Science.gov

Sample records for acidic aqueous environments

  1. The stability of the acetic acid dimer in microhydrated environments and in aqueous solution.

    PubMed

    Pašalić, Hasan; Tunega, Daniel; Aquino, Adélia J A; Haberhauer, Georg; Gerzabek, Martin H; Lischka, Hans

    2012-03-28

    The thermodynamic stability of the acetic acid dimer conformers in microhydrated environments and in aqueous solution was studied by means of molecular dynamics simulations using the density functional based tight binding (DFTB) method. To confirm the reliability of this method for the system studied, density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) calculations were performed for comparison. Classical optimized potentials for liquid simulations (OPLS) force field dynamics was used as well. One focus of this work was laid on the study of the capabilities of water molecules to break the hydrogen bonds of the acetic acid dimer. The barrier for insertion of one water molecule into the most stable cyclic dimer is found to lie between 3.25 and 4.8 kcal mol(-1) for the quantum mechanical methods, but only at 1.2 kcal mol(-1) for OPLS. Starting from different acetic acid dimer structures optimized in gas phase, DFTB dynamics simulations give a different picture of the stability in the microhydrated environment (4 to 12 water molecules) as compared to aqueous solution. In the former case all conformers are converted to the hydrated cyclic dimer, which remains stable over the entire simulation time of 1 ns. These results demonstrate that the considered microhydrated environment is not sufficient to dissociate the acetic acid dimer. In aqueous solution, however, the DFTB dynamics shows dissociation of all dimer structures (or processes leading thereto) starting after about 50 ps, demonstrating the capability of the water environment to break up the relatively strong hydrogen bridges. The OPLS dynamics in the aqueous environment shows--in contrast to the DFTB results--immediate dissociation, but a similar long-term behavior.

  2. Self-assembly of folic acid: a chiral-aligning medium for enantiodiscrimination of organic molecules in an aqueous environment.

    PubMed

    Lokesh; Suryaprakash, N

    2012-09-10

    Weak orienting medium: Self-assembly of alkaline salt of folic acid yielded a weak liquid-crystalline phase in an aqueous environment. This medium has the ability to discriminate enantiomers. The mesophase exists over a broad range and has the physical parameter dependent tunability of degree of alignment (see scheme).

  3. Photochemistry of aqueous pyruvic acid.

    PubMed

    Griffith, Elizabeth C; Carpenter, Barry K; Shoemaker, Richard K; Vaida, Veronica

    2013-07-16

    The study of organic chemistry in atmospheric aerosols and cloud formation is of interest in predictions of air quality and climate change. It is now known that aqueous phase chemistry is important in the formation of secondary organic aerosols. Here, the photoreactivity of pyruvic acid (PA; CH3COCOOH) is investigated in aqueous environments characteristic of atmospheric aerosols. PA is currently used as a proxy for α-dicarbonyls in atmospheric models and is abundant in both the gas phase and the aqueous phase (atmospheric aerosols, fog, and clouds) in the atmosphere. The photoreactivity of PA in these phases, however, is very different, thus prompting the need for a mechanistic understanding of its reactivity in different environments. Although the decarboxylation of aqueous phase PA through UV excitation has been studied for many years, its mechanism and products remain controversial. In this work, photolysis of aqueous PA is shown to produce acetoin (CH3CHOHCOCH3), lactic acid (CH3CHOHCOOH), acetic acid (CH3COOH), and oligomers, illustrating the progression from a three-carbon molecule to four-carbon and even six-carbon molecules through direct photolysis. These products are detected using vibrational and electronic spectroscopy, NMR, and MS, and a reaction mechanism is presented accounting for all products detected. The relevance of sunlight-initiated PA chemistry in aqueous environments is then discussed in the context of processes occurring on atmospheric aerosols.

  4. Molecular Modeling of Ammonium, Calcium, Sulfur, and Sodium Lignosulphonates in Acid and Basic Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Salazar Valencia, P. J.; Bolívar Marinez, L. E.; Pérez Merchancano, S. T.

    2015-12-01

    Lignosulphonates (LS), also known as lignin sulfonates or sulfite lignin, are lignins in sulfonated forms, obtained from the "sulfite liquors," a residue of the wood pulp extraction process. Their main utility lies in its wide range of properties, they can be used as additives, dispersants, binders, fluxing, binder agents, etc. in fields ranging from food to fertilizer manufacture and even as agents in the preparation of ion exchange membranes. Since they can be manufactured relatively easy and quickly, and that its molecular size can be manipulated to obtain fragments of very low molecular weight, they are used as transport agents in the food industry, cosmetics, pharmaceutical and drug development, and as molecular elements for the treatment of health problems. In this paper, we study the electronic structural and optical characteristics of LS incorporating ammonium, sulfur, calcium, and sodium ions in acidic and basic aqueous media in order to gain a better understanding of their behavior and the very interesting properties exhibit. The studies were performed using the molecular modeling program HyperChem 5 using the semiempirical method PM3 of the NDO Family (neglect of differential overlap), to calculate the structural properties. We calculated the electronic and optical properties using the semiempirical method ZINDO / CI.

  5. Corrosion of high-alloy materials in aqueous hydrofluoric acid environments

    SciTech Connect

    Pawel, S.J. . Development Div.)

    1994-12-01

    A series of immersion tests for eight high-alloy materials was performed in a variety of hydrofluoric acid (HF) environments. Solution strengths of 0.05%, 1%, 10%, 24%, and 48% HF were examined at 24 C, 50 C, and 76 C. Coupons of each alloy were exposed fully immersed in solution and partially exposed in the aerated vapor above each solution. In addition, a limited number of U-bend tests were performed to examine susceptibility to stress corrosion cracking. Comparison of alloy performance (corrosion rate calculated from weight loss, metallographic evaluation of attack) indicated alloys C-22 (UNS N06022) and C-276 (UNS N10276) exhibited overall superior performance. Other alloys showed useful resistance for a limited range of conditions.

  6. Adsorption behavior of antimony(III) oxyanions on magnetite surface in aqueous organic acid environment

    NASA Astrophysics Data System (ADS)

    Mittal, Vinit K.; Bera, Santanu; Narasimhan, S. V.; Velmurugan, S.

    2013-02-01

    Antimony(III) adsorption is observed on magnetite (Fe3O4) surface under acidic and reducing condition through surface hydroxyl (SOH) groups bonding on Fe3O4 surface. Desorption of adsorbed Sb(III) is observed from Fe3O4 surface along with iron release in organic acid at 85 °C after 5 h of experiment. Tartaric acid (TA) shows minimum Sb(III) adsorption on Fe3O4 among the organic acid studied. The reason is TA having two sets of adjacent functional groups viz. Odbnd Csbnd OH and Csbnd OH which are responsible for the formation of five-membered bidendate chelate with Sb(III). Other oxyanions, cations or complexing agents along with TA influences the Sb(III) adsorption on Fe3O4. The surface of magnetite is modified by the addition of fatty acids viz. Lauric acid, benzoic acid to bind the Ssbnd OH groups present on the surface. This results in delaying the process of adsorption without changing the quantity of saturation adsorption of Sb(III) on Fe3O4 surface.

  7. Structural evolution of molybdenum carbides in hot aqueous environments and impact on low-temperature hydroprocessing of acetic acid

    SciTech Connect

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; Crocker, Mark; Lewis, Sr., Samuel A.; Lance, Michael J.; Meyer, III, Harry M.; More, Karren L.

    2015-03-13

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating the possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.

  8. Structural evolution of molybdenum carbides in hot aqueous environments and impact on low-temperature hydroprocessing of acetic acid

    DOE PAGES

    Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; Crocker, Mark; Lewis, Sr., Samuel A.; Lance, Michael J.; Meyer, III, Harry M.; More, Karren L.

    2015-03-13

    In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less

  9. Ancient aqueous environments at Endeavour crater, Mars.

    PubMed

    Arvidson, R E; Squyres, S W; Bell, J F; Catalano, J G; Clark, B C; Crumpler, L S; de Souza, P A; Fairén, A G; Farrand, W H; Fox, V K; Gellert, R; Ghosh, A; Golombek, M P; Grotzinger, J P; Guinness, E A; Herkenhoff, K E; Jolliff, B L; Knoll, A H; Li, R; McLennan, S M; Ming, D W; Mittlefehldt, D W; Moore, J M; Morris, R V; Murchie, S L; Parker, T J; Paulsen, G; Rice, J W; Ruff, S W; Smith, M D; Wolff, M J

    2014-01-24

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe(+3)-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  10. Ancient aqueous environments at Endeavour crater, Mars

    USGS Publications Warehouse

    Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.

    2014-01-01

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  11. Fluorescent Ag nanoclusters prepared in aqueous poly(acrylic acid-co-maleic acid) solutions: a spectroscopic study of their excited state dynamics, size and local environment.

    PubMed

    Dandapat, Manika; Mandal, Debabrata

    2016-01-28

    Stable, fluorescent Ag nanoclusters were prepared in aqueous solutions of Na(+) salt of the carboxylate-rich polymer poly(acrylic acid-co-maleic acid) under brief spells of UV irradiation. The nanoclusters were nearly spherical, with diameters within 1.90 ± 0.50 nm, but displayed a prominent red edge excitation shift (REES) of fluorescence upon exciting within the visible absorption band, indicating heterogeneity of energy level distributions. Spectroscopic studies revealed that irrespective of whether the nanoclusters are excited in their UV or visible absorption bands, their fluorescence always ensues from the same manifold of emissive states, with a broad range of fluorescence lifetimes from ∼150 fs to 1 ns. PMID:26700465

  12. Plasmon-driven sequential chemical reactions in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  13. Plasmon-driven sequential chemical reactions in an aqueous environment.

    PubMed

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  14. Plasmon-driven sequential chemical reactions in an aqueous environment

    PubMed Central

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-01-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029

  15. Aqueous Photochemistry of Glyoxylic Acid.

    PubMed

    Eugene, Alexis J; Xia, Sha-Sha; Guzman, Marcelo I

    2016-06-01

    Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging of photoproducts is studied by UV-visible and fluorescence spectroscopies to reveal that the optical properties are altered by the glyoxal produced. The optical properties display periodicity in the time domain of the UV-visible spectrum of chromophores with absorption enhancement (thermochromism) or loss (photobleaching) during nighttime and daytime cycles, respectively. During irradiation, excited state glyoxylic acid can undergo α-cleavage or participate in hydrogen abstractions. The use of (13)C nuclear magnetic resonance spectroscopy (NMR) analysis shows that glyoxal is an important intermediate produced during direct photolysis. Glyoxal quickly reaches a quasi-steady state as confirmed by UHPLC-MS analysis of its corresponding (E) and (Z) 2,4-dinitrophenylhydrazones. The homolytic cleavage of glyoxylic acid is proposed as a fundamental step for the production of glyoxal. Both carbon oxides, CO2(g) and CO(g) evolving to the gas-phase, are quantified by FTIR spectroscopy. Finally, formic acid, oxalic acid, and tartaric acid photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection and (1)H NMR spectroscopy. A reaction mechanism is proposed based on all experimental observations. PMID:27192089

  16. Analysis of the Raman spectra of Ca(2+)-dipicolinic acid alone and in the bacterial spore core in both aqueous and dehydrated environments.

    PubMed

    Kong, Lingbo; Setlow, Peter; Li, Yong-qing

    2012-08-21

    The core of dormant bacterial spores suspended in water contains a large depot of dipicolinic acid (DPA) chelated with divalent cations, predominantly Ca(2+) (CaDPA), and surrounded by water molecules. Since the intensities of the vibration bands of CaDPA molecules depend significantly on the water content in the CaDPA's environment, the Raman spectra of CaDPA in spores may allow the determination of the spore core's hydration state. We have measured Raman spectra of single spores of three Bacillus species in different hydration states including the spores suspended in water, air-dried and vacuum-dried. As a comparison, we also measured the Raman spectra of CaDPA and DPA in different forms including in aqueous solution, and as amorphous powder and crystalline form. We also monitored changes in Raman spectra of an individual spore during dehydration under vacuum. The results indicated that (1) the state of CaDPA in the core of a spore suspended in water is close to an amorphous solid or a glassy state, but still mixed with water molecules; (2) the ratio of intensities of Raman bands at 1575 and 1017 cm(-1) (I(1575)/I(1017)) is sensitive to the water content in the CaDPA's environment; (3) variations in I(1575)/I(1017) are small (∼4%) in a population of dormant Bacillus spores suspended in water; and (4) the I(1575)/I(1017) ratio increases significantly during dehydration under vacuum. Consequently, measurement of the I(1575)/I(1017) ratio of CaDPA in spores may allow a qualitative estimation of the degree of hydration of the bacterial spore's core. PMID:22763367

  17. Aqueous thermal degradation of gallic acid

    NASA Astrophysics Data System (ADS)

    Snow Boles, Jennifer; Crerar, David A.; Grissom, Grady; Key, Tonalee C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105° and 150°C, with an activation energy of 22.9 or 27.8 kcal/ mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed, suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  18. Aqueous thermal degradation of gallic acid

    SciTech Connect

    Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C.

    1988-02-01

    Aqueous thermal degradation experiments show gallic acid, a naturally occurring aromatic carboxylic compound, decomposes rapidly at temperatures between 105/sup 0/ and 150/sup 0/C, with an activation energy of 22.9 or 27.8 kcal/mole, depending on pH of the starting solution. Pyrogallol is the primary product identified, indicating degradation via decarboxylation and a carbanion transition state. Relatively rapid degradation of vanillic, phthalic, ellagic and tannic acids has also been observed,suggesting that these and perhaps other aromatic acids could be short-lived in deep formation waters.

  19. Microstructural characterization of copper corrosion in aqueous and soil environments

    SciTech Connect

    Srivastava, A.; Balasubramaniam, R. . E-mail: bala@iitk.ac.in

    2005-08-15

    Scanning electron microscopy has been used to investigate the surface films on pure copper after exposure to different aqueous and soil environments, containing chloride, sulfide and ammonium salts. The morphology of the films formed on copper surface in aqueous and soil environments was different for the same amount of pollutants. The surface films formed in soil environments were not homogenous in contrast to the films formed in aqueous environments. The damaging effect of chloride ions and the benign role of sulfide ions were revealed in both the environments. Local compositional analysis confirmed that the surface films formed on copper consisted predominantly of copper and oxygen.

  20. Reliable Hydrogel with Mechanical "Fuse Link" in an Aqueous Environment.

    PubMed

    Kondo, Shinji; Hiroi, Takashi; Han, Young-Soo; Kim, Tae-Hwan; Shibayama, Mitsuhiro; Chung, Ung-il; Sakai, Takamasa

    2015-12-01

    A robust hydrogel with a reliable deformation region in an aqueous environment is proposed. The gel has a homogeneous network where hydrophilic/hydrophobic components are uniformly distributed. In an aqueous environment, aggregated hydrophobic segments serve as "mechanical fuse links," inhibiting sudden macroscopic fracture. The gel endures threefold stretching for more than 100 cycles in water without mechanical hysteresis.

  1. Reliable Hydrogel with Mechanical "Fuse Link" in an Aqueous Environment.

    PubMed

    Kondo, Shinji; Hiroi, Takashi; Han, Young-Soo; Kim, Tae-Hwan; Shibayama, Mitsuhiro; Chung, Ung-il; Sakai, Takamasa

    2015-12-01

    A robust hydrogel with a reliable deformation region in an aqueous environment is proposed. The gel has a homogeneous network where hydrophilic/hydrophobic components are uniformly distributed. In an aqueous environment, aggregated hydrophobic segments serve as "mechanical fuse links," inhibiting sudden macroscopic fracture. The gel endures threefold stretching for more than 100 cycles in water without mechanical hysteresis. PMID:26443000

  2. Speciation in aqueous solutions of nitric acid.

    PubMed

    Hlushak, S; Simonin, J P; De Sio, S; Bernard, O; Ruas, A; Pochon, P; Jan, S; Moisy, P

    2013-02-28

    In this study, speciation in aqueous solutions of nitric acid at 25 °C was assessed in two independent ways. First, Raman experiments were carried out and interpreted in terms of free nitrate ions, ion pairs and neutral HNO(3) molecules. In parallel, a model was developed to account for the formation of these two kinds of pairs. It was based on an extension of the binding mean spherical approximation (BiMSA), or associative MSA (AMSA), in which the size and the charge of the ions in the chemical pair may differ from those of the free ions. A simultaneous fit of the osmotic coefficient and of the proportion of free ions (obtained from Raman spectroscopy experiments) led to an estimation of the speciation in nitric acid solutions. The result obtained using this procedure was compared with the estimation obtained from the Raman experiments.

  3. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  4. Acidities of Water and Methanol in Aqueous Solution and DMSO

    ERIC Educational Resources Information Center

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  5. Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium.

    PubMed

    Panchangam, Sri Chandana; Lin, Angela Yu-Chen; Shaik, Khaja Lateef; Lin, Cheng-Fang

    2009-09-01

    Decomposition of perfluorocarboxylic acids (PFCAs) is of prime importance since they are recognized as persistent organic pollutants and are widespread in the environment. PFCAs with longer carbon chain length are particularly of interest because of their noted recalcitrance, toxicity, and bioaccumulation. Here in this study, we demonstrate efficient decomposition of three important PFCAs such as perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) by heterogeneous photocatalysis with TiO(2) as a photocatalyst in acidic aqueous solutions. The PFCAs were decomposed into shorter carbon chain length PFCAs and fluoride ions. Photoholes of excited TiO(2) generated upon UV-irradiation are found to be the oxidation sites for PFCAs. Therefore, creation and sustenance of these photoholes in the acidic aqueous medium has enhanced the decomposition of PFCAs. Heterogeneous photocatalytic treatment achieved more than 99% decomposition and 38% complete mineralization of PFOA in 7h. The decomposition of other PFCAs was as high as 99% with a defluorination efficiency of 38% for PFDA and 54% for PFNA. The presence of perchloric acid was found to enhance the decomposition by facilitating the ionization of PFCAs. The oxygen present in the medium served both as an oxidant and an electron acceptor. The mechanistic details of PFCA decomposition and their corresponding mineralization are elaborated.

  6. Aqueous-phase source of formic acid in clouds

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1983-01-01

    The coupled gas- and aqueous-phase cloud chemistry of HCOOH were examined for controlling factors in the acidity of cloud and rainwater. Attention was given to the aqueous OH/HO2 system that yields an OH species that is highly reactive with other species, notably SO2 and the formaldehyde/formic acid complex. A numerical model was developed to simulate the cloud chemistry in the remote troposphere, with considerations given to CH4-CO-NO(x)-O3-H(x)O(y) system. It was determined that aqueous phase OH radicals can produce and destroy formic acid droplets in daylight conditions, as well as control formic acid levels in rainwater. It is sugested that the same types of reactions may be involved in the control of acetic acid and other organic acids.

  7. Trichloroacetic acid in the environment.

    PubMed

    McCulloch, A

    2002-05-01

    species. TCA is removed from the environment naturally. There is abundant evidence that soil microorganisms dehalogenate TCA and it is lost from within spruce needles with a half-life of 10 days. There is also recent evidence of an abiotic aqueous decarboxylation mechanism with a half-life of 22 days. The supposedly widespread effects of TCA in conifer needles are not shown in controlled experiments. At concentrations in the needles of Scots pine similar to those observed in needles in forest trees, changes consequent on TCA treatment of field laboratory specimens were almost all insignificant.

  8. Coupled diffusion in aqueous weak acid + alkanolamine absorbents

    SciTech Connect

    Leaist, D.G.; Li, Y.; Poissant, R.

    1998-11-01

    Taylor dispersion and differential refractometry are used to measure ternary interdiffusion coefficients (D{sub ik}) for aqueous solutions of acetic acid + triethanolamine (TEA) and aqueous solutions of oxalic acid + TEA at 25 C. The D{sub ik} coefficients give the coupled fluxes of acid and TEA driven by the gradient in the concentration of each solute. Ternary Fick equations with variable D{sub ik} coefficients are integrated numerically to calculate accurate concentration profiles and the moving reaction front produced by the interdiffusion of TEA and acetic or oxalic acid. Ternary diffusion coefficients are also used to predict the rate of dissolution of oxalic acid in 1.00 mol/dm{sup 3} aqueous TEA, a process analogous to the absorption of a diprotic acid gas by an alkanolamine absorbent. The diffusion of oxalic acid drives a significant counterflow of TEA. The resulting buildup of TEA at the surface of the dissolving acid increases the interfacial concentration of TEA from 1.00 to 1.20 mol/dm{sup 3}, which in turn increases the solubility of the acid by 0.20 mol/dm{sup 3}. Nernst-Planck equations are used to predict D{sub ik} coefficients for aqueous weak acid + alkanolamine solutions. The fluxes of these solutes are shown to be strongly coupled by the electric field that is generated by the diffusing ions.

  9. Techniques for sensing methanol concentration in aqueous environments

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    An analyte concentration sensor that is capable of fast and reliable sensing of analyte concentration in aqueous environments with high concentrations of the analyte. Preferably, the present invention is a methanol concentration sensor device coupled to a fuel metering control system for use in a liquid direct-feed fuel cell.

  10. Sonophotocatalytic mineralization of Norflurazon in aqueous environment.

    PubMed

    Sathishkumar, Panneerselvam; Mangalaraja, Ramalinga Viswanathan; Rozas, Oscar; Vergara, Carola; Mansilla, Héctor D; Gracia-Pinilla, M A; Anandan, Sambandam

    2016-03-01

    Norflurazon (4-chloro-5-(methylamino)-2-[3-(trifluoromethyl)phenyl]pyridazin-3(2H)-one; C12H9ClF3N3O) is an excellent weed controlling agent being practiced in the agricultural lands. The excessive addition or the undissolved Norflurazon (maximum solubility 28 mg/L at 25 °C) enters into the aquatic environment and causes the adverse effects associated with its high concentration. To avoid the perilous effects, visible light assisted photocatalysis set-up coupled with the 42 kHz ultrasound producing bath type sonicator is used to completely mineralize the Norflurazon. TiO2, ZnO and gold loaded zinc oxide nanocatalysts were utilized to study the mineralization of Norflurazon. Au-ZnO shows the greater efficiency for the sonophotocatalytic removal of Norflurazon among the various nanocatalysts employed to study the mineralization. The order of Norflurazon mineralization was sonophotocatalysis > sonocatalysis > photocatalysis. The additive effect was achieved for the sonophotocatalytic degradation. The high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometric (LCMS) analyses were employed to identify the various intermediates produced during the mineralization. The identification of four pseudo molecular ions and various intermediates using the LCMS analysis evidently suggests the sonophotocatalytic degradation was preceded in various decay pathways. A suitable mechanism has been proposed for the sonophotocatalytic mineralization of Norflurazon.

  11. Sonophotocatalytic mineralization of Norflurazon in aqueous environment.

    PubMed

    Sathishkumar, Panneerselvam; Mangalaraja, Ramalinga Viswanathan; Rozas, Oscar; Vergara, Carola; Mansilla, Héctor D; Gracia-Pinilla, M A; Anandan, Sambandam

    2016-03-01

    Norflurazon (4-chloro-5-(methylamino)-2-[3-(trifluoromethyl)phenyl]pyridazin-3(2H)-one; C12H9ClF3N3O) is an excellent weed controlling agent being practiced in the agricultural lands. The excessive addition or the undissolved Norflurazon (maximum solubility 28 mg/L at 25 °C) enters into the aquatic environment and causes the adverse effects associated with its high concentration. To avoid the perilous effects, visible light assisted photocatalysis set-up coupled with the 42 kHz ultrasound producing bath type sonicator is used to completely mineralize the Norflurazon. TiO2, ZnO and gold loaded zinc oxide nanocatalysts were utilized to study the mineralization of Norflurazon. Au-ZnO shows the greater efficiency for the sonophotocatalytic removal of Norflurazon among the various nanocatalysts employed to study the mineralization. The order of Norflurazon mineralization was sonophotocatalysis > sonocatalysis > photocatalysis. The additive effect was achieved for the sonophotocatalytic degradation. The high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometric (LCMS) analyses were employed to identify the various intermediates produced during the mineralization. The identification of four pseudo molecular ions and various intermediates using the LCMS analysis evidently suggests the sonophotocatalytic degradation was preceded in various decay pathways. A suitable mechanism has been proposed for the sonophotocatalytic mineralization of Norflurazon. PMID:26735720

  12. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  13. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect

    Crawford, C.L.; Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  14. Esterified sago waste for engine oil removal in aqueous environment.

    PubMed

    Ngaini, Zainab; Noh, Farid; Wahi, Rafeah

    2014-01-01

    Agro-waste from the bark of Metroxylon sagu (sago) was studied as a low cost and effective oil sorbent in dry and aqueous environments. Sorption study was conducted using untreated sago bark (SB) and esterified sago bark (ESB) in used engine oil. Characterization study showed that esterification has successfully improved the hydrophobicity, buoyancy, surface roughness and oil sorption capacity of ESB. Sorption study revealed that water uptake of SB is higher (30 min static: 2.46 g/g, dynamic: 2.67 g/g) compared with ESB (30 min static: 0.18 g/g, dynamic: 0.14 g/g). ESB, however, showed higher oil sorption capacity in aqueous environment (30 min static: 2.30 g/g, dynamic: 2.14) compared with SB (30 min static: 0 g/g, dynamic: 0 g/g). ESB has shown great poTENTial as effective oil sorbent in aqueous environment due to its high oil sorption capacity, low water uptake and high buoyancy. PMID:25176478

  15. Polymerization of beta-amino acids in aqueous solution

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  16. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  17. Effects of organic acids, amino acids and ethanol on the radio-degradation of patulin in an aqueous model system

    NASA Astrophysics Data System (ADS)

    Yun, Hyejeong; Lim, Sangyong; Jo, Cheorun; Chung, Jinwoo; Kim, Soohyun; Kwon, Joong-Ho; Kim, Dongho

    2008-06-01

    The effects of organic acids, amino acids, and ethanol on the radio-degradation of patulin by gamma irradiation in an aqueous model system were investigated. The patulin, dissolved in distilled water at a concentration of 50 ppm, was practically degraded by the gamma irradiation at the dose of 1.0 kGy, while 33% of the patulin remained in apple juice. In the aqueous model system, the radio-degradation of patulin was partially inhibited by the addition of organic acids, amino acids, and ethanol. The proportions of remaining patulin after irradiation with the dose of 1.0 kGy in the 1% solution of malic acid, citric acid, lactic acid, acetic acid, ascorbic acid, and ethanol were 31.4%, 2.3%, 31.2%, 6.1%, 50.8%, and 12.5%, respectively. During 30 days of storage, the remaining patulin was reduced gradually in the solution of ascorbic acid and malic acid compared to being stable in other samples. The amino acids, serine, threonine, and histidine, inhibited the radio-degradation of patulin. In conclusion, it was suggested that 1 kGy of gamma irradiation (recommended radiation doses for radicidation and/or quarantine in fruits) is effective for the reduction of patulin, but the nutritional elements should be considered because the radio-degradation effects are environment dependent.

  18. Persistent Ion Pairing in Aqueous Hydrochloric Acid

    SciTech Connect

    Baer, Marcel D.; Fulton, John L.; Balasubramanian, Mahalingam; Schenter, Gregory K.; Mundy, Christopher J.

    2014-07-03

    For strong acids, like hydrochloric acid, the complete dissociation into an excess proton and conjugated base as well as the formation of independent solvated charged fragments is assumed. The existence of a chloride-Hyronium (Cl-H3O+) contact ion pairs even in moderate concentration hydrochloric acid (2.5 m) demonstrates that the counter ions do not behave merely as spectators. Through the use of modern extended X-ray absorption fine structure (EXAFS) measurements in conjunction with state-of-the-art density functional theory (DFT) simulations, we are able to obtain an unprecedented view into the molecular structure of medium to high concentrated electrolytes. Here we report that the Cl-H3O+ contact ion pair structure persists throughout the entire concentration range studied and that these structures differ significantly from moieties studied in micro-solvated hydrochloric acid clusters. Characterizing distinct populations of these ion pairs gives rise to a novel molecular level description of how to think about the activity of the proton that impacts our picture of the pH scale. Funding for CJM, GKS, and JLF was provided by DOE Office of Science, Office of Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences. Funding for MDB was provided throught the Laboratory Directed Research and Development program at Pacific Northwest National Laboratory. MB was funded through Argonne National Laboratory.

  19. Recovery of acetic acid from dilute aqueous solutions using catalytic dehydrative esterification with ethanol.

    PubMed

    Yagyu, Daisuke; Ohishi, Tetsuo; Igarashi, Takeshi; Okumura, Yoshikuni; Nakajo, Tetsuo; Mori, Yuichiro; Kobayashi, Shū

    2013-03-01

    We have developed a direct esterification of aqueous acetic acid with ethanol (molar ratio=1:1) catalyzed by polystyrene-supported or homogeneous sulfonic acids toward the recovery of acetic acid from wastewater in chemical plants. The equilibrium yield was significantly increased by the addition of toluene, which had a high ability to extract ethyl acetate from the aqueous phase. It was shown that low-loading and alkylated polystyrene-supported sulfonic acid efficiently accelerated the reaction. These results suggest that the construction of hydrophobic reaction environments in water was critical in improving the chemical yield. Addition of inorganic salts was also effective for the reaction under not only biphasic conditions (toluene-water) but also toluene-free conditions, because the mutual solubility of ethyl acetate and water was suppressed by the salting-out effect. Among the tested salts, CaCl(2) was found to be the most suitable for this reaction system. PMID:23290939

  20. Amino-acid contamination of aqueous hydrochloric acid.

    NASA Technical Reports Server (NTRS)

    Wolman, Y.; Miller, S. L.

    1971-01-01

    Considerable amino-acid contamination in commercially available analytical grade hydrochloric acid (37% HCl) was found. One bottle contained 8,300 nmol of amino-acids per liter. A bottle from another supplier contained 6,700 nmol per liter. The contaminants were mostly protein amino-acids and several unknowns. Data on the volatility of the amino-acids during HCl distillation were also obtained.

  1. Atmospheric Implications of Aqueous Solvation on the Photochemistry of Pyruvic Acid

    NASA Astrophysics Data System (ADS)

    Reed Harris, A. E.; Ervens, B.; Shoemaker, R.; Kroll, J. A.; Rapf, R.; Griffith, E. C.; Monod, A.; Vaida, V.

    2014-12-01

    Formation of aerosol from organic compounds is under investigation in order to better predict the overall radiative forcing from atmospheric aerosols and their influence on global climate. One possible formation pathway for secondary organic aerosol (SOA), which is now becoming more widely accepted, is from bulk aqueous photoreactions in atmospheric particles that create low volatility compounds. These products may remain particulate upon droplet evaporation, increasing SOA mass in the atmosphere. SOA formed in this manner may account for some of the discrepancy between measured and predicted amounts of SOA. This presentation will describe the photochemistry of pyruvic acid, an α-keto acid found in the atmosphere, in aqueous solutions representative of solutes in fogs, clouds, and wet aerosols. Solvation of pyruvic acid in water changes the photodissociation mechanism and products from that of the gas phase. The photoproducts from the aqueous phase are higher in molecular weight and therefore possible SOA precursors. Further, these polymers partition to the surface of water and are expected to modify the the surface properties of atmospheric aerosols that determine the kinetics of water uptake. The reaction mechanism of pyruvic acid as a function of its environment and concentration will be presented along with the kinetics obtained for the photochemistry in aqueous solution. These results are used as input in an atmospheric model to evaluate the atmospheric consequences of solvation of pyruvic acid on its atmospheric reactivity and its role as a global sink.

  2. Carbon nanotube scanning probe for imaging in aqueous environment

    NASA Technical Reports Server (NTRS)

    Stevens, Ramsey M.; Nguyen, Cattien V.; Meyyappan, M.

    2004-01-01

    Carbon nanotubes (CNTs) used as a probe for scanning probe microscopy has become one of the many potential usages of CNTs that is finding real applications in scientific research and industrial communities. It has been proposed that the unique mechanical buckling properties of the CNT would lessen the imaging force exerted on the sample and, thus, make CNT scanning probes ideal for imaging soft materials, including biological samples in liquid environments. The hydrophobic nature of the CNT graphitic sidewall is clearly chemically incompatible with the aqueous solution requirements in some biological imaging applications. In this paper, we present electron micrograph results demonstrating the instability of CNT scanning probes when submerged in aqueous solution. Moreover, we also introduce a novel approach to resolve this chemical incompatibility problem. By coating the CNT probe with ethylenediamine, thus rendering the CNT probe less hydrophobic, we demonstrate the liquid imaging capability of treated CNT probes. Experimental data for imaging in aqueous solutions are presented, which include an ultrathin Ir film and DNA molecules on a mica surface.

  3. Single molecule study of DNA conductivity in aqueous environment.

    PubMed

    Legrand, O; Côte, D; Bockelmann, U

    2006-03-01

    The dc electrical conductivity of double stranded DNA is investigated experimentally. Single DNA molecules are manipulated with subpiconewton force and deposited on gold nanoelectrodes by optical traps. The DNA is modified at its ends for specific bead attachments and along the chain to favor charge transfer between the DNA base pair stack and the electrodes. For an electrode separation of 70 nm we find, in aqueous environment, electrical resistances above 100 G Omega indicating that even for weak stretching the double helix is almost insulating at this length scale.

  4. Single molecule study of DNA conductivity in aqueous environment

    NASA Astrophysics Data System (ADS)

    Legrand, O.; Côte, D.; Bockelmann, U.

    2006-03-01

    The dc electrical conductivity of double stranded DNA is investigated experimentally. Single DNA molecules are manipulated with subpiconewton force and deposited on gold nanoelectrodes by optical traps. The DNA is modified at its ends for specific bead attachments and along the chain to favor charge transfer between the DNA base pair stack and the electrodes. For an electrode separation of 70nm we find, in aqueous environment, electrical resistances above 100GΩ indicating that even for weak stretching the double helix is almost insulating at this length scale.

  5. Structural stability of proteins in aqueous and nonpolar environments

    NASA Astrophysics Data System (ADS)

    Yasuda, Satoshi; Oshima, Hiraku; Kinoshita, Masahiro

    2012-10-01

    A protein folds into its native structure with the α-helix and/or β-sheet in aqueous solution under the physiological condition. The relative content of these secondary structures largely varies from protein to protein. However, such structural variability is not exhibited in nonaqueous environment. For example, there is a strong trend that alcohol induces a protein to form α-helices, and many of the membrane proteins within the lipid bilayer consists of α-helices. Here we investigate the structural stability of proteins in aqueous and nonpolar environments using our recently developed free-energy function F = (Λ - TS)/(kBT0) = Λ/(kBT0) - S/kB (T0 = 298 K and the absolute temperature T is set at T0) which is based on statistical thermodynamics. Λ/(kBT0) and S/kB are the energetic and entropic components, respectively, and kB is Boltzmann's constant. A smaller value of the positive quantity, -S, represents higher efficiency of the backbone and side-chain packing promoted by the entropic effect arising from the translational displacement of solvent molecules or the CH2, CH3, and CH groups which constitute nonpolar chains of lipid molecules. As for Λ, in aqueous solution, a transition to a more compact structure of a protein accompanies the break of protein-solvent hydrogen bonds: As the number of donors and acceptors buried without protein intramolecular hydrogen bonding increases, Λ becomes higher. In nonpolar solvent, lower Λ simply implies more intramolecular hydrogen bonds formed. We find the following. The α-helix and β-sheet are advantageous with respect to -S as well as Λ and to be formed as much as possible. In aqueous solution, the solvent-entropy effect on the structural stability is so strong that the close packing of side chains is dominantly important, and the α-helix and β-sheet contents are judiciously adjusted to accomplish it. In nonpolar solvent, the solvent-entropy effect is substantially weaker than in aqueous solution. Λ is

  6. γ-Irradiation of malic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Negron-Mendoza, Alicia; Graff, Rebecca L.; Ponnamperuma, Cyril

    1980-12-01

    The γ-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the non-volatile products. Thin layer chromotography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the γ-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  7. Does Nitric Acid Dissociate at the Aqueous Solution Surface?

    SciTech Connect

    Lewis, Tanza; Winter, Berndt; Stern, Abraham C.; Baer, Marcel D.; Mundy, Christopher J.; Tobias, Douglas J.; Hemminger, J. C.

    2011-11-03

    Nitric acid is a prevalent component of atmospheric aerosols, and the extent of nitric acid dissociation at aqueous interfaces is relevant to its role in heterogeneous atmospheric chemistry. Several experimental and theoretical studies have suggested that the extent of dissociation of nitric acid near aqueous interfaces is less than in bulk solution. Here, dissociation of HNO3 at the surface of aqueous nitric acid is quantified using X-ray photoelectron spectroscopy of the nitrogen local electronic structure. The relative amounts of undissociated HNO3(aq) and dissociated NO3-(aq) are identified by the distinguishable N1s core-level photoelectron spectra of the two species, and we determine the degree of dissociation, αint, in the interface (the first ~3 layers of solution) as a function of HNO3 concentration. Our measurements show that dissociation is decreased by approximately 20% near the solution interface compared with bulk, and furthermore that dissociation occurs even in the top-most solution layer. The experimental results are supported by first-principles MD simulations, which show that hydrogen-bonds between HNO3 and water molecules at the solution surface stabilize the molecular form at low concentration, in analogy to the stabilization of molecular HNO3 that occurs in bulk solution at high concentration. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  8. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  9. Near infrared photochemistry of pyruvic acid in aqueous solution.

    PubMed

    Larsen, Molly C; Vaida, Veronica

    2012-06-21

    Recent experimental and theoretical results have suggested that organic acids such as pyruvic acid, can be photolyzed in the ground electronic state by the excitation of the OH stretch vibrational overtone. These overtones absorb in the near-infrared and visible regions of the spectrum where the solar photons are plentiful and could provide a reaction pathway for the organic acids and alcohols that are abundant in the earth's atmosphere. In this paper the overtone initiated photochemistry of aqueous pyruvic acid is investigated by monitoring the evolution of carbon dioxide. In these experiments CO(2) is being produced by excitation in the near-infrared, between 850 nm and ∼1150 nm (11,765-8696 cm(-1)), where the second OH vibrational overtone (Δν = 3) of pyruvic acid is expected to absorb. These findings show not only that the overtone initiated photochemical decarboxylation reaction occurs but also that in the aqueous phase it occurs at a lower energy than was predicted for the overtone initiated reaction of pyruvic acid in the gas phase (13,380 cm(-1)). A quantum yield of (3.5 ± 1.0) × 10(-4) is estimated, suggesting that although this process does occur, it does so with a very low efficiency.

  10. Methanol Uptake by Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Essin, A. M.; Golden, D. M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The global methanol budget is currently unbalanced, with source terms significantly larger than the sinks terms. To evaluate possible losses of gaseous methanol to sulfate aerosols, the solubility and reactivity of methanol in aqueous sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosols is under investigation. Methanol will partition into sulfate aerosols according to its Henry's law solubility. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H*, for cold (196 - 220 K) solutions ranging between 45 and 70 wt % H2SO4. We have found that methanol solubility ranges from approx. 10(exp 5) - 10(exp 7) M/atm for UT/LS conditions. Solubility increases with decreasing temperature and with increasing sulfuric acid content. Although methanol is slightly more soluble than are acetone and formaldehyde, current data indicate that uptake by clean aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These solubility measurements include uptake due to physical solvation and any rapid equilibria which are established in solution. Reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H is not significant over our experimental time scale for solutions below 80 wt % H2SO4. To confirm this directly, results obtained using a complementary equilibrium measurement technique will also be presented.

  11. Methanol Uptake By Low Temperature Aqueous Sulfuric Acid Solutions

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    To evaluate the role of upper tropospheric and lower stratospheric aerosols in the global budget of methanol, the solubility and reactivity of CH3OH in aqueous sulfuric acid solutions are under investigation. Using standard uptake techniques in a Knudsen cell reactor, we have measured the effective Henry's law coefficient, H(*), for methanol dissolution into 45 to 70 percent by weight H2SO4. We find that methanol solubility ranges from 10(exp 5) to 10(exp 8) M/atm and increases with decreasing temperature and with increasing sulfuric acid content. These solubility measurements include uptake due to physical solvation and all rapid equilibria which are established in solution. Our data indicate that simple uptake by aqueous sulfuric acid particles will not be a significant sink for methanol in the UT/LS. These results differ from those recently reported in the literature, and an explanation of this disparity will be presented. In addition to solvation, reaction between primary alcohols and sulfuric acid does occur, leading to the production of alkyl sulfates. Literature values for the rate of this reaction suggest that formation of CH3OSO3H may proceed in the atmosphere but is not significant under our experimental conditions. Results obtained using a complementary equilibrium measurement technique confirm this directly. In addition, the extent of methanol sequestration via formation of mono- and dimethylsulfate will be evaluated under several atmospheric conditions.

  12. Multiple-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution

    SciTech Connect

    Husson, S.M.; King, C.J.

    1999-02-01

    Equilibria were measured for adsorption of carboxylic acids from aqueous, binary-acid mixtures of lactic and succinic acids and acetic and formic acids onto basic polymeric sorbents. The experimentally determined adsorption isotherms compared well with model predictions, confirming that simple extensions from adsorption of individual acids apply. Fixed-bed studies were carried out that establish the efficacy of chromatographic fractionation of lactic and succinic acids using basic polymeric sorbents. Finally, sequential thermal and solvent regeneration of lactic and acetic acid-laden sorbents was investigated as a method to fractionate among coadsorbed volatile and nonvolatile acids. Essentially complete removal of the acetic acid from the acid-laden sorbent was achieved by vaporization under the conditions used; a small amount of loss of lactic acid (about 11%) was observed.

  13. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions.

    PubMed

    Scharko, Nicole K; Berke, Andrew E; Raff, Jonathan D

    2014-10-21

    Nitrate (NO3(-)) is an abundant component of aerosols, boundary layer surface films, and surface water. Photolysis of NO3(-) leads to NO2 and HONO, both of which play important roles in tropospheric ozone and OH production. Field and laboratory studies suggest that NO3¯ photochemistry is a more important source of HONO than once thought, although a mechanistic understanding of the variables controlling this process is lacking. We present results of cavity-enhanced absorption spectroscopy measurements of NO2 and HONO emitted during photodegradation of aqueous NO3(-) under acidic conditions. Nitrous acid is formed in higher quantities at pH 2-4 than expected based on consideration of primary photochemical channels alone. Both experimental and modeled results indicate that the additional HONO is not due to enhanced NO3(-) absorption cross sections or effective quantum yields, but rather to secondary reactions of NO2 in solution. We find that NO2 is more efficiently hydrolyzed in solution when it is generated in situ during NO3(-) photolysis than for the heterogeneous system where mass transfer of gaseous NO2 into bulk solution is prohibitively slow. The presence of nonchromophoric OH scavengers that are naturally present in the environment increases HONO production 4-fold, and therefore play an important role in enhancing daytime HONO formation from NO3(-) photochemistry.

  14. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  15. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2016-09-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  16. Differing stabilities of snake venom cardiotoxins in acidic aqueous acetonitrile.

    PubMed

    Osthoff, G

    1990-01-01

    1. Although snake venom cardiotoxins constitute a homologous family of proteins, subclasses with different structural and biological properties exist. 2. By using circular dichroism spectroscopy of twelve cardiotoxins belonging to two structural classes and one non-classified group, this investigation indicated that cardiotoxins differ in their stabilities towards denaturation in acidic aqueous acetonitrile, as used in some reversed-phase high performance liquid chromatography separations. 3. It was also shown that cardiotoxins of the structural class II are in general less stable towards this denaturation than class I and non-classified cardiotoxins.

  17. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  18. A mild, near-surface aqueous environment on Noachian Mars preserved in ALH84001

    NASA Astrophysics Data System (ADS)

    Halevy, I.; Fischer, W. W.; Eiler, J. M.

    2011-12-01

    Despite widespread evidence for liquid water at the surface of Mars during parts of the Noachian epoch, the temperature of early aqueous environments has been impossible to establish, raising questions of whether Mars' surface was ever warmer than today. This has hindered insight into aqueous alteration processes, which, on the basis of orbital spectroscopy, appear to have been prevalent on Noachian Mars. It is important to understand such processes, as they link the observed secondary mineral assemblages to interactions between primary igneous silicates and the surface environment (atmosphere-hydrosphere). We have addressed this problem by determining the precipitation temperatures of secondary carbonate minerals preserved in the oldest known sample of Mars' crust-the meteorite Allan Hills 84001 (ALH84001). Using carbonate 'clumped' isotope thermometry we have found that the carbonates in ALH84001, which are 3.9-4.0 billion years old, formed at a temperature of ~18±4°C. With temperature known, we used the carbon and oxygen isotopic composition of the carbonates, as constrained by both our measurements and previous acid digestion and ion microprobe studies, to develop a model for their formation process and environment. The observed isotopic variation is best explained by carbonate precipitation out of a gradually evaporating, shallow subsurface aqueous solution (e.g. a regolith aquifer) at near-constant temperatures. Furthermore, on the basis of the isotopic composition of the earliest precipitated carbonates in ALH84001, the volatiles from which they formed (H2O and CO2) came not from depth, but from the early Martian surface. The occurrence of carbonates in other SNC meteorites and as a minor component of Martian dust implies that environments analogous to the one we studied may have been important in generating some of the observed secondary mineral assemblages by interaction between Mars' igneous crust and its atmosphere-hydrosphere.

  19. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  20. Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments.

    PubMed

    Pavía-Sanders, Adriana; Zhang, Shiyi; Flores, Jeniree A; Sanders, Jonathan E; Raymond, Jeffery E; Wooley, Karen L

    2013-09-24

    Well-defined, magnetic shell cross-linked knedel-like nanoparticles (MSCKs) with hydrodynamic diameters ca. 70 nm were constructed through the co-assembly of amphiphilic block copolymers of PAA20-b-PS280 and oleic acid-stabilized magnetic iron oxide nanoparticles using tetrahydrofuran, N,N-dimethylformamide, and water, ultimately transitioning to a fully aqueous system. These hybrid nanomaterials were designed for application as sequestering agents for hydrocarbons present in crude oil, based upon their combination of amphiphilic organic domains, for aqueous solution dispersibility and capture of hydrophobic guest molecules, with inorganic core particles for magnetic responsivity. The employment of these MSCKs in a contaminated aqueous environment resulted in the successful removal of the hydrophobic contaminants at a ratio of 10 mg of oil per 1 mg of MSCK. Once loaded, the crude oil-sorbed nanoparticles were easily isolated via the introduction of an external magnetic field. The recovery and reusability of these MSCKs were also investigated. These results suggest that deployment of hybrid nanocomposites, such as these, could aid in environmental remediation efforts, including at oil spill sites, in particular, following the bulk recovery phase.

  1. Robust magnetic/polymer hybrid nanoparticles designed for crude oil entrapment and recovery in aqueous environments.

    PubMed

    Pavía-Sanders, Adriana; Zhang, Shiyi; Flores, Jeniree A; Sanders, Jonathan E; Raymond, Jeffery E; Wooley, Karen L

    2013-09-24

    Well-defined, magnetic shell cross-linked knedel-like nanoparticles (MSCKs) with hydrodynamic diameters ca. 70 nm were constructed through the co-assembly of amphiphilic block copolymers of PAA20-b-PS280 and oleic acid-stabilized magnetic iron oxide nanoparticles using tetrahydrofuran, N,N-dimethylformamide, and water, ultimately transitioning to a fully aqueous system. These hybrid nanomaterials were designed for application as sequestering agents for hydrocarbons present in crude oil, based upon their combination of amphiphilic organic domains, for aqueous solution dispersibility and capture of hydrophobic guest molecules, with inorganic core particles for magnetic responsivity. The employment of these MSCKs in a contaminated aqueous environment resulted in the successful removal of the hydrophobic contaminants at a ratio of 10 mg of oil per 1 mg of MSCK. Once loaded, the crude oil-sorbed nanoparticles were easily isolated via the introduction of an external magnetic field. The recovery and reusability of these MSCKs were also investigated. These results suggest that deployment of hybrid nanocomposites, such as these, could aid in environmental remediation efforts, including at oil spill sites, in particular, following the bulk recovery phase. PMID:23987122

  2. Sorption of acid red 57 from aqueous solution onto sepiolite.

    PubMed

    Alkan, Mahir; Demirbaş, Ozkan; Celikçapa, Sermet; Doğan, Mehmet

    2004-12-10

    Sepiolite, a highly porous mineral, is becoming widely used as an alternative material in areas where sorptive, catalytic and rheological applications are required. High ion exchange capacity and high surface area and more importantly its relatively cheap price make it an attractive adsorbent. In this study, the adsorption of acid red 57 by natural mesoporous sepiolite has been examined in order to measure the ability of this mineral to remove coloured textile dyes from wastewater. For this purpose, a series of batch adsorption tests of acid red 57 from aqueous sepiolite solutions have been systematically investigated as a function of parameters such as pH, ionic strength and temperature. Adsorption equilibrium was reached within 1h. The removal of acid red 57 decreases with pH from 3 to 9 and temperature from 25 to 55 degrees C, whereas it increases with ionic strength from 0 to 0.5 mol L(-1). Adsorption isotherms of acid red on sepiolite were determined and correlated with common isotherm equations such as Langmuir and Freundlich models. It was found that the Langmuir model appears to fit the isotherm data better than the Freundlich model. The physical properties of this adsorbent were consistent with the parameters obtained from the isotherm equations. Approximately, 21.49% weight loss was observed. The surface area value of sepiolite was 342 m2 g(-1) at 105 degrees C, and it increased to 357 m2 g(-1) at 200 degrees C. Further increase in temperature caused channel plugging and crystal structure deformation, as a result the surface area values showed a decrease with temperature. The data obtained from adsorption isotherms at different temperatures have been used to calculate some thermodynamic quantities such as the Gibbs energy, heat and entropy of adsorption. The thermodynamic data indicate that acid red 57 adsorption onto sepiolite is characterized by physical adsorption. The dimensionless separation factor (RL) have shown that sepiolite can be used for

  3. Sunlight-initiated chemistry of aqueous pyruvic acid: building complexity in the origin of life.

    PubMed

    Griffith, Elizabeth C; Shoemaker, Richard K; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  4. Sunlight-initiated Chemistry of Aqueous Pyruvic Acid: Building Complexity in the Origin of Life

    NASA Astrophysics Data System (ADS)

    Griffith, Elizabeth C.; Shoemaker, Richard K.; Vaida, Veronica

    2013-10-01

    Coupling chemical reactions to an energy source is a necessary step in the origin of life. Here, we utilize UV photons provided by a simulated sun to activate aqueous pyruvic acid and subsequently prompt chemical reactions mimicking some of the functions of modern metabolism. Pyruvic acid is interesting in a prebiotic context due to its prevalence in modern metabolism and its abiotic availability on early Earth. Here, pyruvic acid (CH3COCOOH, a C3 molecule) photochemically reacts to produce more complex molecules containing four or more carbon atoms. Acetoin (CH3CHOHCOCH3), a C4 molecule and a modern bacterial metabolite, is produced in this chemistry as well as lactic acid (CH3CHOHCOOH), a molecule which, when coupled with other abiotic chemical reaction pathways, can provide a regeneration pathway for pyruvic acid. This chemistry is discussed in the context of plausible environments on early Earth such as near the ocean surface and atmospheric aerosol particles. These environments allow for combination and exchange of reactants and products of other reaction environments (such as shallow hydrothermal vents). The result could be a contribution to the steady increase in chemical complexity requisite in the origin of life.

  5. Influence of ions on aqueous acid-base reactions.

    PubMed

    Cox, M Jocelyn; Siwick, Bradley J; Bakker, Huib J

    2009-01-12

    We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron-transfer reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid-infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long-range proton transfer over hydrogen-bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long-range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.

  6. Conformation of poly(γ-glutamic acid) in aqueous solution.

    PubMed

    Muroga, Yoshio; Nakaya, Asami; Inoue, Atsuki; Itoh, Daiki; Abiru, Masaya; Wada, Kaori; Takada, Masako; Ikake, Hiroki; Shimizu, Shigeru

    2016-04-01

    Local conformation and overall conformation of poly(γ-DL-glutamic acid) (PγDLGA) and poly(γ-L-glutamic acid) (PγLGA) in aqueous solution was studied as a function of degree of ionization ε by (1) H-NMR, circular dichroism, and potentiometric titration. It was clarified that their local conformation is represented by random coil over an entire ε range and their overall conformation is represented by expanded random-coil in a range of ε > ε(*) , where ε(*) is about 0.3, 0.35, 0.45, and 0.5 for added-salt concentration of 0.02M, 0.05M, 0.1M, and 0.2M, respectively. In a range of ε < ε(*) , however, ε dependence of their overall conformation is significantly differentiated from each other. PγDLGA tends to aggregate intramolecularly and/or intermolecularly with decreasing ε, but PγLGA still behaves as expanded random-coil. It is speculated that spatial arrangement of adjacent carboxyl groups along the backbone chain essentially affects the overall conformation of PγGA in acidic media.

  7. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid.

    PubMed

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-28

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (E(p), 1.10 ≤ E(p) ≤ 1.50 V), polarization time (t(p), 10(0) ≤ t(p) ≤ 10(4) s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (d(ox)). Because X1 > d(ox) for the entire range of E(p), t(p), and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Pt(δ+)-O(δ-) surface dipole (μ(PtO)), and the potential drop (V(ox)) and electric field (E(ox)) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide. PMID:25362330

  8. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  9. (Acidic deposition and the environment)

    SciTech Connect

    Garten, C.T.; Lindberg, S.E.; Van Miegroet, H.

    1990-10-24

    The travelers presented several papers at the Fourth International Conference on Acidic Deposition. These covered the following topics: atmospheric chemistry and deposition of airborne nitrogen compounds, soil solution chemistry in high-elevation spruce forests, and forest throughfall measurements for estimating total sulfur deposition to ecosystems. In addition, S. E. Lindberg was invited to organize and chair a conference session on Throughfall and Stemflow Experiments, and to present an invited lecture on Atmospheric Deposition and Canopy Interactions of Metals and Nitrogen in Forest Ecosystems: The Influence of Global Change'' at the 110th Anniversary Celebration of the Free University of Amsterdam.

  10. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    SciTech Connect

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; Lokitz, Bradley S.; Minko, Sergiy; Hinrichs, Karsten

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights into the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.

  11. In Situ Infrared Ellipsometry for Protein Adsorption Studies on Ultrathin Smart Polymer Brushes in Aqueous Environment

    DOE PAGES

    Kroning, Annika; Furchner, Andreas; Aulich, Dennis; Bittrich, Eva; Rauch, Sebastian; Uhlmann, Petra; Eichhorn, Klaus-Jochen; Seeber, Michael; Luzinov, Igor; Kilbey, S. Michael; et al

    2015-02-10

    The protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes with high potential for biosensing and biomedical applications are studied by in-situ infrared-spectroscopic ellipsometry (IRSE). IRSE as a highly sensitive non-destructive technique allows us to investigate protein adsorption on polymer brushes in aqueous environment in dependence of external stimuli like temperature and pH. These stimuli are, for instance, relevant in switchable mixed brushes containing poly(N-isopropyl acrylamide) and poly(acrylic acid), respectively. We use such brushes as model surfaces for controlling protein adsorption of human serum albumin and human fibrinogen. IRSE can distinguish between polymer-specific vibrational bands, which yield insights intomore » the hydration state of the brushes, and changes in the protein-specific amide bands, which are related to changes of the protein secondary structure.« less

  12. Comparison of Fe(II) Photo-Formation Characteristics Between Aqueous Humic Acid Solutions and Aqueous Extracts of Atmospheric Aerosols Collected at Okinawa Island, Japan

    NASA Astrophysics Data System (ADS)

    Saito, K.; Okada, K.; Arakaki, T.

    2007-12-01

    Photochemical cycles of Fe(III)-Fe(II) affects the oxidation and the reduction of transient species such as active oxygen species and various transition metals in the atmospheric condensed phases. Although the importance of organic ligands to iron cycling (e.g. ligand-to-metal charge transfer) is becoming clearer, the mechanism by which photochemical reduction of Fe(III) to Fe(II) are not well understood. Humic acid (HA) is considered as an important organic ligand for Fe(III) complexes in the environment. HA is a collection of organic compounds that exist in nature but whose structures are not well known. Commercially available HAs as received from the manufacturers contain trace amount of iron. Using this residual Fe, we investigated the photochemical formation of Fe(II) in aqueous HA solutions to elucidate the photochemical cycles of Fe(III)-Fe(II) in the atmospheric water drops. We purchased HAs from several different suppliers. We investigated the effects of pH and wavelengths on Fe(II) photo-formation using monochromatic radiations at 313, 334, 366, and 405 nm. Concentrations of photochemically formed Fe(II) were determined by ferrozine-HPLC technique, and the apparent quantum yields were determined based on the total absorbance of the HA solutions. Fe(II) photo-formation characteristics of the aqueous humic acid solutions purchased from different suppliers showed slightly different wavelength dependence. Furthermore, we compared Fe(II) photoformation characteristics observed in aqueous HA solutions with those in the aqueous extracts of atmospheric aerosols collected in Okinawa, Japan. The results showed that the apparent quantum yields of the aerosol extracts were 5-10 times higher than those of the HA solutions. Wavelength-dependence of Fe(II) photo-formation observed in the aqueous extracts of aerosols was similar to that seen in the aqueous HA solutions.

  13. Corrosion behavior of technetium waste forms exposed to various aqueous environments

    SciTech Connect

    Kolman, David Gary; Jarvinen, Gordon; Mausolf, Edward; Czerwinski, Ken; Poineau, Frederic

    2009-01-01

    Technetium is a long-lived beta emitter produced in high yields from uranium as a waste product in spent nuclear fuel and has a high degree of environmental mobility as pertechnetate. It has been proposed that Tc be immobilized into various metallic waste forms to prevent Tc mobility while producing a material that can withstand corrosion exposed to various aqueous medias to prevent the leachability of Tc to the environment over long periods of time. This study investigates the corrosion behavior of Tc and Tc alloyed with 316 stainless steel and Zr exposed to a variety of aqueous media. To date, there is little investigative work related to Tc corrosion behavior and less related to potential Tc containing waste forms. Results indicate that immobilizing Tc into stainless steel-zirconium alloys can be a promising technique to store Tc for long periods of time while reducing the need to separately store used nuclear fuel cladding. Initial results indicate that metallic Tc and its alloys actively corrode in all media. We present preliminary corrosion rates of 100% Tc, 10% Tc - 90% SS{sub 85%}Zr{sub 15%}, and 2% Tc - 98% SS{sub 85%}Zr{sub 15%} in varying concentrations of nitric acid and pH 10 NaOH using the resistance polarization method while observing the trend that higher concentrations of Tc alloyed to the sample tested lowers the corrosion rate of the proposed waste package.

  14. Selective plasmon-driven catalysis for para-nitroaniline in aqueous environments

    PubMed Central

    Cui, Lin; Wang, Peijie; Li, Yuanzuo; Sun, Mengtao

    2016-01-01

    The plasmon-driven oxidation of amine (−NH2) groups and the reduction of nitro (−NO2) groups on a nanostructured metal surface in an aqueous environment have been reported experimentally and theoretically. The question of which process occurs first in the aqueous environment is an interesting question in the field of plasmon-related photochemistry. Para-nitroaniline (PNA), with both nitro (−NO2) and amine (−NH2) groups, is the best candidate for studying the priority of the plasmon-driven oxidation and the reduction reactions in an aqueous environment. Using surface-enhanced Raman scattering (SERS) spectroscopy, our experimental results and theoretical simulations reveal that PNA is selectively catalyzed to 4,4′-diaminoazobenzene (DAAB) through the plasmon-assisted dimerization of the nitro (−NO2) group into an azo group in an aqueous environment. This indicates that the plasmon-driven reduction of the nitro (−NO2) group clearly occurs before the oxidation of the amine (−NH2) group in an aqueous environment. The plasmon-driven reduction of PNA to DAAB is a selective surface catalytic reduced reaction in aqueous environment. PMID:26857259

  15. Selective plasmon-driven catalysis for para-nitroaniline in aqueous environments

    NASA Astrophysics Data System (ADS)

    Cui, Lin; Wang, Peijie; Li, Yuanzuo; Sun, Mengtao

    2016-02-01

    The plasmon-driven oxidation of amine (‑NH2) groups and the reduction of nitro (‑NO2) groups on a nanostructured metal surface in an aqueous environment have been reported experimentally and theoretically. The question of which process occurs first in the aqueous environment is an interesting question in the field of plasmon-related photochemistry. Para-nitroaniline (PNA), with both nitro (‑NO2) and amine (‑NH2) groups, is the best candidate for studying the priority of the plasmon-driven oxidation and the reduction reactions in an aqueous environment. Using surface-enhanced Raman scattering (SERS) spectroscopy, our experimental results and theoretical simulations reveal that PNA is selectively catalyzed to 4,4‧-diaminoazobenzene (DAAB) through the plasmon-assisted dimerization of the nitro (‑NO2) group into an azo group in an aqueous environment. This indicates that the plasmon-driven reduction of the nitro (‑NO2) group clearly occurs before the oxidation of the amine (‑NH2) group in an aqueous environment. The plasmon-driven reduction of PNA to DAAB is a selective surface catalytic reduced reaction in aqueous environment.

  16. Selective plasmon-driven catalysis for para-nitroaniline in aqueous environments.

    PubMed

    Cui, Lin; Wang, Peijie; Li, Yuanzuo; Sun, Mengtao

    2016-02-09

    The plasmon-driven oxidation of amine (-NH2) groups and the reduction of nitro (-NO2) groups on a nanostructured metal surface in an aqueous environment have been reported experimentally and theoretically. The question of which process occurs first in the aqueous environment is an interesting question in the field of plasmon-related photochemistry. Para-nitroaniline (PNA), with both nitro (-NO2) and amine (-NH2) groups, is the best candidate for studying the priority of the plasmon-driven oxidation and the reduction reactions in an aqueous environment. Using surface-enhanced Raman scattering (SERS) spectroscopy, our experimental results and theoretical simulations reveal that PNA is selectively catalyzed to 4,4'-diaminoazobenzene (DAAB) through the plasmon-assisted dimerization of the nitro (-NO2) group into an azo group in an aqueous environment. This indicates that the plasmon-driven reduction of the nitro (-NO2) group clearly occurs before the oxidation of the amine (-NH2) group in an aqueous environment. The plasmon-driven reduction of PNA to DAAB is a selective surface catalytic reduced reaction in aqueous environment.

  17. Uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide.

    PubMed

    Liu, Ze; Wu, Ling-Yan; Wang, Tian-He; Ge, Mao-Fa; Wang, Wei-Gang

    2012-01-12

    Multiphase acid-catalyzed oxidation by hydrogen peroxide has been suggested to be a potential route to secondary organic aerosol (SOA) formation from isoprene and its gas-phase oxidation products, but the kinetics and chemical mechanism remain largely uncertain. Here we report the first measurement of uptake of methacrolein into aqueous solutions of sulfuric acid and hydrogen peroxide in the temperature range of 253-293 K. The steady-state uptake coefficients were acquired and increased quickly with increasing sulfuric acid concentration and decreasing temperature. Propyne, acetone, and 2,3-dihydroxymethacrylic acid were suggested as the products. The chemical mechanism is proposed to be the oxidation of carbonyl group and C═C double bonds by peroxide hydrogen in acidic environment, which could explain the large content of polyhydroxyl compounds in atmospheric fine particles. These results indicate that multiphase acid-catalyzed oxidation of methacrolein by hydrogen peroxide can contribute to SOA mass in the atmosphere, especially in the upper troposphere.

  18. Evolution of hydrogen from acidic aqueous and aqueous-alcoholic solutions by reduced forms of isopolytungstates

    SciTech Connect

    Saidkhanov, S.S.; Parmon, V.N.; Savinov, E.N.

    1986-02-10

    The authors determine the specific nature of the hydrogen-releasing polytungstate (PT) species and investigate the features of H/sub 2/ evolution by this species. In aqueous and aqueous-alcohol solutions, reoxidation of the doubly reduced form of hexatungstate proceeds spontaneously, accompanied by hydrogen evolution; in contrast, the reduced form of the PT is stable with respect to reoxidation.

  19. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    NASA Astrophysics Data System (ADS)

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  20. Optical techniques for nanoscale probing and chemical detection in aqueous environments

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis

    We present an investigation of charge-dependent physical properties of water-soluble synthetic polymers and polymer-based layered structures, using optical detection methods in a visible range. We apply in situ nanoscale optical techniques to study response of polymer systems to changes in pH, polymer concentration, and concentration and type of counterions. This work describes three optical techniques and custom built instrumental setups for nanoscale polymer characterization in aqueous environment. Phase-modulated ellipsometry was applied to determine the refraction coefficient and the thickness of a hydrogel-like polymer layer on a substrate. The present study describes the sensitivity of the phase modulated ellipsometry to errors of measurement and determines conditions for decoupling film thickness and refraction index. It is shown that, for a certain range of film thickness, both the thickness and the refractive index can be determined from a single measurement with high precision. This optimal range of the film thickness is calculated for organic thin films, and the analysis is tested on crosslinked poly(methacrylic acid) polymer films in air and in water. Fluorescent correlation spectroscopy was used to investigate diffusion of a synthetic polyelectrolyte in aqueous solutions. Translational diffusion of Alexa-labeled poly(methacrylic acid) chains was studied in very dilute, 10-4 mg/ml, solutions as a function of polymer charge density and counterion concentration. The results illustrate the utility of the technique for studying hydrodynamic sizes of polyelectrolyte coils in response to variation in solution pH or concentration of salt and polyelectrolytes. We apply surface-enhanced Raman scattering (SERS) for studying of enhancement capabilities of individual silver nanoparticles attached to glass and silicon substrates. Nanoparticles were electrostatically bound to a self-assembled polyallylamine hydrochloride (PAH) monolayer, which was deposited on

  1. Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media

    SciTech Connect

    Román-Leshkov, Yuriy; Davis, Mark E.

    2011-09-28

    Current interest in reacting carbonyl-containing molecules in aqueous media is primarily due to the growing emphasis on conversion of biomass to fuels and chemicals. Recently, solid Lewis acids have been shown to perform catalytic reactions with carbonyl-containing molecules such as sugars in aqueous media. Here, catalysis mediated by Lewis acids is briefly discussed, Lewis acid solids that perform catalysis in aqueous media are then described, and the review is concluded with a few comments on the outlook for the future.

  2. Fatigue of tooth-colored restoratives in aqueous environment.

    PubMed

    Kawakami, Yoshiko; Takeshige, Fumio; Hayashi, Mikako; Ebisu, Shigeyuki

    2007-01-01

    The purpose of this study was to investigate the interaction between mechanical and chemical fatigue in resin composites and dental ceramics, and the effects thereof on fatigue resistance of tooth-colored restoratives. To this end, the fatigue fracture resistance of restoratives under dry and aqueous conditions were analyzed by a dynamic fatigue crack propagation test using beam-shaped specimens with a precrack. Fatigue crack propagation characteristics were expressed by the correlation between fatigue crack growth rate (da/dN) and stress intensity factor range (deltaK). In addition, fatigue crack growth threshold (deltaKth) was calculated. Following the fatigue test, a fractographic examination was performed using scanning electron microscopy. Fatigue crack initiation was retarded in resin composites under aqueous condition, but dental ceramics were susceptible to slow crack growth after crack initiation. SEM images of the fatigue facture surfaces reflected inorganic and organic filler particles of different sizes in composites and the bonding at crystal-glass interface in ceramics. It was concluded that water exerted different effects on the fatigue resistance of composites and ceramics.

  3. New crystallization of fatty acids from aqueous ethanol solution combined with liquid-liquid extraction

    SciTech Connect

    Maeda, Kouji; Nomura, Yoshihisa; Tai, Kimihiko; Ueno, Yoshitaka; Fukui, Keisuke; Hirota, Syouji

    1999-06-01

    A new separation process of saturated fatty acids (lauric acid-myristic acid) using crystallization from an aqueous ethanol solution has been examined. There were two vessels in this separation process: an extraction vessel and a crystallization vessel. The fatty acids in the aqueous phase were first extracted from their organic phase (melt) in the extraction vessel. The fatty acids in the aqueous phase were continuously introduced to the crystallization vessel, and then the fatty acids were crystallized there. The crystals of the fatty acids were collected continuously above the aqueous phase in the crystallization vessel. In this process, the yield and the purity of the crystals over time were measured, and it was found that the purity of lauric acid increased unsteadily up to 0.98 mole fraction of lauric acid with an increase in the yield of the low yield range. The mole fraction of ethanol in the aqueous phase could be significant to control the relationship between the yield and the purity of the crystals. Three different mole fractions of lauric acid in the organic phase were used to be separated in this process. Moreover, the authors have considered the effective separations of this process, and the maximum yield and purity of the crystals have been estimated by a simple mass balance.

  4. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.

  5. Thermodynamics of the complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mudarisova, R. Kh.; Badykova, L. A.

    2016-03-01

    The thermodynamics of complexation of arabinogalactan with salicylic and p-aminobenzoic acids in aqueous solutions is studied by means spectroscopy. The standard thermodynamic characteristics (Δ H°; Δ G°; Δ S°) of complexation are calculated.

  6. Surfactant-Amino Acid and Surfactant-Surfactant Interactions in Aqueous Medium: a Review.

    PubMed

    Malik, Nisar Ahmad

    2015-08-01

    An overview of surfactant-amino acid interactions mainly in aqueous medium has been discussed. Main emphasis has been on the solution thermodynamics and solute-solvent interactions. Almost all available data on the topic has been presented in a lucid and simple way. Conventional surfactants have been discussed as amphiphiles forming micelles and amino acids as additives and their effect on the various physicochemical properties of these conventional surfactants. Surfactant-surfactant interactions in aqueous medium, various mixed surfactant models, are also highlighted to assess their interactions in aqueous medium. Finally, their applied part has been taken into consideration to interpret their possible uses.

  7. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  8. Geochemistry of Carbonates on Mars: Implications for Climate History and Nature of Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Niles, Paul B.; Catling, David C.; Berger, Gilles; Chassefière, Eric; Ehlmann, Bethany L.; Michalski, Joseph R.; Morris, Richard; Ruff, Steven W.; Sutter, Brad

    2013-01-01

    Ongoing research on martian meteorites and a new set of observations of carbonate minerals provided by an unprecedented series of robotic missions to Mars in the past 15 years help define new constraints on the history of martian climate with important crosscutting themes including: the CO2 budget of Mars, the role of Mg-, Fe-rich fluids on Mars, and the interplay between carbonate formation and acidity. Carbonate minerals have now been identified in a wide range of localities on Mars as well as in several martian meteorites. The martian meteorites contain carbonates in low abundances (<1 vol.%) and with a wide range of chemistries. Carbonates have also been identified by remote sensing instruments on orbiting spacecraft in several surface locations as well as in low concentrations (2-5 wt.%) in the martian dust. The Spirit rover also identified an outcrop with 16 to 34 wt.% carbonate material in the Columbia Hills of Gusev Crater that strongly resembled the composition of carbonate found in martian meteorite ALH 84001. Finally, the Phoenix lander identified concentrations of 3-6 wt.% carbonate in the soils of the northern plains. The carbonates discovered to date do not clearly indicate the past presence of a dense Noachian atmosphere, but instead suggest localized hydrothermal aqueous environments with limited water availability that existed primarily in the early to mid-Noachian followed by low levels of carbonate formation from thin films of transient water from the late Noachian to the present. The prevalence of carbonate along with evidence for active carbonate precipitation suggests that a global acidic chemistry is unlikely and a more complex relationship between acidity and carbonate formation is present.

  9. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.

  10. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid.

    PubMed

    Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio

    2015-02-01

    The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells. PMID:25283836

  11. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  12. Succinic acid in aqueous solution: connecting microscopic surface composition and macroscopic surface tension.

    PubMed

    Werner, Josephina; Julin, Jan; Dalirian, Maryam; Prisle, Nønne L; Öhrwall, Gunnar; Persson, Ingmar; Björneholm, Olle; Riipinen, Ilona

    2014-10-21

    The water-vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experiments and MD simulations a strongly increased concentration of the acid form in the surface region compared to the bulk concentration was found and quantified. Detailed analysis of the surface of succinic acid solutions at different bulk concentrations led to the conclusion that succinic acid saturates the aqueous surface at high bulk concentrations. With the aid of MD simulations the thickness of the surface layer could be estimated, which enabled the quantification of surface concentration of succinic acid as a multiple of the known bulk concentration. The obtained enrichment factors were successfully used to model the surface tension of these binary aqueous solutions using two different models that account for the surface enrichment. This underlines the close correlation of increased concentration at the surface relative to the bulk and reduced surface tension of aqueous solutions of succinic acid. The results of this study shed light on the microscopic origin of surface tension, a macroscopic property. Furthermore, the impact of the results from this study on atmospheric modeling is discussed.

  13. Kinetics of biotransformation of chlorpyrifos in aqueous and soil slurry environments.

    PubMed

    Tiwari, Manoj K; Guha, Saumyen

    2014-03-15

    The attenuation of chlorpyrifos (CPF) by the enriched indigenous soil microorganism was studied in 15 d aerobic and 60 d anaerobic batch experiments in aqueous and soil slurry (1:3 w/w) media. At the end of the batch experiments, 2.78 ± 0.11 μM of CPF was degraded by 82% in aerobic and 66% in anaerobic aqueous environments, while 12.4 ± 0.5 μM of CPF was degraded by 48% in aerobic and 31% in anaerobic soil slurries. The reduced degradation in the soil slurries was due to the significantly (2-10 times) slower rate of degradation of soil phase CPF compared with its degradation rate in water. The pathways of degradation of CPF were identified, including a partial anaerobic degradation pathway that is constructed for the first time. The simulation of the various conversions in the degradation pathways using first order kinetics was used to analyze relative persistence of metabolites. The common metabolite 3,5,6-trichloro-2-pyridinol (TCP) accumulated (increased monotonically during the period of experiments) in aerobic soil slurry and in anaerobic aqueous as well as soil slurry systems but did not accumulate in aerobic aqueous system. The most toxic compound in the pathway, chlorpyrifos oxon (CPFO) was not detected in anaerobic environment. In aerobic environment, CPFO was short lived in aqueous medium, but accumulated slowly in the soils.

  14. Aqueous chlorination of mefenamic acid: kinetics, transformation by-products and ecotoxicity assessment.

    PubMed

    Adira Wan Khalit, Wan Nor; Tay, Kheng Soo

    2016-05-18

    Mefenamic acid (Mfe) is one of the most frequently detected nonsteroidal anti-inflammatory drugs in the environment. This study investigated the kinetics and the transformation by-products of Mfe during aqueous chlorination. The potential ecotoxicity of the transformation by-products was also evaluated. In the kinetic study, the second-order rate constant (kapp) for the reaction between Mfe and free available chlorine (FAC) was determined at 25 ± 0.1 °C. The result indicated that the degradation of Mfe by FAC is highly pH-dependent. When the pH was increased from 6 to 8, it was found that the kapp for the reaction between Mfe and FAC was decreased from 16.44 to 4.4 M(-1) s(-1). Characterization of the transformation by-products formed during the chlorination of Mfe was carried out using liquid chromatography-quadrupole time-of-flight accurate mass spectrometry. Four major transformation by-products were identified. These transformation by-products were mainly formed through hydroxylation, chlorination and oxidation reactions. Ecotoxicity assessment revealed that transformation by-products, particularly monohydroxylated Mfe which is more toxic than Mfe, can be formed during aqueous chlorination.

  15. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kishore, Kamal; Mukherjee, T.

    2006-01-01

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 10 9 dm 3 mol -1 s -1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>10 10 dm 3 mol -1 s -1) while O rad - radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N 3rad and SO 4rad - could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO 4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may be<1.33 V vs. NHE (the E o1 for N 3rad radical), it is more than 1.33 V vs. NHE for semi-oxidized SSA species.

  16. The IUPAC aqueous and non-aqueous experimental pKa data repositories of organic acids and bases.

    PubMed

    Slater, Anthony Michael

    2014-10-01

    Accurate and well-curated experimental pKa data of organic acids and bases in both aqueous and non-aqueous media are invaluable in many areas of chemical research, including pharmaceutical, agrochemical, specialty chemical and property prediction research. In pharmaceutical research, pKa data are relevant in ligand design, protein binding, absorption, distribution, metabolism, elimination as well as solubility and dissolution rate. The pKa data compilations of the International Union of Pure and Applied Chemistry, originally in book form, have been carefully converted into computer-readable form, with value being added in the process, in the form of ionisation assignments and tautomer enumeration. These compilations offer a broad range of chemistry in both aqueous and non-aqueous media and the experimental conditions and original reference for all pKa determinations are supplied. The statistics for these compilations are presented and the utility of the computer-readable form of these compilations is examined in comparison to other pKa compilations. Finally, information is provided about how to access these databases.

  17. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution.

    PubMed

    Wang, Bingyu; Lee, Linda S; Wei, Chenhui; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-09-01

    Perfluoroalkyl acids (PFAAs) are highly stable, persistent, and ubiquitous in the environment with significant concerns growing with regards to both human and ecosystem health. Due to the high stability to both biological and chemical attack, the only currently feasible approach for their removal from water is adsorbent technology. The main objective of this study was to assess a covalent triazine-based framework (CTF) adsorbent for removal from aqueous solutions of perfluoro C4, C6, and C8 carboxylates and sulfonates including the two C8s most commonly monitored, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Adsorption affinity and capacity were quantified and compared to three commonly used sorbents: pulverized microporous activated carbon, single-walled carbon nanotubes, and Amberlite IRA-400 anion-exchange resin. CTF adsorbent exhibited pronouncedly higher adsorption affinity and capacity of PFAAs than other test sorbents. The remarkably strong adsorption to CTF can be attributed to the favored electrostatic interaction between the protonated triazine groups on the inner wall of the hydrophobic CTF pore and the negatively charged head groups of the PFAAs intercalated between the CTF layers. The homogeneous, nanosized pores (1.2 nm) of CTF hindered adsorption of a large-sized dissolved humic acid, thus minimizing the suppression of PFAA adsorption. Additionally, regeneration of CTF was easily accomplished by simply raising pH > 11, which inhibited the electrostatic adsorptive interaction of PFAAs. PMID:27389552

  18. Arsenic(V) biosorption by charred orange peel in aqueous environments.

    PubMed

    Abid, Muhammad; Niazi, Nabeel Khan; Bibi, Irshad; Farooqi, Abida; Ok, Yong Sik; Kunhikrishnan, Anitha; Ali, Fawad; Ali, Shafaqat; Igalavithana, Avanthi Deshani; Arshad, Muhammad

    2016-01-01

    Biosorption efficiency of natural orange peel (NOP) and charred orange peel (COP) was examined for the immobilization of arsenate (As(V)) in aqueous environments using batch sorption experiments. Sorption experiments were carried out as a function of pH, time, initial As(V) concentration and biosorbent dose, using NOP and COP (pretreated with sulfuric acid). Arsenate sorption was found to be maximum at pH 6.5, with higher As(V) removal percentage (98%) by COP than NOP (68%) at 4 g L(-1) optimum biosorbent dose. Sorption isotherm data exhibited a higher As(V) sorption (60.9 mg g(-1)) for COP than NOP (32.7 mg g(-1)). Langmuir model provided the best fit to describe As(V) sorption. Fourier transform infrared spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy analyses revealed that the -OH, -COOH, and -N-H surface functional groups were involved in As(V) biosorption and the meso- to micro-porous structure of COP sequestered significantly (2-times) higher As(V) than NOP, respectively. Arsenate desorption from COP was found to be lower (10%) than NOP (26%) up to the third regeneration cycle. The results highlight that this method has a great potential to produce unique 'charred' materials from the widely available biowastes, with enhanced As(V) sorption properties.

  19. Arsenic(V) biosorption by charred orange peel in aqueous environments.

    PubMed

    Abid, Muhammad; Niazi, Nabeel Khan; Bibi, Irshad; Farooqi, Abida; Ok, Yong Sik; Kunhikrishnan, Anitha; Ali, Fawad; Ali, Shafaqat; Igalavithana, Avanthi Deshani; Arshad, Muhammad

    2016-01-01

    Biosorption efficiency of natural orange peel (NOP) and charred orange peel (COP) was examined for the immobilization of arsenate (As(V)) in aqueous environments using batch sorption experiments. Sorption experiments were carried out as a function of pH, time, initial As(V) concentration and biosorbent dose, using NOP and COP (pretreated with sulfuric acid). Arsenate sorption was found to be maximum at pH 6.5, with higher As(V) removal percentage (98%) by COP than NOP (68%) at 4 g L(-1) optimum biosorbent dose. Sorption isotherm data exhibited a higher As(V) sorption (60.9 mg g(-1)) for COP than NOP (32.7 mg g(-1)). Langmuir model provided the best fit to describe As(V) sorption. Fourier transform infrared spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy analyses revealed that the -OH, -COOH, and -N-H surface functional groups were involved in As(V) biosorption and the meso- to micro-porous structure of COP sequestered significantly (2-times) higher As(V) than NOP, respectively. Arsenate desorption from COP was found to be lower (10%) than NOP (26%) up to the third regeneration cycle. The results highlight that this method has a great potential to produce unique 'charred' materials from the widely available biowastes, with enhanced As(V) sorption properties. PMID:26552612

  20. Biosorption of acidic textile dyestuffs from aqueous solution by Paecilomyces sp. isolated from acidic mine drainage.

    PubMed

    Çabuk, Ahmet; Aytar, Pınar; Gedikli, Serap; Özel, Yasemin Kevser; Kocabıyık, Erçin

    2013-07-01

    Removal of textile dyestuffs from aqueous solution by biosorption onto a dead fungal biomass isolated from acidic mine drainage in the Çanakkale Region of Turkey was investigated. The fungus was found to be a promising biosorbent and identified as Paecilomyces sp. The optimal conditions for bioremediation were as follows: pH, 2.0; initial dyestuff concentration, 50 mg l(-1) for Reactive Yellow 85 and Reactive Orange 12, and 75 mg l(-1) for Reactive Black 8; biomass dosage, 2 g l(-1) for Reactive Yellow 85, 3 g l(-1) for Reactive Orange 12, 4 g l(-1) for Reactive Black 8; temperature, 25 °C; and agitation rate, 100 rpm. Zeta potential measurements indicated an electrostatic interaction between the binding sites and dye anions. Fourier transform infrared spectroscopy showed that amine, hydroxyl, carbonyl, and amide bonds were involved in the dyestuff biosorption. A toxicity investigation was also carried out before and after the biosorption process. These results showed that the toxicities for the reactive dyestuffs in aqueous solutions after biosorption studies decreased. The Freundlich and Langmuir adsorption models were used for the mathematical description of the biosorption equilibrium, and isotherm constants were evaluated for each dyestuff. Equilibrium data of biosorption of RY85 and RO12 dyestuffs fitted well to both models at the studied concentration and temperature.

  1. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum Sims grown in Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O.canum are used as an antidiabetic herbal medicine in Ghana. Interestingly, rosmarinic acid content and p...

  2. KINETIC ASPECTS OF CATION-ENHANCED AGGREGATION IN AQUEOUS HUMIC ACIDS. (R822832)

    EPA Science Inventory

    The cation-enhanced formation of hydrophobic domains in aqueous humic acids has been shown to be a slow process, consistent with the evolution and disintegration of humic acid configurations over periods lasting from days to weeks. After the addition of a magnesium salt to a humi...

  3. Self-assembly and foaming properties of fatty acid-lysine aqueous dispersions.

    PubMed

    Novales, Bruno; Riaublanc, Alain; Navailles, Laurence; Houssou, Bérénice Houinsou; Gaillard, Cédric; Nallet, Frédéric; Douliez, Jean-Paul

    2010-04-20

    We report on dispersions of fatty acid-lysine salts in aqueous solutions which are further used to produce foams. The alkyl chain length is varied from dodecyl to stearic. In aqueous solutions, the lysine salt of the dodecyl chain yields an isotropic solution, probably micelles, whereas for longer alkyl chains, vesicles formed but crystallized upon resting at room temperature or when kept at 4 degrees C. Solid-state NMR showed that in vesicles fatty acids are embedded in a lamellar arrangement passing from a gel to a fluid state upon heating; the transition temperature at which it occurs was determined by DSC. Those results are confirmed by small-angle neutron scattering which also give additional information on the bilayer structure. Incredibly stable foams are obtained using the palmitic acid/Lys salt whereas for other alkyl chain length, poor or no foam is formed. We conclude that the foamability is related to the phase behavior in aqueous solution. PMID:20334439

  4. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells

    NASA Astrophysics Data System (ADS)

    Tavana, H.; Jovic, A.; Mosadegh, B.; Lee, Q. Y.; Liu, X.; Luker, K. E.; Luker, G. D.; Weiss, S. J.; Takayama, S.

    2009-09-01

    Microscale biopatterning enables regulation of cell-material interactions and cell shape, and enables multiplexed high-throughput studies in a cell- and reagent-efficient manner. The majority of available techniques rely on physical contact of a stamp, pin, or mask with mainly a dry surface. Inkjet and piezoelectric printing is carried out in a non-contact manner but still requires a substantially dry substrate to ensure fidelity of printed patterns. These existing methods, therefore, are limited for patterning onto delicate surfaces of living cells because physical contact or substantially dry conditions are damaging to them. Microfluidic patterning with laminar streams does enable non-contact patterning in fully aqueous environments but with limited throughput and reagent diffusion across interfacial flows. Here, we describe a polymeric aqueous two-phase system that enables patterning nanolitres of a reagent-containing aqueous phase, in arbitrary shapes, within a second aqueous phase covering a cell monolayer. With the appropriate medium formulation, reagents of interest remain confined to the patterned phase without significant diffusion. The fully aqueous environment ensures high reagent activity and cell viability. The utility of this strategy is demonstrated with patterned delivery of genetic materials to mammalian cells for phenotypic screening of gene expression and gene silencing.

  5. Mid-Infrared Sensing of Organic Pollutants in Aqueous Environments

    PubMed Central

    Pejcic, Bobby; Myers, Matthew; Ross, Andrew

    2009-01-01

    The development of chemical sensors for monitoring the levels of organic pollutants in the aquatic environment has received a great deal of attention in recent decades. In particular, the mid-infrared (MIR) sensor based on attenuated total reflectance (ATR) is a promising analytical tool that has been used to detect a variety of hydrocarbon compounds (i.e., aromatics, alkyl halides, phenols, etc.) dissolved in water. It has been shown that under certain conditions the MIR-ATR sensor is capable of achieving detection limits in the 10–100 ppb concentration range. Since the infrared spectral features of every single organic molecule are unique, the sensor is highly selective, making it possible to distinguish between many different analytes simultaneously. This review paper discusses some of the parameters (i.e., membrane type, film thickness, conditioning) that dictate MIR-ATR sensor response. The performance of various chemoselective membranes which are used in the fabrication of the sensor will be evaluated. Some of the challenges associated with long-term environmental monitoring are also discussed. PMID:22454582

  6. [Kinetics of distribution of specific contaminants in an aqueous environment].

    PubMed

    Bogacka, T

    1993-01-01

    The study was carried out for establishing the distribution of benzo(a)pyrene, fluoroanthene, methylene chloride, chloroform and carbon tetrachloride under model conditions, simulating the environment of river water moderately contaminated and distilled water. The experiments were carried out for safe concentrations and concentrations 2-5 times greater at two temperatures: about 20 degrees C and 4 degrees C, and after adaptation of microorganisms to the presence of the analysed substances. In the light of the obtained results the kinetic parameters were established of the degradation process: rate constant and degradation half-times. The process developed in accordance with the kinetic equation of 1st order and depended on the model, group of determined compounds, initial concentration, temperature and microflora adaptation to the presence of the studied substances. Of the studied contaminants the degradation of polycyclic aromatic hydrocarbons-benzo(a)pyrene and fluoroanthene, progressed at the highest rate. The higher rate of degradation in river water than in distilled water suggests that microorganisms present in natural waters participated in the degradation od the determined compounds. This process was slowed down by temperature fall to about 4 degrees C. When the microflora had been adapted to the presence of chlorinated methane derivatives the process of degradation was as rule slower than in the situation of their direct addition to the experimental model adaptation was shown to have no effect on the kinetics of polycyclic hydrocarbon degradation. PMID:8016544

  7. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes.

  8. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  9. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    SciTech Connect

    Chialvo, Ariel A; Vlcek, Lukas; Cole, David

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  10. Ultrasonic degradation of oxalic acid in aqueous solutions.

    PubMed

    Dükkanci, M; Gündüz, G

    2006-09-01

    This paper describes the ultrasonic degradation of oxalic acid. The effects of ultrasonic power, H(2)O(2), NaCl, external gases on the degradation of oxalic acid were investigated. Reactor flask containing oxalic acid was immersed in the ultrasonic bath with water as the coupling fluid. Representative samples withdrawn were analysed by volumetric titration. Degradation degree of oxalic acid increased with increasing ultrasonic power. It was observed that H(2)O(2) has negative contribution on the degradation of oxalic acid and there was an optimum concentration of NaCl for enhancing the degradation degree of oxalic acid. Although bubbling nitrogen gave higher degradation than that for bubbling air, both gases (for 20 min before sonication and during sonication together) could not help to enhance the degradation of oxalic acid when compared with the degradation without gas passage. PMID:16352455

  11. Dissociation of equimolar mixtures of aqueous carboxylic acids in ionic liquids: role of specific interactions.

    PubMed

    Shukla, Shashi Kant; Kumar, Anil

    2015-04-30

    Hammett acidity function observes the effect of protonation/deprotonation on the optical density/absorbance of spectrophotometric indicator. In this work, the Hammett acidity, H0, of equimolar mixtures of aqueous HCOOH, CH3COOH, and CH3CH2COOH was measured in 1-methylimidazolium-, 1-methylpyrrolidinium-, and 1-methylpiperidinium-based protic ionic liquids (PILs) and 1-butyl-3-methylimidazolium-based aprotic ionic liquid (AIL) with formate (HCOO(-)) anion. Higher H0 values were observed for the equimolar mixtures of aqueous carboxylic acids in protic ionic liquids compared with those of the aprotic ionic liquid because of the involvement of the stronger specific interactions between the conjugate acid of ionic liquid and conjugate base of carboxylic acids as suggested by the hard-soft acid base (HSAB) theory. The different H0 values for the equimolar mixtures of aqueous carboxylic acids in protic and aprotic ionic liquids were noted to depend on the activation energy of proton transfer (Ea,H(+)). The higher activation energy of proton transfer was obtained in AIL, indicating lower ability to form specific interactions with solute than that of PILs. Thermodynamic parameters determined by the "indicator overlapping method" further confirmed the involvement of the secondary interactions in the dissociation of carboxylic acids. On the basis of the thermodynamic parameter values, the potential of different ionic liquids in the dissociation of carboxylic acids was observed to depend on the hydrogen bond donor acidity (α) and hydrogen bond acceptor basicity (β), characteristics of specific interactions.

  12. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.

    PubMed

    Martin, Derek; Cockell, Charles S

    2015-02-01

    Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments. PMID:25651097

  13. PELS (Planetary Environmental Liquid Simulator): a new type of simulation facility to study extraterrestrial aqueous environments.

    PubMed

    Martin, Derek; Cockell, Charles S

    2015-02-01

    Investigations of other planetary bodies, including Mars and icy moons such as Enceladus and Europa, show that they may have hosted aqueous environments in the past and may do so even today. Therefore, a major challenge in astrobiology is to build facilities that will allow us to study the geochemistry and habitability of these extraterrestrial environments. Here, we describe a simulation facility (PELS: Planetary Environmental Liquid Simulator) with the capability for liquid input and output that allows for the study of such environments. The facility, containing six separate sample vessels, allows for statistical replication of samples. Control of pressure, gas composition, UV irradiation conditions, and temperature allows for the precise replication of aqueous conditions, including subzero brines under martian atmospheric conditions. A sample acquisition system allows for the collection of both liquid and solid samples from within the chamber without breaking the atmospheric conditions, enabling detailed studies of the geochemical evolution and habitability of past and present extraterrestrial environments. The facility we describe represents a new frontier in planetary simulation-continuous flow-through simulation of extraterrestrial aqueous environments.

  14. Phosphorylation of glyceric acid in aqueous solution using trimetaphosphate.

    PubMed

    Kolb, V; Orgel, L E

    1996-02-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%. PMID:11536746

  15. Phosphorylation of Glyceric Acid in Aqueous Solution Using Trimetaphosphate

    NASA Technical Reports Server (NTRS)

    Kolb, Vera; Orgel, Leslie E.

    1996-01-01

    The phosphorylation of glyceric acid is an interesting prebiotic reaction because it converts a simple, potentially prebiotic organic molecule into phosphate derivatives that are central to carbohydrate metabolism. We find that 0.05 M glyceric acid in the presence of 0.5 M trimetaphosphate in alkaline solution gives a mixture of 2- and 3-phosphoglyceric acids in combined yields of up to 40%.

  16. A theoretical study on the pH dependence of X-ray emission spectra for aqueous acetic acid

    NASA Astrophysics Data System (ADS)

    Nishida, Naohiro; Tokushima, Takashi; Takahashi, Osamu

    2016-04-01

    We performed theoretical calculations to reproduce the site-selective XES spectra for aqueous acetic acid at the oxygen K-edge. The shape of the experimental XES spectra obtained from aqueous acetic acid drastically changed when the pH value was high. Structure sampling of an aqueous acetic acid cluster model was performed by the ab initio molecular dynamics trajectory. Relative XES peak intensities for the core-hole excited state dynamics simulations were calculated using density functional theory. We found that the theoretical XES spectra reproduced well the experimental spectra and that these calculations gave us electronic and molecular structure information about aqueous acetic acid.

  17. Chilling out: a cool aqueous environment promotes the formation of gas-surface complexes.

    PubMed

    Ota, Stephanie T; Richmond, Geraldine L

    2011-05-18

    SO(2), an important atmospheric pollutant, has been implicated in environmental phenomena such as acid rain, climate change, and cloud formation. In addition, SO(2) is fundamentally interesting because it forms spectroscopically identifiable complexes with water at aqueous surfaces. Vibrational sum frequency spectroscopy (VSFS) is used here to further investigate the mechanism by which SO(2) adsorbs to water at tropospherically relevant temperatures (0-23 °C). The spectral results lead to two important conclusions. SO(2) surface affinity is enhanced at colder temperatures, with nearly all of the topmost water molecules showing evidence of binding to SO(2) at 0 °C as compared to a much lower fraction at room temperature. This surface adsorption results in significant changes in water orientation at the surface, but is reversible at the temperatures examined here. Second, the SO(2) complex formation at aqueous surfaces is independent of aqueous solution acidity. One challenge in previous uptake studies was the ability to distinguish between the effects of surface adsorption as compared to bulk accommodation. The surface and vibrational specificity of these studies make this distinction possible, allowing a selective study of how the aqueous properties temperature and pH influence SO(2) surface affinity.

  18. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  19. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    PubMed

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  20. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  1. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  2. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  3. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  4. Plastic shaping of aqueous alumina suspensions with saccharides and dicarboxylic acids

    SciTech Connect

    Goel, H.; Schilling, C.H.; Biner, S.B.

    1996-06-01

    Traditional methods for the shape-forming of engineering ceramics entail plastic deformation of powder slurries containing hazardous organic liquids as suspending media. Replacing these organics with aqueous media requires the development of environmentally-benign, water-soluble additives which serve as plasticizers and binders. Fundamental studies were performed with aqueous suspensions of colloidal {alpha}-Al{sub 2}O{sub 3} to evaluate the role of sucrose, maltodextrin, and oxalic acid on viscosity, sedimentation and filtration characteristics, plastic flow behavior of filter cakes, and sinterability. Maltodextrin and oxalic acid systems exhibited superior results, including filtration to high packing-densities and clay-like plasticity with minimal cracking.

  5. Investigation of the swelling behaviour of hydrogels in aqueous acid or alkaline solutions

    NASA Astrophysics Data System (ADS)

    Althans, Daniel; Enders, Sabine

    2014-09-01

    For development of tailor made drug delivery systems using poly(N-isopropylacrylamide) hydrogels, the influence of acids and bases added to the aqueous solution on the swelling behaviour as function of concentration, temperature and kind of acid or base were investigated experimentally. The selected acids are formic, acetic, propionic, lactic, succinic, α-ketoglutaric and citric acid. The applied bases are sodium and potassium hydroxide. The swelling behaviour was characterised by the degree of swelling and by the uptake of acids by the hydrogel in the swollen state. In the case of weak acids the properties of the swollen hydrogel as well as the phase transition temperature and phase transition acid concentration depends on the type of acids, whereas the properties of the shrunken state do not depend on the acid used. In the case of strong bases, the properties of the shrunken and swollen state depend on the ionic strength, but not on the base applied.

  6. Radiolysis of aqueous solutions of 2-aminoethanethiosulfuric acid. [Gamma radiation

    SciTech Connect

    Grachev, S.A.; Koroleva, I.K.; Kropachev, E.V.; Litvyakova, G.I.

    1982-07-10

    In the radiolysis products of aerated and deaerated solutions of the 2-aminoethanethiosulfuric acid the authors have identified cystamine monoxide, cystamine, taurine, mercamine, the sulfate ion, the sulfite ion, and the dithionate ion. The yields of these products under different conditions have been determined. Results indicated that the sulfate ion is formed both from the divalent and the hexavalent sulfur atom of the 2-aminoethanethiosulfuric acid moelcule. A possible radiolysis mechanism is discussed.

  7. Histological effects of aqueous acids and gaseous hydrogen chloride on bean leaves

    SciTech Connect

    Swiecki, T.J.; Endress, A.G.; Taylor, O.C.

    1982-01-01

    Primary leaves of Phaseoulus vulgaris L. (pinto bean), 9 or 12 days from sowing, were exposed to aqueous acids, chloride salts, or hydrogen chloride gas. Leaves were examined for the presence and severity of resultant visible injury and samples for light and scanning electron microscopy. Exposure to 0.06 N HCl, HNO/sub 3/, H/sub 2/SO/sub 4/ or 14.5-19.0 mg m/sup -3/ gaseous HCl for 20 min evoked similar foliar injury including glazing and necrosis of the laminas. This injury appeared to result initially from plasmolysis and collapse of the epidermis and subsequently of the underlying mesophyll. Cellular injury was accompanied by various cytoplasmic alterations. Microscopic symptoms observed in leaves exposed to gaseous HCl or aqueous acids included vesicles and particulates within the larger vacuoles. Similar symptoms were present in leaves exposed to polyethylene glycol 6000. Differential effects included formation of necrotic pits and preferential injury to paravascular tissues in leaves treated with aqueous acids and crystalline chloroplast inclusions in gaseous HCl-treated and water-stressed leaves. The visible and microscopic appearances of leaves exposed to aqueous acids or gaseous HCl were compared and related to injury stemming from acid precipitation and a possible mechanism of action for gaseous HCl phytotoxicity.

  8. Dissolution state of cellulose in aqueous systems. 2. Acidic solvents.

    PubMed

    Alves, Luis; Medronho, Bruno; Antunes, Filipe E; Topgaard, Daniel; Lindman, Björn

    2016-10-20

    Cellulose is insoluble in water but can be dissolved in strong acidic or alkaline conditions. How well dissolved cellulose is in solution and how it organizes are key questions often neglected in literature. The typical low pH required for dissolving cellulose in acidic solvents limits the use of typical characterization techniques. In this respect, Polarization Transfer Solid State NMR (PT ssNMR) emerges as a reliable alternative. In this work, combining PT ssNMR, microscopic techniques and X-ray diffraction, a set of different acidic systems (phosphoric acid/water, sulfuric acid/glycerol and zinc chloride/water) is investigated. The studied solvent systems are capable to efficiently dissolve cellulose, although degradation occurs to some extent. PT ssNMR is capable to identify the liquid and solid fractions of cellulose, the degradation products and it is also sensitive to gelation. The materials regenerated from the acidic dopes were found to be highly sensitive to the solvent system and to the presence of amphiphilic additives in solution. PMID:27474617

  9. Transmission X-ray microscopy reveals the clay aggregate discrete structure in aqueous environment.

    PubMed

    Zbik, Marek S; Frost, Ray L; Song, Yen-Fang; Chen, Yi-Ming; Chen, Jian-Hua

    2008-03-15

    The utilization of new transmission X-ray microscopy (TXM) using the synchrotron photon source enable for the first time the study in three dimensions microsize clay particles in aggregates in their natural aqueous environment. This technique makes possible remarkable accurate images of nanosize mineral interparticle structure which forms a new nanocomposite. The Birdwood kaolinite/LDH aggregates observed in the TXM are much more compact than observed before in pure Birdwood kaolinite suspension and similar to aggregates formed after treatment by positively charged surfactant. Kaolinite/LDH aggregates in water reveal complex structure of larger kaolinite platelets connected together by gelled nanoparticles which are most probably LDH colloidal plates. Comparisons of the transmission electron microscope (TEM) and TXM techniques show similarities in particle morphology. The ability to study particles and aggregates in their natural aqueous environment and in 3-dimensions make this technique superior to the TEM technique. PMID:18187142

  10. Effects of aqueous chemical environments on crack and hydraulic fracture propagation and morphologies

    SciTech Connect

    Dunning, J.D.; Huf, W.L.

    1983-08-10

    The role of surface active aqueous environments in chemomechanical weakening of geologic materials is examined using the results of hydraulic fracture tests in sandstone, calorimetric studies, and crack propagation tests in synthetic quartz. In hydraulic fracture tests it was found that the effective hydraulic fracture pressure was reduced, over that attained with distilled water, when 5 X 10/sup -4/ M aqueous solutions of dodecyl trimethyl ammonium bromide (DTAB) were used as the hydraulic fracture medium. The degree of branching of the fractures also was increased in the presence of the DTAB solution. Previously reported crack propagation stress values in quartz exposed to distilled water and various DTAB solutions displayed the same trend. These results and results from calorimetric measurements of the heats of adsorption and desorption from quartz of distilled water and DTAB are synthesized in a model relating effects to a reduction in the surface free energy due to adsorption from the chemical environment. 24 references.

  11. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  12. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1994

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1994-12-01

    The objective of this work is to investigate the simulateneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed this year the authors have measured the density, viscosity and surface tension of pure MDEA and DEA over a range in temperatures. The diffusivity of N2O was measured in aqueous blends of MDEA and DEA at 50 wt% total amine for various ratios of DEA to MDEA over the temperature range 20 to 80 deg. C. A theoretically-based model has been developed for the correlation of the physical solubility of N2O in aqueous amine solutions. A penetration theory type model which was developed to describe acid gas absorption in aqueous amine solutions was used to carry out a sensitivity analysis for the various parameters affecting the rate of absorption of CO2 in MDEA solutions.

  13. Acid gas absorption in aqueous solutions of mixed amines

    SciTech Connect

    Rinker, E.B.; Ashour, S.S.; Sandall, O.C.

    1996-12-31

    A mass transfer model has been developed to describe the rate of absorption (or desorption) of H{sub 2}S and CO{sub 2} in aqueous blends of a tertiary and a secondary or a primary amine. The model is based on penetration theory, and all significant chemical reactions are incorporated in the model. The reactions are taken to be reversible, with reactions involving only a proton transfer considered to be at equilibrium. The particular amines studied in this research were methyldiethanolamine (MDEA), a tertiary amine, and diethanolamine (DEA), a secondary amine. Key physicochemical data needed in the model, such as diffusion coefficients, kinetic rate constants, and gas solubilities, were measured. Experimental absorption rates of CO{sub 2} and H{sub 2}S were measured in a model gas-liquid contacting device and were compared with model predictions. Experiments were carried out for single amine solutions (both MDEA and DEA) and for amine blends.

  14. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end.

  15. Photochemical oxidation of chloride ion by ozone in acid aqueous solution.

    PubMed

    Levanov, Alexander V; Isaykina, Oksana Ya; Amirova, Nazrin K; Antipenko, Ewald E; Lunin, Valerii V

    2015-11-01

    The experimental investigation of chloride ion oxidation under the action of ozone and ultraviolet radiation with wavelength 254 nm in the bulk of acid aqueous solution at pH 0-2 has been performed. Processes of chloride oxidation in these conditions are the same as the chemical reactions in the system O3 - OH - Cl(-)(aq). Despite its importance in the environment and for ozone-based water treatment, this reaction system has not been previously investigated in the bulk solution. The end products are chlorate ion ClO3(-) and molecular chlorine Cl2. The ions of trivalent iron have been shown to be catalysts of Cl(-) oxidation. The dependencies of the products formation rates on the concentrations of O3 and H(+) have been studied. The chemical mechanism of Cl(-) oxidation and Cl2 emission and ClO3(-) formation has been proposed. According to the mechanism, the dominant primary process of chloride oxidation represents the complex interaction with hydroxyl radical OH with the formation of Cl2(-) anion-radical intermediate. OH radical is generated on ozone photolysis in aqueous solution. The key subsequent processes are the reactions Cl2(-) + O3 → ClO + O2 + Cl(-) and ClO + H2O2 → HOCl + HO2. Until the present time, they have not been taken into consideration on mechanistic description and modelling of Cl(-) oxidation. The final products are formed via the reactions 2ClO → Cl2O2, Cl2O2 + H2O → 2H(+) + Cl(-) + ClO3(-) and HOCl + H(+) + Cl(-) ⇄ H2O + Cl2. Some portion of chloride is oxidized directly by O3 molecule with the formation of molecular chlorine in the end. PMID:26077317

  16. Ascorbic acid levels of aqueous humor of dogs after experimental phacoemulsification.

    PubMed

    De Biaggi, Christianni P; Barros, Paulo S M; Silva, Vanessa V; Brooks, Dennis E; Barros, Silvia B M

    2006-01-01

    Phacoemulsification has been successfully employed in humans and animals for lens extraction. This ultrasonic extracapsular surgical technique induces hydroxyl radical formation in the anterior chamber, which accumulates despite irrigation and aspiration. In this paper we determined the total antioxidant status of aqueous humor after phacoemulsification by measuring aqueous humor ascorbic acid levels. Mixed-breed dogs (n = 11; weighing about 10 kg) with normal eyes as determined by slit-lamp biomicroscopy, applanation tonometry, and indirect ophthalmoscopy had phacoemulsification performed in one eye with the other eye used as a control. Samples of aqueous humor were obtained by anterior chamber paracentesis before surgery and at days 1, 2, 3, 7, and 15 after surgery. Total aqueous humor antioxidant status was inferred from the capacity of aqueous humor to inhibit free radical generation by 2,2-azobis (2-amidopropane) chlorine. Ascorbic acid concentrations were measured by high-pressure liquid chromatography with UV detection. Protein content was determined with the biuret reagent. Statistical analysis was performed by anova followed by the paired t-test. Total antioxidant capacity was reduced from 48 to 27 min during the first 24 h with a gradual increase thereafter, remaining statistically lower than the control eye until 7 days postoperatively. Reduced levels of ascorbic acid followed this reduction in antioxidant capacity (from 211 to 99 microm after 24 h), remaining lower than the control eye until 15 days postoperatively. Protein concentration in aqueous humor increased from 0.62 mg/mL to 30.8 mg/mL 24 h after surgery, remaining statistically lower than the control eye until 15 days postoperatively. Paracentesis alone did not significantly alter the parameters measured. These results indicate that after phacoemulsification, the aqueous humor ascorbic acid levels and antioxidant defenses in aqueous humor are reduced, indirectly corroborating free radical

  17. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Gislason, Sigurður R.

    2008-08-01

    Deposition of volcanic ash into aqueous environments leads to dissolution of adsorbed metal salts and aerosols, increasing the bioavailability of key nutrients. Volcanogenic fertilization events could increase marine primary productivity, leading to a drawdown of atmospheric CO 2. Here we conduct flow-through experiments on unhydrated volcanic ash samples from a variety of locations and sources, measuring the concentrations and fluxes of elements into de-ionized water and two contrasting ocean surface waters. Comparisons of element fluxes show that dissolution of adsorbed surface salts and aerosols dominates over glass dissolution, even in sustained low pH conditions. These surface ash-leachates appear unstable, decaying in situ even if kept unhydrated. Volcanic ash from recent eruptions is shown to have a large fertilization potential in both fresh and saline water. Fluorine concentrations are integral to bulk dissolution rates and samples with high F concentrations display elevated fluxes of some nutrients, particularly Fe, Si, and P. Bio-limiting micronutrients are released in large quantities, suggesting that subsequent biological growth will be limited by macronutrient availability. Importantly, acidification of surface waters and high fluxes of toxic elements highlights the potential of volcanic ash-leachates to poison aqueous environments. In particular, large pH changes can cause undersaturation of CaCO 3 polymorphs, damaging populations of calcifying organisms. Deposition of volcanic ash can both fertilize and/or poison aqueous environments, causing significant changes to surface water chemistry and biogeochemical cycles.

  18. STABILITY OF MFI ZEOLITE-FILLED PDMS MEMBRANES DURING PERVAPORATIVE ETHANOL RECOVERY FROM AQUEOUS MIXTURES CONTAINING ACETIC ACID

    EPA Science Inventory

    Pervaporation is a potential process for recovering bioethanol produced from biomass fermentation. Fermentation broths contain ethanol, water, and a variety of other compounds, often including carboxylic acids. The effects of acetic acid on long-term pervaporation of aqueous et...

  19. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution

    NASA Astrophysics Data System (ADS)

    Takai, Eisuke; Kitamura, Tsuyoshi; Kuwabara, Junpei; Ikawa, Satoshi; Yoshizawa, Shunsuke; Shiraki, Kentaro; Kawasaki, Hideya; Arakawa, Ryuichi; Kitano, Katsuhisa

    2014-07-01

    Plasma medicine is an attractive new research area, but the principles of plasma modification of biomolecules in aqueous solution remain elusive. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino acids in aqueous solution. High-resolution mass spectrometry revealed that chemical modifications of 14 amino acids were observed after plasma treatment: (i) hydroxylation and nitration of aromatic rings in tyrosine, phenylalanine and tryptophan; (ii) sulfonation and disulfide linkage formation of thiol groups in cysteine; (iii) sulfoxidation of methionine and (iv) amidation and ring-opening of five-membered rings in histidine and proline. A competitive reaction experiment using 20 amino acids demonstrated that sulfur-containing and aromatic amino acids were preferentially decreased by the plasma treatment. These data provide fundamental information for elucidating the mechanism of protein inactivation for biomedical plasma applications.

  20. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  1. POLYSTYRENE SULFONIC ACID CATALYZED GREENER SYNTHESIS OF HYDRAZONES IN AQUEOUS MEDIUM USING MICROWAVES

    EPA Science Inventory

    An environmentally benign aqueous protocol for the synthesis of cyclic, bi-cyclic, and heterocyclic hydrazones using polystyrene sulfonic acid (PSSA) as a catalyst has been developed; the simple reaction proceeds efficiently in water in the absence of any organic solvent under mi...

  2. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  3. Rosmarinic acid content in antidiabetic aqueous extract from ocimum canum sims in Ghana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rosmarinic acid (RA) is an important polyphenol that is found in a variety of herbs including Ocimum canum sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical TLC was used to examine the compos...

  4. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  5. THE ROLE OF SELECTED CATIONS IN THE FORMATION OF PSEUDOMICELLES IN AQUEOUS HUMIC ACID (R822832)

    EPA Science Inventory

    The fluorescence intensity enhancement of a pyrene probe in aqueous humic acid solutions was assessed in terms of added lanthanide and thorium cations. Among the trivalent ions it was found that size played a role, with the small Lu3+ ion producing the greatest increase in pyrene...

  6. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  7. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  8. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  9. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  10. Standard enthalpies of formation of α-aminobutyric acid and products of its dissociation in an aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.

    2016-08-01

    Heats of solution of crystalline α-aminobutyric acid in water and in aqueous solutions of potassium hydroxide at 298.15 K are measured by means of direct calorimetry. Standard enthalpies of formation of the amino acid and products of its dissociation in an aqueous solution are calculated.

  11. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  12. Curcumin-cysteine and curcumin-tryptophan conjugate as fluorescence turn on sensors for picric Acid in aqueous media.

    PubMed

    Gogoi, Bedanta; Sen Sarma, Neelotpal

    2015-06-01

    Rapid detection of picric acid in real sample is of outmost importance from the perspective of health, safety, and environment. In this study, a very simple and cost-effective detection of picric acid is accomplished by developing a couple of biobased conjugates curcumin-cysteine (CC) and curcumin-tryptophan (CT), which undergo efficient fluorescence turn on toward picric acid in aqueous media. Both the probes experience about 26.5-fold fluorescence enhancements at 70 nM concentration of the analyte. Here, the fluorescence turn on process is governed by the aggregation induced emission, which is induced from the electrostatic interaction between the conjugates with picric acid. The detection limit of CC and CT are about 13.51 and 13.54 nM of picric acid, respectively. Importantly, both the probes exhibit high selectivity and low interference of other analogues toward the detection of picric acid. In addition, the probes are highly photostable, show low response time and are practically applicable for sensing picric acid in real environmental samples, which is the ultimate goal of this work. PMID:25955402

  13. IMMOBILIZATION OF AQUEOUS PYRENE BY DISSOLVED HUMIC ACID (R822832)

    EPA Science Inventory

    Abstract

    Pyrene is frequently used as a fluorescent probe in the study of solution environments. Purging with nitrogen is a common practice for the elimination of oxygen from solutions, but this procedure leads to the loss of pyrene through carry-over in the nitrogen s...

  14. Characterization of Aqueous Oleic Acid/Oleate Dispersions by Fluorescent Probes and Raman Spectroscopy.

    PubMed

    Suga, Keishi; Kondo, Dai; Otsuka, Yoko; Okamoto, Yukihiro; Umakoshi, Hiroshi

    2016-08-01

    Oleic acid (OA) and oleates form self-assembled structures dispersible in aqueous media. Herein, the physicochemical properties of OA/oleate assemblies were characterized using fluorescent probes and Raman spectroscopy, under relatively high dilution (<100 mM of total amphiphile) at 25 °C. Anisotropy analysis using 1,6-diphenyl-1,3,5-hexatriene showed that the microviscosity of the OA/oleate assembly was highest at pH 7.5 (the pH range of 6.9-10.6 was investigated). The fluorescence spectra of 6-lauroyl-2-dimethylaminonaphthalene revealed the dehydrated environments on membrane surfaces at pH < 7.7. The pH-dependent Raman peak intensity ratios, chain torsion (S = I1124/I1096) and chain packing (R = I2850/I2930), showed local maxima, indicating the occurrence of metastable phases, such as dispersed cubic phase (pH = 7.5), vesicle (pH = 8.5), and dispersed cylindrical micelle (pH = 9.7). These results suggest that large-scale OA/oleate assemblies could possess particular membrane properties in a narrow pH region, e.g., at pH 7.5, and 9.7.

  15. Photodecomposition of tetrabromobisphenol A in aqueous humic acid suspension by irradiation with light of various wavelengths.

    PubMed

    Han, Sang Kuk; Yamasaki, Toshihide; Yamada, Ken-ichi

    2016-03-01

    The reactive species generated in aqueous 3,3',5,5'-tetrabromobisphenol A (TBBPA)/humic acid (HA) suspensions above the TBBPA pKa (∼7.4), under various light-irradiation conditions, namely ambient and ultraviolet light, were investigated using electron paramagnetic resonance (EPR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). We confirmed that singlet oxygen and OH radicals are the key reactive oxygen species generated at wavelengths greater than 400 and 300 nm, respectively. The amount of 2,6-dibromo-p-benzosemiquinone anion radicals (2,6-DBSQ(•-)) formed under irradiation at 400 nm increased linearly with respect to irradiation time; the initial reaction rate was 7.03 × 10(-9) mol g(-1) HA s(-1). The rate increased with increasing pH and light intensity. LC-MS and EPR spectroscopy showed that tribromohydroxybisphenol A was formed under irradiation at 300 nm via reaction of OH radicals with TBBPA. This study, for the first time, shows that the main byproducts formed during irradiation at wavelengths above 300 nm are 2,6-DBSQ(•-) and tribromohydroxybisphenol A, generated from singlet oxygen ((1)O2) and OH radicals, respectively. Photodecomposition of TBBPA in the environment may occur by formation of (1)O2 and OH radicals.

  16. Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization.

    PubMed

    Xie, Liqin; Lan, Fang; Li, Wenliao; Liu, Ziyao; Ma, Shaohua; Yang, Qi; Wu, Yao; Gu, Zhongwei

    2014-11-01

    Recently, the atom transfer radical polymerization (ATRP) of acrylic monomers in many reaction systems has been successfully accomplished. However, its application in aqueous solution is still a challenging task. In this work, polyacrylic acid (PAA) brushes with tunable length were directly grafted from P(St-AA)/Fe3O4 composite microspheres in aqueous solution via an improved method, activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP). This reaction was carried out in environment-friendly solvent. As well, this method overcame the sensitivity of the catalyst. Due to the strong coordination interaction of carboxyl groups, PAA brushes were employed for immobilizing gold nanoparticles, which were prepared via the in situ reduction of chloroauric acid. The PAA brushes modified magnetic composite microspheres decorating with gold nanoparticles were efficient for specific immobilization and separation of bovine serum albumin (BSA) from aqueous solution under the external magnetic field.

  17. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    PubMed

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  18. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    PubMed

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  19. ROS initiated oxidation of dopamine under oxidative stress conditions in aqueous and lipidic environments.

    PubMed

    Iuga, Cristina; Alvarez-Idaboy, J Raul; Vivier-Bunge, Annik

    2011-10-27

    Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 10(5) and 8.16 × 10(5) M(-1) s(-1), in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526

  20. ROS Initiated Oxidation of Dopamine under Oxidative Stress Conditions in Aqueous and Lipidic Environments

    PubMed Central

    2011-01-01

    Dopamine is known to be an efficient antioxidant and to protect neurocytes from oxidative stress by scavenging free radicals. In this work, we have carried out a systematic quantum chemistry and computational kinetics study on the reactivity of dopamine toward hydroxyl (•OH) and hydroperoxyl (•OOH) free radicals in aqueous and lipidic simulated biological environments, within the density functional theory framework. Rate constants and branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the reactivity of dopamine toward hydroxyl radicals, in water at physiological pH, the main mechanism of the reaction is proposed to be the sequential electron proton transfer (SEPT), whereas in the lipidic environment, hydrogen atom transfer (HAT) and radical adduct formation (RAF) pathways contribute almost equally to the total reaction rate. In both environments, dopamine reacts with hydroxyl radicals at a rate that is diffusion-controlled. Reaction with the hydroperoxyl radical is much slower and occurs only by abstraction of any of the phenolic hydrogens. The overall rate coefficients are predicted to be 2.23 × 105 and 8.16 × 105 M–1 s–1, in aqueous and lipidic environment, respectively, which makes dopamine a very good •OOH, and presumably •OOR, radical scavenger. PMID:21919526

  1. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  2. Perfluorinated alcohols and acids induce coacervation in aqueous solutions of amphiphiles.

    PubMed

    Khaledi, Morteza G; Jenkins, Samuel I; Liang, Shuang

    2013-02-26

    We have discovered that water-miscible perfluorinated alcohols and acids (FA) can induce simple and complex coacervation in aqueous solutions of a wide range of amphiphilic molecules such as synthetic surfactants, phospholipids, and bile salts as well as polyelectrolytes. This unique phenomenon seems to be nearly ubiquitous, especially for complex coacervate systems composed of mixed catanionic amphiphiles. In addition, coacervation and aqueous phase separation were observed over a wide range of surfactants concentrations and for different mole fractions of the oppositely charged amphiphile.

  3. Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping

    DOEpatents

    Rochelle, Gary T.; Oyenekan, Babatunde A.

    2011-03-08

    Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

  4. Degradation of berenil (diminazene aceturate) in acidic aqueous solution.

    PubMed

    Campbell, Michael; Prankerd, Richard J; Davie, Ashley S; Charman, William N

    2004-10-01

    The trypanocide berenil was assessed for chemical stability over the pH range 1-8 at 37 degrees C and 0.2 M ionic strength. It was found to be sufficiently unstable under acid conditions that its therapeutic efficacy is most likely severely compromised when administered orally. At pH 3, the half-life was 35 min, decreasing to 1.5 min at pH 1.75. Reaction rate constants were corrected for the effects of buffer catalysis and were found to range from 2.00 min(-1) at pH 1 to 6.1 x 10(-6) min(-1) at pH 8. The pH-rate profile displayed a region (pH 1-4) where specific acid catalysis was dominant, followed by a transitional region (pH 5-7), and finally a region (pH >7) where uncatalysed degradation was most important. It is recommended that berenil be enteric coated for formulations to be used in treating Third World parasitic diseases. PMID:15482649

  5. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight. PMID:15488923

  6. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.

    PubMed

    Xu, Xiang-Rong; Li, Hua-Bin; Li, Xiao-Yan; Gu, Ji-Dong

    2004-11-01

    Hexavalent chromium is a priority pollutant in the USA and many other countries. Reduction of Cr(VI) to Cr(III) is environmentally favorable as the latter species is not toxic to most living organisms and also has a low mobility and bioavailability. Reduction of Cr(VI) by ascorbic acid (vitamin C) as a reductant was studied using potassium dichromate solution as the model pollutant. Effects of concentration of vitamin C, pH, temperature, irradiation and reaction time on the reduction of Cr(VI) were examined. Cr(VI) might be reduced by vitamin C not only in acidic conditions but also in weakly alkaline solutions. The reduction of Cr(VI) by vitamin C might occur not only under irradiation but also in the dark. Vitamin C is an important biological reductant in humans and animals, and not toxic. It is water-soluble and can easily permeate through various types of soils. The results indicate that vitamin C could be used in effective remediation of Cr(VI)-contaminated soils and groundwater in a wide range of pH, with or without sunlight.

  7. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated.

  8. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    NASA Technical Reports Server (NTRS)

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  9. [Catalytic ozonation by ceramic honeycomb for the degradation of oxalic acid in aqueous solution].

    PubMed

    Zhao, Lei; Sun, Zhi-Zhong; Ma, Jun

    2007-11-01

    Comparative experiments for the degradation of oxalic acid in aqueous solution were carried out in the three processes of ozonation alone, ceramic honeycomb-catalyzed ozonation and ceramic honeycomb adsorption. The results show that the degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation, ozonation alone and ceramic honeycomb adsorption systems are 37.6%, 2.2% and 0.4%, and the presence of ceramic honeycomb catalyst significantly improves the degradation rate of oxalic acid compared to the results from non-catalytic ozonation and adsorption. With the addition of tert-butanol, the degradation rates of oxalic acid in catalytic ozonation system decrease by 24.1%, 29.0% and 30.1%, respectively, at the concentration of 5, 10 and 15 mg x L(-1). This phenomenon indicates that ceramic honeycomb-catalyzed ozonation for the degradation of oxalic acid in aqueous solution follows the mechanism of *OH oxidation, namely the heterogeneous surface of catalyst enhances the initiation of *OH. The results of TOC analysis demonstrate that the process of ceramic honeycomb-catalyzed ozonation can achieve the complete mineralization level without the formation of intermediary degradation products. The experimental results suggest that the reaction temperature has positive relationship with the degradation rate of oxalic acid. The degradation rates of oxalic acid in the ceramic honeycomb-catalyzed ozonation system are 16.4%, 37.6%, 61.3% and 68.2%, at the respective reaction temperature of 10, 20, 30 and 40 degrees C.

  10. Conversion of Aqueous Ammonia-Treated Corn Stover to Lactic Acid by Simultaneous Saccharification and Cofermentation

    NASA Astrophysics Data System (ADS)

    Zhu, Yongming; Lee, Y. Y.; Elander, Richard T.

    Treatment of corn stover with aqueous ammonia removes most of the structural lignin, whereas retaining the majority of the carbohydrates in the solids. After treatment, both the cellulose and hemicellulose in corn stover become highly susceptible to enzymatic digestion. In this study, corn stover treated by aqueous ammonia was investigated as the substrate for lactic acid production by simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Spezyme-CP) and Lactobacillus pentosus American Type Culture Collection (ATCC) 8041 (Spanish Type Culture Collection [CECT]-4023) were used for hydrolysis and fermentation, respectively. In batch SSCF operation, the carbohydrates in the treated corn stover were converted to lactic acid with high yields, the maximum lactic acid yield reaching 92% of the stoichiometric maximum based on total fermentable carbohydrates (glucose, xylose, and arabinose). A small amount of acetic acid was also produced from pentoses through the phosphoketolase pathway. Among the major process variables for batch SSCF, enzyme loading and the amount of yeast extract were found to be the key factors affecting lactic acid production. Further tests on nutrients indicated that corn steep liquor could be substituted for yeast extract as a nitrogen source to achieve the same lactic acid yield. Fed-batch operation of the SSCF was beneficial in raising the concentration of lactic acid to a maximum value of 75.0 g/L.

  11. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    PubMed

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater. PMID:26512324

  12. Heavy metals removal from aqueous environments by electrocoagulation process- a systematic review.

    PubMed

    Bazrafshan, Edris; Mohammadi, Leili; Ansari-Moghaddam, Alireza; Mahvi, Amir Hossein

    2015-01-01

    Heavy metals pollution has become a more serious environmental problem in the last several decades as a result releasing toxic materials into the environment. Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical processes were used for the treatment of domestic, industrial and agricultural effluents. The commonly used conventional biological treatments processes are not only time consuming but also need large operational area. Accordingly, it seems that these methods are not cost-effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation is an electrochemical technique with many applications. This process has recently attracted attention as a potential technique for treating industrial wastewater due to its versatility and environmental compatibility. This process has been applied for the treatment of many kinds of wastewater such as landfill leachate, restaurant, carwash, slaughterhouse, textile, laundry, tannery, petroleum refinery wastewater and for removal of bacteria, arsenic, fluoride, pesticides and heavy metals from aqueous environments. The objective of the present manuscript is to review the potential of electrocoagulation process for the treatment of domestic, industrial and agricultural effluents, especially removal of heavy metals from aqueous environments. About 100 published studies (1977-2016) are reviewed in this paper. It is evident from the literature survey articles that electrocoagulation are the most frequently studied for the treatment of heavy metal wastewater.

  13. Stability of titania nanotube arrays in aqueous environment and the related factors

    PubMed Central

    Cao, Can; Yan, Jun; Zhang, Yumei; Zhao, Lingzhou

    2016-01-01

    Titania nanotube arrays (NTAs) on titanium (Ti) fabricated by electrochemical anodization have attracted tremendous interest for diverse applications, of which most perform in aqueous environment or related to interaction with water. The NTAs are widely studied however the related factor of stability of NTAs when applied in such environment has rarely been concerned. We report that the annealed anatase NTAs are stable but the non-annealed amorphous NTAs are unstable to undergo specific structural change accompanied with a process of amorphous TiO2 dissolution and anatase TiO2 recrystallization. Quite unexpectedly, the non-annealed NTAs still show good stability without structural change in the cell culture media, possibly due to the presence of inorganics that may interfere with the TiO2 dissolution/redeposition process. The pH value of the aqueous environment is not a determinant factor for the structural change for non-annealed NTAs or not, while the temperature and the existence of F− can accelerate the structural change process. F− may play a very important role in the change process. PMID:26960922

  14. Stability of titania nanotube arrays in aqueous environment and the related factors

    NASA Astrophysics Data System (ADS)

    Cao, Can; Yan, Jun; Zhang, Yumei; Zhao, Lingzhou

    2016-03-01

    Titania nanotube arrays (NTAs) on titanium (Ti) fabricated by electrochemical anodization have attracted tremendous interest for diverse applications, of which most perform in aqueous environment or related to interaction with water. The NTAs are widely studied however the related factor of stability of NTAs when applied in such environment has rarely been concerned. We report that the annealed anatase NTAs are stable but the non-annealed amorphous NTAs are unstable to undergo specific structural change accompanied with a process of amorphous TiO2 dissolution and anatase TiO2 recrystallization. Quite unexpectedly, the non-annealed NTAs still show good stability without structural change in the cell culture media, possibly due to the presence of inorganics that may interfere with the TiO2 dissolution/redeposition process. The pH value of the aqueous environment is not a determinant factor for the structural change for non-annealed NTAs or not, while the temperature and the existence of F‑ can accelerate the structural change process. F‑ may play a very important role in the change process.

  15. Stability of titania nanotube arrays in aqueous environment and the related factors.

    PubMed

    Cao, Can; Yan, Jun; Zhang, Yumei; Zhao, Lingzhou

    2016-03-10

    Titania nanotube arrays (NTAs) on titanium (Ti) fabricated by electrochemical anodization have attracted tremendous interest for diverse applications, of which most perform in aqueous environment or related to interaction with water. The NTAs are widely studied however the related factor of stability of NTAs when applied in such environment has rarely been concerned. We report that the annealed anatase NTAs are stable but the non-annealed amorphous NTAs are unstable to undergo specific structural change accompanied with a process of amorphous TiO2 dissolution and anatase TiO2 recrystallization. Quite unexpectedly, the non-annealed NTAs still show good stability without structural change in the cell culture media, possibly due to the presence of inorganics that may interfere with the TiO2 dissolution/redeposition process. The pH value of the aqueous environment is not a determinant factor for the structural change for non-annealed NTAs or not, while the temperature and the existence of F(-) can accelerate the structural change process. F(-) may play a very important role in the change process.

  16. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia

    PubMed Central

    2013-01-01

    Background Use of lignocellulosic biomass has received attention lately because it can be converted into various versatile chemical compounds by biological processes. In this study, a two-step pretreatment with dilute sulfuric acid and aqueous ammonia was performed efficiently on rice straw to obtain fermentable sugar. The soaking in aqueous ammonia process was also optimized by a statistical method. Results Response surface methodology was employed. The determination coefficient (R2) value was found to be 0.9607 and the coefficient of variance was 6.77. The optimal pretreatment conditions were a temperature of 42.75°C, an aqueous ammonia concentration of 20.93%, and a reaction time of 48 h. The optimal enzyme concentration for saccharification was 30 filter paper units. The crystallinity index was approximately 60.23% and the Fourier transform infrared results showed the distinct peaks of glucan. Ethanol production using Saccharomyces cerevisiae K35 was performed to verify whether the glucose saccharified from rice straw was fermentable. Conclusions The combined pretreatment using dilute sulfuric acid and aqueous ammonia on rice straw efficiently yielded fermentable sugar and achieved almost the same crystallinity index as that of α-cellulose. PMID:23898802

  17. Crystallization and immersion freezing ability of oxalic and succinic acid in multicomponent aqueous organic aerosol particles

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

    2015-04-01

    This study reports on heterogeneous ice nucleation efficiency of immersed oxalic and succinic acid crystals in the temperature range from 245 to 215 K, as investigated with expansion cooling experiments using suspended particles. In contrast to previous laboratory work with emulsified solution droplets where the precipitation of solid inclusions required a preceding freezing/evaporation cycle, we show that immersed solids readily form by homogeneous crystallization within aqueous solution droplets of multicomponent organic mixtures, which have noneutonic compositions with an excess of oxalic or succinic acid. Whereas succinic acid crystals did not act as heterogeneous ice nuclei, immersion freezing by oxalic acid dihydrate crystals led to a reduction of the ice saturation ratio at freezing onset by 0.066-0.072 compared to homogeneous freezing, which is by a factor of 2 higher than previously reported laboratory data. These observations emphasize the importance of oxalic acid in heterogeneous ice nucleation.

  18. Safety and efficacy evaluation of aqueous citric acid to degrade B-aflatoxins in maize.

    PubMed

    Méndez-Albores, A; Arámbula-Villa, G; Loarca-Piña, M G F; Castaño-Tostado, E; Moreno-Martínez, E

    2005-02-01

    Chemical inactivation of aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) in maize grain by means of 1N aqueous citric acid was confirmed by the AFLATEST immunoaffinity column method, high performance liquid chromatography (HPLC), and the Ames test (Salmonella-microsomal screening system). The AFLATEST assay showed that aflatoxins in the maize grain with an initial concentration of 29 ng/g were completely degraded and 96.7% degradation occurred in maize contaminated with 93 ng/g when treated with the aqueous citric acid. Aflatoxin fluorescence strength of acidified samples was much weaker than untreated samples as observed in HPLC chromatograms. On the other hand, the Ames test results indicated that the mutagenic activity of acidified samples was greatly reduced compared with that of untreated samples based on his- --> his+ reversions in the Salmonella TA100 strain. Chemical inactivation appears to be a promising method of removing aflatoxin from food commodities.

  19. Ultrasonic Studies of 4-Aminobutyric Acid in Aqueous Metformin Hydrochloride Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Rajagopal, K.; Jayabalakrishnan, S. S.

    2010-12-01

    Ultrasonic speeds and density data of 4-aminobutyric acid in 0.05 M, 0.10 M, and 0.15 M aqueous metformin hydrochloride (MFHCl) solutions are measured at 308.15 K, 313.15 K, and 318.15 K. The isentropic compressibility ( k S ), the change in isentropic compressibility (Δ k S ), the relative change in isentropic compressibility ({Δ k_S/k_S^0}), the apparent molal compressibility ({k_φ}), the limiting apparent molal compressibility ({k_φ^0 }), the transfer limiting apparent molal compressibility ({Δ k_φ^0}), the hydration number ( n H), and the pair and triplet interaction parameters ( k AH, k AHH) are estimated. The above parameters are used to interpret the solute-solute and solute-solvent interactions of 4-aminobutyric acid in aqueous MFHCl solutions.

  20. Acidity and hydrogen exchange dynamics of iron(II)-bound nitroxyl in aqueous solution.

    PubMed

    Gao, Yin; Toubaei, Abouzar; Kong, Xianqi; Wu, Gang

    2014-10-20

    Nitroxyl-iron(II) (HNO-Fe(II)) complexes are often unstable in aqueous solution, thus making them very difficult to study. Consequently, many fundamental chemical properties of Fe(II)-bound HNO have remained unknown. Using a comprehensive multinuclear ((1)H, (15)N, (17)O) NMR approach, the acidity of the Fe(II)-bound HNO in [Fe(CN)5(HNO)](3-) was investigated and its pK(a) value was determined to be greater than 11. Additionally, HNO undergoes rapid hydrogen exchange with water in aqueous solution and this exchange process is catalyzed by both acid and base. The hydrogen exchange dynamics for the Fe(II)-bound HNO have been characterized and the obtained benchmark values, when combined with the literature data on proteins, reveal that the rate of hydrogen exchange for the Fe(II)-bound HNO in the interior of globin proteins is reduced by a factor of 10(6). PMID:25205463

  1. Effective Removal of Tetracycline from Aqueous Solution by Organic Acid-Coated Magnetic Nanoparticles.

    PubMed

    Guo, Liang; Liang, Yuyan; Chen, Xuelan; Xu, Wei; Wu, Kesheng; Wei, Hua; Xiong, Yonghua

    2016-03-01

    Self-assembled iron oxide nanocomposites are good magnetic nano-adsorbents that can be prepared using simple methods. Four types of organic acid-functionalised (oleic acid, undecenoic acid, caprylic acid or hexanoic acid) magnetic nanoparticles (MNPs) were synthesised through a one-pot chemisorption method for the removal of tetracycline (TC) from aqueous solution. The undecenoic acid-coated MNPs (UA-MNPs) exhibited the highest adsorption efficiency and can be easily retrieved with a low-gradient magnetic separator (0.4 Tesla) at pH 5.0 aqueous solution. The TC adsorption process on the UA-MNPs followed the Langmuir isotherm and the maximum adsorption capacities increased from 86.96 mg g(-1) to 222.2 mg g(-1) with the increase in temperature from 288 K to 318 K. The kinetics of adsorption fits pseudo-second-order model perfectly with a rate constant, 5.946 g mg(-1) min(-1) at 298 K. The positive values of the enthalpy (AH) and the negative value of the free energy (AG) indicated an endothermic and spontaneous adsorption process of TC on the UA-MNPs. Moreover, the UA-MNPs possessed excellent ability to adsorb the other three major types of TC antibiotics, including chlortetracycline, oxytetracycline and doxycycline. PMID:27455621

  2. Acceleration of suspending single-walled carbon nanotubes in BSA aqueous solution induced by amino acid molecules.

    PubMed

    Kato, Haruhisa; Nakamura, Ayako; Horie, Masanori

    2015-01-01

    Single-walled carbon nanotube (SWCNT) suspensions in aqueous media were prepared using bovine serum albumin (BSA) and amino acid molecules. It was found that the amino acid molecules clearly decreased the time required for suspending the SWCNTs in BSA aqueous solutions. Dynamic light scattering measurements revealed that the particle sizes of the SWCNTs suspended in aqueous media with and without amino acid molecules were approximately the same and stable for more than one week. The zeta potential values of the BSA molecules in pure water and amino acid aqueous solutions were different, and these values were also reflected in the surface potential of colloidal SWCNT particles in the corresponding aqueous media, thus inducing different dispersibility of SWCNTs in aqueous media. Pulsed field gradient nuclear magnetic resonance measurements showed that the interactions between the SWCNTs and the amino acid molecules are weak and comprise chemical exchange interactions and not bonding interactions. Amino acid molecules play a fascinating role in the preparation of SWCNT suspensions in BSA aqueous media by increasing electrostatic repulsive interactions between SWCNT colloidal particles and consequently enhancing the dispersion ability of the BSA molecules.

  3. Theoretical and computational studies of the interactions between small nanoparticles and with aqueous environments

    NASA Astrophysics Data System (ADS)

    Villarreal, Oscar D.

    Interactions between nanoparticles (metallic, biological or a hybrid mix of the two) in aqueous solutions can have multiple biological applications. In some of them their tendency towards aggregation can be desirable (e.g. self-assembly), while in others it may impact negatively on their reliability (e.g. drug delivery). A realistic model of these systems contains about a million or more degrees of freedom, but their study has become feasible with today's high performance computing. In particular, nanoparticles of a few nanometers in size interacting at sub-nanometer distances have become a novel area of research. The standard mean-field model of colloid science, the Derjaguin-Landau-Verwey-Overbeak (DLVO) theory, and even the extended version (XDLVO) have encountered multiple challenges when attempting to understand the interactions of small nanoparticles in the short range, since assumptions of continuous effects no longer apply. Because the region of the interaction is in the angstrom scale, the effects of atomic finite sizes and unique entropic interactions cannot be described through simple analytical formulae corresponding to generalized interaction potentials. In this work, all-atom molecular dynamics simulations have been performed on small nanoparticles in order to provide a theoretical background for their interactions with various liquid environments as well as with each other. Such interactions have been quantified and visualized as the processes occur. Potentials of mean force have been computed as functions of the separation distances in order to obtain the binding affinities. The atomistic details of how a nanoparticle interacts with its aqueous environments and with another nanoparticle have been understood for various ligands and aqueous solutions.

  4. Photo-transformation of pharmaceutically active compounds in the aqueous environment: a review.

    PubMed

    Yan, Shuwen; Song, Weihua

    2014-04-01

    In the past few years, the fate and transportation of pharmaceutically active compounds (PhACs) in aqueous environments have raised significant concerns among the public, scientists and regulatory groups. Photodegradation is an important removal process in surface waters. This review summarizes the last 10 years (2003-2013) of studies on the solar or solar-simulated photodegradation of PhACs in aqueous environments. The PhACs covered include: beta-blockers, antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), histamine H₂-receptor antagonists, lipid regulators, carbamazepine, steroid hormones, and X-ray contrast media compounds. Kinetic studies, degradation mechanisms and toxicity removal are the three major topics involved in this review. The quantum yield for the direct photolysis of PhACs and the bimolecular reaction rate constants of PhACs with reactive oxygen species (ROS), such as the ˙OH radical and singlet oxygen, are also summarized. This information is not only important to predict the PhAC photodegradation fate, but also is very useful for advanced treatment technologies, such as ozone or advanced oxidation processes.

  5. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    SciTech Connect

    Caro, Miguel A.; Määttä, Jukka; Lopez-Acevedo, Olga; Laurila, Tomi

    2015-01-21

    In this paper, we obtain the energy band positions of amorphous carbon (a–C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp{sup 2} sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  6. Energy band alignment and electronic states of amorphous carbon surfaces in vacuo and in aqueous environment

    NASA Astrophysics Data System (ADS)

    Caro, Miguel A.; Määttä, Jukka; Lopez-Acevedo, Olga; Laurila, Tomi

    2015-01-01

    In this paper, we obtain the energy band positions of amorphous carbon (a-C) surfaces in vacuum and in aqueous environment. The calculations are performed using a combination of (i) classical molecular dynamics (MD), (ii) Kohn-Sham density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, and (iii) the screened-exchange hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE). PBE allows an accurate generation of a-C and the evaluation of the local electrostatic potential in the a-C/water system, HSE yields an improved description of energetic positions which is critical in this case, and classical MD enables a computationally affordable description of water. Our explicit calculation shows that, both in vacuo and in aqueous environment, the a-C electronic states available in the region comprised between the H2/H2O and O2/H2O levels of water correspond to both occupied and unoccupied states within the a-C pseudogap region. These are localized states associated to sp2 sites in a-C. The band realignment induces a shift of approximately 300 meV of the a-C energy band positions with respect to the redox levels of water.

  7. The effects of aqueous chemical environments on crack and hydraulic fracture propagation and morphologies

    NASA Astrophysics Data System (ADS)

    Dunning, J. D.; Huf, W. L.

    1983-08-01

    The role of surface active aqueous environments in chemomechanical weakening of geologic materials is examined in light of the results of hydraulic fracture tests in sandstone, calorimetric studies, and crack propagation tests in synthetic quartz. In hydraulic fracture tests mploying Crab Orchard Sandstone it was found that the effective hydraulic fracture pressure was reduced, over that attained with distilled water, when 5×10-4 M aqueous solutions of dodecyl trimethyl ammonium bromide (DTAB) were used as the hydraulic fracture medium. The degree of branching of the fractures was also increased in the presence of the DTAB solution. Previously reported crack propagation stress values in quartz exposed to distilled water and various DTAB solutions displayed the same trend. When examined in this study, the cracks propagated in the presence of DTAB solutions also displayed a greater degree of branching than those propagated in the presence of distilled water or the ambient atmosphere. These results and results from calorimetric measurements of the heats of adsorption and desorption from quartz of distilled water and DTAB are synthesized in a model relating the weakening and morphological effects to a reduction in the surface free energy of quartz due to adsorption of species from the chemical environment onto the surfaces of the quartz and sandstone.

  8. Protective effects of mitochondria-targeted antioxidant SkQ in aqueous and lipid membrane environments.

    PubMed

    Antonenko, Y N; Roginsky, V A; Pashkovskaya, A A; Rokitskaya, T I; Kotova, E A; Zaspa, A A; Chernyak, B V; Skulachev, V P

    2008-04-01

    The antioxidant activity of mitochondria-targeted small molecules, SkQ1 and MitoQ (conjugates of a lipophilic decyltriphenylphosphonium cation with an antioxidant moiety of a plastoquinone and ubiquinone, respectively), was studied in aqueous solution and in a lipid environment, i.e., micelles, liposomes and planar bilayer lipid membranes. Reactive oxygen species (ROS) were generated by azo initiators or ferrous ions with or without tert-butyl-hydroperoxide (t-BOOH). Chemiluminescence, fluorescence, oxygen consumption and inactivation of gramicidin peptide channels were measured to detect antioxidant activity. In all of the systems studied, SkQ1 was shown to effectively scavenge ROS. The scavenging was inherent to the reduced form of the quinone (SkQ1H(2)). In the majority of the above model systems, SkQ1 exhibited higher antioxidant activity than MitoQ. It is concluded that SkQ1H(2) operates as a ROS scavenger in both aqueous and lipid environments, being effective at preventing ROS-induced damage to membrane lipids as well as membrane-embedded peptides. PMID:18493812

  9. Subcritical crack growth in glasses under cyclic loads: Effect of hydrodynamic pressure in aqueous environments

    SciTech Connect

    Yi, K.S.; Dill, S.J.; Dauskardt, R.H.

    1997-07-01

    The effect of hydrodynamic pressure developed in the wake of a crack growing in a brittle material under cyclic loads in an aqueous environment is considered. The pressure acts in opposition to the movement of the crack faces, thus shielding the crack up from the applied loads. A general hydrodynamic fluid pressure relation based on a one-dimensional Reynolds equation, which applicable to a crack with an arbitrary crack opening profile, is developed. The model is modified to account for side flow through the thickness of the sample and cavitation near the crack tip. Both effects significantly modify the hydrodynamic pressure distribution. Finally, the resulting hydrodynamic pressure relations are combined with a fracture mechanics model to account for the change in the near-tip stress intensity. Resulting predictions of the cyclic crack-growth rate are found to be in good agreement with measured values for a borosilicate glass tested at various frequencies in a water environment.

  10. Study on the friction of κ-carrageenan hydrogels in air and aqueous environments.

    PubMed

    Kozbial, Andrew; Li, Lei

    2014-03-01

    Understanding the friction mechanism of polysaccharide hydrogels, which is the key component of human cartilage that has very low friction coefficient, is critical to develop next generation artificial joint replacement materials. In this study, the friction of the polysaccharide κ-carrageenan hydrogel was investigated to elucidate the effect of external load, cross-linking density, velocity, and environment on friction. Our experimental results show that (1) coefficient of friction (COF) decreases with normal load in air and remains constant in water, (2) increasing cross-linking density concurrently increases friction and is proportional to Young's modulus, (3) COF increases with testing velocity in both air and water, and (4) friction is reduced in aqueous environment due to the lubricating effect of water. The underlying frictional mechanism is discussed on the basis of water transport from bulk to surface and a previously proposed "repulsion-adsorption" model.

  11. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  12. Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2015-01-01

    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars.

  13. Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs. aqueous effects.

    PubMed

    DeNicol, Dean M; Stapleton, Michael G

    2002-01-01

    Restoration of streams impacted by acid mine drainage (AMD) focuses on improving water quality, however precipitates of metals on the substrata can remain and adversely affect the benthos. To examine the effects of AMD precipitates independently of aqueous effects, four substrata treatments, clean sandstone, clean limestone, AMD precipitate-coated sandstone and coated limestone, were placed in a circumneutral stream of high water quality for 4 weeks. Iron and Al were the most abundant metals on rocks with AMD precipitate. and significantly decreased after the exposure. Precipitate on the substrata did not significantly affect macroinvertebrate or periphyton density and species composition. In an additional experiment, percent survival of caged live caddisflies was significantly lower when exposed in situ for 5 days in an AMD affected stream than in a reference stream. Caddisfly whole-body concentrations of all combined metals and Fe alone were significantly higher in the AMD stream. Whole-body metal concentrations were higher in killed caddisflies than in live, indicating the importance of passive uptake. The results suggest the aqueous chemical environment of AMD had a greater affect on organisms than a coating of recent AMD precipitate on the substrata (ca. 0.5 mm thick), and treatment that improves water quality in AMD impacted streams has the potential to aid in recovery of the abiotic and biotic benthic environment.

  14. Compartmentalization of amino acids in surfactant aggregates - Partitioning between water and aqueous micellar sodium dodecanoate and between hexane and dodecylammonium propionate trapped water in hexane

    NASA Technical Reports Server (NTRS)

    Fendler, J. H.; Nome, F.; Nagyvary, J.

    1975-01-01

    The partitioning of amino acids (glycine, alanine, leucine, phenylalanine, histidine, aspartic acid, glutamic acid, lysine, isoleucine, threonine, serine, valine, proline, arginine) in aqueous and nonaqueous micellar systems was studied experimentally. Partitioning from neat hexane into dodecylammonium propionate trapped water in hexane was found to be dependent on both electrostatic and hydrophobic interactions, which implies that the interior of dodecylammonium propionate aggregates is negatively charged and is capable of hydrogen bonding in addition to providing a hydrophobic environment. Unitary free energies of transfer of amino acid side chains from hexane to water were determined and solubilities of amino acids in neat hexane substantiated the amino acid hydrophobicity scale. The relevance of the experiments to prebiotic chemistry was examined.

  15. Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution.

    PubMed

    Liu, Chao; Wang, Xiaoqing; Li, Zhaodong; Cui, Lei; Li, Chaozhong

    2015-08-12

    We report herein an efficient and general method for the decarboxylative azidation of aliphatic carboxylic acids. Thus, with AgNO3 as the catalyst and K2S2O8 as the oxidant, the reactions of various aliphatic carboxylic acids with tosyl azide or pyridine-3-sulfonyl azide in aqueous CH3CN solution afforded the corresponding alkyl azides under mild conditions. A broad substrate scope and wide functional group compatibility were observed. A radical mechanism is proposed for this site-specific azidation.

  16. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    NASA Astrophysics Data System (ADS)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  17. Air pollution, acid rain and the environment

    SciTech Connect

    Mellanby, K.

    1988-01-01

    This book reports on the Watt Committee's working group on acid rain, which was set up in 1981. The authors consider the relationship between natural and the man-made factors and the effects of possible remedial strategies. In the first phase of the study, the group looked at the fate of airborne pollution, vegetation and soils, freshwater and remedial strategy. In this report, which contains the results of a further phase of study, these topics are included and have been brought up to date. The scope of the report is extended to include buildings and non-living materials. Consideration is given to the problem of acid rain and air pollution worldwide. Emphasis is placed on the United Kingdom. The main conclusion is that more research is necessary on some aspects of acid rain and air pollution, but that some of the reports widespread damage caused by acid rain cannot be confirmed.

  18. The Solubility of Xenon in Simple Organic Solvents and in Aqueous Amino Acid Solutions.

    NASA Astrophysics Data System (ADS)

    Himm, Jeffrey Frank

    We have measured the Ostwald solubility (L) of ('133)Xe in a variety of liquids, including normal alkanes, normal alkanols, and aqueous solutions of amino acids, NaCl, and sucrose. For the alkanes and alkanols, measurements were made in the temperature range from 10-50(DEGREES)C. Values of L were found to decrease with increasing temperature, and also with increasing chain length, for both series of solvents. Thermodynamic properties of solution (enthalpy and entropy of solution) are calculated using both mole fraction and number density scales. Results are interpreted using Uhlig's model of the solvation process. Measurements of L in aqueous amino acid solutions were made at 25(DEGREES)C. Concentrations of amino acids in solution varied from near saturation for each of the amino acids studied to pure water. In all solutions, except those with NaCl, L decreases linearly with increasing solution molarity. Hydration numbers (H), the mean number of water molecules associated with each solute molecule, were determined for each amino acid, for NaCl, and for sucrose. Values of H obtained ranged from near zero (arginine, H = 0.2 (+OR-) 0.5) to about 16 (NaCl, H = 16.25 (+OR-) 0.3).

  19. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated.

  20. The dissolution of quartz in dilute aqueous solutions of organic acids at 25 degree C

    SciTech Connect

    Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P. )

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25{degree}C and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 {mu}mole/Kg compared to 50 {mu}mole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  1. The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C

    NASA Astrophysics Data System (ADS)

    Bennett, P. C.; Melcer, M. E.; Siegel, D. I.; Hassett, J. P.

    1988-06-01

    The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH. The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.

  2. Statistical Thermodynamic Model for Surface Tension of Aqueous Organic Acids with Consideration of Partial Dissociation.

    PubMed

    Boyer, Hallie C; Dutcher, Cari S

    2016-06-30

    With statistical mechanics, an isotherm-based surface tension model for single solute aqueous solutions was derived previously (Wexler et al. J. Phys. Chem. Lett. 2013) for the entire concentration range, from infinite dilution to pure liquid solute, as a function of solute activity. In recent work (Boyer et al. J. Phys. Chem. Lett. 2015), empirical model parameters were reduced through physicochemical interpretations of both electrolyte and organic solutes, enabling surface tension predictions for systems where there is little or no data. The prior binary model is extended in the current work for the first time to treat multicomponent systems to predict surface tensions of partially dissociating organic acids (acetic, butyric, citric, formic, glutaric, maleic, malic, malonic, oxalic, propionic, and succinic acids). These organic acids are especially applicable to the study of atmospheric aqueous aerosols, due to their abundance in the atmosphere. In the model developed here, surface tension depends explicitly on activities of both the neutral organic and deprotonated components of the acid. The relative concentrations of the nondissociated and dissociated mole fractions are found using known dissociation constants. Model parameters strongly depend on molecular size, number of functional groups, O:C ratio, and number of carbons. For all organic acids in this study, fully predictive modeling of surface tensions is demonstrated. PMID:27219322

  3. Zeolite-type metal organic frameworks immobilized Eu³⁺ for cation sensing in aqueous environment.

    PubMed

    Liu, Chang; Yan, Bing

    2015-12-01

    A novel luminescent lanthanide metal organic framework (Ln-MOF) is synthesized by in situ encapsulating Eu(3+) ions to partial replace the transition-metal clusters in the channels of CPM-17-Zn nanocrystals. The Eu(3+) functionalized zeolite-type MOF hybrid system shows excellent luminescence property and photo-stability in aqueous environment for the sensitization and protection from the host framework. Subsequently, as a highly selective and sensitive sensor, its nanocrystals can be used to detect Cd(2+) in aqueous solution. In addition, the possible sensing mechanism based on ion exchange is discussed in detail. This work is one of the few cases for detecting Cd(2+) in aqueous solution based on a zeolite-type MOF. The good fluorescence stability, low detection limit and broad linear range in aqueous environment make this probe to be expected to have potential application in intracellular sensing and imaging of Cd(2+) potentially.

  4. Aqueous Phase Photo-Oxidation of Succinic Acid: Changes in Hygroscopic Properties and Reaction Products

    NASA Astrophysics Data System (ADS)

    Hudson, P. K.; Ninokawa, A.; Hofstra, J.; de Lijser, P.

    2013-12-01

    Atmospheric aerosol particles have been identified as important factors in understanding climate change. The extent to which aerosols affect climate is determined, in part, by hygroscopic properties which can change as a result of atmospheric processing. Dicarboxylic acids, components of atmospheric aerosol, have a wide range of hygroscopic properties and can undergo oxidation and photolysis reactions in the atmosphere. In this study, the hygroscopic properties of succinic acid aerosol, a non-hygroscopic four carbon dicarboxylic acid, were measured with a humidified tandem differential mobility analyzer (HTDMA) and compared to reaction products resulting from the aqueous phase photo-oxidation reaction of hydrogen peroxide and succinic acid. Reaction products were determined and quantified using gas chromatography-flame ionization detection (GC-FID) and GC-mass spectrometry (GC-MS) as a function of hydrogen peroxide:succinic acid concentration ratio and photolysis time. Although reaction products include larger non-hygroscopic dicarboxylic acids (e.g. adipic acid) and smaller hygroscopic dicarboxylic acids (e.g. malonic and oxalic acids), comparison of hygroscopic growth curves to Zdanovskii-Stokes-Robinson (ZSR) predictions suggests that the hygroscopic properties of many of the product mixtures are largely independent of the hygroscopicity of the individual components. This study provides a framework for future investigations to fully understand and predict the role of chemical reactions in altering atmospheric conditions that affect climate.

  5. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    NASA Technical Reports Server (NTRS)

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  6. Acid stability of anti-Helicobacter pyroli IgY in aqueous polyol solution.

    PubMed

    Lee, Kyong Ae; Chang, Sung Keun; Lee, Yoon Jin; Lee, Jong Hwa; Koo, Nan Sook

    2002-09-30

    IgY was separated from a hen's egg yolk that was immunized with Helicobacter pyroli. The anti-H. pyroli IgY activity at acidic pH and the suppressive effect of polyol on acid-induced inactivation of IgY were investigated. Sorbitol and xylitol were used as polyols. IgY was quite stable at pH 5-7. Irreversible inactivation of IgY was observed at pH below 4, and proceeded rapidly at pH below 3. The acid stability of IgY was enhanced in the presence of 30% sorbitol or above. In a 50% aqueous sorbitol solution, an acid-induced inactivation was almost completely suppressed at pH 3. However, the improvement of IgY activity was not observed in the aqueous xylitol solution. IgY showed almost the same activity as native IgY when sucrose was substituted for sorbitol. On the other hand, the xylitol replacement with sucrose did not enhance the acid stability of IgY. The acid-induced inactivation of IgY was related to tryptophyl fluorescence. Fluorescence emission spectra suggested that structural changes near the tryptophan residues may occur under acidic conditions. An increase in sorbitol concentration induced a blue shift. The fluorescence emission of IgY in a 50% sorbitol solution had a peak at 330 nm, which was the same emission peak that was exhibited by native IgY. Sorbitol could, therefore, be used as a good stabilizer of IgY under acidic conditions. PMID:12359091

  7. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency. PMID:25532323

  8. [Studies on carbonization of saccharides by using aqueous solution of various acids].

    PubMed

    Zhang, Xin; He, An-Qi; Kang, Ting-Guo; Xia, Jin-Ming; Weng, Shi-Fu; Xu, Yi-Zhuang; Wu, Jin-Guang

    2014-09-01

    The authors tried to establish an approach to use acids to convert biomass into a fuel with higher carbon content and lower oxygen content in a zero-energy-consumption fashion. Considering that biomass is composed of monosaccharide, we used aqueous solutions of variation acids including hydrochloric acid, sulfuric acid and perchloric acid to treat 2-deoxy-ribose and fructose at ambient temperature and pressure. Black substances were produced after a period of time when 2-deoxy-ribose and fructose were mixed with aqueous solutions containing 8 mol · L(-1) acids. The black substance was collected and characterized by using elemental analysis, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Elemental analysis results indicate that the contents of carbon increases significantly in the black substances in comparison with 2-deoxy-ribose and fructose. Moreover, XPS results indicate that the content of oxygen in the black substance undergoes a significant decrease compared with pure 2-deoxy-ribose and fructose. In the XPS spectra, the is peaks of 2-deoxy-ribose, strong sub peak at 286. 05 eV, which is assigned to carbon linked to oxygen directly, dominate in the C is peak envelop. After treatment by HClO4, the peak decreased dramatically. This result also supports the conclusion that the content of oxygen in mono-saccharide is significantly reduced after treatment by acids. In the FTIR spectra of the black substances, strong peaks can be observed around 1 600 cm(-1), indicating that C==C bond is formed in the product. The above results suggest that treatments with acids may be developed as a new zero-energy-consumption approach to convert biomass in a new fuel with improved energy output efficiency.

  9. The Formation and Aggregation of Iron Oxyhydroxide Nanoparticles in the Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Legg, Benjamin Adam

    This dissertation consists of four studies, which seek explain how iron oxyhydroxide nanoparticles nucleate and develop new structures via aggregation, within the aqueous environment. The aim of the first study is to determine the structure of ferrihydrite nanoparticle aggregates in aqua. This is achieved using complimentary cryo-TEM and SAXS methodologies. Ferrihydrite nanoparticles are known to form complex aggregate structures. Interpretation of SAXS data is difficult due to suspension polydispersity. Cryo-ET is used to obtain three-dimensional images of the nanoparticle suspensions. A variety of aggregate structures are observed, with branched networks of linear chains of particles being prevalent in most suspensions. The tomographic structural models are processed to determine aggregate fractal dimensions, using an autocorrelation function based approach. These results are combined with SAXS data to obtain a more comprehensive understanding of the suspension complexity. The networks of linear chains are shown to possess low fractal dimensions, between 1.0 and 1.4; significantly lower than would be expected from traditional models for aggregation. This has important consequences for the aggregate's physical behavior, and allows very large aggregates to exist in stable colloidal suspension without flocculation. The second study addresses how the ferrihydrite aggregate structure responds to changes in the ionic strength of the suspension, and how low-dimensional aggregate structures may influence nanoparticle transport through subsurface environments. Introducing ferrihydrite particle aggregates into solutions of 2 mM to 50 mM NaNO3 is shown to induce aggregate collapse, with more salt leading to the formation of denser aggregate structures and eventual flocculation. Complementary experiments show that millimolar quantities of NaNO3 induce a fundamental change in nanoparticle transport through a saturated quartz sand column. In deionized water, where low fractal

  10. Changing interfaces: Photoluminescent ZnO nanoparticle powders in different aqueous environments

    NASA Astrophysics Data System (ADS)

    Kocsis, Krisztina; Niedermaier, Matthias; Bernardi, Johannes; Berger, Thomas; Diwald, Oliver

    2016-10-01

    We transformed vapor phase grown ZnO nanoparticle powders into aqueous ZnO nanoparticle dispersions and studied the impact of associated microstructure and interface property changes on their spectroscopic properties. With photoluminescence (PL) spectroscopy, we probed oxygen interstitials Oi2 - in the near surface region and tracked their specific PL emission response at hvEM = 2.1 eV during the controlled conversion of the solid-vacuum into the solid-liquid interface. While oxygen adsorption via the gas phase does affect the intensity of the PL emission bands, the O2 contact with ZnO nanoparticles across the solid-liquid interface does not. Moreover, we found that the near band edge emission feature at hvEM = 3.2 eV gains relative intensity with regard to the PL emission features in the visible light region. Searching for potential PL indicators that are specific to early stages of particle dissolution, we addressed for aqueous ZnO nanoparticle dispersions the effect of formic acid adsorption. In the absence of related spectroscopic features, we were able to consistently track ZnO nanoparticle dissolution and the concomitant formation of solvated Zinc formate species by means of PL and FT-IR spectroscopy, dynamic light scattering, and zeta potential measurements. For a more consistent and robust assessment of nanoparticle properties in different continuous phases, we discuss characterization challenges and potential pitfalls that arise upon replacing the solid-gas with the solid-liquid interface.

  11. Interaction of Some Amino Acids with Sodium Dodecyl Sulphate in Aqueous Solution at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Itoo, Firdoos Ahmad; Ansari, Nizamul Haque

    2011-05-01

    The density ρ, and viscosity η of 0.00, 0.05, 0.10, 0.15, and 0.20 mol kg-1 glycine (Gly), dlalanine (Ala), dl-serine (Ser), and dl-valine (Val) have been measured in 0.002 mol kg-1 aqueous sodium dodecyl sulphate (SDS) at 298.15, 303.15, 308.15, and 313.15 K. These data have been used to calculate the apparent molar volume φv, infinite dilution apparent molar volume φv°, and the standard partial molar volumes of transfer φv° (tr), of the amino acids from water to the aqueous SDS solutions. Falkenhagen coefficient A, Jones-Dole coefficient B, free energies of activation per mole of solvent (aqueous SDS) Δμ1°*, and per mole solute (amino acids) Δμ2°*, also enthalpy ΔH* and entropy ΔS* of activation of viscous flow were evaluated using viscosity data. The molar refraction RD was calculated by using experimental values of the refractive index nD of the systems. The results have been interpreted in terms of ion-ion, ion-polar and hydrophobic-hydrophobic group interactions. The volume of the transfer data suggest that ion-ion intertactions are predominant.

  12. Influence of Acidity on Uranyl Nitrate Association in Aqueous Solutions: A Molecular Dynamics Simulation Study

    SciTech Connect

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin; Ye, Xianggui; Smith, Rodney Bryan

    2010-01-01

    Uranyl ion complexation with water and nitrate is a key aspect of the uranium/plutonium extraction process. We have carried out a molecular dynamics simulation study to investigate this complexation process, including the molecular composition of the various complex species, the corresponding structure, and the equilibrium distribution of the complexes. The observed structures of the complexes suggest that in aqueous solution, uranyls are generally hydrated by 5 water molecules in the equatorial plane. When associating with nitrate ions, a water molecule is replaced by a nitrate ion, preserving the five-fold coordination and planar symmetry. Analysis of the pair correlation function between uranyl and nitrate suggests that nitrates bind to uranyl in aqueous solution mainly in a monodentate mode, although a small portion of bidentates occur. Dynamic association and dissociation between uranyls and nitrates take place in aqueous solution with a substantial amount of fluctuation in the number of various uranyl nitrate species. The average number of the uranyl mononitrate complexes shows a dependence on acid concentration consistent with equilibrium-constant analysis, namely, the concentration of [UO2NO3]+ increases with nitric acid concentration.

  13. Kinetics of CO2 Absorption into Aqueous Basic Amino Acid Salt: Potassium Salt of Lysine Solution.

    PubMed

    Shen, Shufeng; Yang, Ya-nan; Bian, Yangyang; Zhao, Yue

    2016-02-16

    Aqueous amino acid salts are considered as an attractive alternative to alkanolamine solvents (e.g., MEA) for carbon dioxide (CO2) absorption. The kinetics of CO2 into unloaded aqueous solutions of potassium lysinate (LysK) was studied using a wetted wall column at concentrations ranging from 0.25 to 2.0 M and temperatures from 298 to 333 K. Physicochemical properties of aqueous LysK solutions such as density, viscosity, and physical solubility of CO2 were measured to evaluate the reaction rate constants. The reaction pathway is described using zwitterion mechanism taking into account the effect of ionic strength on the reaction rate. Under the fast pseudo-first-order regime, the reaction rate parameters were obtained and correlated in a power-law reaction rate expression. LysK shows higher chemical reactivity toward CO2 than the industrial standard MEA and most of amino acid salts. Its reaction rate constants increase considerably with concentration and temperature. The reaction order is found to be an average value of 1.58 with respect to LysK. The forward second-order kinetic rate constant, k2 0 , are obtained as 31615 and 84822 m3 kmol−1 s−1 at 298 and 313 K, respectively with activation energy of 51.0 kJ mol−1. The contribution of water to the zwitterion deprotonation seems to be more significant than that of LysK for the above-mentioned kinetic conditions PMID:26751093

  14. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  15. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  16. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  17. Fabrication of ZnO:Mn nanoparticles with organic shell in a highly alkaline aqueous environment

    NASA Astrophysics Data System (ADS)

    Chawla, Santa; Sharda; Jayanthi, K.

    2011-01-01

    Synthesis of undoped and Mn doped ZnO nanoparticles by an inclusive co precipitation method and in situ capping with heteromultifunctional organic stabilizer mercaptosuccinic acid (MSA) in a core shell structure, in highly alkaline aqueous matrix have been accomplished. Near room temperature synthesis resulted in high quality monophasic wurtzite hexagonal structure of rod shaped nanoparticles of bare ZnO:Mn with no signature of dopant as separate phase. MSA capping resulted in nanoball like formation. Thermo gravimetric analysis (TGA) and FTIR confirmed MSA capping. ZnO: Mn particles emit in orange and red when excited by UV and blue light. Surface modification makes the nanoparticles hydrophilic with active organic surface easy for bioconjugation with any ligand and can have applications in drug delivery or as nanoscale fluorescent probe in a biological system.

  18. The infrared optical constants of sulfuric acid at 250 K. [spectral reflectance measurement of aqueous solutions

    NASA Technical Reports Server (NTRS)

    Pinkley, L. W.; Williams, D.

    1976-01-01

    Results are presented for measurements of the IR spectral reflectance at near-normal incidence of aqueous solutions of sulfuric acid with acid concentrations of 75% and 95.6% by weight. Kramers-Kronig analyses of the reflectance data are employed to obtain values of the optical constants n(nu) and k(nu) in the spectral range from 400 to 6000 cm to the -1 power. The optical constants of these solutions at 250 K and 300 K are compared. It is found that in spectral regions remote from strong absorption bands, the values of the n(nu) indices obtained at 250 K agree with the values given by Lorentz-Lorenz correction of the same indices at 300 K. All absorption bands observed at 300 K are found to be present at 250 K with slight shifts in frequency and with significant differences in the k(nu) indices at the band maxima. Based on these results, it is concluded that the clouds of Venus probably consist of droplets of aqueous solutions of sulfuric acid with acid concentrations of about 75% by weight.

  19. Aqueous-phase photolysis of biacetyl (An α-dicarbonyl compound): A sink for biacetyl, and a source of acetic acid, peroxyacetic acid, hydrogen peroxide, and the highly oxidizing acetylperoxyl radical in aqueous aerosols, fogs, and clouds

    NASA Astrophysics Data System (ADS)

    Faust, Bruce C.; Powell, Kendall; Rao, C. Janakiram; Anastasio, Cort

    Aqueous-phase photolysis of biacetyl represents a heretofore uncharacterized sink for biacetyl and source of organic acids and peroxides to aqueous aerosols, and fog and cloud drops. The photolysis half-life of aqueous-phase biacetyl is approximately 1.0-1.6 h for a solar zenith angle of 36° (midday equinox sunlight in Durham, NC). Major products of aqueous biacetyl photolysis are acetic acid, peroxyacetic acid, and hydrogen peroxide. Pyruvic acid and methylhydroperoxide are minor photoproducts. Common atmospheric reductants (H-atom donors), such as formate, formaldehyde, glyoxal, phenol (as a model for phenolic compounds) and α- D-glucose (as a model for carbohydrates), substantially increase the quantum yields of peroxyacetic acid Formate also significantly increases the quantum yields of hydrogen peroxide. The highly oxidizing acetylperoxyl radical is proposed as a key intermediate in the photolysis of aqueous biacetyl. The sources and reactions of acetylperoxyl radicals in aqueous aerosols, fogs, and clouds should be investigated in future studies of atmospheric water-drop chemistry.

  20. Kinetics of acid-catalyzed degradation of cyclosporin A and its analogs in aqueous solution.

    PubMed

    Oliyai, R; Safadi, M; Meier, P G; Hu, M K; Rich, D H; Stella, V J

    1994-03-01

    The kinetics and mechanism of the degradation of cyclosporin A have been studied under aqueous acidic conditions. The rate of degradation was found to be specific acid-catalyzed over the pH range studied (1-4), with isocyclosporin A as the predominant degradation product. Selective reduction of the olefinic bond of the amino acid 2-N-methyl-(R)-((E)-2-butenyl)-4-methyl-L-threonine (MeBmt) did not affect the overall degradation kinetics and product distribution of cyclosporin A. These observations indicate that the alternative degradation pathway involving intramolecular alkoxy addition to the olefinic bond of amino acid MeBmt apparently does not significantly contribute to the overall degradation kinetics of cyclosporin A in the pH range 1-4. The chemical reactivity of O-acetyl-cyclosporin A was examined to probe the governing mechanism for the isomerization of cyclosporin A. Under identical conditions, O-acetyl-cyclosporin A showed a much greater chemical stability than cyclosporin A, consistent with a mechanism involving the hydroxyoxazolidine intermediate. The chemical stability of cyclosporin C, which contains two beta-hydroxyl groups, was also examined. The rate and product distribution for the degradation of cyclosporin C suggest that under aqueous acidic conditions it undergoes N,O-acyl migration solely at the amino acid residue MeBmt. Additionally, the impact of side-chain bulkiness of amino acid MeBmt was examined by studying the degradation kinetics of a series of cyclosporin A analogs.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs.

  2. Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment.

    PubMed

    Banasiuk, Rafał; Frackowiak, Joanna E; Krychowiak, Marta; Matuszewska, Marta; Kawiak, Anna; Ziabka, Magdalena; Lendzion-Bielun, Zofia; Narajczyk, Magdalena; Krolicka, Aleksandra

    2016-01-01

    A fast, economical, and reproducible method for nanoparticle synthesis has been developed in our laboratory. The reaction is performed in an aqueous environment and utilizes light emitted by commercially available 1 W light-emitting diodes (λ =420 nm) as the catalyst. This method does not require nanoparticle seeds or toxic chemicals. The irradiation process is carried out for a period of up to 10 minutes, significantly reducing the time required for synthesis as well as environmental impact. By modulating various reaction parameters silver nanoparticles were obtained, which were predominantly either spherical or cubic. The produced nanoparticles demonstrated strong antimicrobial activity toward the examined bacterial strains. Additionally, testing the effect of silver nanoparticles on the human keratinocyte cell line and human peripheral blood mononuclear cells revealed that their cytotoxicity may be limited by modulating the employed concentrations of nanoparticles. PMID:26855570

  3. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. PMID:24552655

  4. Passive Corrosion Behavior of Alloy 22 in Multi-Ionic Aqueous Environments

    SciTech Connect

    Lian, T.; Estill, J.C.; Hust, G.A.; Fix, D.V.; Rebak, R.B.

    2002-06-03

    In current waste packaging design, Alloy 22 (Ni-22Cr-13Mo-3W-3Fe) has been chosen as the candidate materials to fabricate a 2 cm outer layer of the high-level nuclear waste containers, as part of proposed geological repository at Yucca Mountain, Nevada. During the repository period, the container materials will be subject to the corrosion due to its exposure to the multi-ionic aqueous environments. Although Alloy 22 has demonstrated excellent corrosion resistance, but accumulation of small yearly corrosion rate for 10,000 or more years can be significant enough. The goal of this research is to seek alternative techniques to obtain a reasonably confident corrosion rate determination, since the conventional weight loss technique requires many years to achieve a detectable weight loss in Alloy 22 samples. This paper will discuss the latest experiment results in using potentiostatic technique to determine passive dissolution rates.

  5. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    NASA Astrophysics Data System (ADS)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  6. Synthesis of antimicrobial silver nanoparticles through a photomediated reaction in an aqueous environment

    PubMed Central

    Banasiuk, Rafał; Frackowiak, Joanna E; Krychowiak, Marta; Matuszewska, Marta; Kawiak, Anna; Ziabka, Magdalena; Lendzion-Bielun, Zofia; Narajczyk, Magdalena; Krolicka, Aleksandra

    2016-01-01

    A fast, economical, and reproducible method for nanoparticle synthesis has been developed in our laboratory. The reaction is performed in an aqueous environment and utilizes light emitted by commercially available 1 W light-emitting diodes (λ =420 nm) as the catalyst. This method does not require nanoparticle seeds or toxic chemicals. The irradiation process is carried out for a period of up to 10 minutes, significantly reducing the time required for synthesis as well as environmental impact. By modulating various reaction parameters silver nanoparticles were obtained, which were predominantly either spherical or cubic. The produced nanoparticles demonstrated strong antimicrobial activity toward the examined bacterial strains. Additionally, testing the effect of silver nanoparticles on the human keratinocyte cell line and human peripheral blood mononuclear cells revealed that their cytotoxicity may be limited by modulating the employed concentrations of nanoparticles. PMID:26855570

  7. Development of dithizone based fibre optic evanescent wave sensor for heavy metal ion detection in aqueous environments

    NASA Astrophysics Data System (ADS)

    Bhavsar, K.; Prabhu, R.; Pollard, P.

    2013-06-01

    Detection of highly toxic heavy metal ions requires rapid, simple, sensitive and selective detection methods in the environment. Optical fibre based sensing facilitates the remote, continuous and in-situ detection approaches in the environment. Herein, we report the development of a dithizone based fibre optic sensor with a simple procedure to detect heavy metal ions in the aqueous environment using an evanescent wave sensing approach. The chromogenic ligand dithizone and its spectral specificity with metal ions has been elaborated in this work.

  8. Ionic clusters vs shear viscosity in aqueous amino acid ionic liquids.

    PubMed

    Chaban, Vitaly V; Fileti, Eudes Eterno

    2015-03-01

    Aqueous solutions of amino acid ionic liquids (AAILs) are of high importance for applications in protein synthesis and solubilization, enzymatic reactions, templates for synthetic study, etc. This work employs molecular dynamics simulations using our own force field to investigate shear viscosity and cluster compositions of three 1-ethyl-3-methylimidazolium (emim) amino acid salts: [emim][ala], [emim][met], and [emim][trp] solutions (2, 5, 10, 20, and 30 mol %) in water at 310 K. We, for the first time, establish simple correlations between cluster composition, on one side, and viscosity, on another side. We argue that knowledge about any of these properties alone is enough to derive insights regarding the missed properties, using the reported correlations. The numerical observations and qualitative correlations are discussed in the context of the chemical structure of the amino acid anions, [ala], [met], and [trp]. The reported results will enhance progress in the efficient design and applications of AAILs and their solutions.

  9. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  10. Toxicity of aqueous C70-gallic acid suspension in Daphnia magna.

    PubMed

    Seda, Brandon C; Ke, Pu-Chun; Mount, Andrew S; Klaine, Stephen J

    2012-01-01

    The present study assessed the toxic effects of stable aqueous colloidal suspensions of gallic-acid-stabilized C(70) fullerene on Daphnia magna. The suspensions were stabilized through noncovalent surface modification with gallic acid. In addition to whole-organism responses, changes in antioxidative processes in D. magna were quantified. Acute toxicity was observed with 96LC50 for C(70) -gallic acid of 0.4 ± 0.1 mg/L C(70) . Daphnia magna fecundity was significantly reduced in 21-d bioassays at C(70) -gallic aqcid concentrations below quantifiable limits. Antioxidant enzyme activities of glutathione peroxidase and superoxide dismutase as well as lipid peroxidation suggested that exposed organisms experienced oxidative stress. Microscopic techniques used to determine cellular toxicity via apoptosis proved unsuccessful.

  11. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-01

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials.

  12. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-01

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials. PMID:21661073

  13. Solid supported in situ derivatization extraction of acidic degradation products of nerve agents from aqueous samples.

    PubMed

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Tak, Vijay; Dubey, D K; Pardasani, Deepak

    2014-09-12

    This study deals with the solid supported in situ derivatization extraction of acidic degradation products of nerve agents present in aqueous samples. Target analytes were alkyl alkylphosphonic acids and alkylphosphonic acids, which are important environmental signatures of nerve agents. The method involved tert-butyldimethylchlorosilane mediated in situ silylation of analytes on commercially available diatomaceous solid phase extraction cartridges. Various parameters such as derivatizing reagent, its concentration, reaction time, temperature and eluting solvent were optimized. Recoveries of the analytes were determined by GC-MS which ranged from 60% to 86%. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 78 and 213ngmL(-1) respectively, in selected ion monitoring mode. The successful applicability of method was also demonstrated on samples of biological origin such as plasma and to the samples received in 34th official proficiency test conducted by the Organization for Prohibition the of Chemical Weapons. PMID:25103280

  14. Experimental Shock Chemistry of Aqueous Amino Acid Solutions and the Cometary Delivery of Prebiotic Compounds

    NASA Astrophysics Data System (ADS)

    Blank, Jennifer G.; Miller, Gregory H.; Ahrens, Michael J.; Winans, Randall E.

    2001-02-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec^-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 μs and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process.

  15. Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds.

    PubMed

    Blank, J G; Miller, G H; Ahrens, M J; Winans, R E

    2001-01-01

    A series of shock experiments were conducted to assess the feasibility of the delivery of organic compounds to the Earth via cometary impacts. Aqueous solutions containing near-saturation levels of amino acids (lysine, norvaline, aminobutyric acid, proline, and phenylalanine) were sealed inside stainless steel capsules and shocked by ballistic impact with a steel projectile plate accelerated along a 12-m-long gun barrel to velocities of 0.5-1.9 km sec-1. Pressure-temperature-time histories of the shocked fluids were calculated using 1D hydrodynamical simulations. Maximum conditions experienced by the solutions lasted 0.85-2.7 microseconds and ranged from 5.1-21 GPa and 412-870 K. Recovered sample capsules were milled open and liquid was extracted. Samples were analyzed using high performance liquid chromatography (HPLC) and mass spectrometry (MS). In all experiments, a large fraction of the amino acids survived. We observed differences in kinetic behavior and the degree of survivability among the amino acids. Aminobutyric acid appeared to be the least reactive, and phenylalanine appeared to be the most reactive of the amino acids. The impact process resulted in the formation of peptide bonds; new compounds included amino acid dimers and cyclic diketopiperazines. In our experiments, and in certain naturally occurring impacts, pressure has a greater influence than temperature in determining reaction pathways. Our results support the hypothesis that significant concentrations of organic material could survive a natural impact process. PMID:11296518

  16. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles.

  17. Vine-shoot waste aqueous extract applied as foliar fertilizer to grapevines: Effect on amino acids and fermentative volatile content.

    PubMed

    Sánchez-Gómez, R; Garde-Cerdán, T; Zalacain, A; Garcia, R; Cabrita, M J; Salinas, M R

    2016-04-15

    The aim of this work was to study the influence of foliar applications of different wood aqueous extracts on the amino acid content of musts and wines from Airén variety; and to study their relationship with the volatile compounds formed during alcoholic fermentation. For this purpose, the foliar treatments proposed were a vine-shoot aqueous extract applied in one and two times, and an oak extract which was only applied once. Results obtained show the potential of Airén vine-shoot waste aqueous extracts to be used as foliar fertilizer, enhancing the wine amino acid content especially when they were applied once. Similar results were observed with the aqueous oak extract. Regarding wine fermentative volatile compounds, there is a close relationship between musts and their wines amino acid content allowing us to discuss about the role of proline during the alcoholic fermentation and the generation of certain volatiles. PMID:26616933

  18. Isolation and separation of transplutonium elements from other actinides on ion exchange resins from aqueous and aqueous ethanol solutions of sulfuric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1987-11-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on an anion exchange resin and a cation exchange resin in aqueous and aqueous alcohol solutions of sulfuric acid was investigated as a function of the concentration of various components of the solution. It was found that the presence of alcohol in sulfuric acid solutions leads to an increase in the distribution coefficients both on cation exchange resins and on anion exchange resins. The possibility of using ion exchange resins for the concentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements that form strong complexes with sulfate ions in a wide range of sulfuric acid concentrations was demonstrated.

  19. Corrosion inhibition behavior of propyl phosphonic acid-Zn2+ system for carbon steel in aqueous solution

    NASA Astrophysics Data System (ADS)

    Prabakaran, M.; Venkatesh, M.; Ramesh, S.; Periasamy, V.

    2013-07-01

    The effectiveness of propyl phosphonic acid (PPA) as a corrosion inhibitor in association with a bivalent cation like Zn2+ has been studied. An eco-friendly inhibitor in controlling corrosion of carbon steel in neutral aqueous medium in the absence and presence of Zn2+ has been evaluated by gravimetric method. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the aqueous environment. Potentiodynamic polarization studies showed that the inhibitor is a mixed inhibitor. X-ray photoelectron spectroscopic analysis (XPS) of the protective film exhibited the presence of the elements viz., iron, phosphorus, oxygen, carbon and zinc. The chemical shifts in the binding energies of these elements inferred that the surface film is composed of oxides/hydroxides of iron(III), Zn(OH)2 and [Fe(II)/(III)-Zn(II)-PPA] complex. Further, the surface analysis techniques viz., FT-IR, AFM and SEM studies confirm the formation of an adsorbed protective film on the carbon steel surface. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.

  20. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298. 15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S. ); Rard, J.A. )

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  1. Thermodynamics of aqueous sodium sulfate from the temperatures 273 K to 373 K and mixtures of aqueous sodium sulfate and sulfuric acid at 298.15 K

    SciTech Connect

    Hovey, J.K.; Pitzer, K.S.; Rard, J.A.

    1991-07-01

    New isopiestic vapor-pressure measurements on the aqueous system {l_brace}(1{minus}y)H{sub 2}SO{sub 4}+yNA{sub 2}SO{sub 4}{r_brace} along with earlier experimental investigations that span the range from y=0 to y=1 and infinitely dilute to supersaturated molalities have been analyzed in terms of the Pitzer ion-interaction model. Refined ion-interaction parameters for aqueous sodium sulfate valid over the temperature range 273 K to 373 K have been calculated and used for analyzing results for mixtures containing sulfuric acid and sodium sulfate at 298.15 K. Analysis of experimental results for these aqueous mixtures required explicit consideration of the dissociation reaction of bisulfate ion. Previous treatments of aqueous sulfuric acid and subsequently the bisulfate dissociation equilibrium valid in the range 273 K to 343 K were employed as a first approximation in representing the mixed solutions. Two sets of Pitzer ion-interaction parameters are presented for (sodium sulfate + sulfuric acid). The validity of the first set is limited in ionic strength and molality to saturated solutions of pure aqueous sodium sulfate (4 mol{center_dot}kg{sup {minus}1}). The second set of parameters corresponds to a slightly less precise representation but is valid over the entire range of experimental results considered. Both sets of parameters provide a more complete description of pure sulfuric acid solutions because of the removal of various redundancies of ion-interaction parameters. The specific ion-interaction terms used and the overall fitting procedure are described as well as selected examples of relevant thermodynamic calculations in the mixed system Na{sub 2}SO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O. 33 refs., 6 figs., 5 tabs.

  2. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-01

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  3. Engineered metal based nanomaterials in aqueous environments: Interactions, transformations and implications

    NASA Astrophysics Data System (ADS)

    Mudunkotuwa, Imali Ama

    Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces

  4. ESTIMATION OF HYDROLYSIS RATE CONSTANTS OF CARBOXYLIC ACID ESTER AND PHOSPHATE ESTER COMPOUNDS IN AQUEOUS SYSTEMS FROM MOLECULAR STRUCTURE BY SPARC

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy diffe...

  5. Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants.

    PubMed

    Kelly, Casey P; Cramer, Christopher J; Truhlar, Donald G

    2006-02-23

    Aqueous acid dissociation free energies for a diverse set of 57 monoprotic acids have been calculated using a combination of experimental and calculated gas and liquid-phase free energies. For ionic species, aqueous solvation free energies were calculated using the recently developed SM6 continuum solvation model. This model combines a dielectric continuum with atomic surface tensions to account for bulk solvent effects. For some of the acids studied, a combined approach that involves attaching a single explicit water molecule to the conjugate base (anion), and then surrounding the resulting anion-water cluster by a dielectric continuum, significantly improves the agreement between the calculated pK(a) value and experiment. This suggests that for some anions, particularly those concentrating charge on a single exposed heteroatom, augmenting implicit solvent calculations with a single explicit water molecule is required, and adequate, to account for strong short-range hydrogen bonding interactions between the anion and the solvent. We also demonstrate the effect of adding several explicit waters by calculating the pK(a) of bicarbonate (HCO(3)(-)) using as the conjugate base carbonate (CO(3)(2-)) bound by up to three explicit water molecules.

  6. Rosmarinic acid content in antidiabetic aqueous extract of Ocimum canum sims grown in Ghana.

    PubMed

    Berhow, Mark A; Affum, Andrews Obeng; Gyan, Ben A

    2012-07-01

    Rosmarinic acid (RA) is an important antioxidant polyphenol that is found in a variety of spices and herbs, including Ocimum canum Sims (locally called eme or akokobesa in Ghana). Aqueous extracts from the leaves of O. canum are used as an antidiabetic herbal medicine in Ghana. Analytical thin-layer chromatography was used to examine the composition of the polyphenols in leaf extracts. The polyphenol content in the aqueous and methanol extracts from the leaf, as determined by the Folin-Ciocalteu method, were 314 and 315 mg gallic acid equivalent/g leaf sample, respectively. The total flavonoid concentration as determined by the aluminum(III) chloride method was 135 mg catechin equivalent/g leaf sample. High-performance liquid chromatography coupled to an electrospray Quadrupole time-of-flight mass spectrometer was also used to determine the polyphenol fingerprint profile in the leaf extracts of O. canum. Although the average RA concentration in the O. canum leaf extracts from Ghana was 1.69 mg/g dry weight (reported values range from 0.01 to 99.62 mg/g dry weight), this polyphenol was still a prominent peak in addition to caffeic acid derivatives.

  7. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available. PMID:26936478

  8. Chromatographic characterisation, under highly aqueous conditions, of a molecularly imprinted polymer binding the herbicide 2,4-dichlorophenoxyacetic acid.

    PubMed

    Legido-Quigley, C; Oxelbark, J; De Lorenzi, E; Zurutuza-Elorza, A; Cormack, P A G

    2007-05-15

    The affinity of a 2,4-dichlorophenoxyacetic acid (2,4-D) molecularly imprinted polymer (MIP), which was synthesised directly in an aqueous organic solvent, for its template (2,4-D) was studied and compared with the affinity exhibited by two other reference (control) polymers, NIPA and NIPB, for the same analyte. Zonal chromatography was performed to establish the optimal selectivity, expressed as imprinting factor (IF), under chromatographic conditions more aqueous than those described so far in the literature. Frontal analysis (FA) was performed on columns packed with these polymers, using an optimized mobile phase composed of methanol/phosphate buffer (50/50, v/v), to extract adsorption isotherm data and retrieve binding parameters from the best isotherm model. Surprisingly, the template had comparable and strong affinity for both MIP (K = 3.8x10(4) M(-1)) and NIPA (K = 1.9x10(4) M(-1)), although there was a marked difference in the saturation capacities of selective and non-selective sites, as one would expect for an imprinted polymer. NIPB acts as a true control polymer in the sense that it has relatively low affinity for the template (K = 8.0x10(2) M(-1)). This work provides the first frontal chromatographic characterization of such a polymer in a water-rich environment over a wide concentration range. The significance of this work stems from the fact that the chromatographic approach used is generic and can be applied readily to other analytes, but also because there is an increasing demand for well-characterised imprinted materials that function effectively in aqueous media and are thus well-suited for analytical science applications involving, for example, biofluids and environmental water samples.

  9. ATR FT-IR H 2O spectra of acidic aqueous solutions. Insights about proton hydration

    NASA Astrophysics Data System (ADS)

    Śmiechowski, Maciej; Stangret, Janusz

    2008-04-01

    Proton hydration in aqueous solutions has been recently characterised in our laboratory by means of vibrational spectra of HDO isotopically diluted in H 2O [M. Śmiechowski, J. Stangret, J. Chem. Phys. 125 (2006) 204508]. Here, we attempt to study quantitatively H 2O spectra of acidic aqueous solutions. In principle, H 2O spectra provide more information about the structural state of water molecules, resulting from oscillator couplings in the system, but they are much more difficult in interpretation, when compared with HDO spectra. The spectra of aqueous solutions of monoprotic acids (HCl, HClO 4, HPF 6) have been measured by Attenuated Total Reflectance (ATR) FT-IR spectroscopy. Spectral data have been analysed in a way that led to removal of the contribution of bulk water, in order to separate the spectra of solute-affected water only. The analysis has been focused on the infinite dilution limit behaviour of the spectrum. Changes induced in the affected spectra by temperature have been studied for HPF 6 solutions at 25-45 °C. The stretching vibration fundamental has been found to be primarily affected by counter-anion. Proton-affected H 2O spectrum shows the presence of very wide absorption bands in the range, where bulk water shows negligible own absorption, rather than "absorption continua". They could be adequately resolved into analytical components. These bands have been unaffected by temperature and loosely correlated with the stretching fundamental, as indicated by 2D IR correlation spectra. All spectral effects of the studied acids on H 2O in solution have been quantitatively evidenced and discussed. They seem to be in accordance with the main conclusions about proton hydration derived from recent studies of HDO spectra mentioned above.

  10. A unified molecular picture of the surfaces of aqueous acid, base, and salt solutions

    SciTech Connect

    Mucha, M.; Frigato, Tomaso; Levering, Lori; Allen, Heather C.; Tobias, Douglas J.; Dang, Liem X.; Jungwirth, Pavel

    2005-04-28

    A unified view of the structure of the air/solution interface of simple aqueous electrolytes containing monovalent inorganic ions is developed using molecular dynamics simulations and vibrational sum frequency generation spectroscopy. In salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the air/solution interface, while the anions, such as halides or hydroxide, exhibit a varying propensity for the surface, correlated primarily with the polarizability of the ion. As a result, there is a net depletion of ions from the interfacial layer as a whole, which is connected via the Gibbs adsorption equation to an increase in surface tension with respect to neat water. The behavior of acids, such as aqueous HCl or HBr, is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids reduce the surface tension of water. The key to the qualitatively different surface behavior of aqueous salt solutions and bases on one side and acids on the other thus lies in the appreciable adsorption of hydronium cations at the air/solution interface with their “hydrophobic” oxygen side oriented towards the gas phase. The results of the molecular dynamics calculations are supported by surface selective non-linear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The propensity of inorganic ions for the air/solution interface has important implications for heterogeneous chemical processes, in particular for atmospheric chemistry.

  11. Sulfur Reduction in Acid Rock Drainage Environments.

    PubMed

    Florentino, Anna P; Weijma, Jan; Stams, Alfons J M; Sánchez-Andrea, Irene

    2015-10-01

    Microbiological suitability of acidophilic sulfur reduction for metal recovery was explored by enriching sulfur reducers from acidic sediments at low pH (from 2 to 5) with hydrogen, glycerol, methanol and acetate as electron donors at 30 °C. The highest levels of sulfide in the enrichments were detected at pH 3 with hydrogen and pH 4 with acetate. Cloning and sequencing of the 16S rRNA gene showed dominance of the deltaproteobacterial sulfur-reducing genus Desulfurella in all the enrichments and subsequently an acidophilic strain (TR1) was isolated. Strain TR1 grew at a broad range of pH (3-7) and temperature (20-50 °C) and showed good metal tolerance (Pb(2+), Zn(2+), Cu(2+), Ni(2+)), especially for Ni(2+) and Pb(2+), with maximal tolerated concentrations of 0.09 and 0.03 mM, respectively. Different sources of sulfur were tested in the enrichments, from which biosulfur showed fastest growth (doubling time of 1.9 days), followed by colloidal, chemical and sublimated sulfur (doubling times of 2.2, 2.5, and 3.6 days, respectively). Strain TR1's physiological traits make it a good candidate to cope with low pH and high metal concentration in biotechnological processes for treatment of metal-laden acidic streams at low and moderately high temperature.

  12. Acridine-based complex as amino acid anion fluorescent sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dai, Yanpeng; Xu, Kuoxi; Li, Qian; Wang, Chaoyu; Liu, Xiaoyan; Wang, Peng

    2016-03-01

    Novel acridine-based fluorescence sensors containing alaninol ligands, L1 and D1, were designed and synthesized. The structure of the compound was characterized by IR, 1H NMR, 13C NMR, MS spectra. L1 and D1 possess efficient Cu2 + cation ON-OFF selective signaling behavior based on ligand-to-metal binding mechanism at physiological pH condition. Additionally, the L1-Cu(II) and D1-Cu(II) complexes could further serve as reversible OFF-ON signaling sensing ensemble to allow ratiometric response to amino acid anion in aqueous solution.

  13. Photophysics of Fe(III) complexes with fluorosalicylic acid isomers in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pozdnyakov, Ivan P.; Melnikov, Alexey A.; Šípoš, Rastislav; Chekalin, Sergey V.; Šima, Jozef

    2016-09-01

    Transient absorption spectroscopy is used to study photophysical processes of 1:1 Fe(III) complexes with all four fluorosalicylic acid isomers (Fe-FSAs) in aqueous solutions. Excited states of Fe-FSAs decay to the ground electronic state with two time constants. The faster process is interpreted as internal conversion to the vibrationally hot electronic ground state and the slower one - as a combination of vibrational cooling and solvation of the ground state. The results obtained for Fe-FSAs and other previously investigated Fe(III) salicylato compounds allow us to reveal the main cause of photochemical stability of the complexes upon charge transfer band excitation.

  14. Aqueous phototransformation of bisphenol S: the competitive radical-attack pathway to p-hydroxybenzenesulfonic acid.

    PubMed

    Wang, Xiaowen; Ma, Jiahai; Wang, Zhenpeng; Guo, Rongrong; Hu, Xuefeng

    2014-01-01

    The kinetics, environmental influencing factors, products and reaction mechanism of aqueous phototransformation of bisphenol S (BPS), as an alternative to bisphenol A, which is of environmental concern, were investigated. p-Hydroxybenzenesulfonic acid, as the major transformation product was confirmed by gas chromatography - mass spectrometry, electrospray ionization, ¹H nuclear magnetic resonance and fluorescence spectrum analysis. A reaction pathway was proposed based on the reactive oxygen species related results by electron paramagnetic resonance and radical traps. The competition of the excited state of BPS between transferring electron to O₂ to •O₂(-) and directly oxidizing H₂O to •OH was revealed.

  15. The Oxidation of Ascorbic Acid by Hexacyanoferrate(III) Ion in Acidic Aqueous Media.

    ERIC Educational Resources Information Center

    Martins, Luis J. A.; da Costa, J. Barbosa

    1988-01-01

    Describes a kinetic and mechanistic investigation of ascorbic acid by a substitution-inert complex in acidic medium suitable for the undergraduate level. Discusses obtaining the second order rate constant for the rate determining step at a given temperature and comparison with the value predicted on the basis of the Marcus cross-relation. (CW)

  16. The dissolution of calcite in aqueous acid: The influence of humic species

    SciTech Connect

    Compton, R.G.; Sanders, G.H.W. )

    1993-07-01

    The kinetics of proton-induced calcite dissolution in aqueous solution in the presence of humic acids and their sodium salts are reported. In equilibrated acid solutions (pH <4) there is no inhibition by humic material and dissolution proceeds at a rate simply determined by the solution pH. Contrastingly the sodium salts of humic acids were found to have a significant inhibitory effect on the acid catalyzed dissolution. This was quantified using a novel channel flow cell experiment which employed two electrodes, the upstream of which was used to inject protons into a neutral solution, which also contained sodium salts of humic acid, via electrolytic oxidation of dissolved hydroquinone. The two electrodes were located immediately upstream and downstream of a calcite crystal so that the proton injection served to dissolve the calcite in the (inhibiting) presence of humic salts unequilibrated with the solution pH. The amount of H[sup +] which survived passage to the downstream detector'' electrode was used to quantify the rate of dissolution and hence the inhibitory effects of the humic acid. The latter were found to operate in a manner not inconsistent with Langmuirian adsorption.

  17. Adsorption of naphthalene from aqueous solution onto fatty acid modified walnut shells.

    PubMed

    Zhu, Mijia; Yao, Jun; Dong, Lifu; Sun, Jingjing

    2016-02-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution is challenging to environmental technologists. Agricultural waste is apparently the most attractive materials in removing PAHs because of its abundance, renewability, and economic advantage. The adsorption of PAHs (e.g., naphthalene) onto walnut shell (WNS) and its fatty acid (e.g., capric acid, lauric acid, palmitic acid, and oleic acid)-modified equivalent were investigated in this work to develop low-cost biosorbents for hydrophobic organic compounds. Compared with other modified sorbents, oleic acid graftted walnut shell (OWNS) showed the maximum partition coefficient (4330 ± 8.8 L kg(-1)) because of its lowest polarity and highest aromaticity. The adsorption capacity (7210 μg g(-1)) of OWNS at the temperature of 298 K was observed for an initial naphthalene concentration of 25 mg L(-1) with contact time of 40 h, sorbent dosage of 1 g L(-1), and in neutral condition. Furthermore, the regeneration capability of OWNS implied that it was a promising biosorbent for naphthalene removal.

  18. Adsorption of naphthalene from aqueous solution onto fatty acid modified walnut shells.

    PubMed

    Zhu, Mijia; Yao, Jun; Dong, Lifu; Sun, Jingjing

    2016-02-01

    The removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution is challenging to environmental technologists. Agricultural waste is apparently the most attractive materials in removing PAHs because of its abundance, renewability, and economic advantage. The adsorption of PAHs (e.g., naphthalene) onto walnut shell (WNS) and its fatty acid (e.g., capric acid, lauric acid, palmitic acid, and oleic acid)-modified equivalent were investigated in this work to develop low-cost biosorbents for hydrophobic organic compounds. Compared with other modified sorbents, oleic acid graftted walnut shell (OWNS) showed the maximum partition coefficient (4330 ± 8.8 L kg(-1)) because of its lowest polarity and highest aromaticity. The adsorption capacity (7210 μg g(-1)) of OWNS at the temperature of 298 K was observed for an initial naphthalene concentration of 25 mg L(-1) with contact time of 40 h, sorbent dosage of 1 g L(-1), and in neutral condition. Furthermore, the regeneration capability of OWNS implied that it was a promising biosorbent for naphthalene removal. PMID:26517393

  19. Dissipative crystallization of aqueous mixtures of potassium salts of poly(riboadenylic acid) and poly(ribouridylic acid).

    PubMed

    Okubo, Tsuneo

    2011-10-15

    Dissipative drying patterns of aqueous mixtures of potassium salts of poly(riboadenylic acid) (KPolyA) and poly(ribouridylic acid) (KPolyU) were studied on a cover glass, a watch glass and a glass dish at room temperature. Accumulation of the polymers forming the broad rings near the outside edge and the inner area of the dried film was observed. The fine multiple ring structures formed when the affinity of the polymer with the substrate is strong. Microscopic drying patterns changed drastically depending on the location in the dried film. Microscopic drying patterns were mainly dendritic long rods and sword (halberd)-like rods. They are assigned to the crystals of double-stranded and triple-stranded helices of the A:U and A:2U complexes, respectively. Cross-like drying patterns are also observed originated from the salt-polymer interaction.

  20. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  1. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

  2. Formation of isomers of anionic hemiesters of sugars and carbonic acid in aqueous medium.

    PubMed

    Dos Santos, Vagner B; Vidal, Denis T R; Francisco, Kelliton J M; Ducati, Lucas C; do Lago, Claudimir L

    2016-06-16

    Hemiesters of carbonic acid can be freely formed in aqueous media containing HCO3(-)/CO2 and mono- or poly-hydroxy compounds. Herein, (13)C NMR spectroscopy was used to identify isomers formed in aqueous solutions of glycerol (a prototype compound) and seven carbohydrates, as well as to estimate the equilibrium constant of formation (Keq). Although both isomers are formed, glycerol 1-carbonate corresponds to 90% of the product. While fructose and ribose form an indistinct mixture of isomers, the anomers of d-glucopyranose 6-carbonate correspond to 74% of the eight isomers of glucose carbonate that were detected. The values of Keq for the disaccharides sucrose (4.3) and maltose (4.2) are about twice the values for the monosaccharides glucose (2.0) and fructose (2.3). Ribose (Keq = 0.89)-the only sugar without a significant concentration of a species containing a -CH2OH group in an aqueous solution-resulted in the smallest Keq. On the basis of the Keq value and the concentrations of HCO3(-) and glucose in blood, one can anticipate a concentration of 2-4 µmol L(-1) for glucose 6-carbonate, which corresponds to ca. of 10% of its phosphate counterpart (glucose 6-phosphate).

  3. Extraction of p-coumaric acid and ferulic acid using surfactant-based aqueous two-phase system.

    PubMed

    Dhamole, Pradip B; Demanna, Dhanashree; Desai, S A

    2014-09-01

    Ferulic acid (FA) and p-coumaric acid (pCA) are high-value products that can be obtained by alkaline hydrolysis of lignocellulose. Present work explores the potential of surfactant-based cloud-point extraction (CPE) for FA and pCA extraction from corn cob hydrolysate. More than 90 % (w/w) extraction of both FA and pCA was achieved from model system with L92. The partition coefficient of FA and pCA in L92 aqueous phase system was 35 and 55, respectively. A significant enrichment (8-10-fold) of both FA and pCA was achieved in surfactant-rich phase. Furthermore, the downstream process volume was reduced by 10 to 13 times. Optimized conditions (5 % v/v L92 and pH 3.0) resulted into 85 and 89 % extraction of FA and p-CA, respectively, from alkaline corn cob hydrolysate. Biocompatibility tests were carried out for L92 for ethanol fermentation and found to be biocompatible. Thus, the new surfactant-based CPE system not only concentrated FA and pCA but also reduced the process volume significantly. Further, aqueous phase containing sugars can be used for ethanol fermentation. PMID:25082768

  4. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  5. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  6. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2012-12-18

    Nanoparticle transport in natural settings is complex due to interactions with the surrounding environment. In this study, the impact of UVA irradiation and humic acid (HA) on deposition of aqueous fullerene nanoparticles (nC₆₀) on a silica surface as a surrogate for natural sediments was studied using packed column experiments and quartz crystal microbalance with dissipation monitoring under various solution conditions. Surface oxidation of nC₆₀ induced by UVA irradiation greatly retarded its deposition due to the increased negative surface charge and hydrophilicity. Dissolved HA, once adsorbed onto the nC₆₀ surface, also hindered its deposition mainly through steric hindrance forces. The extent of this effect depended on the properties and the amount of HA adsorbed, which is a function of ionic strength and HA concentration. HA has limited adsorption on UVA-irradiated nC₆₀ and is expected to play a less important role in its stability. HA immobilized onto the silica surface had a variable effect on nC₆₀ deposition, depending on the complex interplay of Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO interactions such as electrostatic interaction, steric hindrance, and hydrogen bonding as well as HA molecular conformation. These results highlight the importance of environment-induced changes in nC₆₀ surface chemistry in its fate and transport in aquatic environments.

  7. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  8. Low Pressure Tolerance by Methanogens in an Aqueous Environment: Implications for Subsurface Life on Mars

    NASA Astrophysics Data System (ADS)

    Mickol, R. L.; Kral, T. A.

    2016-09-01

    The low pressure at the surface of Mars (average: 6 mbar) is one potentially biocidal factor that any extant life on the planet would need to endure. Near subsurface life, while shielded from ultraviolet radiation, would also be exposed to this low pressure environment, as the atmospheric gas-phase pressure increases very gradually with depth. Few studies have focused on low pressure as inhibitory to the growth or survival of organisms. However, recent work has uncovered a potential constraint to bacterial growth below 25 mbar. The study reported here tested the survivability of four methanogen species (Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum, Methanococcus maripaludis) under low pressure conditions approaching average martian surface pressure (6 mbar - 143 mbar) in an aqueous environment. Each of the four species survived exposure of varying length (3 days - 21 days) at pressures down to 6 mbar. This research is an important stepping-stone to determining if methanogens can actively metabolize/grow under these low pressures. Additionally, the recently discovered recurring slope lineae suggest that liquid water columns may connect the surface to deeper levels in the subsurface. If that is the case, any organism being transported in the water column would encounter the changing pressures during the transport.

  9. Stress corrosion cracking of candidate structural materials under simulated first-wall/aqueous coolant environments

    SciTech Connect

    Fox, M.R.; Hull, A.B.; Kassner, T.F.

    1990-10-01

    Stress corrosion cracking (SCC) susceptibility of Types 316NG, 316, and 304 stainless steels (SS) was investigated in slow-strain-rate tests (SSRTs) in oxygenated water that simulates important parameters anticipated in first-wall/blanket systems. The water chemistry was based on a computer code which yielded the nominal concentrations of radiolytic species produced in an aqueous environment under ITER-type conditions. Actual SSRTs were performed in a less benign, more oxidizing reference environment at temperatures from 52 to 150{degree}C. Predominantly ductile fracture was observed in Type 316NG and nonsensitized Types 316 SS and 304 SS SSRT specimens strained to failure in a reference ITER water chemistry. The failure behavior of Type 304 SS specimens heat-treated to yield sensitization values of 2, 3, or 20 Coulomb (C)/cm{sup 2} by the electrochemical potentiokinetic reactivation (EPR) technique, demonstrated that the degree of sensitization had a dramatic effect on intergranular stress corrosion cracking (IGSCC) susceptibility. Ranking for resistance to SCC in simulated ITER water by electron microscopy and SSRT parameters, i.e., failure time, ultimate strength, total elongation and stress ratio is 304 SS (EPR = 20 <2 C/cm{sup 2}) < 316NG SS. 11 refs., 6 figs., 7 tabs.

  10. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Skvortsov, I. A.; Korchagina, A. S.

    2016-09-01

    Heat effects of the dissolution of crystalline γ-aminobutyric acid in water and potassium hydroxide solutions are determined by direct colorimetry at 298.15 K. Standard enthalpies of formation of γ-aminobutyric acid and the products of its dissociation in aqueous solution are calculated.

  11. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid

    PubMed Central

    Niskanen, Johannes; Sahle, Christoph J.; Ruotsalainen, Kari O.; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-01-01

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range. PMID:26888159

  12. Sulphur Kβ emission spectra reveal protonation states of aqueous sulfuric acid.

    PubMed

    Niskanen, Johannes; Sahle, Christoph J; Ruotsalainen, Kari O; Müller, Harald; Kavčič, Matjaž; Žitnik, Matjaž; Bučar, Klemen; Petric, Marko; Hakala, Mikko; Huotari, Simo

    2016-02-18

    In this paper we report an X-ray emission study of bulk aqueous sulfuric acid. Throughout the range of molarities from 1 M to 18 M the sulfur Kβ emission spectra from H2SO4 (aq) depend on the molar fractions and related deprotonation of H2SO4. We compare the experimental results with results from emission spectrum calculations based on atomic structures of single molecules and structures from ab initio molecular dynamics simulations. We show that the S Kβ emission spectrum is a sensitive probe of the protonation state of the acid molecules. Using non-negative matrix factorization we are able to extract the fractions of different protonation states in the spectra, and the results are in good agreement with the simulation for the higher part of the concentration range.

  13. Competitive adsorption of boric acid and chromate onto alumina in aqueous solutions.

    PubMed

    Demetriou, A; Pashalidis, I

    2014-01-01

    The competitive adsorption of boric acid and chromate from aqueous solutions by alumina has been investigated by spectrophotometry at pH 8, ionic strength = 0.0, 0.1 and 1.0 M NaClO4, T = 22 ± 3 °C and under normal atmospheric conditions. The experimental data show that addition of excess boric acid in the system leads to the increase of Cr(VI) concentration in solution, indicating the replacement of adsorbed chromate by boron on the alumina surface. Data evaluation results in the determination of the competition reaction constant and the formation constant of the Cr(VI) surface complexes, which are logKCr(VI)-B(III) = -3.5 ± 0.2 and logβ*Cr = 7.6 ± 0.3, respectively.

  14. Solubility and reactivity of peroxyacetyl nitrate (PAN) in dilute aqueous salt solutions and in sulphuric acid

    NASA Astrophysics Data System (ADS)

    Frenzel, A.; Kutsuna, S.; Takeuchi, K.; Ibusuki, T.

    The loss rates of PAN in several dilute aqueous salt solutions (NaBr, Na 2SO 3, KI, NaNO 2, FeCl 3, and FeSO 4) and in sulphuric acid were measured at 279 K with a simple bubbler experiment. They are little different from that in pure water. For 5 M sulphuric acid hydrolysis and solubility were determined in the temperature range of 243-293 K. The hydrolysis rate kh=3.2×10 -4 s -1 at 293 K is close to that in water. The observed temperature dependence of the Henry's Law constant H=10- 6.6±0.6exp((4780±420)/T) M atm -1 leads to enthalpy and entropy of solvation Δ Hsolv=-39.7±3.5 kJ mol -1 and Δ Ssolv=-126±11 J mol -1 K -1, respectively.

  15. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    SciTech Connect

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  16. [Forensic-medical diagnostics of an electrical mark resulting from the injury inflicted by technical electricity in the aqueous environment].

    PubMed

    Pigolkin, Iu I; Skovorodnikov, S V; Dubrovin, I A

    2014-01-01

    The objective of the present study was to develop the criteria for forensic-medical diagnostics of an electrical injury inflicted in the aqueous environment based on the characteristics of the electrical mark. The specific morphological features of the electrical injuries inflicted in the aqueous environment that were discovered in the materials available for the forensic medical expertise were analysed taking into consideration the results of the relevant research reported in the forensic medical literature. It was shown that an electrical injury inflicted in the aqueous environment results in the formation of an unusual mark in the form of blisters containing no watery liquid associated with electrogenic oedema in the surrounding tissues. Macroscopic and microscopic studies of the electrical mark failed to reveal the signs of grade III and IV grade thermal burning or thermally affected hair. It is concluded that the consistent characteristics of the electrical mark resulting from the injury inflicted by technical electricity in the aqueous environment include cell lengthening, blister formation inside the corneal layer, and the separation of epidermis from the skin proper.

  17. Electrochemistry of poly(vinylferrocene) modified electrodes in aqueous acidic media

    NASA Astrophysics Data System (ADS)

    Issa, Touma B.; Singh, Pritam; Baker, Murray V.

    A cyclic voltammetric study of the electrochemistry and chemical stability of the poly(vinylferrocene) (PVFc) redox couple, coated on a gold substrate, in aqueous solutions of H 2SO 4, HClO 4 and HCl was carried out. It was found that the anodic peak potential ( Epa) did not depend on the acid concentration in the range (1.0 × 10 -2 to 1.0 × 10 -7 mol L -1). However, the Epa values shifted linearly to less positive potentials when investigated in more concentrated acid solutions in the range 1-5 mol L -1. The slope of the Epa versus acid concentration graph was found to be in the order H 2SO 4 > HCl > HClO 4. In this regard PVFc behaved very similar to 1,1'-bis(11-mercaptoundecyl)ferrocene (Fc(C 11SH) 2) except for its chemical stability. In H 2SO 4 media the PVFc was found to be much less stable than 1,1'-Fc(C 11SH) 2. The dependence of Epa on acid concentration could be used to monitor state of charge of lead-acid batteries. However, for this application Fc(C 11SH) 2 would be a better choice because of its superior chemical stability.

  18. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  19. Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Craig, P. I.; Ming, D. W.; Rampe, E. B.

    2014-01-01

    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole.

  20. Vibrational spectroscopic studies and DFT calculations on tribromoacetate and tribromoacetic acid in aqueous solution.

    PubMed

    Rudolph, Wolfram W; Irmer, Gert

    2011-09-01

    Aqueous solutions of sodium tribromoacetate (NaCBr3CO2) and its corresponding acid (CBr3COOH) have been studied using Raman and infrared spectroscopy. The spectra of the species in solution were assigned according to symmetry Cs. Characteristic bands of CBr3CO2-(aq) and the tribromoacetic acid, CBr3COOH(aq), are discussed. For the hydrated anion, the CO2 group, the symmetric CO2 stretching mode at 1332 cm(-1) and the asymmetric stretching mode at 1651 cm(-1) are characteristic while the CO mode at 1730 cm(-1) is characteristic for the spectra of the acid. The stretching mode, νC-C at 912cm(-1) for CBr3CO2-(aq) is 10 cm(-1) lower in the anion compared with that of the acid. These characteristic modes are compared to those in acetate, CH3CO2-(aq). Coupling of the modes are fairly extensive and therefore DFT calculations have been carried out in order to compare the measured spectra with the calculated ones. The geometrical parameters such as bond length and bond angles of the tribromoacetate, and tribromoacetic acid have been obtained and may be compared with the ones published for other acetates and their conjugated acids. CBr3COOH(aq) is a moderately strong acid and the pKa value derived from quantitative Raman measurements is equal to -0.23 at 23°C. The deuterated acid CBr3COOD in heavy water has been measured as well and the assignments were given.

  1. Bile acid-surfactant interactions at the liquid crystal/aqueous interface.

    PubMed

    He, Sihui; Liang, Wenlang; Cheng, Kung-Lung; Fang, Jiyu; Wu, Shin-Tson

    2014-07-14

    The interaction between bile acids and surfactants at interfaces plays an important role in fat digestion. In this paper, we study the competitive adsorption of cholic acid (CA) at the sodium dodecyl sulfate (SDS)-laden liquid crystal (LC)/aqueous interface formed with cyanobiphenyl (nCB, n = 5-8) and the mixture of 5CB with 4-(4-pentylcyclohexyl)benzonitrile (5PCH). We find that the critical concentration of CA required to displace SDS from the interface linearly decreases from 160 μM to 16 μM by reducing the alkyl chain length of nCB from n = 8 to n = 5 and from 16 μM to 1.5 μM by increasing the 5PCH concentration from 0 wt% to 19 wt% in the 5PCH-5CB binary mixture. Our results clearly demonstrate that the sensitivity of 5PCH-5CB mixtures for monitoring the interaction between CA and SDS at the LC/aqueous interface can be increased by one order of magnitude, compared to 5CB.

  2. Unified molecular picture of the surfaces of aqueous acid, base, and salt solutions.

    PubMed

    Mucha, Martin; Frigato, Tomaso; Levering, Lori M; Allen, Heather C; Tobias, Douglas J; Dang, Liem X; Jungwirth, Pavel

    2005-04-28

    The molecular structure of the interfacial regions of aqueous electrolytes is poorly understood, despite its crucial importance in many biological, technological, and atmospheric processes. A long-term controversy pertains between the standard picture of an ion-free surface layer and the strongly ion specific behavior indicating in many cases significant propensities of simple inorganic ions for the interface. Here, we present a unified and consistent view of the structure of the air/solution interface of aqueous electrolytes containing monovalent inorganic ions. Molecular dynamics calculations show that in salt solutions and bases the positively charged ions, such as alkali cations, are repelled from the interface, whereas the anions, such as halides or hydroxide, exhibit a varying surface propensity, correlated primarily with the ion polarizability and size. The behavior of acids is different due to a significant propensity of hydronium cations for the air/solution interface. Therefore, both cations and anions exhibit enhanced concentrations at the surface and, consequently, these acids (unlike bases and salts) reduce the surface tension of water. The results of the simulations are supported by surface selective nonlinear vibrational spectroscopy, which reveals among other things that the hydronium cations are present at the air/solution interface. The ion specific propensities for the air/solution interface have important implications for a whole range of heterogeneous physical and chemical processes, including atmospheric chemistry of aerosols, corrosion processes, and bubble coalescence.

  3. EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric acid solutions.

    PubMed

    De Sio, Stéphanie M; Wilson, Richard E

    2014-12-01

    The speciation of protactinium(V) in hydrofluoric acid (HF) solutions was studied using X-ray absorption spectroscopy. Extended X-ray absorption fine structure measurements were performed on an aqueous solution of 0.05 M protactinium(V) with various HF concentrations ranging from 0.5 to 27 M in order to probe the protactinium coordination sphere with respect to the identity and number of coordinating ligands. The resulting fits to the spectra suggest the presence of an eight-coordinate homoleptic fluoro complex in highly concentrated fluoride solutions (27 M), with equilibrium between seven- and eight-coordinate fluoro complexes at moderate acidities, and in more dilute solutions, results indicate that one water molecule is likely to replace a fluoride in the first coordination sphere, at a distance of 2.54-2.57 Å. Comparisons of this chemistry with group V metals, niobium and tantalum, are presented, and the potential implications for these results on the hydrolytic behavior of protactinium in aqueous systems are discussed.

  4. EXAFS study of the speciation of protactinium(V) in aqueous hydrofluoric acid solutions.

    PubMed

    De Sio, Stéphanie M; Wilson, Richard E

    2014-12-01

    The speciation of protactinium(V) in hydrofluoric acid (HF) solutions was studied using X-ray absorption spectroscopy. Extended X-ray absorption fine structure measurements were performed on an aqueous solution of 0.05 M protactinium(V) with various HF concentrations ranging from 0.5 to 27 M in order to probe the protactinium coordination sphere with respect to the identity and number of coordinating ligands. The resulting fits to the spectra suggest the presence of an eight-coordinate homoleptic fluoro complex in highly concentrated fluoride solutions (27 M), with equilibrium between seven- and eight-coordinate fluoro complexes at moderate acidities, and in more dilute solutions, results indicate that one water molecule is likely to replace a fluoride in the first coordination sphere, at a distance of 2.54-2.57 Å. Comparisons of this chemistry with group V metals, niobium and tantalum, are presented, and the potential implications for these results on the hydrolytic behavior of protactinium in aqueous systems are discussed. PMID:25389749

  5. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  6. Removal of acidic indigo carmine textile dye from aqueous solutions using radiation induced cationic hydrogels.

    PubMed

    Sari, Müfrettin Murat

    2010-01-01

    This study examined the removal of acidic indigo carmine dyes from aqueous solutions using cationic hydrogels. Irradiated hydrogels were investigated as a new sorbent for dye removal from aqueous solution. Poly(N,N-Diethylamino ethyl methacrylate) [poly(DEAEMA)] hydrogels were prepared by radiation polymerisation of N,N-diethylamino ethyl methacrylate [DEAEMA] monomer in the presence of cross-linking agent, ethylene glycol dimethacrylate [EGDMA], and used for the removal of acidic indigo carmine textile dye. The adsorption of dyes was examined using a batch sorption technique. The effects of pH, time and initial dye concentration on the adsorption capacity of hydrogels were investigated. Maximum gelation ratio was 98.2% at irradiation dose of 5.3 kGy. Maximum equilibrium volume swelling, V/V(0), value was 21.3 at pH 2.8. Maximum amount of adsorbed indigo carmine onto hydrogels was 96.7 mg dye/g gel at pH 2.8, 21 h of adsorption time and 120 mg/L initial dye solution. Swelling and adsorption capacity increased with decreasing of pH. Compared with Congo red, amounts of adsorbed indigo carmine are much higher than those of Congo red. Langmuir isotherm model was the best fit for these poly(DEAEMA) hydrogels-indigo carmine systems.

  7. Adsorption of Crystal violet on raw and acid-treated montmorillonite, K10, in aqueous suspension.

    PubMed

    Sarma, Gautam Kumar; Sen Gupta, Susmita; Bhattacharyya, Krishna G

    2016-04-15

    Crystal violet is used as a dye in cotton and silk textiles, paints and printing ink. The dye is hazardous and exposure to it may cause permanent injury to the cornea and conjunctiva including permanent blindness, and in severe cases, may lead to respiratory and kidney failure. The present work describes removal of Crystal violet from aqueous solution by adsorption on raw and acid-treated montmorillonite, K10. The clay mineral was treated with 0.25 and 0.50 M sulfuric acid and the resulting materials were characterized by XRD, zeta potential, SEM, FTIR, cation exchange capacity, BET surface area and pore volume measurements. The influences of pH, interaction time, adsorbent amount, and temperature on adsorption were monitored and explained on the basis of physico-chemical characteristics of the materials. Basic pH generally favors adsorption but considerable removal was possible even under neutral conditions. Adsorption was very rapid and equilibrium could be attained in 180 min. The kinetics conformed to second order model. Langmuir monolayer adsorption capacity of raw montmorillonite K10 was 370.37 mg g(-1) whereas 0.25 M and 0.50 M acid treated montmorillonite K10 had capacities of 384.62 and 400.0 mg g(-1) respectively at 303 K. Adsorption was exothermic and decreased in the temperature range of 293-323 K. Thermodynamically, the process was spontaneous with Gibbs energy decreasing with rise in temperature. The results suggest that montmorillonite K10 and its acid treated forms would be suitable for removing Crystal violet from aqueous solution.

  8. Visible Wavelength Spectroscopy of Ferric Minerals: A Key Tool for Identification of Ancient Martian Aqueous Environments

    NASA Technical Reports Server (NTRS)

    Murchie, Scott L.; Bell, J. F., III; Morris, Richard V.

    2000-01-01

    The mineralogic signatures of past aqueous alteration of a basaltic Martian crust may include iron oxides and oxyhydroxides, zeolites, carbonates, phyllosilicates, and silica. The identities, relative abundances, and crystallinities of the phases formed in a particular environment depend on physicochemical conditions. At one extreme, hot spring environments may be characterized by smectite-chlorite to talc-kaolinite silicate assemblages, plus crystalline ferric oxides dominated by hematite. However, most environments, including cold springs, pedogenic layers, and ponded surface water, are expected to deposit iron oxides and oxyhydroxides, carbonates, and smectite-dominated phyllosilicates. A substantial fraction of the ferric iron is expected to occur in nanophase form, with the exact mineralogy strongly influenced by Eh-pH conditions. Detection of these phases has been an objective of a large body of terrestrial telescopic, Mars orbital, and landed spectral investigations and in situ compositional measurements. However, clear identifications of many of these phases is lacking. Neither carbonate nor silica has been unequivocally detected by any method. Although phyllosilicates may occur near the limit of detection by remote sensing, in general they appear to occur in only poorly crystalline form. In contrast, compelling evidence for ferric iron minerals has been gathered by recent telescopic investigations, the Imager for Mars Pathfinder (IMP), and the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor (MGS). These data yield two crucial findings: (1) In the global, high spatial resolution TES data set, highly crystalline ferric iron (as coarse-grained 'gray' hematite) has been recognized but with only very limited spatial occurrence and (2) Low-resolution telescopic reflectance spectroscopy, very limited orbital reflectance spectroscopy, and landed multispectral imaging provide strong indications that at least two broad classes of ferric iron minerals

  9. Effect of Humic Acid on Migration, Distribution and Remediation of Dense Non-aqueous Phase Liquids: A laboratory investigation

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Wu, J.; Xu, H.; Gao, Y.

    2014-12-01

    Over the last decades, dense non-aqueous phase liquids (DNAPLs) contamination in the subsurface increases with the rapid development of oil industry and becomes the focus of many studies. The migration, distribution and remediation efficiency of DNAPLs in the subsurface environment are greatly affected by the solution chemistry besides the physical heterogeneities of aquifers. Humic acid (HA), which is ubiquitous in natural environments, is a surface active substance exhibiting solubility enhancement behavior for hydrophobic organic compounds such as DNAPLs. Here we reported a laboratory investigation to study the effects of HA on the infiltration, immobilization and subsequent recovery of DNAPL in porous media. Tetrachloroethylene (PCE) was selected as the representative DNAPL in this study. Two-dimensional (2-D) sandbox experiments were conducted to investigate the effects of different HA concentrations on the transport, distribution of PCE and the remediation of PCE using surfactant (Tween 80) flushing in a saturated porous media system. The surfactant flushing of PCE was performed after the PCE transport and distribution had reached equilibrium. A light transmission visualization method with charge-coupled device (CCD) camera was adopted to visualize PCE distribution and quantify its saturation. In addition, the experiments were also designed to gather data for the validation of multiphase flow models. Effluent samples were collected to determine dissolved PCE concentrations. PCE solubilization and PCE-water interfacial tension were experimentally determined in aqueous solutions of varying HA concentrations. The experimental results showed that the presence of HA can have a dramatic impact on PCE flow and entrapment, and significantly improved the recovery of PCE during surfactant enhanced aquifer remediation (SEAR). The findings are of use for better understanding of the migration and entrapment of DNAPLs and developing of SEAR technology.

  10. Extraction and isolation of TPE from other elements on ion exchangers in aqueous and aqueous-organic solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-07-01

    The behavior of Am-Es and other actinides on anion and cation exchange resins in aqueous and aqueous-organic solutions of phosphoric acid has been studied in a wide range of concentration of various components of the solution. The sorptivity of transplutonium elements (TPE) on anion exchangers from dilute H/sub 3/PO/sub 4/ with a concentration less than or equal to 1 M in presence of organic solvents (alcohols, ketones, etc.) and on cation exchangers from concentrated H/sub 3/PO/sub 4/ has been found to be significant. The possibility of use of phosphoric acid solutions for isolation of TPE from Th, Pa, U, Np, Pu, and Zr and separation of TPE in different oxidation states in presence of a high-purity oxidant has been shown.

  11. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    PubMed

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-01

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  12. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  13. Permeability of acetic acid through organic films at the air-aqueous interface.

    PubMed

    Gilman, Jessica B; Vaida, Veronica

    2006-06-22

    Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their

  14. Interactions of chromium ions with starch granules in an aqueous environment.

    PubMed

    Szczygieł, Jadwiga; Dyrek, Krystyna; Kruczała, Krzysztof; Bidzińska, Ewa; Brożek-Mucha, Zuzanna; Wenda, Elżbieta; Wieczorek, Jerzy; Szymońska, Joanna

    2014-06-26

    In this study, interactions of dichromate ions with potato starch granules in highly acidic aqueous solutions and at different temperatures were investigated. It was found that the process underwent a reduction of Cr(2)O(7)(2-) to Cr(3+) accompanied by the formation of intermediate Cr(5+) ions detected by electron paramagnetic resonance (EPR) spectroscopy. The reactions took place after the attachment of dichromate anions to the granules and resulted in a lowering of the Cr(2)O(7)(2-) initial content in the solution. The newly formed Cr(3+) ions were both accumulated by the granules or remained in the solution. It was observed for the first time that the quantity of such ions taken by the granules from the solution was noticeably higher than that delivered by trivalent chromium salt solution. It was revealed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX) that the chromium ions were not only adsorbed on the granule surface but also introduced into the granule interior and evenly distributed there. An activation energy of the reduction reaction equal to 65 kJ·mol(-1) and the optimal parameters of the process were established. The proposed mechanism could be useful for the bioremediation of industrial effluents polluted by hexavalent chromium compounds.

  15. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.

    PubMed

    Weingarten, Ronen; Cho, Joungmo; Xing, Rong; Conner, William Curtis; Huber, George W

    2012-07-01

    We have developed a kinetic model for aqueous-phase production of levulinic acid from glucose using a homogeneous acid catalyst. The proposed model shows a good fit with experimental data collected in this study in a batch reactor. The model was also fitted to steady-state data obtained in a plug flow reactor (PFR) and a continuously stirred tank reactor (CSTR). The kinetic model consists of four key steps: (1) glucose dehydration to form 5-hydroxymethylfurfural (HMF); (2) glucose reversion/degradation reactions to produce humins (highly polymerized insoluble carbonaceous species); (3) HMF rehydration to form levulinic acid and formic acid; and (4) HMF degradation to form humins. We use our model to predict the optimal reactor design and operating conditions for HMF and levulinic acid production in a continuous reactor system. Higher temperatures (180-200 °C) and shorter reaction times (less than 1 min) are essential to maximize the HMF content. In contrast, relatively low temperatures (140-160 °C) and longer residence times (above 100 min) are essential for maximum levulinic acid yield. We estimate that a maximum HMF carbon yield of 14% can be obtained in a PFR at 200 °C and a reaction time of 10 s. Levulinic acid can be produced at 57% carbon yield (68% of the theoretical yield) in a PFR at 149 °C and a residence time of 500 min. A system of two consecutive PFR reactors shows a higher performance than a PFR and CSTR combination. However, compared to a single PFR, there is no distinct advantage to implement a system of two consecutive reactors.

  16. Reactivity of alanylalanine diastereoisomers in neutral and acid aqueous solutions: a versatile stereoselectivity.

    PubMed

    Plasson, Raphaël; Tsuji, Maika; Kamata, Masazumi; Asakura, Kouichi

    2011-10-01

    A good comprehension of the reactivity of peptides in aqueous solution is fundamental in prebiotic chemistry, namely for understanding their stability and behavior in primitive oceans. Relying on the stereoselectivity of the involved reactions, there is a huge interest in amino acid derivatives for explaining the spontaneous emergence of homochirality on primitive Earth. The corresponding kinetic and thermodynamic parameters are however still poorly known in the literature. We studied the reactivity of alanylalanine in acidic to neutral conditions as a model system. The hydrolysis into amino acids, the epimerization of the N-terminal residue, and the cyclization into diketopiperazine could be successfully identified and studied. This kinetic investigation highlighted interesting behaviors. Complex mechanisms were observed in very acidic conditions. The relative kinetic stability of the diastereoisomers of the dipeptide is highly dependent of the pH, with the possibility to dynamically destabilize the thermodynamically more stable diastereoisomers. The existence of the cyclization of dipeptides adds complexity to the system. On one hand it brings additional stereoselectivities; on the other hand fast racemization of heterochiral dipeptides is obtained.

  17. Removal of fluoride in aqueous solution by adsorption on acid activated water treatment sludge

    NASA Astrophysics Data System (ADS)

    Vinitnantharat, Soydoa; Kositchaiyong, Sriwilai; Chiarakorn, Siriluk

    2010-06-01

    This paper reports the use of a pellet of adsorbent made from water treatment sludge (S) and acid activated water treatment sludge (SH) for removal of fluoride in the batch equilibration technique. The influence of pH, adsorbent dosage, temperature and effect of other ions were employed to find out the feasibility of acid activated adsorbent to remove fluoride to the permissible concentration of 0.7 mg/L. The results from the adsorption isotherm followed both Langmuir and Freundlich models and the highest fluoride removal was found for adsorbent activated with acetic acid at 2.0 mol/L. The optimum adsorbent dosage was found at 40 g/L, 0.01 mol/L acid activated adsorbent which was able to adsorb fluoride from 10 down to 0.11 mg/L. The adsorption capacity was decreased when the temperature increased. This revealed that the adsorption of fluoride on SH was exothermic. In the presence of nitrate and carbonate ions in the aqueous solution, fluoride removal efficiency of SH decreased from 94.4% to 86.6% and 90.8%, respectively. However, there is no significant effect in the presence of sulfate and chloride ions.

  18. Reactivity of Alanylalanine Diastereoisomers in Neutral and Acid Aqueous Solutions: a Versatile Stereoselectivity

    NASA Astrophysics Data System (ADS)

    Plasson, Raphaël; Tsuji, Maika; Kamata, Masazumi; Asakura, Kouichi

    2011-10-01

    A good comprehension of the reactivity of peptides in aqueous solution is fundamental in prebiotic chemistry, namely for understanding their stability and behavior in primitive oceans. Relying on the stereoselectivity of the involved reactions, there is a huge interest in amino acid derivatives for explaining the spontaneous emergence of homochirality on primitive Earth. The corresponding kinetic and thermodynamic parameters are however still poorly known in the literature. We studied the reactivity of alanylalanine in acidic to neutral conditions as a model system. The hydrolysis into amino acids, the epimerization of the N-terminal residue, and the cyclization into diketopiperazine could be successfully identified and studied. This kinetic investigation highlighted interesting behaviors. Complex mechanisms were observed in very acidic conditions. The relative kinetic stability of the diastereoisomers of the dipeptide is highly dependent of the pH, with the possibility to dynamically destabilize the thermodynamically more stable diastereoisomers. The existence of the cyclization of dipeptides adds complexity to the system. On one hand it brings additional stereoselectivities; on the other hand fast racemization of heterochiral dipeptides is obtained.

  19. pH-Dependent plasmonic catalysis of 4-nitrobenzenethiol in aqueous environment

    NASA Astrophysics Data System (ADS)

    Wang, Jingang; Dong, Yong; Li, Yuanzuo; Zhang, Zhenglong; Ma, Fengcai

    2016-01-01

    Plasmon-driven chemical reaction of 4-nitrobenzenethiol (4-NBT) dimerizing to p,p‧-dimercaptoazobenzene (DMAB) has been successfully monitored under different pH solutions. The experimental results indicated that the chemical reactions were dependent on the pH values, and they proceeded more completely under acidic conditions than those under neutral and alkaline conditions. Furthermore, the rate of the chemical reactions was effectively controlled by exposure time and incident laser power. The stable pH dependence demonstrated the plasmon-driven chemical reactions of 4-NBT to DMAB are sensitive to the surrounding environment, and have wider applications.

  20. Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1983-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  1. Stress-corrosion behavior of aluminum-lithium alloys in aqueous salt environments

    NASA Technical Reports Server (NTRS)

    Pizzo, P. P.; Galvin, R. P.; Nelson, H. G.

    1984-01-01

    The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg; two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing.

  2. Durability of the bond between bone and various 2-cyanoacrylates in an aqueous environment.

    PubMed

    Brauer, G M; Kumpula, J W; Termini, D J; Davidson, K M

    1979-07-01

    The durability of the bond strength developed between 2-cyanoacrylate esters and bone has been determined by aging specimens in water. One-day bond strength of the isobutyl and isomeric amyl 2-cyanoacrylates varied from 6.2 to 7.2 MPa. The strength of the bond decreased on storage or on thermocycling in water. Hydrolytic stability increased with increasing length of the alkyl ester group. After a six-month storage in water the various amyl 2-cyanoacrylates retained from 70% to 73% of their one-day bond strength. Pretreatment of the bone surface prior to application of the adhesive did not prove beneficial. The cured 2-cyanoacrylate can be removed from the substrate surface by appropriate solvents. Thus, it is not bonded covalently to bone. The bond strength, especially of the isobutyl and amyl 2-cyanoacrylates to bone in an aqueous environment, appears to be superior to other adhesives. Provided these monomers are biocompatible, they may be useful clinically where an intermediate-term adhesion is desired.

  3. Pressure waves generated by metastable intermolecular composites in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Maines, Geoff; Radulescu, Matei; Bacciochini, Antoine; Jodoin, Bertrand; Lee, Julian

    2013-06-01

    In the present study, pressure waves generated by a metastable intermolecular composite (MIC) have been measured experimentally in an aqueous environment. Experiments were performed in a 1.0 L high pressure chamber mounted with high resolution pressure transducers and designed with optical access. Samples consisting of a stoichiometric mixture of aluminum and copper(II)oxide particles were evaluated. Two types of samples were constructed; a mixture of micron-sized raw powders, and ball milled powders with a lamellated nanostructure. A planetary mill was used to refine reactant powders from micron- to nano-scale dimensions. Manual compaction and cold spray deposition techniques were used to consolidate powders in various densities. The dynamics of the pressure wave and high pressure gas bubble were monitored via pressure data and high-speed Schlieren visualization. The effects of reactant particle size and sample density have been evaluated quantitatively and compared with equilibrium calculations. Dynamics of the pressure wave were correlated with the amount of gas released and the rate of burning of the sample material. Work supported by DRDC Suffield (Dr. Julian J. Lee).

  4. Adsorptive removal of nickel(II) ions from aqueous environment: A review.

    PubMed

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-09-01

    Among various methods adsorption can be efficiently employed for the treatment of heavy metal ions contaminated wastewater. In this context the authors reviewed variety of adsorbents used by various researchers for the removal of nickel(II) ions from aqueous environment. One of the objectives of this review article is to assemble the scattered available enlightenment on a wide range of potentially effective adsorbents for nickel(II) ions removal. This work critically assessed existing knowledge and research on the uptake of nickel by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. In addition, the equilibrium adsorption isotherms, kinetics and thermodynamics data as well as various optimal experimental conditions (solution pH, equilibrium contact time and dosage of adsorbent) of different adsorbents towards Ni(II) ions were also analyzed. It is evident from a literature survey of more than 190 published articles that agricultural solid waste materials, natural materials and biosorbents have demonstrated outstanding adsorption capabilities for Ni(II) ions. PMID:27149285

  5. Understanding the surface chemistry of amphiphilic copolymer thin films in aqueous environments

    NASA Astrophysics Data System (ADS)

    Buss, Hilda; Lynd, Nathaniel; Zuckermann, Ronald; Kramer, Ed; Segalman, Rachel

    2014-03-01

    Controlling the surface chemistry of polymer coatings which are stable in aqueous environment is a complex problem which depends heavily on the hydrophobicity of the polymer. Poly(styrene)- b-(ethyleneoxide-co-allylgycidylether)- b-poly(styrene) [PS- b-(PEO-co-AGE)- b-PS] triblock copolymers functionalized at the pendant allyl groups with fluorinated moieties are a promising class of polymers for applications in antifouling coatings. These polymers gain their water stability from the PS blocks and their antifouling character from the PEO block. Surface active fluorinated groups are used to direct the surface chemistry of the film during annealing. However, the surface can rearrange or become damaged upon immersion in water. Near edge X-ray absorption fine structure spectroscopy (NEXAFS) of films after soaking in water shows that the surface composition as characterized by the PS and PEO content in the first 6 nm of the film is directly related to the relative sizes of the PS and the P(EO-co-AGE) blocks as well as the fluorine content.

  6. Instability of Surface-initiated ATRP Polyelectrolyte Brushes in Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Galvin, Casey; Bain, Erich; Ozcam, Evren; Henke, Adam; Srogl, Jiri; Genzer, Jan

    2012-02-01

    Surface-bound macromolecules have been produced using a number of polymerization schemes, including free-radical polymerization (FRP), reversible addition-fragmentation chain transfer polymerization (RAFT), and atom transfer radical polymerization (ATRP). In order to prove useful in any technology, the tethered polymer chains must remain stable in a variety of environments over relatively long timescales. We have investigated the dependence of the pH and ionic strength of aqueous solutions on the stability of surface-bound polyelectrolyte chains (strong and weak) with varying molecular weights and grafting densities. Our findings suggest that the ester bond in the most common form of ATRP surface initiator (BMPUS) will hydrolyze over a broad pH range, leading to chain degrafting. We further compare the stability of a BMPUS derivative which has had the ester bond replaced with an amide bond, as well as a free-radical initiator containing only aliphatic carbons. Results related to the effect of chain tension on brush stability will also be presented. Finally, we discuss the likely mechanism of degrafting, and ways in which to improve stability.

  7. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA. PMID:19924930

  8. Effects of precursor concentration and acidic sulfate in aqueous glyoxal-OH radical oxidation and implications for secondary organic aerosol.

    PubMed

    Tan, Yi; Perri, Mark J; Seitzinger, Sybil P; Turpin, Barbara J

    2009-11-01

    Previous experiments demonstrated that aqueous OH radical oxidation of glyoxal yields low-volatility compounds. When this chemistry takes place in clouds and fogs, followed by droplet evaporation (or if it occurs in aerosol water), the products are expected to remain partially in the particle phase, forming secondary organic aerosol (SOA). Acidic sulfate exists ubiquitously in atmospheric water and has been shown to enhance SOA formation through aerosol phase reactions. In this work, we investigate how starting concentrations of glyoxal (30-3000 microM) and the presence of acidic sulfate (0-840 microM) affect product formation in the aqueous reaction between glyoxal and OH radical. The oxalic acid yield decreased with increasing precursor concentrations, and the presence of sulfuric acid did not alter oxalic acid concentrations significantly. A dilute aqueous chemistry model successfully reproduced oxalic acid concentrations, when the experiment was performed at cloud-relevant concentrations (glyoxal <300 microM), but predictions deviated from measurements at increasing concentrations. Results elucidate similarities and differences in aqueous glyoxal chemistry in clouds and in wet aerosols. They validate for the first time the accuracy of model predictions at cloud-relevant concentrations. These results suggest that cloud processing of glyoxal could be an important source of SOA.

  9. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).

    PubMed

    Schaefer, Charles E; Andaya, Christina; Urtiaga, Ana; McKenzie, Erica R; Higgins, Christopher P

    2015-09-15

    Laboratory experiments were performed to evaluate the use of electrochemical treatment for the decomposition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), as well as other perfluoroalkyl acids (PFAAs), in aqueous film forming foam (AFFF)-impacted groundwater collected from a former firefighter training area and PFAA-spiked synthetic groundwater. Using a commercially-produced Ti/RuO2 anode in a divided electrochemical cell, PFOA and PFOS decomposition was evaluated as a function of current density (0-20 mA/cm(2)). Decomposition of both PFOA and PFOS increased with increasing current density, although the decomposition of PFOS did not increase as the current density was increased above 2.5 mA/cm(2). At a current density of 10 mA/cm(2), the first-order rate constants, normalized for current density and treatment volume, for electrochemical treatment of both PFOA and PFOS were 46 × 10(-5) and 70 × 10(-5) [(min(-1)) (mA/cm(2))(-1) (L)], respectively. Defluorination was confirmed for both PFOA and PFOS, with 58% and 98% recovery as fluoride, respectively (based upon the mass of PFOA and PFOS degraded). Treatment of other PFAAs present in the groundwater also was observed, with shorter chain PFAAs generally being more recalcitrant. Results highlight the potential for electrochemical treatment of PFAAs, particularly PFOA and PFOS, in AFFF-impacted groundwater.

  10. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  11. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide.

  12. Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments

    SciTech Connect

    Shi, Hui; Lercher, Johannes A.; Yu, Xiao-Ying

    2015-01-01

    Catalysis in aqueous environments is attracting enormous interest. Many characterization methods are well established at gas-solid interfaces and a majority of the surface-science approaches were historically limited to model surfaces and vacuum conditions. However, practical scenarios with complex catalyst structures, elevated temperatures and pressures, as well as the presence of two or more condensed phases, can pose significant challenges to these techniques, particularly for catalysts at their dynamic working states. In such contexts, this review highlights the advances over the past five years in the in situ and real-time detection of catalytic processes and related phenomena in aqueous media, ideally under realistic conditions. We underline latest technical innovations, describe novel chemistries that are made accessible by recently developed toolboxes, and discuss future directions of in situ and time-resolved analytical approaches applicable to aqueous phase catalysis.

  13. Hydroxyl Radical (OH•) Reaction with Guanine in an Aqueous Environment: A DFT Study

    PubMed Central

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D.

    2011-01-01

    The reaction of hydroxyl radical (OH•) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH• with DNA proceeds mainly through the addition of OH• to the C=C bond of the DNA bases. However, recently it has been reported that the principal reaction of OH• with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH• to the C=C bond. In the present work, these two reaction pathways of OH• attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH• at C4=C5 double bond of guanine is barrier free and the adduct radical (G-OH•) has only a small activation barrier of ca. 1 – 6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G•+---OH−). The formation of ion-pair is a result of the highly oxidizing nature of the OH• in aqueous media. The resulting ion-pair (G•+---OH−) deprotonates to form H2O and neutral G radicals favoring G(N1-H)• with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C4)-OH• (adduct) to G(N1-H)• and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH•), (G•+---OH−), and G(N1-H)• were further characterized by the CAM-B3LYP calculations of their UV-visible spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N1 and N2 sites of guanine by the OH• show that this is also a competitive route to produce G(N2-H)•, G(N1-H)• and H2O. PMID:22050033

  14. Hydroxyl radical (OH•) reaction with guanine in an aqueous environment: a DFT study.

    PubMed

    Kumar, Anil; Pottiboyina, Venkata; Sevilla, Michael D

    2011-12-22

    The reaction of hydroxyl radical (OH(•)) with DNA accounts for about half of radiation-induced DNA damage in living systems. Previous literature reports point out that the reaction of OH(•) with DNA proceeds mainly through the addition of OH(•) to the C═C bonds of the DNA bases. However, recently it has been reported that the principal reaction of OH(•) with dGuo (deoxyguanosine) is the direct hydrogen atom abstraction from its exocyclic amine group rather than addition of OH(•) to the C═C bonds. In the present work, these two reaction pathways of OH(•) attack on guanine (G) in the presence of water molecules (aqueous environment) are investigated using the density functional theory (DFT) B3LYP method with 6-31G* and 6-31++G** basis sets. The calculations show that the initial addition of the OH(•) at C(4)═C(5) double bond of guanine is barrier free and the adduct radical (G-OH(•)) has only a small activation barrier of ca. 1-6 kcal/mol leading to the formation of a metastable ion-pair intermediate (G(•+)---OH(-)). The formation of ion-pair is a result of the highly oxidizing nature of the OH(•) in aqueous media. The resulting ion-pair (G(•+)---OH(-)) deprotonates to form H(2)O and neutral G radicals favoring G(N(1)-H)(•) with an activation barrier of ca. 5 kcal/mol. The overall process from the G(C(4))-OH(•) (adduct) to G(N(1)-H)(•) and water is found to be exothermic in nature by more than 13 kcal/mol. (G-OH(•)), (G(•+)---OH(-)), and G(N(1)-H)(•) were further characterized by the CAM-B3LYP calculations of their UV-vis spectra and good agreement between theory and experiment is achieved. Our calculations for the direct hydrogen abstraction pathway from N(1) and N(2) sites of guanine by the OH(•) show that this is also a competitive route to produce G(N(2)-H)(•), G(N(1)-H)(•) and H(2)O.

  15. Volatility and oxidative aging of aqueous maleic acid aerosol droplets and the dependence on relative humidity.

    PubMed

    Dennis-Smither, Benjamin J; Marshall, Frances H; Miles, Rachael E H; Preston, Thomas C; Reid, Jonathan P

    2014-07-31

    The microphysical structure and heterogeneous oxidation by ozone of single aerosol particles containing maleic acid (MA) has been studied using aerosol optical tweezers and cavity enhanced Raman spectroscopy. The evaporation rate of MA from aqueous droplets has been measured over a range of relative humidities and the pure component vapor pressure determined to be (1.7 ± 0.2) × 10(-3) Pa. Variation in the refractive index (RI) of an aqueous MA droplet with relative humidity (RH) allowed the subcooled liquid RI of MA to be estimated as 1.481 ± 0.001. Measurements of the hygroscopic growth are shown to be consistent with equilibrium model predictions from previous studies. Simultaneous measurements of the droplet composition, size, and refractive index have been made during ozonolysis at RHs in the range 50-80%, providing insight into the volatility of organic products, changes in the droplet hygroscopicity, and optical properties. Exposure of the aqueous droplets to ozone leads to the formation of products with a wide range of volatilities spanning from involatile to volatile. Reactive uptake coefficients show a weak dependence on ozone concentration, but no dependence on RH or salt concentration. The time evolving RI depends significantly on the RH at which the oxidation proceeds and can even show opposing trends; while the RI increases with ozone exposure at low relative humidity, the RI decreases when the oxidation proceeds at high relative humidity. The variations in RI are broadly consistent with a framework for predicting RIs for organic components published by Cappa et al. ( J. Geophys. Res. 2011 , 116 , D15204 ). Once oxidized, particles are shown to form amorphous phases on drying rather than crystallization, with slow evaporation kinetics of residual water. PMID:25003240

  16. Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies.

    PubMed

    Eslami, Marzieh; Namazian, Mansoor; Zare, Hamid R

    2013-03-01

    Electrochemical behavior of homogentisic acid (HGA) has been studied in both aqueous and mixed solvent solution of water-acetonitrile. Physicochemical parameters of the electrochemical reaction of HGA in these solutions are obtained experimentally by cyclic voltammetry method and are also calculated theoretically using accurate ab initio calculations (G3MP2//B3LYP). Solvation energies are calculated using the available solvation model of CPCM. The pH dependence of the redox activity of HGA in aqueous and the mixture solutions at different temperatures was used for the experimental determination of the standard reduction potential and changes of entropy, enthalpy, and Gibbs free energy for the studied reaction. The experimental standard redox potential of the compound in aqueous solution was obtained to be 0.636 V versus the standard hydrogen electrode. There is a good agreement between the theoretical and experimental values (0.702 and 0.636 V) for the standard electrode potential of HGA. The changes of thermodynamic functions of solvation are also calculated from the differences between the solution-phase experimental values and the gas-phase theoretical values. Finally, using the value of solvation energy of HGA in water and acetonitrile solvents which calculated by the CPCM model of energy, we proposed an equation for calculating the standard redox potential of HGA in mixture solution of water and acetonitrile. A good agreement between the result of electrode potential calculated by the proposed equation and the experimental value confirms the validity of the theoretical models used here and the accuracy of experimental methods.

  17. [Acid oligosaccharides as the active principle of aqueous carrot extracts for prevention and therapy of gastrointestinal infections].

    PubMed

    Kastner, U; Glasl, S; Follrich, B; Guggenbichler, J P; Jurenitsch, J

    2002-01-01

    Adherence of microorganisms to the intestinal mucosa is an important and initial step in the pathogenesis of gastrointestinal infections and mediated by carbohydrate structures on the cell surface. Adherence can be blocked by carbohydrate receptor analogues. Aqueous extracts from carrots (carrot soup) contain acidic oligosaccharides, which are able to block adherence of various enteropathogenic microorganisms to HEp-2 cells and human intestinal mucosa in vitro. Dependent on the grade of polymerisation the most potent blocking ability was seen for trigalacturonic acid. Clinical studies revealed, that aqueous carrot extracts are significantly superior to the basic glucose-electrolyt-solution for oral rehydration in acute gastrointestional infections of children.

  18. Poly (vinylsulfonic acid) assisted synthesis of aqueous solution stable vaterite calcium carbonate nanoparticles.

    PubMed

    Nagaraja, Ashvin T; Pradhan, Sulolit; McShane, Michael J

    2014-03-15

    Calcium carbonate nanoparticles of the vaterite polymorph were synthesized by combining CaCl2 and Na2CO3 in the presence of poly (vinylsulfonic acid) (PVSA). By studying the important experimental parameters we found that controlling PVSA concentration, reaction temperature, and order of reagent addition the particle size, monodispersity, and surface charge can be controlled. By increasing PVSA concentration or by decreasing temperature CCNPs with an average size from ≈150 to 500 nm could be produced. We believe the incorporation of PVSA into the reaction plays a dual role to (1) slow down the nucleation rate by sequestering calcium and to (2) stabilize the resulting CCNPs as the vaterite polymorph, preventing surface calcification or aggregation into microparticles. The obtained vaterite nanoparticles were found to maintain their crystal structure and surface charge after storage in aqueous buffer for at least 5 months. The aqueous stable vaterite nanoparticles could be a useful platform for the encapsulation of a large variety of biomolecules for drug delivery or as a sacrificial template toward capsule formation for biosensor applications.

  19. Molecular interactions of α-amino acids insight into aqueous β-cyclodextrin systems.

    PubMed

    Ekka, Deepak; Roy, Mahendra Nath

    2013-10-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, L-alanine, L-valine and aqueous solution of β-cyclodextrin (β-CD) have been probed by thermophysical properties. Density (ρ), viscosity (η), and ultrasonic speed (u) measurements have been reported at different temperatures. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume ([Formula: see text]), viscosity B-coefficient and limiting apparent molar adiabatic compressibility ([Formula: see text]). The changes on the enthalpy ([Formula: see text]) and entropy ([Formula: see text]) of the encapsulation analysis give information about the driving forces governing the inclusion. The temperature dependence behaviour of partial molar quantities and group contributions to partial molar volumes has been determined for the amino acids. The trends in transfer volumes, [Formula: see text], have been interpreted in terms of solute-cosolute interactions based on a cosphere overlap model. The role of the solvent (aqueous solution of β-CD) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  20. Functionalization of graphene and few-layer graphene with aqueous solution of hydrofluoric acid

    NASA Astrophysics Data System (ADS)

    Nebogatikova, N. A.; Antonova, I. V.; Volodin, V. A.; Prinz, V. Ya.

    2013-08-01

    In the present study, conditions suitable for efficient modification of graphene and few-layer graphene (FLG) films with aqueous solutions of hydrofluoric acid (HF) and for local protection of the graphene against such modification in isopropyl alcohol were identified. A combination of the two treatments gives one a key to nanodesign of graphene-based 2D devices. It was found that a few-minute treatment of graphene or FLG in HF aqueous solutions (∼1 min for graphene and ∼5 min for FLG films about 5 nm thick) leads to strong changes in the structural and electrical properties of graphene involving a step-like increase in resistivity (up to 1011 Ω/□). Two types of materials were obtained after different times of treatment: (i) promising for electronic applications of the material due to a combination of high carrier mobility, high conductivity, and strong current modulation by gate voltage (up to four orders of magnitude); (ii) a material with insulating properties and graphene quantum dots embedded in an insulating matrix.

  1. Aqueous phase hydration and hydrate acidity of perfluoroalkyl and n:2 fluorotelomer aldehydes.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2016-01-01

    The SPARC software program and comparative density functional theory (DFT) calculations were used to investigate the aqueous phase hydration equilibrium constants (Khyd) of perfluoroalkyl aldehydes (PFAlds) and n:2 fluorotelomer aldehydes (FTAlds). Both classes are degradation products of known industrial compounds and environmental contaminants such as fluorotelomer alcohols, iodides, acrylates, phosphate esters, and other derivatives, as well as hydrofluorocarbons and hydrochlorofluorocarbons. Prior studies have generally failed to consider the hydration, and subsequent potential hydrate acidity, of these compounds, resulting in incomplete and erroneous predictions as to their environmental behavior. In the current work, DFT calculations suggest that all PFAlds will be dominantly present as the hydrated form in aqueous solution. Both SPARC and DFT calculations suggest that FTAlds will not likely be substantially hydrated in aquatic systems or in vivo. PFAld hydrates are expected to have pKa values in the range of phenols (ca. 9 to 10), whereas n:2 FTAld hydrates are expected to have pKa values ca. 2 to 3 units higher (ca. 12 to 13). In order to avoid spurious modeling predictions and a fundamental misunderstanding of their fate, the molecular and/or dissociated hydrate forms of PFAlds and FTAlds need to be explicitly considered in environmental, toxicological, and waste treatment investigations. The results of the current study will facilitate a more complete examination of the environmental fate of PFAlds and FTAlds. PMID:26980678

  2. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    SciTech Connect

    Spencer, B.B.

    1995-08-01

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660{plus_minus}0.092 at 25 C, and extraction enthalpy is -5. 46{plus_minus}0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 {times} 10{sup 6}{plus_minus}3.56 {times} 10{sup 4} at 25 C; reaction enthalpy was -9.610{plus_minus}0.594 kcal/mol. Nitration complexation constant is 8.412{plus_minus}0.579, with an enthalpy of -10.72{plus_minus}1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured.

  3. Fixed bed adsorption of 2-naphthalenesulfonic acid from aqueous solution by composite resin.

    PubMed

    Jia, Dong M; Li, Ya P; Li, Yue J; Li, Yong G; Li, Chang H

    2014-02-01

    Adsorption behavior of the iron impregnated, weakly basic resin D301 (Fe-D301) for removal of 2-naphthalenesulfonic acid (2-NSA) from aqueous solution was studied by using a fixed-bed column. The effects of process variables such as bed height, flow rate, and coexisting ions were investigated. The results indicated that the breakpoint and exhaustion point increased with increasing bed height and decreased with increasing 2-NSA flowrate. Experimental data showed a strong fit to the Bed Depth Service Time model. The coexisting ions in the 2-NSA solution had a clear effect on the breakthrough volume. The high extent of recovery of 2-NSA with good reproducibility provided an effective method for the separation of 2-NSA by the adsorbent Fe-D301.

  4. Optical properties of colloidal aqueous synthesized 3 mercaptopropionic acid stabilized CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Sumanth Kumar, D.; Jai Kumar, B.; Mahesh H., M.

    2016-05-01

    We have explored an easiest and simplest aqueous route to synthesize bright green luminescent CdS QDs using 3-Mercaptopropionic acid (MPA) as a stabilizer in air ambient for solar cell applications. The CdS quantum dots showed a strong quantum confinement effect with good stability, size and excellent photoluminescence. MPA Capping on CdS QDs was confirmed through FTIR. The Optical absorption spectrum revealed the CdS quantum dots are highly transparent in the visible region with absorption peak at 380 nm, confirming the quantum confinement. Photoluminescence showed an emission peak at 525 nm wavelength. The optical band gap energy was found to be 3.19 eV and CdS quantum dots radius calculated using Brus equation is 1.5 nm. The results are presented and discussed in detail.

  5. Electrodeposited Films from Aqueous Tungstic Acid-Hydrogen Peroxide Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1987-11-01

    Electrodeposited tungsten oxide films from aqueous tungstic acid-hydrogen peroxide solutions were investigated for applications to electrochromic devices. These films exhibited electrochromism in aprotic electrolyte solutions containing Li-salts. When the films were heat-treated for an hour at temperatures between 100 and 200°C, the electrochromic reactions were rich in reversibility. The coloring efficiency and response rate for the films were favorable and comparable to those for tungsten trioxide evaporated films. A cell life-test was performed on several clock-size cells by applying a 1.2-V, 1-Hz, continuous square wave. The typical amount of charge required for coloration was about 50 C / m2 and remained unchanged even after 107 coloration-bleaching cycles.

  6. The aqueous photolysis of α-pinene in solution with humic acid

    USGS Publications Warehouse

    Goldberg, Marvin C.; Cunningham, Kirkwood M.; Aiken, George R.; Weiner, Eugene R.; ,

    1992-01-01

    Terpenes are produced abundantly by environmental processes but are found in very low concentrations in natural waters. Aqueous photolysis of solutions containing α-pinene, a representative terpene, in the presence of humic acid resulted in degradation of the pinene. Comparison of this reaction to photolysis of α-pinene in the presence of methylene blue leads to the conclusion that the reactive pathway for the abiotic degradation of α-pinene is due to reaction with singlet oxygen produced by irradiation of the humic material. The initial product of single oxygen and α-pinene is a hydroperoxide. Since humic materials are prevalent in most natural waters, this mechanism of photodecomposition for α-pinene probably also applies to other terpenes in surface waters and may be reasonably considered to contribute to their low environmental concentration.

  7. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution.

    PubMed

    Hartono, Tri; Wang, Shaobin; Ma, Qing; Zhu, Zhonghua

    2009-05-01

    Layer structured graphite oxide (GO) was prepared from graphite using the Hummers-Offeman method, characterised using N(2) adsorption, XRD, XPS, SEM(TEM), and FT-IR, and tested for humic acid (HA) adsorption in aqueous solution. XRD, XPS, and FT-IR measurements indicate the formation of layered structure with strong functional groups of GO. It is also found that the GO exhibits strong and much higher adsorption capacity of HA than graphite. The maximum adsorption capacity of the GO from the Langmuir isotherm is 190 mg/g, higher than activated carbon. For the adsorption, several parameters will affect the adsorption such as solid loading and pH. HA adsorption will decrease with increasing pH and an optimum GO loading is required for maximum adsorption. PMID:19233379

  8. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; Rampe, E. B.; Crisp, J. A.

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  9. Prompt formation of organic acids in pulse ozonation of terpenes on aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. R.; Colussi, A. J.; Enami, S.

    2010-12-01

    A major atmospheric process, the gas-phase ozonation of terpenes yields suites of products via a cascade of chemically activated intermediates that ranges from primary ozonides to dioxiranes. If a similar mechanism operated in water, as it is generally assumed, such intermediates would be deactivated within picoseconds and, henceforth, unable to produce carboxylic acids in microseconds. Herein we report the online electrospray mass spectrometric detection of (M + 2O - H+) and (M + 3O - H+) carboxylates on the surface of aqueous β-caryophyllene (C15H24, M = 204 Da) microjets exposed to a few ppmv O3(g) for < 10 μs. Since neither species is formed on dry solvent microjets, and both incorporate deuterium from D2O, we infer that carboxylates ensue from the interaction of nascent intermediates with interfacial water via a heretofore unreported mechanism. These interfacial events proceed much faster than in bulk liquids saturated with ozone.

  10. A free energy analysis of nucleic acid base stacking in aqueous solution.

    PubMed Central

    Friedman, R A; Honig, B

    1995-01-01

    This paper reports a theoretical study of the free energy contributions to nucleic acid base stacking in aqueous solution. Electrostatic interactions are treated by using the finite difference Poisson-Boltzmann method and nonpolar effects are treated with explicit calculation of van der Waals interactions and/or free energy-surface area relationships. Although for some pairs of bases there is a favorable Coulombic interaction in the stacked conformation, generally the net effect of electrostatic interactions is to oppose stacking. This result is caused by the loss of favorable base-solvent electrostatic interactions, that accompany the partial removal of polar atoms from water in the stacked conformation. Nonpolar interactions, involving the hydrophobic effect and enhancement of van der Waals interactions caused by close-packing, drive stacking. The calculations qualitatively reproduce the experimental dependence of stacking free energy on purine-pyrimidine composition. Images FIGURE 1 PMID:8534823

  11. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    PubMed

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  12. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts.

    PubMed

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-10-23

    The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.

  13. The adsorption of cationic dye from aqueous solution onto acid-activated andesite.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming; Dai, Tzong-Hung

    2007-08-25

    The adsorption of cationic dye (i.e., methylene blue) onto acid-activated andesite in aqueous solution was studied in a batch system with respect to its kinetics as a function of agitation speed, initial adsorbate concentration, pH, and adsorbent mass. It was found that the resulting acid-activated adsorbent possessed a mesoporous structure with BET surface areas at around 60m(2)/g. The surface characterization of acid-activated andesite was also performed using the zeta-potential measurements, indicating that the charge sign on the surface of the andesite should be negative in a wide pH range (i.e., 3-11). Furthermore, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of methylene blue onto the clay samples treated under different process conditions. It was found that the adsorption process could be well described with the model. The adsorption capacity parameter of the model obtained in the present work was significantly in line with the process parameters.

  14. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid.

    PubMed

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas Sy

    2014-01-06

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water.

  15. The adsorption of cationic dye from aqueous solution onto acid-activated andesite.

    PubMed

    Tsai, Wen-Tien; Hsu, Hsin-Chieh; Su, Ting-Yi; Lin, Keng-Yu; Lin, Chien-Ming; Dai, Tzong-Hung

    2007-08-25

    The adsorption of cationic dye (i.e., methylene blue) onto acid-activated andesite in aqueous solution was studied in a batch system with respect to its kinetics as a function of agitation speed, initial adsorbate concentration, pH, and adsorbent mass. It was found that the resulting acid-activated adsorbent possessed a mesoporous structure with BET surface areas at around 60m(2)/g. The surface characterization of acid-activated andesite was also performed using the zeta-potential measurements, indicating that the charge sign on the surface of the andesite should be negative in a wide pH range (i.e., 3-11). Furthermore, a simplified kinetic model, pseudo-second-order, was tested to investigate the adsorption behaviors of methylene blue onto the clay samples treated under different process conditions. It was found that the adsorption process could be well described with the model. The adsorption capacity parameter of the model obtained in the present work was significantly in line with the process parameters. PMID:17363150

  16. Dissociation quotient of benzoic acid in aqueous sodium chloride media to 250{degrees}C

    SciTech Connect

    Kettler, R.M.; Palmer, D.A.; Wesolowski, D.J.

    1995-04-01

    The dissociation quotient of benzoic acid was determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The hydrogen ion molality of benzoic acid/benzoate solutions was measured relative to a standard aqueous HCl solution at seven temperatures from 5 to 250{degrees}C and at seven ionic strengths ranging from 0.1 to 5.0 molal (NaCl). The molal dissociation quotients and selected literature data were fitted in the isocoulombic (all anionic) form by a six-term equation. This treatment yielded the following thermodynamic quantities for the acid dissociation equilibrium at 25{degrees}C and 1 bar: logK{sub a} = -4.206{+-}0.006, {Delta}H{sub a}{sup 0} = 0.3{+-}0.3 kJ-mol{sup {minus}1}, {Delta}S{sub a}{sup 0} = -79.6{+-}1.0 J-mol{sup {minus}1}-K{sup {minus}1}, and {Delta}C{sub p;a}{sup 0} = -207{+-}5 J-mol{sup {minus}1}-K{sup {minus}1}. A five-term equation derived to describe the dependence of the dissociation constant on solvent density is accurate to 250{degrees}C and 200 MPa.

  17. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    PubMed Central

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of adsorbent, contact time and temperature was investigated. Analysis of data showed that adsorption equilibrium could be better described by Freundlich isotherm and the maximum adsorption capacities obtained at the pH of 6.0 was 1.97 mg/g. The estimated thermodynamic values of free energy (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) indicated a spontaneous and an endothermic process. Furthermore, the TA-MWCNTs was magnetized for separation of boron-contaminated adsorbent from aqueous solution by applying magnetic field. The results showed that magnetic TA-MWCNTs particles were separated effectively after adsorption from contaminated water. PMID:24393401

  18. Photochemical transformation of an iron(III)-arsenite complex in acidic aqueous solution.

    PubMed

    Pozdnyakov, Ivan P; Ding, Wei; Xu, Jing; Chen, Long; Wu, Feng; Grivin, Vjacheslav P; Plyusnin, Victor F

    2016-03-01

    Surface complexation between arsenious acid anions (As(III)) and ferric (hydr)oxides in water is important for the transformation and transfer of inorganic arsenic species. The mechanisms of formation and the photochemistry of dissolved Fe(III)-As(III) complexes in acidic aqueous solution are still unclear. Here, the photooxidation of As(III) in the presence of Fe(III) ions in acidic media has been investigated by laser flash and steady-state photolysis. At low arsenite concentrations (<1 mM), As(III) is oxidized by the ˙OH radical generated by photolysis of the FeOH(2+) complex. At higher arsenite concentrations (>10 mM), photoactive Fe(III)-As(III) complexes are formed (ϕ≈ 0.012). At all arsenite concentrations, a white FeAsO4 colloid is formed during As(III) photolysis in the presence of Fe(III) ions. Solid Fe(III)-As(III) complexes have been prepared and characterized, and the photochemical transformation of As(III) into As(V) in solid Fe(III)-As(III) complexes has been confirmed. These findings are important for a better understanding of the evolution of As(III) species under environmental conditions and should provide guidance for detoxification of As(III)-polluted water systems.

  19. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution I: Acid and Base Coordinate and Charge Dynamics.

    PubMed

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    Protonation by carbonic acid H2CO3 of the strong base methylamine CH3NH2 in a neutral contact pair in aqueous solution is followed via Car-Parrinello molecular dynamics simulations. Proton transfer (PT) occurs to form an aqueous solvent-stabilized contact ion pair within 100 fs, a fast time scale associated with the compression of the acid-base hydrogen-bond (H-bond), a key reaction coordinate. This rapid barrierless PT is consistent with the carbonic acid-protonated base pKa difference that considerably favors the PT, and supports the view of intact carbonic acid as potentially important proton donor in assorted biological and environmental contexts. The charge redistribution within the H-bonded complex during PT supports a Mulliken picture of charge transfer from the nitrogen base to carbonic acid without altering the transferring hydrogen's charge from approximately midway between that of a hydrogen atom and that of a proton. PMID:26879554

  20. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution I: Acid and Base Coordinate and Charge Dynamics.

    PubMed

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    Protonation by carbonic acid H2CO3 of the strong base methylamine CH3NH2 in a neutral contact pair in aqueous solution is followed via Car-Parrinello molecular dynamics simulations. Proton transfer (PT) occurs to form an aqueous solvent-stabilized contact ion pair within 100 fs, a fast time scale associated with the compression of the acid-base hydrogen-bond (H-bond), a key reaction coordinate. This rapid barrierless PT is consistent with the carbonic acid-protonated base pKa difference that considerably favors the PT, and supports the view of intact carbonic acid as potentially important proton donor in assorted biological and environmental contexts. The charge redistribution within the H-bonded complex during PT supports a Mulliken picture of charge transfer from the nitrogen base to carbonic acid without altering the transferring hydrogen's charge from approximately midway between that of a hydrogen atom and that of a proton.

  1. Aquatic photolysis: photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions

    USGS Publications Warehouse

    Goldberg, M.C.; Cunningham, K.M.; Weiner, Eugene R.

    1993-01-01

    Photolysis of mono and di-carboxylic acids that are adsorbed onto the surface of the iron oxyhydroxide (goethite) results in an oxidation of the organic material and a reduction from Fe(III) to Fe(II) in the iron complex. There is a subsequent release of Fe2+ ions into solution. At constant light flux and constant solution light absorption, the factors responsible for the degree of photolytic reaction include: the number of lattice sites that are bonded by the organic acid; the rate of acid readsorption to the surface during photolysis; the conformation and structure of the organic acid; the degree of oxidation of the organic acid; the presence or absence of an ??-hydroxy group on the acid, the number of carbons in the di-acid chain and the conformation of the di-acid. The ability to liberate Fe(III) at pH 6.5 from the geothite lattice is described by the lyotropic series: tartrate>citrate> oxalate > glycolate > maleate > succinate > formate > fumarate > malonate > glutarate > benzoate = butanoate = control. Although a larger amount of iron is liberated, the series is almost the same at pH 5.5 except that oxalate > citrate and succinate > maleate. A set of rate equations are given that describe the release of iron from the goethite lattice. It was observed that the pH of the solution increases during photolysis if the solutions are not buffered. There is evidence to suggest the primary mechanism for all these reactions is an electron transfer from the organic ligand to the Fe(III) in the complex. Of all the iron-oxyhydroxide materials, crystalline goethite is the least soluble in water; yet, this study indicates that in an aqueous suspension, iron can be liberated from the goethite lattice. Further, it has been shown that photolysis can occur in a multiphase system at the sediment- water interface which results in an oxidation of the organic species and release of Fe2+ to solution where it becomes available for further reaction. ?? 1993.

  2. Chemistry in the Venus clouds: Sulfuric acid reactions and freezing behavior of aqueous liquid droplets

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Baines, K. H.

    2015-11-01

    Venus has a thick cloud deck at 40-70 km altitude consisting of liquid droplets and solid particles surrounded by atmospheric gases. The liquid droplets are highly concentrated aqueous solutions of sulfuric acid ranging in concentration from 70-99 wt%. Weight percent drops off with altitude (Imamura and Hashimoto 2001). There will be uptake of atmospheric gases into the droplet solutions and the ratios of gas-phase to liquid-phase species will depend on the Henry’s Law constant for those solutions. Reactions of sulfuric acid with these gases will form products with differing solubilities. For example, uptake of HCl by H2SO4/H2O droplets yields chlorosulfonic acid, ClSO3H (Robinson et al 1998) in solution. This may eventually decompose to thionyl- or sulfuryl chlorides, which have UV absorbances. HF will also uptake, creating fluorosulfonic acid, FSO3H, which has a greater solubility than the chloro- acid. As uptake continues, there will be many dissolved species in the cloudwaters. Baines and Delitsky (2013) showed that uptake will have a maximum at ~62 km and this is very close to the reported altitude for the mystery UV absorber in the Venus atmosphere. In addition, at very strong concentrations in lower altitude clouds, sulfuric acid will form hydrates such as H2SO4.H2O and H2SO4.4H2O which will have very different freezing behavior than sulfuric acid, with much higher freezing temperatures (Carslaw et al, 1997). Using temperature data from Venus Express from Tellmann et al (2009), and changes in H2SO4 concentrations as a function of altitude (James et al 1997), we calculate that freezing out of sulfuric acid hydrates can be significant down to as low as 56 km altitude. As a result, balloons, aircraft or other probes in the Venus atmosphere may be limited to flying below certain altitudes. Any craft flying at altitudes above ~55 km may suffer icing on the wings, propellers, balloons and instruments which could cause possible detrimental effects (thermal

  3. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    PubMed

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers. PMID:27455406

  4. Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment.

    PubMed

    Kilianová, Martina; Prucek, Robert; Filip, Jan; Kolařík, Jan; Kvítek, Libor; Panáček, Aleš; Tuček, Jiří; Zbořil, Radek

    2013-11-01

    Arsenates, when present in water resources, constitute a risk to human health. In order to remove them, various technologies have been developed; out of them, sorption approach is widely adopted employing a wide spectrum of suitable sorbent materials. Nanoparticles of iron oxide are frequently used due to a high surface area and ability to control them by external magnetic field. In this work, we report on a simple and cheap synthesis of ultrafine iron(III) oxide nanoparticles with a narrow size distribution and their exploitation in the field of arsenate removal from aqueous environment. It is shown that the adsorption capacity is enhanced by a mesoporous nature of nanoparticle arrangement in their system due to strong magnetic interactions they evolve between nanoparticles. A complete arsenate removal is achieved at Fe/As ratio equal to ∼20/1 and at pH in the range from 5 to 7.6. Under these conditions, the arsenates are completely removed within several minutes of treatment. Among iron-oxide-based nanosystems synthesized and employed in arsenate remediation issues so far, our assembly of iron(III) oxide nanoparticles shows the highest Freundlich adsorption coefficient and equilibrium sorption capacity under conditions maintained. Taking into account simple and low-cost preparation procedure, product high yields, almost monodispersed character, room-temperature superparamagnetic behavior, and strong magnetic response under small applied magnetic fields, the synthesized iron(III) oxide nanoparticles can be regarded as a promising candidate for exploitation in the field of removing undesired toxic pollutants from various real water systems.

  5. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  6. Fabrication and characterization of ultrathin dextran layers: Time dependent nanostructure in aqueous environments revealed by OWLS.

    PubMed

    Saftics, Andras; Kurunczi, Sándor; Szekrényes, Zsolt; Kamarás, Katalin; Khánh, Nguyen Quoc; Sulyok, Attila; Bősze, Szilvia; Horvath, Robert

    2016-10-01

    Surface coatings of the polysaccharide dextran and its derivatives are key ingredients especially in label-free biosensors for the suppression of non-specific binding and for receptor immobilization. Nevertheless, the nanostructure of these ultrathin coatings and its tailoring by the variation of the preparation conditions have not been profoundly characterized and understood. In this work carboxymethylated dextran (CMD) was prepared and used for fabricating ultrathin surface coatings. A grafting method based on covalent coupling to aminosilane- and epoxysilane-functionalized surfaces was applied to obtain thin CMD layers. The carboxyl moiety of the CMD was coupled to the aminated surface by EDC-NHS reagents, while CMD coupling through epoxysilane molecules was performed without any additional reagents. The surface analysis following the grafting procedures consisted of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared spectroscopy (ATR-IR), spectroscopic ellipsometry, atomic force microscopy (AFM) and optical waveguide lightmode spectroscopy (OWLS). The XPS and AFM measurements showed that the grafting resulted in a very thin dextran layer of a few nanometers. The OWLS method allowed devising the structure of the interfacial dextran layers by the evaluation of the optogeometrical parameters. The alteration in the nanostructure of the CMD layer with the chemical composition of the silane coverage and the pH of the grafting solution was revealed by in situ OWLS, specifically, lain down chains were found to be prevalent on the surface under neutral and basic conditions on epoxysilylated surfaces. The developed methodologies allowed to design and fabricate nanometer scale CMD layers with well-controlled surface structure, which are very difficult to characterize in aqueous environments using present instrumentations and highly hydrated surface layers.

  7. Biodegradation of ethylene vinyl alcohol by aerobic organisms in an aqueous environment

    SciTech Connect

    Rhoades, J.J. Jr.; Young, J.C.

    1996-11-01

    Ethylene vinyl alcohol (EVOH) is a thermoplastic used extensively in laminates for food containers. This study investigates the biodegradability of EVOH utilizing ASTM Test Method D5271. This method indicates the extent and rate of biodegradation of plastic materials by aerobic microorganisms in an aqueous environment and is performed in a respirometer. The ethylene derived segments of the EVOH contain {sup 14}C which acts as tracer to measure biodegradation as indicated by the {sup 14}C-CO{sub 2} given off by microbial metabolism. Liquid scintillation counting measured the activity of the respired {sup 14}C-CO{sub 2} converted from the ethylene segments of the EVOH. Three physical forms of EVOH were tested: a pure EVOH, a high surface area EVOH, and a blended form of EVOH with polyvinyl alcohol (PVOH). The reactors with these EVOH forms were set up to receive a weekly influx of microorganisms (inoculum), or various amounts of POH as a co-substrate. Results to date have indicated that an increased surface area for the EVOH increases conversion of {sup 14}C relative to the pure EVOH. Some cases with blended EVOH/PVOH reactors have also showed increased conversion of {sup 14}C relative to the pure EVOH cases. The addition of inoculum to the reactors did not seem to significantly increase the conversion of {sup 14}C as compared to the effect of PVOH addition. PVOH co-substrate addition increased {sup 14}C conversion. Also, increasing the amount of PVOH co-substrate addition further increases the conversion of {sup 14}C.

  8. Mapping of sites facing aqueous environment of voltage-gated proton channel at resting state: a study with PEGylation protection.

    PubMed

    Kurokawa, Tatsuki; Okamura, Yasushi

    2014-01-01

    Hv1 (also named, voltage-sensor only protein, VSOP) lacks an authentic pore domain, and its voltage sensor domain plays both roles in voltage sensing and proton permeation. The activities of a proton channel are intrinsic to protomers of Hv1, while Hv1 is dimeric in biological membranes; cooperative gating is exerted by interaction between two protomers. As the signature pattern conserved among voltage-gated channels and voltage-sensing phosphatase, Hv1 has multiple arginines intervened by two hydrophobic residues on the fourth transmembrane segment, S4. S4 moves upward relative to other helices upon depolarization, causing conformational change possibly leading to the formation of a proton-selective conduction pathway. However, detailed mechanisms of proton-selectivity and gating of Hv1 are unknown. Here we took an approach of PEGylation protection assay to define residues facing the aqueous environment of mouse Hv1 (mHv1). Accessibilities of two maleimide molecules, N-ethylmaleimide (NEM) and 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), were examined on cysteine introduced into individual sites. Only the first arginine on S4 (R1: R201) was inaccessible by NEM and AMS in mHv1. This is consistent with previous results of electrophysiology on the resting state channel, suggesting that the accessibility profile represents the resting state of mHv1. D108, critical for proton selectivity, was accessible by AMS and NEM, suggesting that D108 faces the vestibule. F146, a site critical for blocking by a guanidinium-reagent, was accessible by NEM, suggesting that F146 also faces the inner vestibule. These findings suggest an inner vestibule lined by several residues on S2 including F146, D108 on S1, and the C-terminal half of S4.

  9. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  10. Competition between functionalization and fragmentation pathways in the OH-initiated oxidation of aqueous tartaric acid droplets: Reaction products and model simulations

    NASA Astrophysics Data System (ADS)

    Cheng, C. T.; Chow, C. Y.; Chan, M. N.; Zuend, A.; Berkemeier, T.; Shiraiwa, M.

    2015-12-01

    To gain better insights into the competition between functionalization and fragmentation pathways for oxygenated organic compounds, we investigate the OH-radical initiated oxidation of aqueous tartaric acid (C4H6O6) droplets using an aerosol flow tube reactor. The molecular composition of reaction products is characterized by an atmospheric pressure ionization source (Direct Analysis in Real Time, DART) coupled with a high resolution mass spectrometer. The reaction produces four major products: a functionalization product (C4H4O6) and three fragmentation products (C3H4O4, C3H2O4 and C3H2O5), with a predominance of the functionalization product which supports the literature result that only less than 10% of carbon loss was observed for the OH oxidation of tartaric acid. The formation of the functionalization product (2-hydroxy-3-oxosuccinic acid, C4H4O6) can be attributed to that the tertiary alkyl radical, formed after hydrogen abstraction, reacts with an O2 molecule to form a hydroxyperoxyl radical which tends to quickly undergo intramolecular HO2 elimination without fragmentation. The molecular transformation of aqueous tartaric acid droplets is stimulated using the kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP) and the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model in order to take into account the change in particle-phase water and activities of reaction products during the oxidation. Results suggest that aqueous tartaric acid droplets become slightly less hygroscopic after oxidation due to the formation of less polar products. The formation of products with different hygroscopicities and volatilities largely determine the amount of particle-phase water, which in turn governs the size of the aqueous droplets and the concentration of the reactants. Consideration of the variation in water content in response to the chemical evolution in the aerosol is needed to better understand

  11. Acidity constants in methanol/water mixtures of polycarboxylic acids used in drug salt preparations. Potentiometric determination of aqueous pKa values of quetiapine formulated as hemifumarate.

    PubMed

    Garrido, Gemma; Ràfols, Clara; Bosch, Elisabeth

    2006-05-01

    The acidic dissociation constants in a number of methanol/water mixtures of mono and polycarboxylic acids commonly used in the preparation of drug salts were determined. These solvent mixtures are usually used to determine the pKa of drugs of low aqueous solubility. However, when these drugs are prepared in salt form, the acid-base equilibria of both the basic drug and the counter-anion are involved in the potentiometric titration curves. In these instances, the inclusion of the pKa of acids as constant values in the curve fitting provides easy computation of the drug pKa without the need of any previous step to get the free base. As an application example, the aqueous pKa values of the quetiapine formulated as hemifumarate (Seroquel) were estimated by extrapolation from the experimental pKa in several methanol/water mixtures, which were then calculated according to the suitable constants of fumaric acid. The estimated aqueous pKa values of quetiapine are compared with those directly obtained in aqueous solution by potentiometry and by capillary electrophoresis.

  12. Thermodynamic characteristics of the interaction between nicotinic acid and phenylalanine in an aqueous buffer solution at 298 K

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2013-08-01

    The interaction between L-phenylalanine and nicotinic acid is studied by solution calorimetry in an aqueous buffer solution (pH 7.35) at different ratios of the reagents. Experimental data on the enthalpy of dissolution of amino acid in the buffer solution of nicotinic acid at 298.15 K are calculated. The values of thermodynamic parameters for the complexation of L-phenylalanine with nicotinic acid are calculated. It is shown that the formation of a 1: 2 molecular complex is stabilized by the entropy factor due to the dominant role of the dehydration effect of initial reagents.

  13. Mineralogy and Organic Geochemistry of Acid Sulfate Environments from Valles Caldera, New Mexico: Habitability, Weathering and Biosignatures

    NASA Astrophysics Data System (ADS)

    Vogel, M. B.; Des Marais, D. J.; Jahnke, L. L.; Kubo, M.

    2009-12-01

    We report on the mineralogy, organic preservation potential and habitability of sulfate deposits in acid sulfate volcanic settings at Valles Caldera, New Mexico. Fumaroles and acidic springs are potential analogs for aqueous environments on Mars and may offer insights into habitability of sulfate deposits such as those at Meridiani Planum. Sulfates recently detected on Mars are posited to have formed from fluids derived from basaltic weathering and igneous volatile input, ultimately precipitating from acidic brines subjected to desiccation and freeze-thaw cycles (McClennan and Grotzinger, 2008). Key issues concerning martian sulfate deposits are their relationship to aqueous clay deposits, and whether or not specific sulfates deposits represent former habitable environments (see Soderblum and Bell, 2008; Tosca et al., 2008). Modern terrestrial volcanic fumaroles and hot springs precipitate various Ca-, Mg- and Fe- sulfates along with clays, and can help clarify whether certain acid sulfate mineral assemblages reflect habitable environments. Valles caldera is a resurgent caldera last active in the Pleistocene (1.4 - 1.0 Ma) that hosts several active fumaroles and over 40 geothermal exploration wells (see Goff, 2009). Fumaroles and associated mudpots and springs at Valles range from pH < 1 to 3, and affect argillic alteration upon rhylolitic tuffs and sedimentary deposits (Charles et al., 1986). We identified assemblages containing gypsum, quartz, Al-sulfates, elemental sulfur, clays and other minerals using XRD and SEM-EDS. Our previous research has shown that sulfates from different marine depositional environments display textural and morphological traits that are indicative of biological influence, or specific conditions in the depositional environments (Vogel et al., 2009). Gypsum crystals that develop in the presence of microbial biofilms in marine environments may have distorted crystal morphologies, biofilm - associated dissolution features, and accessory

  14. A GREEN CHEMISTRY APPROACH TO PREPARATION OF CORE (FE OR CU)-SHELL (NOBLE METALS) NANOCOMPOSITES USING AQUEOUS ASCORBIC ACID

    EPA Science Inventory

    A greener method to fabricate novel core (Fe or Cu)-shell (noble metals) nanocomposites of transition metals such as Fe and Cu and noble metals such as Au, Pt, Pd, and Ag using aqueous ascorbic acid is described. Transition metal salts such as Cu and Fe were reduced using ascor...

  15. The role of hydrogen bonds in an aqueous solution of acetylsalicylic acid: a molecular dynamics simulation study.

    PubMed

    Donnamaria, Maria Cristina; de Xammar Oro, Juan Roberto

    2011-10-01

    This work focuses on the role of the dynamic hydrogen bonds (HB) formed in an aqueous solution of aspirin using molecular dynamics simulation. The statistics reveal the existence of internal HB that inhibit the rotational movements of the acetyl and the carboxylic acid groups, forcing the molecule to adopt a closed conformer structure in water, and playing an important role in stabilizing this conformation.

  16. UV – INDUCED SYNTHESIS OF AMINO ACIDS FROM AQUEOUS STERILIZED SOLUTION OF AMMONIUM FORMATE AND AMMONIA UNDER HETROGENEOUS CONDITIONS

    PubMed Central

    Bisht, G.; Bisht, L. S.

    1990-01-01

    Irradiation of sterilized aqueous solution of ammonium formate and ammonia with UV light in the presence and or absence of certain inorganic sensitizers for 25 hrs. gave six ninhydrin positive products in appreciable amounts. Out of the six products observed fiver were characterized as lysine, serine, glutemic acid, n-amino butyric acid and leucine. The sensitizing effect of additives on ammonium formate was observed in the order; uranium oxide > ammonium formate > ferric oxide > arsenic oxide. PMID:22556511

  17. Acidic Alteration Environments on Mars and Implications for Habitability

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Flahaut, J.; Weitz, C. M.; Gross, C.; Parente, M.; Horgan, B. H. N.

    2014-12-01

    Unique surface materials have been discovered recently at Valles Marineris (Roach et al., 2010; Weitz et al., 2014; Flahaut et al., 2014), Noctis Labyrinthus (Weitz et al., 2011), Mawrth Vallis (Bishop et al., 2013), and elsewhere that have CRISM features distinct from those of any known minerals. Typically these unusual sites are found in light-toned outcrops or interior layered deposits associated with phyllosilicates, sulfates or both. Frequently these units are called "doublet" materials because they exhibit a doublet absorption in CRISM spectra between 2.2 and 2.3 µm. We are investigating the spectral signatures of these martian materials compared to our library of minerals and alteration materials. We are also evaluating the stratigraphy of these unique alteration phases compared with neighboring phyllosilicate and sulfate units. A similar 2.2-2.3 µm doublet has been observed in spectra taken of acid altered clays produced in the laboratory (Madejova et al., 2009; Tosca et al., 2009). The band centers and relative intensities of these martian doublet features vary greatly suggesting that a process such as acid weathering could be acting on OH-bearing minerals to produce altered phases that differ depending on the type of substrate, water/rock ratio, solution chemistry, and duration of aqueous processes. Because these unique materials occur in many regions across a range of times on Mars, acidic alteration may have been a key process at local and regional scales throughout martian geologic history. Constraining the types of acidic alteration that have taken place on Mars will assist in defining the aqueous geochemistry at these sites and whether habitable conditions were possible. References: Bishop et al. (2013) PSS, 86, 130-149. Flahaut et al. (2014) EPSC, #211. Madejová et al. (2009) Vibrational Spectroscopy, 49, 211-218. Roach et al. (2010) Icarus, 206, 253-268. Tosca & Knoll (2009) 40th LPSC, #1538. Weitz et al. (2011) Geology, 39, 899-902. Weitz et al

  18. Molecular Ecology of Carboxylic Acids in Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Matsuno, K.

    2005-12-01

    Hydrothermal environments in the primitive ocean on the Earth must have played an important role for harnessing a molecular ecology processing various carbon through-flows in the pre-RNA world. Even carboxylic acids alone could have maintained a primitive evolutionary ecology near hot vents on the seafloor. We examined whether the citric acid cycle could run in a simulated hydrothermal environment with the aid of neither reducing agents nor enzymes of biological origin under the premise that pyruvate was already available. When the major carboxylic acid molecules constituting the citric acid cycle including pyruvate were prepared in a flow reactor and the reaction fluid was circulated between hot and cold regions in a cyclic manner, the member molecules of the cycle were found to increase with the operation of the reactor. The cycle was found robust enough to synthesize the member molecules from within even in the face of adverse or hostile disturbances from the outside. The cycle was oxidative instead of being reductive, and the effective oxidant was water molecules. Underlying the operation of a molecular ecology running on the oxidative citric acid cycle is the physical pruning principle of the faster temperature drop going with the greater stored latent heat applied to any reactants crossing sharp temperature gradients.

  19. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    PubMed Central

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  20. Electrochemiluminescence of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution.

    PubMed

    Muegge, Brian D; Brooks, Sean; Richter, Mark M

    2003-03-01

    The electrochemiluminescence (ECL) of tris(8-hydroxyquinoline-5-sulfonic acid)aluminum(III) in aqueous solution is reported. ECL is generated by complexing aluminum ions with the chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQS) to form Al(HQS)3, followed by oxidation in the presence of tri-n-propylamine (TPrA). The ECL intensity peaks a potential corresponding to oxidation of both TPrA and Al(HQS)3, and the ECL emission spectrum (lambda(max) = 499 nm) matches the photoluminescence emission spectrum, indicating that the emission is from a Al(HQS)3* excited state. ECL efficiencies (phi(ecl), photons generated per redox event) of 0.002 using Ru(bpy)3(2+) (phi(ecl) = 1) as relative standard. Conditions for ECL emission were optimized and used to generate a calibration curve that was linear over the 7 x 10(-6)-4 x 10(-4) M (5-281 mg/L (ppm)) range with a theoretical limit of detection of 1 ppm. The ECL of several metal ions other than aluminum with HQS and effects on Al(HQS)3 ECL were also examined.

  1. Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch.

    PubMed

    Li, Yi-Xuan; Lim, Seung-Taik

    2016-04-20

    Aqueous dispersions prepared with OSA-modified high amylose starch were investigated in comparison with native high amylose starch and beta-cyclodextrin using alpha-lipoic acid as a model substance. Alpha-lipoic acid (ALA), a lipophilic antioxidant essential for energy metabolism in human, was dispersed in gelatinized starch solutions (1.0% w/v) at different temperatures (50-90°C) and times (3-12h). High amylose starch modified with 3% OSA (dry starch base) was most favored in maximizing the dispersibility of ALA (84% recovery) under mild heating (70°C for 3h). The optimally prepared dispersion was milky white and contained particles with a narrow size distribution (200-300nm). The precipitate isolated from the dispersion contained crystalline V-complexes of ALA and amylose while the supernatant contained free ALA accounting for 1/3 of total ALA, indicating OSA-modified high amylose starch stabilized ALA either by complexing with amylose or by retarding aggregation of ALA.

  2. A chemiluminescence-based continuous flow aqueous ozone analyzer using photoactivated chromotropic acid.

    PubMed

    Takayanagi, Toshio; Dasgupta, Purnendu K

    2005-05-15

    Ozone has become the oxidant of choice for water disinfection, especially in large water treatment facilities. This paper describes a fast and sensitive method for the determination of ozone content by reaction with photoactivated chromotropic acid (CA, 4,5-dihydroxynaphthalene-2,7-disulfonic acid), which results in intense chemiluminescence (CL). Freshly ozonated water from a recirculating ozonizer/reservoir is injected into a carrier stream of deionized water in the flow-injection mode. This flow mixes with a stream of photoactivated CA solution in a spiral cell placed directly on top of an inexpensive miniature (8mm diameter active area) photomultiplier tube (PMT). Alkaline CA is photoactivated by passing it through a FEP-Teflon((R)) coil (residence time approximately 50s) wrapped around a 1W UV lamp emitting at 254nm; without photoactivation, the signal is approximately 70-fold lower. The S/N=3 limit of detection for aqueous ozone is 3mugl(-1) and good response slope is obtained up to an ozone concentration of 1.4mgl(-1), the highest that could be made in this study. The response obeyed a quadratic equation with r(2)=0.9984. No interference from permanganate ion is observed. The proposed system was applied to the monitoring of ozonation status of a playa lake water that exhibited significant ozone demand.

  3. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.

    PubMed

    Gong, Yanyan; Wang, Lin; Liu, Juncheng; Tang, Jingchun; Zhao, Dongye

    2016-08-15

    Fully stabilized magnetite (Fe3O4) nanoparticles were prepared with a water-soluble starch as a stabilizer and tested for removal of aqueous perfluorooctanoic acid (PFOA). The presence of starch at ≥0.2wt% can fully stabilize 0.1g/L as Fe of the Fe3O4 nanoparticles. The particle stabilization technique resulted in 2.4 times higher PFOA uptake. Fourier transform infrared spectra suggested that the main PFOA removal mechanism was inner-sphere complexation. Batch kinetic experiments revealed that the starch-stabilized nanoparticles facilitated a rapid PFOA uptake with a sorption equilibrium time of 30min, and the sorption process followed a pseudo-second-order kinetic model. The Langmuir model was able to well interpret the adsorption isotherm, with a maximum adsorption capacity of 62.5mg/g. Increasing pH from 4.7 to 9.6 led to a sharp increase (by 2.6 times) in PFOA uptake. The presence of 12mg/L humic acid inhibited PFOA uptake by 96%, while effect of ionic strength (CaCl2=0-2mmol/L) was negligible. The nanoparticles significantly reduced the biological toxicity of PFOA. The results demonstrated promise of starch-stabilized Fe3O4 nanoparticles as a "green" adsorbent for effective removal of PFOA in soil and groundwater. PMID:27100000

  4. Improving aqueous solubility and antitumor effects by nanosized gambogic acid-mPEG2000 micelles

    PubMed Central

    Cai, Lulu; Qiu, Neng; Xiang, Mingli; Tong, Rongsheng; Yan, Junfeng; He, Lin; Shi, Jianyou; Chen, Tao; Wen, Jiaolin; Wang, Wenwen; Chen, Lijuan

    2014-01-01

    The clinical application of gambogic acid, a natural component with promising antitumor activity, is limited due to its extremely poor aqueous solubility, short half-life in blood, and severe systemic toxicity. To solve these problems, an amphiphilic polymer-drug conjugate was prepared by attachment of low molecular weight (ie, 2 kDa) methoxy poly(ethylene glycol) methyl ether (mPEG) to gambogic acid (GA-mPEG2000) through an ester linkage and characterized by 1H nuclear magnetic resonance. The GA-mPEG2000 conjugates self-assembled to form nanosized micelles, with mean diameters of less than 50 nm, and a very narrow particle size distribution. The properties of the GA-mPEG2000 micelles, including morphology, stability, molecular modeling, and drug release profile, were evaluated. MTT (3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide) tests demonstrated that the GA-mPEG2000 micelle formulation had obvious cytotoxicity to tumor cells and human umbilical vein endothelial cells. Further, GA-mPEG2000 micelles were effective in inhibiting tumor growth and prolonged survival in subcutaneous B16-F10 and C26 tumor models. Our findings suggest that GA-mPEG2000 micelles may have promising applications in tumor therapy. PMID:24403830

  5. Preparation of aqueous alpha-lipoic acid dispersions with octenylsuccinylated high amylose starch.

    PubMed

    Li, Yi-Xuan; Lim, Seung-Taik

    2016-04-20

    Aqueous dispersions prepared with OSA-modified high amylose starch were investigated in comparison with native high amylose starch and beta-cyclodextrin using alpha-lipoic acid as a model substance. Alpha-lipoic acid (ALA), a lipophilic antioxidant essential for energy metabolism in human, was dispersed in gelatinized starch solutions (1.0% w/v) at different temperatures (50-90°C) and times (3-12h). High amylose starch modified with 3% OSA (dry starch base) was most favored in maximizing the dispersibility of ALA (84% recovery) under mild heating (70°C for 3h). The optimally prepared dispersion was milky white and contained particles with a narrow size distribution (200-300nm). The precipitate isolated from the dispersion contained crystalline V-complexes of ALA and amylose while the supernatant contained free ALA accounting for 1/3 of total ALA, indicating OSA-modified high amylose starch stabilized ALA either by complexing with amylose or by retarding aggregation of ALA. PMID:26876852

  6. Adsorption of Acid Red 57 from aqueous solutions onto polyacrylonitrile/activated carbon composite.

    PubMed

    El-Bindary, Ashraf A; Diab, Mostafa A; Hussien, Mostafa A; El-Sonbati, Adel Z; Eessa, Ahmed M

    2014-04-24

    The adsorption of Acid Red 57 (AR57) onto Polyacrylonitrile/activated carbon (PAN/AC) composite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. Physical characteristics of (PAN/AC) composite such as fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were obtained. Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were determined. The activation energy of adsorption was also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data. The dynamic data fitted the pseudo-second-order kinetic model well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto (PAN/AC) composite. The thermodynamics of the adsorption indicated spontaneous and exothermic nature of the process. The results indicate that (PAN/AC) composite could be employed as low-cost material for the removal of acid dyes from textile effluents. PMID:24463242

  7. Removal of aqueous perfluorooctanoic acid (PFOA) using starch-stabilized magnetite nanoparticles.

    PubMed

    Gong, Yanyan; Wang, Lin; Liu, Juncheng; Tang, Jingchun; Zhao, Dongye

    2016-08-15

    Fully stabilized magnetite (Fe3O4) nanoparticles were prepared with a water-soluble starch as a stabilizer and tested for removal of aqueous perfluorooctanoic acid (PFOA). The presence of starch at ≥0.2wt% can fully stabilize 0.1g/L as Fe of the Fe3O4 nanoparticles. The particle stabilization technique resulted in 2.4 times higher PFOA uptake. Fourier transform infrared spectra suggested that the main PFOA removal mechanism was inner-sphere complexation. Batch kinetic experiments revealed that the starch-stabilized nanoparticles facilitated a rapid PFOA uptake with a sorption equilibrium time of 30min, and the sorption process followed a pseudo-second-order kinetic model. The Langmuir model was able to well interpret the adsorption isotherm, with a maximum adsorption capacity of 62.5mg/g. Increasing pH from 4.7 to 9.6 led to a sharp increase (by 2.6 times) in PFOA uptake. The presence of 12mg/L humic acid inhibited PFOA uptake by 96%, while effect of ionic strength (CaCl2=0-2mmol/L) was negligible. The nanoparticles significantly reduced the biological toxicity of PFOA. The results demonstrated promise of starch-stabilized Fe3O4 nanoparticles as a "green" adsorbent for effective removal of PFOA in soil and groundwater.

  8. Determination of acidity constants of sparingly soluble drugs in aqueous solution by the internal standard capillary electrophoresis method.

    PubMed

    Cabot, Joan Marc; Fuguet, Elisabet; Rosés, Martí

    2014-12-01

    A set of 33 drugs with different solubilities, ranging from soluble to very insoluble, has been chosen in order to evaluate the performance of the internal standard CE method to determine acidity constants of compounds with limited solubility. The set of drugs tested in this work has been chosen as a function of their intrinsic solubility. For the most insoluble compounds, several analytical conditions to overcome the insolubility in aqueous buffers have been tested. This paper assesses the compound solubility limits for the IS-CE method in aqueous pKa determinations, and also compares the determined pKa s with the results from the literature data obtained by other methods. It is proved that IS-CE method determines acidity constants of sparingly soluble drugs in aqueous media (compounds with logS down to around -6), whereas other reference methods require the use of aqueous-organic solvent buffers and extrapolation procedures to obtain the aqueous pKa for the same compounds.

  9. Understanding the interaction of amorphous calcium polyphosphate with aqueous environments to optimize its use as a localized drug delivery matrix

    NASA Astrophysics Data System (ADS)

    Djogbenou, Nancy

    Amorphous calcium polyphosphate (CPP) shows potential as an implantable drug delivery matrix through a simple gelling protocol that has been shown to eliminate burst release and extend drug release time from the matrix. The nature of the interaction of CPP with aqueous environments and different drugs is not yet well understood. For this reason, CPP samples were manufactured using two different methods: the established gelation protocol, with and without drug, and mixing CPP with different volumes of aqueous solutions to better understand the effect of water exposure on the structural and drug release properties of CPP. Exposure to aqueous systems caused a reduction in the chain length of CPP that was dependant on gel time and mode of exposure. Longer gel times or increased volume of water used during exposure also caused the formation of crystalline material upon drying. In general, drug release was a function of aqueous exposure and the therapeutic agent used. Drug elution studies showed an increase in the burst release of vancomycin (VCM) from CPP gelled for extended periods. When total gel time was 10 hours or below samples that were gelled for only a short time during drug loading performed best. CPP loaded with BSA had a much slower release rate than VCM and appeared to release BSA by a different mechanism. Overall, this thesis shows that CCP drug delivery matrices can be produced with tailored properties simply by controlling processing conditions.

  10. Phosphate Sorption and Desorption on Pyrite in Primitive Aqueous Scenarios: Relevance of acidic → Alkaline Transitions

    NASA Astrophysics Data System (ADS)

    de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M. B.; Bonapace, José A. P.; Montezano, Viviane; Vieyra, Adalberto

    2007-02-01

    Phosphate (P i) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P i sorption whereas mild alkaline media as well as those simulating sulfur oxidation to SO2- 4 revert this capture process. Several mechanisms relevant to P i availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg2+ bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO2- 4 trapping by the mineral interface would provoke the release of sorbed P i due to charge polarization. Moreover it is shown that P i self-modulates its sorption, a mechanism that depends on the abundance of SO2- 4 in the interface. The relevance of the proposed mechanisms of P i capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since similarly to contemporary aqueous media inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P i could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.

  11. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions.

    PubMed

    de Souza-Barros, Fernando; Braz-Levigard, Raphael; Ching-San, Yonder; Monte, Marisa M B; Bonapace, José A P; Montezano, Viviane; Vieyra, Adalberto

    2007-02-01

    Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.

  12. Formation of 4(5)-Methylimidazole in Aqueous d-Glucose-Amino Acids Model System.

    PubMed

    Karim, Faris; Smith, J Scott

    2016-01-01

    The International Agency for Research on Cancer (IRAC) has classified 4(5)-methylimidazole (4-MeI) as a group 2B possible human carcinogen. Thus, how 4-MeI forms in a D-glucose (Glu) amino acids (AA) model system is important, as it is how browning is affected. An aqueous solution of Glu was mixed individually in equimolar amounts at 3 concentrations (0.05, 0.1, and 0.15 M) with aqueous solutions of L-Alanine (Ala), L-Arginine (Arg), Glycine (Gly), L-Lysine (Lys), and L-Serine (Ser). The Glu-AA mixtures were reacted at 60, 120, and 160 °C for 1 h. The 4-MeI levels were measured by gas chromatography-mass spectrometry after derivatization with isobutylchloroformate. No 4-MeI was formed at 60 °C for any treatment combination; however, at 120 °C and 0.05 M, Glu-Arg and Glu-Lys produced 0.13 and 0.14 mg/kg of 4-MeI. At 160 °C and 0.05 M all treatment combinations formed 4-MeI. At 160 °C and 0.15 M, the observed levels of Glu-Ala, Glu-Arg, Glu-Gly, Glu-Lys, and Glu-Ser were 0.21, 1.00, 0.15, 0.22, and 0.16 mg/kg. The AA type, reactant concentrations, and temperature significantly affected (P < 0.001) formation of 4-MeI as well as browning. Glu-Lys treatment in all combinations produced the most browning, but Glu-Arg produced the most 4-MeI. This method showed that foods processed using low temperatures may have reduced levels of 4-MeI.

  13. Formation, Transport, Aggregation and Coarsening of Biogenic Metal-Sulfide Nanoparticles in Contaminated Near-Surface Aqueous Environments

    NASA Astrophysics Data System (ADS)

    Moreau, J. W.; Webb, R. I.; Banfield, J. F.

    2002-12-01

    The form of biogenic metal-sulfides produced by sulfate-reducing bacteria (SRB) found in many contaminated natural environments can control the fate of toxic metals in groundwater and sediments. SRB activity in microbial consortia affects the rate of sulfide precipitation and thus the potential for bioremediation. We have studied SRB populations and biogenic ZnS in a natural biofilm formed on degraded wood in a flooded mine in Upper Mississippi Valley-type ore deposits. We have also characterized microbial populations and associated mineralization in a natural wetland contaminated with acid mine drainage. Fluorescent in-situ hybridization (FISH) studies of biofilm samples were conducted using newly designed rRNA probes. Results show the abundant distribution of SRB from groups Desulfobacteraceae and Desulfobulbaceae. Scanning electron microscopy (SEM) and optical microscopy on cryofixed freeze-fractured or ultramicrotomed biofilm reveals the association of cells with ~~1 μm m spherical aggregates of ZnS nanoparticles. The spheres are concentrated in contiguous areas with textures similar to fossilized wood. High-resolution transmission electron microscopy (HRTEM) images show that most nanoparticles found in the biofilm are sequestered into the spheres and exhibit sphalerite, wurtzite, or hybrid structures. The smallest particles (<2 nm), however, are commonly associated with residual organic material between or away from the spheres, and rarely exhibit periodic structure. We infer that ZnS nanoparticles form homogenously in solution and are transported to localized sites to aggregate and coarsen. The spheres contain concentric bands of low particle density and voids 1-2 nm wide spaced 10s of nm's apart. We interpret these bands to reflect episodic ZnS precipitation due to increased SRB activity; adhesion and aggregation of the nanoparticles seems to have occurred at relatively controlled rates to form the nearly symmetrical spheres. The formation of

  14. Removal of Cr(VI) from Aqueous Environments Using Micelle-Clay Adsorption

    PubMed Central

    Qurie, Mohannad; Khamis, Mustafa; Manassra, Adnan; Ayyad, Ibrahim; Nir, Shlomo; Scrano, Laura; Bufo, Sabino A.; Karaman, Rafik

    2013-01-01

    Removal of Cr(VI) from aqueous solutions under different conditions was investigated using either clay (montmorillonite) or micelle-clay complex, the last obtained by adsorbing critical micelle concentration of octadecyltrimethylammonium ions onto montmorillonite. Batch experiments showed the effects of contact time, adsorbent dosage, and pH on the removal efficiency of Cr(VI) from aqueous solutions. Langmuir adsorption isotherm fitted the experimental data giving significant results. Filtration experiments using columns filled with micelle-clay complex mixed with sand were performed to assess Cr(VI) removal efficiency under continuous flow at different pH values. The micelle-clay complex used in this study was capable of removing Cr(VI) from aqueous solutions without any prior acidification of the sample. Results demonstrated that the removal effectiveness reached nearly 100% when using optimal conditions for both batch and continuous flow techniques. PMID:24222757

  15. Changing the Action of Iron from Stoichiometric to Electrocatalytic in the Hydrogenation of Ketones in Aqueous Acidic Media.

    PubMed

    Gottardo, Marina; Easton, Max; Fabos, Viktoria; Guo, Si-Xuan; Zhang, Jie; Perosa, Alvise; Selva, Maurizio; Bond, Alan M; Masters, Anthony F; Maschmeyer, Thomas

    2015-11-01

    Cyclohexanone, a model compound chosen to conveniently represent small oxygenates present in the aqueous phase of biomass hydrothermal upgrading streams, was hydrogenated in the presence of electrodeposited iron(0) using aqueous formic or sulfuric acid as a hydrogen donor. Under these conditions, zero-valent iron is consumed stoichiometrically and serves as both a formic acid decomposition site and a hydrogen transfer agent. However, the resulting iron(II) can be used to continuously regenerate iron(0) when a potential is applied to the glassy carbon working electrode. Controlled potential electrolysis experiments show a 17% conversion of cyclohexanone (over 1000 seconds) to cyclohexanol with >80% efficiency of iron deposition from an iron(II) sulfate solution containing formic or sulfuric acid. In the absence of electrodeposited iron, formation of cyclohexanol could not be detected.

  16. Changing the Action of Iron from Stoichiometric to Electrocatalytic in the Hydrogenation of Ketones in Aqueous Acidic Media.

    PubMed

    Gottardo, Marina; Easton, Max; Fabos, Viktoria; Guo, Si-Xuan; Zhang, Jie; Perosa, Alvise; Selva, Maurizio; Bond, Alan M; Masters, Anthony F; Maschmeyer, Thomas

    2015-11-01

    Cyclohexanone, a model compound chosen to conveniently represent small oxygenates present in the aqueous phase of biomass hydrothermal upgrading streams, was hydrogenated in the presence of electrodeposited iron(0) using aqueous formic or sulfuric acid as a hydrogen donor. Under these conditions, zero-valent iron is consumed stoichiometrically and serves as both a formic acid decomposition site and a hydrogen transfer agent. However, the resulting iron(II) can be used to continuously regenerate iron(0) when a potential is applied to the glassy carbon working electrode. Controlled potential electrolysis experiments show a 17% conversion of cyclohexanone (over 1000 seconds) to cyclohexanol with >80% efficiency of iron deposition from an iron(II) sulfate solution containing formic or sulfuric acid. In the absence of electrodeposited iron, formation of cyclohexanol could not be detected. PMID:26382111

  17. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units. PMID:26331783

  18. Ab Initio Molecular Dynamics Simulations of Amino Acids in Aqueous Solutions: Estimating pKa Values from Metadynamics Sampling.

    PubMed

    Tummanapelli, Anil Kumar; Vasudevan, Sukumaran

    2015-09-17

    Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation-deprotonation reaction of the 20 canonical α amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metadynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pKa values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pKa values with a mean relative error, with respect to experimental results, of 0.2 pKa units.

  19. Aging study of silica optical fibers under acid environment

    NASA Astrophysics Data System (ADS)

    Severin, I.; El Abdi, R.; Poulain, M.

    2005-05-01

    Optical fibers are key components in telecommunication technologies. Apart from optical specifications, optical fibers are expected to keep most of their physical properties for 10 to 20 years in current operating conditions. The reliability and the expected lifetime of optical links are closely related to the action of the chemical environment on the silica network. However, the coating also contributes largely to the mechanical properties of the fibers. The aim of this work was to study the strength and the mechanical behaviour of the silica optical fibers in an acid environment. A container with ammonium bifluoride acid salt was plunged into hot water at different temperatures (55° and 75°C). This emitted acid vapors which attacked the optical fibers for a period of 1 to 18 days. An aging study was performed on silica optical fibers with standard polyacrylate coating and with hermetic carbon coating. A dynamic two-point bending bench at different faceplate velocities (100, 200, 400 and 800 μm/s) was used. For comparison, the same dynamic measurements were also carried out on non-aged fibers. After acid vapor condensation, salt crystal deposits on the fibers were displayed using an electron scanning microscope. These crystals became visible to the naked eye from the 7th day post exposure.

  20. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  1. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite.

    PubMed

    Wei, Wei; Cui, Jing; Wei, Zhenggui

    2014-06-01

    Understanding the effects of low molecular weight organic acids (LMWOAs) on the transformation of Pb(II) to geochemically stable pyromorphite (PY) by apatite materials (AMs), has considerable benefits for risk assessment and remediation strategies for contaminated water and soil. In this study, we systematically investigated the immobilization of Pb(II) from aqueous solution by natural phosphate rock (PR) and different crystallized hydroxyapatite (HAp) in the absence and presence of LMWOAs (oxalic, malic and citric acids). The results indicated that the effectiveness of PR and HAp in immobilizing Pb(II) followed in descending order by HAp2 (the poorly crystallized HAp), HAp1 (the well crystallized HAp) and PR, regardlessof the presence of LMWOAs. The presence of malic and citric acids significantly decreased the immobilizationefficiency of Pb(II) by HAp1 and PR, clarifying the lower adsorption affinities of Pb(II)-organic acid complexes on HAp1 and PR rather than Pb(II) ion. On thecontrary, oxalic acid could markedly enhance the removal of Pb(II) from aqueous solution by HAp1 and PR through the formation of lead oxalate, which was confirmed by FT-IR and XRDanalysis. Results also showed that LMWOAs had little promoting or inhibiting effect on the immobilization of Pb(II) by HAp2. This study suggested that the ubiquity of LMWOAs in natural environments could retard the transformation efficiency of Pb(II) to PY by AMs, especiallyin thepresenceof oxalic acid, and the poorly crystallized HAp2 had great potential to remediate Pb(II)-contaminated water and soil due to its insusceptibility to LMWOAs.

  2. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    SciTech Connect

    González Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James; Curtiss, Larry A.

    2012-01-01

    The conversion of furfuryl alcohol (FAL) to levulinic acid over AmberlystTM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5-trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  3. Lewis Acid Pairs for the Activation of Biomass-derived Oxygenates in Aqueous Media

    SciTech Connect

    Roman, Yuriy

    2015-09-14

    The objective of this project is to understand the mechanistic aspects behind the cooperative activation of oxygenates by catalytic pairs in aqueous media. Specifically, we will investigate how the reactivity of a solid Lewis acid can be modulated by pairing the active site with other catalytic sites at the molecular level, with the ultimate goal of enhancing activation of targeted functional groups. Although unusual catalytic properties have been attributed to the cooperative effects promoted by such catalytic pairs, virtually no studies exist detailing the use heterogeneous water-tolerant Lewis pairs. A main goal of this work is to devise rational pathways for the synthesis of porous heterogeneous catalysts featuring isolated Lewis pairs that are active in the transformation of biomass-derived oxygenates in the presence of bulk water. Achieving this technical goal will require closely linking advanced synthesis techniques; detailed kinetic and mechanistic investigations; strict thermodynamic arguments; and comprehensive characterization studies of both materials and reaction intermediates. For the last performance period (2014-2015), two technical aims were pursued: 1) C-C coupling using Lewis acid and base pairs in Lewis acidic zeolites. Tin-, zirconium-, and hafnium containing zeolites (e.g., Sn-, Zr-, and Hf-Beta) are versatile solid Lewis acids that selectively activate carbonyl functional groups. In this aim, we demonstrate that these zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions. 2) One-pot synthesis of MWW zeolite nanosheets for activation of bulky substrates. Through

  4. MODELING SMALL-SCALE SPILLS OF AQUEOUS SOLUTIONS IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    A mass transfer model is proposed to estimate the rates of chemical emissions from aqueous solutions spilled on hard surfaces inside buildings. The model is presented in two forms: a set of four ordinary differential equations and a simplified exact solution. The latter can be ...

  5. Combination of best promoter and micellar catalyst for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media at room temperature.

    PubMed

    Saha, Rumpa; Ghosh, Aniruddha; Saha, Bidyut

    2014-04-24

    In aqueous acidic media, picolinic acid, 2,2'-bipyridine and 1,10-phenanthroline promoted Cr(VI) oxidation of 1-butanol produces 1-butanal. 1-butanal is separated from mixture by fractional distillation. The anionic surfactant (SDS) and neutral surfactant (TX-100) accelerate the process while the cationic surfactant (CPC) retards the reaction. Combination of bipy and SDS is the best choice for chromic acid oxidation of 1-butanol to 1-butanal in aqueous media.

  6. [Mechanism of action of combined extremely weak magnetic field on aqueous solution of amino acid].

    PubMed

    Zhadin, M N; Bakharev, B V; Bobkova, N V

    2014-01-01

    The fundamental physical mechanisms of resonance action of an extremely weak (40 nT) alternating magnetic field at the cyclotron frequency combined with a weak (40 μT) static magnetic field, on living systems are analyzed in the present work. The experimental effects of such sort of magnetic fields were described in different papers: the very narrow resonant peaks in electrical conductivity of the aqueous solutions in the in vitro experiments and the biomedical in vivo effects on living animals of magnetic fields with frequencies tuned to some amino acids. The existing experimental in vitro data had a good repeatability in different laboratories and countries. Unfortunately, for free ions such sort of effects are absolutely impossible because the dimensions of an ion rotation radius should be measured by meters at room temperature and at very low static magnetic fields used in all the above experiments. Even for bound ions these effects should be also absolutely impossible from the positions of classic physics because of rather high viscosity of biological liquid media (blood plasma, cerebrospinal liquid, cytoplasm). Only modern quantum electrodynamics of condensed media opens the new ways for solving these problems. The proposed article is devoted to analysis of quantum mechanisms of these effects. PMID:25707253

  7. Preparation and characterization of aqueous dispersions of high amylose starch and conjugated linoleic acid complex.

    PubMed

    Seo, Tae-Rang; Kim, Hee-Young; Lim, Seung-Taik

    2016-11-15

    Crystalline starch-CLA complexes were prepared by blending an alcoholic solution of conjugated linoleic acid (CLA) in an aqueous high-amylose maize starch dispersion. Recovery yield of CLA in the precipitates obtained by centrifuging the dispersion was dependent on reaction conditions such as temperature, time and pH. The CLA recovery reached a maximum when the reaction was performed at 90°C for 6h at neutral pH, with 67.7% of the initial CLA being co-precipitated with starch. The precipitates contained amylose-CLA complex exhibiting a V6I-type crystalline structure under X-ray diffraction analysis and a type II polymorph under DSC analysis. Ultrasonic treatment for the re-dispersed starch-CLA complex in water resulted in the reduction of hydrodynamic diameter of the complex particles to 201.5nm. The dispersion exhibited a zeta potential of -27.0mV and remained stable in an ambient storage without forming precipitates for more than 4weeks. PMID:27283663

  8. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    PubMed Central

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-01-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h−1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (·OH) and aqueous electrons (eaq−), were responsible for the degradation of PFOA, while only either eaq− or ·OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of ·OH and eaq− involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants. PMID:25492109

  9. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa

    2005-10-17

    The adsorption of Acid Red 57 (AR57) onto surfactant-modified sepiolite was investigated in aqueous solution in a batch system with respect to contact time, pH and temperature. The surface modification of surfactant-modified sepiolite was controlled using the FTIR technique. The pseudo-first-order, pseudo-second-order kinetic models and the intraparticle diffusion model were used to describe the kinetic data and the rate constants were evaluated. The experimental data fitted very well the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 90 min, whereas diffusion is not only the rate controlling step. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and the isotherm constants were also determined. The Freundlich model agrees with experimental data well. The activation energy, change of free energy, enthalpy and entropy of adsorption were also evaluated for the adsorption of AR57 onto surfactant-modified sepiolite. The results indicate that surfactant-modified sepiolite could be employed as low-cost material for the removal of textile dyes from effluents. PMID:16019142

  10. Aqueous acidities of primary benzenesulfonamides: Quantum chemical predictions based on density functional theory and SMD.

    PubMed

    Aidas, Kęstutis; Lanevskij, Kiril; Kubilius, Rytis; Juška, Liutauras; Petkevičius, Daumantas; Japertas, Pranas

    2015-11-01

    Aqueous pK(a) of selected primary benzenesulfonamides are predicted in a systematic manner using density functional theory methods and the SMD solvent model together with direct and proton exchange thermodynamic cycles. Some test calculations were also performed using high-level composite CBS-QB3 approach. The direct scheme generally does not yield a satisfactory agreement between calculated and measured acidities due to a severe overestimation of the Gibbs free energy changes of the gas-phase deprotonation reaction by the used exchange-correlation functionals. The relative pK(a) values calculated using proton exchange method compare to experimental data very well in both qualitative and quantitative terms, with a mean absolute error of about 0.4 pK(a) units. To achieve this accuracy, we find it mandatory to perform geometry optimization of the neutral and anionic species in the gas and solution phases separately, because different conformations are stabilized in these two cases. We have attempted to evaluate the effect of the conformer-averaged free energies in the pK(a) predictions, and the general conclusion is that this procedure is highly too costly as compared with the very small improvement we have gained.

  11. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    NASA Astrophysics Data System (ADS)

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-12-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h-1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (.OH) and aqueous electrons (eaq-), were responsible for the degradation of PFOA, while only either eaq- or .OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of .OH and eaq- involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants.

  12. Adsorption of Benzoic Acid in Aqueous Solution by Bagasse Fly Ash

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    2012-09-01

    This paper reports the studies on the benzoic acid (BA) onto bagasse fly ash (BFA) was studied in aqueous solution in a batch system. Physico-chemical properties including surface area, surface texture of the GAC before and after BA adsorption onto BFA were analysed using X-ray diffractometer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The optimum initial pH for the adsorption of BA was found to be 5.56. The adsorbent dose was 10 g/l for BFA and the equilibrium time 8 h of reaction. Pseudo first and second order models were used to find the adsorption kinetics. It was found that intraparticle diffusion played important role in the adsorption mechanisms of BA and the adsorption kinetics followed pseudo-second order kinetic model rather than the pseudo first order kinetic model. Isotherm data were generated for BA solution having initial concentrations of BA in the range of 10-200 mg/l for the BFA dosage of 10 g/l at temperatures of 288, 303, and 318 K. The adsorption of BA onto BFA was favorably influenced by an increase in temperature. Equilibrium data were well represented by the Redlich-Peterson isotherm model. Values of the change in entropy ( ΔS 0), heat of adsorption ( ΔH 0) for adsorption of BA on BFA was found to be 120.10 and 19.61 kJ/mol respectively. The adsorption of BA onto BFA was an endothermic reaction. Desorption of BA from BFA was studied by various solvents method. Acetic acid was found to be a better eluant for desorption of BA with a maximum desorption efficiency of 55.2 %. Owing to its heating value, spent BFA can be used as a co-fuel for the production of heat in boiler furnaces.

  13. Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution.

    PubMed

    Tautermann, Christofer S; Voegele, Andreas F; Loerting, Thomas; Kohl, Ingrid; Hallbrucker, Andreas; Mayer, Erwin; Liedl, Klaus R

    2002-01-01

    Dry carbonic acid has recently been shown to be kinetically stable even at room temperature. Addition of water molecules reduces this stability significantly, and the decomposition (H2CO3 + nH2O --> (n+1)H2O + CO2) is extremely accelerated for n = 1, 2, 3. By including two water molecules, a reaction rate that is a factor of 3000 below the experimental one (10 s(-1)) at room temperature was found. In order to further remove the gap between experiment and theory, we increased the number of water molecules involved to 3 and took into consideration different mechanisms for thorough elucidation of the reaction. A mechanism whereby the reaction proceedes via a six-membered transition state turns out to be the most efficient one over the whole examined temperature range. The determined reaction rates approach experimental values in aqueous solution reasonably well; most especially, a significant increase in the rates in comparison to the decomposition reaction with fewer water molecules is found. Further agreement with experiment is found in the kinetic isotope effects (KIE) for the deuterated species. For water-free carbonic acid, the KIE (i.e., kH2CO3/kD2CO3) for the decomposition reaction is predicted to be 220 at 300 K, whereas it amounts to 2.2-3.0 for the investigated mechanisms including three water molecules. This result is therefore reasonably close to the experimental value of 2 (at 300 K). These KIEs are in much better accordance with the experiment than the KIE for decomposition with fewer water entities. PMID:11822465

  14. Lipase in biphasic alginate beads as a biocatalyst for esterification of butyric acid and butanol in aqueous media.

    PubMed

    Ng, Choong Hey; Yang, Kun-Lin

    2016-01-01

    Esterification of organic acids and alcohols in aqueous media is very inefficient due to thermodynamic constraints. However, fermentation processes used to produce organic acids and alcohols are often conducted in aqueous media. To produce esters in aqueous media, biphasic alginate beads with immobilized lipase are developed for in situ esterification of butanol and butyric acid. The biphasic beads contain a solid matrix of calcium alginate and hexadecane together with 5 mg/mL of lipase as the biocatalyst. Hexadecane in the biphasic beads serves as an organic phase to facilitate the esterification reaction. Under optimized conditions, the beads are able to catalyze the production of 0.16 mmol of butyl butyrate from 0.5 mmol of butyric acid and 1.5 mmol of butanol. In contrast, when monophasic beads (without hexadecane) are used, only trace amount of butyl butyrate is produced. One main application of biphasic beads is in simultaneous fermentation and esterification (SFE) because the organic phase inside the beads is very stable and does not leach out into the culture medium. SFE is successfully conducted with an esterification yield of 6.32% using biphasic beads containing iso-octane even though the solvent is proven toxic to the butanol-producing Clostridium spp. PMID:26672465

  15. A CALPHAD study on the thermodynamic stability of calcium-, zinc-, and yttrium-doped magnesium in aqueous environments

    SciTech Connect

    Wu, Kaisheng; Dogan, Omar N.; Velikokhatnyl, Oleg I.; Kumta, Prashant N.

    2011-12-15

    Magnesium has attracted the attention of the biomaterials community as a potential biodegradable metallic candidate for use in stents and orthopedic applications. Alloying of Mg with metals such as Ca, Y and Zn, etc., to form alloy precursors is important to optimize its corrosion rate in electrolytic and aqueous environments to understand the alloy response in body fluid environments. In the current study, the chemical reactions of Mg–Me alloys (Me = Ca, Y, and Zn) with pure water have been investigated using the CALPHAD technique. A qualitative agreement between CALPHAD and first-principles results has been obtained. The CALPHAD method has also been employed to study the reactions of Mg alloys in the human blood fluid environment. The effects of alloying elements and compositions on the reaction enthalpies, reaction products, amount of gas release and gas compositions as well as the pH of the fluids have been systematically discussed and reported.

  16. A CALPHAD Study on the Thermodynamic Stability of Calcium-, Zinc-, and Yttrium-Doped Magnesium in Aqueous Environments

    SciTech Connect

    Wu, Kaisheng

    2011-12-15

    Magnesium has attracted the attention of the biomaterials community as a potential biodegradable metallic candidate for use in stents and orthopedic applications. Alloying of Mg with metals such as Ca, Y and Zn, etc., to form alloy precursors is important to optimize its corrosion rate in electrolytic and aqueous environments to understand the alloy response in body fluid environments. In the current study, the chemical reactions of Mg–Me alloys (Me = Ca, Y, and Zn) with pure water have been investigated using the CALPHAD technique. A qualitative agreement between CALPHAD and first-principles results has been obtained. The CALPHAD method has also been employed to study the reactions of Mg alloys in the human blood fluid environment. The effects of alloying elements and compositions on the reaction enthalpies, reaction products, amount of gas release and gas compositions as well as the pH of the fluids have been systematically discussed and reported.

  17. Factors affecting the removal of chlorendic acid from aqueous solutions using high energy electron irradiation

    SciTech Connect

    Taylor, T.C.; Cooper, W.J.; Nickelsen, M.G. ); Kurucz, C.N.; Waite, T.D. )

    1990-01-01

    Irradiation of water has been studied for many years. In pure water, the product distribution is well known and results in the formation of several highly reactive radical species. These radical species, e{sup {minus}} ag, H{sup {sm bullet}} and OH{sup {sm bullet}}, are known to react with many organic compounds. Thus, it appears that this treatment may be of interest in treating waste streams which contain compounds of known threat to the environment. This paper will provide initial results of experiments on the removal of chlorendic acid in wastewater.

  18. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  19. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOEpatents

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  20. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed. PMID:25600471

  1. Interaction of model aryl- and alkyl-boronic acids and 1,2-diols in aqueous solution.

    PubMed

    Marinaro, William A; Prankerd, Richard; Kinnari, Kaisa; Stella, Valentino J

    2015-04-01

    The goal of this work was to quantitate ester formation between alkyl and aryl boronic acids and vicinal-diols or 1,2-diols in aqueous solution. As used here, 1,2-diols includes polyols with one or more 1,2-diol pairs. Multiple techniques were used including apparent pKa shifts of the boronic acids using UV spectrophotometry (for aryl acids) and titration (for aryl and alkyl acids). Isothermal microcalorimetry was also used, with all reactions being enthalpically favored. For all the acids and 1,2-diols and the conditions studied, evidence only supported 1:1 ester formation. All the esters formed were found to be significantly more acidic, as Lewis acids, by 3-3.5 pKa units than the corresponding nonesterified boronic acid. The equilibrium constants for ester formation increased with increasing number of 1,2-diol pairs but stereochemistry may also play a role as sorbitol with five possible 1,2-diol pairs and five isomers (taking into account the stereochemistry of the alcohol groups) was twice as efficient at ester formation compared with mannitol, also with five possible 1,2-diol pairs but only three isomers. Alkyl boronic acids formed esters to a greater extent than aryl acids. Although some quantitative differences were seen between the various techniques used, rank ordering of the structure/reactivity was consistent. Formulation implications of ester formation between boronic acids and 1,2-diols are discussed.

  2. Modified Mesoporous Silica (SBA–15) with Trithiane as a new effective adsorbent for mercury ions removal from aqueous environment

    PubMed Central

    2014-01-01

    Background Removal of mercury from aqueous environment has been highly regarded in recent years and different methods have been tested for this purpose. One of the most effective ways for mercury ions (Hg+2) removal is the use of modified nano porous compounds. Hence, in this work a new physical modification of mesoporous silica (SBA-15) with 1, 3, 5 (Trithiane) as modifier ligand and its application for the removal of Hg+2 from aqueous environment has been investigated. SBA-15 and Trithiane were synthesized and the presence of ligand in the silica framework was demonstrated by FTIR spectrum. The amounts of Hg+2 in the samples were determined by cold vapor generation high resolution continuum source atomic absorption spectroscopy. Also, the effects of pH, stirring time and weight of modified SBA-15 as three major parameters for effective adsorption of Hg+2 were studied. Results The important parameter for the modification of the adsorbent was Modification ratio between ligand and adsorbent in solution which was 1.5. The results showed that the best Hg+2 removal condition was achieved at pH = 5.0, stirring time 15 min and 15.0 mg of modified adsorbent. Moreover, the maximum percentage removal of Hg+2 and the capacity of adsorbent were 85% and 10.6 mg of Hg+2/g modified SBA-15, respectively. Conclusions To sum up, the present investigation introduced a new modified nano porous compound as an efficient adsorbent for removal of Hg+2 from aqueous environment. PMID:25097760

  3. The Role of Hydrophobic Surfaces in Altering Water-Mediated Peptide-Peptide Interactions in an Aqueous Environment

    SciTech Connect

    Yoo, Soohaeng; Xantheas, Sotiris S

    2011-06-16

    Using Born-Oppenheimer molecular dynamics within the density functional framework, we calculated the effective force acting on water-mediated peptide-peptide interaction between antiparallel β-sheets in an aqueous environment and also in the vicinity of a hydrophobic surface. From the magnitude of the effective force (corresponding to the slope of the free energy as a function of the inter-peptide distance) and its sign (a negative value indicating an effective attraction whereas a positive value an effective repulsion) we can elucidate the fundamental differences of the water-mediated peptide-peptide interactions in those two environments. The computed effective forces indicate that the water-mediated interaction between peptides in an aqueous environment is attractive in the range of inter-peptide distance d=7-8 Å when hydrophobic surfaces are not nearby. Due to the stabilization of the water molecules bridging between the two β-sheets, a free energy barrier exists between the direct and indirect (water-mediated) inter-peptide interactions. However, when the peptides are in the proximity of hydrophobic surfaces, this free energy barrier decreases because the hydrophobic surfaces enhance the inter-peptide attraction by the destabilization and ease-to-libration of the bridging water molecules between them. This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, US Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U.S. Department of Energy.

  4. Unusual red shift of the sensor while detecting the presence of Cd2+ in aqueous environment.

    PubMed

    Sarkar, Santu; Shunmugam, Raja

    2013-08-14

    A norbornene derived 8-hydroxyquinoline (N8HQ) is designed and synthesized. A "turn-on" ratiometric fluorescent response is observed for Cd(2+) in aqueous solution upon binding with N8HQ with a characteristic huge red shift of 164 nm. A lowest detection limit of 1.6 nM of Cd(2+) is achieved in the presence of other heavy metals.

  5. Phyllosilicates in the Mokoia CV carbonaceous chondrite - Evidence for aqueous alteration in an oxidizing environment

    NASA Technical Reports Server (NTRS)

    Tomeoka, Kazushige; Buseck, Peter R.

    1990-01-01

    Most CV chondrites contain little if any phyllosilicate mineralization. A petrographic and transmission electron microscopy study of the Mokoia CV carbonaceous chondrite shows that the matrix, chondrules, aggregates, and inclusions all contain considerable amounts of phyllosilicates. The mineralogy and occurrence of phyllosilicates in Mokoia differ from those in the CI and CM chondrites. The differences suggests that aqueous alteration of the three meteorite groups probably occurred under a variety of conditions.

  6. Unusual red shift of the sensor while detecting the presence of Cd2+ in aqueous environment.

    PubMed

    Sarkar, Santu; Shunmugam, Raja

    2013-08-14

    A norbornene derived 8-hydroxyquinoline (N8HQ) is designed and synthesized. A "turn-on" ratiometric fluorescent response is observed for Cd(2+) in aqueous solution upon binding with N8HQ with a characteristic huge red shift of 164 nm. A lowest detection limit of 1.6 nM of Cd(2+) is achieved in the presence of other heavy metals. PMID:23879449

  7. Evidence for compounds hydrolyzable to amino acids in aqueous extracts of apollo 11 and apollo 12 lunar fines.

    PubMed

    Harada, K; Hare, P E; Windsor, C R; Fox, S W

    1971-07-30

    Hydrolyzates of aqueous extracts of Apollo 11 fines, an Apollo 12 trench sample, and an Apollo 12 surface sample have been analyzed on an ultrasensitive amino acid analyzer. The total content of amino acids recovered ranged from 20 to 70 parts per billion of lunar soil. Amino acids are not recovered by the direct hydrolysis of lunar fines, presumably because of decomposition in the presence of the large excess of lunar mineral. As judged by retention time, glycine is the dominant amino acid found; alanine is secondarily present in each case in the profile. Only a few amino acids have been recorded in each analysis. The pattern is relatively consistent in the samples from the three locations; the pattern from either hydrolyzed or unhydrolyzed extracts differs markedly from that of hydrolyzed or unhydrolyzed handprints. The evidence is not consistent with contamination of the kind expected by many investigators.

  8. Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth.

    PubMed

    Hoda, Numan; Bayram, Edip; Ayranci, Erol

    2006-09-01

    Removal of acid dyes Acid Blue 45, Acid Blue 92, Acid Blue 120 and Acid Blue 129 from aqueous solutions by adsorption onto high area activated carbon cloth (ACC) was investigated. Kinetics of adsorption was followed by in situ UV-spectroscopy and the data were treated according to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. It was found that the adsorption process of these dyes onto ACC follows the pseudo-second-order model. Adsorption isotherms were derived at 25 degrees C on the basis of batch analysis. Isotherm data were treated according to Langmuir and Freundlich models. The fits of experimental data to these equations were examined. PMID:16563617

  9. Amyloid beta(1-42) in aqueous environments: effects of ionic strength and E22Q (Dutch) mutation.

    PubMed

    Bossis, Fabrizio; Palese, Luigi L

    2013-12-01

    Development of extracellular plaques characteristic of Alzheimer's disease is related to aggregation of amyloid peptides. The Aβ-42 peptide is the most aggregation prone species, and some missense mutant forms increase this aggregation ability. Due to its poor solubility as monomer in aqueous solutions, Aβ-42 conformational transitions in water have been largely investigated by molecular dynamics. Here we report an all-atom molecular dynamics analysis of the Aβ-42 peptide in aqueous environment using as starting conformation a structure obtained in an isotropic, low-polarity medium, representing a plausible model for the membrane-bound species. While previous studies commonly show that Aβ-42 is largely unstructured in aqueous solution, here we report that this peptide can adopt partially folded structures. Importance of ionic strength has been also investigated, showing that at physiological ionic strength condition a loop stabilizing electrostatic interaction involving Lys28 builds up. In addition, besides stable α-helix structures, we observe the appearance of 310 helix, similar to what was reported experimentally for the Aβ-40 species. The effect of E22Q (Dutch) mutation in high ionic strength condition has been explored. We show that this mutation has a dramatic impact on the Aβ-42 structure. Instead of a partially folded, but extended, conformation obtained with the wild type, the E22Q assumes a two-helix collapsed one due to the clustering of hydrophobic residues.

  10. Aggregation of TiO2-graphene nanocomposites in aqueous environment: Influence of environmental factors and UV irradiation.

    PubMed

    Hua, Zulin; Zhang, Jianan; Bai, Xue; Ye, Zhengfang; Tang, Zhiqiang; Liang, Lu; Liu, Yuqi

    2016-01-01

    The aggregation kinetics of TiO2-graphene nanocomposites in aqueous solution affected by solution pH, salt types (NaCl, CaCl2) and concentrations of electrolytes, and stability induced by UV irradiation was investigated in this study. The zeta potentials and hydrodynamic diameter of the nanoparticles were used as bases to assess the aggregation behavior, and stability of nanocomposites exposed to UV irradiation was expressed in terms of supernatant concentration. The aggregation of TiO2-graphene nanoparticles in aqueous media followed the colloidal theory. TiO2-graphene nanoparticles were significantly aggregated in the presence of a diavalent cation compared with monovalent cation because the former was more capable of effective charge screening and neutralization. The calculated Hamaker constant of the TiO2-graphene nanocomposites in aqueous solution prepared in the lab was 2.31×10(-20)J. The stability of this composite nanoparticles was between those of pure TiO2 and graphene. A known intensity of UV irradiation was beneficial in the formation of TiO2-graphene nanoparticle aggregates. However, prolonged UV irradiation may stabilize the nanoparticles. These results provided critical information about the colloidal properties of the new TiO2-graphene nanocomposites and were useful in predicting the fate and transport of TiO2-graphene nanocomposites in natural water environments.

  11. All-oxide Raman-active traps for light and matter: probing redox homeostasis model reactions in aqueous environment.

    PubMed

    Alessandri, Ivano; Depero, L E

    2014-04-01

    Core-shell colloidal crystals can act as very efficient traps for light and analytes. Here it is shown that Raman-active probes can be achieved using SiO2-TiO2 core-shell beads. These systems are successfully tested in monitoring of glutathione redox cycle at physiological concentration in aqueous environment, without need of any interfering enhancers. These materials represent a promising alternative to conventional, metal-based SERS probes for investigating chemical and biochemical reactions under real working conditions.

  12. Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111)

    NASA Astrophysics Data System (ADS)

    Montemore, Matthew M.; Andreussi, Oliviero; Medlin, J. Will

    2016-08-01

    Hydrocarbon chains are important intermediates in various aqueous-phase surface processes, such as CO2 electroreduction, aqueous Fischer-Tropsch synthesis, and aqueous phase reforming of biomass-derived molecules. Further, the interaction between water and adsorbed hydrocarbons represents a difficult case for modern computational methods. Here, we explore various methods for calculating the energetics of this interaction within the framework of density functional theory and explore trade-offs between the use of low water coverages, molecular dynamics approaches, and minima hopping for identification of low energy structures. An effective methodology for simulating low temperature processes is provided by using a unit cell in which the vacuum space is filled with water, employing the minima hopping algorithm to search for low-lying minima, and including dispersion (van der Waals) interactions. Using this methodology, we show that a high coverage of adsorbed alkyls is destabilized by the presence of water, while a low coverage of alkyls is stabilized. Solvation has a small effect on the energetics of hydrocarbon chain growth, generally decreasing its favorability at low temperatures. We studied higher temperatures by running molecular dynamics simulations starting at the minima found by the minima hopping algorithm and found that increased temperatures facilitate chain growth. The self-consistent continuum solvation method effectively describes the alkyl-water interaction and is in general agreement with the explicit solvation results in most cases, but care should be taken at high alkyl coverage.

  13. Hydrocarbon adsorption in an aqueous environment: A computational study of alkyls on Cu(111).

    PubMed

    Montemore, Matthew M; Andreussi, Oliviero; Medlin, J Will

    2016-08-21

    Hydrocarbon chains are important intermediates in various aqueous-phase surface processes, such as CO2 electroreduction, aqueous Fischer-Tropsch synthesis, and aqueous phase reforming of biomass-derived molecules. Further, the interaction between water and adsorbed hydrocarbons represents a difficult case for modern computational methods. Here, we explore various methods for calculating the energetics of this interaction within the framework of density functional theory and explore trade-offs between the use of low water coverages, molecular dynamics approaches, and minima hopping for identification of low energy structures. An effective methodology for simulating low temperature processes is provided by using a unit cell in which the vacuum space is filled with water, employing the minima hopping algorithm to search for low-lying minima, and including dispersion (van der Waals) interactions. Using this methodology, we show that a high coverage of adsorbed alkyls is destabilized by the presence of water, while a low coverage of alkyls is stabilized. Solvation has a small effect on the energetics of hydrocarbon chain growth, generally decreasing its favorability at low temperatures. We studied higher temperatures by running molecular dynamics simulations starting at the minima found by the minima hopping algorithm and found that increased temperatures facilitate chain growth. The self-consistent continuum solvation method effectively describes the alkyl-water interaction and is in general agreement with the explicit solvation results in most cases, but care should be taken at high alkyl coverage. PMID:27544118

  14. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  15. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.

    PubMed

    Chang, Myung Chul

    2008-11-01

    Hydroxyapatite (HAp)/gelatin (GEL) nanocomposite was prepared by the solution-precipitation process using Ca(OH)(2) in water and aqueous solution of H(3)PO(4) in GEL. Before the co precipitation process the GEL powders were dissolved in the aqueous phosphoric acid solution for the phosphorylation of GEL molecules. The chemical variation of the phosphorylated GEL macromolecules was investigated by using attenuated total reflection (ATR) measurement. The crystal growth of HAp became bigger with the long-time aging of the GEL molecules in the phosphoric acid solution, and it resulted from the reduction of length scale of the GEL molecules. The degree of the organic-inorganic interaction was decreased because of the degradation of the GEL macromolecules.

  16. Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Łatoszyńska, Anna A.; Żukowska, Grażyna Zofia; Rutkowska, Iwona A.; Taberna, Pierre-Louis; Simon, Patrice; Kulesza, Pawel J.; Wieczorek, Władysław

    2015-01-01

    A mechanically-stable non-aqueous proton-conducting gel polymer electrolyte that is based on methacrylate monomers, is considered here for application in solid-state type supercapacitors. An electrochemical cell using activated carbon as active materials and the new gel polymer electrolyte has been characterized at room temperature using cyclic voltammetry, galvanostatic charge-discharge cycle tests as well as impedance spectroscopy. The use of phosphoric acid ester (instead of phosphoric acid) as a proton donor has led to an increase of both the operation voltage window (up to 1.3 V) and the electrolyte ionic conductivity (on the level of an order of magnitude). The resulting double layer capacitance of the microporous activated carbon was found to be as high as 120 F g-1; even more important, the supercapacitor utilizing non-aqueous proton-conducting gel polymer electrolyte is well-behaved in the wide temperature range (namely, from -40 to 80 °C).

  17. Study of the decomposition pathway of 12-molybdophosphoric acid in aqueous solutions by micro Raman spectroscopy.

    PubMed

    Bajuk-Bogdanović, D; Uskoković-Marković, S; Hercigonja, R; Popa, A; Holclajtner-Antunović, I

    2016-01-15

    Micro Raman spectroscopy was applied to investigate the speciation of heteropoly and isopoly molybdates in 0.05 and 0.005 M aqueous solutions of 12-molybdophosphoric acid at pH values between 1 and 6. For comparative purposes, (31)P NMR spectroscopy was applied too. It is shown that stability of Keggin anion is influenced both by pH and concentration of solution. The Keggin structure is stable in acidic solutions (pH<1.6) while defective Keggin structures are formed with further alkalization (up to pH5.6). Monolacunary anion PMo11O(39)(7-) is the main component in the pH region from 1.6 to 3.4. Further removal of molybdenyl species causes the appearance of other vacant Keggin structures such as PMo9O31(OH)(3)(6-) and PMo6O(25)(9-) at about pH4. At pH5.0, anion PMo6O(25)(9-) is the main species. In solutions with pH greater than 5.0, heteropolymolybdates disappear completely and isopolymolybdates Mo7O(24)(6-) and MoO(4)(2-) are formed in higher amounts. In more diluted solution of 0.005 M, the decomposition scheme of 12-molybdophosphoric acid solution with increasing of pH takes place without observation of significant amounts of Mo7O(24)(6-) species. If alkalinization is performed with 0.5 M instead of 5 M NaOH, there are no significant changes in the Raman spectra of solutions. It is shown that the spectra of evaporated samples may be used for the identification of molecular species in corresponding concentrated solutions. However, Raman spectra of dry residues of more diluted solutions differ from spectra of corresponding solutions due to the reactions performed during the process of drying and cannot be used for unambiguous identification of species in solution. Acidification of 0.05 M solution of Na2MoO4 shows that at pH>5.6, molybdate anion MoO(4)(2-) dominates, while in the pH range between 5.6 and 1, heptamolybdate anion Mo7O(24)(6-) is preferentially formed.

  18. Conductometric and fluorometric studies of sodium dodecyl sulphate in aqueous solution and in the presence of amino acids

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Malik, Nisar Ahmad; Uzair, Sahar; Ali, Maroof

    2014-10-01

    The critical micelle concentration (CMC) of sodium dodecyl sulphate (SDS) in pure water and in the presence of amino acids (0.01, 0.02 and 0.03 mol kg-1), L-valine (Val) and L-leucine (Leu) was determined from conductometric and fluorometric methods using pyrene as luminescence probe. Depression in the CMC at low concentration of amino acids is attributed to the increased hydrophobic-hydrophobic interaction between the non-polar groups of the surfactant, while, at high concentration, amino acids bind strongly with the anion, DS-, head groups of SDS, thereby, delaying the micelle formation, resulting in increased CMC. A pronounced decrease in the CMC, while a marked increase in λ0+, with decrease in the solvated radius (rather than crystal radius) of the counterions is observed. Negative values of ΔG0m and ΔH0m indicate that micellisation of SDS in the presence of amino acids is thermodynamically spontaneous and exothermic. Highest negative value of ΔH0m in 0.01 m Val, with lowest CMC value, shows that 0.01 m aqueous Val is the most suitable medium favouring the micellisation of SDS. Decrease in I1/I3 from Val to Leu confirms the relative hydrophobicity of two amino acids. The observed values of the packing parameter, P, of SDS in water and in aqueous amino acids suggest that micelles formed are spherical in nature.

  19. Analysis of. gamma. -radiolysis products of aqueous solutions of esters of aliphatic amino acids by the PMR method

    SciTech Connect

    Panin, V.I.; Sidorov, P.S.; Usatyi, A.F.

    1987-09-01

    The ..gamma..-radiolysis of aqueous solutions of methyl esters of aliphatic amino acids and peptides was investigated by the method of nuclear (proton) magnetic resonance (PMR). The resonance lines appearing in the PMR spectra of the irradiated systems were identified, and a conclusion was drawn about the molecular structure of the radiolysis products. The kinetics of the accumulation of radiolysis products was studied, and the values of their radiation yields were estimated.

  20. Polymer materials and component evaluation in acidic-radiation environments

    NASA Astrophysics Data System (ADS)

    Celina, M.; Gillen, K. T.; Malone, G. M.; Clough, R. L.; Nelson, W. H.

    2001-07-01

    Polymeric materials used for cable/wire insulation, electrical connectors, O-rings, seals, and in critical components such as motors, level switches and resistive thermo-devices were evaluated under accelerated degradation conditions in combined radiation-oxidative elevated-temperature acidic-vapor (nitric/oxalic) environments relevant to conditions in isotope processing facilities. Experiments included the assessment of individual materials such as PEEK, polyimides, polyolefin based cable insulation, EPDM rubbers, various epoxy systems, commercial caulking materials as well as some functional testing of components. We discuss how to conduct laboratory experiments to simulate such complex hostile environments, describe some degradation effects encountered, and evaluate the impact on appropriate material and component selection.

  1. Fatty acid trophic markers in the pelagic marine environment.

    PubMed

    Dalsgaard, Johanne; St John, Michael; Kattner, Gerhard; Müller-Navarra, Dörthe; Hagen, Wilhelm

    2003-01-01

    Fatty acids have been used as qualitative markers to trace or confirm predator-prey relationships in the marine environment for more than thirty years. More recently, they have also been used to identify key processes impacting the dynamics of some of the world's major ecosystems. The fatty acid trophic marker (FATM) concept is based on the observation that marine primary producers lay down certain fatty acid patterns that may be transferred conservatively to, and hence can be recognized in, primary consumers. To identify these fatty acid patterns the literature was surveyed and a partial least squares (PLS) regression analysis of the data was performed, validating the specificity of particular microalgal FATM. Microalgal group specific FATM have been traced in various primary consumers, particularly in herbivorous calanoid copepods, which accumulate large lipid reserves, and which dominate the zooplankton biomass in high latitude ecosystems. At higher trophic levels these markers of herbivory are obscured as the degree of carnivory increases, and as the fatty acids originate from a variety of dietary sources. Such differences are highlighted in a PLS regression analysis of fatty acid and fatty alcohol compositional data (the components of wax esters accumulated by many marine organisms) of key Arctic and Antarctic herbivorous, omnivorous and carnivorous copepod species. The analysis emphasizes how calanoid copepods separate from other copepods not only by their content of microalgal group specific FATM, but also by their large content of long-chain monounsaturated fatty acids and alcohols. These monounsaturates have been used to trace and resolve food web relationships in, for example, hyperiid amphipods, euphausiids and fish, which may consume large numbers of calanoid copepods. Results like these are extremely valuable for enabling the discrimination of specific prey species utilized by higher trophic level omnivores and carnivores without the employment of

  2. Fatty acid trophic markers in the pelagic marine environment.

    PubMed

    Dalsgaard, Johanne; St John, Michael; Kattner, Gerhard; Müller-Navarra, Dörthe; Hagen, Wilhelm

    2003-01-01

    Fatty acids have been used as qualitative markers to trace or confirm predator-prey relationships in the marine environment for more than thirty years. More recently, they have also been used to identify key processes impacting the dynamics of some of the world's major ecosystems. The fatty acid trophic marker (FATM) concept is based on the observation that marine primary producers lay down certain fatty acid patterns that may be transferred conservatively to, and hence can be recognized in, primary consumers. To identify these fatty acid patterns the literature was surveyed and a partial least squares (PLS) regression analysis of the data was performed, validating the specificity of particular microalgal FATM. Microalgal group specific FATM have been traced in various primary consumers, particularly in herbivorous calanoid copepods, which accumulate large lipid reserves, and which dominate the zooplankton biomass in high latitude ecosystems. At higher trophic levels these markers of herbivory are obscured as the degree of carnivory increases, and as the fatty acids originate from a variety of dietary sources. Such differences are highlighted in a PLS regression analysis of fatty acid and fatty alcohol compositional data (the components of wax esters accumulated by many marine organisms) of key Arctic and Antarctic herbivorous, omnivorous and carnivorous copepod species. The analysis emphasizes how calanoid copepods separate from other copepods not only by their content of microalgal group specific FATM, but also by their large content of long-chain monounsaturated fatty acids and alcohols. These monounsaturates have been used to trace and resolve food web relationships in, for example, hyperiid amphipods, euphausiids and fish, which may consume large numbers of calanoid copepods. Results like these are extremely valuable for enabling the discrimination of specific prey species utilized by higher trophic level omnivores and carnivores without the employment of

  3. Effect of intrajejunal acidity on lipid digestion and aqueous solubilisation of bile acids and lipids in health, using a new simple method of lipase inactivation.

    PubMed Central

    Zentler-Munro, P L; Fine, D R; Fitzpatrick, W J; Northfield, T C

    1984-01-01

    We have investigated whether acid-mediated bile acid precipitation, pancreatic enzyme inactivation, and fatty acid partitioning occur in health when intraluminal pH falls below 5. In order to assess lipolysis and aqueous solubilisation of lipid, we first developed a new technique for inactivating lipase in jejunal aspirate (acid inactivation), and showed it to be more effective and simpler than the established technique (heat inactivation). We then studied 14 healthy subjects, aspirating jejunal content for three hours after a liquid meal, and pooling according to pH. Eighteen per cent of the total aspirate was collected at pH less than 5 compared with 56% at pH greater than 6 (p less than 0.01). Forty eight per cent of the bile acids were precipitated at pH less than 5 compared with 18% at pH greater than 6 (p less than 0.01), leading to a reduction in aqueous phase bile acid concentration at low pH (2.1 mmol/l at pH less than 5 vs 5.8 mmol/l at pH greater than 6, p less than 0.01). Lipase activity was reduced at low pH (133 IU/l at pH less than 5 vs 182 IU/l at pH greater than 6, p less than 0.01), leading to reduced lipolysis at low pH (14% at pH less than 5 vs 32% at pH greater than 6, p less than 0.01). Aqueous phase lipid concentration was reduced at low pH (3.5 mmol/l at pH less than 5 vs 12.5 mmol/l at pH greater than 6, p less than 0.01). This reduction was less dependent on bile acid precipitation than on lipase inactivation and fatty acid partitioning. We conclude that intraluminal acidity influences aqueous solubilisation of bile acids and lipid in health. PMID:6714793

  4. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    NASA Astrophysics Data System (ADS)

    Yang, Guide; Tang, Lin; Lei, Xiaoxia; Zeng, Guangming; Cai, Ye; Wei, Xue; Zhou, Yaoyu; Li, Sisi; Fang, Yan; Zhang, Yi

    2014-02-01

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe3O4/CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe3O4/CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe3O4/CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe3O4/CS was a promising adsorbent in environment pollution cleanup.

  5. The Kinetic Aspects of the Interaction of Nitrite Ions with Sulfanilic Acid and 1-Naphthylamine in Aqueous and Micellar Media

    NASA Astrophysics Data System (ADS)

    Korneeva, O. I.; Chernova, R. K.; Doronin, S. Yu.

    2008-04-01

    The kinetics of the reaction of nitrite ions with sulfanilic acid and 1-naphthylamine in aqueous and micellar (sodium dodecyl sulfate) media was studied step-by-step. The diazotization of sulfanilic acid with the nitrite ion was found to occur virtually instantaneously. Anionic surfactant micelles did not influence the rate of this reaction. The calculated effective rate constants and activation energies of the azo coupling reaction between synthesized sulfophenyldiazonium and 1-naphthylamine showed that the passage from water into the micellar medium decelerated the reaction. It was found that sodium dodecyl sulfate micelles played the role of a reagent separator.

  6. On the selective growth of titania polymorphs in acidic aqueous medium

    SciTech Connect

    Li, Haoguang; Afanasiev, Pavel

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Mutual influence of peptizing and anions addition of titania hydrothermal growth was studied. Black-Right-Pointing-Pointer Sulfate and chloride control TiO{sub 2} phase or particles shape depending on the order of introduction. Black-Right-Pointing-Pointer A rationale of difference between sulfate and chloride effect was provided. Black-Right-Pointing-Pointer Ground state DFT and semi-empirical calculations of Ti species support the conclusions. -- Abstract: The influence of preparation conditions on the phase composition and morphology of titania was studied for the solids synthesized by hydrothermal treatment (HT) and peptizing of hydrous TiO{sub 2} sols in acidic medium. Mutual influence of peptizing and of additive anions (SO{sub 4}{sup 2-}, Cl{sup -}) on the nature of obtained polymorphs was for the first time systematically studied and coherently explained. The solids were characterized by XRD, Raman spectroscopy, and transmission electron microscopy. It was found that peptizing step preceding HT and the presence of anions play a crucial role for the selective formation of TiO{sub 2} anatase or rutile polymorphs. Low temperature peptizing leads to acicular rutile particles, whereas HT produces highly dispersed anatase. However if the HT was preceded by peptizing step, rutile was obtained in most cases. The influence of additives strongly depends on the moment of their introduction. Sulfate and chloride species can act as phase growth controllers, or as morphology modifiers. Sulfate hindered formation of rutile and favored anatase al low temperatures, but for already formed rutile seed, sulfate acted only as a shape controller. By contrast, chloride showed a strong tendency to promote rutile growth, whatever the conditions. A qualitative model was proposed explaining the effects observed, supported by ground state DFT and semi-empirical calculations of the aqueous Ti species.

  7. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.

  8. J-aggregate formation of a water-soluble porphyrin in acidic aqueous media

    NASA Astrophysics Data System (ADS)

    Ohno, Osamu; Kaizu, Youkoh; Kobayashi, Hiroshi

    1993-09-01

    J aggregate of a water-soluble porphyrin, 5,10,15,20-tetra(4-sulfophenyl)porphyrin (H2TPPS44-), formed in acidified aqueous solutions, exhibits sharp and intense absorption bands at 491 and 707 nm. These characteristic transitions, J bands, are of linear oscillators polarized in the long axis of rodlike aggregate. The molecules in the aggregate stack so as to lift the degeneracy of the porphyrin planar oscillator excited states. Measurements of flow-induced linear dichroism, circular dichroism, magnetic circular dichroism, as well as polarized fluorescence excitation spectra provide evidence not only of linear oscillator character of the intense J band at 491 nm, but also of presence of another diffuse absorption band around at 420 nm polarized in the short axis of the aggregate, which is the counterpart of the 491 nm band of porphyrin Soret origin. Extrinsic circular dichroism is induced upon addition of L-tartaric acid or by mechanical swirling flow in the period of aggregate growth. Resonance Raman spectrum of the aggregate is rather similar to that of the monomeric diacid except the polarization. The observed shifts of Raman peaks to lower frequency are ascribed to a deformation of porphyrin moiety and/or hydrophobic interaction between component molecules in the aggregate. The sharp and intense J bands polarized in the long axis of aggregate cannot be well described without taking into account the participation of interporphyrin charge resonance excited states, whereas the broadbands polarized in the short axis are exclusively ascribed to exciton resonance excited states. The porphyrin J band is characterized as sustaining an exchange narrowing by fast migration of excitation over the whole system of chromophores in a linear array of the porphyrin planar oscillators in slipped face-to-face stacking.

  9. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. PMID:26196714

  10. Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders.

    PubMed

    Zhai, Xu; Chen, Zhonglin; Zhao, Shuqing; Wang, He; Yang, Lei

    2010-01-01

    Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage, ozone dosage, solution pH and tert-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA. Density functional theory (DFT) was adopted to explore the mechanism of generating hydroxyl radical (*OH) on the ZnO surface. The results showed that adsorption and ozonation processes were not effective for DCAA removal, and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation, which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min. Under the same experimental conditions, the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L. The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93, 6.88, and 10. With increasing the concentration of t-BuOH from 10 to 200 mg/L, the degradation of DCAA was significantly inhibited in the process of catalytic ozonation, indicating that ZnO catalytic ozonation followed *OH reaction mechanism. Based on the experimental results and DFT analysis, it is deduced that the generation of *OH on the ZnO surface is ascribed to the adsorption of molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface. It is also concluded that ZnO may be an effective catalyst for DCAA removal, which could promote the formation of *OH derived from the catalytic decomposition of ozone. PMID:21235181

  11. Long-term aging of Ag/a-C:H:O nanocomposite coatings in air and in aqueous environment

    NASA Astrophysics Data System (ADS)

    Drábik, Martin; Pešička, Josef; Biederman, Hynek; Hegemann, Dirk

    2015-04-01

    Nanocomposite coatings of silver particles embedded in a plasma polymer matrix possess interesting properties depending on their microstructure. The film microstructure is affected among others also by the RF power supplied during the deposition, as shown by transmission electron microscopy. The optical properties are characterized by UV-vis-NIR spectroscopy. An anomalous optical absorption peak from the Ag nanoparticles is observed and related to the microstructure of the nanocomposite films. Furthermore, a long-term aging of the coatings is studied in-depth in ambient air and in aqueous environments. It is shown that the studied films are not entirely stable. The deposition conditions and the microstructure of the films affect the processes taking place during their aging in both environments.

  12. Acid gas treating by aqueous alkanolamines. Annual report, January-December 1993

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Ashour, S.

    1993-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far, density, viscosity, gas diffusivity, gas solubility, surface tension, and amine solution vapor pressure have been measured for aqueous MDEA, DEA, and MDEA/DEA mixtures over the temperature range 20 to 100 deg. C and for concentrations up to 50 weight %. A mathematical model, based on the penetration theory, for the simultaneous absorption (desorption) of CO2 and H2S into (from) aqueous solutions of MDEA and DEA has been developed.

  13. Boronic acid-containing aminopyridine- and aminopyrimidinecarboxamide CXCR1/2 antagonists: Optimization of aqueous solubility and oral bioavailability.

    PubMed

    Schuler, Aaron D; Engles, Courtney A; Maeda, Dean Y; Quinn, Mark T; Kirpotina, Liliya N; Wicomb, Winston N; Mason, S Nicholas; Auten, Richard L; Zebala, John A

    2015-09-15

    The chemokine receptors CXCR1 and CXCR2 are important pharmaceutical targets due to their key roles in inflammatory diseases and cancer progression. We have previously identified 2-[5-(4-fluoro-phenylcarbamoyl)-pyridin-2-ylsulfanylmethyl]-phenylboronic acid (SX-517) and 6-(2-boronic acid-5-trifluoromethoxy-benzylsulfanyl)-N-(4-fluoro-phenyl)-nicotinamide (SX-576) as potent non-competitive boronic acid-containing CXCR1/2 antagonists. Herein we report the synthesis and evaluation of aminopyridine and aminopyrimidine analogs of SX-517 and SX-576, identifying (2-{(benzyl)[(5-boronic acid-2-pyridyl)methyl]amino}-5-pyrimidinyl)(4-fluorophenylamino)formaldehyde as a potent chemokine antagonist with improved aqueous solubility and oral bioavailability.

  14. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology.

    PubMed

    Makris, Dimitris P; Passalidi, Vassiliki; Kallithraka, Stamatina; Mourtzinos, Ioannis

    2016-01-01

    Grape pomace is a food industry waste containing a high burden of antioxidant polyphenols and several methodologies have been developed for their efficient extraction. However, a sustainable and environmentally friendly process should involve recovery means composed of benign, non-toxic solvents, such as tartaric acid and glycerol, which are natural food constituents. In this line, this study examined the extraction of polyphenols using aqueous tartaric acid/glycerol solutions. The aim was to assess the role of acid and glycerol concentration in the extraction yield, employing a Box-Behnken experimental design and response surface methodology. The results showed that solutions containing only glycerol (20%, w/v) are more suitable for retrieving polyphenols, flavonoids, and pigments from grape pomace, while tartaric acid exerted a negative effect in this regard, when tested at concentrations up to 2% (w/v).

  15. In situ decarboxylation of acetic and formic acids in aqueous inclusions as a possible way to produce excess CH4

    NASA Astrophysics Data System (ADS)

    Ong, Anthony; Pironon, Jacques; Robert, Pascal; Dubessy, Jean; Caumon, Marie-Camille; Randi, Aurélien; Chailan, Olivier; Girard, Jean-Pierre

    2013-04-01

    Accurate reconstruction of diagenetic P-T conditions in petroleum reservoirs from fluid inclusion data relies on valid measurements of methane concentration in aqueous inclusions. Techniques have been developed (Raman spectrometry) to provide sufficiently accurate data, assuming measured methane concentration has not been modified after aqueous inclusion entrapment. In petroleum reservoirs, acetic (CH3COOH) and formic (HCOOH) acids are the most commonly reported organic acids, and the concentration of the total organic acids can be as high as 10,000 ppm at temperature below 120°C. This study investigates the likelihood that organic acids derived from petroleum fluids and dissolved in formation water might suffer decarboxylation upon post-entrapment heating within the fluid inclusion chamber upon post-entrapment heating, thereby generating excess CH4 in the inclusions. Four different experiments were conducted in Fused Silica Capillary Capsules (FSCCs), mimicking fluid inclusions. The capsules were loaded with acetic (CH3COOH) or formic (HCOOH) acid solution and were heated to 250°C for short durations (< 72hrs) in closed system conditions, with or without applying a fixed PH2. Reaction products were characterized by Raman and FT-IR spectrometry. The beginning of the decarboxylation of acetic acid is reached in 32 h at 250°C, with production of CH4 and CO2. Complete decarboxylation of formic acid is reached in 5 h at 250°C, with production of CO2, CO and H2. The lack of CH4 production in experiments with formic acid may be attributed to the relatively short duration of the experiments and/or the loss of H2 through the FSCC by diffusion during the experiment. Further experiments with a longer heating duration should be performed to assess the possibility of reducing the CO2 into CH4 from the formic acid. 2) The injection of H2 in the FSCC as a way to promote CO2 reduction did not promote decarboxylation in the duration of our experiment. These results suggest

  16. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  17. Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag.

    PubMed

    Oh, Chamteut; Rhee, Sungsu; Oh, Myounghak; Park, Junboum

    2012-04-30

    This study focused on the environmental risk of steel making slag itself, arsenic removal mechanism and re-leaching possibility of arsenic to aqueous state after the adsorption. The purpose of the study is to promote the use of steel making slag as a low-cost adsorbent for arsenic in aqueous system. Calcium was easily dissolved out from the slag and become the dominant substance in the leachate. Some of the calcium could form amorphous calcium carbonate in alkaline condition, and arsenic in the aqueous solution would be removed by being co-precipitated with or adsorbed onto the amorphous calcium carbonate. Most of the amorphous calcium carbonate containing arsenic would be bound to amorphous iron oxide of the slag. When the slag was used as an adsorbent for arsenic removal, a little amount of toxic chemicals were leached from the slag itself under pH 0.8 to 13.6. Also, 70-80% of arsenic laden on the slag was bound to amorphous iron oxide which would not easily desorb unless given a reducing and complexing condition. Showing 95-100% removal efficiency near initial pH 2, the slag, therefore, could be used as an appropriate adsorbent for eliminating arsenic in acidic aqueous solution.

  18. A Simple Purification of Indole-3-Acetic Acid and Abscisic Acid for GC-SIM-MS Analysis by Microfiltration of Aqueous Samples through Nylon

    PubMed Central

    Dunlap, James R.; Guinn, Gene

    1989-01-01

    A simple procedure was developed for the partial purification of plant tissue samples to be analyzed simultaneously for indole-3-acetic acid (IAA) and abscisic acid (ABA). The procedure relies on removal of contaminants by filtration through nylon and partitioning into dichloromethane. This procedure successfully purified both IAA and ABA from muskmelon, cotton, and broccoli tissue. Twenty individual samples can be purified and methylated in 8 h for analysis of free IAA and ABA with gas chromatography-selected ion monitoring-mass spectrometry. The use of microfiltration of aqueous samples through nylon offers new opportunities for improving the efficiency of existing sample purification procedures. PMID:16666735

  19. Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction.

    PubMed

    Singla, Preeti; Riyaz, Mohd; Singhal, Sonal; Goel, Neetu

    2016-02-21

    Understanding interactions of biomolecules with nanomaterials at the molecular level is crucial to design new materials for practical use. In the present study, adsorption of three distinct types of amino acids, namely, valine, arginine and aspartic acid, over the surface of structurally analogous but chemically different graphene and BN nanosheets has been explored within the formalism of DFT. The explicit dispersion correction incorporated in the computational methodology improves the accuracy of the results by accounting for long range van der Waals interactions and is essential for agreement with experimental values. The real biological environment has been mimicked by re-optimizing all the model structures in an aqueous medium. The study provides ample evidence in terms of adsorption energy, solvation energy, separation distance and charge analysis to conclude that both the nano-surfaces adsorb the amino acids with release of energy and there are no bonded interactions between the two. The polarity of the BN nanosheet provides it an edge over the graphene surface to have more affinity towards amino acids.

  20. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes.

    PubMed

    Misra, Chitra Seetharam; Appukuttan, Deepti; Kantamreddi, Venkata Siva Satyanarayana; Rao, Amara S; Apte, Shree Kumar

    2012-01-01

    The stability and superior metal bioremediation ability of genetically engineered Deinococcus radiodurans cells, expressing a non-specific acid phosphatase, PhoN in high radiation environment has already been established. The lyophilized recombinant DrPhoN cells retained PhoN activity and uranium precipitation ability. Such cells also displayed an extended shelf life of 6 months during storage at room temperature and showed surface associated precipitation of uranium as well as other metals like cadmium. Lyophilized cells, immobilized in polyacrylamide gels could be used for uranium bioprecipitation in a flow through system resulting in 70% removal from 1mM input uranium solution and a loading of 1 g uranium/g dry weight cells. Compared with a batch process which achieved a loading of 5.7 g uranium/g biomass, the efficiency of the column process was low due to clogging of the column by the precipitate.

  1. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control.

    PubMed

    Rodionova, Oxana Ye; Tikhomirova, Tatyana I; Pomerantsev, Alexey L

    2015-04-15

    Noninvasive analytical control is of special interest for the complicated and hazardous production processes. On-line monitoring provides a unique opportunity to determine critical concentrations rapidly and without serious risks to operating personnel and the environment. Models for quantitative determination of concentrations of Rare Earth Elements in complex mixtures in nitric acid serve for these purposes. Here, the feasibility of simultaneous determination of cerium, praseodymium, and neodymium using the whole UV-vis spectroscopic range, together with chemometric data processing, is studied. The predictability of two chemometric techniques, partial least squares regression and correlation constrained multivariate curve resolution-alternating least squares are compared. Models' performances are analyzed in out-of-control cases.

  2. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control.

    PubMed

    Rodionova, Oxana Ye; Tikhomirova, Tatyana I; Pomerantsev, Alexey L

    2015-04-15

    Noninvasive analytical control is of special interest for the complicated and hazardous production processes. On-line monitoring provides a unique opportunity to determine critical concentrations rapidly and without serious risks to operating personnel and the environment. Models for quantitative determination of concentrations of Rare Earth Elements in complex mixtures in nitric acid serve for these purposes. Here, the feasibility of simultaneous determination of cerium, praseodymium, and neodymium using the whole UV-vis spectroscopic range, together with chemometric data processing, is studied. The predictability of two chemometric techniques, partial least squares regression and correlation constrained multivariate curve resolution-alternating least squares are compared. Models' performances are analyzed in out-of-control cases. PMID:25818140

  3. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes.

    PubMed

    Misra, Chitra Seetharam; Appukuttan, Deepti; Kantamreddi, Venkata Siva Satyanarayana; Rao, Amara S; Apte, Shree Kumar

    2012-01-01

    The stability and superior metal bioremediation ability of genetically engineered Deinococcus radiodurans cells, expressing a non-specific acid phosphatase, PhoN in high radiation environment has already been established. The lyophilized recombinant DrPhoN cells retained PhoN activity and uranium precipitation ability. Such cells also displayed an extended shelf life of 6 months during storage at room temperature and showed surface associated precipitation of uranium as well as other metals like cadmium. Lyophilized cells, immobilized in polyacrylamide gels could be used for uranium bioprecipitation in a flow through system resulting in 70% removal from 1mM input uranium solution and a loading of 1 g uranium/g dry weight cells. Compared with a batch process which achieved a loading of 5.7 g uranium/g biomass, the efficiency of the column process was low due to clogging of the column by the precipitate. PMID:22179144

  4. Surface Changes and Impurity Release Kinetics of Titanium Dioxide Nanoparticles in Aqueous Environment

    EPA Science Inventory

    Previous studies have found the significant role of impurities (i.e., silicon, phosphorus) in the aggregation and sedimentation of TiO2 nanoparticles in water environment. However, it is not understood whether dissolution of the impurities potentially impacts the environment or t...

  5. Study of monoprotic acid-base equilibria in aqueous micellar solutions of nonionic surfactants using spectrophotometry and chemometrics.

    PubMed

    Babamoradi, Hamid; Abdollahi, Hamid

    2015-10-01

    Many studies have shown the distribution of solutes between aqueous phase and micellar pseudo-phase in aqueous micellar solutions. However, spectrophotometric studies of acid-base equilibria in these media do not confirm such distribution because of the collinearity between concentrations of chemical species in the two phases. The collinearity causes the number of detected species to be equal to the number of species in a homogenous solution that automatically misinterpreted as homogeneity of micellar solutions, therefore the collinearity is often neglected. This interpretation is in contradiction to the distribution theory in micellar media that must be avoided. Acid-base equilibrium of an indicator was studied in aqueous micellar solutions of a nonionic surfactant to address the collinearity using UV/Visible spectrophotometry. Simultaneous analysis (matrix augmentation) of the equilibrium and solvation data was applied to eliminate the collinearity from the equilibrium data. A model was then suggested for the equilibrium that was fitted to the augmented data to estimate distribution coefficients of the species between the two phases. Moreover, complete resolution of concentration and spectral profiles of species in each phase was achieved.

  6. Thermodynamic studies of ionic hydration and interactions for amino acid ionic liquids in aqueous solutions at 298.15 K.

    PubMed

    Dagade, Dilip H; Madkar, Kavita R; Shinde, Sandeep P; Barge, Seema S

    2013-01-31

    Amino acid ionic liquids are a special class of ionic liquids due to their unique acid-base behavior, biological significance, and applications in different fields such as templates in synthetic chemistry, stabilizers for biological macromolecules, etc. The physicochemical properties of these ionic liquids can easily be altered by making the different combinations of amino acids as anion along with possible cation modification which makes amino acid ionic liquids more suitable to understand the different kinds of molecular and ionic interactions with sufficient depth so that they can provide fruitful information for a molecular level understanding of more complicated biological processes. In this context, volumetric and osmotic coefficient measurements for aqueous solutions containing 1-ethyl-3-methylimidazolium ([Emim]) based amino acid ionic liquids of glycine, alanine, valine, leucine, and isoleucine are reported at 298.15 K. From experimental osmotic coefficient data, mean molal activity coefficients of ionic liquids were estimated and analyzed using the Debye-Hückel and Pitzer models. The hydration numbers of ionic liquids in aqueous solutions were obtained using activity data. Pitzer ion interaction parameters are estimated and compared with other electrolytes reported in the literature. The nonelectrolyte contribution to the aqueous solutions containing ionic liquids was studied by calculating the osmotic second virial coefficient through an application of the McMillan-Mayer theory of solution. It has been found that the second osmotic virial coefficient which includes volume effects correlates linearly with the Pitzer ion interaction parameter estimated independently from osmotic data as well as the hydrophobicity of ionic liquids. The enthalpy-entropy compensation effect, explained using the Starikov-Nordén model of enthalpy-entropy compensation, and partial molar entropy analysis for aqueous [Emim][Gly] solutions are made by using experimental Gibb

  7. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars

    USGS Publications Warehouse

    Squyres, S. W.; Grotzinger, J.P.; Arvidson, R. E.; Bell, J.F.; Calvin, W.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Farrand, W. H.; Herkenhoff, K. E.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; McLennan, S.M.; McSween, H.Y.; Morris, R.V.; Rice, J. W.; Rieder, R.; Soderblom, L.A.

    2004-01-01

    Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.

  8. A potentiodynamic study of aluminum-lithium alloys in an aqueous sodium chloride environment

    NASA Technical Reports Server (NTRS)

    Tsao, C.-H. T.; Pizzo, P. P.

    1985-01-01

    The characteristics of the potentiodynamic curves for Al-Li alloys in 3.5 percent NaCl aqueous solution are explained and the electrochemical parameters of the potentiodynamic technique are correlated to observed pitting and intergranular cracking behavior. It is shown that the oxygen content of the sodium chloride electrolyte plays an important role in the electrochemical behavior of Al-Li alloys. The potentiodynamic behavior of the alloys is found to be insensitive to variation in compositional content and heat treatment, both of which affect the stress-corrosion behavior. Stringer oxide particle attack and random pitting are observed. It is shown that alternate-immersion exposure prior to potentiodynamic polarization may offer a means of assessing susceptibility to stress-corrosion cracking.

  9. Biosensing for the Environment and Defence: Aqueous Uranyl Detection Using Bacterial Surface Layer Proteins

    PubMed Central

    Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin

    2010-01-01

    The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904

  10. In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars.

    PubMed

    Squyres, S W; Grotzinger, J P; Arvidson, R E; Bell, J F; Calvin, W; Christensen, P R; Clark, B C; Crisp, J A; Farrand, W H; Herkenhoff, K E; Johnson, J R; Klingelhöfer, G; Knoll, A H; McLennan, S M; McSween, H Y; Morris, R V; Rice, J W; Rieder, R; Soderblom, L A

    2004-12-01

    Sedimentary rocks at Eagle crater in Meridiani Planum are composed of fine-grained siliciclastic materials derived from weathering of basaltic rocks, sulfate minerals (including magnesium sulfate and jarosite) that constitute several tens of percent of the rock by weight, and hematite. Cross-stratification observed in rock outcrops indicates eolian and aqueous transport. Diagenetic features include hematite-rich concretions and crystal-mold vugs. We interpret the rocks to be a mixture of chemical and siliciclastic sediments with a complex diagenetic history. The environmental conditions that they record include episodic inundation by shallow surface water, evaporation, and desiccation. The geologic record at Meridiani Planum suggests that conditions were suitable for biological activity for a period of time in martian history.

  11. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  12. Separation of clavulanic acid from fermented broth of amino acids by an aqueous two-phase system and ion-exchange adsorption.

    PubMed

    da Silva, Clovis Sacardo; Cuel, Maressa Fabiano; Barreto, Verônica Orlandin; Kwong, Wu Hong; Hokka, Carlos O; Barboza, M

    2012-02-15

    The clavulanic acid is a substance which inhibits the β-lactamases used with penicillins for therapeutic treatment. After the fermentation, by-products of low molecular weight such as amino acids lysine, histidine, proline and tyrosine are present in the fermented broth. To remove these impurities the techniques of extraction by an aqueous two-phase system of 17% polyethylene glycol molecular weight 600 and 15% potassium phosphate were used for a partial purification. A subsequent ion-exchange adsorption was used for the recuperation of the clavulanic acid of the top phase and purification getting a concentration factor of 2 and purification of 100% in relation to the amino acids lysine, histidine, proline and tyrosine.

  13. The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

    SciTech Connect

    James, L.A.; Van Der Sluys, W.A.

    1996-01-01

    The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ``critical`` concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors.

  14. Multi-Scale Studies of Transport and Adsorption Phenomena of Cement-based Materials in Aqueous and Saline Environment

    NASA Astrophysics Data System (ADS)

    Yoon, Se Yoon

    The transport and adsorption phenomena in cement-based materials are the most important processes in the durability of concrete structures or nuclear waste containers, as they are precursors to a number of deterioration processes such as chloride-induced corrosion, sulfate attack, carbonation, etc. Despite this importance, our understanding of these processes remains limited because the pore structure and composition of concrete are complex. In addition, the range of the pore sizes, from nanometers to millimeters, requires the multi-scale modeling of the transport and adsorption processes. Among the various environments that cement-based materials are exposed to, aqueous and saline environments represent the most common types. Therefore, this dissertation investigates the adsorption and transport phenomena of cement-based materials exposed to an aqueous and saline environment from atomic to macro-scales using different arrays of novel spectroscopic techniques and simulation methods, such as scanning transmission X-ray microscopy (STXM), X-ray absorption near edge structure (XANES), molecular dynamics (MD), and finite element method (FEM). The structure and transport of water molecules through interlayer spacing of tobermorite was investigated using MD simulations because the interlayer water of calcium silicate hydrate (C-S-H) gel influences various material properties of concrete. The adsorption processes of cementitious phases interacting with sodium and chloride ions at the nano-scale were identified using STXM and XANES measurements. A mathematical model and FEM procedure were developed to identify the effect of surface treatments at macro-scale on ionic transport phenomena of surface-treated concrete. Finally, this dissertation introduced a new material, calcined layered double hydroxide (CLDH), to prevent chloride-induced deterioration.

  15. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P. PMID:26367705

  16. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  17. Free energy surface for Brønsted acid-catalyzed glucose ring-opening in aqueous solution.

    PubMed

    Qian, Xianghong

    2013-10-01

    Car-Parrinello-based molecular dynamics coupled with metadynamics simulations were used to determine the mechanism and associated free energy surface for opening the ring structure of cyclic glucopyranose in acidic aqueous solutions. The ring-opening process is initiated by the protonation of the ring oxygen atom and the breakage of the C1-O5 bond. The barrier for this process is about 25 kcal/mol, in good agreement with experimental measurements. Moreover, the glucose cyclic conformation is found to be more stable than the open chain form. The barrier for proton-catalyzed ring-opening in aqueous solution appears to be largely solvent induced due to the high affinity of water molecules for protons. PMID:23992399

  18. in situ formation of rGO quantum dots during GO reduction via interaction with citric acid in aqueous medium

    NASA Astrophysics Data System (ADS)

    Ortega-Amaya, R.; Matsumoto, Y.; Flores-Conde, A.; Pérez-Guzmán, M. A.; Ortega-López, M.

    2016-10-01

    Chemical methods represent an economical approach to the mass production of graphene. Their main drawback is the use of environmentally harmful reagents. This work describes a simple, green method to prepare reduced graphene oxide (rGO) sheets and rGO quantum dots (rGOQD) in a single step using citric acid (CA) as the reductant in aqueous medium at room temperature. The reduction level of the nanocomposite obtained depends strongly on the processing time; the sample treated for 24 h demonstrate significant reduction. It is found that CA not only reduces GO but also functionalizes it to produce well-stabilized rGO aqueous dispersions. Additionally, a mechanism for the reduction and functionalization of GO by CA is proposed.

  19. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media.

    PubMed

    Horikoshi, Satoshi; Sato, Susumu; Abe, Masahiko; Serpone, Nick

    2011-09-01

    A simplified and energy-saving integrated device consisting of a microwave applicator and an ultrasonic homogenizer has been fabricated to generate liquid plasma in a medium possessing high dielectric factors, for example water. The microwave waveguide and the ultrasonic transducer were interconnected through a tungsten/titanium alloy stick acting both as the microwave antenna and as the horn of the ultrasonic homogenizer. Both microwaves and ultrasonic waves are simultaneously transmitted to the aqueous media through the tungsten tip of the antenna. The microwave discharge liquid plasma was easily generated in solution during ultrasonic cavitation. The simple device was evaluated by carrying out the degradation of the perfluorooctanoic acid (PFOA), a system highly recalcitrant to degradation by conventional advanced oxidation processes (AOPs). PFOA is 59% degraded in an aqueous medium after only 90 s of irradiation by the plasma. Intermediates were identified by electrospray mass spectral techniques in the negative ion mode.

  20. Amino acid composition, antinutrients and allergens in the peanut protein fraction obtained by an aqueous enzymatic process.

    PubMed

    Latif, S; Pfannstiel, J; Makkar, H P S; Becker, K

    2013-01-01

    Enzyme-assisted aqueous extraction (EAE) of peanut kernel was used to extract oil and protein. The aqueous fraction (AF) obtained by EAE had a better essential amino acid profile than the residues obtained by solvent extraction (Rs) and cold pressing (Rc). No major difference in the trypsin inhibitor activity among AF, Rs and Rc was observed; however, the trypsin inhibitor activity was drastically reduced in the residue obtained after EAE. AF was subjected to MALDI-TOF/MS, revealing it to be rich in peptides (107) with molecular masses from m/z 700 to 2369Da. AF had an extremely low phytate content and was rich in peptides, which could be used as a food supplement. ESI-MS/MS data were used for the identification of major peanut allergens, viz., Ara h1, h3, h6-8. Their allergenic potential needs to be established. PMID:23017415

  1. Effect of Loading History on Stress Corrosion Cracking of 7075-T651 Aluminum Alloy in Saline Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Jixi; Kalnaus, Sergiy; Behrooz, Majid; Jiang, Yanyao

    2011-02-01

    An experimental study of stress corrosion cracking (SCC) was conducted on 7075-T651 aluminum alloy in a chromate-inhibited, acidic 3.5 pct sodium chloride aqueous solution using compact tension specimens with a thickness of 3.8 mm under permanent immersion conditions. The effects of loading magnitude, overload, underload, and two-step high-low sequence loading on incubation time and crack growth behavior were investigated. The results show that the SCC process consists of three stages: incubation, transient crack growth, and stable crack growth. The incubation time is highly dependent on the load level. Tensile overload or compressive underload applied prior to SCC significantly altered the initiation time of corrosion cracking. Transition from a high to a low loading magnitude resulted in a second incubation but much shorter or disappearing transient stage. The stable crack growth rate is independent of stress intensity factor in the range of 10 to 22 MPa sqrt {{m}}.

  2. Amino Acid Synthesis in Seafloor Environments on Icy Worlds

    NASA Astrophysics Data System (ADS)

    Flores, Erika; Barge, Laura; VanderVelde, David; Kallas, Kayo; Baum, Marc M.; Russell, Michael J.; Kanik, Isik

    2016-10-01

    In 2005, the Cassini mission detected plumes erupting from Enceladus' surface, containing carbon dioxide, methane, silica, and possibly ammonia. Subsequent laboratory experiments indicated that the silica particles in the plumes were generated under alkaline conditions and at moderate temperatures of ~90°C (Hsu et al., 2015); one scenario for such conditions would be the existence of alkaline (serpentinization-driven) hydrothermal activity within Enceladus. Alkaline vents are significant since they have been proposed as a likely environment for the emergence of metabolism on the early Earth (Russell et al. 2014) and thus could also provide a mechanism for origin of life on ocean worlds with a water-rock interface. Alkaline vents in an acidic, iron-containing ocean could produce mineral precipitates that could act as primitive enzymes or catalysts mediating organic reactions; for example, metal sulfides can catalyze the reductive amination of pyruvate to alanine (Novikov and Copley 2013). We have conducted experiments testing the synthesis of amino acids catalyzed by other iron minerals that might be expected to precipitate on the seafloor of early Earth or Enceladus. Preliminary results indicate that amino acids as well as other organic products can be synthesized in 1-3 days under alkaline hydrothermal conditions. We also find that the yield and type of organic products is highly dependent on pH and temperature, implying that understanding the specifics of the geochemical hydrothermal gradients on Enceladus (or other ocean worlds) will be significant in determining their potential for synthesizing building blocks for life.Hsu, H.-W. et al. (2015), Nature 519, 207-210.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Novikov Y. and Copley S. D. (2013) PNAS 110, 33, 13283-13288.

  3. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    PubMed Central

    Kopitzke, Steven; Geissinger, Peter

    2014-01-01

    Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments. PMID:24549250

  4. Recovery of transplutonium elements from aqueous and water-ethanol solutions of sulfuric acid and their separation from other actinides

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-05-01

    The behavior of Am, Cm, Bk, Cf, Es, and other actinides, as well as Zr, on anion and cation exchangers in aqueous and water-ethanol solutions of sulfuric acid as a function of the various components of the solution has been investigated. It has been discovered that the presence of ethanol in sulfuric acid solutions causes an increase in the distribution coefficients both on cation exchangers and on anion exchangers. The possibility of the use of ion exchangers for the preconcentration and separation of transplutonium elements from U, Np, Pu, Zr, and other elements which form strong complexes with sulfate ions over a broad range of concentrations of sulfuric acid has been demonstrated.

  5. Enhanced stability of the model mini-protein in amino acid ionic liquids and their aqueous solutions.

    PubMed

    Chevrot, Guillaume; Fileti, Eudes Eterno; Chaban, Vitaly V

    2015-10-15

    Using molecular dynamics simulations, the structure of model mini-protein was thoroughly characterized in the imidazolium-based amino acid ionic liquids and their aqueous solutions. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini-protein. This observation suggests that amino acid-based ionic liquids are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini-protein is efficiently solvated by both solvents due to a good mutual miscibility. Amino acid-based anions prevail in the first coordination sphere of positively charged sites of the mini-protein whereas water molecules prevail in the first coordination sphere of negatively charged sites of the mini-protein. PMID:26250927

  6. Simultaneous determination of nitric acid and uranium concentrations in aqueous solution from measurements of electrical conductivity, density, and temperature

    SciTech Connect

    Spencer, B.B.

    1991-01-01

    Nuclear fuel reprocessing plants handle aqueous solutions of nitric acid and uranium in large quantities. Automatic control of process operations requires reliable measurements of these solutes concentration, but this is difficult to directly measure. Physical properties such as solution density and electrical conductivity vary with solute concentration and temperature. Conductivity, density and temperature can be measured accurately with relatively simple and inexpensive devices. These properties can be used to determine solute concentrations will good correlations. This paper provides the appropriate correlations for solutions containing 2 to 6 Molar (M) nitric acid and 0 to 300 g/L uranium metal at temperatures from 25--90{degrees}C. The equations are most accurate below 5 M nitric acid, due to a broad maximum in the conductivity curve at 6 M. 12 refs., 9 figs., 6 tabs.

  7. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    PubMed

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery.

  8. Olivine alteration and H2 production in carbonate-rich, low temperature aqueous environments

    NASA Astrophysics Data System (ADS)

    Neubeck, Anna; Duc, Nguyen Thanh; Hellevang, Helge; Oze, Christopher; Bastviken, David; Bacsik, Zoltán; Holm, Nils G.

    2014-06-01

    Hydrous alteration of olivine is capable of producing molecular hydrogen (H2) under a wide variety of hydrothermal conditions. Although olivine hydrolysis (i.e., serpentinization) has commonly been assessed at elevated temperatures (>100 °C), the nature of these reactions in relation to H2 production at lower temperatures has not been systematically evaluated, especially with regard to carbonate-rich fluids. Specifically, carbonate formation may kinetically infringe on geochemical routes related to serpentinization and H2 production at lower temperatures. Here time-dependent interactions of solid, liquid, and gaseous phases with respect to olivine hydrolysis in a carbonate-rich solution (20 mM HCO3-) at 30, 50 and 70 °C for 315 days is investigated experimentally. Within the first two months, amorphous Si-rich (i.e., talc-like) and carbonate phases precipitated; however, no inhibition of olivine dissolution is observed at any temperature based on surface chemistry analyses. High-resolution surface analyses confirm that precipitates grew as spheroids or vertically to form topographic highs allowing further dissolution of the free olivine surfaces and exposing potential catalysts. Despite no magnetite (Fe3O4) being detected, H2 increased with time in experiments carried out at 70 °C, indicating an alternative coupled route for Fe oxidation and H2 production. Spectrophotometry analyses show that aqueous Fe(II) is largely converted to Fe(III) potentially integrating into other phases such as serpentine and talc, thus providing a viable pathway for H2 production. No increase in H2 production was observed in experiments carried out at 30 and 50 °C supporting observations that incorporation of Fe(II) into carbonates occurred faster than the intertwined processes of olivine hydrolysis and Fe(III) oxidation. Overall, carbonate formation is confirmed to be a major influence related to H2 production in low-temperature serpentinization systems. We studied low temperature

  9. Isolation and characterization of ellagic acid derivatives isolated from Casearia sylvestris SW aqueous extract with anti-PLA(2) activity.

    PubMed

    Da Silva, Saulo L; Calgarotto, Andrana K; Chaar, Jamal S; Marangoni, Sérgio

    2008-11-01

    The Casearia sylvestris SW (Flacourtiaceae) is utilized in folk medicine (Brazil and all Latin American) to treat several pathologic processes as inflammation, cancer, microbial infection and snake bites. Studies showed that C. sylvestris aqueous extract can inhibit many toxic effects caused by snake venoms (or caused by phospholipase A(2) isolated) from different species, mainly of Bothrops genus. Inhibition of enzymatic and myotoxic activities, decrease of edema formation and increase of the survival rate of rats injected with lethal doses of bothropic venoms are some toxic effects inhibited by C. sylvestris. In this study, four ellagic acid derivatives from aqueous extracts of C. sylvestris were isolated, characterized, and tested against effects from both total venom and PLA(2) (Asp 49 BthTX-II) from the venom of Bothrops jararacussu. The isolated compounds were as follows: ellagic acid (A), 3'-O-methyl ellagic acid (B), 3,3'-di-O-methyl ellagic acid (C), 3-O-methyl-3',4'-methylenedioxy ellagic acid (D). The inhibition constant values (Ki) for enzymatic activity, as well the IC(50) values found in the edematogenic and myotoxic activities, indicate that the ellagic acid is the best inhibitor of these activities, while compounds C and D are the substances with lowest capacity on inhibiting these same effects. Our results show that the presence of hydroxyls at position 3 or 3' (compounds A and B) increases the capacity of these derivatives on inhibiting these toxic effects. However, the presence of methoxyl groups at position 3 or 3' reduced, but did not completely inhibit the capacity of compounds C and D on inhibiting all the toxic effects studied.

  10. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part II. Recovery of Ammonia from Sour Waters

    SciTech Connect

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, SUCCiOlC acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  11. Acid gas treating by aqueous alkanolamines. Annual report, July-December 1992

    SciTech Connect

    Sandall, O.C.; Rinker, E.B.; Tamimi, A.; Davis, R.A.; Oelschlager, D.W.

    1992-12-01

    The objective of the work is to investigate the simultaneous absorption or desorption of CO2 and H2S into and from a mixed aqueous amine solvent consisting of methyldiethanolamine (MDEA) and diethanolamine (DEA). In work completed thus far models have been developed for single gas (either H2S or CO2) absorption into a single amine solution (MDEA or DEA). Density and viscosity measurements have been made for aqueous MDEA, DEA and MDEA/DEA mixtures over the temperature range 20 to 100 C and for concentrations up to 50 weight %.

  12. Synchrotron X-ray bio-imaging of natural and synthetic bone-graft materials in an aqueous environment

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Gun; Bark, Chung Wung

    2014-11-01

    Bone-graft materials in dentistry have osteoinductive and osteoconductive abilities, which depend on their microstructural characteristics, such as their porosity, particle size, micro channels, and absorption. These characteristics have been observed using various imaging techniques, such as optical microscopy and scanning electron microscopy (SEM). However, most techniques cannot provide images in water, even though graft materials in vivo are invariably in contact with different water-based fluids. Synchrotron X-ray imaging allows sample microenvironments to be controlled as X-ray beams easily penetrate air and water. In this report, we used the synchrotron X-ray imaging technique to provide in-situ images of various bone-graft materials in aqueous environments. We observed internal microstructural images of bone-graft materials in real-time in 0.9% saline solution and interactions between bone-graft materials and saline, that is, hydration patterns and bone-graft expansion.

  13. Effect of silty sand with different sizes on corrosion behavior of 3Cr steel in CO2 aqueous environment

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Lu, Songle; Zhang, Peng; Dou, Juanjuan; Zhao, Qinghe

    2016-08-01

    Corrosion behavior of 3Cr steel in CO2 aqueous environment containing silty sand was investigated by immersion test. The results show that CO2 corrosion rate and morphology of 3Cr steel were obviously affected by the size of silty sand. 5000 mesh silty sand mixed with corrosion products, forming compact Cr-rich corrosion scale and resulting in low corrosion rate and uniform corrosion. 1000 mesh silty sand mixed with corrosion products, forming porous corrosion scale without Cr enrichment and resulting in high corrosion rate and pitting corrosion. 5000 mesh silty sand enhanced Cr enrichment in corrosion scale, leading to low anodic current. However, 1000 mesh silty sand deteriorated Cr enrichment in corrosion scale, leading to high anodic current. Cathodic current was reduced by silty sand, but was not affected by two sizes of silty sand. Cr enrichment in corrosion scale of 3Cr steel was obviously affected by separation effect of silty sand.

  14. Activities of microorganisms and enzymes in water-restricted environments: biological activities in aqueous compartments at micron scale

    NASA Astrophysics Data System (ADS)

    Hoppert, Michael; Mlejnek, Klaus; Seiffert, Beatrix; Mayer, Frank

    1997-07-01

    In water-in-oil microemulsions, microdroplets of water, surrounded by a layer of surfactant molecules (reversed micelles), are dispersed in an organic solvent. Various microorganisms (unicellular algae and cyanobacteria) and isolated enzymes were dispersed in microemulsions without loss of biological activity. Each biological system needed a defined quantity of water in the microemulsion for maximum activity. Under optimum conditions, microbial enzymes for various sources (hydrogenases, dehydrogenases) exhibited, besides ten-fold increase in specific activity, a temperature optimum up to 16 degree(s)C higher as compared to aqueous solutions. These experimental findings, together with theoretical considerations, imply that water structure inside reversed micelles is very different from free water, but similar to water in narrow compartments with polar or ionic surfaces. These compartments may represent a model system for environments, where (liquid) water is not available in bulk amounts, but embedded in an anhydrous matrix.

  15. Calculations of hyperfine coupling constant of copper(II) in aqueous environment. Finite temperature molecular dynamics and relativistic effects.

    PubMed

    Malček, Michal; Bučinský, Lukáš; Valko, Marián; Biskupič, Stanislav

    2015-09-01

    The presented paper is focused on the calculation of hyperfine coupling constants (HFCC) of Cu (2+) ion in water environment. To simulate the conditions of the electron paramagnetic resonance (EPR) experiment in aqueous phase, molecular dynamics using the density functional theory (DFT) was employed. In total three different functionals (BLYP, B3LYP, M06) were employed for studying their suitability in describing coordination of Cu (2+) by water molecules. The system of our interest was composed of one Cu (2+) cation surrounded by a selected number (between thirty and fifty) of water molecules. Besides the non-relativistic HFCCs (Fermi contact terms) of Cu (2+) also the four-component relativistic HFCC calculations are presented. The importance of the proper evaluation of HFCCs, the inclusion of spin-orbit term, for Cu (2+) containing systems (Neese, J. Chem. Phys. 118, 3939 2003; Almeida et al., Chem. Phys. 332, 176 2007) is confirmed at the relativistic four-component level of theory.

  16. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    SciTech Connect

    Gomez-Gonzalez, Sergio Efrain; Carbajal-Arizaga, Gregorio Guadalupe; Manriquez-Gonzalez, Ricardo; De la Cruz-Hernandez, Wencel; Gomez-Salazar, Sergio

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  17. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2.

    PubMed

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M; Wu, Jerry J

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes. PMID:27131144

  18. Intermolecular interactions in aqueous solutions of gallic acid at 296-306 K according to spectrofluorimetry and densimetry data

    NASA Astrophysics Data System (ADS)

    Grigoryan, K. R.; Sargsyan, L. S.

    2015-12-01

    Features of intermolecular interactions in aqueous solutions of gallic acid (GA) are studied by means of densimetry and fluorescence spectroscopy (intrinsic fluorescence, 2D spectra, and excitation/ emission matrix fluorescence spectra, 3D) at 296.15, 301.15, and 306.15 K in the concentration range of 5.88 × 10-4-5.88 × 10-2 mol L-1. It is shown by analyzing the concentration and temperature dependences of the apparent molar volumes and fluorescence parameters of GA that the equilibrium between nonassociated and associated species in the solution and the hydration of these species undergo changes.

  19. Chemiluminescence studies between aqueous phase synthesized mercaptosuccinic acid capped cadmium telluride quantum dots and luminol-H2O2

    NASA Astrophysics Data System (ADS)

    Kaviyarasan, Kulandaivelu; Anandan, Sambandam; Mangalaraja, Ramalinga Viswanathan; Asiri, Abdullah M.; Wu, Jerry J.

    2016-08-01

    Mercaptosuccinic acid capped Cadmium telluride quantum dots have been successfully synthesized via aqueous phase method. The products were well characterized by a number of analytical techniques, including FT-IR, XRD, HRTEM, and a corrected particle size analysis by the statistical treatment of several AFM measurements. Chemiluminescence experiments were performed to explore the resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and acceptor CdTe QDs. The combination of such donor and acceptor dramatically reduce the fluorescence while compared to pristine CdTe QDs without any exciting light source, which is due to the occurrence of chemiluminescence resonance energy transfer (CRET) processes.

  20. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    PubMed

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth.

  1. Formation of Amino Acids on the Sonolysis of Aqueous Solutions Containing Acetic Acid, Methane, or Carbon Dioxide, in the Presence of Nitrogen Gas.

    PubMed

    Dharmarathne, Leena; Grieser, Franz

    2016-01-21

    The sonolysis of aqueous solutions containing acetic acid, methane, or carbon dioxide in the presence of nitrogen gas was found to produce a number of different amino acids at a rate of ∼1 to 100 nM/min, using ultrasound at an operating power of 70 W and 355 kHz. Gas-phase elementary reactions are suggested, and discussed, to account for the formation of the complex biomolecules from the low molar mass solutes used. On the basis of the results, a new hypothesis is presented to explain the formation of amino acids under primitive atmospheric conditions and how their formation may be linked to the eventual abiotic genesis of life on Earth. PMID:26695890

  2. UV Irradiation and Humic Acid Mediate Aggregation of Aqueous Fullerene (nC60) Nanoparticles

    EPA Science Inventory

    The transport and fate of engineered nanomaterials is affected by multiple environmental factors, including sunlight and natural organic matter. In this study, the initial aggregation kinetics of aqueous fullerene (nC60) nanoparticles before and after UVA irradiation was investig...

  3. A systematic investigation and insight into the formation mechanism of bilayers of fatty acid/soap mixtures in aqueous solutions.

    PubMed

    Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng

    2013-10-01

    Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree

  4. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    PubMed

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ. PMID:24649668

  5. Mechanistic study of the reaction of L-ascorbic acid with hexacyanometalate(III) ions of iron(III), ruthenium(III), and osmium(III) in aqueous acidic solution at elevated pressures

    SciTech Connect

    Kagayama, Nobuyoshi; Sekiguchi, Mitsuhiro; Inada, Yasuhiro; Takagi, Hideo D.; Funahashi, Shigenobu )

    1994-04-27

    Oxidation reactions of L-ascorbic acid by three hexacyanometalate(III) ions in aqueous acidic media are studied at elevated pressures. Kinetic parameters characterizing two parallel paths involving ascorbic acid (H[sub 2]Asc) and ascorbate ion (HAsc[sup [minus

  6. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    SciTech Connect

    Xi, Xiaoning; Tittmann, Bernhard; Kim, Seong H.

    2015-01-14

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

  7. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    NASA Astrophysics Data System (ADS)

    Xi, Xiaoning; Kim, Seong H.; Tittmann, Bernhard

    2015-01-01

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

  8. Sedimentary Rocks and Evidence for Aqueous Environment on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Grotzinger, J. P.; Athena Science Team

    2004-12-01

    On January 24, 2004 the Mars Exploration Rover Opportunity landed at Meridiani Planum. The landing region lies on a broad, flat plain near the martian equator. The landing site itself is within an impact crater about 20 meters in diameter which exposes small rock outcrops along its northwestern rim. As of September 1, 2004, the Opportunity rover has explored the outcrops exposed within Eagle crater, along with much larger outcrops exposed almost continuously along the rim of Endurance crater, about 175 m in diameter and approximately 750 m away from Eagle crater. The intervening plains exposed additional outcrop within a regionally-pervasive fracture system, and within a smaller impact crater of just a few meters diameter. All outcrops studied to date from these differing localities indicate the presence of regionally extensive, lithified sedimentary materials consisting of fine-grained siliciclastic sediments derived from basaltic source rocks, admixed and cemented by abundant sulfate minerals and hematite. These include the hydrated sulphate mineral jarosite, in addition to Mg-sulphate. Cross-stratification provides evidence for both eolian and aqueous transport. Subsequent alteration of these rocks produced hematite-rich concretions and vuggy porosity that is pseudomorphic after probable sulphate evaporite minerals. These combined observations indicate episodic inundation by surface water to shallow depths, followed by evaporation, exposure and desiccation. Festoon cross-lamination provides evidence for inundation by water, the mineralogy and geochemistry indicate evaporation of water and precipitation of dissolved salts, and the planar to low-angle lamination and larger scale cross-bedding are consistent with sediment transport across a dry surface. Terrestrial analogs for such a suite of facies and surface processes include interdune depressions, playa lakes, and sabkhas adjacent to marginal seaways. The primary objective of the Mars Exploration Rover mission

  9. Biodegradation of aromatic hydrocarbons in an extremely acidic environment

    SciTech Connect

    Stapleton, R.D.; Savage, D.C.; Sayler, G.S.; Stacey, G.

    1998-11-01

    The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve {sup 14}CO{sub 2} from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.

  10. L-ascorbic acid quenching of singlet delta molecular oxygen in aqueous media: generalized antioxidant property of vitamin C

    SciTech Connect

    Chou, P.T.; Khan, A.U.

    1983-09-30

    L-ascorbic acid quenches singlet (/sup 1/..delta../sub g/) molecular oxygen in aqueous media (pH 6.8 for (/sup 1/H)H/sub 2/O and pD 7.2 for (/sup 2/H)D/sub 2/O) as measured directly by monitoring (0,0) /sup 1/..delta../sub g/ ..-->.. /sup 3/..sigma../sub g//sup -/ emission at 1.28 micron. Singlet oxygen was generated at room temperature in the solutions via photosensitization of sodium chrysene sulfonate; this sulfonated polycyclic hydrocarbon was synthesized to provide a water soluble chromophore inert to usual dye-ascorbate photobleaching. A marked isotope effect is found; k/sub Q//sup H/sub 2/O/ is 3.3 times faster than k/sub Q//sup D/sub 2/O/, suggesting ascorbic acid is chemically quenching singlet oxygen.

  11. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation.

    PubMed

    Tolosa, Santiago; Hidalgo, Antonio; Sansón, Jorge A

    2012-11-01

    A theoretical study is described of chemical reactions in solution by means of molecular dynamics simulations, with solute-solvent interaction potentials derived from AMBER van der Waals parameters and QM/MM electrostatic charges in solution. The solvent is used as the reaction coordinate, and the free energy curves to calculate the properties related to the reaction mechanism. The proposed scheme is applied to the tautomerization process in aqueous solution for some amino acids H(2)NCHR-COOH (with R = H being glycine, R = CH(3) alanine, R = CH(2)OH serine, and R = CH(2)COOH aspartic acid), focusing on the role of the solvent in the reaction (assisted versus unassisted mechanisms) and on the effect of the hydrophilic/hydrophobic character of the radical R on the activation and reaction energies.

  12. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    NASA Astrophysics Data System (ADS)

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  13. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    PubMed Central

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  14. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-01-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition. PMID:27222322

  15. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst.

    PubMed

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-25

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  16. Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents.

    PubMed

    Wang, Yu-Long; Song, Li-Juan; Zhu, Lu; Guo, Bo-Long; Chen, Su-Wen; Wu, Wang-Suo

    2014-03-01

    Three different functional SBA-15 were prepared by a post-grafting method using three iminodiacetic acid derivatives of ethylenediaminetriacetic acid (ED3A), diethylenetriaminetetraacetic acid (DT4A), and 1,2-cyclohexylenedinitrilotriacetic acid (CyD3A), which were used as adsorbents for removal of uranium(vi) from aqueous solution. These materials were characterized by FT-IR, NMR, TEM, nitrogen adsorption/desorption experiments, and elemental analysis. The effect of pH, ionic strength, contact time, solid-liquid ratio, initial metal ion concentration, temperature, and coexisting ions on uranium(vi) sorption behaviors of the functionalized SBA-15 was studied. Typical sorption isotherms (Langmuir and Freundlich) were determined for the sorption process, and the maximum sorption capacity was calculated. The influence of functional groups on uranium(vi) sorption was also discussed. As a result, compared with other current U(vi) sorbents (granite, kaolin, attapulgite), SBA-15-1,2-cyclohexylenedinitrilotriacetic acid (SBA-15-CyD3A) possessed good selective sorption properties, which had potential application in separation of uranium(vi). PMID:24435450

  17. Removal of uranium(VI) from aqueous solution using iminodiacetic acid derivative functionalized SBA-15 as adsorbents.

    PubMed

    Wang, Yu-Long; Song, Li-Juan; Zhu, Lu; Guo, Bo-Long; Chen, Su-Wen; Wu, Wang-Suo

    2014-03-01

    Three different functional SBA-15 were prepared by a post-grafting method using three iminodiacetic acid derivatives of ethylenediaminetriacetic acid (ED3A), diethylenetriaminetetraacetic acid (DT4A), and 1,2-cyclohexylenedinitrilotriacetic acid (CyD3A), which were used as adsorbents for removal of uranium(vi) from aqueous solution. These materials were characterized by FT-IR, NMR, TEM, nitrogen adsorption/desorption experiments, and elemental analysis. The effect of pH, ionic strength, contact time, solid-liquid ratio, initial metal ion concentration, temperature, and coexisting ions on uranium(vi) sorption behaviors of the functionalized SBA-15 was studied. Typical sorption isotherms (Langmuir and Freundlich) were determined for the sorption process, and the maximum sorption capacity was calculated. The influence of functional groups on uranium(vi) sorption was also discussed. As a result, compared with other current U(vi) sorbents (granite, kaolin, attapulgite), SBA-15-1,2-cyclohexylenedinitrilotriacetic acid (SBA-15-CyD3A) possessed good selective sorption properties, which had potential application in separation of uranium(vi).

  18. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels-Alder chemistry for adipose tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry.

  19. Efficient photochemical decomposition of long-chain perfluorocarboxylic acids by means of an aqueous/liquid CO2 biphasic system.

    PubMed

    Hori, Hisao; Yamamoto, Ari; Kutsuna, Shuzo

    2005-10-01

    Photochemical decomposition of persistent and bioaccumulative long-chain (C9-C11) perfluorocarboxylic acids (PFCAs) with persulfate ion (S2O8(2-)) in an aqueous/liquid CO2 biphasic system was examined to develop a technique to neutralize stationary sources of the long-chain PFCAs. The long-chain PFCAs, namely, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUA), which are used as emulsifying agents and as surface treatment agents in industry, are relatively insoluble in water but are soluble in liquid CO2; therefore, introduction of liquid CO2 to the aqueous photoreaction system reduces the interference of colloidal PFCA particles. When the biphasic system was used to decompose these PFCAs, the extent of reaction was 6.4-51 times as high as that achieved in the absence of CO2. In the biphasic system, PFNA, PFDA, and PFUA (33.5-33.6 micromol) in 25.0 mL of water were 100%, 100%, and 77.1% decomposed, respectively, after 12 h of irradiation with a 200-W xenon-mercury lamp; F- ions were produced as a major product, and short-chain PFCAs, which are less bioaccumulative than the original PFCAs, were minor products. All of the initial S2O8(2-) was transformed to SO42-. The system also efficiently decomposed PFCAs at lower concentrations (e.g., 4.28-16.7 micromol of PFDA in 25.0 mL) and was successfully applied to decompose PFNA in floor wax.

  20. Reproduction potentiated in nematodes (Caenorhabditis elegans) and guppy fish (Poecilia reticulata) by adding a synthetic peptide to their aqueous environment.

    PubMed

    Davies, Keith G; Zimmerman, Brian; Dudley, Ed; Newton, Russell P; Hart, John E

    2015-03-01

    Ambient exposure to a short synthetic peptide has enhanced fecundity (number of offspring) in invertebrates and vertebrates, ostensibly by disinhibiting reproduction. In separate experiments, nematodes (Caenorhabditis elegans) and guppy fish (Poecilia reticulata) were exposed via their aqueous environment to a dissolved synthetic hexamer (6mer) peptide, IEPVFT (EPL036), at a concentration of 1 μmol l(-1). In the case of the worms, peptide was added to their aqueous buffer daily throughout the experiment (14 days); for the guppies, peptide administration was on the first 15 alternate days in a 50 week experiment. Fecundity rose by 79% among the worms. The number of descendants of the treated guppies was more than four times that of controls by week 26 (103 versus 25, including 72 juveniles versus 6), with 15.4% more estimated biomass in the test tank in total (i.e. including founders). It was deduced that treated females bred earlier, at a smaller size, and had larger brood sizes. The total number of fish in the control tank had caught up by termination, but biomass continued to lag the test tank. There were no overt signs of toxicity among either the worms or the fish. Bioinformatics has been unilluminating in explaining these results in terms, for example, of mimicry of an endogenous regulator. A mass spectrometric campaign to identify a receptor, using murine brain for expediency, proved inconclusive. Molecular modelling in silico indicated unexpectedly that the hexamer EPL036 might be acting as an antagonist, to pro-fecundity effect; that is, as a blocker of an inhibitor. This suggests that there awaits discovery an evolutionarily conserved reproductive inhibitor and its (anti-fecundity) receptor.