including curly tail and cyst formation in the pronephric kidney, caused by down-regulation of endogenous TRPP2 expression. Thus, we established a GOF TRPP2 channel that can serve as a powerful tool for studying the function and regulation of TRPP2. The GOF channel may also have potential application for developing new therapeutic strategies for ADPKD. PMID:27071085

  13. Nonselective block by La3+ of Arabidopsis ion channels involved in signal transduction

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mM La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mM La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mM La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mM La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels.

  14. Nuclear pore ion channel activity in live syncytial nuclei.

    PubMed

    Bustamante, Jose Omar

    2002-05-01

    Nuclear pore complexes (NPCs) are important nanochannels for the control of gene activity and expression. Most of our knowledge of NPC function has been derived from isolated nuclei and permeabilized cells in cell lysates/extracts. Since recent patch-clamp work has challenged the dogma that NPCs are freely permeable to small particles, a preparation of isolated living nuclei in their native liquid environment was sought and found: the syncytial nuclei in the water of the coconut Cocos nucifera. These nuclei have all properties of NPC-mediated macromolecular transport (MMT) and express foreign green fluorescent protein (GFP) plasmids. They display chromatin movement, are created by particle aggregation or by division, can grow by throwing filaments to catch material, etc. This study shows, for the first time, that living NPCs engaged in MMT do not transport physiological ions - a phenomenon that explains observations of nucleocytoplasmic ion gradients. Since coconuts are inexpensive (less than US$1/nut per litre), this robust preparation may contribute to our understanding of NPCs and cell nucleus and to the development of biotechnologies for the production of DNA, RNA and proteins.

  15. Global structural changes of an ion channel during its gating are followed by ion mobility mass spectrometry

    PubMed Central

    Konijnenberg, Albert; Yilmaz, Duygu; Ingólfsson, Helgi I.; Dimitrova, Anna; Marrink, Siewert J.; Li, Zhuolun; Vénien-Bryan, Catherine; Sobott, Frank; Koçer, Armağan

    2014-01-01

    Mechanosensitive ion channels are sensors probing membrane tension in all species; despite their importance and vital role in many cell functions, their gating mechanism remains to be elucidated. Here, we determined the conditions for releasing intact mechanosensitive channel of large conductance (MscL) proteins from their detergents in the gas phase using native ion mobility–mass spectrometry (IM-MS). By using IM-MS, we could detect the native mass of MscL from Escherichia coli, determine various global structural changes during its gating by measuring the rotationally averaged collision cross-sections, and show that it can function in the absence of a lipid bilayer. We could detect global conformational changes during MscL gating as small as 3%. Our findings will allow studying native structure of many other membrane proteins. PMID:25404294

  16. Ion channels in key marine invertebrates; their diversity and potential for applications in biotechnology.

    PubMed

    Brown, Euan R; Piscopo, Stefania

    2011-01-01

    Of the intra-membrane proteins, the class that comprises voltage and ligand-gated ion channels represents the major substrate whereby signals pass between and within cells in all organisms. It has been presumed that vertebrate and particularly mammalian ion channels represent the apex of evolutionary complexity and diversity and much effort has been focused on understanding their function. However, the recent availability of cheap high throughput genome sequencing has massively broadened and deepened the quality of information across phylogeny and is radically changing this view. Here we review current knowledge on such channels in key marine invertebrates where physiological evidence is backed up by molecular sequences and expression/functional studies. As marine invertebrates represent a much greater range of phyla than terrestrial vertebrates and invertebrates together, we argue that these animals represent a highly divergent, though relatively underused source of channel novelty. As ion channels are exquisitely selective sensors for voltage and ligands, their potential and actual applications in biotechnology are manifold.

  17. Nerve membrane ion channels as the target site of environmental toxicants

    SciTech Connect

    Narahashi, T.

    1987-04-01

    There are many environmentally important chemicals which exhibit potent effects on the nervous system. Since nerve excitation takes place in a fraction of a second, electrophysiological methods provide the authors with the most straightforward approach to the study of the mechanisms of action of environmental toxicants on the nervous system. Aquatic animals such as crayfish, lobster, squid, and marine snails represent extremely useful materials for such electrophysiological studies, because much of the authors knowledge of nerve excitation is derived from those animals. Nerve excitation takes place as a result of opening and closing of ion channels of the membrane. These functions are independent of metabolic energy, and can be measured most effectively by voltage clamp techniques as applied to the giant axons of the crayfish and the squid. Patch clamp techniques developed during the past 10 years have added a new dimension to the electrophysiological investigation. These techniques allow them to measure the activity of individual ion channels, thereby making it possible to analyze the interaction of toxic molecules directly with single ion channels. Examples are given summarizing electrophysiological studies of environmental neurotoxicants. The abdominal nerve cords and neuromuscular preparations isolated from the crayfish are convenient materials for bioassay of certain environmental toxicants such as pyrethroids, chlorinated hydrocarbons, and other insecticides. Only a small fraction of the flux through the sodium channel, less than 1%, must be modified by pyrethroids for the animal to develop symptoms of poisoning. Such a toxicological application from channel to animal is important is understanding the potent toxic effect.

  18. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  19. An overview of trafficking and assembly of neurotransmitter receptors and ion channels (Review).

    PubMed

    Schwappach, Blanche

    2008-05-01

    Ionotropic neurotransmitter receptors and voltage-gated ion channels assemble from several homologous and non-homologous subunits. Assembly of these multimeric membrane proteins is a tightly controlled process subject to primary and secondary quality control mechanisms. An assembly pathway involving a dimerization of dimers has been demonstrated for a voltage-gated potassium channel and for different types of glutamate receptors. While many novel C-terminal assembly domains have been identified in various members of the voltage-gated cation channel superfamily, the assembly pathways followed by these proteins remain largely elusive. Recent progress on the recognition of polar residues in the transmembrane segments of membrane proteins by the retrieval factor Rer1 is likely to be relevant for the further investigation of trafficking defects in channelopathies. This mechanism might also contribute to controlling the assembly of ion channels by retrieving unassembled subunits to the endoplasmic reticulum. The endoplasmic reticulum is a metabolic compartment studded with small molecule transporters. This environment provides ligands that have recently been shown to act as pharmacological chaperones in the biogenesis of ligand-gated ion channels. Future progress depends on the improvement of tools, in particular the antibodies used by the field, and the continued exploitation of genetically tractable model organisms in screens and physiological experiments. PMID:18446613

  20. Biomimetic heterogeneous multiple ion channels: a honeycomb structure composite film generated by breath figures

    NASA Astrophysics Data System (ADS)

    Han, Keyu; Heng, Liping; Wen, Liping; Jiang, Lei

    2016-06-01

    We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields.We design a novel type of artificial multiple nanochannel system with remarkable ion rectification behavior via a facile breath figure (BF) method. Notably, even though the charge polarity in the channel wall reverses under different pH values, this nanofluidic device displays the same ionic rectification direction. Compared with traditional nanochannels, this composite multiple ion channel device can be more easily obtained and has directional ionic rectification advantages, which can be applied in many fields. Electronic supplementary information (ESI) available: Pore size distribution histograms of the AAO substrates; SEM images of the side view of pure AAO membranes and top view of the flat PI/AAO composite film; the current-time curves of the flat composite film; the current-voltage characteristics curves of pure AAO nanochannels with different mean pore diameters; CA of the two surfaces of the composite PI/AAO film, the structural formula of the polymer polyimide resin (PI), and solid surface zeta potential. See DOI: 10.1039/c6nr02506d

  1. Contraception: Search for an Ideal Unisex Mechanism by Targeting Ion Channels.

    PubMed

    Lishko, Polina V

    2016-10-01

    Targeting sperm ion channels and other sperm-specific proteins is an effective way to develop unisex contraceptives, as they should have decreased side effects. This Science & Society summarizes the current advances in human sperm physiology in attempts to evaluate what would be appropriate targets for unisex contraceptives.

  2. Using Ion Channel-Forming Peptides to Quantify Protein-Ligand Interactions

    PubMed Central

    Mayer, Michael; Semetey, Vincent; Gitlin, Irina; Yang, Jerry; Whitesides, George M.

    2008-01-01

    This paper proposes a method for sensing affinity interactions by triggering disruption of self-assembly of ion channel-forming peptides in planar lipid bilayers. It shows that the binding of a derivative of alamethicin carrying a covalently attached sulfonamide ligand to carbonic anhydrase II (CA II) resulted in the inhibition of ion channel conductance through the bilayer. We propose that the binding of the bulky CA II protein (MW ~30 kD) to the ion channel-forming peptides (MW ~2.5 kD) either reduced the tendency of these peptides to self-assemble into a pore, or extracted them from the bilayer altogether. In both outcomes, the interactions between the protein and the ligand lead to a disruption of self-assembled pores. Addition of a competitive inhibitor – 4-carboxybenzenesulfonamide – to the solution released CA II from the alamethicin-sulfonamide conjugate and restored the current flow across the bilayer by allowing reassembly of the ion channels in the bilayer. Time-averaged recordings of the current over discrete time intervals made it possible to quantify this monovalent ligand binding interaction. This method gave a dissociation constant of ~2 µM for the binding of CA II to alamethicin-sulfonamide in the bilayer recording chamber: this value is consistent with a value obtained independently with CA II and a related sulfonamide derivative by isothermal titration calorimetry. PMID:18179217

  3. Charging the Quantum Capacitance of Graphene with a Single Biological Ion Channel

    PubMed Central

    2015-01-01

    The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge. Here, we report graphene-based field-effect transistors combined with supported lipid bilayers as a platform for measuring, for the first time, individual ion channel activity. We show that the supported lipid bilayers uniformly coat the single layer graphene surface, acting as a biomimetic barrier that insulates (both electrically and chemically) the graphene from the electrolyte environment. Upon introduction of pore-forming membrane proteins such as alamethicin and gramicidin A, current pulses are observed through the lipid bilayers from the graphene to the electrolyte, which charge the quantum capacitance of the graphene. This approach combines nanotechnology with electrophysiology to demonstrate qualitatively new ways of measuring ion channel currents. PMID:24754625

  4. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments. PMID:16472222

  5. A Component-Based FPGA Design Framework for Neuronal Ion Channel Dynamics Simulations

    PubMed Central

    Mak, Terrence S. T.; Rachmuth, Guy; Lam, Kai-Pui; Poon, Chi-Sang

    2008-01-01

    Neuron-machine interfaces such as dynamic clamp and brain-implantable neuroprosthetic devices require real-time simulations of neuronal ion channel dynamics. Field Programmable Gate Array (FPGA) has emerged as a high-speed digital platform ideal for such application-specific computations. We propose an efficient and flexible component-based FPGA design framework for neuronal ion channel dynamics simulations, which overcomes certain limitations of the recently proposed memory-based approach. A parallel processing strategy is used to minimize computational delay, and a hardware-efficient factoring approach for calculating exponential and division functions in neuronal ion channel models is used to conserve resource consumption. Performances of the various FPGA design approaches are compared theoretically and experimentally in corresponding implementations of the AMPA and NMDA synaptic ion channel models. Our results suggest that the component-based design framework provides a more memory economic solution as well as more efficient logic utilization for large word lengths, whereas the memory-based approach may be suitable for time-critical applications where a higher throughput rate is desired. PMID:17190033

  6. Main ion channels and receptors associated with visceral hypersensitivity in irritable bowel syndrome

    PubMed Central

    de Carvalho Rocha, Heraldo Arcela; Dantas, Bruna Priscilla Vasconcelos; Rolim, Thaísa Leite; Costa, Bagnólia Araújo; de Medeiros, Arnaldo Correia

    2014-01-01

    Irritable bowel syndrome (IBS) is a very frequent functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort and alteration of bowel habits. The IBS physiopathology is extremely complex. Visceral hypersensitivity plays an important role in the pathogenesis of abdominal pain in both in vitro and in vivo models of this functional disorder. In order to obtain a general view of the participation of the main ion channels and receptors regarding the visceral hypersensitivity in the IBS and to describe their chemical structure, a literature review was carried out. A bibliographical research in the following electronic databases: Pubmed and Virtual Library in Health (BVS) was fulfilled by using the search terms “ion channels” “or” “receptors” “and” “visceral hypersensitivity” “or” “visceral nociception” “and” “irritable bowel syndrome”. Original and review articles were considered for data acquisition. The activation of the ATP ion-gated channels, voltage-gated sodium (Nav) and calcium (Cav) channels, as well as the activation of protease-activated receptors (PAR2), transient receptor potential vanilloide-1, serotonin, cannabinoids and cholecystokinin are involved in the genesis of visceral hypersensitivity in IBS. The involvement of ion channels and receptors concerning visceral hypersensitivity is noteworthy in IBS models. PMID:24976114

  7. Ion channel drug discovery and research: the automated Nano-Patch-Clamp technology.

    PubMed

    Brueggemann, A; George, M; Klau, M; Beckler, M; Steindl, J; Behrends, J C; Fertig, N

    2004-01-01

    Unlike the genomics revolution, which was largely enabled by a single technological advance (high throughput sequencing), rapid advancement in proteomics will require a broader effort to increase the throughput of a number of key tools for functional analysis of different types of proteins. In the case of ion channels -a class of (membrane) proteins of great physiological importance and potential as drug targets- the lack of adequate assay technologies is felt particularly strongly. The available, indirect, high throughput screening methods for ion channels clearly generate insufficient information. The best technology to study ion channel function and screen for compound interaction is the patch clamp technique, but patch clamping suffers from low throughput, which is not acceptable for drug screening. A first step towards a solution is presented here. The nano patch clamp technology, which is based on a planar, microstructured glass chip, enables automatic whole cell patch clamp measurements. The Port-a-Patch is an automated electrophysiology workstation, which uses planar patch clamp chips. This approach enables high quality and high content ion channel and compound evaluation on a one-cell-at-a-time basis. The presented automation of the patch process and its scalability to an array format are the prerequisites for any higher throughput electrophysiology instruments.

  8. Dynamic polarization effects in ion channeling through single-wall carbon nanotubes

    SciTech Connect

    Zhou Dapeng; Wang Younian; Wei Li; Miskovic, Z.L.

    2005-08-15

    Ion channeling through a single-wall carbon nanotube is simulated by solving Newton's equations for ion motion at intermediate energies, under the action of both the surface-atom repulsive forces and the polarization forces due to the dynamic perturbation of the nanotube electrons. The atomic repulsion is described by a continuum potential based on the Thomas-Fermi-Moliere model, whereas the dynamic polarization of the nanotube electrons is described by a two-dimensional hydrodynamic model, giving rise to the transverse dynamic image force and the longitudinal stopping force. In the absence of centrifugal forces, a balance between the image force and the atomic repulsion is found to give rise to ion trajectories which oscillate over peripheral radial regions in the nanotube, provided the ion impact position is not too close to the nanotube wall, the impact angle is sufficiently small, and the incident speed is not too high. Otherwise, the ion is found to oscillate between the nanotube walls, passing over a local maximum of the potential in the center of the nanotube, which results from the image interaction. The full statistical analysis of 10{sup 3} ion trajectories has been made to further demonstrate the actual effect of dynamic polarization on the ion channeling.

  9. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    PubMed

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  10. Mitochondrial and Ion Channel Gene Alterations in Autism

    PubMed Central

    Smith, Moyra; Flodman, Pamela L.; Gargus, John J.; Simon, Mariella T; Verrell, Kimberley; Haas, Richard; Reiner, Gail E.; Naviaux, Robert; Osann, Katherine; Spence, M. Anne; Wallace, Douglas C.

    2012-01-01

    To evaluate the potential importance in autistic subjects of copy number variants (CNVs) that alter genes of relevance to bioenergetics, ionic metabolism, and synaptic function, we conducted a detailed microarray analysis of 69 autism probands and 35 parents, compared to 89 CEU HapMap controls. This revealed that the frequency CNVs of ≥ 100 kb and CNVs of ≥ 10 Kb were markedly increased in probands over parents and in probands and parents over controls. Evaluation of CNVs ≥ 1 Mb by chromosomal FISH confirmed the molecular identity of a subset of the CNVs, some of which were associated with chromosomal rearrangements. In a number of the cases, CNVs were found to alter the copy number of genes that are important in mitochondrial oxidative phosphorylation (OXPHOS), ion and especially calcium transport, and synaptic structure. Hence, autism might result from alterations in multiple bioenergetic and metabolic genes required for mental function. PMID:22538295

  11. Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel.

    PubMed

    Ulmschneider, Martin B; Bagnéris, Claire; McCusker, Emily C; Decaen, Paul G; Delling, Markus; Clapham, David E; Ulmschneider, Jakob P; Wallace, B A

    2013-04-16

    The crystal structure of the open conformation of a bacterial voltage-gated sodium channel pore from Magnetococcus sp. (NaVMs) has provided the basis for a molecular dynamics study defining the channel's full ion translocation pathway and conductance process, selectivity, electrophysiological characteristics, and ion-binding sites. Microsecond molecular dynamics simulations permitted a complete time-course characterization of the protein in a membrane system, capturing the plethora of conductance events and revealing a complex mixture of single and multi-ion phenomena with decoupled rapid bidirectional water transport. The simulations suggest specific localization sites for the sodium ions, which correspond with experimentally determined electron density found in the selectivity filter of the crystal structure. These studies have also allowed us to identify the ion conductance mechanism and its relation to water movement for the NavMs channel pore and to make realistic predictions of its conductance properties. The calculated single-channel conductance and selectivity ratio correspond closely with the electrophysiology measurements of the NavMs channel expressed in HEK 293 cells. The ion translocation process seen in this voltage-gated sodium channel is clearly different from that exhibited by members of the closely related family of voltage-gated potassium channels and also differs considerably from existing proposals for the conductance process in sodium channels. These studies simulate sodium channel conductance based on an experimentally determined structure of a sodium channel pore that has a completely open transmembrane pathway and activation gate.

  12. Autocrine-Based Selection of Drugs That Target Ion Channels from Combinatorial Venom Peptide Libraries.

    PubMed

    Zhang, Hongkai; Du, Mingjuan; Xie, Jia; Liu, Xiao; Sun, Jingying; Wang, Wei; Xin, Xiu; Possani, Lourival D; Yea, Kyungmoo; Lerner, Richard A

    2016-08-01

    Animal venoms represent a rich source of pharmacologically active peptides that interact with ion channels. However, a challenge to discovering drugs remains because of the slow pace at which venom peptides are discovered and refined. An efficient autocrine-based high-throughput selection system was developed to discover and refine venom peptides that target ion channels. The utility of this system was demonstrated by the discovery of novel Kv1.3 channel blockers from a natural venom peptide library that was formatted for autocrine-based selection. We also engineered a Kv1.3 blocker peptide (ShK) derived from sea anemone to generate a subtype-selective Kv1.3 blocker with a long half-life in vivo. PMID:27197631

  13. A family of fluoride-specific ion channels with dual-topology architecture

    PubMed Central

    Stockbridge, Randy B; Robertson, Janice L; Kolmakova-Partensky, Ludmila; Miller, Christopher

    2013-01-01

    Fluoride ion, ubiquitous in soil, water, and marine environments, is a chronic threat to microorganisms. Many prokaryotes, archea, unicellular eukaryotes, and plants use a recently discovered family of F− exporter proteins to lower cytoplasmic F− levels to counteract the anion’s toxicity. We show here that these ‘Fluc’ proteins, purified and reconstituted in liposomes and planar phospholipid bilayers, form constitutively open anion channels with extreme selectivity for F− over Cl−. The active channel is a dimer of identical or homologous subunits arranged in antiparallel transmembrane orientation. This dual-topology assembly has not previously been seen in ion channels but is known in multidrug transporters of the SMR family, and is suggestive of an evolutionary antecedent of the inverted repeats found within the subunits of many membrane transport proteins. DOI: http://dx.doi.org/10.7554/eLife.01084.001 PMID:23991286

  14. Novel ion channels in the protists, Mougeotia and Saprolegnia, using sub-gigaseals.

    PubMed

    Lew, R R; Garrill, A; Covic, L; Heath, I B; Serlin, B S

    1992-10-01

    Protoplasts of the filamentous alga, Mougeotia, and the filamentous fungal oomycete, Saprolegnia ferax, exhibit two K+ ion channels (2-6 pA) using the patch-clamp technique when the seals are less than 1 G omega (about 100 M omega). The membrane potential of the protoplasts was near 0 mV as measured intracellularly with double-barreled micropipettes; thus, inward K+ flux is due solely to concentration differences. Although conductances are in the range expected for K+ channels, the activity at 0 mV is not seen in other organisms under gigaseal conditions. This paper draws attention to the usefulness of this subsidiary patch-clamp technique and the novel characteristics of ion channels in Mougeotia and Saprolegnia.

  15. Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels

    PubMed Central

    Shuart, Noah G.; Haitin, Yoni; Camp, Stacey S.; Black, Kevin D.; Zagotta, William N.

    2011-01-01

    Molecular determinants of ion channel tetramerization are well characterized, but those involved in heteromeric channel assembly are less clearly understood. The heteromeric composition of native channels is often precisely controlled. Cyclic nucleotide-gated (CNG) channels from rod photoreceptors exhibit a 3:1 stoichiometry of CNGA1 and CNGB1 subunits that tunes the channels for their specialized role in phototransduction. Here we show, using electrophysiology, fluorescence, biochemistry, and X-ray crystallography, that the mechanism for this controlled assembly is the formation of a parallel 3-helix coiled-coil domain of the carboxy-terminal leucine zipper region of CNGA1 subunits, constraining the channel to contain three CNGA1 subunits, followed by preferential incorporation of a single CNGB1 subunit. Deletion of the carboxy-terminal leucine zipper domain relaxed the constraint and permitted multiple CNGB1 subunits in the channel. The X-ray crystal structures of the parallel 3-helix coiled-coil domains of CNGA1 and CNGA3 subunits were similar, suggesting that a similar mechanism controls the stoichiometry of cone CNG channels. PMID:21878911

  16. The mechanosensory calcium-selective ion channel: key component of a plasmalemmal control centre?

    NASA Technical Reports Server (NTRS)

    Pickard, B. G.; Ding, J. P.

    1993-01-01

    Mechanosensory calcium-selective ion channels probably serve to detect not only mechanical stress but also electrical, thermal, and diverse chemical stimuli. Because all stimuli result in a common output, most notably a shift in second messenger calcium concentration, the channels are presumed to serve as signal integrators. Further, insofar as second messenger calcium in turn gives rise to mechanical, electrical, and diverse chemical changes, the channels are postulated to initiate regulatory feedbacks. It is proposed that the channels and the feedback loops play a wide range of roles in regulating normal plant function, as well as in mediating disturbance of normal function by environmental stressors and various pathogens. In developing evidence for the physiological performance of the channel, a model for a cluster of regulatory plasmalemmal proteins and cytoskeletal elements grouped around a set of wall-to-membrane and transmembrane linkers has proved useful. An illustration of how the model might operate is presented. It is founded on the demonstration that several xenobiotics interfere both with normal channel behaviour and with gravitropic reception. Accordingly, the first part of the illustration deals with how the channels and the control system within which they putatively operate might initiate gravitropism. Assuming that gravitropism is an asymmetric expression of growth, the activities of the channels and the plasmalemmal control system are extrapolated to account for regulation of both rate and allometry of cell expansion. Finally, it is discussed how light, hormones, redox agents and herbicides could in principle affect growth via the putative plasmalemmal control cluster or centre.

  17. A novel slow-inactivation-specific ion channel modulator attenuates neuropathic pain.

    PubMed

    Hildebrand, Michael E; Smith, Paula L; Bladen, Chris; Eduljee, Cyrus; Xie, Jennifer Y; Chen, Lina; Fee-Maki, Molly; Doering, Clint J; Mezeyova, Janette; Zhu, Yongbao; Belardetti, Francesco; Pajouhesh, Hassan; Parker, David; Arneric, Stephen P; Parmar, Manjeet; Porreca, Frank; Tringham, Elizabeth; Zamponi, Gerald W; Snutch, Terrance P

    2011-04-01

    Voltage-gated ion channels are implicated in pain sensation and transmission signaling mechanisms within both peripheral nociceptors and the spinal cord. Genetic knockdown and knockout experiments have shown that specific channel isoforms, including Na(V)1.7 and Na(V)1.8 sodium channels and Ca(V)3.2 T-type calcium channels, play distinct pronociceptive roles. We have rationally designed and synthesized a novel small organic compound (Z123212) that modulates both recombinant and native sodium and calcium channel currents by selectively stabilizing channels in their slow-inactivated state. Slow inactivation of voltage-gated channels can function as a brake during periods of neuronal hyperexcitability, and Z123212 was found to reduce the excitability of both peripheral nociceptors and lamina I/II spinal cord neurons in a state-dependent manner. In vivo experiments demonstrate that oral administration of Z123212 is efficacious in reversing thermal hyperalgesia and tactile allodynia in the rat spinal nerve ligation model of neuropathic pain and also produces acute antinociception in the hot-plate test. At therapeutically relevant concentrations, Z123212 did not cause significant motor or cardiovascular adverse effects. Taken together, the state-dependent inhibition of sodium and calcium channels in both the peripheral and central pain signaling pathways may provide a synergistic mechanism toward the development of a novel class of pain therapeutics. PMID:21349638

  18. Permeant ion effects on the gating kinetics of the type L potassium channel in mouse lymphocytes

    PubMed Central

    1991-01-01

    Permeant ion species was found to profoundly affect the gating kinetics of type l K+ currents in mouse T lymphocytes studied with the whole- cell or on-cell patch gigaohm-seal techniques. Replacing external K+ with Rb+ (as the sole monovalent cation, at 160 mM) shifted the peak conductance voltage (g-V) relation by approximately 20 mV to more negative potentials, while NH4+ shifted the g-V curve by 15 mV to more positive potentials. Deactivation (the tail current time constant, tau tail) was slowed by an average of 14-fold at -70 mV in external Rb+, by approximately 8-fold in Cs+, and by a factor of two to three in NH4+. Changing the external K+ concentration, [K+]o, from 4.5 to 160 mM or [Rb+]o from 10 to 160 mM had no effect on tau tail. With all the internal K+ replaced by Rb+ or Cs+ and either isotonic Rb+ or K+ in the bath, tau tail was indistinguishable from that with K+ in the cell. With the exception of NH4+, activation time constants were insensitive to permeant ion species. These results indicate that external permeant ions have stronger effects than internal permeant ions, suggesting an external modulatory site that influences K+ channel gating. However, in bi-ionic experiments with reduced external permeant ion concentrations, tau tail was sensitive to the direction of current flow, indicating that the modulatory site is either within the permeation pathway or in the outer vestibule of the channel. The latter interpretation implies that outward current through an open type l K+ channel significantly alters local ion concentrations at the modulatory site in the outer vestibule, and consequently at the mouth of the channel. Experiments with mixtures of K+ and Rb+ in the external solution reveal that deactivation kinetics are minimally affected by addition of Rb+ until the Rb+ mole fraction approaches unity. This relationship between mole fraction and tau tail, together with the concentration independence of tau tail, was hard to reconcile with simple

  19. Molecular mechanism of the assembly of an acid-sensing receptor ion channel complex.

    PubMed

    Yu, Yong; Ulbrich, Maximilian H; Li, Ming-Hui; Dobbins, Scott; Zhang, Wei K; Tong, Liang; Isacoff, Ehud Y; Yang, Jian

    2012-01-01

    Polycystic kidney disease (PKD) family proteins associate with transient receptor potential (TRP) channel family proteins to form functionally important complexes. PKD proteins differ from known ion channel-forming proteins and are generally thought to act as membrane receptors. Here we find that PKD1L3, a PKD protein, functions as a channel-forming subunit in an acid-sensing heteromeric complex formed by PKD1L3 and TRPP3, a TRP channel protein. Single amino-acid mutations in the putative pore region of both proteins alter the channel's ion selectivity. The PKD1L3/TRPP3 complex in the plasma membrane of live cells contains one PKD1L3 and three TRPP3. A TRPP3 C-terminal coiled-coil domain forms a trimer in solution and in crystal, and has a crucial role in the assembly and surface expression of the PKD1L3/TRPP3 complex. These results demonstrate that PKD subunits constitute a new class of channel-forming proteins, enriching our understanding of the function of PKD proteins and PKD/TRPP complexes. PMID:23212381

  20. Transient receptor potential ion channels in primary sensory neurons as targets for novel analgesics

    PubMed Central

    Sousa-Valente, J; Andreou, A P; Urban, L; Nagy, I

    2014-01-01

    The last decade has witnessed an explosion in novel findings relating to the molecules involved in mediating the sensation of pain in humans. Transient receptor potential (TRP) ion channels emerged as the greatest group of molecules involved in the transduction of various physical stimuli into neuronal signals in primary sensory neurons, as well as, in the development of pain. Here, we review the role of TRP ion channels in primary sensory neurons in the development of pain associated with peripheral pathologies and possible strategies to translate preclinical data into the development of effective new analgesics. Based on available evidence, we argue that nociception-related TRP channels on primary sensory neurons provide highly valuable targets for the development of novel analgesics and that, in order to reduce possible undesirable side effects, novel analgesics should prevent the translocation from the cytoplasm to the cell membrane and the sensitization of the channels rather than blocking the channel pore or binding sites for exogenous or endogenous activators. LINKED ARTICLES This article is part of a themed section on the pharmacology of TRP channels. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-10 PMID:24283624

  1. Kinetic modeling of ion conduction in KcsA potassium channel

    NASA Astrophysics Data System (ADS)

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-01

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K+,Tl+, and Rb+). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K+. This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K+ symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH4+ are obtained and compared with those of other ions (the NH4+ J-V curve is qualitatively different from those of Rb+ and Tl+). Third, the effects of Na+ block on K+ and Rb+ currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K+ conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter could limit conduction at high

  2. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  3. Kinetic modeling of ion conduction in KcsA potassium channel.

    PubMed

    Mafé, Salvador; Pellicer, Julio; Cervera, Javier

    2005-05-22

    KcsA constitutes a potassium channel of known structure that shows both high conduction rates and selectivity among monovalent cations. A kinetic model for ion conduction through this channel that assumes rapid ion transport within the filter has recently been presented by Nelson. In a recent, brief communication, we used the model to provide preliminary explanations to the experimental current-voltage J-V and conductance-concentration g-S curves obtained for a series of monovalent ions (K(+),Tl(+), and Rb(+)). We did not assume rapid ion transport in the calculations, since ion transport within the selectivity filter could be rate limiting for ions other than native K(+). This previous work is now significantly extended to the following experimental problems. First, the outward rectification of the J-V curves in K(+) symmetrical solutions is analyzed using a generalized kinetic model. Second, the J-V and g-S curves for NH(4) (+) are obtained and compared with those of other ions (the NH(4) (+) J-V curve is qualitatively different from those of Rb(+) and Tl(+)). Third, the effects of Na(+) block on K(+) and Rb(+) currents through single KcsA channels are studied and the different blocking behavior is related to the values of the translocation rate constants characteristic of ion transport within the filter. Finally, the significantly decreased K(+) conductance caused by mutation of the wild-type channel is also explained in terms of this rate constant. In order to keep the number of model parameters to a minimum, we do not allow the electrical distance (an empirical parameter of kinetic models that controls the exponential voltage dependence of the dissociation rate) to vary with the ionic species. Without introducing the relatively high number of adjustable parameters of more comprehensive site-based models, we show that ion association to the filter is rate controlling at low concentrations, but ion dissociation from the filter and ion transport within the filter

  4. A novel sea anemone peptide that inhibits acid-sensing ion channels.

    PubMed

    Rodríguez, Armando Alexei; Salceda, Emilio; Garateix, Anoland Georgina; Zaharenko, André Junqueira; Peigneur, Steve; López, Omar; Pons, Tirso; Richardson, Michael; Díaz, Maylín; Hernández, Yasnay; Ständker, Ludger; Tytgat, Jan; Soto, Enrique

    2014-03-01

    Sea anemones produce ion channels peptide toxins of pharmacological and biomedical interest. However, peptides acting on ligand-gated ion channels