Science.gov

Sample records for acidic brine ph

  1. Modeling acid-gas generation from boiling chloride brines

    SciTech Connect

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  2. Modeling acid-gas generation from boiling chloride brines

    PubMed Central

    2009-01-01

    Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation

  3. Pickled egg production: effect of brine acetic acid concentration and packing conditions on acidification rate.

    PubMed

    Acosta, Oscar; Gao, Xiaofan; Sullivan, Elizabeth K; Padilla-Zakour, Olga I

    2014-05-01

    U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25 °C/none/25 °C (cold fill), (ii) 25 °C/none/2 °C (cold fill/refrigerated), (iii) 85 °C/none/25 °C (hot fill), and (iv) 25 °C/100 °C for 16 min/25 °C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs. PMID:24780334

  4. Ion sensitive field effect transistors applied to the measurement of the pH of brines

    SciTech Connect

    Chen, J

    1991-07-01

    The ability to measure the pH (the negative logarithm of the hydrogen ion activity) of harsh fluids such as geothermal oil field brines is important, since pH is a fundamental property; as one chemist stated: very often pH is a critical test because its accuracy lays the foundation for other measurements''. In our research, we focus on the analysis of brines similar to those found in underground geothermal reservoirs. Since the brines are deep under the ground, the values of the pressure and the temperature are high (up to 14 Mpa and 150[degrees]C); therefore the usual methods of pH measurement, e.g., glass electrode, are not applicable. The hydrogen ion sensitive ISFET (Ion Selective Field Effect Transistor) was studied as a pH sensor in this research. An ISFET can detect the electrochemical potential difference between the solution and the semiconductor due to the concentration of H[sup +] ions in the solution. Because of its solid state construction, an ISFET should work properly under high pressure and high temperature conditions. Earlier results, have indicated that it is possible to use ISFETs under the harsh conditions presented by geothermal brines.

  5. Ion sensitive field effect transistors applied to the measurement of the pH of brines

    SciTech Connect

    Chen, J.

    1991-12-31

    The ability to measure the pH (the negative logarithm of the hydrogen ion activity) of harsh fluids such as geothermal oil field brines is important, since pH is a fundamental property; as one chemist stated: ``very often pH is a critical test because its accuracy lays the foundation for other measurements``. In our research, we focus on the analysis of brines similar to those found in underground geothermal reservoirs. Since the brines are deep under the ground, the values of the pressure and the temperature are high (up to 14 Mpa and 150{degrees}C); therefore the usual methods of pH measurement, e.g., glass electrode, are not applicable. The hydrogen ion sensitive ISFET (Ion Selective Field Effect Transistor) was studied as a pH sensor in this research. An ISFET can detect the electrochemical potential difference between the solution and the semiconductor due to the concentration of H{sup +} ions in the solution. Because of its solid state construction, an ISFET should work properly under high pressure and high temperature conditions. Earlier results, have indicated that it is possible to use ISFETs under the harsh conditions presented by geothermal brines.

  6. Influence of sodium chloride, pH, and lactic acid bacteria on anaerobic lactic acid utilization during fermented cucumber spoilage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumbers are preserved commercially by natural fermentations in 5% to 8% sodium chloride (NaCl) brines. Occasionally, fermented cucumbers spoil after the primary fermentation is complete. This spoilage has been characterized by decreases in lactic acid and a rise in brine pH caused by microbial ins...

  7. Giant uranium deposits formed from exceptionally uranium-rich acidic brines

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Rozsypal, Christophe; Mercadier, Julien; Banks, David A.; Cuney, Michel; Boiron, Marie-Christine; Cathelineau, Michel

    2012-02-01

    Giant uranium deposits were formed during the Mesoproterozoic era, 1.6-1.0 Gyr ago, in both Canada and Australia. The deposits are thought to have formed from large-scale circulation of brines at temperatures of 120-200 °C that percolated between sedimentary basins and underlying crystalline basement rocks. However, the precise conditions for transport of the uranium in these brines are poorly understood. Here we use mass spectrometry to analyse the uranium content of brines preserved in naturally occurring fluid inclusions in ore deposits from the Athabasca Basin, Canada. We measure concentrations of uranium in the range 1.0×10-6-2.8×10-3moll-1. These concentrations are three orders of magnitude above any other common crustal fluids. Experimentally, we measure the solubility of uranium as a function of NaCl content and pH, in mixtures that are analogous to ore-forming brines at 155°C. To account for the high uranium content observed in the Athabasca deposits, we find that the brines must have been acidic, with a pH between 2.5 and 4.5. Our results strongly suggest that the world's richest uranium deposits formed from highly concentrated uranium-bearing acidic brines. We conclude that these conditions are a necessary requirement for the formation of giant uranium deposits in relatively short periods of time of about 0.1-1 Myr, similar to other world-class deposits of lead-zinc and gold.

  8. pH and salinity evolution of Europa's brines: Raman spectroscopy study of fractional precipitation at 1 and 300 bar.

    PubMed

    Muñoz-Iglesias, Victoria; Bonales, Laura J; Prieto-Ballesteros, Olga

    2013-08-01

    Several lines of evidence indicate the existence of salty liquid water below the icy surface of the satellite Europa. Depending on the chemical composition of the original interior brines, minerals that precipitate will be varied as will be the resulting physicochemical parameters of the evolving solutions such as pH and salinity. These parameters are determinants apropos to the study of the possible habitability of the satellite. In this work, experiments of fractional precipitation by cooling of several brines with different chemical composition (acid, alkaline, and neutral) were performed at 1 and 300 bar. The gradual decrease in temperature leads to mineral precipitation and changes in salinity and pH values. During the experiment, Raman spectroscopy was used to analyze quantitatively the variation of the salt concentration in the aqueous solutions. The obtained laboratory data indicate the manner in which cryomagma differentiation might occur on Europa. These endogenous processes of differentiation require planetary energy, which seems to have been plentiful during Europa's geological history. Ultimately, the dissipation of part of that energy is translated to a higher complexity of the cryopetrology in Europa's crust. From the results, we conclude that fractional differentiation processes of briny cryomagmas produce several types of igneous salty mineral suites on icy moons. PMID:23944292

  9. Stability of α-tocotrienol and α-tocopherol in salami-type sausages and curing brine depending on nitrite and pH.

    PubMed

    Gerling, Eva-Maria; Ternes, Waldemar

    2014-12-01

    We studied the stability of the valuable vitamer nutrients α-tocotrienol and α-tocopherol and options for their protection in salami-type sausages (blended with α-tocotrienol-rich barley oil) and curing brine. Four different sausage formulations were produced containing nitrite curing salt; nitrite curing salt and ascorbic acid (300mg/kg); nitrite curing salt and carnosic acid (45mg/kg); or sodium chloride. Initial vitamer contents (100mg/kg) did not decrease significantly during ripening and decreased only slightly during storage. Ascorbic acid and carnosic acid were found to be effective in preserving the vitamers in fresh sausages. Freeze-drying of sausages resulted in a significant loss of vitamers (97%), particularly after 14-day storage at room temperature, even in the presence of shielding gases. The vitamer content in the curing brine decreased with decreasing pH in the presence of nitrite. A nitrite concentration of 136mg/L at pH4 resulted in significant loss (90%) of the vitamers. Sufficient stability of the vitamers in salami-type sausage and curing brine can be achieved by processing, formulation, and storage conditions. PMID:25089791

  10. Acid loading test (pH)

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003615.htm Acid loading test (pH) To use the sharing features on this page, please enable JavaScript. The acid loading test (pH) measures the ability of the ...

  11. Spectroscopic measurements of the pH in NaCl brines

    NASA Astrophysics Data System (ADS)

    Millero, Frank J.; DiTrolio, Benjamin; Suarez, Andres F.; Lando, Gabriele

    2009-06-01

    Spectrophotometric measurements of the pH in natural waters such as seawater have been shown to yield precise results. In this paper, the sulfonephthalein indicator m-cresol purple ( mCP, H 2I) has been used to determine the pH of NaCl brines. The indicator has been calibrated in NaCl solutions from 5 to 45 °C and ionic strengths from 0.03 to 5.5 m. The calibrations were made using TRIS buffers (0.03 m, TRIS/TRIS-HCl) with known dissociation constants pK TRIS in NaCl solutions [Foti C., Rigano C. and Sammartano S. (1999) Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strength. Ann. Chim. 89, 1-12]. The values of pH were determined from pH=pK+log{(R-e1)/(e2-Re3)} where R = 578A/ 434A, the ratios of the indicator absorbance maximum at 578 and 434 nm, e1 = 0.00691, e2 = 2.222 and e3 = 0.1331 [Clayton T. and Byrne R. H. (1993) Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results. Deep-Sea Res. 40, 2115-2129]. Measurements were also made in NaCl solutions with different levels of TRIS (0.01-0.11 m). At low levels of TRIS buffer (<0.03 m), the values of pK mCP increased significantly. This effect can lead to erroneous values of pK mCP at low ionic strengths in estuaries and lakes. The measured values of pK mCP in NaCl as a function of ionic strength ( I/m) and temperature ( T/K) were fitted to the equation ( σ = 0.0072) pK=-29.095+2639.2/T+5.0417lnT-0.3307I0.5-186.80I0.5/T-0.28346I+296.44I/T+0.12841I1.5-68.23I1.5/T These results should be useful in determining the pH of NaCl brines in natural waters from 0 to 50 °C.

  12. Acid Rain, pH & Acidity: A Common Misinterpretation.

    ERIC Educational Resources Information Center

    Clark, David B.; Thompson, Ronald E.

    1989-01-01

    Illustrates the basis for misleading statements about the relationship between pH and acid content in acid rain. Explains why pH cannot be used as a measure of acidity for rain or any other solution. Suggests that teachers present acidity and pH as two separate and distinct concepts. (RT)

  13. Acid loading test (pH)

    MedlinePlus

    The acid loading test (pH) measures the ability of the kidneys to send acid to the urine when there is too much acid in the ... Urine with a pH less than 5.3 is normal. Normal value ranges may vary slightly among different laboratories. Some labs use different ...

  14. REE Sorption Study on sieved -50 +100 mesh fraction of Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect

    Gary Garland

    2015-09-29

    This is a continuation of the REE sorption study for shaker bath tests on 2g media #1 in 150mL brine #1 with different starting pH's at 70C. In a previous submission we reported data for shaker bath tests for brine #1 with starting pH's of 3.5, 4.5 and 5.5. In this submission we these pH's compared to starting brine #1 pH's of 6, and 7.

  15. The effect of brine pH, concentration and temperature on zeta potential measured in natural sandstones

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.

    2015-12-01

    The zeta potential is a measure of the electrical potential of the mineral surfaces in water-saturated rocks. In many subsurface settings the rocks are at elevated temperature, yet the temperature dependence of the zeta potential remains poorly understood. There are few previous experimental studies and these report inconsistent and contradictory behaviour; some studies have found that the zeta potential increases in magnitude with increasing temperature while others have found that it decreases in magnitude. Moreover, few studies have investigated salt concentrations relevant to natural systems; most used de-ionised water or NaCl/KCl electrolytes at low ionic strength (10-3M). Natural groundwater is typically more saline than this. We report measurements of the zeta potential of natural sandstones saturated with NaCl brines of varying ionic strength at temperatures up to 150°C. We find that the zeta potential is always negative, but decreases in magnitude with increasing temperature at in 0.01M NaCl brine (comparable to potable water) and is independent of temperature in 0.5M brine (comparable to seawater). In unbuffered experiments, the pH also decreases with increasing temperature at low ionic strength, but remains constant at higher ionic strength. The temperature dependence of the zeta potential can be explained by the temperature dependence of the pH. Our findings are consistent with published models of the zeta potential, so long as the temperature dependence of the pH at low ionic strength is accounted for. Moreover, they explain the hitherto contradictory results reported in previous studies that used low ionic strength electrolytes. In unbuffered experiments, the pH decreases with increasing temperature and the zeta potential decreases in magnitude. In experiments with fixed pH, the zeta potential increases in magnitude with increasing temperature. The results have broad application to deep sandstone reservoirs and hydrothermal fields.

  16. Use of used vs. fresh cheese brines and the effect of pH and salt concentration on the survival of Listeria monocytogenes.

    PubMed

    Schirmer, Bjørn C T; Heir, Even; Lindstedt, Bjørn-Arne; Møretrø, Trond; Langsrud, Solveig

    2014-02-01

    The aim of the study was to investigate how the use of fresh cheese brines compared with used brines and various combinations of pH and NaCl concentrations affected the survival of Listeria monocytogenes. Cheese brines from five Norwegian small scale cheese producers were analysed and showed great variations in pH (4·54-6·01) and NaCl concentrations (14·1-26·9 %). The survival of five strains of List. monocytogenes (two clinical isolates, two food isolates and one animal isolate) in four different cheese brines (three used and one fresh) was investigated. Results showed significant differences in survival both depending on the strains and the brines. Strains of human outbreak listeriosis cases showed greater ability to survive in the brines compared with food isolates and a List. monocytogenes reference strain (1-2 log10 difference after 200 d). All strains showed highest survival in the freshly prepared brine compared with the used brines. Molecular typing by multiple locus variable number tandem repeats analysis (MLVA) showed that there were no detectable alterations in the examined variable number tandem repeats of the genome in five strains after 200 d storage in any of the salt brines. Combined effects of pH (4·5, 5·25 and 6·0) and NaCl (15, 20 and 25 %) in fresh, filter sterilised brines on the survival of List. monocytogenes were examined and results showed that pathogen populations decreased over time in all brines. Death rates at any given NaCl concentration were highest at low pH (4·5) and death rates at any given pH were highest at low NaCl concentrations (15 %). In conclusion, the use of used brines reduced the survival of List. monocytogenes and a combination of low pH (4·5) and low salt concentrations (15 %) decreased the risk of List. monocytogenes survival compared with higher pH (5·25 or 6·0) and higher NaCl concentrations (20 or 25 %). PMID:24433588

  17. Characterization of phytochemicals and antioxidant activities of red radish brines during lactic acid fermentation.

    PubMed

    Jing, Pu; Song, Li-Hua; Shen, Shan-Qi; Zhao, Shu-Juan; Pang, Jie; Qian, Bing-Jun

    2014-01-01

    Red radish (Raphanus L.) pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5-19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15-30 µg/mL). 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2-92.2 µg/mL, whereas the total phenolic content was 206-220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants. PMID:25004074

  18. Inhibitors of lactic acid fermentation in Spanish-style green olive brines of the Manzanilla variety.

    PubMed

    Medina, Eduardo; Romero, Concepción; de Castro, Antonio; Brenes, Manuel; García, Aranzazu

    2008-10-15

    Frequently, a delay or lack of lactic acid fermentation occurs during the processing of Spanish-style green olives, in particular of the Manzanilla variety. Many variables can affect the progress of fermentation such as temperature, nutrients, salt concentration, antimicrobials in brines, and others. In this study, it was demonstrated that an inappropriate alkaline treatment (low NaOH strength and insufficient alkali penetration) allowed for the presence of several antimicrobial compounds in brines, which inhibited the growth of Lactobacillus pentosus. These substances were the dialdehydic form of decarboxymethyl elenolic acid either free or linked to hydroxytyrosol and an isomer of oleoside 11-methyl ester. Olive brines, from olives treated with a NaOH solution of low concentration up to 1/2 the distance to the pit, contained these antimicrobials, and no lactic acid fermentation took place in them. By contrast, a more intense alkaline treatment (2/3 lye depth penetration) gave rise to an abundant growth of lactic acid bacteria without any antimicrobial in brines. Therefore, the precise cause of stuck fermentation in Manzanilla olive brines was demonstrated for the first time and this finding will contribute to better understand the table olive fermentation process. PMID:26047282

  19. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    NASA Astrophysics Data System (ADS)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pH<5 and are the product of evaporation of Dead Sea brine that drain into the sinkholes. The low pH and the reddish to brownish hue of these brines were an enigma until recently. Despite the rather high total alkalinity (TA) of the Dead Sea (3.826 mmol/kg) the pH of the Dead Sea brine is known to be slightly acidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  20. Recovery of base materials from geothermal brines

    SciTech Connect

    Duyvesteyn, W.P.C.

    1993-07-20

    A process is described for the recovery of substantially pure Zn from a reservoir of geothermal brine confined under pressure at elevated temperature at subterranean levels, the brine also containing recoverable and mounts of lead and silver which comprises: tapping and bringing to the earth's surface a portion of the geothermal brine; allowing the brine to flash at atmospheric pressure to produce steam for use in the generation of electrical power; cooling the flashed brine; extracting Pb and Ag from the brine by cementation by adding a metal selected from the group consisting of Zn, Fe and Al to the cooled brine, removing the cemented Pb and Ag from the brine by solid/liquid separation; mixing the brine impoverished in the Pb and Ag with a substantially immiscible anionic solvent selective to the extraction of Zn to produce a spent brine and a Zn loaded anionic extractant; the anionic solvent being dissolved in a diluent of water immiscible organic solvent, recycling the spent brine to the reservoir of geothermal brine; subjecting the Zn-loaded anionic extractant to mixing with an aqueous solution to produce a Zn-loaded aqueous Zn chloride solution, separating the Zn-loaded aqueous solution from the anionic extractant, adjusting the pH of the Zn-containing aqueous solution, if necessary, to a pH sufficient to promote the separation of the Zn by cationic extraction, subjecting the Zn-loaded aqueous solution to extraction with a cationic solvent selective to Zn; the cationic solvent being dissolved in a diluent of a water-immiscible organic solvent, stripping the Zn from the loaded cationic extractant using a sulfuric acid electrolyte solution, the volume ratio of the cationic solvent to the sulfuric acid solution being such as to provide a Zn electrolyte solution of Zn concentration sufficient for the recovery of Zn therefrom, and then electrowinning the Zn from the electrolyte solution to provide a product of substantially pure Zn.

  1. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum-field brines at 100°C: the influence of pH and oxygen fugacity

    PubMed Central

    Giordano, Thomas H

    2002-01-01

    It is well established through field observations, experiments, and chemical models that oxidation (redox) state and pH exert a strong influence on the speciation of dissolved components and the solubility of minerals in hydrothermal fluids. log –pH diagrams were used to depict the influence of oxygen fugacity and pH on monocarboxylate- and dicarboxylate-transport of Pb and Zn in low-temperature (100°C) hydrothermal ore fluids that are related to diagenetic processes in deep sedimentary basins, and allow a first-order comparison of Pb and Zn transport among proposed model fluids for Mississippi Valley-type (MVT) and red-bed related base metal (RBRBM) deposits in terms of their approximate pH and conditions. To construct these diagrams, total Pb and Zn concentrations and Pb and Zn speciation were calculated as a function of log and pH for a composite ore-brine with concentrations of major elements, total sulfur, and total carbonate that approximate the composition of MVT and RBRBM model ore fluids and modern basinal brines. In addition to acetate and malonate complexation, complexes involving the ligands Cl-, HS-, H2S, and OH- were included in the model of calculated total metal concentration and metal speciation. Also, in the model, Zn and Pb are competing with the common-rock forming metals Ca, Mg, Na, Fe, and Al for the same ligands. Calculated total Pb concentration and calculated total Zn concentration are constrained by galena and sphalerite solubility, respectively. Isopleths, in log –pH space, of the concentration of Pb and concentration of Zn in carboxylate (acetate + malonate) complexes illustrate that the oxidized model fluids of T. H. Giordano (in Organic Acids in Geological Processes, ed. E. D. Pittman and M. D. Lewan, Springer-Verlag, New York, 1994, pp. 319–354) and G. M. Anderson (Econ. Geol., 1975, 70, 937–942) are capable of transporting sufficient amounts of Pb (up to 10 ppm) and Zn (up to 100 ppm) in the form of carboxylate complexes to

  2. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  3. REE Sorption Study of Sieved -50 +100 mesh Media #1 in Brine #1 with Different Starting pH's at 70C

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  4. Australian Acid Brine Lake as a Mars Analog: An Analysis of Preserved Lipids in Shore and Lake Sediments

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Stern, J. C.; Baldridge, A. M.; Thomsen, B. J.

    2016-05-01

    This study investigates organic molecules preserved in sediment cores from an acid brine lake. We explore the distribution and stable isotopic composition of lipids in order to understand preservation potential in similar martian environments.

  5. Evaluation of Experimentally Measured and Model-Calculated pH for Rock-Brine-CO2 Systems under Geologic CO2 Sequestration Conditions

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    Reliable pH estimation is essential for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies of formation reactivities conducted under geologic CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH; however, the accuracy of these model predictions is typically uncertain. In this study, we expanded the measurement range of a spectrophotometric method for pH determination, and we applied the method to measure the pH in batch-reactor experiments utilizing rock samples from five ongoing GCS demonstration projects. A combination of color-changing pH indicators, bromophenol blue and bromocresol green, was shown to enable measurements over the pH range of 2.5-5.2. In-situ pH measurements were compared with pH values calculated using geochemical models. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. For rocks comprised of carbonate, siltstone, and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain proton consuming and producing reactions that occur between the basalt minerals and CO2-saturated brine solutions.

  6. R and D, fabrication and testing of pH and CO/sub 2/ sensors for geothermal brines

    SciTech Connect

    Baxter, R.D.; Clack, P.J.; Phelan, D.M.; Taylor, R.M.

    1987-03-01

    Reduction or elimination of scaling is a mandatory requirement for the operation of geothermal power plants. The use of downhole sampling and subsequent analysis for solution chemistry has many disadvantages. These disadvantages include composition change with cooling, risk of sample contamination, and non real-time indication. The use of in-line sensing of solution chemistry avoids these drawbacks but requires sensors which can survive the extremely harsh environment of brine at high temperatures and elevated pressures. Leeds and Northrup had previously undertaken a contract to develop sensors for pH and pCO/sub 2/ which would withstand these harsh environments. A number of sensors were tested at a field site under actual operating conditions. Field test results indicated that certain facets of the design were inadequate to give accurate long term measurement. The primary areas addressed here are replacement of polymeric seals with anodic bonding where possible, improved methods of lead attachment, improved sealing of the pCO/sub 2/ reference feed-through, H/sub 2/S getter optimization and improved passivation of the sensing head. Each of these areas is addressed in detail in the report along with laboratory test results pertaining to the particular phase.

  7. pH [Measure of Acidity].

    ERIC Educational Resources Information Center

    Henderson, Paula

    This autoinstructional program deals with the study of the pH of given substances by using litmus and hydrion papers. It is a learning activity directed toward low achievers involved in the study of biology at the secondary school level. The time suggested for the unit is 25-30 minutes (plus additional time for further pH testing). The equipment…

  8. Intracellular pH of acid-tolerant ruminal bacteria.

    PubMed Central

    Russell, J B

    1991-01-01

    Acid-tolerant ruminal bacteria (Bacteroides ruminicola B1(4), Selenomonas ruminantium HD4, Streptococcus bovis JB1, Megasphaera elsdenii B159, and strain F) allowed their intracellular pH to decline as a function of extracellular pH and did not generate a large pH gradient across the cell membrane until the extracellular pH was low (less than 5.2). This decline in intracellular pH prevented an accumulation of volatile fatty acid anions inside the cells. PMID:1781695

  9. Spectroscopic determination of hypochlorous acid, in chloride brine solutions, featuring 5 MeV proton beam line experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, Thomas; Paviet-Hartmann, Patricia; Wetteland, Christopher; Lu, Ningping

    2003-04-01

    The irradiation effects of 4.9 MeV protons on salt repository related brines are investigated spectrophotometrically. The induced formation of hypochlorous acid is determined up to doses of 11 kGy in 3.7 M MgCl 2·6H 2O and in a multicomponent brine of high concentration: Brine G. The build-up of hypochlorous acid to a steady-state concentration is found to be independent on the chloride concentration. The ultimate objective of this experiment is the estimation of the G value for HOCl in which meaningful predictions of long-term redox conditions in a nuclear repository strongly depend on. This paper describes our first steps towards the determination of HOCl.

  10. Effect of pH on nitrate and selenate reduction in flue gas desulfurization brine using the H2-based membrane biofilm reactor (MBfR).

    PubMed

    Van Ginkel, Steven W; Yang, Ziming; Kim, Bi-o; Sholin, Mark; Rittmann, Bruce E

    2011-01-01

    Increased tightening of air regulations is leading more electric utilities to install flue gas desulfurization (FGD) systems. These systems produce brine containing high concentrations of nitrate, nitrite, and selenate which must be removed before discharge. The H2-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies. The maximum selenate removal flux reached 362 mgSe m(-2)d(-1) and was higher than that observed in earlier research, which shows continual improvement of the biofilm for selenate reduction. A low pH of 6.8 inhibited precipitation when treating actual FGD brine, yet did not inhibit removal. SO4(2-) was not removed and therefore did not compete with nitrate, nitrite, and selenate reduction for the available H2. PMID:22049720

  11. Accurate and self-consistent procedure for determining pH in seawater desalination brines and its manifestation in reverse osmosis modeling.

    PubMed

    Nir, Oded; Marvin, Esra; Lahav, Ori

    2014-11-01

    Measuring and modeling pH in concentrated aqueous solutions in an accurate and consistent manner is of paramount importance to many R&D and industrial applications, including RO desalination. Nevertheless, unified definitions and standard procedures have yet to be developed for solutions with ionic strength higher than ∼0.7 M, while implementation of conventional pH determination approaches may lead to significant errors. In this work a systematic yet simple methodology for measuring pH in concentrated solutions (dominated by Na(+)/Cl(-)) was developed and evaluated, with the aim of achieving consistency with the Pitzer ion-interaction approach. Results indicate that the addition of 0.75 M of NaCl to NIST buffers, followed by assigning a new standard pH (calculated based on the Pitzer approach), enabled reducing measured errors to below 0.03 pH units in seawater RO brines (ionic strength up to 2 M). To facilitate its use, the method was developed to be both conceptually and practically analogous to the conventional pH measurement procedure. The method was used to measure the pH of seawater RO retentates obtained at varying recovery ratios. The results matched better the pH values predicted by an accurate RO transport model. Calibrating the model by the measured pH values enabled better boron transport prediction. A Donnan-induced phenomenon, affecting pH in both retentate and permeate streams, was identified and quantified. PMID:25058737

  12. [Ultrasonic study of nucleic acids. Effect of pH].

    PubMed

    Braginskaia, F I; Sadykhova, S Kh

    1979-01-01

    The ultrasonic absorption of nucleic acids in water solutions was studied by the pulse ultrasonic technique depending on pH, at frequency 12 mHz T = 20 dedrees C. The obtained data show the occurrence of structural relaxation in DNA solutions caused by the proton exchange and transfer reactions with the extremal pH at 2.5 and 11.7. Possible mechanisms of the excess ultrasonic absorption were discussed concerning the protolytic processes with the charged DNA groups (N--P1 exchange and the hydrolysis of lactam groups at acid and alkaline pH correspondingly). PMID:36177

  13. Effects of acetic acid and arginine on pH elevation and growth of Bacillus licheniformis in an acidified cucumber juice medium.

    PubMed

    Yang, Zhenquan; Meng, Xia; Breidt, Frederick; Dean, Lisa L; Arritt, Fletcher M

    2015-04-01

    Bacillus licheniformis has been shown to cause pH elevation in tomato products having an initial pH below 4.6 and metabiotic effects that can lead to the growth of pathogenic bacteria. Because of this, the organism poses a potential risk to acidified vegetable products; however, little is known about the growth and metabolism of this organism in these products. To clarify the mechanisms of pH change and growth of B. licheniformis in vegetable broth under acidic conditions, a cucumber juice medium representative of a noninhibitory vegetable broth was used to monitor changes in pH, cell growth, and catabolism of sugars and amino acids. For initial pH values between pH 4.1 to 6.0, pH changes resulted from both fermentation of sugar (lowering pH) and ammonia production (raising pH). An initial pH elevation occurred, with starting pH values of pH 4.1 to 4.9 under both aerobic and anaerobic conditions, and was apparently mediated by the arginine deiminase reaction of B. licheniformis. This initial pH elevation was prevented if 5 mM or greater acetic acid was present in the brine at the same pH. In laboratory media, under favorable conditions for growth, data indicated that growth of the organism was inhibited at pH 4.6 with protonated acetic acid concentrations of 10 to 20 mM, corresponding to 25 to 50 mM total acetic acid; however, growth inhibition required greater than 300 mM citric acid (10-fold excess of the amount in processed tomato products) products under similar conditions. The data indicate that growth and pH increase by B. licheniformis may be inhibited by the acetic acid present in most commercial acidified vegetable products but not by the citric acid in many tomato products. PMID:25836398

  14. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean; Carrier, Christopher

    2012-01-01

    In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines

  15. Comparison of Four Strong Acids on the Precipitation Potential of Gypsum in Brines During Distillation of Pretreated, Augmented Urine

    NASA Technical Reports Server (NTRS)

    Muirhead, Dean

    2011-01-01

    Two batches of nominally pretreated and augmented urine were prepared with the baseline pretreatment formulation of sulfuric acid and chromium trioxide. The urine was augmented with inorganic salts and organic compounds in order to simulate a urinary ionic concentrations representing the upper 95 percentile on orbit. Three strong mineral acids: phosphoric, hydrochloric, and nitric acid, were substituted for the sulfuric acid for comparison to the baseline sulfuric acid pretreatment formulation. Three concentrations of oxidizer in the pretreatment formulation were also tested. Pretreated urine was distilled to 85% water recovery to determine the effect of each acid and its conjugate base on the precipitation of minerals during distillation. The brines were analyzed for calcium and sulfate ion, total, volatile, and fixed suspended solids. Test results verified that substitution of phosphoric, hydrochloric, or nitric acids for sulfuric acid would prevent the precipitation of gypsum up to 85% recovery from pretreated urine representing the upper 95 percentile calcium concentration on orbit.

  16. Titratable acidity of beverages influences salivary pH recovery.

    PubMed

    Tenuta, Livia Maria Andaló; Fernández, Constanza Estefany; Brandão, Ana Carolina Siqueira; Cury, Jaime Aparecido

    2015-01-01

    A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control) were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively) and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively). Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH. PMID:25715032

  17. Croconaine rotaxane for acid activated photothermal heating and ratiometric photoacoustic imaging of acidic pH.

    PubMed

    Guha, Samit; Shaw, Gillian Karen; Mitcham, Trevor M; Bouchard, Richard R; Smith, Bradley D

    2016-01-01

    Absorption of 808 nm laser light by liposomes containing a pH sensitive, near-infrared croconaine rotaxane dye increases dramatically in weak acid. A stealth liposome composition permits acid activated, photothermal heating and also acts as an effective nanoparticle probe for ratiometric photoacoustic imaging of acidic pH in deep sample locations, including a living mouse. PMID:26502996

  18. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp (Pandalus borealis).

    PubMed

    Mejlholm, Ole; Kjeldgaard, Jette; Modberg, Anne; Vest, Mette Bohn; Bøknaes, Niels; Koort, Joanna; Björkroth, Johanna; Dalgaard, Paw

    2008-06-10

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced and studied. Different recipes were used to study the effect of preserving parameters (organic acids, pH and NaCl) on growth of microorganisms and shelf life at 7-8 degrees C or 12 degrees C. Particularly, brines with different concentrations of (i) benzoic, citric and sorbic acids or (ii) acetic, citric and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora of the industrially processed brined shrimp. In addition, shelf life of brined shrimp was affected by the types and concentrations of organic acids and by the storage temperature as expected. The effect of MAP was less pronounced. Eighty-two isolates from the spoilage microflora of brined shrimp were identified and they included 53 lactic acid bacteria, 6 coagulase negative Staphylococcus spp., 18 Pseudomonas fluorescens and 5 yeast isolates. After storage at 7 degrees C, P. fluorescens, Enterococcus-like isolates, E. malodoratus, Carnobacterium maltaromaticum, coagulase negative Staphylococcus spp. and Lactobacillus sakei constituted the dominating microflora of shrimp in brines that contained benzoic, citric and sorbic acids as preservatives. L. sakei dominated the

  19. Constraining Effects of Brine Leakage from Carbon Sequestration Sites

    NASA Astrophysics Data System (ADS)

    Wunsch, A.; Navarre-Sitchler, A. K.; McCray, J. E.

    2011-12-01

    Research has shown that pressure build up associated with injection of CO2 into a deep saline aquifer has the potential to promote brine leakage into overlying formations. In order to understand and quantify chemical changes in an underground source of drinking water (USDW) invaded by deep saline brines, we analyzed over 90,000 brine geochemical data entries from the NETL NATCARB brine database to identify potential brine constituents of concern. Using a variety of statistical methods and EPA regulatory levels or standards (RLS) we narrowed the list of brine constituents of potential concern to USDWs to TDS, thallium, chloride, sulfate and arsenic. Somewhat surprisingly, the distribution of reported pH had a fairly narrow distribution around a median value of 7.4, with over 78% of values complying with EPA recommended secondary standard for drinking water acidity. The pH distribution implies that unlike pure CO2 leakage, far-field brine leakage (i.e., brine not in contact with CO2) is not expected to bear a low-pH signature, thus suggesting use of other means of geochemical monitoring for brine leakage, such as electrical conductivity. Geochemical mixing models of brine and dilute water were used to constrain mixing ratios where RLS values are exceeded for the TDS, thallium and chloride. TDS and chloride exceed the EPA secondary standards at a brine/USDW mixing ratio of 0.012 and 0.459, respectively. The thallium maximum contaminant level (MCL) is exceeded at a brine/USDW mixing ratio of 0.3753, smaller than the chloride mixing ratio. However, sorption and/or desorption processes may alter thallium concentrations along a leakage pathway resulting in lower concentrations in the aquifer than predicted by simple mixing models. While leakage into USDWs has received considerable attention, brine contamination of groundwater used for irrigation of agricultural crops is also an important area of research. Our calculations suggest that almost all crops grown in the United

  20. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.

    PubMed

    Hu, Yandi; Ray, Jessica R; Jun, Young-Shin

    2011-07-15

    To ensure safe and efficient geologic CO(2) sequestration (GCS), it is crucial to have a better understanding of CO(2)-brine-rock interactions under GCS conditions. In this work, using biotite (K(Mg,Fe)(3)AlSi(3)O(10)(OH,F)(2)) as a model clay mineral, brine-biotite interactions were studied under conditions relevant to GCS sites (95 °C, 102 atm CO(2), and 1 M NaCl solution). After reaction for 3-17 h, fast growth of fibrous illite on flat basal planes of biotite was observed. After 22-70 h reaction, the biotite basal surface cracked, resulting in illite detaching from the surface. Later on (96-120 h), the cracked surface layer was released into solution, thus the inner layer was exposed as a renewed flat basal surface. The cracking and detachment of the biotite surface layer increased the surface area in contact with solution and accelerated biotite dissolution. On biotite edge surfaces, Al-substituted goethite and kaolinite precipitated. In control experiments with water under the same temperature and pressure, neither macroscopic fibrous illite nor cracks were observed. This work provides unique information on biotite-brine interaction under acidic hydrothermal conditions. PMID:21696218

  1. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  2. Brine treatment

    SciTech Connect

    Gallup, D.L.; Doty, H.W.; Wong, M.M.; Wong, C.F.; Featherstone, J.L.; Messer, P.H.

    1993-08-31

    A method is described for treating a corrosive feed geothermal brine containing suspended and dissolved scale forming constituents at least some of which comprise silicon-containing components and some of which comprise at least one recoverable metal selected from the group consisting of copper and metals below copper in the electromotive series said method comprising passing the brine through a conduit packed with at least one metal as high or higher in the electromotive series than copper for a time sufficient for a substantial portion of the recoverable metal to precipitate onto the packing in said conduit, to reduce the corrosivity of the brine, and to stabilize the scale forming constituents of the brine; and discharging from said conduit a treated brine less corrosive than the feed brine and having a substantially reduced scale forming potential.

  3. Effect of brine marination on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat shrimp (Pandalus borealis).

    PubMed

    Mejlholm, Ole; Devitt, Tina D; Dalgaard, Paw

    2012-06-15

    The effect of brine marination at chill temperatures on survival and growth of spoilage and pathogenic bacteria during processing and subsequent storage of ready-to-eat cold water shrimp was studied. Survival and growth of Lactobacillus sakei, Listeria monocytogenes, Salmonella, Staphylococcus aureus and Vibrio parahaemolyticus were examined. The effect of brine composition and pH was determined in 12 screening experiments without addition of shrimp. Sixteen challenge tests with shrimp were then carried out to examine the effect of brine composition and storage temperature on survival and growth during processing and subsequent storage of brined and drained shrimp in modified atmosphere packaging (MAP). Different brines with (i) acetic and lactic acids (AL) or (ii) benzoic, citric and sorbic acids (BCS) were studied. V. parahaemolyticus was inactivated in brine AL without shrimp whereas concentrations of all the examined microorganisms were reduced in brine BCS. A significant effect of brine pH on inactivation was observed and inactivation during chill marination of shrimp in brine was reduced compared to the effect of brine alone. This was explained by a relatively fast increase of pH in the brine during marination of shrimp. For shrimp in brine BCS, reductions were observed for V. parahaemolyticus and Salmonella, whereas inactivation in shrimp was only noticed for Salmonella in brine AL. The observed reductions were too small to be used in practise for decontamination of shellfish. None of the examined pathogens was able to grow at 7°C in brined and drained MAP shrimp that resembled commercial products. However, reducing the concentration of acetic and lactic acids by 50% resulted in relatively fast growth of L. monocytogenes in brined and drained MAP shrimp at 7°C. Growth of S. aureus and Salmonella was observed in similar products stored at 15°C. V. parahaemolyticus was reduced in brined and drained MAP shrimp stored at both 7 and 15°C. Based on the results

  4. Effects of brine concentration on lipid oxidation and fatty acids profile of hot smoked tuna ( Thunnus albacares ) stored at refrigerated temperature.

    PubMed

    Guizani, Nejib; Rahman, Mohammad Shafiur; Al-Ruzeiqi, Mohamed Hamad; Al-Sabahi, Jamal Nasser; Sureshchandran, Sithara

    2014-03-01

    This work evaluated the lipid oxidation and the changes in fatty acids in hot-smoked tuna (Thunnus albacares) as a function of brine concentration. Fresh, commercially harvested tuna fish samples were purchased from a local supermarket. The fish were first immersed for 30 min in a brine solution at 5, 10, or 15% sodium chloride concentration and were then smoked at 50 °C for 3 h followed by 1 h at 60 °C and 3 h at 105 °C. The fish were then dried for 17 h, cooled and stored at 4 °C. Oxidative rancidity was measured by the peroxide value (PV), and thiobarbituric acid number (TBA) and fatty acids profile by GC-MS. Oxidative rancidity increased with storage time. The PV and TBARS values were more pronounced for samples immersed in 10% brine solution during the first 27 days of storage, whereas the lowest increase was observed for samples treated with 15% salt. Fatty acid concentration exhibited changes after smoking, and this was varied with salt concentration. The palmitic acid and stearic acid, the two main saturated fatty acids in tuna, increased after smoking at all brine concentration, whereas the contents of oleic acid, eicosapentaenoic acid and docosahexaenoic acid decreased. In conclusion, 15% NaCl-treated tuna gave smoked product with less lipid oxidation and a fatty acid profile comparable to that for 5 and 10% NaCl-treated samples. PMID:24587535

  5. Soil sorption of acidic pesticides: modeling pH effects.

    PubMed

    Spadotto, Claudio A; Hornsby, Arthur G

    2003-01-01

    A model of acidic pesticide sorption in soils was developed from theoretical modeling and experimental data, which initially considered a combination of a strongly acidic pesticide and a variable-charge soil with high clay content. Contribution of 2,4-D [(2,4-dichlorophenoxy) acetic acid] anionic-form sorption was small when compared with molecular sorption. Dissociation of 2,4-D was not sufficient to explain the variation in Kd as a function of pH. Accessibility of soil organic functional groups able to interact with the pesticide (conformational changes) as a function of organic matter dissociation was proposed to explain the observed differences in sorption. Experimental 2,4-D sorption data and K(oc) values from literature for flumetsulam [N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide] and sulfentrazone [N-[2,4-dichloro-5-[4-(difluromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl] phenyl] methanesulfonamide] in several soils fit the model. PMID:12809295

  6. Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise

    SciTech Connect

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S. Univ. of Vermont College of Medicine, Burlington )

    1988-09-01

    To investigate whether changes in systemic pH affect intracellular pH (pH{sub i}), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH{sub 4}Cl (acidosis; A) or NaHCO{sub 3} (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH{sub i} and phosphocreatine (PCr) content were measured with {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH{sub i} did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

  7. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  8. Survival of Escherichia coli O157:H7 during manufacture and storage of white brined cheese.

    PubMed

    Osaili, Tareq M; Al-Nabulsi, Anas A; Olaimat, Amin N; Shaker, Reyad R; Taha, Mohammad; Holley, Richard A

    2014-09-01

    Escherichia coli O157:H7 is a major foodborne pathogen that causes severe disease in humans. Survival of E. coli O157:H7 during processing and storage of white brined cheese was investigated. Cheeses were prepared using pasteurized milk inoculated with a 4 strain E. coli O157:H7 cocktail (7 log(10) CFU/g) with or without yogurt starter culture (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus salivarius ssp. thermophilus) and stored in 10% or 15% NaCl brine at 10 and 21 ºC for 28 d. NaCl concentration, water activity (a(w)), pH, and numbers of E. coli O157:H7 and lactic acid bacteria (LAB) were determined in cheese and brine. E. coli O157:H7 was able to survive in cheese stored in both brines at 10 and 21 ºC regardless of the presence of starter LAB, although the latter significantly enhanced E. coli O157:H7 reduction in cheese or its brine at 10 ºC. E. coli O157:H7 numbers were reduced by 2.6 and 3.4 log(10) CFU/g in cheese stored in 10% and 15% NaCl brine, respectively, in the presence of starter LAB and by 1.4 and 2.3 log(10) CFU/g, respectively, in the absence of starter LAB at 10 ºC. The pathogen survived, but at lower numbers in the brines. The salt concentration of cheese stored in 10% brine remained about 5% during ripening, but in 15% brine, the NaCl level increased 1.6% to 8.1% (w/w) by 28 d. Values of pH and a(w) slightly decreased 1 d after exposure to brine and reached 5.5 to 6.6 and 0.88 to 0.94, respectively, in all treatments. PMID:25134419

  9. Effects of pH adjustment and sodium ions on sour taste intensity of organic acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protonated organic acid species have been shown to be the primary stimuli responsible for sour taste of organic acids. However, we have observed that sour taste may be modulated when the pH of acid solutions is raised using sodium hydroxide. Objectives were to evaluate the effect of pH adjustment on...

  10. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  11. Ion association in natural brines

    USGS Publications Warehouse

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  12. Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    SciTech Connect

    Lian, T; Whalen, M T; Wong, L

    2004-10-25

    The effects of fluoride on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) have been investigated. Up to 0.1 mol/L fluoride was added to the NaCl brines at 95 C, and three pH values of 4, 8, and 11 were selected for studying pH dependence of fluoride effects. It was observed that fluoride significantly altered the anodic polarization behavior, at all three pH values of 4, 8, and 11. Under acidic condition fluoride caused active corrosion. The corrosion of Titanium grade 7 was increased by three orders of magnitude when a 0.1 mol/L fluoride was added to the NaCl brines at pH 4, and the Pd ennoblement effect was not observed in acidic fluoride-containing environments. The effects of fluoride were reduced significantly when pH was increased to 8 and above.

  13. The PH gene determines fruit acidity and contributes to the evolution of sweet melons.

    PubMed

    Cohen, Shahar; Itkin, Maxim; Yeselson, Yelena; Tzuri, Galil; Portnoy, Vitaly; Harel-Baja, Rotem; Lev, Shery; Sa'ar, Uzi; Davidovitz-Rikanati, Rachel; Baranes, Nadine; Bar, Einat; Wolf, Dalia; Petreikov, Marina; Shen, Shmuel; Ben-Dor, Shifra; Rogachev, Ilana; Aharoni, Asaph; Ast, Tslil; Schuldiner, Maya; Belausov, Eduard; Eshed, Ravit; Ophir, Ron; Sherman, Amir; Frei, Benedikt; Neuhaus, H Ekkehard; Xu, Yimin; Fei, Zhangjun; Giovannoni, Jim; Lewinsohn, Efraim; Tadmor, Yaakov; Paris, Harry S; Katzir, Nurit; Burger, Yosef; Schaffer, Arthur A

    2014-01-01

    Taste has been the subject of human selection in the evolution of agricultural crops, and acidity is one of the three major components of fleshy fruit taste, together with sugars and volatile flavour compounds. We identify a family of plant-specific genes with a major effect on fruit acidity by map-based cloning of C. melo PH gene (CmPH) from melon, Cucumis melo taking advantage of the novel natural genetic variation for both high and low fruit acidity in this species. Functional silencing of orthologous PH genes in two distantly related plant families, cucumber and tomato, produced low-acid, bland tasting fruit, showing that PH genes control fruit acidity across plant families. A four amino-acid duplication in CmPH distinguishes between primitive acidic varieties and modern dessert melons. This fortuitous mutation served as a preadaptive antecedent to the development of sweet melon cultigens in Central Asia over 1,000 years ago. PMID:24898284

  14. Organic Acid Excretion in Penicillium ochrochloron Increases with Ambient pH

    PubMed Central

    Vrabl, Pamela; Fuchs, Viktoria; Pichler, Barbara; Schinagl, Christoph W.; Burgstaller, Wolfgang

    2012-01-01

    Despite being of high biotechnological relevance, many aspects of organic acid excretion in filamentous fungi like the influence of ambient pH are still insufficiently understood. While the excretion of an individual organic acid may peak at a certain pH value, the few available studies investigating a broader range of organic acids indicate that total organic acid excretion rises with increasing external pH. We hypothesized that this phenomenon might be a general response of filamentous fungi to increased ambient pH. If this is the case, the observation should be widely independent of the organism, growth conditions, or experimental design and might therefore be a crucial key point in understanding the function and mechanisms of organic acid excretion in filamentous fungi. In this study we explored this hypothesis using ammonium-limited chemostat cultivations (pH 2–7), and ammonium or phosphate-limited bioreactor batch cultivations (pH 5 and 7). Two strains of Penicillium ochrochloron were investigated differing in the spectrum of excreted organic acids. Confirming our hypothesis, the main result demonstrated that organic acid excretion in P. ochrochloron was enhanced at high external pH levels compared to low pH levels independent of the tested strain, nutrient limitation, and cultivation method. We discuss these findings against the background of three hypotheses explaining organic acid excretion in filamentous fungi, i.e., overflow metabolism, charge balance, and aggressive acidification hypothesis. PMID:22493592

  15. Influence of the pH on the itaconic acid production with Aspergillus terreus.

    PubMed

    Hevekerl, Antje; Kuenz, Anja; Vorlop, Klaus-Dieter

    2014-12-01

    Itaconic acid is mainly produced with the filamentous fungi Aspergillus terreus. An increase in the pH during the production phase of the cultivation resulted in an increase in the itaconic acid concentration. The pH was raised by a single pH shift ranging from pH 4 to 6 or by a pH control to pH 3. Different lyes can be used for the pH shift, but ammonia solution has proven to be the best, because here the productivity does not drop after the pH shift. The highest itaconic acid concentration of 146 g/L was reached when a pH control to pH 3 was started after 2.1 days of cultivation. This is an increase of 68 % to the cultivation without pH control. When this technique was combined with previously found optimizations, a final itaconic acid concentration of 129 g/L was reached after 4.7 days of cultivation, resulting in a productivity of 1.15 g/L/h. PMID:25213913

  16. Rhizosphere pH responses to simulated acid rain as measured with glass microelectrodes

    SciTech Connect

    Conkling, B.L.

    1988-01-01

    The objectives of this study were to develop a useful experimental system for studying the rhizosphere of growing roots, and to investigate the effects of bulk soil pH and foliar acid rain application on the rhizosphere pH of alfalfa, corn and soybeans. First, a study was done to compare soil pH measurements made with a standard glass pH electrode with those made using an antimony (Sb) microelectrode. Because of uncertainty with the Sb microelectrodes' response, glass pH-sensitive microelectrodes were made and tested for rhizosphere pH measurements. The influence of soil water pressure gradients in the range of {minus}10 to {minus}1500 kPa in the proximity of the pH and reference electrodes on pH measurements made with microelectrodes was studied. The effect of foliar acid rain application on the rhizosphere pH of alfalfa, corn, and soybean as a function of soil pH were studied. Alfalfa, corn, and soybean were grown into minirhizotrons containing reformed samples of both Seymour A and Bt soil horizons, and the rhizosphere pH measured. The measured in situ bulk soil pH ranged from 4.9 to 6.2 in the A horizon and from 4.0 to 5.7 in the Bt horizon. Plants received acid or non-acid foliar rain applications. Rhizosphere pH was measured using a glass pH-sensitive microelectrode. Acid rain applications caused foliar damage, but had little effect on the rhizosphere pH. The general trend was for the lateral root pH values to be slightly higher than the main root values.

  17. Biological denitrification of brine: the effect of compatible solutes on enzyme activities and fatty acid degradation.

    PubMed

    Cyplik, Paweł; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Czarny, Jakub; Drozdzyńska, Agnieszka; Chrzanowski, Łukasz

    2012-09-01

    The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l⁻¹. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon.The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. The consortium of microorganisms was identified by the use of restriction fragment length polymorphism of 16S rRNA gene amplicons and sequencing techniques. It was noted that ectoine affects significantly the activity of lipase and nitrate reductase, and resulted in faster denitrification compared to saline wastewater with the addition of trehalose or control saline wastewater (without compatible solutes). It was observed that relative enzyme activities of lipase and nitrate reductase increased by 32 and 35%, respectively, in the presence of 1 mM ectoine. This resulted in an increase in specific nitrate reduction rate in the presence of 1 mM ectoine to 5.7 mg N g⁻¹ VSS h⁻¹, which was higher than in the absence of ectoine (3.2 mg N g⁻¹ VSS h⁻¹). The addition of trehalose did not have an effect on nitrate removals. Moreover, it was found that trehalose was used up completely by bacteria as a source of carbon in the denitrification process. The fatty acids were biodegraded by 74% in the presence of 1 mM ectoine. PMID:22286267

  18. Formation of Quartz-Carbonate Veins: Evidence From Experimental Supercritical Carbon Dioxide-Brine-Rock System

    NASA Astrophysics Data System (ADS)

    Janecky, D. R.; Kaszuba, J. P.

    2003-12-01

    Quartz-carbonate veins are common in a variety of moderate temperature hydrothermal systems and ore deposits. Associated fluid inclusions have a wide range of compositions, including liquid carbon dioxide fillings. Examination of chemical and physical conditions which result precipitation of quartz and carbonate in veins raises several key questions about multiphase fluid processes and reaction rates. We have been experimentally investigating physical-chemical reaction processes of mixed brine-carbon dioxide fluids for the shallow crust. Synthetic arkose (microcline + oligoclase + quartz + biotite) plus argillaceous shale were reacted with 5.5 molal NaCl brine. The system was held at 200 C and 200 bars for 32 days to approach steady state, then injected with carbon dioxide and allowed to react for an additional 45 days. In a parallel experiment, the system was allowed to react for 77 days without injection of carbon dioxide. Trace ions initially absent from NaCl brine appeared in solution at mM (K, Ca, and silica) to uM (Mg, Al, Fe and Mn) quantities, reflecting reaction of brine with rock. Without carbon dioxide injection, the silica concentration (2.4 mM) was stable below calculated quartz solubility (3.9 mM). Injection of carbon dioxide resulted in decreased pH and increased silica concentration to a level near calculated chalcedony solubility (5.4 mM). Dissolution of silicate minerals is apparently coupled to the acidity, and concomitant inhibition of the precipitation of quartz (and other silicates). A significant increase in concentration of trace metals is consistent with in-situ pH decrease and increased carbon dioxide dissolved in brine. Multi-phase fluid reaction relationships between supercritical carbon dioxide and brine-rock systems allow formation of carbonate vein precipitates in substantial quantities. Brine and continued rock reactions provide a substantial reservoir for Ca, Mg and Fe components. A separate carbon dioxide liquid allows

  19. Negative pH and extremely acidic mine waters from Iron Mountain, California

    USGS Publications Warehouse

    Nordstrom, D.K.; Alpers, C.N.; Ptacek, C.J.; Blowes, D.W.

    2000-01-01

    Extremely acidic mine waters with pH values as low as -3.6, total dissolved metal concentrations as high as 200 g/L, and sulfate concentrations as high as 760 g/L, have been encountered underground in the Richmond Mine at Iron Mountain, CA. These are the most acidic waters known. The pH measurements were obtained by using the Pitzer method to define pH for calibration of glass membrane electrodes. The calibration of pH below 0.5 with glass membrane electrodes becomes strongly nonlinear but is reproducible to a pH as low as -4. Numerous efflorescent minerals were found forming from these acid waters. These extreme acid waters were formed primarily by pyrite oxidation and concentration by evaporation with minor effects from aqueous ferrous iron oxidation and efflorescent mineral formation.

  20. Distillation Brine Purification for Resource Recovery Applications

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2014-01-01

    Wastewater processing systems for space generate residual brine that contains water and salts that could be recovered to life support consumables. The project assessed the use of ion-exchange resins to selectively remove salts from wastewater treatment brines. The resins were then regenerated for additional use. The intention would be to generate a Na/K and CI rich or purified brine that would then be processed into high value chemicals, such as acids, bases, and/or bleach.

  1. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    PubMed Central

    2012-01-01

    Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11) deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent), acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(t)RNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i) non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii) specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline hydrothermal vents. The

  2. Cost-effective bioregeneration of nitrate-laden ion exchange brine through deliberate bicarbonate incorporation.

    PubMed

    Li, Qi; Huang, Bin; Chen, Xin; Shi, Yi

    2015-05-15

    Bioregeneration of nitrate-laden ion exchange brine is desired to minimize its environmental impacts, but faces common challenges, i.e., enriching sufficient salt-tolerant denitrifying bacteria and stabilizing brine salinity and alkalinity for stable brine biotreatment and economically removing undesired organics derived in biotreatment. Incorporation of 0.25 M bicarbonate in 0.5 M chloride brine little affected resin regeneration but created a benign alkaline condition to favor bio-based brine regeneration. The first-quarter sulfate-mainly enriched spent brine (SB) was acidified with carbon source acetic acid for using CaCl2 at an efficiency >80% to remove sulfate. Residual Ca(2+) was limited below 2 mM by re-mixing the first-quarter and remained SB to favor denitrification. Under [Formula: see text] system buffered pH condition (8.3-8.8), nitrate was removed at 0.90 gN/L/d by hematite-enriched well-settled activated sludge (SVI 8.5 ml/g) and the biogenic alkalinity was retained as bicarbonate. The biogenic alkalinity met the need of alkalinity in removing residual Ca(2+) after sulfate removal and in CaCl2-induced CaCO3 flocculation to remove 63% of soluble organic carbon (SOC) in biotreated brine. Carbon-limited denitrification was also operated after activated sludge acclimation with sulfide to cut SOC formation during denitrification. Overall, this bicarbonate-incorporation approach, stabilizing the brine salinity and alkalinity for stable denitrification and economical removal of undesired SOC, suits long-term cost-effective brine bioregeneration. PMID:25746960

  3. Brine disposal process for Morcinek coal mine

    SciTech Connect

    Tait, J.H.

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  4. Volatile fatty acids distribution during acidogenesis of algal residues with pH control.

    PubMed

    Li, Yan; Hua, Dongliang; Zhang, Jie; Zhao, Yuxiao; Xu, Haipeng; Liang, Xiaohui; Zhang, Xiaodong

    2013-06-01

    The anaerobic acidification of protein-rich algal residues with pH control (4, 6, 8, 10) was studied in batch reactors, which was operated at mesophilic(35 °C) condition. The distribution of major volatile fatty acids (VFAs) during acidogenesis was emphasized in this paper. The results showed that the acidification efficiency and VFAs distribution in the acid reactor strongly depended on the pH. The main product for all the runs involved acetic acid except that the proportion of butyric acid acidified at pH 6 was relatively higher. The other organic acids remained at lower levels. The VFAs yield reached the maximum value with about 0.6 g VFAs/g volatile solid (VS) added as pH was 8, and also the content of total ammonia nitrogen (TAN) reached the highest values of 9,629 mg/l. Low acidification degrees were obtained under the conditions at pH 4 and 10, which was not suitable for the metabolism of acidogens. Hydralic retention time (HRT) required for different conditions varied. As a consequence, it was indicated that pH was crucial to the acidification efficiency and products distribution. The investigation of acidogenesis process, which was producing the major substrates, short-chain fatty acids, would play the primary role in the efficient operation of methanogenesis. PMID:23381617

  5. Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic pH

    PubMed Central

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  6. Molecular dynamics simulations capture the misfolding of the bovine prion protein at acidic pH.

    PubMed

    Cheng, Chin Jung; Daggett, Valerie

    2014-01-01

    Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus. These mid- and low pH simulations capture the process of nonnative β-strand formation, thereby improving our understanding of how PrPC misfolds into the β-sheet rich PrPSc and how pH factors into the process. PMID:24970211

  7. Effect of pH on fecal recovery of energy derived from volatile fatty acids.

    PubMed

    Kien, C L; Liechty, E A

    1987-01-01

    We assessed the effect of pH on volatilization of short-chain fatty acids during lyophilization. Acetic, propionic, valeric, and butyric acids were added to a fecal homogenate in amounts sufficient to raise the energy density by 18-27%. Fecal homogenate samples were either acidified (pH 2.8-3.2), alkalinized (pH 7.9-8.7), or left unchanged (4.0-4.8) prior to lyophilization and subsequent bomb calorimetry. Alkalinizing the fecal samples prevented the 20% loss of energy derived from each of these volatile fatty acids observed in samples either acidified or without pH adjustment. These data suggest that in energy balance studies involving subjects with active colonic fermentation, fecal samples should be alkalinized prior to lyophilization and bomb calorimetry. PMID:3681570

  8. The absorption of acetylsalicylic acid from the stomach in relation to intragastric pH.

    PubMed

    Dotevall, G; Ekenved, G

    1976-01-01

    A comparative study on the effect of a buffered (pH 6.5) and an unbuffered (pH 2.9) solution of acetylsalicylic acid (ASA) on gastric pH, gastric emptying, and gastric absorption of ASA was performed in 10 healthy volunteers. Gastric pH was recorded using radiotelemetry. Gastric emptying and gastric absorption was studied with an aspiration technique and phenol red as nonabsorbable marker. Administration of the unbuffered solution to the fasting subjects resulted in a gastric pH of about 2 and absorption of ASA from the stomach was found to occur. The buffered solution of ASA increased gastric pH to above 5 and gastric absorption of ASA was found to be significantly less than after the unbuffered solution. The buffered solution was emptied from the stomach more rapidly than the unbuffered one. PMID:12558

  9. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.

    PubMed

    Grant-Preece, Paris; Schmidtke, Leigh M; Barril, Celia; Clark, Andrew C

    2017-01-15

    Glyoxylic acid is a tartaric acid degradation product formed in model wine solutions containing iron and its production is greatly increased by exposure to UV-visible light. In this study, the combined effect of sulfur dioxide, caffeic acid, pH and temperature on the light-induced (⩾300nm) production of glyoxylic acid in model wine containing tartaric acid and iron was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Glyoxylic acid produced in the irradiated model wine was present in free and hydrogen sulfite adduct forms and the measured total, free and percentage free glyoxylic acid values were modeled using RSM. Sulfur dioxide significantly decreased the total amount of glyoxylic acid produced, but could not prevent its production, while caffeic acid showed no significant impact. The interaction between pH and temperature was significant, with low pH values and low temperatures giving rise to higher levels of total glyoxylic acid. PMID:27542478

  10. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Kurouski, Dmitry; Olenick, Max B; McDonald, Caleb B; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2012-12-01

    Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic of a molten globule. Strikingly, our data reveal that pH tightly modulates not only oligomerization but also ligand binding and membrane insertion of BclXL in a highly subtle manner. Thus, while oligomerization and the accompanying molten globular content of BclXL is least favorable at pH 6, both of these structural features become more pronounced under acidic and alkaline conditions. However, membrane insertion of BclXL appears to be predominantly favored under acidic conditions. In a remarkable contrast, while ligand binding to BclXL optimally occurs at pH 6, it is diminished by an order of magnitude at lower and higher pH. This reciprocal relationship between BclXL oligomerization and ligand binding lends new insights into how pH modulates functional versatility of a key apoptotic regulator and strongly argues that the molten globule may serve as an intermediate primed for membrane insertion in response to apoptotic cues. PMID:22960132

  11. Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments.

    PubMed

    Wojtkowiak, Jonathan W; Rothberg, Jennifer M; Kumar, Virendra; Schramm, Karla J; Haller, Edward; Proemsey, Joshua B; Lloyd, Mark C; Sloane, Bonnie F; Gillies, Robert J

    2012-08-15

    Tumor cell survival relies upon adaptation to the acidic conditions of the tumor microenvironment. To investigate potential acidosis survival mechanisms, we examined the effect of low pH (6.7) on human breast carcinoma cells. Acute low pH exposure reduced proliferation rate, induced a G1 cell cycle arrest, and increased cytoplasmic vacuolization. Gene expression analysis revealed elevated levels of ATG5 and BNIP3 in acid-conditioned cells, suggesting cells exposed to low pH may utilize autophagy as a survival mechanism. In support of this hypothesis, we found that acute low pH stimulated autophagy as defined by an increase in LC3-positive punctate vesicles, double-membrane vacuoles, and decreased phosphorylation of AKT and ribosomal protein S6. Notably, cells exposed to low pH for approximately 3 months restored their proliferative capacity while maintaining the cytoplasmic vacuolated phenotype. Although autophagy is typically transient, elevated autophagy markers were maintained chronically in low pH conditioned cells as visualized by increased protein expression of LC3-II and double-membrane vacuoles. Furthermore, these cells exhibited elevated sensitivity to PI3K-class III inhibition by 3-methyladenine. In mouse tumors, LC3 expression was reduced by systemic treatment with sodium bicarbonate, which raises intratumoral pH. Taken together, these results argue that acidic conditions in the tumor microenvironment promote autophagy, and that chronic autophagy occurs as a survival adaptation in this setting. PMID:22719070

  12. The determination of vanadium in brines by atomic absorption spectroscopy

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  13. Microbial degradation of isosaccharinic acid at high pH

    PubMed Central

    Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R

    2015-01-01

    Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127

  14. Initial pH of medium affects organic acids production but do not affect phosphate solubilization

    PubMed Central

    Marra, Leandro M.; de Oliveira-Longatti, Silvia M.; Soares, Cláudio R.F.S.; de Lima, José M.; Olivares, Fabio L.; Moreira, Fatima M.S.

    2015-01-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  15. Initial pH of medium affects organic acids production but do not affect phosphate solubilization.

    PubMed

    Marra, Leandro M; de Oliveira-Longatti, Silvia M; Soares, Cláudio R F S; de Lima, José M; Olivares, Fabio L; Moreira, Fatima M S

    2015-06-01

    The pH of the culture medium directly influences the growth of microorganisms and the chemical processes that they perform. The aim of this study was to assess the influence of the initial pH of the culture medium on the production of 11 low-molecular-weight organic acids and on the solubilization of calcium phosphate by bacteria in growth medium (NBRIP). The following strains isolated from cowpea nodules were studied: UFLA03-08 (Rhizobium tropici), UFLA03-09 (Acinetobacter sp.), UFLA03-10 (Paenibacillus kribbensis), UFLA03-106 (Paenibacillus kribbensis) and UFLA03-116 (Paenibacillus sp.). The strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 solubilized Ca3(PO4)2 in liquid medium regardless of the initial pH, although without a significant difference between the treatments. The production of organic acids by these strains was assessed for all of the initial pH values investigated, and differences between the treatments were observed. Strains UFLA03-09 and UFLA03-10 produced the same acids at different initial pH values in the culture medium. There was no correlation between phosphorus solubilized from Ca3(PO4)2 in NBRIP liquid medium and the concentration of total organic acids at the different initial pH values. Therefore, the initial pH of the culture medium influences the production of organic acids by the strains UFLA03-08, UFLA03-09, UFLA03-10 and UFLA03-106 but it does not affect calcium phosphate solubilization. PMID:26273251

  16. Calculation of downhole pH and delta pH in the presence of CO{sub 2} and organic acids

    SciTech Connect

    Garber, J.D.; Perkins, R.S.; Jangama, V.R.; Alapati, R.R.

    1996-08-01

    Acetic and formic acids have been found in the separator water of gas condensate wells containing CO{sub 2} and they are titrated as alkalinity. Traditional pH equations which neglect these acids and calculate pH based on alkalinity greatly over-predict the downhole pH. Since all scale calculations depend on an accurate pH value, a more sophisticated method of calculation has been developed. The methodology can be used to calculate the in-situ bulk pH and the saturation pH at different depths within a well. The difference in the saturation pH and the bulk pH is the delta pH a negative delta pH indicates a potential to scale whereas a positive value indicates a potential to corrode. The saturation pH is discussed with respect to iron carbonate saturation, but can be used for any other scale by making the appropriate changes.

  17. Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1

    PubMed Central

    Hiatt, A. J.

    1967-01-01

    Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506

  18. Influence of Acidic pH on Hydrogen and Acetate Production by an Electrosynthetic Microbiome

    PubMed Central

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.

    2014-01-01

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (∼5). Hydrogen production by biocathodes poised at −600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ∼5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ∼6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at −765 mV (0.065 mA/cm2 sterile control at −800 mV) by the Acetobacterium-dominated community. Supplying −800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured). PMID:25333313

  19. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  20. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    SciTech Connect

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominated community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).

  1. Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome

    DOE PAGESBeta

    LaBelle, Edward V.; Marshall, Christopher W.; Gilbert, Jack A.; May, Harold D.; Battista, John R.

    2014-10-15

    Production of hydrogen and organic compounds by an electrosynthetic microbiome using electrodes and carbon dioxide as sole electron donor and carbon source, respectively, was examined after exposure to acidic pH (~5). Hydrogen production by biocathodes poised at -600 mV vs. SHE increased>100-fold and acetate production ceased at acidic pH, but ~5–15 mM (catholyte volume)/day acetate and>1,000 mM/day hydrogen were attained at pH ~6.5 following repeated exposure to acidic pH. Cyclic voltammetry revealed a 250 mV decrease in hydrogen overpotential and a maximum current density of 12.2 mA/cm2 at -765 mV (0.065 mA/cm2 sterile control at -800 mV) by the Acetobacterium-dominatedmore » community. Supplying -800 mV to the microbiome after repeated exposure to acidic pH resulted in up to 2.6 kg/m3/day hydrogen (≈2.6 gallons gasoline equivalent), 0.7 kg/m3/day formate, and 3.1 kg/m3/day acetate ( = 4.7 kg CO2 captured).« less

  2. Influence of organic acids on the pH and acid-neutralizing capacity of Adirondack Lakes

    NASA Astrophysics Data System (ADS)

    Munson, R. K.; Gherini, S. A.

    1993-04-01

    Past approaches for evaluating the effects of organic acids on the acid-base characteristics of surface waters have typically treated them solely as weak acids. Analysis of data collected by the Adirondack Lakes Survey Corporation (ALSC) from 1469 lakes throughout the Adirondack region shows that this approach is not valid. While the data indicate that natural organics contain a continuum of acid functional groups, many of which display weak acid characteristics, a significant fraction of the organic acid is strong (pKa < 3). Dissolved organic carbon (DOC) contributes 4.5-5 μeq/mg DOC of strong acid to solution. The associated anions make a negative contribution to Gran acid-neutralizing capacity (ANC). Because organic anions can produce negative Gran ANC values, the common practice of considering negative values of Gran ANC evidence of acidification solely by mineral acids is not valid. The strength of organic acids also influences the observed deviation between Gran ANC values and ANC values calculated as the difference between base cation and mineral acid anion concentrations (CB - CA). Ninety percent of the deviation is due to the presence of strong organics while the remaining 10% is due to DOC-induced curvature in the F1 Gran function. Organic acids can also strongly influence pH. Their largest effects were found in the 0-50 μeq/L Gran ANC range where they depressed pH by up to 1.5 units. In addition, a method for predicting changes in pH in response to changes in mineral acidity, DOC, or both without having to rely on inferred thermodynamic constants and the uncertainties associated with them has been developed. Using the predictive method, the response of representative lakes from four sensitive lake classes to a 15-μeq/L decrease in mineral acidity ranged from +0.17 to +0.38 pH units. If concurrent increases in DOC are considered, the pH changes would be even smaller.

  3. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile.

    PubMed

    Messerli, Mark A; Amaral-Zettler, Linda A; Zettler, Erik; Jung, Sung-Kwon; Smith, Peter J S; Sogin, Mitchell L

    2005-07-01

    Organisms growing in acidic environments, pH<3, would be expected to possess fundamentally different molecular structures and physiological controls in comparison with similar species restricted to neutral pH. We begin to investigate this premise by determining the magnitude of the transmembrane electrochemical H+ gradient in an acidophilic Chlamydomonas sp. (ATCC PRA-125) isolated from the Rio Tinto, a heavy metal laden, acidic river (pH 1.7-2.5). This acidophile grows most rapidly at pH 2 but is capable of growth over a wide pH range (1.5-7.0), while Chlamydomonas reinhardtii is restricted to growth at pH>or=3 with optimal growth between pH 5.5 and 8.5. With the fluorescent H+ indicator, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF), we show that the acidophilic Chlamydomonas maintains an average cytosolic pH of 6.6 in culture medium at both pH 2 and pH 7 while Chlamydomonas reinhardtii maintains an average cytosolic pH of 7.1 in pH 7 culture medium. The transmembrane electric potential difference of Chlamydomonas sp., measured using intracellular electrodes at both pH 2 and 7, is close to 0 mV, a rare value for plants, animals and protists. The 40,000-fold difference in [H+] could be the result of either active or passive mechanisms. Evidence for active maintenance was detected by monitoring the rate of ATP consumption. At the peak, cells consume about 7% more ATP per second in medium at pH 2 than at pH 7. This increased rate of consumption is sufficient to account for removal of H+ entering the cytosol across a membrane with relatively high permeability to H+ (7x10(-8) cm s-1). Our results indicate that the small increase in the rate of ATP consumption can account for maintenance of the transmembrane H+ gradient without the imposition of cell surface H+ barriers. PMID:15961743

  4. Effects of saliva on starch-thickened drinks with acidic and neutral pH.

    PubMed

    Hanson, Ben; Cox, Ben; Kaliviotis, Efstathios; Smith, Christina H

    2012-09-01

    Powdered maize starch thickeners are used to modify drink consistency in the clinical management of dysphagia. Amylase is a digestive enzyme found in saliva which breaks down starch. This action is dependent on pH, which varies in practice depending on the particular drink. This study measured the effects of human saliva on the viscosity of drinks thickened with a widely used starch-based thickener. Experiments simulated a possible clinical scenario whereby saliva enters a cup and contaminates a drink. Citric acid (E330) was added to water to produce a controlled range of pH from 3.0 to 7.0, and several commercially available drinks with naturally low pH were investigated. When saliva was added to thickened water, viscosity was reduced to less than 1% of its original value after 10-15 min. However, lowering pH systematically slowed the reduction in viscosity attributable to saliva. At pH 3.5 and below, saliva was found to have no significant effect on viscosity. The pH of drinks in this study ranged from 2.6 for Coca Cola to 6.2 for black coffee. Again, low pH slowed the effect of saliva. For many popular drinks, having pH of 3.6 or less, viscosity was not significantly affected by the addition of saliva. PMID:22210234

  5. Development of Online Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes.

    PubMed

    Casella, Amanda J; Ahlers, Laura R H; Campbell, Emily L; Levitskaia, Tatiana G; Peterson, James M; Smith, Frances N; Bryan, Samuel A

    2015-05-19

    In nuclear fuel reprocessing, separating trivalent minor actinides and lanthanide fission products is extremely challenging and often necessitates tight pH control in TALSPEAK (Trivalent Actinide-Lanthanide Separation by Phosphorus reagent Extraction from Aqueous Komplexes) separations. In TALSPEAK and similar advanced processes, aqueous pH is one of the most important factors governing the partitioning of lanthanides and actinides between an aqueous phase containing a polyaminopolycarboxylate complexing agent and a weak carboxylic acid buffer and an organic phase containing an acidic organophosphorus extractant. Real-time pH monitoring would significantly increase confidence in the separation performance. Our research is focused on developing a general method for online determination of the pH of aqueous solutions through chemometric analysis of Raman spectra. Spectroscopic process-monitoring capabilities, incorporated in a counter-current centrifugal contactor bank, provide a pathway for online, real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for online applications, whereas classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Raman spectroscopy discriminates between the protonated and deprotonated forms of the carboxylic acid buffer, and the chemometric processing of the Raman spectral data with PLS (partial least-squares) regression provides a means to quantify their respective abundances and therefore determine the solution pH. Interpretive quantitative models have been developed and validated under a range of chemical composition and pH conditions using a lactic acid/lactate buffer system. The developed model was applied to new spectra obtained from online spectral measurements during a solvent extraction experiment using a counter-current centrifugal contactor bank. The model

  6. Oesophageal clearance of acid and bile: a combined radionuclide, pH, and Bilitec study

    PubMed Central

    Koek, G H; Vos, R; Flamen, P; Sifrim, D; Lammert, F; Vanbilloen, B; Janssens, J; Tack, J

    2004-01-01

    Background: Studies combining pH and Bilitec monitoring found a high prevalence of both acid and duodeno-gastro-oesophageal reflux in severe reflux disease. Clearance of refluxed material is a major defence mechanism against reflux. Several studies have been devoted to oesophageal acid clearance but oesophageal clearance of refluxed duodenal contents (DC) has rarely been addressed. Aim: To compare oesophageal acid and DC clearance. Methods: Ten healthy volunteers (five women, mean age 23 (1) years) were studied. Firstly, a balloon tip catheter, positioned in the duodenum under fluoroscopy, was used to aspirate DC after stimulation by a high caloric liquid meal (200 ml, 300 kcal). During the second session, pH and Bilitec probes were positioned 5 cm above the lower oesophageal sphincter and a small infusion catheter was introduced into the proximal oesophagus. The subject was placed supine under a gamma camera. One of two different solutions (DC mixed with 0.2 mCi Tc99m pertechnetate or citric acid (pH 2) mixed with 0.2 mCi Tc99m pertechnetate) was infused into the proximal oesophagus and the subject was instructed to swallow at 20 second intervals. Clearance was assessed using scintigraphy (dynamic acquisition, one frame per second in the anterior view; calculation of time to clear peak counts to background level), pH (time to pH<4) or Bilitec (time absorbance >0.14) monitoring, with or without continuous saliva aspiration. Each condition was studied twice in a randomised design; measurement time was four minutes, interrupted by water flushing, with a two minute rest period. Results are given as mean (SEM) and were compared by Student’s t test and Pearson correlation. Results: Scintigraphic evaluation showed a volume clearance time of 29 (3) seconds for acid and 28 (9) seconds for DC (NS). Saliva aspiration had no significant influence on volume clearance of acid or DC (28 (4) and 30 (13) seconds, respectively; NS). pH monitoring showed an acid clearance time of

  7. Identification of novel secreted proteases during extracellular proteolysis by dermatophytes at acidic pH.

    PubMed

    Sriranganadane, Dev; Waridel, Patrice; Salamin, Karine; Feuermann, Marc; Mignon, Bernard; Staib, Peter; Neuhaus, Jean-Marc; Quadroni, Manfredo; Monod, Michel

    2011-11-01

    The dermatophytes are a group of closely related fungi which are responsible for the great majority of superficial mycoses in humans and animals. Among various potential virulence factors, their secreted proteolytic activity attracts a lot of attention. Most dermatophyte-secreted proteases which have so far been isolated in vitro are neutral or alkaline enzymes. However, inspection of the recently decoded dermatophyte genomes revealed many other hypothetical secreted proteases, in particular acidic proteases similar to those characterized in Aspergillus spp. The validation of such genome predictions instigated the present study on two dermatophyte species, Microsporum canis and Arthroderma benhamiae. Both fungi were found to grow well in a protein medium at acidic pH, accompanied by extracellular proteolysis. Shotgun MS analysis of secreted protein revealed fundamentally different protease profiles during fungal growth in acidic versus neutral pH conditions. Most notably, novel dermatophyte-secreted proteases were identified at acidic pH such as pepsins, sedolisins and acidic carboxypeptidases. Therefore, our results not only support genome predictions, but demonstrate for the first time the secretion of acidic proteases by dermatophytes. Our findings also suggest the existence of different pathways of protein degradation into amino acids and short peptides in these highly specialized pathogenic fungi. PMID:21919205

  8. Optimization of pH values to formulate the bireagent kit for serum uric acid assay.

    PubMed

    Huang, Ya; Chen, Yuanxiang; Yang, Xiaolan; Zhao, Hua; Hu, Xiaolei; Pu, Jun; Liao, Juan; Long, Gaobo; Liao, Fei

    2015-01-01

    A new formulation of the bireagent kit for serum uric acid assay was developed based on the effects of pH on enzyme stability. At 4 °C, half-lives of uricases from Bacillus fastidious and Arthrobacter globiforms were longer than 15 months at pH 9.2, but became shorter at pH below 8.0; half-lives of ascorbate oxidase and peroxidase were comparable at pH 6.5 and 7.0, but became much shorter at pH higher than 7.4. In the new formulation of the bireagent kit, Reagent A contained peroxidase, 4-aminoantipyrine, and ascorbate oxidase in 50 mM phosphate buffer at pH 6.5; Reagent B contained B. fastidious or A. globiforms uricase in 50 mM sodium borate buffer at pH 9.2; Reagents A and B were mixed at 4:1 to produce a final pH from 7.2 to 7.6 for developing a stable color. The new bireagent kit consumed smaller quantities of three enzymes for the same shelf life. With the new bireagent kit, there were linear responses of absorbance at 546 nm to uric acid up to 34 mM in reaction mixtures and a good correlation of uric acid levels in clinical sera with those by a commercial kit, but stronger resistance to ascorbate. Therefore, the new formulation was advantageous. PMID:24673428

  9. Changes in soil pH across England and Wales in response to decreased acid deposition

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Bellamy, P. H.

    2009-04-01

    In our recent analysis of data from the National Soil Inventory of England and Wales, we found widespread changes in soil pH across both countries between the two samplings of the Inventory. In general, soil pH increased - i.e. soils became less acid - under all land uses. The Inventory was first sampled in 1978-83 on a 5-km grid over the whole area. This yielded about 6,000 sites of which 5,662 could be sampled for soil. Roughly 40% of the sites were re-sampled at intervals from 12 to 25 years after the original sampling - in 1994/96 for agricultural land and in 2002/03 for non-agricultural. Exactly the same sampling and analytical protocols were used in the two samplings. In arable soils, the increase in pH was right across the range, whereas in grassland soils the main increase was at the acid end of the scale (pH < 5.5) with a small increase above pH 7. Some part of the change is likely to have been due to changes in land management. This includes better targeting of agricultural lime on acid soils; changes in nitrogen fertilizer use; deeper ploughing bringing up more calcareous subsoil on soils on calcareous materials; and so forth. However a major driver appears to have been decreased acid deposition to land. The total amounts of nitrogen compounds deposited were relatively unchanged over the survey period, but the amounts of acidifying sulphur compounds decreased by approximately 50%. We constructed a linear regression model to assess the relation between the rate of change in pH (normalised to an annual basis) and the rate of change in acid deposition, as modified by soil properties (pH, clay content, organic matter content), rainfall and past acid deposition. We used data on rainfall and acid deposition over the survey period on the same 5-km grid as the NSI data. We fitted the model separately for each land use category. The results for arable land showed a significant effect of the change in rate of acid deposition, though a significant part of the

  10. Acid and base recovery from brine solution using PVP intermediate-based bipolar membrane through water splitting technology

    NASA Astrophysics Data System (ADS)

    Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha

    2015-10-01

    Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.

  11. Metal Interactions with Microbial Biofilms in Acidic and Neutral pH Environments

    PubMed Central

    Ferris, F. G.; Schultze, S.; Witten, T. C.; Fyfe, W. S.; Beveridge, T. J.

    1989-01-01

    Microbial biofilms were grown on strips of epoxy-impregnated filter paper submerged at four sites in water contaminated with metals from mine wastes. At two sample stations, the water was acidic (pH 3.1); the other sites were in a lake restored to a near neutral pH level by application of a crushed limestone slurry. During a 17-week study period, planktonic bacterial counts increased from 101 to 103 CFU/ml at all sites. Biofilm counts increased rapidly over the first 5 weeks and then leveled to 104 CFU/cm2 in the neutral pH system and 103 CFU/cm2 at the acidic sites. In each case, the biofilms bound Mn, Fe, Ni, and Cu in excess of the amounts adsorbed by control strips covered with nylon filters (pore size, 0.22 μm) to exclude microbial growth; Co bound under neutral conditions but not under acidic conditions. Conditional adsorption capacity constants, obtained graphically from the data, showed that biofilm metal uptake at a neutral pH level was enhanced by up to 12 orders of magnitude over acidic conditions. Similarly, adsorption strength values were usually higher at elevated pH levels. In thin sections of the biofilms, encapsulated bacterial cells were commonly found enmeshed together in microcolonies. The extracellular polymers often contained iron oxide precipitates which generated weak electron diffraction patterns with characteristic reflections for ferrihydrite (Fe2O3 · H2O) at d equaling 0.15 and 0.25 nm. At neutral pH levels, these deposits incorporated trace amounts of Si and exhibited a granular morphology, whereas acicular crystalloids containing S developed under acidic conditions. Images PMID:16347914

  12. A new boronic acid fluorescent sensor based on fluorene for monosaccharides at physiological pH

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, Rahman; Mohadjerani, Maryam; Pooryousef, Mona; Eslami, Abbas; Emami, Saeed

    2015-06-01

    Fluorescent boronic acids are very useful fluorescent sensor for detection of biologically important saccharides. Herein we synthesized a new fluorene-based fluorescent boronic acid that shows significant fluorescence changes upon addition of saccharides at physiological pH. Upon addition of fructose, sorbitol, glucose, galactose, ribose, and maltose at different concentration to the solution of 7-(dimethylamino)-9,9-dimethyl-9H-fluoren-2-yl-2-boronic acid (7-DMAFBA, 1), significant decreases in fluorescent intensity were observed. It was found that this boronic acid has high affinity (Ka = 3582.88 M-1) and selectivity for fructose over glucose at pH = 7.4. The sensor 1 showed a linear response toward D-fructose in the concentrations ranging from 2.5 × 10-5 to 4 × 10-4 mol L-1 with the detection limit of 1.3 × 10-5 mol L-1.

  13. Dissolved Divalent Metal and pH Effects on Amino Acid Polymerization: A Thermodynamic Evaluation

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-06-01

    Polymerization of amino acids is a fundamentally important step for the chemical evolution of life. Nevertheless, its response to changing environmental conditions has not yet been well understood because of the lack of reliable quantitative information. For thermodynamics, detailed prediction over diverse combinations of temperature and pH has been made only for a few amino acid-peptide systems. This study used recently reported thermodynamic dataset for the polymerization of the simplest amino acid "glycine (Gly)" to its short peptides (di-glycine and tri-glycine) to examine chemical and structural characteristics of amino acids and peptides that control the temperature and pH dependence of polymerization. Results showed that the dependency is strongly controlled by the intramolecular distance between the amino and carboxyl groups in an amino acid structure, although the side-chain group role is minor. The polymerization behavior of Gly reported earlier in the literature is therefore expected to be a typical feature for those of α-amino acids. Equilibrium calculations were conducted to examine effects of dissolved metals as a function of pH on the monomer-polymer equilibria of Gly. Results showed that metals shift the equilibria toward the monomer side, particularly at neutral and alkaline pH. Metals that form weak interaction with Gly (e.g., Mg2+) have no noticeable influence on the polymerization, although strong interaction engenders significant decrease of the equilibrium concentrations of Gly peptides. Considering chemical and structural characteristics of Gly and Gly peptides that control their interactions with metals, it can be expected that similar responses to the addition of metals are applicable in the polymerization of neutral α-amino acids. Neutral and alkaline aqueous environments with dissolved metals having high affinity with neutral α-amino acids (e.g., Cu2+) are therefore not beneficial places for peptide bond formation on the primitive

  14. The pH at the First Equivalence Point in the Titration of a Diprotic Acid

    NASA Astrophysics Data System (ADS)

    Ault, Addison

    2003-12-01

    Some readers will note a similarity between this approach and the one I took in a paper entitled “Do pH in Your Head” (2). In an example in that article the isoelectric pH of glycine (the pH at which the average charge of a glycine molecule is zero), has the value of 6.0, which is exactly half-way between 2.4, the pKa of the carboxyl group of glycine, and 9.6, the pKa of the ammonium group of glycine. This is what one would expect when realizing that a solution of neutral glycine right out of the bottle is equivalent to glycine obtained by titration of the conjugate acid of glycine to the first equivalence point. Those who are interested might want to consider why the isoelectric pH of an “acidic” amino acid, such as alanine, is exactly half-way between the pKa values of the two carboxyl groups, and why the isoelectric pH of a “basic” amino acid such as lysine is exactly half-way between the pKa values of the two ammonium groups.

  15. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. PMID:26954089

  16. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  17. Autoinducer-2 detection among commensal oral streptococci is dependent on pH and boric acid.

    PubMed

    Cuadra, Giancarlo A; Frantellizzi, Ashley J; Gaesser, Kimberly M; Tammariello, Steven P; Ahmed, Anika

    2016-07-01

    Autoinducer-2, considered a universal signaling molecule, is produced by many species of bacteria; including oral strains. Structurally, autoinducer-2 can exist bound to boron (borated autoinducer-2). Functionally, autoinducer-2 has been linked to important bacterial processes such as virulence and biofilm formation. In order to test production of autoinducer-2 by a given bacterial strain, a bioassay using marine bioluminescent bacteria Vibrio harveyi as a reporter for autoinducer-2 has been designed. We hypothesize that pH adjustment and addition of boron are required for optimal bioluminescence and accurate autoinducer-2 detection. Using this reporter strain we tested autoinducer-2 activity from two oral commensal species, Streptococcus gordonii DL1 and Streptococcus oralis 34. Spent broth was collected and adjusted to pH 7.5 and supplemented with boric acid prior to measuring autoinducer- 2 activity. Results show that low pH inhibits bioluminescence of the reporter strain, but pH 7.5 allows for bioluminescence induction and proper readings of autoinducer-2 activity. Addition of boric acid also has a positive effect on bioluminescence allowing for a more sensitive detection of autoinducer-2 activity. Our data suggests that although autoinducer-2 is present in spent broth, low pH and/or low levels of boric acid become an obstacle for proper autoinducer-2 detection. For proper autoinducer-2 detection, we propose a protocol using this bioassay to include pH adjustment and boric acid addition to spent broth. Studies on autoinducer-2 activity in several bacteria species represent an important area of study as this universal signaling molecule is involved in critical bacterial phenotypes such as virulence and biofilm formation. PMID:27350615

  18. Fermentation of cucumbers brined with calcium chloride instead of sodium chloride.

    PubMed

    McFeeters, Roger F; Pérez-Díaz, Ilenys

    2010-04-01

    Waste water containing high levels of NaCl from cucumber fermentation tank yards is a continuing problem for the pickled vegetable industry. A major reduction in waste salt could be achieved if NaCl were eliminated from the cucumber fermentation process. The objectives of this project were to ferment cucumbers in brine containing CaCl(2) as the only salt, to determine the course of fermentation metabolism in the absence of NaCl, and to compare firmness retention of cucumbers fermented in CaCl(2) brine during subsequent storage compared to cucumbers fermented in brines containing both NaCl and CaCl(2) at concentrations typically used in commercial fermentations. The major metabolite changes during fermentation without NaCl were conversion of sugars in the fresh cucumbers primarily to lactic acid which caused pH to decrease to less than 3.5. This is the same pattern that occurs when cucumbers are fermented with NaCl as the major brining salt. Lactic acid concentration and pH were stable during storage and there was no detectable production of propionic acid or butyric acid that would indicate growth of spoilage bacteria. Firmness retention in cucumbers fermented with 100 to 300 mM CaCl(2) during storage at a high temperature (45 degrees C) was not significantly different from that obtained in fermented cucumbers with 1.03 M NaCl and 40 mM CaCl(2). In closed jars, cucumber fermentations with and without NaCl in the fermentation brine were similar both in the chemical changes caused by the fermentative microorganisms and in the retention of firmness in the fermented cucumbers. PMID:20492282

  19. Forward Osmosis Brine Drying

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  20. Bilayers and wormlike micelles at high pH in fatty acid soap systems.

    PubMed

    Xu, Wenlong; Liu, Huizhong; Song, Aixin; Hao, Jingcheng

    2016-03-01

    Bilayers at high pH in the fatty acid systems of palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O and stearic acid/CsOH/H2O can form spontaneously (Xu et al., 2014, 2015). In this work, the bilayers can still be observed at 25°C with an increase of the concentration of fatty acids. We found that wormlike micelles can also be prepared in the fatty acid soap systems at high pH, even though the temperature was increased to be 50°C. The viscoelasticity, apparent viscosity, yield stress of the bilayers were determined by the rheological measurements. Wormlike micelles were identified by cryogenic transmission electron microscopy (cryo-TEM) and emphasized by the rheological characterizations, which are in accordance with the Maxwell fluids with good fit of Cole-Cole plots. The phase transition temperature was determined by differential scanning calorimetry (DSC) and the transition process was recorded. The regulating role of counterions of fatty acids were discussed by (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) as comparison, concluding that counterions with appropriate hydrated radius were the vital factor in the formation wormlike micelles. PMID:26688122

  1. Recovery of carboxylic acids at pH greater than pK{sub a}

    SciTech Connect

    Tung, L.A.

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pK{sub a} and regenerability depend on sorbent basicity; apparent pK{sub a} and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  2. Algal and Bacterial Activities in Acidic (pH 3) Strip Mine Lakes

    PubMed Central

    Gyure, Ruth A.; Konopka, Allan; Brooks, Austin; Doemel, William

    1987-01-01

    Reservoir 29 and Lake B are extremely acid lakes (epilimnion pHs of 2.7 and 3.2, respectively), because they receive acidic discharges from coal refuse piles. They differ in that the pH of profundal sediments in Reservoir 29 increased from 2.7 to 3.8 during the period of thermal stratification, whereas permanently anoxic sediments in Lake B had a pH of 6.2. The pH rise in Reservoir 29 sediments was correlated with a temporal increase in H2S concentration in the anaerobic hypolimnion from 0 to >1 mM. The chlorophyll a levels in the epilimnion of Reservoir 29 were low, and the rate of primary production was typical of an oligotrophic system. However, there was a dense 10-cm layer of algal biomass at the bottom of the metalimnion. Production by this layer was low owing to light limitation and possibly H2S toxicity. The specific photosynthetic rates of epilimnetic algae were low, which suggests that nutrient availability is more important than pH in limiting production. The highest photosynthetic rates were obtained in water samples incubated at pH 2.7 to 4. Heterotrophic bacterial activity (measured by [14C]glucose metabolism) was greatest at the sediment/water interface. Bacterial production (assayed by thymidine incorporation) was as high in Reservoir 29 as in a nonacid mesotrophic Indiana lake. PMID:16347430

  3. Day-to-night variations of cytoplasmic pH in a crassulacean acid metabolism plant.

    PubMed

    Hafke, J B; Neff, R; Hütt, M T; Lüttge, U; Thiel, G

    2001-01-01

    In crassulacean acid metabolism (CAM) large amounts of malic acid are redistributed between vacuole and cytoplasm in the course of night-to-day transitions. The corresponding changes of the cytoplasmic pH (pHcyt) were monitored in mesophyll protoplasts from the CAM plant Kalanchoe daigremontiana Hamet et Perrier by ratiometric fluorimetry with the fluorescent dye 2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein as a pHcyt indicator. At the beginning of the light phase, pHcyt was slightly alkaline (about 7.5). It dropped during midday by about 0.3 pH units before recovering again in the late-day-to-early-dark phase. In the physiological context the variation in pHcyt may be a component of CAM regulation. Due to its pH sensitivity, phosphoenolpyruvate carboxylase appears as a likely target enzyme. From monitoring delta pHcyt in response to loading the cytoplasm with the weak acid salt K-acetate a cytoplasmic H(+)-buffer capacity in the order of 65 mM H+ per pH unit was estimated at a pHcyt of about 7.5. With this value, an acid load of the cytoplasm by about 10 mM malic acid can be estimated as the cause of the observed drop in pHcyt. A diurnal oscillation in pHcyt and a quantitatively similar cytoplasmic malic acid is predicted from an established mathematical model which allows simulation of the CAM dynamics. The similarity of model predictions and experimental data supports the view put forward in this model that a phase transition of the tonoplast is an essential functional element in CAM dynamics. PMID:11732184

  4. Effect of acidic pH on the stability of α-synuclein dimers.

    PubMed

    Lv, Zhengjian; Krasnoslobodtsev, Alexey V; Zhang, Yuliang; Ysselstein, Daniel; Rochet, Jean Christophe; Blanchard, Scott C; Lyubchenko, Yuri L

    2016-10-01

    Environmental factors, such as acidic pH, facilitate the assembly of α-synuclein (α-Syn) in aggregates, but the impact of pH on the very first step of α-Syn aggregation remains elusive. Recently, we developed a single-molecule approach that enabled us to measure directly the stability of α-Syn dimers. Unlabeled α-Syn monomers were immobilized on a substrate, and fluorophore-labeled monomers were added to the solution to allow them to form dimers with immobilized α-Syn monomers. The dimer lifetimes were measured directly from the fluorescence bursts on the time trajectories. Herein, we applied the single-molecule tethered approach for probing of intermolecular interaction to characterize the effect of acidic pH on the lifetimes of α-Syn dimers. The experiments were performed at pH 5 and 7 for wild-type α-Syn and for two mutants containing familial type mutations E46K and A53T. We demonstrate that a decrease of pH resulted in more than threefold increase in the α-Syn dimers lifetimes with some variability between the α-Syn species. We hypothesize that the stabilization effect is explained by neutralization of residues 96-140 of α-Syn and this electrostatic effect facilitates the association of the two monomers. Given that dimerization is the first step of α-Syn aggregation, we posit that the electrostatic effect thereby contributes to accelerating α-Syn aggregation at acidic pH. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 715-724, 2016. PMID:27177831

  5. Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Dargent, Maxime; Truche, Laurent; Dubessy, Jean; Bessaque, Gilles; Marmier, Hervé

    2015-10-01

    The formation of hydrothermal uranium ore deposits involves the reduction of dissolved U(VI)(aq) to uraninite. However, the nature of the reducing agent and the kinetics of such a process are currently unknown. These questions are addressed through dedicated experiments performed under conditions relevant for the genesis of unconformity-related uranium (URU) deposits. We tested the efficiency of the following potential reductants supposed to be involved in the reaction: H2, CH4, C-graphite and dissolved Fe(II). Results demonstrate the great efficiency of H2, CH4 and C-graphite to reduce U(VI)(aq) into uraninite in acidic chloride brines, unlike dissolved Fe(II). Times needed for H2 (1.4 bar), CH4 (2.4 bar) and C-graphite (water/carbon mass ratio = 10) to reduce 1 mM of U(VI)(aq) in an acidic brine (1 m LiCl, pH ≈ 1 fixed by HCl) to uraninite at 200 °C are 12 h, 3 days and 4 months, respectively. The effects of temperature (T) between 100 °C and 200 °C, H2 partial pressure (0.14, 1.4, and 5.4 bar), salinity (0.1, 1 and 3.2 m LiCl) and pH at 25 °C (0.8 and 3.3) on the reduction rate were also investigated. Results show that increasing temperature and H2 partial pressure increase the reaction rate, whereas increasing salinity or pH have the reverse effect. The reduction of uranyl to uraninite follows an apparent zero-order with respect to time, whatever the considered electron donor. From the measured rate constants, the following values of activation energy (Ea), depending on the nature of the electron donor, have been derived: EaC-graphite = 155 ± 3 kJ mol-1, EaCH4 = 143 ± 6 kJ mol-1, and EaH2 = 124 ± 15 kJ mol-1 at T < 150 °C and 32 ± 6 kJ mol-1 at T > 150 °C. An empirical relationship between the reaction rate, the hydrogen partial pressure, the uranyl speciation, and the temperature is also proposed. This allows an estimation of the time of formation of a giant U ore deposit such as McArthur River (Canada). The duration of the mineralizing event is

  6. Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake

    PubMed Central

    Murray, Alison E.; Kenig, Fabien; Fritsen, Christian H.; McKay, Christopher P.; Cawley, Kaelin M.; Edwards, Ross; Kuhn, Emanuele; McKnight, Diane M.; Ostrom, Nathaniel E.; Peng, Vivian; Ponce, Adrian; Priscu, John C.; Samarkin, Vladimir; Townsend, Ashley T.; Wagh, Protima; Young, Seth A.; Yung, Pung To; Doran, Peter T.

    2012-01-01

    The permanent ice cover of Lake Vida (Antarctica) encapsulates an extreme cryogenic brine ecosystem (−13 °C; salinity, 200). This aphotic ecosystem is anoxic and consists of a slightly acidic (pH 6.2) sodium chloride-dominated brine. Expeditions in 2005 and 2010 were conducted to investigate the biogeochemistry of Lake Vida’s brine system. A phylogenetically diverse and metabolically active Bacteria dominated microbial assemblage was observed in the brine. These bacteria live under very high levels of reduced metals, ammonia, molecular hydrogen (H2), and dissolved organic carbon, as well as high concentrations of oxidized species of nitrogen (i.e., supersaturated nitrous oxide and ∼1 mmol⋅L−1 nitrate) and sulfur (as sulfate). The existence of this system, with active biota, and a suite of reduced as well as oxidized compounds, is unusual given the millennial scale of its isolation from external sources of energy. The geochemistry of the brine suggests that abiotic brine-rock reactions may occur in this system and that the rich sources of dissolved electron acceptors prevent sulfate reduction and methanogenesis from being energetically favorable. The discovery of this ecosystem and the in situ biotic and abiotic processes occurring at low temperature provides a tractable system to study habitability of isolated terrestrial cryoenvironments (e.g., permafrost cryopegs and subglacial ecosystems), and is a potential analog for habitats on other icy worlds where water-rock reactions may cooccur with saline deposits and subsurface oceans. PMID:23185006

  7. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  8. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  9. Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system.

    PubMed

    Li, Xia; McTaggart, Matt; Malardier-Jugroot, Cecile

    2016-01-01

    We report the computational analysis, synthesis and characterization of folate functionalized poly(styrene-alt-maleic anhydride), PSMA for drug delivery purpose. The selection of the proper linker between the polymer and the folic acid group was performed before conducting the synthesis using Density Functional Theory (DFT). The computational results showed the bio-degradable linker 2, 4-diaminobutyric acid, DABA as a good candidate allowing flexibility of the folic acid group while maintaining the pH sensitivity of PSMA, used as a trigger for drug release. The synthesis was subsequently carried out in multi-step experimental procedures. The functionalized polymer was characterized using InfraRed spectroscopy, Nuclear Magnetic Resonance and Dynamic Light Scattering confirming both the chemical structure and the pH responsiveness of PSMA-DABA-Folate polymers. This study provides an excellent example of how computational chemistry can be used in selection process for the functional materials and product characterization. The pH sensitive polymers are expected to be used in delivering anti-cancer drugs to solid tumors with overly expressed folic acid receptors. PMID:27183249

  10. Improved purification of brine-shrimp (Artemia saline) (Na+ + K+)-activated adenosine triphosphatase and amino-acid and carbohydrate analyses of the isolated subunits.

    PubMed

    Peterson, G L; Hokin, L E

    1980-10-15

    Purification of the (Na+ + K+)-activated ATPase has been improved 2-fold the respect to both purity and yield over the previous method [Peterson, Ewing, Hootman & Conte (1978) J. Biol. Chem. 253, 4762-4770] by using Lubrol WX and non-denaturing concentrations of sodium dodecyl sulphate (SDS). The enzyme was purified 200-fold over the homogenate. The preparation had a specific activity of about 600 mumol of Pi/h per mg of protein, and was about 60% pure according to quantification of Coomassie Blue-stained SDS/polyacrylamide gels. The yield of purified enzyme was about 10 mg of protein per 100g of dry brine-shrimp (Artemia salina) cysts. The method is highly suitable for purification either on a small scale (10-25g of dry cysts) or on a large scale (900g of dry cysts) and methods are described for both. The large (Na+ + K+)-activated ATPase subunit (alpha-subunit) was isolated in pure form by SDS-gel filtration on Bio-Gel A 1.5m. The small subunit (beta-subunit) was eluted with other contaminating proteins on the Bio-Gel column, but was isolated in pure form by extraction from SDS/polyacrylamide gels. The amino acid and carbohydrate compositions of both subunits are reported. The alpha-subunit contained 5.2% carbohydrate by weight, and the beta-subunit 9.2%. Sialic acid was absent from both subunits. PMID:6272692

  11. Dynamics of fatty acid vesicles in response to pH stimuli.

    PubMed

    Ikari, Keita; Sakuma, Yuka; Jimbo, Takehiro; Kodama, Atsuji; Imai, Masayuki; Monnard, Pierre-Alain; Rasmussen, Steen

    2015-08-21

    We investigate the dynamics of decanoic acid/decanoate (DA) vesicles in response to pH stimuli. Two types of dynamic processes induced by the micro-injection of NaOH solutions are sequentially observed: deformations and topological transitions. In the deformation stage, DA vesicles show a series of shape deformations, i.e., prolate-oblate-stomatocyte-sphere. In the topological transition stage, spherical DA vesicles follow either of the two pathways, pore formation and vesicle fusion. The pH stimuli modify a critical aggregation concentration of DA molecules, which causes the solubilization of DA molecules in the outer leaflet of the vesicle bilayers. This solubilization decreases the outer surface area of the vesicle, thereby increasing surface tension. A kinetic model based on area difference elasticity theory can accurately describe the dynamics of DA vesicles triggered by pH stimuli. PMID:26166464

  12. Isolation and identification of oxidation products of guaiacol from brines and heated meat matrix.

    PubMed

    Bölicke, Sarah-Maria; Ternes, Waldemar

    2016-07-01

    In this study we investigated the formation of the oxidation products of guaiacol in brines and heated meat matrix: 6-nitrosoguaiacol, 4-nitroguaiacol and 6-nitroguaiacol. For this purpose we applied a newly developed HPLC-UV and LC-MS method. For the first time, 6-nitrosoguaiacol was determined in brine and meat (containing guaiacol and sodium nitrite), which had been heated to 80°C and subsequently subjected to simulated digestion. Application of 500mg/L ascorbic acid to the brines reduced guaiacol degradation at pH3 and simultaneously inhibited the formation of 6-nitrosoguaiacol compared to brines containing only 100mg/L of ASC. The oxidation products were isolated with a new extraction method from meat samples containing 400mg/kg sodium nitrite at pH3.6 following simulated digestion. When oxygen was added, 6-nitrosoguaiacol was determined even at legally allowed levels (150mg/kg) of the curing agent. Finally, we developed a new LC-MS method for the separation and qualitative determination of the four main smoke methoxyphenols. PMID:26937586

  13. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  14. Acidic pH increases airway surface liquid viscosity in cystic fibrosis.

    PubMed

    Tang, Xiao Xiao; Ostedgaard, Lynda S; Hoegger, Mark J; Moninger, Thomas O; Karp, Philip H; McMenimen, James D; Choudhury, Biswa; Varki, Ajit; Stoltz, David A; Welsh, Michael J

    2016-03-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3- concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator-dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  15. Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions.

    PubMed

    Holic, Nathalie; Fenard, David

    2016-01-01

    Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications. PMID:27317171

  16. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    PubMed Central

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  17. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  18. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels.

    PubMed

    Zhang, Zhenhua; Zou, Yueyu; Wu, Taigang; Huang, Caihuan; Pei, Kehan; Zhang, Guangwen; Lin, Xiaohua; Bai, Weibin; Ou, Shiyi

    2016-01-01

    Chlorogenic acid (CGA) is a phenolic acid that ubiquitously exists in fruits. This work aims to investigate whether and how CGA influences HMF formation during heating fructose alone, or with an amino acid. The results showed that that CGA increased 5-hydroxymethylfurfural (HMF) formation. At pH 5.5 and 7.0, the addition of 5.0 μmol/ml CGA increased HMF formation by 49.4% and 25.2%, respectively when heating fructose alone, and by 9.0% and 16.7%, respectively when heating fructose with aspartic acid. CGA significantly increased HMF formation by promoting 3-deoxosone formation, and its conversion to HMF by inhibiting HMF elimination, especially in the Maillard reaction system. A comparison of the catalytic capacity of CGA with its six analogous compounds showed that both its di-hydroxyphenyl and carboxyl groups function in increasing HMF formation. PMID:26213045

  19. Volatility of HCl and the thermodynamics of brines during brine dryout

    SciTech Connect

    Simonson, J.M.; Palmer, D.A.

    1997-04-01

    Laboratory measurements of liquid-vapor partitioning (volatility) of chlorides from brines to steam can be used to indicate the potential for corrosion problems in geothermal systems. Measurements of volatilities of solutes in chloride brines have established a possible mechanism for the production of high-chloride steam from slightly acidic high temperature brines. Questions concerning the fate of NaCl in the steam production process have been addressed through extensive measurements of its volatility from brines ranging in concentration from dilute solutions to halite saturation. Recent measurements of chloride partitioning to steam over brines in contact with Geysers rock samples are consistent with our concept of the process for production of high-chloride steam.

  20. Self-assembly of humic acid: influence of pH and chemical composition

    NASA Astrophysics Data System (ADS)

    Chilom, G.; Nagy, Z.; Delp, S.; Huff, G.; Rice, J. A.

    2010-12-01

    Interest in enhancing the residence time of soil organic matter (SOM) through natural or engineered mechanisms as a possible means of sequestering organic carbon to mitigate the impacts of carbon-dioxide induced global warming effects has steadily increased over the last decade. Humic substances are major organic constituents of SOM and were recently shown that can self-organize or self-assemble into a composite material with different characteristics than those of the starting materials, and the organized state controls its mineralization by microorganisms. This study examines the role of pH and the relative concentration of humic-like amphiphilic (HA2) and lipid-like (L1) components in the self-assembly of the lipid-humic composite (L0). The L0, L1 and HA2 fractions were isolated using a combination of organic solvent and aqueous alkaline extractions from two humic acid samples at various pH values. HA2 and L1 isolated at low pH were mixed in various mass ratios in organic solvent in order to “reassemble” L0. The data show that the amount of L0 decreased with increasing the pH and reached a constant value from pH 6 to pH 11, and the proportion of L1 increased with the pH. Comparative measurements of the specific heat capacity as a function of temperature of the recombined L0 reveal differences when compared to the physical mixture of the HA2 and L1 depending on the ratio of the components. These differences are an indication that the recombined L0’s solid-state structure is more than just a mixture of components and is determined by specific interactions between its components.

  1. Indomethacin inhibits tetrodotoxin-resistant Na(+) channels at acidic pH in rat nociceptive neurons.

    PubMed

    Nakamura, Michiko; Jang, Il-Sung

    2016-06-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are well-known inhibitors of cyclooxygenases (COXs) and are widely used for the treatment of inflammatory pain; however several NSAIDs display COX-independent analgesic action including the inhibition of voltage-gated Na(+) channels expressed in primary afferent neurons. In the present study, we examined whether NSAIDs modulate tetrodotoxin-resistant (TTX-R) Na(+) channels and if this modulation depends on the extracellular pH. The TTX-R Na(+) currents were recorded from small-sized trigeminal ganglion neurons by using a whole-cell patch clamp technique. Among eight NSAIDs tested in this study, several drugs, including aspirin and ibuprofen, did not affect TTX-R Na(+) channels either at pH 7.4 or at pH 6.0. However, we found that indomethacin, and, to a lesser extent, ibuprofen and naproxen potently inhibited the peak amplitude of TTX-R Na(+) currents at pH 6.0. The indomethacin-induced inhibition of TTX-R Na(+) channels was more potent at depolarized membrane potentials. Indomethacin significantly shifted both the voltage-activation and voltage-inactivation relationships to depolarizing potentials at pH 6.0. Indomethacin accelerated the development of inactivation and retarded the recovery from inactivation of TTX-R Na(+) channels at pH 6.0. Given that indomethacin and several other NSAIDs could further suppress local nociceptive signals by inhibiting TTX-R Na(+) channels at an acidic pH in addition to the classical COX inhibition, these drugs could be particularly useful for the treatment of inflammatory pain. PMID:26898291

  2. ANALYTICAL VARIATION IN THE DETERMINATION OF THE FATTY ACID COMPOSITION OF STANDARD PREPARATIONS OF BRINE SHRIMP ARTEMIA: AN INTERLABORATORY EXERCISE

    EPA Science Inventory

    An international interlaboratory exercise was conducted to investigate the variability associated with the preparation and analysis of samples and the reporting of fatty acid composition data for tvo samples of Artemia supplied to the laboratories by the Artemia Reference Center ...

  3. Low-cost silica, calcite and metal sulfide scale control through on-site production of sulfurous acid from H{sub 2}S or elemental sulfur

    SciTech Connect

    Gallup, D.L.; Kitz, K.

    1997-12-31

    UNOCAL Corporation currently utilizes brine pH modification technology to control scale deposition. Acids utilized in commercial operations include, sulfuric and hydrochloric. A new process reduces costs by producing acid on-site by burning hydrogen sulfide or elemental sulfur. Hydrogen sulfide in non-condensible gas emissions is reduced by oxidization to sulfurous acid. Brine or condensate is treated with sulfurous acid to control scale deposition, mitigate corrosion and improve gas partitioning in condensers.

  4. Parasitophorous vacuoles of Leishmania amazonensis-infected macrophages maintain an acidic pH.

    PubMed Central

    Antoine, J C; Prina, E; Jouanne, C; Bongrand, P

    1990-01-01

    Leishmania amastigotes are intracellular protozoan parasites of mononuclear phagocytes which reside within parasitophorous vacuoles of phagolysosomal origin. The pH of these compartments was studied with the aim of elucidating strategies used by these microorganisms to evade the microbicidal mechanisms of their host cells. For this purpose, rat bone marrow-derived macrophages were infected with L. amazonensis amastigotes. Intracellular acidic compartments were localized by using the weak base 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine as a probe. This indicator, which can be detected by light microscopy by using immunocytochemical methods, mainly accumulated in perinuclear lysosomes of uninfected cells, whereas in infected cells, it was essentially localized in parasitophorous vacuoles, which thus appeared acidified. Phagolysosomal pH was estimated quantitatively in living cells loaded with the pH-sensitive endocytic tracer fluoresceinated dextran. After a 15- to 20-h exposure, the tracer was mainly detected in perinuclear lysosomes and parasitophorous vacuoles of uninfected and infected macrophages, respectively. Fluorescence intensities were determined from digitized video images of single cells after processing and automatic subtraction of background. We found statistically different mean pH values of 5.17 to 5.48 for lysosomes and 4.74 to 5.26 for parasitophorous vacuoles. As for lysosomes of monensin-treated cells, the pH gradient of parasitophorous vacuoles collapsed after monensin was added. This very likely indicates that these vacuoles maintain an acidic internal pH by an active process. These results show that L. amazonensis amastigotes are acidophilic and opportunistic organisms and suggest that these intracellular parasites have evolved means for survival under these harsh conditions and have acquired plasma membrane components compatible with the environment. Images PMID:1689700

  5. The Cytosolic pH of Individual Saccharomyces cerevisiae Cells Is a Key Factor in Acetic Acid Tolerance

    PubMed Central

    Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris

    2015-01-01

    It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199

  6. Sensitivity of greenback cutthroat trout to acidic pH and elevated aluminum

    SciTech Connect

    Woodward, D.F. ); Farag, A.M. ); Little E.E.; Steadman, B. ); Yancik, R. )

    1991-01-01

    The greenback cutthroat trout Oncorhynchus clarki stomias is a threatened subspecies native to the upper South Platte and Arkansas rivers between Denver and Fort Collins, Colorado, an area also susceptible to acid deposition. In laboratory studies, the authors exposed this subspecies to nominal pHs of 4.5-6.5 and to nominal aluminum concentrations of 0, 50, 100, and 300 {mu}g/L; the control was pH 6.5 treatment without Al. The authors used soft water that contained 1.3 mg Ca/L. Exposures of 7 days each were made for four early life stages: fertilized egg, eyed embryo, alevin, and swim-up larva. Effects were measured at the end of exposure and again after a recovery period lasting until 40 days posthatch. The alevin stage was the most sensitive: at pH 5.0 with no Al, survival was reduced by 68% and swimming duration by 76%, at pH 6.0 and 50 {mu}g Al/L, swimming duration was reduced by 62%, but survival was not affected. Reductions in whole-body concentrations of Na, K, and Ca indicated organism stress. Sodium was reduced most-about 50% in alevins exposed to pH 5.0 without Al and to pH 6.0 with 50 {mu}g Al/L. Growth and the ratio of RNA to DNA were not affected by any exposure. All responses that were affected during exposure returned to normal by 40 days posthatch. Overall, it appeared that pH 6.0 and 50 {mu}g Al/L might be detrimental to greenback cutthroat trout populations.

  7. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  8. Isoelectric focusing of dansylated amino acids in immobilized pH gradients

    NASA Technical Reports Server (NTRS)

    Bianchi-Bosisio, Adriana; Righetti, Pier Giorgio; Egen, Ned B.; Bier, Milan

    1986-01-01

    The 21 free amino acids commonly encountered in proteins have been transformed into 'carrier ampholyte' species by reacting their primary amino groups with dansyl chloride. These derivatives can thus be focused in an immobilized pH gradient covering the pH interval 3.1 to 4.1, except for arginine, which still retains a pI of 8.8. Due to their inherent fluorescence, the dansyl derivatives are revealed in UV light, with a sensitivity of the order of 2-4 ng/sq mm. All nearest neighbors are separated except for the following couples: Asn-Gln, Gly-Thr, Val-Ile and Cys-Cys2, with a resolving power, in a Delta(pI) scale, of the order of 0.0018 pH units. Except for a few cases (notably the aromatic amino acids), the order of pI values is well correlated with the pK values of carboxyl groups, suggesting that the latter are not altered by dansylation. From the set of pK(COOH)-pI values of the different amino acids, the pK of the tertiary amino group in the dansyl label has been calculated to be 5.11 + or - 0.06. Knowing the pK of the amino-dansyl and the pI of the excess, free dansyl label (pI = 3.34), a pK of 1.57 is derived for its sulfonic acid group.

  9. Spontaneous aggregation of humic acid observed with AFM at different pH.

    PubMed

    Colombo, Claudio; Palumbo, Giuseppe; Angelico, Ruggero; Cho, Hyen Goo; Francioso, Ornella; Ertani, Andrea; Nardi, Serenella

    2015-11-01

    Atomic force microscopy in contact (AFM-C) mode was used to investigate the molecular dynamics of leonardite humic acid (HA) aggregate formed at different pH values. HA nanoparticles dispersed at pH values ranging from 2 to 12 were observed on a mica surface under dry conditions. The most clearly resolved and well-resulted AFM images of single particle were obtained at pH 5, where HA appeared as supramolecular particles with a conic shape and a hole in the centre. Those observations suggested that HA formed under these conditions exhibited a pseudo-amphiphilic nature, with secluded hydrophobic domains and polar subunits in direct contact with hydrophilic mica surface. Based on molecular simulation methods, a lignin-carbohydrate complex (LCC) model was proposed to explain the HA ring-like morphology. The LCC model optimized the parameters of β-O-4 linkages between 14 units of 1-4 phenyl propanoid, and resulted in an optimized structure comprising 45-50 linear helical molecules looped spirally around a central cavity. Those results added new insights on the adsorption mechanism of HA on polar surfaces as a function of pH, which was relevant from the point of view of natural aggregation in soil environment. PMID:26295541

  10. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  11. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  12. Influence of polysorbate 80 and cyclopropane fatty acid synthase activity on lactic acid production by Lactobacillus casei ATCC 334 at low pH.

    PubMed

    Broadbent, J R; Oberg, T S; Hughes, J E; Ward, R E; Brighton, C; Welker, D L; Steele, J L

    2014-03-01

    Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH₄OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8. PMID:24370881

  13. Catalysis of Glyceraldehyde Synthesis by Primary or Secondary Amino Acids Under Prebiotic Conditions as a Function of pH

    NASA Astrophysics Data System (ADS)

    Breslow, Ronald; Ramalingam, Vijayakumar; Appayee, Chandrakumar

    2013-10-01

    The synthesis of an excess of D-glyceraldehyde by coupling glycolaldehyde with formaldehyde under prebiotic conditions is catalyzed by L amino acids having primary amino groups at acidic pH's, but at neutral or higher pH's they preferentially form L-glyceraldehyde. L Amino acids having secondary amino groups, such as proline, have the reverse preferences, affording excess L-glyceraldehyde at low pH but excess D-glyceraldehyde at higher pHs. Detailed mechanistic proposals make these preferences understandable. The relevance of these findings to the origin of D sugars on prebiotic Earth is described.

  14. pH-Sensitive Polymeric Micelle-based pH Probe for Detecting and Imaging Acidic Biological Environments

    PubMed Central

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W.; Jeon, Yong Sun; Bae, You Han

    2012-01-01

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b- poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2–0.3 pH unit differences by pH-induced “on/off”-like sensing of NMR and magnetic resonance spectroscopy (MRS). The micellar pH probes sensed pH differences in non-biological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo. PMID:22861824

  15. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH

    NASA Astrophysics Data System (ADS)

    Mayanna, Sathish; Peacock, Caroline L.; Schäffner, Franziska; Grawunder, Anja; Merten, Dirk; Kothe, Erika; Büchel, Georg

    2014-05-01

    The precipitation of biogenic Mn oxides at acidic pH is rarely reported and poorly understood, compared to biogenic Mn oxide precipitation at near neutral conditions. Here we identified and investigated the precipitation of biogenic Mn oxides in acidic soil, and studied their role in the retention of heavy metals, at the former uranium mining site of Ronneburg, Germany. The site is characterized by acidic pH, low carbon content and high heavy metal loads including rare earth elements. Specifically, the Mn oxides were present in layers identified by detailed soil profiling and within these layers pH varied from 4.7 to 5.1, Eh varied from 640 to 660 mV and there were enriched total metal contents for Ba, Ni, Co, Cd and Zn in addition to high Mn levels. Using electron microprobe analysis, synchrotron X-ray diffraction and X-ray absorption spectroscopy, we identified poorly crystalline birnessite (δ-MnO2) as the dominant Mn oxide in the Mn layers, present as coatings covering and cementing quartz grains. With geochemical modelling we found that the environmental conditions at the site were not favourable for chemical oxidation of Mn(II), and thus we performed 16S rDNA sequencing to isolate the bacterial strains present in the Mn layers. Bacterial phyla present in the Mn layers belonged to Firmicutes, Actinobacteria and Proteobacteria, and from these phyla we isolated six strains of Mn(II) oxidizing bacteria and confirmed their ability to oxidise Mn(II) in the laboratory. The biogenic Mn oxide layers act as a sink for metals and the bioavailability of these metals was much lower in the Mn layers than in adjacent layers, reflecting their preferential sorption to the biogenic Mn oxide. In this presentation we will report our findings, concluding that the formation of natural biogenic poorly crystalline birnessite can occur at acidic pH, resulting in the formation of a biogeochemical barrier which, in turn, can control the mobility and bioavailability of heavy metals in

  16. Sulfate reduction at low pH to remediate acid mine drainage.

    PubMed

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Bijmans, Martijn F M; Stams, Alfons J M

    2014-03-30

    Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed. PMID:24444599

  17. Silica scaling in simulated geothermal brines

    SciTech Connect

    Bohlmann, E.G.; Shor, A.J.; Berlinski, P.; Mesmer, R.E.

    1981-04-01

    A 6.3 1/sec (100 GPM) titanium corrosion test loop was modified to provide a dynamic facility for studying the formation of silica deposits, their properties and fates, as a function of brine composition, temperature, and flow conditions. Scale formation was studied in a segmented heat exchanger operating under realistic conditions; the segmented design permitted examination of scale formations in five temperature regimes. The program was terminated after minimal exploratory operation because of reduced sponsor perceptions of the need for concern with scaling problems. The runs which were completed dealt cursorily with brine concentration and pH effects. Results are presented.

  18. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel

    PubMed Central

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-01-01

    ABSTRACT Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  19. Mycorrhizal Response to Experimental pH and P Manipulation in Acidic Hardwood Forests

    PubMed Central

    Kluber, Laurel A.; Carrino-Kyker, Sarah R.; Coyle, Kaitlin P.; DeForest, Jared L.; Hewins, Charlotte R.; Shaw, Alanna N.; Smemo, Kurt A.; Burke, David J.

    2012-01-01

    Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e., <pH 5) are particularly vulnerable to P limitation. Results from previous studies in these systems are mixed with evidence both for and against P limitation. We hypothesized that shifts in mycorrhizal colonization and community structure help temperate forest ecosystems overcome an underlying P limitation by accessing mineral and organic P sources that are otherwise unavailable for direct plant uptake. We examined arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) communities and soil microbial activity in an ecosystem-level experiment where soil pH and P availability were manipulated in mixed deciduous forests across eastern Ohio, USA. One year after treatment initiation, AM root biomass was positively correlated with the most available P pool, resin P, while AM colonization was negatively correlated. In total, 15,876 EcM root tips were identified and assigned to 26 genera and 219 operational taxonomic units (97% similarity). Ectomycorrhizal richness and root tip abundance were negatively correlated with the moderately available P pools, while the relative percent of tips colonized by Ascomycetes was positively correlated with soil pH. Canonical correspondence analysis revealed regional, but not treatment, differences in AM communities, while EcM communities had both treatment and regional differences. Our findings highlight the complex interactions between mycorrhizae and the soil environment and further underscore the fact that mycorrhizal communities do not merely

  20. Influence of pH, bleaching agents, and acid etching on surface wear of bovine enamel.

    PubMed

    Soares, Ana Flávia; Bombonatti, Juliana Fraga Soares; Alencar, Marina Studart; Consolmagno, Elaine Cristina; Honório, Heitor Marques; Mondelli, Rafael Francisco Lia

    2016-02-01

    Development of new materials for tooth bleaching justifies the need for studies to evaluate the changes in the enamel surface caused by different bleaching protocols. Objective The aim of this study was to evaluate the bovine dental enamel wear in function of different bleaching gel protocols, acid etching and pH variation. Material and Methods Sixty fragments of bovine teeth were cut, obtaining a control and test areas. In the test area, one half received etching followed by a bleaching gel application, and the other half, only the bleaching gel. The fragments were randomly divided into six groups (n=10), each one received one bleaching session with five hydrogen peroxide gel applications of 8 min, activated with hybrid light, diode laser/blue LED (HL) or diode laser/violet LED (VHL) (experimental): Control (C); 35% Total Blanc Office (TBO35HL); 35% Lase Peroxide Sensy (LPS35HL); 25% Lase Peroxide Sensy II (LPS25HL); 15% Lase Peroxide Lite (LPL15HL); and 10% hydrogen peroxide (experimental) (EXP10VHL). pH values were determined by a pHmeter at the initial and final time periods. Specimens were stored, subjected to simulated brushing cycles, and the superficial wear was determined (μm). ANOVA and Tukey´s tests were applied (α=0.05). Results The pH showed a slight decrease, except for Group LPL15HL. Group LPS25HL showed the highest degree of wear, with and without etching. Conclusion There was a decrease from the initial to the final pH. Different bleaching gels were able to increase the surface wear values after simulated brushing. Acid etching before bleaching increased surface wear values in all groups. PMID:27008254

  1. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and organic acids. Variables included pH, ionic strength, metal concentrat...

  2. The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage.

    PubMed

    Mosley, Luke M; Willson, Philip; Hamilton, Benjamin; Butler, Greg; Seaman, Russell

    2015-10-01

    We tested the capacity of biochar (made at 450 °C from a common reed species) to neutralise pH and remove metals in two acid drainage waters (pH 2.6 and 4.6) using column leaching and batch mixing experiments. In the column experiments, the acid drainage water was neutralised upon passage through the biochar with substantial increases (4-5 pH units) in the leachate pH. In the batch experiments, the leachate pH remained above 6.5 when the drainage:biochar ratio was less than approximately 700:1 (L acid drainage:kg biochar) and 20:1 for the pH 4.6 and pH 2.6 drainage waters, respectively. Dissolved metal concentrations were reduced by 89-98 % (Fe ≈ Al > Ni ≈ Zn > Mn) in the leachate from the biochar. A key mechanism of pH neutralisation appears to be solid carbonate dissolution as calcite (CaCO3) was identified (via X-ray diffraction) in the biochar prior to contact with acid drainage, and dissolved alkalinity and Ca was observed in the leachate. Proton and metal removal by cation exchange, direct binding to oxygen-containing functional groups, and metal oxide precipitation also appears important. Further evaluation of the treatment capacity of other biochars and field trials are warranted. PMID:26004563

  3. Influence of five neutralizing products on intra-oral pH after rinsing with simulated gastric acid.

    PubMed

    Lindquist, Birgitta; Lingström, Peter; Fändriks, Lars; Birkhed, Dowen

    2011-08-01

    The aetiology of dental erosion may be of both extrinsic and intrinsic origin. The aim of the present study was to test the ability of various neutralizing products to raise the low intra-oral pH after an erosive exposure, in this case to gastric acid, which was simulated using hydrochloric acid (HCl). Eleven adults participated. They rinsed with 10 ml of 10 mM HCl (pH 2) or 10 ml of 100 mM HCl (pH 1) for 1 min, after which the pH was measured intra-orally for up to 30 min at four sites (two approximal, one buccal, and the dorsum of the tongue). After rinsing with the two acid solutions (pH 1 and pH 2), the following products were used: (i) antacid tablet; (ii) gum arabic lozenge; (iii) mineral water; (iv) milk; and (v) tap water (positive control). The negative control was no product use. The five test products were used for 2 min after the erosive challenge. All the products produced an initially higher pH compared with the negative control. The antacid tablet resulted in the greatest and most rapid increase in pH, followed by the lozenge. In dental practice, the use of any of the neutralizing products tested, especially the antacid tablet, could be recommended in order to increase the intra-oral pH after an erosive challenge. PMID:21726291

  4. pH dependence of methyl phosphonic acid, dipicolinic acid, and cyanide by surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Farquharson, Stuart; Gift, Alan; Maksymiuk, Paul; Inscore, Frank E.; Smith, Wayne W.

    2004-03-01

    U.S. and Coalition forces fighting terrorism in Afghanistan and Iraq must consider a wide range of attack scenarios in addition to car bombings. Among these is the intentional poisoning of water supplies to obstruct military operations. To counter such attacks, the military is developing portable analyzers that can identify and quantify potential chemical agents in water supplies at microgram per liter concentrations within 10 minutes. To aid this effort we have been investigating the value of a surface-enhanced Raman spectroscopy based portable analyzer. In particular we have been developing silver-doped sol-gels to generate SER spectra of chemical agents and their hydrolysis products. Here we present SER spectra of methyl phosphonic acid and cyanide as a function of pH, an important factor affecting quantitation measurements, which to our knowledge has not been examined. In addition, dipicolinic acid, a chemical signature associated with anthrax-causing spores, is also presented.

  5. The role of low molecular weight organic acids on controlling pH in coastal sea water

    NASA Astrophysics Data System (ADS)

    Ding, H.

    2015-12-01

    Series investigation of the Jiaozhou Bay, China, observed existences of three low molecular weight organic acids (LMWOAs), including lactic acid, acetic acid and formic acid, with high concentration in the sea water. Generally, their amount accounted for about 20% of DOC in the sea water of the bay. Human activities around the bay were considered as the major source of the LMWOAs. Also, long term detection showed that the pH value in the Jiaozhou Bay was lower than that in the adjacent Yellow Sea. On average, the difference of pH values between the bay and the Yellow was about 0.2. Due to higher concentrations of the LMWOAs, their contribution to lower pH value of the bay should not be ignored. To validate the effect of LMWOAs on the pH value of the bay, a new software was developed to calculate the pH value in the sea water samples based on alkalinity by adding three items of the three organic acids in the expression. Compared to the traditional pH calculating software, the new software could improve the calculating results significantly. Our results confirmed that LMWOAs was an important control factor to adjust pH values in coastal area.

  6. Basis of antimalarial action: non-weak base effects of chloroquine on acid vesicle pH

    SciTech Connect

    Krogstad, D.J.; Schlesinger, P.H.

    1987-03-01

    Biologically active concentrations of chloroquine increase the pH of the parasite's acid vesicles within 3-5 min. This increase in pH results from two mechanisms, one of which is markedly reduced in chloroquine-resistant parasites. Because chloroquine is a weak base, it increases vesicle pH by that mechanism in chloroquine-susceptible and resistant parasites and mammalian cells (based on its two pKs and on the delta pH between the acid vesicle and the extracellular environment). In chloroquine-susceptible parasites, but not resistant parasites or mammalian cells, chloroquine increases the pH of acid vesicles 700- to 800-fold more than can be accounted for by its properties as a weak base. The increase in acid vesicle pH caused by these non-weak base effects of nanomolar chloroquine in susceptible parasites suggests that chloroquine acts by interfering with acid vesicle functions in the parasite such as the endocytosis and proteolysis of hemoglobin, and the intracellular targeting of lysosomal enzymes. The non-weak base effects of nanomolar chloroquine on parasite vesicle pH are also responsible for its safety because these chloroquine concentrations do not affect mammalian cells.

  7. The effect of pH on the toxicity of fatty acids and fatty acid amides to rainbow trout gill cells.

    PubMed

    Bertin, Matthew J; Voronca, Delia C; Chapman, Robert W; Moeller, Peter D R

    2014-01-01

    Harmful algal blooms (HABs) expose aquatic organisms to multiple physical and chemical stressors during an acute time period. Algal toxins themselves may be altered by water chemistry parameters affecting their bioavailability and resultant toxicity. The purpose of this study was to determine the effects of two abiotic parameters (pH, inorganic metal salts) on the toxicity of fatty acid amides and fatty acids, two classes of lipids produced by harmful algae, including the golden alga, Prymnesium parvum, that are toxic to aquatic organisms. Rainbow trout gill cells were used as a model of the fish gill and exposed to single compounds and mixtures of compounds along with variations in pH level and concentration of inorganic metal salts. We employed artificial neural networks (ANNs) and standard ANOVA statistical analysis to examine and predict the effects of these abiotic parameters on the toxicity of fatty acid amides and fatty acids. Our results demonstrate that increasing pH levels increases the toxicity of fatty acid amides and inhibits the toxicity of fatty acids. This phenomenon is reversed at lower pH levels. Exposing gill cells to complex mixtures of chemical factors resulted in dramatic increases in toxicity compared to tests of single compounds for both the fatty acid amides and fatty acids. These findings highlight the potential of physicochemical factors to affect the toxicity of chemicals released during algal blooms and demonstrate drastic differences in the effect of pH on fatty acid amides and fatty acids. PMID:24240104

  8. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  9. Acidic pH resistance of grafted chitosan on dental implant.

    PubMed

    Campos, Doris M; Toury, Bérengère; D'Almeida, Mélanie; Attik, Ghania N; Ferrand, Alice; Renoud, Pauline; Grosgogeat, Brigitte

    2015-05-01

    Over the last decade, access to dental care has increasingly become a service requested by the population, especially in the case of dental implants. However, the major cause of implant failure is an inflammatory disease: peri-implantitis. Currently, the adhesion strength of antibacterial coatings at implant surfaces remains a problem to solve. In order to propose a functionalized implant with a resistant antibacterial coating, a novel method of chitosan immobilization at implant surface has been investigated. Functionalization of the pre-active titanium (Ti) surface was performed using triethoxysilylpropyl succinic anhydride (TESPSA) as a coupling agent which forms a stable double peptide bond with chitosan. The chitosan presence and the chemical resistibility of the coating under acid pH solutions (pH 5 and pH 3) were confirmed by FTIR-ATR and XPS analyses. Furthermore, peel test results showed high adhesive resistance of the TESPSA/chitosan coating at the substrate. Cytocompatibility was evaluated by cell morphology with confocal imaging. Images showed healthy morphology of human gingival fibroblasts (HGF-1). Finally, the reported method for chitosan immobilization on Ti surface via peptide bindings allows for the improvement of its adhesive capacities and resistibility while maintaining its cytocompatibility. Surface functionalization using the TESPSA/chitosan coupling method is noncytotoxic and stable even in drastic environments as found in oral cavity, thus making it a valuable candidate for clinical implantology applications. PMID:24972881

  10. Association of the pr Peptides with Dengue Virus at Acidic pH Blocks Membrane Fusion

    SciTech Connect

    Yu, I.-M.; Holdaway, H.A.; Chipman, P.R.; Kuhn, R.J.; Rossmann, M.G.; Chen, J.; Purdue

    2010-07-27

    Flavivirus assembles into an inert particle that requires proteolytic activation by furin to enable transmission to other hosts. We previously showed that immature virus undergoes a conformational change at low pH that renders it accessible to furin (I. M. Yu, W. Zhang, H. A. Holdaway, L. Li, V. A. Kostyuchenko, P. R. Chipman, R. J. Kuhn, M. G. Rossmann, and J. Chen, Science 319:1834-1837, 2008). Here we show, using cryoelectron microscopy, that the structure of immature dengue virus at pH 6.0 is essentially the same before and after the cleavage of prM. The structure shows that after cleavage, the proteolytic product pr remains associated with the virion at acidic pH, and that furin cleavage by itself does not induce any major conformational changes. We also show by liposome cofloatation experiments that pr retention prevents membrane insertion, suggesting that pr is present on the virion in the trans-Golgi network to protect the progeny virus from fusion within the host cell.

  11. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  12. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  13. Acidic pH retards the fibrillization of human islet amyloid polypeptide due to electrostatic repulsion of histidines

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xu, Weixin; Mu, Yuguang; Zhang, John Z. H.

    2013-08-01

    The human Islet Amyloid Polypeptide (hIAPP) is the major constituent of amyloid deposits in pancreatic islets of type-II diabetes. IAPP is secreted together with insulin from the acidic secretory granules at a low pH of approximately 5.5 to the extracellular environment at a neutral pH. The increased accumulation of extracellular hIAPP in diabetes indicates that changes in pH may promote amyloid formation. To gain insights and underlying mechanisms of the pH effect on hIAPP fibrillogenesis, all-atom molecular dynamics simulations in explicit solvent model were performed to study the structural properties of five hIAPP protofibrillar oligomers, under acidic and neutral pH, respectively. In consistent with experimental findings, simulation results show that acidic pH is not conducive to the structural stability of these oligomers. This provides a direct evidence for a recent experiment [L. Khemtemourian, E. Domenech, J. P. F. Doux, M. C. Koorengevel, and J. A. Killian, J. Am. Chem. Soc. 133, 15598 (2011)], 10.1021/ja205007j, which suggests that acidic pH inhibits the fibril formation of hIAPP. In addition, a complementary coarse-grained simulation shows the repulsive electrostatic interactions among charged His18 residues slow down the dimerization process of hIAPP by twofold. Besides, our all-atom simulations reveal acidic pH mainly affects the local structure around residue His18 by destroying the surrounding hydrogen-bonding network, due to the repulsive interactions between protonated interchain His18 residues at acidic pH. It is also disclosed that the local interactions nearby His18 operating between adjacent β-strands trigger the structural transition, which gives hints to the experimental findings that the rate of hIAPP fibril formation and the morphologies of the fibrillar structures are strongly pH-dependent.

  14. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    PubMed

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed. PMID:26116387

  15. Ultrasonic absorption in aqueous solutions of amino acids at neutral pH

    NASA Astrophysics Data System (ADS)

    Nishikawa, S.; Ohno, T.; Huang, H.; Yoshizuka, K.; Jordan, F.

    2003-05-01

    Ultrasonic absorption coefficients in aqueous solutions of glycine, L-alanine, imidazole, L-phenylalanine, L-histidine and L-tryptophan at neutral pH were measured in the range from 0.8 to 220 MHz at 25 °C. A characteristic ultrasonic relaxation phenomenon was observed only in the solution of L-histidine with a relaxation frequency at around 2 MHz at neutral pH. It was proposed from the concentration independent relaxation frequency and the linear concentration dependence of the maximum absorption per wavelength that the relaxation mechanism was associated with a perturbation of the rotational isomeric equilibrium of the L-histidine molecule. The existence of two rotational isomeric forms of L-histidine in water was examined by semiempirical quantum chemical methods, in order to determine the free energy difference between the two states. The forward and backward rate constants were determined from the relaxation frequency and the energy change. Also, the standard volume change of the reaction was estimated from the concentration dependence of the maximum absorption per wavelength. It was speculated that L-histidine fulfills a specific function among amino acids because of the rotational motion in the molecule, in addition to its well-established acid-base properties.

  16. Treatment of geothermal brine

    SciTech Connect

    Gallup, D.L.; Featherstone, J.L.

    1992-03-24

    This patent describes a method of precipitating at least one metal from a brine containing the same. It comprises contacting a brine containing at least one metal selected from the group consisting of iron, zinc, manganese, copper, silver and lead, and at least one scale forming species selected from the group consisting of silica and calcium compounds, with a condensate of steam, derived from the brine, in an amount to provide a mixture having a volume ratio of brine to condensate in the range of about 1:2 to 1:10 for a time sufficient to precipitate at least one of the metals and only a minor amount of the scale forming species.

  17. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    USGS Publications Warehouse

    Church, C.D.; Wilkin, R.T.; Alpers, C.N.; Rye, R.O.; Blaine, R.B.

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 ??? heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. ?? 2007 Church et al; licensee BioMed Central Ltd.

  18. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    PubMed Central

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  19. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water.

    PubMed

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 per thousand heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  20. pH Titratable Superparamagnetic Iron Oxide for Improved Nanoparticle Accumulation in Acidic Tumor Microenvironments

    PubMed Central

    Crayton, Samuel H.; Tsourkas, Andrew

    2011-01-01

    A wide variety of nanoparticle platforms are being developed for the diagnosis and treatment of malignancy. While many of these are passively targeted or rely on receptor-ligand interactions, metabolically directed nanoparticles provide a complementary approach. It is known that both primary and secondary events in tumorigensis alter the metabolic profile of developing and metastatic cancers. One highly conserved metabolic phenotype is a state of up-regulated glycolysis and reduced use of oxidative phosphorylation, even when oxygen tension is not limiting. This metabolic shift, termed the Warburg effect, creates a “hostile” tumor microenvironment with increased levels of lactic acid and low extracellular pH. In order to exploit this phenomenon and improve the delivery of nanoparticle platforms to a wide variety of tumors, a pH-responsive iron oxide nanoparticle was designed. Specifically, glycol chitosan (GC), a water-soluble polymer with pH titratable charge, was conjugated to the surface of superparamagnetic iron oxide nanoparticles (SPIO) to generate a T2*-weighted MR contrast agent that responds to alterations in its surrounding pH. Compared to control nanoparticles that lack pH sensitivity, these GC-SPIO nanoparticles demonstrated potent pH-dependent cellular association and MR contrast in vitro. In murine tumor models GC-SPIO also generated robust T2*-weighted contrast, which correlated with increased delivery of the agent to the tumor site, measured quantitatively by inductively coupled plasma mass spectrometry. Importantly, the increased delivery of GC-SPIO nanoparticles cannot be solely attributed to the commonly observed enhanced permeability and retention effect, since these nanoparticles have similar physical properties and blood circulation times as control agents. PMID:22035454

  1. Predicting Thermodynamic Behaviors of Non-Protein Amino Acids as a Function of Temperature and pH

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2016-03-01

    Why does life use α-amino acids exclusively as building blocks of proteins? To address that fundamental question from an energetic perspective, this study estimated the standard molal thermodynamic data for three non-α-amino acids (β-alanine, γ-aminobutyric acid, and ɛ-aminocaproic acid) and α-amino- n-butyric acid in their zwitterionic, negative, and positive ionization states based on the corresponding experimental measurements reported in the literature. Temperature dependences of their heat capacities were described based on the revised Helgeson-Kirkham-Flowers (HKF) equations of state. The obtained dataset was then used to calculate the standard molal Gibbs energies ( ∆G o) of the non-α-amino acids as a function of temperature and pH. Comparison of their ∆G o values with those of α-amino acids having the same molecular formula showed that the non-α-amino acids have similar ∆G o values to the corresponding α-amino acids in physiologically relevant conditions (neutral pH, <100 °C). In acidic and alkaline pH, the non-α-amino acids are thermodynamically more stable than the corresponding α-ones over a broad temperature range. These results suggest that the energetic cost of synthesis is not an important selection pressure to incorporate α-amino acids into biological systems.

  2. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system. PMID:19968099

  3. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin. PMID:6124639

  4. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    PubMed

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin )]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26467547

  5. Lower pH values of weakly acidic refluxes as determinants of heartburn perception in gastroesophageal reflux disease patients with normal esophageal acid exposure.

    PubMed

    de Bortoli, N; Martinucci, I; Savarino, E; Franchi, R; Bertani, L; Russo, S; Ceccarelli, L; Costa, F; Bellini, M; Blandizzi, C; Savarino, V; Marchi, S

    2016-01-01

    Multichannel impedance pH monitoring has shown that weakly acidic refluxes are able to generate heartburn. However, data on the role of different pH values, ranging between 4 and 7, in the generation of them are lacking. The aim of this study was to evaluate whether different pH values of weakly acidic refluxes play a differential role in provoking reflux symptoms in endoscopy-negative patients with physiological esophageal acid exposure time and positive symptom index and symptom association probability for weakly acidic refluxes. One hundred and forty-three consecutive patients with gastroesophageal reflux disease, nonresponders to proton pump inhibitors (PPIs), were allowed a washout from PPIs before undergoing: upper endoscopy, esophageal manometry, and multichannel impedance pH monitoring. In patients with both symptom index and symptom association probability positive for weakly acidic reflux, each weakly acidic reflux was evaluated considering exact pH value, extension, physical characteristics, and correlation with heartburn. Forty-five patients with normal acid exposure time and positive symptom association probability for weakly acidic reflux were identified. The number of refluxes not heartburn related was higher than those heartburn related. In all distal and proximal liquid refluxes, as well as in distal mixed refluxes, the mean pH value of reflux events associated with heartburn was significantly lower than that not associated. This condition was not confirmed for proximal mixed refluxes. Overall, a low pH of weakly acidic reflux represents a determinant factor in provoking heartburn. This observation contributes to better understand the pathophysiology of symptoms generated by weakly acidic refluxes, paving the way toward the search for different therapeutic approaches to this peculiar condition of esophageal hypersensitivity. PMID:25212408

  6. Effect of iron cation on geochemical trapping of CO2 in brine

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Maroto-Valer, Mercedes

    2014-05-01

    Carbon dioxide sequestration using brines has emerged as a promising technology to mitigate the adverse impacts of climate change due to its large storage capacity and favorable chemistries. However, the permanent storage (mineral trapping) of CO2 in brines takes significantly long periods of time as the formation and precipitation of carbonates is very slow .[1]. The main parameters reported to effect on mineral trapping of CO2 sequestration in brines are brine composition, brine pH, system temperature and pressure.[2, 3]. It is suggested that the precipitation of mineral carbonates is mostly dependent on brine pH. Previous studies by the authors concluded that iron in natural brines causes pH instability, but it was not ascertained whether ferric iron or ferrous iron caused pH instability .[4]. Accordingly, the aim of this project is to study synthetic brines mimicking the major ions found in natural brines and including different concentrations of ferric and ferrous iron. Three brines were prepared, as follows: Brine 1 was prepared with ferric Fe3+ iron, Brine 2 prepared with ferrous Fe2+ iron and Brine 3 prepared with no iron. A series of pH stability studies and carbonation reactions were conducted using the above three brines. It is concluded that the ferrous iron causes pH instability, while ferric iron might promote carbonate precipitation. .1. Garcia, S., et al., Sequestration of non-pure carbon dioxide streams in iron oxyhydroxide-containing saline repositories. International Journal of Greenhouse Gas Control, 2012. 7: p. 89-97. 2. Liu, Q. and M.M. Maroto-Valer, Investigation of the pH effect of a typical host rock and buffer solution on CO< sub> 2 sequestration in synthetic brines. Fuel Processing Technology, 2010. 91(10): p. 1321-1329. 3. Liu, Q. and M.M. MarotoValer, Parameters affecting mineral trapping of CO2 sequestration in brines. Greenhouse Gases: Science and Technology, 2011. 1(3): p. 211-222. 4. Druckenmiller, M.L. and M.M. Maroto-Valer, Carbon

  7. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  8. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  9. Nonenzymatic browning reaction of essential amino acids: effect of pH on caramelization and Maillard reaction kinetics.

    PubMed

    Ajandouz, E H; Puigserver, A

    1999-05-01

    The interaction between glucose and essential amino acids at 100 degrees C at pH values ranging from 4.0 to 12.0 was investigated by monitoring the disappearance of glucose and amino acids as well as the appearance of brown color. Lysine was the most strongly destroyed amino acid, followed by threonine which induced very little additional browning as compared with that undergone by glucose. Around neutrality, the nonenzymatic browning followed pseudo-zero-order kinetics after a lag time, while the glucose and amino acid losses did not follow first-order kinetics at any of the pH values tested. Glucose was more strongly destroyed than all of the essential amino acids, the losses of which are really small at pH values lower than 9.0. However, glucose was less susceptible to thermal degradation in the presence of amino acids, especially at pH 8.0 with threonine and at pH 10.0 with lysine. The contribution of the caramelization reaction to the overall nonenzymatic browning above neutrality should lead to an overestimation of the Maillard reaction in foods. PMID:10552453

  10. Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels.

    PubMed

    Isas, J M; Cartailler, J P; Sokolov, Y; Patel, D R; Langen, R; Luecke, H; Hall, J E; Haigler, H T

    2000-03-21

    The functional hallmark of annexins is the ability to bind to the surface of phospholipid membranes in a reversible, Ca(2+)-dependent manner. We now report that human annexin V and hydra annexin XII reversibly bound to phospholipid vesicles in the absence of Ca(2+) at low pH; half-maximal vesicle association occurred at pH 5.3 and 5. 8, respectively. The following biochemical data support the hypothesis that these annexins insert into bilayers at mildly acidic pH. First, a photoactivatable reagent (3-trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine) which selectively labels proteins exposed to the hydrophobic domain of bilayers reacted with these annexins at pH 5.0 and below but not at neutral pH. Second, in a Triton X-114 partitioning assay, annexins V and XII act as integral membrane proteins at low pH and as hydrophilic proteins at neutral pH; in the presence of phospholipids half-maximal partitioning into detergent occurred at pH approximately 5.0. Finally, annexin V or XII formed single channels in phospholipid bilayers at low pH but not at neutral pH. A model is discussed in which the concentrations of H(+) and Ca(2+) regulate the reversible conversion of three forms of annexins-soluble, peripheral membrane, and transmembrane. PMID:10715122

  11. Membrane simulations mimicking acidic pH reveal increased thickness and negative curvature in a bilayer consisting of lysophosphatidylcholines and free fatty acids.

    PubMed

    Lähdesmäki, Katariina; Ollila, O H Samuli; Koivuniemi, Artturi; Kovanen, Petri T; Hyvönen, Marja T

    2010-05-01

    Phospholipids are key components of biological membranes and their lipolysis with phospholipase A(2) (PLA(2)) enzymes occurs in different cellular pH environments. Since no studies are available on the effect of pH on PLA(2)-modified phospholipid membranes, we performed 50-ns atomistic molecular dynamics simulations at three different pH conditions (pH 9.0, 7.5, and 5.5) using a fully PLA(2)-hydrolyzed phosphatidylcholine (PC) bilayer which consists solely of lysophosphatidylcholine and free fatty acid molecules. We found that a decrease in pH results in lateral squeezing of the membrane, i.e. in decreased surface area per headgroup. Thus, at the decreased pH, the lipid hydrocarbon chains had larger S(CD) order parameter values, and also enhanced membrane thickness, as seen in the electron density profiles across the membrane. From the lateral pressure profiles, we found that the values of spontaneous curvature of the two opposing monolayers became negative when the pH was decreased. At low pH, protonation of the free fatty acid headgroups reduces their mutual repulsion and accounts for the pH dependence of all the above-mentioned properties. The altered structural characteristics may significantly affect the overall surface properties of biomembranes in cellular vesicles, lipid droplets, and plasma lipoproteins, play an important role in membrane fission and fusion, and modify interactions between membrane lipids and the proteins embedded within them. PMID:20132791

  12. Detrimental effect of CO2-driven seawater acidification on a crustacean brine shrimp, Artemia sinica.

    PubMed

    Zheng, Chao-qun; Jeswin, Joseph; Shen, Kai-li; Lablche, Meghan; Wang, Ke-jian; Liu, Hai-peng

    2015-03-01

    The effects of the decline in ocean pH, termed as ocean acidification due to the elevated carbon dioxide in the atmosphere, on calcifying organisms such as marine crustacean are unclear. To understand the possible effects of ocean acidification on the physiological responses of a marine model crustacean brine shrimp, Artemia sinica, three groups of the cysts or animals were raised at different pH levels (8.2 as control; 7.8 and 7.6 as acidification stress according to the predictions for the end of this century and next century accordingly) for 24 h or two weeks, respectively, followed by examination of their hatching success, morphological appearance such as deformity and microstructure of animal body, growth (i.e. body length), survival rate, expression of selected genes (involved in development, immunity and cellular activity etc), and biological activity of several key enzymes (participated in antioxidant responses and physiological reactions etc). Our results clearly demonstrated that the cysts hatching rate, growth at late stage of acidification stress, and animal survival rate of brine shrimp were all reduced due to lower pH level (7.6 & 7.8) on comparison to the control group (pH 8.2), but no obvious change in deformity or microstructure of brine shrimp was present under these acidification stress by microscopy observation and section analysis. In addition, the animals subjected to a lower pH level of seawater underwent changes on their gene expressions, including Spätzle, MyD88, Notch, Gram-negative bacteria binding protein, prophenoloxidase, Apoptosis inhibitor 5, Trachealess, Caveolin-1 and Cyclin K. Meanwhile, several key enzyme activities, including superoxide dismutase, catalase, peroxidase, alkaline phosphatase and acid phosphatase, were also affected by acidified seawater stress. Taken together, our findings supports the idea that CO2-driven seawater acidification indeed has a detrimental effect, in case of hatching success, growth and survival, on

  13. Reactive solute transport in an acidic stream: Experimental pH increase and simulation of controls on pH, aluminum, and iron

    USGS Publications Warehouse

    Broshears, R.E.; Runkel, R.L.; Kimball, B.A.; McKnight, Diane M.; Bencala, K.E.

    1996-01-01

    Solute transport simulations quantitatively constrained hydrologic and geochemical hypotheses about field observations of a pH modification in an acid mine drainage stream. Carbonate chemistry, the formation of solid phases, and buffering interactions with the stream bed were important factors in explaining the behavior of pH, aluminum, and iron. The precipitation of microcrystalline gibbsite accounted for the behavior of aluminum; precipitation of Fe(OH)3 explained the general pattern of iron solubility. The dynamic experiment revealed limitations on assumptions that reactions were controlled only by equilibrium chemistry. Temporal variation in relative rates of photoreduction and oxidation influenced iron behavior. Kinetic limitations on ferrous iron oxidation and hydrous oxide precipitation and the effects of these limitations on field filtration were evident. Kinetic restraints also characterized interaction between the water column and the stream bed, including sorption and desorption of protons from iron oxides at the sediment-water interface and post-injection dissolution of the precipitated aluminum solid phase.

  14. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    PubMed

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber. PMID:26643765

  15. Acid-base pH curves in vitro with mixtures of pure cultures of human oral microorganisms.

    PubMed

    Wijeyeweera, R L; Kleinberg, I

    1989-01-01

    Pure cultures of microorganisms commonly found in supragingival plaque were incubated alone and in combinations to determine the bacterial contribution to the pH-fall-pH-rise that is the central characteristic of the Stephan-curve pH change seen in plaque in vivo after brief exposure to a sugar solution. To avoid the complicating conditions of saliva flow and plaque diffusion, experiments were done with bacterial suspensions in incubations in vitro. In an initial experimental series where each microorganism was incubated only with glucose, all but a few produced the initial pH fall. Some also showed a subsequent small, sharp rise in the pH which then quickly levelled off; this was due to metabolism of endogenous substrate accumulated by most microorganisms during their growth in culture. When arginolytic and non-arginolytic bacteria were each then incubated with both glucose and arginine present (the glucose substrate to stimulate a pH fall and the arginine to stimulate a pH rise), the non-arginolytic gave a progressively more acidic pH response with progressive increase in the cell concentration, whereas the arginolytic bacteria produced a much smaller and variable pH decrease with similar cell concentration increase. Mixing pure cultures of either arginolytic or non-arginolytic bacteria gave acid-base pH responses similar to those of their respective pure cultures, whereas mixing arginolytic with non-arginolytic bacteria resulted in an approximate averaging of their different curves. The organisms present in highest proportion in a mixture had the greatest effects. The outcome of mixing the most numerous streptococcal and actinomyces species found normally in supragingival plaque indicated that the well-established difference in the acidity level of the Stephan pH response of caries-active and caries-inactive plaques could be due to differences in the proportions of their arginolytic and non-arginolytic members. PMID:2675801

  16. Influence of amino acids, buffers, and ph on the γ-irradiation-induced degradation of alginates.

    PubMed

    Ulset, Ann-Sissel T; Mori, Hideki; Dalheim, Marianne Ø; Hara, Masayuki; Christensen, Bjørn E

    2014-12-01

    Alginate-based biomaterials and medical devices are commonly subjected to γ-irradiation as a means of sterilization, either in the dry state or the gel (hydrated) state. In this process the alginate chains degrade randomly in a dose-dependent manner, altering alginates' material properties. The addition of free radical scavenging amino acids such as histidine and phenylalanine protects the alginate significantly against degradation, as shown by monitoring changes in the molecular weight distributions using SEC-MALLS and determining the pseudo first order rate constants of degradation. Tris buffer (0.5 M), but not acetate, citrate, or phosphate buffers had a similar effect on the degradation rate. Changes in pH itself had only marginal effects on the rate of alginate degradation and on the protective effect of amino acids. Contrary to previous reports, the chemical composition (M/G profile) of the alginates, including homopolymeric mannuronan, was unaltered following irradiation up to 10 kGy. PMID:25412478

  17. Lactic acid fermentation from food waste with indigenous microbiota: Effects of pH, temperature and high OLR.

    PubMed

    Tang, Jialing; Wang, Xiaochang; Hu, Yisong; Zhang, Yongmei; Li, Yuyou

    2016-06-01

    The effects of pH, temperature and high organic loading rate (OLR) on lactic acid production from food waste without extra inoculum addition were investigated in this study. Using batch experiments, the results showed that although the hydrolysis rate increased with pH adjustment, the lactic acid concentration and productivity were highest at pH 6. High temperatures were suitable for solubilization but seriously restricted the acidification processes. The highest lactic acid yield (0.46g/g-TS) and productivity (278.1mg/Lh) were obtained at 37°C and pH 6. In addition, the lactic acid concentration gradually increased with the increase in OLR, and the semi-continuous reactor could be stably operated at an OLR of 18g-TS/Ld. However, system instability, low lactic acid yield and a decrease in VS removal were noticed at high OLRs (22g-TS/Ld). The concentrations of volatile fatty acids (VFAs) in the fermentation mixture were relatively low but slightly increased with OLR, and acetate was the predominant VFA component. Using high-throughput pyrosequencing, Lactobacillus from the raw food waste was found to selectively accumulate and become dominant in the semi-continuous reactor. PMID:27040090

  18. First-principles calculation of thermodynamic stability of acids and bases under pH environment: A microscopic pH theory

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Kwiseon; Zhang, S. B.

    2012-04-01

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H+, OH-, NH3, NH4+, HCOOH, and HCOO- in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH3 and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  19. First-Principles Calculation of Thermodynamic Stability of Acids and Bases under pH Environment: A Microscopic pH Theory

    SciTech Connect

    Kim, Y. H.; Kim, K.; Zhang, S. B.

    2012-04-07

    Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics of liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.

  20. Temperature and pH responsiveness of poly-(DMAA-co-unsaturated carboxylic acid) hydrogels synthesized by UV-irradiation

    NASA Astrophysics Data System (ADS)

    Kakinoki, Sachiro; Kaetsu, Isao; Nakayama, Masashi; Sutani, Kouichi; Uchida, Kumao; Yukutake, Kouji

    2003-07-01

    Stimuli-responsive polyampholyte hydrogels were synthesized by the copolymerization of dimethylaminoethyl methacrylate (DMAA) and acrylic acid (AAc) or itaconic acid (IAc) by UV-irradiation. Temperature and pH responsiveness of these hydrogels were studied. The temperature responsiveness of poly-(DMAA-co-AAc, IAc) hydrogels shown in change of water content became dull compared to that of DMAA homo-polymer hydrogel. The water content of the poly-(DMAA-co-AAc, IAc) hydrogels showed a minimum at pH 8, and increased in more acidic and alkaline regions. This fact can be attributed to the coexistence of anions and cations in the poly-(DMAA-co-AAc, IAc) hydrogels. The poly-(DMAA-co-AAc, IAc) hydrogels were polyampholyte having both temperature responsiveness and pH responsiveness.

  1. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica

  2. Development of On-Line Spectroscopic pH Monitoring for Nuclear Fuel Reprocessing Plants: Weak Acid Schemes

    SciTech Connect

    Casella, Amanda J.; Hylden, Laura R.; Campbell, Emily L.; Levitskaia, Tatiana G.; Peterson, James M.; Smith, Frances N.; Bryan, Samuel A.

    2015-05-19

    Knowledge of real-time solution properties and composition is a necessity for any spent nuclear fuel reprocessing method. Metal-ligand speciation in aqueous solutions derived from the dissolved commercial spent fuel is highly dependent upon the acid concentration/pH, which influences extraction efficiency and the resulting speciation in the organic phase. Spectroscopic process monitoring capabilities, incorporated in a counter current centrifugal contactor bank, provide a pathway for on-line real-time measurement of solution pH. The spectroscopic techniques are process-friendly and can be easily configured for on-line applications, while classic potentiometric pH measurements require frequent calibration/maintenance and have poor long-term stability in aggressive chemical and radiation environments. Our research is focused on developing a general method for on-line determination of pH of aqueous solutions through chemometric analysis of Raman spectra. Interpretive quantitative models have been developed and validated under the range of chemical composition and pH using a lactic acid/lactate buffer system. The developed model was applied to spectra obtained on-line during solvent extractions performed in a centrifugal contactor bank. The model predicted the pH within 11% for pH > 2, thus demonstrating that this technique could provide the capability of monitoring pH on-line in applications such as nuclear fuel reprocessing.

  3. Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes

    PubMed Central

    Moser, Michael; Weisse, Thomas

    2011-01-01

    Strains of the green alga Chlamydomonas acidophila and two chrysomonads, Ochromonas spp., isolated from each of two similar acid mining lakes (AMLs) with extremely low pH (∼2.6) were investigated to consider a possible synergistic stress effect of low pH and unfavourable temperature. We measured flagellate growth rates over a combination of four pH (2.5, 3.5, 5.0 and 7.0) and three temperatures (10, 17.5 and 25°C) in the laboratory. Our hypothesis was that, under highly acidic conditions (pH <3), an obligate acidophil species (C. acidophila) would be less sensitive to the combined stress of pH and temperature than acidotolerant species (Ochromonas spp.). We expected that the difference of the fundamental vs. realized pH niche would be greater in the latter. Another chrysomonad, Poterioochromonas malhamensis strain DS, served as a reference for a closely related neutrophil species. Surprisingly, C. acidophila did not survive temperatures >27°C. The lowest temperature tested reduced growth rates of all three chrysomonad strains significantly. Since all chrysomonads were tolerant to high temperature, growth rate of one Ochromonas spp. strain was measured exemplarily at 35°C. Only at this high temperature was the realized pH niche significantly narrowed. We also recorded significant intraspecific differences within the C. acidophila strains from the two AML, illustrating that the niche width of a species is broader than that of individual clones. PMID:21655470

  4. Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2013-05-01

    Microbial physiological responses resulting from inappropriate bioprocessing conditions may have a marked impact on process performance within any fermentation system. The influence of different pH-control strategies on physiological status, microbial growth and lactobionic acid production from whey by Pseudomonas taetrolens during bioreactor cultivations has been investigated for the first time in this work. Both cellular behaviour and bioconversion efficiency from P. taetrolens were found to be negatively influenced by pH-control modes carried out at values lower than 6.0 and higher than 7.0. Production schemes were also influenced by the operational pH employed, with asynchronous production from damaged and metabolically active subpopulations at pH values lower than 6.0. Moreover, P. taetrolens showed reduced cellular proliferation and a subsequent delay in the onset of the production phase under acidic conditions (pH < 6.0). Unlike cultivations performed at 6.5, both pH-shift and pH-stat cultivation strategies performed at pH values lower than 6.0 resulted in decreased lactobionic acid production. Whereas the cellular response showed a stress-induced physiological response under acidic conditions, healthy functional cells were predominant at medium operational pH values (6.5-7.0). P. taetrolens thus displayed a robust physiological status at initial pH value of 6.5, resulting in an enhanced bioconversion yield and lactobionic acid productivity (7- and 4-fold higher compared to those attained at initial pH values of 4.5 and 5.0, respectively). These results have shown that pH-control modes strongly affected both the physiological response of cells and the biological performance of P. taetrolens, providing key information for bio-production of lactobionic acid on an industrial scale. PMID:23254761

  5. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. PMID:25710573

  6. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage

    SciTech Connect

    Senko, J.M.; Zhang, G.X.; McDonough, J.T.; Bruns, M.A.; Burgos, W.D.

    2009-07-01

    We isolated an acid-tolerant sulfate-reducing bacterium, GBSRB4.2, from coal mine-derived acidic mine drainage (AMD)-derived sediments. Sequence analysis of partial 16S rRNA gene of GBSRB4.2 revealed that it was affiliated with the genus Desulfosporosinus. GBSRB4.2 reduced sulfate, Fe(III) (hydr)oxide, Mn(IV) oxide, and U(VI) in acidic solutions (pH 4.2). Sulfate, Fe(III), and Mn(IV) but not U(VI) bioreduction led to an increase in the pH of acidic solutions and concurrent hydrolysis and precipitation of dissolved Al{sup 3+}. Reduction of Fe(III), Mn(IV), and U(VI) in sulfate-free solutions revealed that these metals are enzymatically reduced by GBSRB4.2. GBSRB4.2 reduced U(VI) in groundwater from a radionuclide-contaminated aquifer more rapidly at pH 4.4 than at pH 7.1, possibly due to the formation of poorly bioreducible Ca-U(VI)-CO{sub 3} complexes in the pH 7.1 groundwater.

  7. Acidic Nanoparticles Are Trafficked to Lysosomes and Restore an Acidic Lysosomal pH and Degradative Function to Compromised ARPE-19 Cells

    PubMed Central

    Baltazar, Gabriel C.; Guha, Sonia; Lu, Wennan; Lim, Jason; Boesze-Battaglia, Kathleen; Laties, Alan M.; Tyagi, Puneet; Kompella, Uday B.; Mitchell, Claire H.

    2012-01-01

    Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide) (PLGA) 502 H, PLGA 503 H and poly (DL-lactide) (PLA) colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity. PMID:23272048

  8. The pH profile for acid-induced elongation of coleoptile and epicotyl sections is consistent with the acid-growth theory

    NASA Technical Reports Server (NTRS)

    Cleland, R. E.; Buckley, G.; Nowbar, S.; Lew, N. M.; Stinemetz, C.; Evans, M. L.; Rayle, D. L.

    1991-01-01

    The acid-growth theory predicts that a solution with a pH identical to that of the apoplast of auxin-treated tissues (4.5.-5.0) should induce elongation at a rate comparable to that of auxin. Different pH profiles for elongation have been obtained, however, depending on the type of pretreatment between harvest of the sections and the start of the pH-incubations. To determine the acid sensitivity under in vivo conditions, oat (Avena sativa L.) coleoptile, maize (Zea mays L.) coleoptile and pea (Pisum sativum L.) epicotyl sections were abraded so that exogenous buffers could penetrate the free space, and placed in buffered solutions of pH 3.5-6.5 without any preincubation. The extension, without auxin, was measured over the first 3 h. Experiments conducted in three laboratories produced similar results. For all three species, sections placed in buffer without pretreatment elongated at least threefold faster at pH 5.0 than at 6.0 or 6.5, and the rate elongation at pH 5.0 was comparable to that induced by auxin. Pretreatment of abraded sections with pH-6.5 buffer or distilled water adjusted to pH 6.5 or above gave similar results. We conclude that the pH present in the apoplast of auxin-treated coleoptile and stems is sufficiently low to account for the initial growth response to auxin.

  9. Effect of Acidic pH on Expression of Surface-Associated Proteins of Streptococcus oralis

    PubMed Central

    Wilkins, Joanna C.; Beighton, David; Homer, Karen A.

    2003-01-01

    Streptococcus oralis, a member of the mitis group of oral streptococci, is implicated in the pathogenesis of infective endocarditis and is the predominant aciduric non-mutans-group streptococcus in dental plaque. We undertook to identify the most abundant surface-associated proteins of S. oralis and to investigate changes in protein expression when the organism was grown under acidic culture conditions. Surface-associated proteins were extracted from cells grown in batch culture, separated by two-dimensional gel electrophoresis, excised, digested with trypsin, and analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-tandem mass spectrometry. Putative functions were assigned by homology to a translated genomic database of Streptococcus pneumoniae. A total of 27 proteins were identified; these included a lipoprotein, a ribosome recycling factor, and the glycolytic enzymes phosphoglycerate kinase, fructose bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and enolase. The most abundant protein, phosphocarrier protein HPr, was present as three isoforms. Neither lactate dehydrogenase nor pyruvate oxidase, dominant intracellular proteins, were present among the proteins on the gels, demonstrating that proteins in the surface-associated pool did not arise as a result of cell lysis. Eleven of the proteins identified were differentially expressed when cells were grown at pH 5.2 versus pH 7.0, and these included superoxide dismutase, a homologue of dipeptidase V from Lactococcus lactis, and the protein translation elongation factors G, Tu, and Ts. This study has extended the range of streptococcal proteins known to be expressed at the cell surface. Further investigations are required to ascertain their functions at this extracellular location and determine how their expression is influenced by other environmental conditions. PMID:12957916

  10. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  11. Denitrification in Streams Impacted by Acid Mine Drainage: Effects of Iron, pH, and Potential Electron Donors

    NASA Astrophysics Data System (ADS)

    Baeseman, J. L.; Smith, R. L.; Silverstein, J.

    2003-12-01

    Acid mine drainage (AMD) contaminates between 8,000 and 16,000 km of streams on U.S. Forest Service land in the Western United States and more than 7,000 km of stream in the Eastern U.S. Relatively little is known about nitrogen cycling in these acidic, heavy metal laden streams, however, denitrification can be inhibited under low pH conditions. The objective of this research was to examine AMD sediments for bacteria capable of denitrification. The process of denitrification is known to increase pH, which may be particularly important in acidic environments. Denitrification potential was assessed in AMD sediments from several Colorado AMD impacted streams ranging from pH 2.6 to 4.91, using microcosm incubations with fresh sediments. Added nitrate was immediately reduced to nitrogen gas without any lag period, indicating that denitrification was actively occurring in these environments. Rates varied from 0.33 to 2.52 umoles NO3-N/ g-sediment/ day depending on the site. The pH of the microcosms increased between 0.23 to 1.49 pH units in 5 days, depending on the site. Additional microcosm studies were conducted to examine the effects of iron concentrations (Fe2+ and Fe3+), initial pH conditions, and several potential electron donors. Addition of iron above ambient concentrations seemed to have little effect on denitrification rates, whereas rates increased with increasing initial pH. The addition of carbon and hydrogen stimulated denitrification rates, which in turn increased the rise in pH. These results suggest that not only is denitrification possible in AMD streams, it may also be a useful remediation option, if suitable methods can be found to stimulate activity.

  12. Anti-biofilm potential of phenolic acids: the influence of environmental pH and intrinsic physico-chemical properties.

    PubMed

    Silva, Sara; Costa, Eduardo M; Horta, Bruno; Calhau, Conceição; Morais, Rui M; Pintado, M Manuela

    2016-09-13

    Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition. Some links between molecular polarity and size were associated only with their potential as metabolic inhibitors, with the overall interactions hinting at a membrane-based mechanism for MRSA and a cytoplasmic effect for MRSE. PMID:27434592

  13. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil.

    PubMed

    Du, Yan-Jun; Wei, Ming-Li; Reddy, Krishna R; Liu, Zhao-Peng; Jin, Fei

    2014-04-30

    Cement stabilization is a practical approach to remediate soils contaminated with high levels of lead. However, the potential for leaching of lead out of these stabilized soils under variable acid rain pH conditions is a major environmental concern. This study investigates the effects of acid rain on the leaching characteristics of cement stabilized lead contaminated soil under different pH conditions. Clean kaolin clay and the same soil spiked with 2% lead contamination are stabilized with cement contents of 12 and 18% and then cured for 28 days. The soil samples are then subjected to a series of accelerated leaching tests (or semi-dynamic leaching tests) using a simulated acid rain leachant prepared at pH 2.0, 4.0 or 7.0. The results show that the strongly acidic leachant (pH ∼2.0) significantly altered the leaching behavior of lead as well as calcium present in the soil. However, the differences in the leaching behavior of the soil when the leachant was mildly acidic (pH ∼4.0) and neutral (pH ∼7.0) prove to be minor. In addition, it is observed that the lead contamination and cement content levels can have a considerable impact on the leaching behavior of the soils. Overall, the leachability of lead and calcium is attributed to the stability of the hydration products and their consequent influence on the soil buffering capacity and structure. PMID:24637445

  14. Brine stability study

    SciTech Connect

    Gary Garland

    2015-04-15

    This is a study of the brine formulations that we were using in our testing were stable over time. The data includes charts, as well as, all of the original data from the ICP-MS runs to complete this study.

  15. Investigating Brine Shrimp.

    ERIC Educational Resources Information Center

    Duran, Lena Ballone

    2003-01-01

    Presents a brine shrimp activity designed for students in grades 5-12 to foster authentic scientific inquiry in addition to providing an engaging and exciting avenue for student exploration. Emphasizes that inquiry should be a critical component in the science classroom. (KHR)

  16. ACCURACY OF ROSS PH COMBINATION ELECTRODES IN DILUTE SULPHURIC ACID STANDARDS

    EPA Science Inventory

    The mean observed pH of a 5.00 plus or minus 0.05 x 0.00001 M H2504 solution was 4.06 plus or minus 0.05 (2s) for 485 pH measurements by seven different operators, using nine Orion Ross Model 81-94b pH combination electrodes and four different pH meters over 8 weeks. Traditional ...

  17. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner.

    PubMed

    Kottyan, Leah C; Collier, Ann R; Cao, Khanh H; Niese, Kathryn A; Hedgebeth, Megan; Radu, Caius G; Witte, Owen N; Khurana Hershey, Gurjit K; Rothenberg, Marc E; Zimmermann, Nives

    2009-09-24

    The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5'-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase-dependent manner. Furthermore, we identify G protein-coupled receptor 65 (GPR65) as the chief acid-sensing receptor expressed by eosinophils, as GPR65-deficient eosinophils were resistant to acid-induced eosinophil cAMP production and enhanced viability. Notably, GPR65(-/-) mice had attenuated airway eosinophilia and increased apoptosis in 2 distinct models of allergic airway disease. We conclude that eosinophil viability is increased in acidic microenvironments in a cAMP- and GPR65-dependent manner. PMID:19641187

  18. Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner

    PubMed Central

    Kottyan, Leah C.; Collier, Ann R.; Cao, Khanh H.; Niese, Kathryn A.; Hedgebeth, Megan; Radu, Caius G.; Witte, Owen N.; Khurana Hershey, Gurjit K.; Rothenberg, Marc E.

    2009-01-01

    The microenvironment of the lung in asthma is acidic, yet the effect of acidity on inflammatory cells has not been well established. We now demonstrate that acidity inhibits eosinophil apoptosis and increases cellular viability in a dose-dependent manner between pH 7.5 and 6.0. Notably, acidity induced eosinophil cyclic adenosine 5′-monophosphate (cAMP) production and enhanced cellular viability in an adenylate cyclase–dependent manner. Furthermore, we identify G protein-coupled receptor 65 (GPR65) as the chief acid-sensing receptor expressed by eosinophils, as GPR65-deficient eosinophils were resistant to acid-induced eosinophil cAMP production and enhanced viability. Notably, GPR65−/− mice had attenuated airway eosinophilia and increased apoptosis in 2 distinct models of allergic airway disease. We conclude that eosinophil viability is increased in acidic microenvironments in a cAMP- and GPR65-dependent manner. PMID:19641187

  19. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    NASA Astrophysics Data System (ADS)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  20. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  1. Intracellular pH Recovery Rates of Hemocytes from Estuarine and Open Ocean Bivalve Species Following In vitro Acid Challenge

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G.

    2013-12-01

    Decreasing pH in estuarine systems is a growing concern for researchers studying mollusk species. Debates continue on whether estuarine bivalve species are more or less vulnerable to ocean acidification than marine species because estuaries can present multiple environmental stressors. The aim of this study is to understand the homeostatic mechanisms of bivalve hemocytes following exposure to extracellular acid treatment. Previous measurements using fluorescent SNARF probes and flow-cytometry have determined the intracellular pH of hemocytes from several bivalve species (eastern oyster, bay scallop, northern quahog, soft-shell clam, and blue mussel) to range between 7.0-7.4. In the present study of four bivalve species, recovery rate profiles were determined for intracellular hemocyte pH following addition of acid to hemolymph in vitro. These profiles indicate that soft-shell clams and bay scallops maintained homeostasis with very little change in intracellular pH. In contrast, an initial drop in intracellular pH in northern quahogs was followed by a steady recovery of intracellular pH. Contrasting results between species appear to be unrelated to mineral shell composition (aragonite vs. calcite) or habitat location (infaunal vs. epifaunal). The next phase of this study will be to determine if offshore species (surfclams and sea scallops) will have similar responses. Results from these studies will provide a better understanding of the physiological responses of estuarine and marine species exposed to acidified environments.

  2. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  3. Factors influencing the acid-base (pH) balance in the Baltic Sea: a sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Omstedt, Anders; Edman, Moa; Anderson, Leif G.; Laudon, Hjalmar

    2010-09-01

    Using calculations based on the marine carbon system and on modelling, the sensitivity of Baltic Sea surface pH was examined. Transient long-term calculations demonstrated that the marine carbon system adjusts to lateral boundary conditions within some decades, as does salinity. Climate changes in temperature or salinity will only marginally affect the acid-base (pH) balance. Wetter or dryer climate will also play a minor role in the pH balance. The direct effect on seawater pH of acid precipitation over the Baltic Sea surface was demonstrated to be small. Acidification due to river transport of dissolved organic carbon (DOC) into the marine system seems marginal although mineralization of terrestrial DOC may cause extra marine acidification, but the effect has yet to be quantified. Increased nutrient load may increase the amplitude in the pH seasonal cycle and increase the acidification during winter time. Fossil fuel burning is likely to have both a direct and indirect effect through increased CO2 levels, altering seawater pH as well as changing the river chemistry. This may severely threaten some species in the Baltic Sea, particularly in the Northern Baltic.

  4. Effect of low molecular weight organic acids on lowing pH in the sea water of the Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Ding, H.; Zhou, Y.; Yang, G.; Lv, L.

    2013-12-01

    Recent study showed that average pH value in the seawater of the Jiaozhou Bay and its adjacent area of the Yellow Sea were about 7.9 and 8.0-8.2, respectively, indicating significant low pH value in the sea water of the bay. At the same period, existence of high concentrations of low molecular weight organic acids, including formate, acetate and lactate was detected. By theoretical calculation, field and laboratory simulate experiments, this study investigated the effect of these organic acids on pH value of the seawater in the Jiaozhou Bay. The results showed that average concentration of the total low molecular weight organic acids was 29.01 μmol/L; and average concentrations of formate, acetate and lactate were 4.06 μ mol/L, 18.31 μmol/L, and 6.64 μmol/L, respectively, in the surface seawater samples collected from 15 sampling stations in the Jiaozhou Bay in May, 2012. With similar total alkalinity (TA) and concentration of dissolved inorganic carbon (DIC) in the Jiaozhou Bay and the Yellow Sea, all the low molecular weight organic acids could decrease pH value in the seawater. Under field condition, co-effect of the three organic acids could decrease pH value in the sea water of the Jiaozhou Bay up to 0.185. We also collected samples of 6 stations of Narragansett Bay as comparison. The results supported that low molecular weight organic acids was critical on acidification of seawater in the Jiaozhou bay.

  5. Acidic intracellular pH shift during Caenorhabditis elegans larval development

    SciTech Connect

    Wadsworth, W.G.; Riddle, D.L. )

    1988-11-01

    During recovery from the developmentally arrested, nonfeeding dauer stage of the nemotode Caenorhabditis elegans, metabolic activation is accompanied by a decrease in intracellular pH (pH{sub i}). Phosphorus-31 nuclear magnetic resonance ({sup 31}P NMR) analyses of perchloric acid extracts show that inorganic phosphate predominates in dauer larvae, whereas ATP and other high-energy metabolites are abundant within 6 hr after dauer larvae have been placed in food to initiate development. Although metabolic activation has been associated with an alkaline pH{sub i} shift in other organisms, in vivo {sup 31}P NMR analysis of recovering dauer larvae shows a pH{sub i} decrease from {approx} 7.3 to {approx} 6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and it coincides with, or soon follows, the developmental commitment to recover from the dauer stage, suggesting that control of pH{sub i} may be important in the regulation of larval development in nematodes.

  6. CO2-brine-mineral Reactions in Geological Carbon Storage: Results from an EOR Experiment

    NASA Astrophysics Data System (ADS)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.; Members Of The Crius Project

    2011-12-01

    Dissolution of CO2 in brines is a prime mechanism for stabilising the light supercritical CO2 in geological carbon storage. However the rates of dissolution are very uncertain as they likely depend on the heterogeneity of the flow of CO2, the possibility of convective instability of the denser CO2-saturated brines and on fluid-mineral reactions which buffer brine acidity. We report the results of sampling brines and gases during a phase of CO2 injection for enhanced oil recovery in a small oil field. The injected CO2 was spiked with isotopically enriched noble gases at the start of injection. Brines and gases were sampled at production wells daily for 3 months after initiation of CO2 injection and again for two weeks after 5 months. The noble gas spikes were detected at producing wells within days of injection but signals continued for weeks, and at some producers for the duration of the sampling period, attesting to the complexity of gas-species pathways. Interpretation of the water chemistry is complicated by the previous history of the oil field and re-injection of produced water prior to injection of CO2. However water sampled from some producing wells during the phase of CO2 injection showed monotonic increases in alkalinity and in concentrations of major cations to levels in excess of those in the injected water. The marked increase in Na, and smaller increases in Ca, Mg, Si, K and Sr are interpreted primarily to result from silicate dissolution with either dissolution or precipitation of calcite. The precipitation of calcite driven by the rise in pH consequent on dissolution of silicates is as predicted by previous modelling (Knaus et al., 2005, Chemical Geology) and as observed in natural analogue systems (Kampman et al., 2009, Earth Planetary Science Letters). A key question is the extent to which the rates of dissolution are controlled by the surface reaction rates of the minerals versus the rate at which CO2 can dissolve in formation brines. Simple flow

  7. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments.

    PubMed

    Perez, Marta; Calles-Enríquez, Marina; Nes, Ingolf; Martin, Maria Cruz; Fernandez, Maria; Ladero, Victor; Alvarez, Miguel A

    2015-04-01

    Enterococcus faecalis is a commensal bacterium of the human gut that requires the ability to pass through the stomach and therefore cope with low pH. E. faecalis has also been identified as one of the major tyramine producers in fermented food products, where they also encounter acidic environments. In the present work, we have constructed a non-tyramine-producing mutant to study the role of the tyramine biosynthetic pathway, which converts tyrosine to tyramine via amino acid decarboxylation. Wild-type strain showed higher survival in a system that mimics gastrointestinal stress, indicating that the tyramine biosynthetic pathway has a role in acid resistance. Transcriptional analyses of the E. faecalis V583 tyrosine decarboxylase cluster showed that an acidic pH, together with substrate availability, induces its expression and therefore the production of tyramine. The protective role of the tyramine pathway under acidic conditions appears to be exerted through the maintenance of the cytosolic pH. Tyramine production should be considered important in the adaptability of E. faecalis to acidic environments, such as fermented dairy foods, and to survive passage through the human gastrointestinal tract. PMID:25529314

  8. Acid-coated Textiles (pH 5.5-6.5)--a New Therapeutic Strategy for Atopic Eczema?

    PubMed

    Jaeger, Teresa; Rothmaier, Markus; Zander, Holger; Ring, Johannes; Gutermuth, Jan; Anliker, Mark D

    2015-07-01

    Increased transepidermal water loss (TEWL) and decreased skin capacitance are characteristic features of the disturbed epidermal barrier in atopic eczema (AE). The "acid mantle", which is a slightly acidic film on the surface of the skin has led to the development of acidic emollients for skin care. In this context, the effect of citric acid-coated textiles on atopic skin has not been examined to date. A textile carrier composed of cellulose fibres was coated with a citric acid surface layer by esterification, ensuring a constant pH of 5.5-6.5. Twenty patients with AE or atopic diathesis were enrolled in the study. In a double-blind, half-side experiment, patients had to wear these textiles for 12 h a day for 14 days. On day 0 (baseline), 7 and 14, tolerability (erythema, pruritus, eczema, wearing comfort) and efficacy on skin barrier were assessed by TEWL skin hydration (corneometry/capacitance), pH and clinical scoring of eczema (SCORAD). Citric acid-coated textiles were well tolerated and improved eczema and objective parameters of skin physiology, including barrier function and a reduced skin surface pH, with potential lower pathogenic microbial colonisation. PMID:24953993

  9. Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid

    EPA Science Inventory

    Significance of pH on the Cytotoxic Potential of the Water Disinfection By-Product Iodoacetic Acid Vicki Richardson1, Susan D. Richardson2, Mary Moyer3, Jane Ellen Simmons1, and Anthony DeAngelo1, 1U.S. Environmental Protection Agency, Research Triangle Park, NC, 2University of...

  10. Directed Evolution of Metabolic Pathways in Microbial Populations. I. Modification of the Acid Phosphatase Ph Optimum in S. CEREVISIAE

    PubMed Central

    Francis, J. C.; Hansche, P. E.

    1972-01-01

    An experimental system for directing the evolution of enzymes and metabolic pathways in microbial populations is proposed and an initial test of its power is provided.—The test involved an attempt to genetically enhance certain functional properties of the enzyme acid phosphatase in S. cerevisiae by constructing an environment in which the functional changes desired would be "adaptive". Naturally occurring mutations in a population of 109 cells were automatically and continuously screened, over 1,000 generations, for their effect on the efficiency (Km) and activity of acid phosphatase at pH 6, and for their effect on the efficiency of orthophosphate metabolism.—The first adaptation observed, M1, was due to a single mutational event that effected a 30% increase in the efficiency of orthophosphate metabolism. The second, M2, effected an adaptive shift in the pH optimum of acid phosphatase and an increase in its activity over a wide range of pH values (an increment of 60% at pH 6). M2 was shown to result from a single mutational event in the region of the acid phosphatase structural gene. The third, M3, effected cell clumping, an adaptation to the culture apparatus that had no effect on phosphate metabolism.—The power of this system for directing the evolution of enzymes and of metabolic pathways is discussed in terms of the kinetic properties of the experimental system and in terms of the results obtained. PMID:4552227

  11. Direct Measurement of pH in Individual Particles via Raman Microspectroscopy and Variation in Acidity with Relative Humidity.

    PubMed

    Rindelaub, Joel D; Craig, Rebecca L; Nandy, Lucy; Bondy, Amy L; Dutcher, Cari S; Shepson, Paul B; Ault, Andrew P

    2016-02-18

    Atmospheric aerosol acidity is an important characteristic of aqueous particles, which has been linked to the formation of secondary organic aerosol by catalyzing reactions of oxidized organic compounds that have partitioned to the particle phase. However, aerosol acidity is difficult to measure and traditionally estimated using indirect methods or assumptions based on composition. Ongoing disagreements between experiments and thermodynamic models of particle acidity necessitate improved fundamental understanding of pH and ion behavior in high ionic strength atmospheric particles. Herein, Raman microspectroscopy was used to determine the pH of individual particles (H2SO4+MgSO4) based on sulfate and bisulfate concentrations determined from νs(SO4(2-)) and νs(HSO4(-)), the acid dissociation constant, and activity coefficients from extended Debye-Hückel calculations. Shifts in pH and peak positions of νs(SO4(2-)) and νs(HSO4(-)) were observed as a function of relative humidity. These results indicate the potential for direct spectroscopic determination of pH in individual particles and the need to improve fundamental understanding of ion behavior in atmospheric particles. PMID:26745214

  12. EFFECTS OF PH, SOLID/SOLUTION RATIO, IONIC STRENGTH, AND ORGANIC ACIDS ON PB AND CD SOPRTION ON KAOLINITE

    EPA Science Inventory

    Potentiometric and ion-selective electrode titrations together with batch sorption/desorption experiments, were performed to explain the aqueous and surface complexation reactions between kaolinite, Pb, Cd and three organic acids. Variables included pH, ionic strength, metal conc...

  13. Rat epididymal luminal fluid acid beta-D-galactosidase optimally hydrolyses glycoprotein substrate at neutral pH.

    PubMed Central

    Skudlarek, M D; Tulsiani, D R; Orgebin-Crist, M C

    1992-01-01

    Several glycosidases, purified and characterized from mammalian tissues, have been shown to be optimally active under acidic conditions when p-nitrophenyl (PNP) or 4-methylumbelliferyl glycosides are used as substrates. Although high levels of the glycosidases are present in the epididymal lumen, their physiological role remains uncertain. To be functional, the glycosidases are expected to be enzymatically active at or near the physiological pH of luminal fluid. In this report, we demonstrate that the rat epididymal luminal fluid beta-D-galactosidase, optimally active toward PNP beta-D-galactoside at pH 3.5, shows maximum activity towards a glycoprotein substrate ([Gal-3H]fetuin) at neutral pH. Several lines of evidence, including immunoprecipitation studies using antibody to the acid beta-D-galactosidase, and substrate competition studies, indicate that PNP galactosidase and [3H]Gal galactosidase activities are caused by a single enzyme, and that the two substrates are probably cleaved by the same catalytic site(s). Competition studies with various disaccharides indicate that this enzyme is capable of cleaving a variety of galactose linkages found in both O- and N-linked oligosaccharides. Molecular-sieve column chromatography of the beta-D-galactosidase of luminal fluid under several conditions of buffer and pH show that, whereas the enzyme eluted as a tetramer (apparent M(r) 320,000) under acidic conditions (pH 3.5-4.3), only dimers and monomers (apparent M(r) 180,000 and 92,000 respectively) were observed in neutral conditions (pH 6.8). This aggregation/dissociation phenomenon is reversible. These studies indicate that beta-D-galactosidase is present in the luminal fluid in dissociated forms, and is therefore optimally active towards glycoprotein substrates at physiological pH. The potential role of the enzyme in modification of sperm surface glycoproteins is discussed. PMID:1417750

  14. Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron.

    PubMed

    Baeseman, J L; Smith, R L; Silverstein, J

    2006-02-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day(-1). The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. PMID:16463131

  15. Denitrification potential in stream sediments impacted by acid mine drainage: Effects of pH, various electron donors, and iron

    USGS Publications Warehouse

    Baeseman, J.L.; Smith, R.L.; Silverstein, J.

    2006-01-01

    Acid mine drainage (AMD) contaminates thousands of kilometers of stream in the western United States. At the same time, nitrogen loading to many mountain watersheds is increasing because of atmospheric deposition of nitrate and increased human use. Relatively little is known about nitrogen cycling in acidic, heavy-metal-laden streams; however, it has been reported that one key process, denitrification, is inhibited under low pH conditions. The objective of this research was to investigate the capacity for denitrification in acidified streams. Denitrification potential was assessed in sediments from several Colorado AMD-impacted streams, ranging from pH 2.60 to 4.54, using microcosm incubations with fresh sediment. Added nitrate was immediately reduced to nitrogen gas without a lag period, indicating that denitrification enzymes were expressed and functional in these systems. First-order denitrification potential rate constants varied from 0.046 to 2.964 day-1. The pH of the microcosm water increased between 0.23 and 1.49 pH units during denitrification. Additional microcosm studies were conducted to examine the effects of initial pH, various electron donors, and iron (added as ferrous and ferric iron). Decreasing initial pH decreased denitrification; however, increasing pH had little effect on denitrification rates. The addition of ferric and ferrous iron decreased observed denitrification potential rate constants. The addition of glucose and natural organic matter stimulated denitrification potential. The addition of hydrogen had little effect, however, and denitrification activity in the microcosms decreased after acetate addition. These results suggest that denitrification can occur in AMD streams, and if stimulated within the environment, denitrification might reduce acidity. ?? Springer Science+Business Media, Inc. 2006.

  16. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  17. Co-Sequestration Geochemical Modeling: Simple Brine Solution + CO2-O2-SO2

    NASA Astrophysics Data System (ADS)

    Verba, C.; Kutchko, B. G.; Reed, M. H.

    2012-12-01

    Class H well cement (LaFarge) was exposed to supercritical CO2 to evaluate the impact of brine chemistry on the well cement. Simulated experimental downhole conditions include a pressure of 28.6 MPa and a temperature of 50oC. Brine composition was formulated from the NETL NATCARB database, resulting in a simple solution of 1 M (NaCl, MgCl2, CaCl2). It was determined that the brine chemistry plays a vital role in determining the degree and type of alteration of cement in carbon sequestration conditions. The implications of co-sequestration (CO2/O2/SO2 mixtures) from of oxy-fueled combustion, coal gasification and sour gas have been considered. Geochemical modeling was conducted to understand the interaction between formation brine, cement and co-contaminant gases, using a gas composition of 95.5% CO2, 4% O2, and 1.5% SO2. The modeling results are significant in determining the validity of co-sequestering coal flue gas containing SOx gases or sour hydrocarbon gas which could potentially produce pyrite or other sulfur-bearing species in the cement via mineralization trapping. Thermodynamic components of aqueous species, gases, and minerals were used to calculate the pH and mineral saturation indices using CHIM-XPT. The computed pH of the solution is 4.34. The total sulfate molality within the brine is 0.0095 M. In experimental conditions of 600 mL of brine, 0.0057 moles of sulfate will be converted into 5.7 mL of sulfuric acid. The modeling shows that an excess of 31% O2 forms, indicating that H2S from SO2 disporportionation is oxidized to sulfate, thus no gaseous H2S will form. Remaining SO2 in the experimental headspace has a predicted mole fraction is 10-46. Additional SO2 gas added to the system produces the reaction to precipitate gypsum. Additional gas reactions precipitate gypsum, anhydrite, calcite, and dolomite.

  18. Validation of lactic acid bacteria, lactic acid, and acidified sodium chlorite as decontaminating interventions to control Escherichia coli O157:H7 and Salmonella Typhimurium DT 104 in mechanically tenderized and brine-enhanced (nonintact) beef at the purveyor.

    PubMed

    Echeverry, Alejandro; Brooks, J Chance; Miller, Markus F; Collins, Jesse A; Loneragan, Guy H; Brashears, Mindy M

    2010-12-01

    After three different outbreaks were linked to the consumption of nonintact meat products contaminated with Escherichia coli O157:H7, the U.S. Food Safety and Inspection Service published notice requiring establishments producing mechanically tenderized and moisture-enhanced beef products to reassess their respective hazard analysis and critical control point systems, due to potential risk to the consumers. The objective of this study was to validate the use of lactic acid bacteria (LAB), acidified sodium chlorite (ASC), and lactic acid (LA) sprays when applied under a simulated purveyor setting as effective interventions to control and reduce E. coli O157:H7 and Salmonella Typhimurium DT 104 in inoculated U.S. Department of Agriculture (USDA) Choice strip loins (longissimus lumborum muscles) pieces intended for either mechanical blade tenderization or injection enhancement with a brine solution after an aging period of 14 or 21 days at 4.4°C under vacuum. After the mechanical process, translocation of E. coli O157:H7 and Salmonella Typhimurium DT 104 from the surface into the internal muscles occurred at levels between 1.00 and 5.72 log CFU/g, compared with controls. LAB and LA reduced internal E. coli O157:H7 loads up to 3.0 log, while ASC reduced the pathogen 1.4 to 2.3 log more than the control (P < 0.05), respectively. Salmonella Typhimurium DT 104 was also reduced internally 1.3 to 2.8, 1.0 to 2.3, and 1.4 to 1.8 log after application of LAB, LA, and ASC, respectively. The application of antimicrobials by purveyors prior to mechanical tenderization or enhancement of steaks should increase the safety of these types of products. PMID:21219733

  19. Embryonic common snapping turtles (Chelydra serpentina) preferentially regulate intracellular tissue pH during acid-base challenges.

    PubMed

    Shartau, Ryan B; Crossley, Dane A; Kohl, Zachary F; Brauner, Colin J

    2016-07-01

    The nests of embryonic turtles naturally experience elevated CO2 (hypercarbia), which leads to increased blood PCO2  and a respiratory acidosis, resulting in reduced blood pH [extracellular pH (pHe)]. Some fishes preferentially regulate tissue pH [intracellular pH (pHi)] against changes in pHe; this has been proposed to be associated with exceptional CO2 tolerance and has never been identified in amniotes. As embryonic turtles may be CO2 tolerant based on nesting strategy, we hypothesized that they preferentially regulate pHi, conferring tolerance to severe acute acid-base challenges. This hypothesis was tested by investigating pH regulation in common snapping turtles (Chelydra serpentina) reared in normoxia then exposed to hypercarbia (13 kPa PCO2 ) for 1 h at three developmental ages: 70% and 90% of incubation, and yearlings. Hypercarbia reduced pHe but not pHi, at all developmental ages. At 70% of incubation, pHe was depressed by 0.324 pH units while pHi of brain, white muscle and lung increased; heart, liver and kidney pHi remained unchanged. At 90% of incubation, pHe was depressed by 0.352 pH units but heart pHi increased with no change in pHi of other tissues. Yearlings exhibited a pHe reduction of 0.235 pH units but had no changes in pHi of any tissues. The results indicate common snapping turtles preferentially regulate pHi during development, but the degree of response is reduced throughout development. This is the first time preferential pHi regulation has been identified in an amniote. These findings may provide insight into the evolution of acid-base homeostasis during development of amniotes, and vertebrates in general. PMID:27091863

  20. Addition of formic acid or starter cultures to liquid feed. Effect on pH, microflora composition, organic acid concentration and ammonia concentration.

    PubMed

    Canibe, N; Miquel, N; Miettinen, H; Jensen, B B

    2001-01-01

    Some of the charateristics of good quality fermented liquid feed (FLF) are low pH, high numbers of lactic acid bacteria, and low numbers of enterobacteria. In order to test strategies to avoid a proliferation of enterobacteria during the initial phase of FLF elaboration, two in vitro studies were carried out. Addition of various doses of formic acid or two different starter cultures were tested. Adding 0.1% formic acid or L. plantarum VTT E-78076 to the liquid feed seemed to be addecuate ways of inhibiting the growth of enterobacteria, without depleting the growth of lactic acid bacteria. PMID:15954629

  1. Human dental plaque pH, and the organic acid and free amino acid profiles in plaque fluid, after sucrose rinsing.

    PubMed

    Higham, S M; Edgar, W M

    1989-01-01

    The relationship between these factors was studied in plaque and plaque fluid samples taken at intervals during the Stephan pH curve following a sucrose mouth rinse. Levels of lactate rose after the rinse, then fell during the pH recovery phase. Levels of acetate, propionate and phosphate fell after rinsing, then rose again. Amino acid concentrations also changed, with many showing a fall followed by a rise; others rising then falling; and some showing a more variable or complex pattern. In resting plaque fluid, only alanine, proline, glutamic acid, glycine and ammonia were present at concentrations above 1 mmol/l. Delta-aminovaleric acid was detected at levels below those that have been found in monkeys. Hydroxyproline and hydroxylysine were consistently detected, levels of arginine were generally low, and those of cystine consistently very low. The results may provide a basis for understanding the complex metabolic interrelations that occur in the course of the Stephan curve and which may reflect or produce the observed pH changes. They suggest that besides the amount of acid produced, the type of acid, buffering power and base production should be considered as determinants of plaque pH. PMID:2597027

  2. Mirabilite solubility in equilibrium sea ice brines

    NASA Astrophysics Data System (ADS)

    Butler, Benjamin Miles; Papadimitriou, Stathys; Santoro, Anna; Kennedy, Hilary

    2016-06-01

    The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below -6.38 °C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and -20.6 °C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below -6.38 °C mirabilite displays particularly large changes in solubility as the temperature decreases, and by -20.6 °C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42- concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above -6.38 °C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the

  3. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution.

  4. Kinetic study of the reaction of sulfamethoxazole and glucose under acidic conditions: I. Effect of pH and temperature.

    PubMed

    Lucida, H; Parkin, J E; Sunderland, V B

    2000-07-20

    The kinetics of the reaction of sulfamethoxazole (SMX) in 5% w/v glucose to form the corresponding alpha- and beta-glucosylamines over the pH range of 0.80-6.88 at 37 degrees C has been investigated. The identity of the glucosylamines was determined by 1H-nuclear magnetic resonance spectroscopy of an authentic sample of the alpha-glucosylamine (USP) and the reaction products, and by interconversion of this compound to the corresponding beta-anomer. The reaction followed pseudo first-order reversible kinetics and involved specific acid and general acid-base catalysis. The pH-rate profile demonstrated that over the pH range of 0.80-2.90 and 5.50-6. 88 the reactions were dependent on H(+) concentration but pH independent between pH 3.00-5.45, which reflects the influence of ionization of SMX and the glucosylamines on the reversible reaction. Interpretation of the data with respect to kinetic models and rate equations for the formation and hydrolysis of the glucosylamines was investigated. Temperature dependence studies followed the Arrhenius equation with an Ea of 49.28 kJ mol(-1) for the forward and 63.46 kJ mol(-1) for the reverse reaction at pH 2.89 respectively. PMID:10915926

  5. Mars brine formation experiment

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Bullock, Mark A.; Stoker, Carol R.

    1993-01-01

    The presence of water-soluble cations and anions in the Martian regolith has been the subject of speculation for some time. Viking lander data provided evidence for salt-cemented crusts on the Martian surface. If the crusts observed at the two Viking landing sites are, in fact, cemented by salts, and these crusts are globally widespread, as IRTM-derived thermal inertia studies of the Martian surface seem to suggest, then evaporite deposits, probably at least in part derived from brines, are a major component of the Martian regolith. The composition of liquid brines in the subsurface, which not only may be major agents of physical weathering but may also presently constitute a major deep subsurface liquid reservoir, is currently unconstrained by experimental work. A knowledge of the chemical identity and rate of production of Martian brines is a critical first-order step toward understanding the nature of both these fluids and their precipitated evaporites. Laboratory experiments are being conducted to determine the identity and production rate of water-soluble ions that form in initially pure liquid water in contact with Mars-mixture gases and unaltered Mars-analog minerals.

  6. A pH- and thermo-responsive poly(amino acid)-based drug delivery system.

    PubMed

    Liu, Na; Li, Bingqiang; Gong, Chu; Liu, Yuan; Wang, Yanming; Wu, Guolin

    2015-12-01

    A pH- and thermo-responsive poly(amino acid)-based amphiphilic copolymer was developed, functioning as a tumour targeting drug delivery system with good biocompatibility and biodegradability. To provide multi-stimuli sensitivity characteristics to the poly(amino acid)s, the polyaspartamide scaffold has been functionalized with N,N-diisopropylamide groups via aminolysis reaction of polysuccinimide. PEG chains have also been chemically grafted to the poly(amino acid) backbone through acid-labile hydrazone linkages, providing a removable shield for the poly(amino acid) based nanoparticles. Furthermore, doxorubicin was chemically linked to the copolymer chain via hydrazone bonds, acting as the hydrophobic moiety to drive the polymeric self-assembly. Free doxorubicin molecules could be encapsulated into the self-assembled nanoparticles via hydrophobic interactions and molecular π-π stacking. The results obtained show that the drug release can be triggered by the temperature with a significantly increased release being observed under acidic conditions. The cytotoxicity behaviour of the copolymers and drug-loaded nanoparticles was investigated in vitro at varying pH values and different temperatures. In doing so, superior characteristics concerning compatibility and anti-cancer activity could be observed. PMID:26454546

  7. [Effects of solution pH and simulated acid rain on the behavior of two sulfonylurea herbicides in soil].

    PubMed

    Zhang, Wei; Wang, Jin-Jun

    2007-03-01

    By the methods of batch equilibration and leaching, this paper studied the effects of solution pH and simulated acid rain on the behavior of bensulfuron-methyl and metsulfuron-methyl in soil. The results showed that the adsorption isotherms of these two herbicides fitted Freundlich equation well, and their adsorbed amounts reduced obviously with the increasing pH of water-soil system, which in turn promoted the translocation of the herbicides in soil. The adsorption coefficient (Kf) was positively correlated with soil organic matter and clay contents, while negatively correlated with soil pH. The higher pH of simulated acid rain had a greater contribution on the leaching of the two sulfonylurea herbicides, and their leached amount was increased with increasing acid rain. There was a close relationship between the leaching of the herbicides and the properties of soil. The soils with higher contents of organic matter and clay had a greater retention capability to the herbicides. PMID:17552202

  8. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  9. Effect of L-lactic acid, short-chain fatty acids, and pH in cecal infusate on morphometric and cell kinetic parameters of rat cecum.

    PubMed

    Ichikawa, H; Sakata, T

    1997-08-01

    We studied the influences of cecal infusion of NaCl, short-chain fatty acids (SCFA), and L-lactic acid at pH 5.0 or 7.0 for seven days on morphometric and cell kinetic parameters of the rat cecum. SCFA increased relative weight of the mucosa and submucosa, crypt size, and mitotic index in the cecum. L-Lactic acid stimulated mitosis only at pH 5.0. Crypt size correlated positively to epithelial proliferative activity only when NaCl or L-lactic acid was infused. SCFA should have changed the balance between production and loss of the cecal epithelial cells. The infusate pH by itself had no effect, but modified the effects of SCFA and L-lactic acid in different ways. Crypt size correlated positively to the logarithm of daily proton load of infusates. The above results indicate that epithelial cell proliferation in the cecum is influenced by both SCFA and L-lactic acid, although differently, and by proton load. PMID:9286223

  10. Demonstration of in situ product recovery of butyric acid via CO2 -facilitated pH swings and medium development in two-phase partitioning bioreactors.

    PubMed

    Peterson, Eric C; Daugulis, Andrew J

    2014-03-01

    Production of organic acids in solid-liquid two-phase partitioning bioreactors (TPPBs) is challenging, and highly pH-dependent, as cell growth occurs near neutral pH, while acid sorption occurs only at low pH conditions. CO2 sparging was used to achieve acidic pH swings, facilitating undissociated organic acid uptake without generating osmotic stress inherent in traditional acid/base pH control. A modified cultivation medium was formulated to permit greater pH reduction by CO2 sparging (pH 4.8) compared to typical media (pH 5.3), while still possessing adequate nutrients for extensive cell growth. In situ product recovery (ISPR) of butyric acid (pKa = 4.8) produced by Clostridium tyrobutyricum was achieved through intermittent CO2 sparging while recycling reactor contents through a column packed with absorptive polymer Hytrel® 3078. This polymer was selected on the basis of its composition as a polyether copolymer, and the use of solubility parameters for predicting solute polymer affinity, and was found to have a partition coefficient for butyric acid of 3. Total polymeric extraction of 3.2 g butyric acid with no CO2 mediated pH swings was increased to 4.5 g via CO2 -facilitated pH shifting, despite the buffering capacity of butyric acid, which resists pH shifting. This work shows that CO2 -mediated pH swings have an observable positive effect on organic acid extraction, with improvements well over 150% under optimal conditions in early stage fermentation compared to CO2 -free controls, and this technique can be applied other organic acid fermentations to achieve or improve ISPR. PMID:23996152

  11. Urea Fertilizer and pH Influence on Sorption Process of Flumetsulam and MCPA Acidic Herbicides in a Volcanic Soil.

    PubMed

    Palma, Graciela; Jorquera, Milko; Demanet, Rolando; Elgueta, Sebastian; Briceño, Gabriela; de la Luz Mora, María

    2016-01-01

    The aim of this study was to evaluate the influence of urea fertilizer and pH on the sorption process of two acidic herbicides, flumetsulam (2',6'-difluoro-5-methyl[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonanilide) and MCPA (4-chloro--tolyloxyacetic acid), on an Andisol. Urea reduced the adsorption of MCPA but not that of flumetsulam. The Freundlich parameter of MCPA decreased from 8.5 to 5.1 mg L kg. This finding could be attributed to an increase in dissolved organic C due to an initial increase in soil pH for urea application. The higher acidic character of MCPA compared with that of flumetsulam produced a greater hydrolysis of urea, leading to a further pH increase. A marked effect of pH on the adsorption of both herbicides was observed. The organic C distribution coefficient () values for flumetsulam were in the range of 74 to 10 L kg, while those of MCPA were in the range of 208 to 45 L kg. In the kinetic studies, the pseudo-second-order model appeared to fit the data best ( > 0.994). The initial adsorption rates () ranged from 20.00 to 4.59 mg kg h for flumetsulam and from 125.00 to 25.60 mg kg hfor MCPA. Both herbicides were adsorbed rapidly during the first stage of the sorption process, and the rates of sorption were dependent on pH. The application of the Elovich and Weber-Morris models led us to conclude that mass transfer through the boundary layer and, to a lesser degree, intraparticle diffusion were influenced by the chemical character of the herbicide. These results suggest that urea application could increase leaching of acid herbicides in soils. PMID:26828188

  12. Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide

    SciTech Connect

    Ghaly, A.E.; Ramkumar, D.R.

    1999-07-01

    Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

  13. Potentiometric pH Measurements of Acidity Are Approximations, Some More Useful than Others

    ERIC Educational Resources Information Center

    de Levie, Robert

    2010-01-01

    A recent article by McCarty and Vitz "demonstrating that it is not true that pH = -log[H+]" is examined critically. Then, the focus shifts to underlying problems with the IUPAC definition of pH. It is shown how the potentiometric method can provide "estimates" of both the IUPAC-defined hydrogen activity "and" the hydrogen ion concentration, using…

  14. The rock physics and geochemistry of carbonates exposed to reactive brines

    NASA Astrophysics Data System (ADS)

    Clark, Anthony C.; Vanorio, Tiziana

    2016-03-01

    When carbonate-rich rocks are brought into contact with an acidic brine their mechanical and acoustic responses depend on many factors including pH, porosity, permeability, effective stress, and time. These complexities hinder the understanding of processes such as hydrothermal fluid circulation, seismicity, and deep burial diagenesis. The present study addresses how different lithofacies exposed to the same reactive brine undergo varying degrees of transformation and whether it is possible to remotely detect these phenomena in the Earth. Results are presented from fluid injections carried out on a large and varied set of calcareous rocks under hydrostatic stress. The output brine was analyzed for dissolved mineral concentrations and the rock porosity, permeability, axial strain, ultrasonic velocity, and images from electron microscopy were contrasted before and after injection. Stromatolites were found to be the lithofacies most vulnerable to changes in their transport properties. However, all samples irreversibly compacted with the greatest strain in the most porous and permeable cores. The most extreme structural changes discovered through imaging were the welding of microporous zones, grain sliding, and the fracturing of various phases. Observations are consistent with a chemically enhanced weakening of the rock frame that generated compliant pores. The associated decrease in velocity of the dry rock can be approximated with linear relations that depend on both porosity and effective stress.

  15. Bile acids and pH values in total feces and in fecal water from habitually omnivorous and vegetarian subjects.

    PubMed

    van Faassen, A; Hazen, M J; van den Brandt, P A; van den Bogaard, A E; Hermus, R J; Janknegt, R A

    1993-12-01

    Twenty habitually omnivorous subjects and 19 habitually lactoovovegetarian subjects aged 59-65 y collected feces during 4 consecutive days. The concentrations of bile acids in total feces did not differ between the omnivores and vegetarians, but the bile acid concentrations in fecal water were significantly lower in the vegetarians. The concentration of the colorectal cancer-predicting bile acid deoxycholic acid in fecal water was explained by the intake of saturated fat and the daily fecal wet weight (r2 = 0.50). Fecal pH did not differ between the omnivores and vegetarians. This variable was significantly (P < 0.05) explained by the intake of calcium (r2 = 0.30); 24-h fecal wet weight and defecation frequency were significantly higher in the vegetarians. In conclusion, our vegetarian subjects had a lower concentration of deoxycholic acid in fecal water, higher fecal wet weight, and higher defecation frequency than the omnivorous subjects. PMID:8249879

  16. Dissolution kinetics of a lunar glass simulant at 25 degrees C: the effect of pH and organic acids

    NASA Technical Reports Server (NTRS)

    Eick, M. J.; Grossl, P. R.; Golden, D. C.; Sparks, D. L.; Ming, D. W.

    1996-01-01

    The dissolution kinetics of a simulated lunar glass were examined at pH 3, 5, and 7. Additionally, the pH 7 experiments were conducted in the presence of citric and oxalic acid at concentrations of 2 and 20 mM. The organic acids were buffered at pH 7 to examine the effect of each molecule in their dissociated form. At pH 3, 5, and 7, the dissolution of the synthetic lunar glass was observed to proceed via a two-stage process. The first stage involved the parabolic release of Ca, Mg, Al, and Fe, and the linear release of Si. Dissolution was incongruent, creating a leached layer rich in Si and Ti which was verified by transmission electron microscopy (TEM). During the second stage the release of Ca, Mg, Al, and Fe was linear. A coupled diffusion/surface dissolution model was proposed for dissolution of the simulated lunar glass at pH 3, 5, and 7. During the first stage the initial release of mobile cations (i.e., Ca, Mg, Al, Fe) was limited by diffusion through the surface leached layer of the glass (parabolic release), while Si release was controlled by the hydrolysis of the Si-O-Al bonds at the glass surface (linear release). As dissolution continued, the mobile cations diffused from greater depths within the glass surface. A steady-state was then reached where the diffusion rate across the increased path lengths equalled the Si release rate from the surface. In the presence of the organic acids, the dissolution of the synthetic lunar glass proceeded by a one stage process. The release of Ca, Mg, Al, and Fe followed a parabolic relationship, while the release of Si was linear. The relative reactivity of the organic acids used in the experiments was citrate > oxalate. A thinner leached layer rich in Si/Ti, as compared to the pH experiments, was observed using TEM. Rate data suggest that the chemisorption of the organic anion to the surface silanol groups was responsible for enhanced dissolution in the presence of the organic acids. It is proposed that the increased

  17. The pH low insertion peptide pHLIP Variant 3 as a novel marker of acidic malignant lesions

    PubMed Central

    Tapmeier, Thomas T.; Moshnikova, Anna; Beech, John; Allen, Danny; Kinchesh, Paul; Smart, Sean; Harris, Adrian; McIntyre, Alan; Engelman, Donald M.; Andreev, Oleg A.; Reshetnyak, Yana K.; Muschel, Ruth J.

    2015-01-01

    Current strategies for early detection of breast and other cancers are limited in part because some lesions identified as potentially malignant do not develop into aggressive tumors. Acid pH has been suggested as a key characteristic of aggressive tumors that might distinguish aggressive lesions from more indolent pathology. We therefore investigated the novel class of molecules, pH low insertion peptides (pHLIPs), as markers of low pH in tumor allografts and of malignant lesions in a mouse model of spontaneous breast cancer, BALB/neu-T. pHLIP Variant 3 (Var3) conjugated with fluorescent Alexa546 was shown to insert into tumor spheroids in a sequence-specific manner. Its signal reflected pH in murine tumors. It was induced by carbonic anhydrase IX (CAIX) overexpression and inhibited by acetazolamide (AZA) administration. By using 31P magnetic resonance spectroscopy (MRS), we demonstrated that pHLIP Var3 was retained in tumors of pH equal to or less than 6.7 but not in tissues of higher pH. In BALB/neu-T mice at different stages of the disease, the fluorescent signal from pHLIP Var3 marked cancerous lesions with a very low false-positive rate. However, only ∼60% of the smallest lesions retained a pHLIP Var3 signal, suggesting heterogeneity in pH. Taken together, these results show that pHLIP can identify regions of lower pH, allowing for its development as a theranostic tool for clinical applications. PMID:26195776

  18. Formulation of pH responsive peptides as inhalable dry powders for pulmonary delivery of nucleic acids

    PubMed Central

    Liang, Wanling; Kwok, Philip C.L.; Chow, Michael Y.T.; Tang, Patricia; Mason, A. James; Chan, Hak-Kim; Lam, Jenny. K.W.

    2013-01-01

    Nucleic acids have the potential to be used as therapies or vaccines for many different types of disease but delivery remains the most significant challenge to their clinical adoption. pH responsive peptides containing either histidine or derivatives of 2,3-diaminopropionic acid (Dap) can mediate effective DNA transfection in lung epithelial cells with the latter remaining effective even in the presence of lung surfactant containing bronchoalveolar fluid (BALF), making this class of peptides attractive candidates for delivering nucleic acids to lung tissues. To further assess the suitability of pH responsive peptides for pulmonary delivery by inhalation, dry powder formulations of pH responsive peptides and plasmid DNA, with mannitol as carrier, were produced by either spray drying (SD) or spray freeze drying (SFD). The properties of the two types of powders were characterised and compared using scanning electron microscopy (SEM), next generation impaction (NGI), gel retardation and in vitro transfection via a twin-stage impinger (TSI) following aerosolisation by a dry powder inhaler (Osmohaler™). Although the aerodynamic performance and transfection efficacy of both powders were good, the overall performance revealed SD powders to have a number of advantages over SFD powders and are the more effective formulation with potential for efficient nucleic acid delivery through inhalation. PMID:23702276

  19. Co-injection of SO2 With CO2 in Geological Sequestration: Potential for Acidification of Formation Brines

    NASA Astrophysics Data System (ADS)

    Ellis, B. R.; Crandell, L. E.; Peters, C. A.

    2008-12-01

    Coal-fired power plants produce flue gas streams containing 0.02-1.4% SO2 after traditional sulfur scrubbing techniques are employed. Due to the corrosive nature of H2SO4, it will likely be necessary to remove the residual SO2 prior to carbon capture and transport; however, it may still be economically advantageous to reintroduce the SO2 to the injection stream to mitigate the cost of SO2 disposal and/or to get credits for SO2 emissions reduction. This study examines the impact of SO2 co-injection on the pH of formation brine. Using phase equilibrium modeling, it is shown that a CO2 gas stream with 1% SO2 under oxidizing conditions can create extremely acidic conditions (pH<1), but this will occur only near the CO2 plume and over a short time frame. Nearly all of the SO2 will be lost to the brine during this first phase equilibration, within approximately a decade, and the pH after the second is only 3.7, which is the pH that would occur from the carbonic acid alone. This suggests that although SO2 will create low pH values due to the formation of H2SO4, the effect will have a very limited lifespan and a localized impact spatially. SO2 is much more soluble than CO2 and as the relative of amount of SO2 to CO2 is very small, the SO2 will quickly dissolve into the formation brine. The extent of H2SO4 formation is dependent on the redox conditions of the system. Several SO2 oxidation pathways are investigated, including SO2 disproportionation which produces both sulfate and the weaker acid, H2S. Further modeling considers a time varying, diffusion limited flux of SO2. Relative to the case of instantaneous phase equilibrium, this results in a smaller decrease in pH occurring over a longer duration. Our overall conclusion is that brine acidification due to SO2 co-injection is not likely to be significant over relevant time and spatial scales.

  20. [The effect of pH and amount of antacids on bile acid binding in a quasi-natural reflux milieu].

    PubMed

    Kurtz, W; Güldütuna, S; Leuschner, U

    1991-05-01

    Bile acid adsorption may be one therapeutical mechanism of antacids. Little is known about the effect of pH and amount of antacid on bile acid adsorption. Therefore we carried out the following investigations using a lattice [correction of lettuce] layer antacid as a model substance. 5 ml of "quasi-natural reflux milieu" were mixed with 0.5, 1 or 2 ml of hydrotalcite and adjusted to pH 3, 5 or 7. The highest total bile acid adsorption was found at pH 3, the degree of bile acid adsorption correlated with bile acid lipophilicity, i.e. the most lipophilic and toxic bile acids are adsorbed best. High adsorption of lipophilic and particularly toxic bile acids even at low gastric pH may help to explain the good therapeutic effect of low-dose antacids in gastric ulcer. PMID:1950032

  1. Thermodynamic modelling of the effect of hydroxycarboxylic acids on the solubility of plutonium at high pH

    SciTech Connect

    Moreton, A.D.

    1993-12-31

    A number of the hydroxycarboxlyic acids generated by the alkaline degradation of cellulosic wastes under reducing conditions in a cementitious repository can significantly increase the solubility of the actinides at high pH, especially plutonium. The solubility of plutonium at pH 12, in the presence of a range of hydroxycarboxylic acids containing a number of hydroxyl groups and between one and three carboxylate groups, has been modelled using the HARPHRQ code. All the plutonium-organic complexes assumed in the model are based on a stable unit in which a central plutonium ion is bound by four oxygen atoms. The oxygen atoms can be provided either by a deprotonated hydroxyl group on one of the ligands, or by hydroxide ions.

  2. pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage

    USGS Publications Warehouse

    McKnight, Diane M.; Kimball, B.A.; Runkel, R.L.

    2001-01-01

    The redox speciation of dissolved iron and the transport of iron in acidic, metal-enriched streams is controlled by precipitation and dissolution of iron hydroxides, by photoreduction of dissolved ferric iron and hydrous iron oxides, and by oxidation of the resulting dissolved ferrous iron. We examined the pH dependence of these processes in an acidic mine-drainage stream, St Kevin Gulch, Colorado, by experimentally increasing the pH of the stream from about 4.0 to 6.5 and following the downstream changes in iron species. We used a solute transport model with variable flow to evaluate biogeochemical processes controlling downstream transport. We found that at pH 6.4 there was a rapid and large initial loss of ferrous iron concurrent with the precipitation of aluminium hydroxide. Below this reach, ferrous iron was conservative during the morning but there was a net downstream loss of ferrous iron around noon and in the afternoon. Calculation of net oxidation rates shows that the noontime loss rate was generally much faster than rates for the ferrous iron oxidation at pH 6 predicted by Singer and Stumm (1970. Science 167: 1121). The maintenance of ferrous iron concentrations in the morning is explained by the photoreduction of photoreactive ferric species, which are then depleted by noon. Copyright ?? 2001 John Wiley & Sons, Ltd.

  3. pH dependence of iron photoreduction in a rocky mountain stream affected by acid mine drainage

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Kimball, Briant A.; Runkel, Robert L.

    2001-07-01

    The redox speciation of dissolved iron and the transport of iron in acidic, metal-enriched streams is controlled by precipitation and dissolution of iron hydroxides, by photoreduction of dissolved ferric iron and hydrous iron oxides, and by oxidation of the resulting dissolved ferrous iron. We examined the pH dependence of these processes in an acidic mine-drainage stream, St Kevin Gulch, Colorado, by experimentally increasing the pH of the stream from about 4·0 to 6·5 and following the downstream changes in iron species. We used a solute transport model with variable flow to evaluate biogeochemical processes controlling downstream transport. We found that at pH 6·4 there was a rapid and large initial loss of ferrous iron concurrent with the precipitation of aluminium hydroxide. Below this reach, ferrous iron was conservative during the morning but there was a net downstream loss of ferrous iron around noon and in the afternoon. Calculation of net oxidation rates shows that the noontime loss rate was generally much faster than rates for the ferrous iron oxidation at pH 6 predicted by Singer and Stumm (1970. Science 167: 1121). The maintenance of ferrous iron concentrations in the morning is explained by the photoreduction of photoreactive ferric species, which are then depleted by noon.

  4. Influence of levels of information as presented by different technologies on students' understanding of acid, base, and ph concepts

    NASA Astrophysics Data System (ADS)

    Nakhleh, Mary B.; Krajcik, Joseph S.

    We investigated how different levels of information presented by various technologies affected secondary students' understanding of acid, base, and pH concepts. Secondary students who were selected for the study had just completed their study of acid-base chemistry. No attempt was made to provide further instruction. We analyzed changes in the understanding of individual students by constructing concept maps from the propositions that the students used in interviews conducted before and after a series of acid-base titrations. After the initial interview, students were divided into three groups. Within each group, students individually performed the same set of titrations using different technologies: chemical indicators, pH meters, and microcomputer-based laboratories (MBL). After the titrations were completed, all students were interviewed again. We found that students using MBL exhibited a larger positive shift in their concept map scores, which indicates a greater differentiation and integration of their knowledge of acids and bases. The chemical indicator students exhibited a more moderate positive shift in their concept map scores, and the pH meter students exhibited a smaller positive shift. We also found that the MBL students constructed more inappropriate links in their concept maps than the chemical indicator or pH meter students. However, we speculate that this increased number of inappropriate links indicates a high level of involvement with the technology. We therefore argue that the level of information offered by the technology affected students' understanding of the chemical concepts.Received: 24 February 1993; Revised: 21 February 1994;

  5. Characterization of brines and evaporites of Lake Katwe, Uganda

    NASA Astrophysics Data System (ADS)

    Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan

    2014-03-01

    Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.

  6. Control of diapause by acidic pH and ammonium accumulation in the hemolymph of Antarctic copepods.

    PubMed

    Schründer, Sabine; Schnack-Schiel, Sigrid B; Auel, Holger; Sartoris, Franz Josef

    2013-01-01

    Life-cycles of polar herbivorous copepods are characterised by seasonal/ontogenetic vertical migrations and diapause to survive periods of food shortage during the long winter season. However, the triggers of vertical migration and diapause are still far from being understood. In this study, we test the hypothesis that acidic pH and the accumulation of ammonium (NH4 (+)) in the hemolymph contribute to the control of diapause in certain Antarctic copepod species. In a recent study, it was already hypothesized that the replacement of heavy ions by ammonium is necessary for diapausing copepods to achieve neutral buoyancy at overwintering depth. The current article extends the hypothesis of ammonium-aided buoyancy by highlighting recent findings of low pH values in the hemolymph of diapausing copepods with elevated ammonium concentrations. Since ammonia (NH3) is toxic to most organisms, a low hemolymph pH is required to maintain ammonium in the less toxic ionized form (NH4 (+)). Recognizing that low pH values are a relevant factor reducing metabolic rate in other marine invertebrates, the low pH values found in overwintering copepods might not only be a precondition for ammonium accumulation, but in addition, it may insure metabolic depression throughout diapause. PMID:24143238

  7. A new hyaluronic acid pH sensitive derivative obtained by ATRP for potential oral administration of proteins.

    PubMed

    Fiorica, Calogero; Pitarresi, Giovanna; Palumbo, Fabio Salvatore; Di Stefano, Mauro; Calascibetta, Filippo; Giammona, Gaetano

    2013-11-30

    Atom transfer radical polymerization (ATRP) has been successfully employed to obtain a new derivative of hyaluronic acid (HA) able to change its solubility as a function of external pH and then to be potentially useful for intestinal release of bioactive molecules, included enzymes and proteins. In particular, a macroinitiator has been prepared by linking 2-bromo-2-methypropionic acid (BMP) to the amino groups of ethylenediamino derivative of tetrabutyl ammonium salt of HA (HA-TBA-EDA). This macroinititor, named HA-TBA-EDA-BMP has been used for the ATRP of sodium methacrylate (MANa) using a complex of Cu(I) and 2,2'-bipyridyl (Byp) as a catalyst. The resulting copolymer, named HA-EDA-BMP-MANa, has been characterized by (1)H NMR and size exclusion chromatography (SEC) analyses. A turbidimetric analysis has showed its pH sensitive behavior, being insoluble in simulated gastric fluid but soluble when pH increases more than 2.5. To confirm the ability of HA-EDA-BMP-MANa in protecting peptides or proteins from denaturation in acidic medium, α-chymotrypsin has been chosen as a model of protein molecule and its activity has been evaluated after entrapment into HA-EDA-BMP-MANa chains and treatment under simulated gastric conditions. Finally, cell compatibility has been evaluated by performing a MTS assay on murine dermal fibroblasts cultured with HA-EDA-BMP-MANa solutions. PMID:24060369

  8. Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V; Samoilenko, Vladimir A

    2013-10-01

    The replacement of chemical synthesis by environmentally friendly energy-efficient technologies for production of valuable metabolites is a principal strategy of developing biotechnological industry all over the world. In the present study, we develop a method for α-ketoglutaric acid (KGA) production from rapeseed oil with the use of Yarrowia lipolytica yeast. Sixty strains of Y. lipolytica yeasts were tested for their ability to produce KGA, and the strain Y. lipolytica 212 (Y. lipolytica VKM Y-2412) was selected as a promising KGA producer. Using a three-stage pH controlling, in which pH was 4.5 in the growth phase, then since 72 to 144 h, pH was maintained at 3.5 and in the later phase of acid production, the titration by KOH was switch off, selected strain produced 106.5 g l(-1) of KGA with mass yield of 0.95 g g(-1). KGA in the form of monopotassium salt was isolated from the culture broth and purified. The isolation procedure involved separation of biomass, extraction of residual triglycerides, filtrate bleaching, and acidification with mineral acid (to pH 2.8-3.4), concentration, precipitation of mineral salts, and crystallization of the product. The purity of KGA isolated from the culture filtrate reached 99.1 %. PMID:23948727

  9. pH induced dual "OFF-ON-OFF" switch: influence of a suitably placed carboxylic acid.

    PubMed

    Sadhu, Kalyan K; Mizukami, Shin; Yoshimura, Akimasa; Kikuchi, Kazuya

    2013-01-28

    The design and synthesis of molecular probes competent for pH signaling within or beyond a certain range is a complicated matter. Herein a new mechanism for ''OFF-ON-OFF'' absorbance and fluorescence intensities vs. pH behaviour is described. The probe design is based on the connection of carboxylic acid derivatized benzoxazole and 7-hydroxycoumarin/iminocoumarin parts. The protonation/deprotonation of the carboxylic acid (-COOH), N atom of benzoxazole ring and hydroxy part of the coumarin ring have been used for this mechanistic study. We have designed the molecule in such a fashion that deprotonation of the hydroxy part takes place at a lower pK(a) compared to deprotonation of the -COOH. The dual ''OFF-ON-OFF'' properties of our probes depend on the C-C bond between the two different heterocyclic parts. Quantum mechanical calculations showed that the particular 'C-C' bond has an additional π-character. The twisting around this bond in different forms is responsible for such an ''OFF-ON-OFF'' property. This mechanism is new in fluorescence alteration processes. The delocalization of charge from one heterocyclic part to the other heterocyclic part in the mono- and dianionic forms controls the ''OFF-ON-OFF'' properties. The role of the carboxylic acid group was examined using an acetyl substituted derivative. One of our probes was successfully applied in live cell imaging studies in media at different pH. PMID:23060072

  10. Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

    PubMed

    Pérez-Díaz, I M; McFeeters, R F; Moeller, L; Johanningsmeier, S D; Hayes, J; Fornea, D S; Rosenberg, L; Gilbert, C; Custis, N; Beene, K; Bass, D

    2015-12-01

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs. PMID:26512798

  11. Occurrence of aspartyl proteases in brine after herring marinating.

    PubMed

    Szymczak, Mariusz; Lepczyński, Adam

    2016-03-01

    Herrings are marinated in a brine consisting of salt and acetic acid. During marinating, various nitrogen fractions diffuse from fish flesh to the brine, causing significant nutritional quality losses of the raw material. In this study, it has been demonstrated for the first time that proteases diffuse from the fish to the marinating brine. Using ammonium sulphate precipitation and affinity chromatography on pepstatin-A agarose bed the aspartyl proteases were purified and concentrated over 2600-fold from a marinating brine. Pepstatin-A completely inhibited the activity of the purified preparation. The preparation was active against fluorogenic substrates specific for cathepsin D and E and inactive against substrates specific for cysteine cathepsins. Depending on incubation time, the preparation showed pH-optimum at 2.0 or 4.5. The 2D SDS-PAGE separation demonstrated the presence of a few proteins with molecular weights and pI values typical of cathepsin D, E and pepsin. PMID:26471581

  12. The PH gene determines fruit acidity and contributes to the evolution of sweet melons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...

  13. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    SciTech Connect

    Louisse, Jochem; Verwei, Miriam; Sandt, Johannes J.M. van de; Rietjens, Ivonne M.C.M.

    2010-06-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH{sub i}) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH{sub i}in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH{sub i} of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na{sup +}/H{sup +}-antiporter, corroborating an important role of the pH{sub i} in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH{sub i} may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  14. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  15. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    PubMed

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. PMID:26706930

  16. In situ measurement of reaction volume and calculation of pH of weak acid buffer solutions under high pressure.

    PubMed

    Min, Stephen K; Samaranayake, Chaminda P; Sastry, Sudhir K

    2011-05-26

    Direct measurements of reaction volume, so far, have been limited to atmospheric pressure. This study describes a method for in situ reaction volume measurements under pressure using a variable volume piezometer. Reaction volumes for protonic ionization of weak acid buffering agents (MES, citric acid, sulfanilic acid, and phosphoric acid) were measured in situ under pressure up to 400 MPa at 25 °C. The methodology involved initial separation of buffering agents within the piezometer using gelatin capsules. Under pressure, the volume of the reactants was measured at 25 °C, and the contents were heated to 40 °C to dissolve the gelatin and allow the reaction to occur, and cooled to 25 °C, where the volume of products was measured. Reaction volumes were used to calculate pH of the buffer solutions as a function of pressure. The results show that the measured reaction volumes as well as the calculated pH values generally quite agree with their respective theoretically predicted values up to 100 MPa. The results of this study highlight the need for a comprehensive theory to describe the pressure behavior of ionization reactions in realistic systems especially at higher pressures. PMID:21542618

  17. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  18. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    SciTech Connect

    Cingolani, Gino Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  19. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    EPA Science Inventory

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  20. Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH

    NASA Astrophysics Data System (ADS)

    Catalano, Jeffrey G.; Fenter, Paul; Park, Changyong; Zhang, Zhan; Rosso, Kevin M.

    2010-03-01

    Structural changes and surface oxidation state were examined following the reaction of hematite (0 0 1), (0 1 2), and (1 1 0) with aqueous Fe(II). X-ray reflectivity measurements indicated that Fe(II) induces changes in the structure of all three surfaces under both acidic (pH 3) and neutral (pH 7) conditions. The structural changes were generally independent of pH although the extent of surface transformation varied slightly between acidic and neutral conditions; no systematic trends with pH were observed. Induced changes on the (1 1 0) and (0 1 2) surfaces include the addition or removal of partial surface layers consistent with either growth or dissolution. In contrast, a <1 nm thick, discontinuous film formed on the (0 0 1) surface that appears to be epitaxial yet is not a perfect extension of the underlying hematite lattice, being either structurally defective, compositionally distinct, or nanoscale in size and highly relaxed. Resonant anomalous X-ray reflectivity measurements determined that the surface concentration of Fe(II) present after reaction at pH 7 was below the detection limit of approximately 0.5-1 μmol/m 2 on all surfaces. These observations are consistent with Fe(II) oxidative adsorption, whereby adsorbed Fe(II) is oxidized by structural Fe(III) in the hematite lattice, with the extent of this reaction controlled by surface structure at the atomic scale. The observed surface transformations at pH 3 show that Fe(II) oxidatively adsorbs on hematite surfaces at pH values where little net adsorption occurs, based on historical macroscopic Fe(II) adsorption behavior on fine-grained hematite powders. This suggests that Fe(II) plays a catalytic role, in which an electron from an adsorbed Fe(II) migrates to and reduces a lattice Fe(III) cation elsewhere, which subsequently desorbs in a scenario with zero net reduction and zero net adsorption. Given the general pH-independence and substantial mass transfer involved, this electron and atom exchange

  1. Simultaneous recordings of oesophageal acid exposure with conventional pH monitoring and a wireless system (Bravo)

    PubMed Central

    des Varannes, S Bruley; Mion, F; Ducrotté, P; Zerbib, F; Denis, P; Ponchon, T; Thibault, R; Galmiche, J P

    2005-01-01

    Objectives: Oesophageal pH monitoring is a useful test for the diagnosis of gastro-oesophageal reflux disease (GORD) but has some limitations related to the nasopharyngeal electrode. Recently, a telemetric catheter free system (CFS) (Bravo; Medtronic) was developed. The aim of this study was to determine the concordance of data between the conventional pH measurement system (CPHMS) and the CFS Bravo. Methods: Forty patients with symptoms suggestive of GORD underwent 24 hour oesophageal pH monitoring using the CPHMS with a nasopharyngeal electrode and the Bravo CFS simultaneously. The sensitive tips of both electrodes were positioned at the same level under fluoroscopy. In addition to automatic analysis, each reflux episode was checked visually and characterised. Results: There was a significant correlation (r = 0.87, p<0.0001) between the 24 hour oesophageal acid exposures recorded by the CPHMS and the CFS. Twenty four hour oesophageal acid exposure was significantly lower with the CFS than with the CPHMS (2.4 (0.4–8.7) v 3.6 (0.7–8.6); p< 0.0001). Consequently, with the CFS, the cut off level for the diagnosis of GORD, as calculated from the regression equation, was 2.9% (for the 4.2% cut off determined in controls with the CPHMS). After this adjustment, concordance of the diagnosis of GORD was 88% (kappa 0.760). Diagnosis of GORD was established in more patients with the CFS 48 hour results than with the 24 hour results. Conclusions: Despite strong correlations between oesophageal acid exposure recorded with the two devices, the Bravo CFS significantly under recorded acid exposure compared with the CPHMS. Provided some correcting factors are used, the Bravo CFS can improve the sensitivity of pHmetry for the diagnosis of GORD by allowing more prolonged recordings. PMID:15843417

  2. Effects of pH and fulvic acids concentration on the stability of fulvic acids--cerium (IV) oxide nanoparticle complexes.

    PubMed

    Oriekhova, Olena; Stoll, Serge

    2016-02-01

    The behavior of cerium (IV) oxide nanoparticles has been first investigated at different pH conditions. The point of zero charge was determined as well as the stability domains using dynamic light scattering, nanoparticle tracking analysis and scanning electron microscopy. A baseline hydrodynamic diameter of 180 nm was obtained indicating that individual CeO2 nanoparticles are forming small aggregates. Then we analyzed the particle behavior at variable concentrations of fulvic acids for three different pH-electrostatic scenarios corresponding to positive, neutral and negative CeO2 surface charges. The presence of fulvic acids was found to play a key role on the CeO2 stability via the formation of electrostatic complexes. It was shown that a small amount of fulvic acids (2 mg L(-1)), representative of environmental fresh water concentrations, is sufficient to stabilize CeO2 nanoparticles (50 mg L(-1)). When electrostatic complexes are formed between negatively charged FAs and positively charged CeO2 NPs the stability of such complexes is obtained with time (up to 7 weeks) as well as in pH changing conditions. Based on zeta potential variations we also found that the fulvic acids are changing the CeO2 acid-base surface properties. Obtained results presented here constitute an important outcome in the domain of risk assessment, transformation and removal of engineered nanomaterials released into the environment. PMID:26347935

  3. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2016-10-01

    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. PMID:27388968

  4. Effects of pH on photochemical decomposition of perfluorooctanoic acid in different atmospheres by 185nm vacuum ultraviolet.

    PubMed

    Wang, Yuan; Zhang, Pengyi

    2014-11-01

    Perfluorooctanoic acid (PFOA), a persistent organic pollutant, receives increasing concerns due to its worldwide occurrence and resistance to most conventional treatment processes. The photochemical decomposition by 185nm vacuum ultraviolet (VUV) is one of the efficient methods for PFOA decomposition. The effects of pH on PFOA decomposition in nitrogen atmosphere or oxygen atmosphere were investigated. At its original pH (4.5) of PFOA aqueous solution, PFOA decomposed efficiently both in nitrogen and in oxygen atmosphere. However, when the pH increased to 12.0, PFOA decomposition was greatly inhibited in oxygen atmosphere, while it was greatly accelerated in nitrogen atmosphere with a very short half-life time (9min). Furthermore, fluorine atoms originally contained in PFOA molecules were almost completely transformed into fluoride ions. Two decomposition pathways have been proposed to explain the PFOA decomposition under different conditions. In acidic and neutral solutions, PFOA predominantly decomposes via the direct photolysis in both atmospheres; while in the alkaline solution and in the absence of oxygen, the decomposition of PFOA is mainly induced by hydrated electrons. PMID:25458674

  5. β2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    PubMed Central

    Goodchild, Sophia C.; Sheynis, Tania; Thompson, Rebecca; Tipping, Kevin W.; Xue, Wei-Feng; Ranson, Neil A.; Beales, Paul A.; Hewitt, Eric W.; Radford, Sheena E.

    2014-01-01

    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA. PMID:25100247

  6. In vivo measurements of changes in pH triggered by oxalic acid in leaf tissue of transgenic oilseed rape.

    PubMed

    Zou, Qiu-Ju; Liu, Sheng-Yi; Dong, Xu-Yan; Bi, Yan-Hua; Cao, Yuan-Cheng; Xu, Qiao; Zhao, Yuan-Di; Chen, Hong

    2007-01-01

    Oxalic acid (OA), a non-host-specific toxin secreted by Sclerotinia sclerotiorum during pathogenesis, has been demonstrated to be a major phytotoxic and pathogenic factor. Oxalate oxidase (OXO) is an enzyme associated with the detoxification of OA, and hence the introduction of an OXO gene into oilseed rape (Brassica napus L.) to break down OA may be an alternative way of increasing the resistance of the plant to Sclerotinia sclerotiorum. In order to investigate the activation of OXO in transgenic oilseed rape, a convenient and accessible method was used to monitor changes in pH in response to stress induced by OA. The pH sensor, a platinum microcylinder electrode modified using polyaniline film, exhibited a linear response within the pH range from 3 to 7, with a Nernst response slope of 70 mV/pH at room temperature. The linear correlation coefficient was 0.9979. Changes induced by OA in the pH values of leaf tissue of different oilseed rape species from Brassica napus L. were monitored in real time in vivo using this electrode. The results clearly showed that the transgenic oilseed rape was more resistant to OA than non-transgenic oilseed rape. PMID:17623369

  7. Assessment of Envi-Carb™ as a passive sampler binding phase for acid herbicides without pH adjustment.

    PubMed

    Seen, Andrew; Bizeau, Oceane; Sadler, Lachlan; Jordan, Timothy; Nichols, David

    2014-05-01

    The graphitised carbon solid phase extraction (SPE) sorbent Envi-Carb has been used to fabricate glass fibre filter- Envi-Carb "sandwich" disks for use as a passive sampler for acid herbicides. Passive sampler uptake of a suite of herbicides, including the phenoxyacetic acid herbicides 4-chloro-o-tolyloxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (Dicamba), was achieved without pH adjustment, demonstrating for the first time a suitable binding phase for passive sampling of acid herbicides at neutral pH. Passive sampling experiments with Duck River (Tasmania, Australia) water spiked at 0.5 μg L(-1) herbicide concentration over a 7 d deployment period showed that sampling rates in Duck River water decreased for seven out of eight herbicides, and in the cases of 3,6-dichloro-2-pyridinecarboxylic acid (Clopyralid) and Dicamba no accumulation of the herbicides occurred in the Envi-Carb over the deployment period. Sampling rates for 4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid (Picloram), 2,4-D and MCPA decreased to approximately 30% of the sampling rates in ultrapure water, whilst sampling rates for 2-(4,6-dimethylpyrimidin-2-ylcarbamoylsulfamoyl) benzoic acid, methyl ester (Sulfometuron-methyl) and 3,5,6-Trichloro-2-pyridinyloxyacetic acid (Triclopyr) were approximately 60% of the ultrapure water sampling rate. For methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)-D-alaninate (Metalaxyl-M) there was little variation in sampling rate between passive sampling experiments in ultrapure water and Duck River water. SPE experiments undertaken with Envi-Carb disks using ultrapure water and filtered and unfiltered Duck River water showed that not only is adsorption onto particulate matter in Duck River water responsible for a reduction in herbicide sampling rate, but interactions of herbicides with dissolved or colloidal matter (matter able to pass through a 0.2 μm membrane filter) also reduces the herbicide sampling

  8. Effect of pH on visualization of fatty acids as myelin figures in mouse adipose tissue by freeze-fracture electron microscopy.

    PubMed

    Amende, L M; Blanchette-Mackie, E J; Chernick, S S; Scow, R O

    1985-10-23

    We studied the effect of pH on visualization of fatty acids as myelin figures in young mouse epididymal adipose tissue. Fatty acid content of the tissue was increased to 12.4 nmol/mg wet weight by treating the tissue with 380 microM isoproterenol at pH 7.4 for 15 min in the absence of glucose and albumin. Myelin figures were found in freeze-fracture replicas of isoproterenol-treated tissue fixed with glutaraldehyde at pH 7.4 and then incubated and glycerinated at pH 8.1. Myelin figures were seen in replicas as concave or convex laminated sheets and long cylindrical multilamellar structures in fat cells and extracellular space. Myelin figures were sometimes seen in cells extending from the surface of intracellular lipid droplets, the site of lipolysis, to the cell surface and extracellular space. Myelin figures were not found in isoproterenol-treated tissue fixed at pH 7.4 and processed at pH 7.0. Smooth-surfaced droplets, instead, were found in these tissues in the extracellular space. Neither myelin figures nor smooth-surfaced droplets were found in tissues treated with insulin and glucose (to reduce fatty acid content to 1.4 nmol/mg), fixed at pH 7.4 and processed at either pH 8.1 or pH 7.0. Lowering pH of the media to 4.5 during processing of tissues treated with isoproterenol at pH 9.0 caused disappearance of myelin figures and appearance of smooth-surfaced droplets in the extracellular space. Myelin figures were found in replicas of tissue treated with isoproterenol for 15 min at pH 7.4, incubated 10 min at pH 8.4, quick-frozen and then freeze-fractured, indicating that formation of myelin figures was not dependent on glutaraldehyde fixation and glycerol infiltration of the tissue. Our findings show that excess fatty acids in adipose tissue can be visualized as myelin figures if the tissue is exposed to pH 8.1-9.0 and maintained at or above pH 7.4, or as smooth-surfaced droplets if the tissue is processed at pH 7.0 or 4.5. We conclude that myelin figures

  9. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.

    PubMed

    Zhu, Miao; Wang, Hongtao; Keller, Arturo A; Wang, Tao; Li, Fengting

    2014-07-15

    With the increasingly widespread use of titanium dioxide nanoparticles (TiO2 NPs), the particles' environmental impacts have attracted concern, making it necessary to understand the fate and transport of TiO2 NPs in aqueous media. In this study, we investigated TiO2 NP aggregation caused by the effects of humic acid (HA), ionic strength (IS) and different pH using dynamic light scattering (DLS) to monitor the size distribution of the TiO2 NPs continuously. It was determined that HA can influence the stability of TiO2 NPs through charge neutralization, steric hindrance and bridging effects. In the absence of IS, aggregation was promoted by adding HA only when the pH (pH=4) is less than the point of zero charge for the TiO2 NPs (pHPZC≈6) because HA reduces the zeta potential of the TiO2 NPs via charge neutralization. At pH=4 and when the concentration of HA is 94.5 μg/L, the zeta potential of TiO2 NPs is close to zero, and they reach an aggregation maximum. A higher concentration of HA results in more negatively charged TiO2 NP surfaces, which hinder their aggregation. When the pH is 5.8, HA enhances the negative zeta potential of the TiO2 NPs and increases their stability via electrostatic repulsion and steric hindrance. When the pH (pH=8) is greater than pHpzc, the zeta potential of the TiO2 NPs is high (~40 mV), and it barely changes with increasing HA concentration. Thus, the TiO2 NPs are notably stable, and their size does not grow at pH8. The increase in the critical coagulation concentration (CCC) of TiO2 NPs indicated that there is steric hindrance after the addition of HA. HA can enhance the coagulation of TiO2 NPs, primarily due to bridging effect. These findings are useful in understanding the size change of TiO2 NPs, as well as the removal of TiO2 NPs and HA from aqueous media. PMID:24793841

  10. Inhibition of DNA adduct formation of PhIP in female F344 rats by dietary conjugated linoleic acid.

    PubMed

    Josyula, S; He, Y H; Ruch, R J; Schut, H A

    1998-01-01

    The dietary mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mammary carcinogen in the female Fischer (F344) rat and a colon carcinogen in the male F344 rat. To exert its carcinogenicity, it is believed that PhIP needs to form adducts with DNA, a process requiring N-hydroxylation of PhIP by cytochromes P-450 1A1 and/or 1A2 (CYP 1A1 and/or 1A2), as well as further esterification of the hydroxylamine thus formed. Dietary conjugated linoleic acid (CLA) inhibits chemical carcinogenesis in various experimental models. We have examined the effect of dietary CLA on PhIP-DNA adduct formation in female F344 rats. Four-week-old animals were maintained on AIN-76A diet without or with CLA (1%, 0.5%, and 0.1% wt/wt) for 57 days. PhIP was added to the diets (0.04% wt/wt) from Days 14-42. Animals were killed (4/group) on Days 43, 50, and 57. DNA isolated from liver, mammary epithelial cells (MEC), colon, and white blood cells (WBC) was analyzed for PhIP-DNA adducts by 32P-postlabeling assays. On Day 43, CLA inhibited adduct formation in the liver (up to 58%) in a dose-dependent manner. CLA also inhibited hepatic adduct levels (29-39%) on Day 50 (at 1.0% and 0.5% CLA) and on Day 57 (53% at 0.5% CLA). CLA significantly reduced adduct levels in the WBC on Day 50 (63-70%). Adducts in MEC and the colon were not affected by dietary CLA. On Day 57, adduct levels in MEC, liver, colon, and WBC were 0-30.3%, 8.6-41.7%, 21.5-50.7%, and 7.5-11.8%, respectively, of those on Day 43. Northern blot analysis of liver RNA showed that dietary CLA did not affect steady-state levels of CYP 1A1 or 1A2 mRNA. It is concluded that dietary CLA inhibits PhIP-DNA adduct formation in liver and WBC but that those in MEC and the colon are unaffected when a low-level dietary regimen of carcinogen and inhibitor was used. In inhibiting PhIP-DNA adduct formation, CLA does not appear to act by inhibiting CYP 1A1 or 1A2 expression. PMID:10050262

  11. Salinity and pH affect Na+-montmorillonite dissolution and amino acid adsorption: a prebiotic chemistry study

    NASA Astrophysics Data System (ADS)

    Farias, Ana Paula S. F.; Tadayozzi, Yasmin S.; Carneiro, Cristine E. A.; Zaia, Dimas A. M.

    2014-06-01

    The adsorption of amino acids onto minerals in prebiotic seas may have played an important role for their protection against hydrolysis and formation of polymers. In this study, we show that the adsorption of the prebiotic amino acids, glycine (Gly), α-alanine (α-Ala) and β-alanine (β-Ala), onto Na+-montmorillonite was dependent on salinity and pH. Specifically, adsorption decreased from 58.3-88.8 to 0-48.9% when salinity was increased from 10 to 100-150% of modern seawater. This result suggests reduced amino acid adsorption onto minerals in prebiotic seas, which may have been even more saline than the tested conditions. Amino acids also formed complexes with metals in seawater, affecting metal adsorption onto Na+-montmorillonite, and amino acid adsorption was enhanced when added before Na+-montmorillonite was exposed to high saline solutions. Also, the dissolution of Na+-montmorillonite was reduced in the presence of amino acids, with β-Ala being the most effective. Thus, prebiotic chemistry experiments should also consider the integrity of minerals in addition to their adsorption capacity.

  12. Interactions of Zn(II) Ions with Humic Acids Isolated from Various Type of Soils. Effect of pH, Zn Concentrations and Humic Acids Chemical Properties

    PubMed Central

    Boguta, Patrycja; Sokołowska, Zofia

    2016-01-01

    The main aim of this study was the analysis of the interaction between humic acids (HAs) from different soils and Zn(II) ions at wide concentration ranges and at two different pHs, 5 and 7, by using fluorescence and FTIR spectroscopy, as well as potentiometric measurements. The presence of a few areas of HAs structures responsible for Zn(II) complexing was revealed. Complexation at α-sites (low humified structures of low-molecular weight and aromatic polycondensation) and β-sites (weakly humified structures) was stronger at pH 7 than 5. This trend was not observed for γ-sites (structures with linearly-condensed aromatic rings, unsaturated bonds and large molecular weight). The amount of metal complexed at pH5 and 7 by α and γ-structures increased with a decrease in humification and aromaticity of HAs, contrary to β-areas where complexation increased with increasing content of carboxylic groups. The stability of complexes was higher at pH 7 and was the highest for γ-structures. At pH 5, stability decreased with C/N increase for α-areas and -COOH content increase for β-sites; stability increased with humification decrease for γ-structures. The stability of complexes at α and β-areas at pH 7 decreased with a drop in HAs humification. FTIR spectra at pH 5 revealed that the most-humified HAs tended to cause bidentate bridging coordination, while in the case of the least-humified HAs, Zn caused bidentate bridging coordination at low Zn additions and bidentate chelation at the highest Zn concentrations. Low Zn doses at pH 7 caused formation of unidentate complexes while higher Zn doses caused bidentate bridging. Such processes were noticed for HAs characterized by high oxidation degree and high oxygen functional group content; where these were low, HAs displayed bidentate bridging or even bidentate chelation. To summarize, the above studies have showed significant impact of Zn concentration, pH and some properties of HAs on complexation reactions of humic

  13. Photonic crystal fiber interferometric pH sensor based on polyvinyl alcohol/polyacrylic acid hydrogel coating.

    PubMed

    Hu, Pengbing; Dong, Xinyong; Wong, Wei Chang; Chen, Li Han; Ni, Kai; Chan, Chi Chiu

    2015-04-01

    We present a simple photonic crystal fiber interferometer (PCFI) that operates in reflection mode for pH measurement. The sensor is made by coating polyvinyl alcohol/polyacrylic acid (PVA/PAA) hydrogel onto the surface of the PCFI, constructed by splicing a stub of PCF at the distal end of a single-mode fiber with its free end airhole collapsed. The experimental results demonstrate a high average sensitivity of 0.9 nm/pH unit for the 11 wt.% PVA/PAA coated sensor in the pH range from 2.5 to 6.5. The sensor also displays high repeatability and stability and low cross-sensitivity to temperature. Fast, reversible rise and fall times of 12 s and 18 s, respectively, are achieved for the sensor time response. PMID:25967171

  14. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  15. Polymerization of acrylamide at acid pH using uranyl nitrate

    SciTech Connect

    Deshpande, V.V.; Bodhe, A.M.; Pawar, H.S.; Vartak, H.G.

    1986-03-01

    A new photopolymerizing reagent, uranyl nitrate, is used for the polymerization of acrylamide gels at low pH. The amount of uranyl nitrate (0.2 mg/ml) required for the polymerization of gels at pH 3.0 is considerably less than that of persulfate (7 mg/ml). Use of this reagent obviates the need for the removal of excess of persulfate by preelectrophoresis. The electrophoretic separation of basic proteins in uranium-polymerized gels showed faster movement and better resolution of proteins and proved the gels to be versatile, uniform, and reproducible. Electrophoresis of trypsin in these gels does not affect the enzymatic activity. The catalyst can also be used for the polymerization of gels containing 3 M urea.

  16. Aluminum tolerance of two wheat cultivars (Brevor and Atlas66) in relation to their rhizosphere pH and organic acids exuded from roots.

    PubMed

    Wang, Ping; Bi, Shuping; Ma, Liping; Han, Weiying

    2006-12-27

    Phytotoxicity of aluminum (Al) has become a serious problem in inhibiting plant growth on acid soils. Under Al stress, the changes of rhizosphere pH, root elongation, absorption of Al by wheat roots, organic acids exuded from roots, and some main factors related to Al-tolerant mechanisms have been studied using hydroponics, fluorescence spectrophotometry, and high performance liquid chromatography (HPLC). Two wheat cultivars, Brevor and Atlas66, differing in Al tolerance are chosen in the study. Accordingly, the rhizosphere pH has a positive effect on Al tolerance. Atlas66 (Al-tolerant) has higher capability to maintain high rhizosphere pH than Brevor (Al-sensitive) does. High pH can reduce Al3+ activity and toxicity, and increase the efficiency of exuding organic acids from the roots. More inhibition of root elongation has been found in Brevor because of the exposure of roots to Al3+ solution at low pH. Brevor accumulate more Al in roots than Atlas66 even at higher pH. Al-induced exudation of malic and citric acids has been found in Atlas66 roots, while no Al-induced organic acids have been found in Brevor. These results indicate that the Al-induced secretion of organic acids from Atlas66 roots has a positive correlation with Al tolerance. Comprehensive treatment of Al3+ and H+ indicates that wheat is adversely influenced by excess Al3+, rather than low pH. PMID:17177538

  17. Enhancing the intestinal absorption of poorly water-soluble weak-acidic compound by controlling local pH.

    PubMed

    Iwanaga, Kazunori; Kato, Shino; Miyazaki, Makoto; Kakemi, Masawo

    2013-12-01

    Recently, the number of poorly water-soluble drug candidates has increased and has hindered the rapid improvement of new drugs with low intestinal absorption; however, the intestinal absorption of pH-dependent poorly water-soluble compounds is expected to be markedly improved by changing the pH in the vicinity of the absorption site. The aim of this study is to clarify the effect of local pH change in the intestinal tract by magnesium oxide on the intestinal absorption of hydrochlorothiazide, a model poorly water-soluble weak-acid compound. The application of hydrochlorothiazide granule containing magnesium oxide to the rat intestinal loop increased the pH in the vicinity of the dosing site to more than 8.5 for 90 min without any mucosal damage. As a result, absorption of hydrochlorothiazide increased by the addition of magnesium oxide to the granule. Intraintestinal administration of a suspension prepared from hydrochlorothiazide granules with magnesium oxide increased the intestinal absorption and the AUC value was 3-fold higher than that without magnesium oxide. To further increase the intestinal absorption of hydrochlorothiazide, we prepared granules containing magnesium oxide and chitosan as a mucoadhesive and tight junction opening material. Chitosan showed a marked increase of intestinal absorption, and the AUC value after the administration of suspensions of chitosan granules was more than 5-fold higher than that of granules containing hydrochlorothiazide alone, respectively. In summary, it has been clarified that the intestinal absorption of weak-acidic poorly water-soluble compound can be enhanced by increasing local pH, mucoadhesion and opening tight junction. PMID:22443480

  18. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes.

    PubMed

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-05-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH~2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  19. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH.

    PubMed

    Hasanzadeh, Mohammad; Sadeghi, Sattar; Bageri, Leyla; Mokhtarzadeh, Ahad; Karimzadeh, Ayub; Shadjou, Nasrin; Mahboob, Soltanali

    2016-12-01

    A novel nanobiopolymer film was electrodeposited on the surface of glassy carbon through cyclic voltammetry from dopamine, β-cyclodextrin, and phosphate buffer solution in physiological pH (7.40). The electrochemical behavior of polydopamine-Beta-cyclodextrin modified glassy carbon electrode was investigated for electro-oxidation and determination of some amino acids (l-Cysteine, l-Tyrosine, l-Glycine, and l-Phenylalanine). The modified electrode was applied for selected amino acid detection at physiological pH using cyclic voltammetry, differential pulse voltammetry and chronoamperometry, chronocoulometery. The linear concentration range of the proposed sensor for the l-Glycine, l-Cysteine, l-Tyrosine, and l-Phenylalanine were 0.2-70, 0.06-0.2, 0.01-0.1, and 0.2-10μM, while low limit of quantifications were 0.2, 0.06, 0.01, and 0.2μM, respectively. The modified electrode shows many advantages as an amino acid sensor such as simple preparation method without using any specific electron transfer mediator or specific reagent, good sensitivity, short response time, and long term stability. PMID:27612722

  20. Impact of precipitation on the treatment of real ion-exchange brine using the H(2)-based membrane biofilm reactor.

    PubMed

    Van Ginkel, Steven W; Tang, Youneng; Rittmann, Bruce E

    2011-01-01

    The H(2)-based membrane biofilm reactor (MBfR) was used to remove nitrate and perchlorate from real ion-exchange brine at two different salinities (30- and 50-g/L NaCl). Base production from nitrate reduction to N(2) gas caused the pH to increase, and this exacerbated precipitation of calcium and magnesium carbonates onto the MBfR fibers. The precipitates lowered the H(2) flux to the biofilm and caused a deterioration of denitrification performance that could be reversed by mild citric-acid washing. The addition of acid seems to be the only mechanism to avoid serious precipitation, membrane fouling, and non-optimal pH for denitrification. PMID:21508550

  1. AN HPLC METHOD WITH UV DETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chloroisocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabilizers. ...

  2. AN HPLC METHOD WITH UVDETECTION, PH CONTROL, AND REDUCTIVE ASCORBIC ACID FOR CYANURIC ACID ANALYSIS IN WATER

    EPA Science Inventory

    Every year over 250 million pounds of cyanuric acid (CA) and chlorinated isocyanurates are produced industrially. These compounds are standard ingredients in formulations for household bleaches, industrial cleansers, dishwasher compounds, general sanitizers, and chlorine stabiliz...

  3. Stability of brines on Mars

    NASA Astrophysics Data System (ADS)

    Brass, G. W.

    1980-04-01

    The detection of high chlorine and sulfate abundances and duricrusts on Mars strongly suggests the occasional presence of brines on the Martian surface. Ternary phase diagrams for the likely chloride and sulfate brines indicate that the minimum temperature at which a brine can be stable is near 210 K with a water concentration of approximately 70 wt % and a high concentration of calcium chloride. The dominance of sulfate over chlorine in the Martian regolith suggests precipitation of salts at temperatures higher than the minimum.

  4. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH

    PubMed Central

    Cotter, Paul D.; Hill, Colin

    2003-01-01

    Gram-positive bacteria possess a myriad of acid resistance systems that can help them to overcome the challenge posed by different acidic environments. In this review the most common mechanisms are described: i.e., the use of proton pumps, the protection or repair of macromolecules, cell membrane changes, production of alkali, induction of pathways by transcriptional regulators, alteration of metabolism, and the role of cell density and cell signaling. We also discuss the reponses of Listeria monocytogenes, Rhodococcus, Mycobacterium, Clostridium perfringens, Staphylococcus aureus, Bacillus cereus, oral streptococci, and lactic acid bacteria to acidic environments and outline ways in which this knowledge has been or may be used to either aid or prevent bacterial survival in low-pH environments. PMID:12966143

  5. Two distinct etiologies of gastric cardia adenocarcinoma: interactions among pH, Helicobacter pylori, and bile acids

    PubMed Central

    Mukaisho, Ken-ichi; Nakayama, Takahisa; Hagiwara, Tadashi; Hattori, Takanori; Sugihara, Hiroyuki

    2015-01-01

    Gastric cancer can be classified as cardia and non-cardia subtypes according to the anatomic site. Although the gastric cancer incidence has decreased steadily in several countries over the past 50 years, the incidence of cardia cancers and esophageal adenocarcinoma (EAC) continue to increase. The etiological factors involved in the development of both cardia cancers and EACs are associated with high animal fat intake, which causes severe obesity. Central obesity plays roles in cardiac-type mucosa lengthening and partial hiatus hernia development. There are two distinct etiologies of cardia cancer subtypes: one associated with gastroesophageal reflux (GER), which predominantly occurs in patients without Helicobacter pylori (H. pylori) infection and resembles EAC, and the other associated with H. pylori atrophic gastritis, which resembles non-cardia cancer. The former can be developed in the environment of high volume duodenal content reflux, including bile acids and a higher acid production in H. pylori–negative patients. N-nitroso compounds, which are generated from the refluxate that includes a large volume of bile acids and are stabilized in the stomach (which has high levels of gastric acid), play a pivotal role in this carcinogenesis. The latter can be associated with the changing colonization of H. pylori from the distal to the proximal stomach with atrophic gastritis because a high concentration of soluble bile acids in an environment of low acid production is likely to act as a bactericide or chemorepellent for H. pylori in the distal stomach. The manuscript introduces new insights in causative factors of adenocarcinoma of the cardia about the role of bile acids in gastro-esophageal refluxate based upon robust evidences supporting interactions among pH, H. pylori, and bile acids. PMID:26029176

  6. Experimental evaluation of the contribution of acidic pH and Fe concentration to the structure, function and tolerance to metals (Cu and Zn) exposure in fluvial biofilms.

    PubMed

    Luís, Ana Teresa; Bonet, Berta; Corcoll, Natàlia; Almeida, Salomé F P; da Silva, Eduardo Ferreira; Figueira, Etelvina; Guasch, Helena

    2014-09-01

    An indoor channel system was colonised with fluvial biofilms to study the chronic effects of high Fe and SO4(2-) concentrations and acidic pH, the water chemistry in the surrounding streams of Aljustrel mining area (Alentejo, Portugal), and their contribution to community (in)tolerance to metal toxicity by short-term experiments with Cu and Zn. Biofilms were subjected to four different treatments during 8 weeks: high Fe and SO4(2-) concentrations (1 mg Fe l(-1)+ 700 mg SO4(2-) l(-1)) and acidic pH, high Fe and SO4(2-) at alkaline pH; lower Fe and SO4(2-) at acidic pH: and lower Fe and SO4(2-) concentrations at alkaline pH as negative control. During chronic exposure, acidic pH affected growth negatively, based on low values of algal biomass and the autotrophic index, high values of the antioxidant enzyme activities and low diversity diatom communities, dominated by acidophilic species (Pinnularia aljustrelica) in acidic treatments, being the effects more marked with high Fe and SO4(2-). Co-tolerance to metals (Cu and Zn) was also shown in biofilms from the acidic treatments, contrasting with the higher sensitivity observed in the alkaline treatments. We can conclude that the Aljustrel mining area acidic environment limits algal growth and exerts a strong selection pressure on the community composition which is in turn, more tolerant to metal exposure. PMID:25011920

  7. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  8. Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine

    PubMed Central

    Yang, Ting; Doudrick, Kyle; Westerhoff, Paul

    2016-01-01

    Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting byproduct selectivity of ammonium and gaseous N species (e.g., N2, N2O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 1024 photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH4+. To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine. PMID:23276425

  9. Photocatalytic reduction of nitrate using titanium dioxide for regeneration of ion exchange brine.

    PubMed

    Yang, Ting; Doudrick, Kyle; Westerhoff, Paul

    2013-03-01

    Nitrate is often removed from groundwater by ion exchange (IX) before its use as drinking water. Accumulation of nitrate in IX brine reduces the efficiency of IX regeneration and the useful life of the regeneration brine. For the first time, we present a strategy to photocatalytically reduce nitrate in IX brine, thereby extending the use of the brine. Titanium dioxide (Evonik P90), acting as photocatalyst, reduced nitrate effectively in both synthetic brines and sulfate-removed IX brine when formic acid (FA) was used as the hole scavenger (i.e., electron donor) and the initial FA to nitrate molar ratio (IFNR) was 5.6. Increasing the NaCl level in the synthetic brine slowed the nitrate reduction rate without affecting by-product selectivity of ammonium and gaseous N species (e.g., N(2), N(2)O). In a non-modified IX brine, nitrate removal was greatly inhibited owing to the presence of sulfate, which competed with nitrate for active surface sites on P90 and induced aggregation of P90 nanoparticles. After removing sulfate through barium sulfate precipitation, nitrate was effectively reduced; approximately 3.6 × 10(24) photons were required to reduce each mole of nitrate to 83% N Gases and 17% NH(4)(+). To make optimum use of FA and control the residual FA level in treated brine, the IFNR was varied. High IFNRs (e.g., 4, 5.6) were found to be more efficient for nitrate reduction but left higher residual FA in brine. IX column tests were performed to investigate the impact of residual FA for brine reuse. The residual FA in the brine did not significantly affect the nitrate removal capacity of IX resins, and formate contamination of treated water could be eliminated by rinsing with one bed volume of fresh brine. PMID:23276425

  10. Water Recovery from Brine in the Short and Long Term: A KSC Approach

    NASA Technical Reports Server (NTRS)

    Lunn, Griffin; Melendez, Orlando; Anthony, Steve

    2014-01-01

    KSC has spent many years researching Hollow Fiber Membrane Bioreactors as well as research encompassing: Alternate ammonia removal, Advanced oxidation, Brine purification technologies. KSC-ISRU has built an electrolysis cell for the removal of acids in ISRU mining brines. Our goal is to combine all such technologies.

  11. Effect of salt and acidic pH on the stability of virulence plasmid (pYV) in Yersinia enterocolitica and expression of virulence-associated characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stability of the Yersinia enterocolitica virulence plasmid (pYV) under different NaCl concentrations and under acidic pH conditions was investigated. Exposure of five strains representing five serotypes of pYV-bearing virulent Y. enterocolitica to 0.5, 2 and 5% NaCl and under conditions of pH 4...

  12. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  13. The effects of temperature, pH and redox state on the stability of glutamic acid in hydrothermal fluids

    NASA Astrophysics Data System (ADS)

    Lee, Namhey; Foustoukos, Dionysis I.; Sverjensky, Dimitri A.; Cody, George D.; Hazen, Robert M.

    2014-06-01

    Natural hydrothermal vent environments cover a wide range of physicochemical conditions involving temperature, pH and redox state. The stability of simple biomolecules such as amino acids in such environments is of interest in various fields of study from the origin of life to the metabolism of microbes at the present day. Numerous previous experimental studies have suggested that amino acids are unstable under hydrothermal conditions and decompose rapidly. However, previous studies have not effectively controlled the redox state of the hydrothermal fluids. Here we studied the stability of glutamate with and without reducing hydrothermal conditions imposed by 13 mM aqueous H2 at temperatures of 150, 200 and 250 °C and initial (25 °C) pH values of 6 and 10 in a flow-through hydrothermal reactor with reaction times from 3 to 36 min. We combined the experimental measurements with theoretical calculations to model the in situ aqueous speciation and pH values. As previously observed under hydrothermal conditions, the main reaction involves glutamate cyclizing to pyroglutamate through a simple dehydration reaction. However, the amounts of decomposition products of the glutamate detected, including succinate, formate, carbon dioxide and ammonia depend on the temperature, the pH and particularly the redox state of the fluid. In the absence of dissolved H2, glutamate decomposes in the sequence glutamate, glutaconate, α-hydroxyglutarate, ketoglutarate, formate and succinate, and ultimately to CO2 and micromolar quantities of H2(aq). Model speciation calculations indicate the CO2, formate and H2(aq) are not in metastable thermodynamic equilibrium. However, with 13 mM H2(aq) concentrations, the amounts of decomposition products are suppressed at all temperatures and pH values investigated. The small amounts of CO2 and formate present are calculated to be in metastable equilibrium with the H2. It is further proposed that there is a metastable equilibrium between glutamate

  14. Peptide-Modulated Activity Enhancement of Acidic Protease Cathepsin E at Neutral pH

    PubMed Central

    Komatsu, Masayuki; Biyani, Madhu; Ghimire Gautam, Sunita; Nishigaki, Koichi

    2012-01-01

    Enzymes are regulated by their activation and inhibition. Enzyme activators can often be effective tools for scientific and medical purposes, although they are more difficult to obtain than inhibitors. Here, using the paired peptide method, we report on protease-cathepsin-E-activating peptides that are obtained at neutral pH. These selected peptides also underwent molecular evolution, after which their cathepsin E activation capability improved. Thus, the activators we obtained could enhance cathepsin-E-induced cancer cell apoptosis, which indicated their potential as cancer drug precursors. PMID:23365585

  15. Determination of 5-log pathogen reduction times for heat-processed, acidified vegetable brines.

    PubMed

    Breidt, F; Hayes, J S; Osborne, J A; McFeeters, R F

    2005-02-01

    Recent outbreaks of acid-resistant food pathogens in acid foods, including apple cider and orange juice, have raised concerns about the safety of acidified vegetable products. We determined pasteurization times and temperatures needed to assure a 5-log reduction in the numbers of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella strains in acidified cucumber pickle brines. Cocktails of five strains of each pathogen were (separately) used for heat-inactivation studies between 50 and 60 degrees C in brines that had an equilibrated pH value of 4.1. Salmonella strains were found to be less heat resistant than E. coli O157:H7 or L. monocytogenes strains. The nonlinear killing curves generated during these studies were modeled using a Weibull function. We found no significant difference in the heat-killing data for E. coli O157:H7 and L. monocytogenes (P = 0.9709). The predicted 5-log reduction times for E. coli O157:H7 and L. monocytogenes were found to fit an exponential decay function. These data were used to estimate minimum pasteurization times and temperatures needed to ensure safe processing of acidified pickle products and show that current industry pasteurization practices offer a significant margin of safety. PMID:15726973

  16. Isolation and identification of oxidation products of syringol from brines and heated meat matrix.

    PubMed

    Bölicke, Sarah-Maria; Ternes, Waldemar

    2016-08-01

    In this study we developed new extraction and detection methods (using HPLC-UV and LC-MS), making it possible to analyze the smoke phenol syringol and its oxidation products nitrososyringol, nitrosyringol, and the syringol dimer 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol, which were identified in heated meat for the first time. Preliminary brine experiments performed with different concentrations of ascorbic acid showed that high amounts of this antioxidant also resulted in almost complete degradation of syringol and to formation of the oxidation products when the brines were heated at low pH values. Heat treatment (80°C) and subsequent simulated digestion applied to meat samples containing syringol, ascorbic acid and different concentrations of sodium nitrite produced 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol even at a low nitrite level in the meat matrix, while nitroso- and nitrosyringol were isolated only after the digestion experiments. Increasing amounts of oxygen in the meat matrix decreased the syringol concentration and enhanced the formation of the reaction products in comparison to the samples without added oxygen. PMID:27085115

  17. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  18. SURFACE CONTAINMENT FOR GEOTHERMAL BRINES

    EPA Science Inventory

    This report examines the probability of significant releases of geothermal brine to the surface environment through unplanned or accidental events. It then evaluates the containment measures that may be used to prevent environmental damage. The results indicate that major spills ...

  19. Systematics and species-specific response to pH of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) from acid mining lakes

    PubMed Central

    Weisse, Thomas; Moser, Michael; Scheffel, Ulrike; Stadler, Peter; Berendonk, Thomas; Weithoff, Guntram; Berger, Helmut

    2013-01-01

    We investigated the morphology, phylogeny of the 18S rDNA, and pH response of Oxytricha acidotolerans sp. nov. and Urosomoida sp. (Ciliophora, Hypotricha) isolated from two chemically similar acid mining lakes (pH ∼ 2.6) located at Langau, Austria, and in Lusatia, Germany. Oxytricha acidotolerans sp. nov. from Langau has 18 frontal-ventral-transverse cirri but a very indistinct kinety 3 fragmentation so that the assignment to Oxytricha is uncertain. The somewhat smaller species from Lusatia has a highly variable cirral pattern and the dorsal kineties arranged in the Urosomoida pattern and is, therefore, preliminary designated as Urosomoida sp. The pH response was measured as ciliate growth rates in laboratory experiments at pH ranging from 2.5 to 7.0. Our hypothesis was that the shape of the pH reaction norm would not differ between these closely related (3% difference in their SSU rDNA) species. Results revealed a broad pH niche for O. acidotolerans, with growth rates peaking at moderately acidic conditions (pH 5.2). Cyst formation was positively and linearly related to pH. Urosomoida sp. was more sensitive to pH and did not survive at circumneutral pH. Accordingly, we reject our hypothesis that similar habitats would harbour ciliate species with virtually identical pH reaction norm. PMID:23021638

  20. Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect.

    PubMed

    Gorrepati, Elizabeth A; Wongthahan, Pattanapong; Raha, Sasanka; Fogler, H Scott

    2010-07-01

    This study is the first to show that silica precipitation under very acidic conditions ([HCl] = 2-8 M) proceeds through two distinct steps. First, the monomeric form of silica is quickly depleted from solution as it polymerizes to form primary particles approximately 5 nm in diameter. Second, the primary particles formed then flocculate. A modified Smoluchowski equation that incorporates a geometric population balance accurately describes the exponential growth of silica flocs. Variation of the HCl concentration between 2 and 8 M further showed that polymerization to form primary particles and subsequent particle flocculation become exponentially faster with increasing acid concentration. The effect of salt was also studied by adding 1 M chloride salts to the solutions; it was found that salts accelerated both particle formation and growth rates in the order: AlCl(3) > CaCl(2) > MgCl(2) > NaCl > CsCl > no salt. It was also found that ionic strength, over cation identity, determines silica polymerization and particle flocculation rates. This research reveals that precipitation of silica products from acid dissolution of minerals can be studied apart from the mineral dissolution process. Thus, silica product precipitation from mineral acidization follows a two-step process--formation of 5 nm primary particles followed by particle flocculation--which becomes exponentially faster with increasing HCl concentration and with salts accelerating the process in the above order. This result has implications for any study of acid dissolution of aluminosilicate or silicate material. In particular, the findings are applicable to the process of acidizing oil-containing rock formations, a common practice of the petroleum industry where silica dissolution products encounter a low-pH, salty environment within the oil well. PMID:20536253

  1. Nickel toxicity to microbes: effect of pH and implications for acid rain

    SciTech Connect

    Babich, H.; Stotzky, G.

    1982-12-01

    A broad spectrum of microorganisms, including eubacteria (nonmarine and marine), actinomycetes, yeasts, and filamentous fungi, were evaluated for their sensitivities to nickel. Wide extremes in sensitivity to Ni were noted among the filamentous fungi, whereas the range of tolerance to Ni of the yeasts, eubacteria, and actinomycetes was narrower. With all microorganisms, the toxicity of Ni has not been defined, although the formation of hydroxylated Ni species with differing toxicities was not involved. The enhanced toxicity of Ni at acidic levels may have implications for the toxicity of Ni in environments stressed by acid precipitation.

  2. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  3. PH BUFFERING IN FOREST SOIL ORGANIC HORIZONS: RELEVANCE TO ACID PRECIPITATION

    EPA Science Inventory

    Samples of organic surface horizons (Oi, Oe, Oa) from New York State forest soils were equilibrated with 0 to 20 cmol HNO3 Kg(-1) soil in the laboratory by a batch technique designed to simulate reactions of acid precipitation with forest floors. Each organic horizon retained a c...

  4. ALUMINUM SOLUBILITY, CALCIUM-ALUMINUM EXCHANGE, AND PH IN ACID FOREST SOILS

    EPA Science Inventory

    Important components in several models designed to describe the effects of acid deposition on soils and surface waters are the pH-A1 and Ca-A1 exchange relationships. f A1 solubility is controlled by A1 trihydroxide minerals, the theoretical pH-A1 relationship can be described by...

  5. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.

    PubMed

    Mohd Omar, Fatehah; Abdul Aziz, Hamidi; Stoll, Serge

    2014-01-15

    The surface charge and average size of manufactured ZnO nanoparticles (NPs) were studied as a function of pH to understand the aggregation behavior and importance of the electrostatic interactions in solution. The interactions between ZnO and Suwannee River humic acid (SRHA) were then investigated under a range of environmentally relevant conditions with the ZnO nanoparticles pHPZC as the point of reference. The anionic charges carried by aquatic humic substances were found to play a major role in the aggregation and disaggregation of ZnO nanoparticles. At low concentrations of SRHA (<0.05 mg/L) and below the pHPZC, anionic SRHA was rapidly adsorbed onto the positively charged ZnO NPs hence promoting aggregation. With similar SHRA concentrations, at pHPZC, SRHA was able to control the suspension behavior of the ZnO and promote partial disaggregation in small volumes. This was more distinguishable when the pH was greater than pHPZC as SRHA formed a surface coating on the ZnO nanoparticles and enhanced stability via electrostatic and steric interactions. In most cases, the NP coating by SRHA induced disaggregation behavior in the ZnO nanoparticles and decreased the aggregate size in parallel to increasing SRHA concentrations. Results also suggest that environmental aquatic concentration ranges of humic acids largely modify the stability of aggregated or dispersed ZnO nanoparticles. PMID:24029691

  6. EFFECT OF QUARTZ/MULLITE BLEND CERAMIC ADDITIVE ON IMPROVING RESISTANCE TO ACID OF SODIUM SILICATE-ACTIVATED SLAG CEMENT. CELCIUS BRINE.

    SciTech Connect

    SUGAMA, T.; BROTHERS, L.E.; VAN DE PUTTE, T.R.

    2006-06-01

    We evaluated the usefulness of manufactured quartz/mullite blend (MQMB) ceramic powder in increasing the resistance to acid of sodium silicate-activated slag (SSAS) cementitious material for geothermal wells. A 15-day exposure to 90{sup o} CO{sub 2}-laden H{sub 2}SO{sub 4} revealed that the MQMB had high potential as an acid-resistant additive for SSAS cement. Two factors, the appropriate ratio of slag/MQMB and the autoclave temperature, contributed to better performance of MQMB-modified SSAS cement in abating its acid erosion. The most effective slag/MQMB ratio in minimizing the loss in weight by acid erosion was 70/30 by weight. For autoclave temperature, the loss in weight of 100 C autoclaved cement was a less than 2%, but at 300 C it was even lower. Before exposure to acid, the cement autoclaved at 100 C was essentially amorphous; increasing the temperature to 200 C led to the formation of crystalline analcime in the zeolitic mineral family during reactions between the mullite in MQMB and the Na from sodium silicate. In addition, at 300 C, crystal of calcium silicate hydrate (1) (CSH) was generated in reactions between the quartz in MQMB and the activated slag. These two crystalline phases (CSH and analcime) were responsible for densifying the autoclaved cement, conveying improved compressive strength and minimizing water permeability. The CSH was susceptible to reactions with H{sub 2}SO{sub 4}, forming two corrosion products, bassanite and ionized monosilicic acid. However, the uptake of ionized monosilicic acid by Mg dissociated from the activated slag resulted in the formation of lizardite as magnesium silicate hydrate. On the other hand, the analcime was barely susceptible to acid if at all. Thus, the excellent acid resistance of MQMB-modified SSAS cement was due to the combined phases of lizardite and analcime.

  7. High-rate volatile fatty acid (VFA) production by a granular sludge process at low pH.

    PubMed

    Tamis, J; Joosse, B M; Loosdrecht, M C M van; Kleerebezem, R

    2015-11-01

    Volatile fatty acids (VFA) are proposed platform molecules for the production of basic chemicals and polymers from organic waste streams. In this study we developed a granular sludge process to produce VFA at high rate, yield and purity while minimizing potential operational costs. A lab-scale anaerobic sequencing batch reactor (ASBR) was fed with 10 g l(-1) glucose as model substrate. Inclusion of a short (2 min) settling phase before effluent discharge enabled effective granulation and very high volumetric conversion rates of 150-300 gCOD l(-1)  d(-1) were observed during glucose conversion. The product spectrum remained similar at the tested pH range with acetate and butyrate as the main products, and a total VFA yield of 60-70% on chemical oxygen demand (COD) basis. The requirement for base addition for pH regulation could be reduced from 1.1 to 0.6 mol OH(-) (mol glucose)(-1) by lowering the pH from 5.5 to 4.5. Solids concentrations in the effluent were 0.6 ± 0.3 g l(-1) but could be reduced to 0.02 ± 0.01 g l(-1) by introduction of an additional settling period of 5 min. The efficient production of VFA at low pH with a virtually solid-free effluent increases the economic feasibility of waste-based chemicals and polymer production. Biotechnol. PMID:25950759

  8. Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry

    PubMed Central

    Cheng, Changyong; Yang, Yongchun; Dong, Zhimei; Wang, Xiaowen; Fang, Chun; Yang, Menghua; Sun, Jing; Xiao, Liya; Fang, Weihuan; Song, Houhui

    2015-01-01

    Listeria monocytogenes, a food-borne pathogen, has the capacity to maintain intracellular pH (pHi) homeostasis in acidic environments, but the underlying mechanisms remain elusive. Here, we report a simple microplate-based fluorescent method to determine pHi of listerial cells that were prelabeled with the fluorescent dye carboxyfluorescein diacetate N-succinimidyl ester and subjected to acid stress. We found that L. monocytogenes responds differently among strains toward organic and inorganic acids to maintain pHi homeostasis. The capacity of L. monocytogenes to maintain pHi at extracellular pH 4.5 (pHex) was compromised in the presence of acetic acid and lactic acid, but not by hydrochloric acid and citric acid. Organic acids exhibited more inhibitory effects than hydrochloric acid at certain pH conditions. Furthermore, the virulent stains L. monocytogenes EGDe, 850658 and 10403S was more resistant to acidic stress than the avirulent M7 which showed a defect in maintaining pHi homeostasis. Deletion of sigB, a stress-responsive alternative sigma factor from 10403S, markedly altered intracellular pHi homeostasis, and showed a significant growth and survival defect under acidic conditions. Thus, this work provides new insights into bacterial survival mechanism to acidic stresses. PMID:25667585

  9. Effect of salicylic acid upon trace-metal sorption (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite as a function of pH

    SciTech Connect

    Benyahya, L.; Garnier, J.M.

    1999-05-01

    The sorption of four trace metals (Cd, Zn, Co, and Mn) onto alumina, silica, and kaolinite, in the presence or absence of salicylic acid was investigated in batch experiments in the pH range from 4 to 9. The sorption was interpreted in terms of surface complexation using the diffuse layer model (DLM). Equilibrium parameters were optimized using the FITEQL program. The salicylic acid was only significantly sorbed onto the alumina and the sorption was modeled using the anionic monodentate surface complex. In the absence of salicylic acid, the sorption of the trace metals presented different pH edge behaviors, depending on the substrate. Using the cationic monodendate surface complex, the model fitted the experimental data well. In the presence of salicylic acid, at a given pH and depending on the substrate, the sorption of metals was (1) increased, suggesting the occurrence of ternary complexes; (2) reduced (sometimes totally inhibited), due to the complexation with dissolved salicylic acid; or (3) very weakly changed in terms of net effect compared to free-organic-ligand systems. Modeling of the trace-metal sorption in the presence of salicylic acid was performed using ternary surface complexes. In the acidic pH range, this allowed the experimental data to be simulated, but in the alkaline pH range, the model failed to simulate the decrease in sorption. Probable causes of the discrepancies between the experimental data and modeling results are discussed.

  10. Impairment of ascorbic acid's anti-oxidant properties in confined media: inter and intramolecular reactions with air and vanadate at acidic pH.

    PubMed

    Crans, Debbie C; Baruah, Bharat; Gaidamauskas, Ernestas; Lemons, Brant G; Lorenz, Bret B; Johnson, Michael D

    2008-01-01

    The anti-oxidant properties of L-ascorbic acid were investigated in the confined medium produced by a sodium bis(2-ethylhexyl)sulfosuccinate (aerosol-OT, AOT) self-assembled reverse micelle. Using 1H-1H NOESY (proton-proton 2D nuclear overhauser enhancement correlation spectroscopy) NMR spectroscopy, the location of ascorbic acid was investigated and found to be at the AOT-interface in contrast to earlier studies where the ascorbate was assumed to be in the water pool in these microemulsions. The reaction of ascorbic acid with oxygen was investigated using EPR spectroscopy. A delocalized monoanionic ascorbate radical was observed in microemulsions prepared from pH 5.6 stock solutions. This is in contrast to studies carried out in aqueous media where no radical formation was observed. The oxidation of ascorbic acid by aqueous V(V) was investigated in reverse micelles. Modest changes in the kinetic parameters were observed for this system compared to that in water. Details of these reactions were examined and can be summarized as the microemulsion solvating and stabilizing reactive intermediates via rate inhibition or enhancement. The inhibition of the oxidation is due to solvation stabilization of ascorbic acid in microemulsion media. Since ascorbate is a valuable marker of oxidative stress, our results suggest that compartmentization can modify the stabilization of the ascorbate radical and the changes in properties could be important in biological systems. PMID:18331759

  11. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. PMID:26919457

  12. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.

    PubMed

    Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N

    2013-04-01

    The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for

  13. Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60-6.50

    NASA Astrophysics Data System (ADS)

    Čučulović, Ana; Veselinović, Dragan

    2015-12-01

    The desorption of 137Cs from the moss Brachythecium mildeanum (Schimp.) was performed using the following solutions: H2SO4 ( I), HNO3 ( II), H2SO4 + HNO3 ( III) with pH values of 4.60, 5.15, and 5.75, respectively, as well as distilled water (D) with pH 6.50. After five successive desorptions, each lasting 24 h, 20.5-37.6% 137Cs was desorbed from the moss using these solutions, while 30.7% of the starting content was desorbed using distilled water. The first desorption removed the highest percent of the original content of 137Cs in the moss (11.3-18.4%). This was determined by measuring 137Cs activity. If the current results are compared with those obtained earlier it may be concluded that 137Cs desorption from mosses is not species-dependent. The obtained results indicate the necessity of investigating the influence of acid rain, or rather, of H+ ions, on desorption of other ions from biological systems, i.e., the role of H+ ions in spreading other polluting compounds and thus producing secondary environmental pollution. From the results of this study it follows that acid rain will lead, through H+ ion action, to a similar increasing pollution of fallout waters with other ionic compounds which may not be present in the water before the contact with the plants and thus enable the pollution spreading. In the investigated system, the replacement of H+ ions from acid rains by more dangerous radioactive ions occured, increasing the concentration of the radioactive ions in the water, which demonstrates that the same process takes place in fallout water.

  14. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.

    PubMed

    Peretyazhko, Tanya S; Zhang, Qingbo; Colvin, Vicki L

    2014-10-21

    Silver nanoparticles (Ag(NP)) are widely utilized in increasing number of medical and consumer products due to their antibacterial properties. Once released to aquatic system, Ag(NP) undergoes oxidative dissolution leading to production of toxic Ag(+). Dissolved Ag(+) can have a severe impact on various organisms, including indigenous microbial communities, fungi, alga, plants, vertebrates, invertebrates, and human cells. Therefore, it is important to investigate fate of Ag(NP) and determine physico-chemicals parameters that control Ag(NP) behavior in the natural environment. Nanoparticle size might have a dominant effect on Ag(NP) dissolution in natural waters. In this work, we investigated size-dependent dissolution of AgNP exposed to ultrapure deionized water (pH ≈ 7) and acetic acid (pH 3) and determined changes in nanoparticle size after dissolution. Silver nanoparticles stabilized by thiol functionalized methoxyl polyethylene glycol (PEGSH) of 6 nm (Ag(NP_)6), 9 nm (Ag(NP_)9), 13 nm (Ag(NP_)13), and 70 nm (Ag(NP_)70) were prepared. The results of dissolution experiments showed that the extent of AgNP dissolution in acetic acid was larger than in water. Solubility of Ag(NP) increased with the size decrease and followed the order Ag(NP_)6 > Ag(NP_)9 > Ag(NP_)13 > Ag(NP_)70 in both water and acetic acid. Transmission electron microscopy (TEM) was applied to characterize changes in size and morphology of the AgNP after dissolution in water. Analysis of Ag(NP) by TEM revealed that the particle morphology did not change during dissolution. The particles remained approximately spherical in shape, and no visible aggregation was observed in the samples. TEM analysis also demonstrated that Ag(NP_)6, Ag(NP_)9, and Ag(NP_)13 increased in size after dissolution likely due to Ostwald ripening. PMID:25265014

  15. 2,3-Butanediol fermentation promotes growth of Serratia plymuthica at low pH but not survival of extreme acid challenge.

    PubMed

    Vivijs, Bram; Moons, Pieter; Geeraerd, Annemie H; Aertsen, Abram; Michiels, Chris W

    2014-04-01

    The mechanisms by which Enterobacteriaceae can survive or grow at low pH are of interest because members of this family are increasingly linked to problems of spoilage and foodborne infection related to mildly acidic foods. In this work, we investigated the contribution of the 2,3-butanediol fermentation pathway in coping with specific forms of acid stress in Serratia plymuthica RVH1. This pathway consumes intracellular protons, similar to the amino acid decarboxylases which are involved in acid resistance in Enterobacteriaceae. While its role in preventing excessive acidification in media with an initial neutral pH but containing fermentable sugars has been established, we here addressed the question whether it supports survival of severe acid challenge (pH2.5-3.5) and/or enhances the ability to initiate growth at moderately low pH (pH4.0-5.0) in acidified LB medium and in tomato juice. Using a budAB::cat mutant, deficient in 2,3-butanediol fermentation, we showed that the pathway did not influence survival in simulated gastric fluid and is not involved in the acid tolerance response (ATR) in S. plymuthica RVH1. On the other hand, the pathway promoted growth at moderately low pH. In acidified LB medium, the mutant stopped growing at a lower final cell density than the wild-type strain. In tomato juice, additionally, the minimal pH at which the mutant could grow (pH4.20-4.30) was increased compared to that of the wild-type (pH4.10). Growth of the wild-type strain was often accompanied by a pH increase, in contrast to the budAB::cat mutant, where the opposite was observed. However, the differences in growth between the wild-type and budAB::cat mutant could not only be explained by external pH, suggesting that the 2,3-butanediol fermentation contributed to intracellular pH homeostasis. Based on these data, we propose the contribution to growth at low pH as a novel biological function of 2,3-butanediol fermentation in Enterobacteriaceae. PMID:24531037

  16. Effects of Environmental pH on Antioxidant Interactions between Rosmarinic Acid and α-Tocopherol in Oil-in-Water (O/W) Emulsions.

    PubMed

    Kittipongpittaya, Ketinun; Panya, Atikorn; Phonsatta, Natthaporn; Decker, Eric A

    2016-08-31

    Antioxidant regeneration could be influenced by various factors such as antioxidant locations and pH conditions. The effects of environmental pH on the antioxidant interaction between rosmarinic acid and α-tocopherol in oil-in-water (O/W) emulsions were investigated. Results showed that the combined antioxidants at pH 7 exhibited the strongest synergistic antioxidant activity in comparison with the combinations at other pH conditions as indicated by the interaction index. A drop in pH from 7 to 3 resulted in a reduction in the synergistic effect. However, in the case of pH 3, an additive effect was obtained. Moreover, the effect of the pH on the regeneration of α-tocopherol by rosmarinic acid in heterogeneous Tween 20 solutions was studied using EPR spectrometer. The same was true for the regeneration efficiency, where the reaction at pH 7 exhibited the highest regeneration efficiency of 0.3 mol of α-tocopheroxyl radicals reduced/mol of phenolics. However, the study on depletions of rosmarinic acid and α-tocopherol revealed that the formation of caffeic acid, an oxidative degradation product of rosmarinic acid, could be involved in enhancing the antioxidant activity observed at pH 7 rather than the antioxidant regeneration. This study has highlighted that the importance of pH-dependent antioxidant interactions does not solely rely on antioxidant regeneration. In addition, the formation of other oxidative products from an antioxidant should be taken into account. PMID:27494424

  17. pH gradients and a micro-pore filter at the luminal surface affect fluxes of propionic acid across guinea pig large intestine.

    PubMed

    Busche, Roger; von Engelhardt, Wolfgang

    2007-10-01

    A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J(Pr)) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J(ms)(Pr) ) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J (ms) (Pr) was not or only little elevated at the lower pH. Without bicarbonate J(ms)(Pr) was clearly higher. We conclude that the higher J(ms)(Pr) after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J(ms)(Pr) is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J(ms)(Pr) was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30-60% of J(ms)(Pr) results from non-ionic diffusion. PMID:17639416

  18. Modeling the effects of sodium chloride, acetic acid and intracellular pH on the survival of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbiological safety has been a critical issue for acid and acidified foods since it became clear that acid-tolerant pathogens such as Escherichia coli O157:H7 can survive (even though they are unable to grow) in a pH range of 3 to 4, which is typical for these classes of food products. The primar...

  19. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition.

    PubMed

    Miller, Dave A; DiNunzio, James C; Yang, Wei; McGinity, James W; Williams, Robert O

    2008-08-01

    Previous attempts to improve the dissolution and absorption properties of itraconazole (ITZ) through advanced formulation design have focused only on release in acidic media; however, recent reports indicate that absorption occurs primarily in the proximal small intestine. This suggests that enhancing supersaturation of ITZ in neutral aqueous environments is essential for improving absorption. The aim of this study was to evaluate different polymeric stabilizers with either immediate release (IR) (Methocel E5, Methocel E50, Kollidon 12, and Kollidon 90) or enteric release (EUDRAGIT L 100-55, HP-55, and HP-55S) properties to determine the chemical and physical attributes of the polymeric stabilizers that promote supersaturation of ITZ in neutral media. Each amorphous composition was produced by hot-melt extrusion and characterized by differential scanning calorimetry. Dissolution testing by a supersaturated acidic-to-neutral pH change method was conducted on each composition. Testing of IR compositions revealed that Methocel was a superior stabilizer compared with Kollidon owing to stronger intermolecular interaction with ITZ molecules in solution. Increasing the molecular weight of polymers was found to promote ITZ supersaturation and was most likely attributable to increased solution viscosity resulting in retention of ITZ molecules in an enthalpically favored association with the polymer for extended durations. Of the enteric polymeric stabilizers, EUDRAGIT L 100-55 was found to be superior to both HP-55 grades because of its greater permeability to acid that allowed for improved hydration of ITZ in the acid phase as well as a greater number of free hydroxyl groups on the polymer backbone that presumably helped to stabilize ITZ in solution. The Methoceltrade mark E50 and EUDRAGIT L 100-55 formulations were evaluated for in vivo drug absorption in male Sprague-Dawley rats and were found to produce a threefold greater ITZ absorption over our previously reported IR

  20. Conformation of succinic acid: its pH dependence by Licry-NMR analysis

    NASA Astrophysics Data System (ADS)

    Chidichimo, G.; Formoso, P.; Golemme, A.; Imbardelli, D.

    The conformations of fully protonated (H2SA), fully deprotonated (SA=) and monoprotonated (HSA-) succinic acid have been investigated by means of nuclear magnetic resonance spectroscopy in liquid crystal mesophases (Licry-NMR). H-H and 13C-H direct dipolar couplings have been determined by measuring 1H-NMR and 13C-NMR spectra from quaternary nematic-lyotropic solutions of myristyltrimethylammonium bromide (MTAB), decanol, deuterated water and succinic acid (in each of its three different protonated forms). Direct dipolar couplings have been used to investigate the conformational equilibrium of the molecule in its three different protonation forms. Data could be interpreted in terms of a single conformation for each of the investigated forms. The dihedral angle between the H3-C5'-C5 and the C5'-C5-H1 planes gradually increases when going from the fully protonated H2SA species to the SA= ions. Our findings are different from those obtained by other authors by analysis of Jij couplings. In that case an equilibrium conformation between the gauche and trans conformers had been obtained.

  1. Calculation of acid-base equilibrium constants at the oxide-electrolyte interface from the dependence of oxide surface charge on pH of the electrolyte

    SciTech Connect

    Gorichev, I.G.; Dorofeev, M.V.; Batrakov, V.V.

    1994-09-01

    The dependences of the catalytic activity of oxides and acid-base properties on ph of solution are similar. A procedure is developed for calculating acid-base equilibrium constants from the dependence of the oxide surface charge q on pH. The values q can be determined by potentiometric titration of aqueous suspensions of oxides. The acid-base equilibrium constants for Fe{sub 3}O{sub 4} and CuO were calculated in accordance with the proposed procedure.

  2. Gas evolution from geopressured brines

    SciTech Connect

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  3. Molecular complex composed of β-cyclodextrin-grafted Chitosan and pH-sensitive amphipathic peptide for enhancing cellular cholesterol efflux under acidic pH.

    PubMed

    Takechi-Haraya, Yuki; Tanaka, Kento; Tsuji, Kohei; Asami, Yasuo; Izawa, Hironori; Shigenaga, Akira; Otaka, Akira; Saito, Hiroyuki; Kawakami, Kohsaku

    2015-03-18

    Excess of cholesterol in peripheral cells is known to lead to atherosclerosis. In this study, a molecular complex composed of β-cyclodextrin-grafted chitosan (BCC) and cellular cholesterol efflux enhancing peptide (CEEP), synthesized by modifying pH sensitive amphipathic GALA peptide, is introduced with the eventual aim of treating atherosclerosis. BCC has a markedly enhanced ability to induce cholesterol efflux from cell membranes compared to β-cyclodextrin, and the BCC-CEEP complex exhibited a 2-fold increase in cellular cholesterol efflux compared to BCC alone under weakly acidic conditions. Isothermal titration calorimetry and fluorescence spectroscopy measurements demonstrated that the random coil structure of CEEP at neutral pH converted to the α-helical structure at acidic pH, resulting in a three-order larger binding constant to BCC (K = 3.7 × 10(7) at pH 5.5) compared to that at pH 7.4 (K = 7.9 × 10(4)). Such high-affinity binding of CEEP to BCC at acidic pH leads to the formation of 100-nm-sized aggregate with positive surface charge, which would efficiently interact with cell membranes and induce cholesterol efflux. Since the cholesterol efflux ability of HDL is thought to be impaired under acidic environments in advanced atherosclerotic lesions, the BCC-CEEP complex might serve as a novel nanomaterial for treating atherosclerosis. PMID:25705984

  4. Isotope fractionation of Si in protonation/deprotonation reaction of silicic acid: A new pH proxy

    NASA Astrophysics Data System (ADS)

    Fujii, Toshiyuki; Pringle, Emily A.; Chaussidon, Marc; Moynier, Frédéric

    2015-11-01

    Isotopic fractionation of Si in protonation/deprotonation reactions of monomeric silicic acids was theoretically and experimentally studied. The reduced partition function ratio for Si (as 1000 ln β) complexes was theoretically estimated by ab initio methods. Three permil of isotope fractionation was estimated to be possible for the 28Si-30Si isotope pair. This prediction was experimentally demonstrated by multi-collector inductively coupled plasma mass spectrometer measurements of Si-bearing aqueous solutions, for which equilibrated Si(OH)4 and SiO(OH)3- were separated using an anionic exchange column. The results create a new possibility for the application of Si isotopes as proxies for paleo-pH in the 9 < pH < 12 range.

  5. Recombinant broad-range phospholipase C from Listeria monocytogenes exhibits optimal activity at acidic pH.

    PubMed

    Huang, Qiongying; Gershenson, Anne; Roberts, Mary F

    2016-06-01

    The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes. PMID:26976751

  6. Effects of acarbose on fecal nutrients, colonic pH, and short-chain fatty acids and rectal proliferative indices.

    PubMed

    Holt, P R; Atillasoy, E; Lindenbaum, J; Ho, S B; Lupton, J R; McMahon, D; Moss, S F

    1996-09-01

    Acarbose, an alpha-glycosidase inhibitor, treats diabetes mellitus by delaying the digestion and intestinal absorption of dietary carbohydrates. In effective doses, acarbose induces some passage of carbohydrates into the colon. The effect of such chronic carbohydrate transfer on colonic structure and function is unknown. We studied the effects of 1 year of acarbose administration in diabetes mellitus on fecal energy, protein, and fat, including short-chain fatty acids (SCFA) output, fecal pH, and several metabolizing bacterial species. Changes in colonic histology and epithelial cell proliferation were investigated in rectal biopsies. Fecal macronutrient output was unaffected by acarbose, but pH decreased and total SCFA, butyrate, and acetate output were markedly greater. Breath hydrogen output increased after acarbose, but digoxin-metabolizing bacteria and diacylglycerol (DAG) production were unaltered. Compared with the control, acarbose did not induce hyperplasia or change rectal proliferation. However, total fecal SCFA and butyrate output correlated inversely with proliferation in the rectal upper crypt-a biomarker of risk for colonic neoplasia. In conclusion, long-term acarbose administration does not adversely affect colonic function or fecal nutrient output. If increased fecal SCFA and butyrate reduces upper-crypt proliferation, then acarbose may reduce the risk of colonic neoplasia. PMID:8781308

  7. Efficient interrupting skills of amino acid metallointercalators with DNA at physiological pH: Evaluation of biological assays

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Selvaganapathy, Muthusamy; Radhakrishnan, Srinivasan

    2014-06-01

    The 4-aminoantipyrine derivatives (sbnd NO2, sbnd OCH3) and their mixed-ligand complexes with amino acids have been synthesized and investigated for their binding with CT DNA using UV-visible spectroscopy, cyclic voltammetry, and viscosity measurements under physiological conditions of pH (stomach 4.7; blood 7.4). The results from all techniques i.e. binding constant (Kb), and free energy change (ΔG) were in good agreement and inferred spontaneous compound-DNA complexes formation via intercalation. Among all the compounds 1 and 4 showed comparatively greater binding at pH 7.4 as evident from its greater Kb values. All the complexes exhibit oxidative cleavage of supercoiled (SC) pBR322 plasmid DNA in the presence of H2O2 as an activator. It is remarkable that at 25 μM concentration 1 and 4 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. Among the new complexes, complexes 1 and 4 have highest potential against all the microorganisms tested. The results of the above biological experiments also reveal that the choice of different metal ions has little influence on the DNA binding, DNA cleavage and antimicrobial assay.

  8. Human Plasma Very Low-Density Lipoproteins Are Stabilized by Electrostatic Interactions and Destabilized by Acidic pH

    PubMed Central

    Guha, Madhumita; Gursky, Olga

    2011-01-01

    Very low-density lipoproteins (VLDL) are precursors of low-density lipoproteins (LDL, or “bad cholesterol”). Factors affecting structural integrity of VLDL are important for their metabolism. To assess the role of electrostatic interactions in VLDL stability, we determined how solvent ionic conditions affect the heat-induced VLDL remodeling. This remodeling involves VLDL fusion, rupture, and fission of apolipoprotein E-containing high-density lipoprotein-(HDL-) like particles similar to those formed during VLDL-to-LDL maturation. Circular dichroism and turbidity show that increasing sodium salt concentration in millimolar range reduces VLDL stability and its enthalpic component. Consequently, favorable electrostatic interactions stabilize VLDL. Reduction in pH from 7.4 to 6.0 reduces VLDL stability, with further destabilization detected at pH < 6, which probably results from titration of the N-terminal α-amino groups and free fatty acids. This destabilization is expected to facilitate endosomal degradation of VLDL, promote their coalescence into lipid droplets in atherosclerotic plaques, and affect their potential use as drug carriers. PMID:21773050

  9. The role of calcium ions in the photocatalytic oxidation of humic acid at neutral pH.

    PubMed

    Mariquit, Eden G; Salim, Chris; Hinode, Hirofumi

    2008-10-01

    Humic acids (HAs) are natural organic matter derived from the decomposition of plant, algal, and microbial materials. They belong to the group of the most predominant type of natural organic matter present in ground and surface waters. HAs affect the mobility and bioavailability of aquatic contaminants. However, if they are left unremoved from the water before water treatment processes, they can form carcinogenic disinfection by-products, such as trihalomethanes, haloacetic acids, and other halogenated disinfection by-products, that can pose a threat to human beings. An advanced oxidation process using UV light and a commercially available titanium dioxide was used to oxidize HA at a pH that is similar to that of natural water. The effect of adding calcium ions to the adsorption and the photocatalytic oxidation of HAs was studied. The effect of varying the TiO(2) load was also investigated. The experiment was done using a photochemical batch reactor equipped with a mercury lamp emitting light with wavelengths of 310-580 nm. The absorbances by the samples were determined at wavelengths of 254 nm and 436 nm, which represent the aromatic-compound content of and the color of the solution, respectively. Results indicated calcium ions have an effect on both the adsorption and the photocatalytic oxidation of HA at a pH within 8.0 +/- 0.5. Calcium ions facilitated adsorption of HA onto the surface of TiO(2) and resulted to faster photocatalytic oxidation. The data were plotted with respect to the normalized absorbances and irradiation time. PMID:18991939

  10. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  11. Increasing the Brønsted acidity of Ph2PO2H by the Lewis acid B(C6F5)3. Formation of an eight-membered boraphosphinate ring [Ph2POB(C6F5)2O]2.

    PubMed

    Kather, Ralf; Rychagova, Elena; Sanz Camacho, Paula; Ashbrook, Sharon E; Woollins, J Derek; Robben, Lars; Lork, Enno; Ketkov, Sergey; Beckmann, Jens

    2016-09-21

    Autoprotolysis of the metastable acid (C6F5)3BOPPh2OH, prepared in situ by the reaction of the rather weak Brønsted acid Ph2PO2H with the strong Lewis acid B(C6F5)3, gave rise to the formation of the eight-membered ring [Ph2POB(C6F5)2O]2 and C6F5H. The conjugate base was isolated as stable sodium crown ether salt [Na(15-crown-5)][Ph2PO2B(C6F5)3]. PMID:27538254

  12. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for importation into the United States upon disinfection, may either be disinfected with hydrochloric acid as at present or if preferred may be submerged in a saturated brine solution at a temperature...

  13. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for importation into the United States upon disinfection, may either be disinfected with hydrochloric acid as at present or if preferred may be submerged in a saturated brine solution at a temperature...

  14. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for importation into the United States upon disinfection, may either be disinfected with hydrochloric acid as at present or if preferred may be submerged in a saturated brine solution at a temperature...

  15. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for importation into the United States upon disinfection, may either be disinfected with hydrochloric acid as at present or if preferred may be submerged in a saturated brine solution at a temperature...

  16. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage.

    PubMed

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor A P; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-06-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including 'ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called 'ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  17. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    PubMed Central

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard R; Richter, Michael; Diez, María Suárez; Solano, Jennifer; Bargiela, Rafael; Golyshina, Olga V; Manteca, Ángel; Ramos, Juan Luis; Gallego, José R; Llorente, Irene; Martins dos Santos, Vitor AP; Jensen, Ole N; Peláez, Ana I; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths. PMID:24430486

  18. Bilayers at High pH in the Fatty Acid Soap Systems and the Applications for the Formation of Foams and Emulsions.

    PubMed

    Xu, Wenlong; Zhang, Heng; Zhong, Yingping; Jiang, Liwen; Xu, Mengxin; Zhu, Xionglu; Hao, Jingcheng

    2015-08-20

    In our previous work, we reported bilayers at high pH in the stearic acid/CsOH/H2O system, which was against the traditional viewpoint that fatty acid (FA) bilayers must be formed at the pKa of the fatty acid. Herein, the microstructures at high pH of several fatty acid soap systems were investigated systematically. We found that palmitic acid/KOH/H2O, palmitic acid/CsOH/H2O, stearic acid/KOH/H2O, and stearic acid/CsOH/H2O systems can form bilayers at high pH. The bilayer structure was demonstrated by cryogenic transmission electron microscopy (cryo-TEM) and deuterium nuclear magnetic resonance ((2)H NMR), and molecular dynamics simulation was used to confirm the formation of bilayers. The influence of fatty acids with different chain lengths (n = 10, 12, 14, 16, and 18) and different counterions including Li(+), Na(+), K(+), Cs(+), (CH3)4N(+), (C2H5)4N(+), (C3H7)4N(+), and (C4H9)4N(+) on the formation of bilayers was discussed. The stability of foam and emulsification properties were compared between bilayers and micelles, drawing the conclusion that bilayer structures possess a much stronger ability to foam and stronger emulsification properties than micelles do. PMID:26237503

  19. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  20. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett's oesophagus

    PubMed Central

    Dvorak, Katerina; Payne, Claire M; Chavarria, Melissa; Ramsey, Lois; Dvorakova, Barbora; Bernstein, Harris; Holubec, Hana; Sampliner, Richard E; Guy, Naihsuan; Condon, Amanda; Bernstein, Carol; Green, Sylvan B; Prasad, Anil; Garewal, Harinder S

    2007-01-01

    Background Barrett's oesophagus is a premalignant condition associated with an increased risk for the development of oesophageal adenocarcinoma (ADCA). Previous studies indicated that oxidative damage contributes to the development of ADCA. Objective To test the hypothesis that bile acids and gastric acid, two components of refluxate, can induce oxidative stress and oxidative DNA damage. Methods Oxidative stress was evaluated by staining Barrett's oesophagus tissues with different degrees of dysplasia with 8‐hydroxy‐deoxyguanosine (8‐OH‐dG) antibody. The levels of 8‐OH‐dG were also evaluated ex vivo in Barrett's oesophagus tissues incubated for 10 min with control medium and medium acidified to pH 4 and supplemented with 0.5 mM bile acid cocktail. Furthermore, three oesophageal cell lines (Seg‐1 cells, Barrett's oesophagus cells and HET‐1A cells) were exposed to control media, media containing 0.1 mM bile acid cocktail, media acidified to pH 4, and media at pH 4 supplemented with 0.1 mM bile acid cocktail, and evaluated for induction of reactive oxygen species (ROS). Results Immunohistochemical analysis showed that 8‐OH‐dG is formed mainly in the epithelial cells in dysplastic Barrett's oesophagus. Importantly, incubation of Barrett's oesophagus tissues with the combination of bile acid cocktail and acid leads to increased formation of 8‐OH‐dG. An increase in ROS in oesophageal cells was detected after exposure to pH 4 and bile acid cocktail. Conclusions Oxidative stress and oxidative DNA damage can be induced in oesophageal tissues and cells by short exposures to bile acids and low pH. These alterations may underlie the development of Barrett's oesophagus and tumour progression. PMID:17145738

  1. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  2. Solubility of Nd in brine

    SciTech Connect

    Khalili, F.; Symeopoulos, V.; Chen, J.F.; Choppin, G.R.

    1993-12-31

    The solubility of Nd(III) has been measured in a synthetic brine at pcH 6.4, 8.4, 10.4 and 12.4. The brine consisted predominantly of (Na+K)Cl and MgCl{sub 2}, with an ionic strength of 7.8M (9.4m). The experimental solubility is much less than that estimated from modeling of the species in solution in equilibrium with the Nd solid using S.I.T. The predominant solid compound of Nd (III) at each pcH was determined from X-ray diffraction patterns.

  3. Effects of decreased pH on membrane structural organization of Escherichia coli grown in different fatty acid-supplemented media: a 31P NMR study.

    PubMed

    Ianzini, F; Guidoni, L; Simone, G; Viti, V; Yatvin, M B

    1990-04-01

    Total membranes from Escherichia coli cells grown in different fatty acid-supplemented media have been examined by 31P NMR at different pH values. The isolated inner and outer membranes were also studied and compared to the liposomes formed with the corresponding extracted lipids. While the liposomes show structures that are correlated with lipid composition, degree of fatty acid unsaturation, and pH, the membrane structure is mainly bilayer. The presence of two bilayer phases characterized by different chemical shift anisotropy values (delta nu csa) is detectable at neutral pH; a perturbation of the bilayer phase characterized by the smallest delta nu csa is produced by low pH. Moreover, an isotropic peak is always present in the membrane NMR spectra: its attribution to cardiolipin molecules is discussed on the basis of digestion experiments with phospholipase C. PMID:2181934

  4. A mathematical model of pH, based on the total stoichiometric concentration of acids, bases and ampholytes dissolved in water.

    PubMed

    Mioni, Roberto; Mioni, Giuseppe

    2015-10-01

    In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance. PMID:26059505

  5. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  6. Small-angle X-ray scattering of BAMLET at pH 12: a complex of α-lactalbumin and oleic acid.

    PubMed

    Rath, Emma M; Duff, Anthony P; Håkansson, Anders P; Knott, Robert B; Church, W Bret

    2014-07-01

    BAMLET (Bovine Alpha-lactalbumin Made LEthal to Tumors) is a member of the family of the HAMLET-like complexes, a novel class of protein-based anti-cancer complexes that incorporate oleic acid and deliver it to cancer cells. Small angle X-ray scattering (SAXS) was performed on the complex at pH 12, examining the high pH structure as a function of oleic acid added. The SAXS data for BAMLET species prepared with a range of oleic acid concentrations indicate extended, irregular, partially unfolded protein conformations that vary with the oleic acid concentration. Increases in oleic acid concentration correlate with increasing radius of gyration without an increase in maximum particle dimension, indicating decreasing protein density. The models for the highest oleic acid content BAMLET indicate an unusual coiled elongated structure that contrasts with apo-α-lactalbumin at pH 12, which is an elongated globular molecule, suggesting that oleic acid inhibits the folding or collapse of the protein component of BAMLET to the globular form. Circular dichroism of BAMLET and apo-α-lactalbumin was performed and the results suggest that α-lactalbumin and BAMLET unfold in a continuum of increasing degree of unfolded states. Taken together, these results support a model in which BAMLET retains oleic acid by non-specific association in the core of partially unfolded protein, and represent a new type of lipoprotein structure. PMID:24408789

  7. Low urine pH and acid excretion do not predict bone fractures or the loss of bone mineral density: a prospective cohort study

    PubMed Central

    2010-01-01

    Background The acid-ash hypothesis, the alkaline diet, and related products are marketed to the general public. Websites, lay literature, and direct mail marketing encourage people to measure their urine pH to assess their health status and their risk of osteoporosis. The objectives of this study were to determine whether 1) low urine pH, or 2) acid excretion in urine [sulfate + chloride + 1.8x phosphate + organic acids] minus [sodium + potassium + 2x calcium + 2x magnesium mEq] in fasting morning urine predict: a) fragility fractures; and b) five-year change of bone mineral density (BMD) in adults. Methods Design: Cohort study: the prospective population-based Canadian Multicentre Osteoporosis Study. Multiple logistic regression was used to examine associations between acid excretion (urine pH and urine acid excretion) in fasting morning with the incidence of fractures (6804 person years). Multiple linear regression was used to examine associations between acid excretion with changes in BMD over 5-years at three sites: lumbar spine, femoral neck, and total hip (n = 651). Potential confounders controlled included: age, gender, family history of osteoporosis, physical activity, smoking, calcium intake, vitamin D status, estrogen status, medications, renal function, urine creatinine, body mass index, and change of body mass index. Results There were no associations between either urine pH or acid excretion and either the incidence of fractures or change of BMD after adjustment for confounders. Conclusion Urine pH and urine acid excretion do not predict osteoporosis risk. PMID:20459740

  8. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  9. Evaluation of NaCl, pH, and lactic acid on the growth of Shiga toxin-producing Escherichia coli in a liquid Cheddar cheese extract.

    PubMed

    Oh, Jee-Hwan; Vinay-Lara, Elena; McMinn, Russell; Glass, Kathleen A; Johnson, Mark E; Steele, James L

    2014-11-01

    A Cheddar cheese model system, Cheddar cheese extract, was used to examine how different levels of known microbial hurdles (NaCl, pH, and lactic acid) in Cheddar cheese contribute to inhibition of bacterial pathogens. This knowledge is critical to evaluate the safety of Cheddar varieties with altered compositions. The range of levels used covered the lowest and highest level of these factors present in low-sodium, low-fat, and traditional Cheddar cheeses. Four pathogens were examined in this model system at 11 °C for 6 wk, with the lowest levels of these inhibitory factors that would be encountered in these products. The 4 pathogens examined were Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC). None of these organisms were capable of growth under these conditions. The STEC exhibited the highest survival and hence was used to examine which of these inhibitory factors (NaCl, pH, and lactic acid) was primarily responsible for the observed inhibition. The STEC survival was examined in Cheddar cheese extract varying in NaCl (1.2 vs. 4.8%), lactic acid (2.7 vs. 4.3%), and pH (4.8 vs. 5.3) at 11 °C for 6 wk. The microbial hurdle found to have the greatest effect on STEC survival was pH. The interactions between pH and levels of protonated lactic acid and anionic lactic acid with STEC survival was also evaluated; only the concentration of protonated lactic acid was determined to have a significant effect on STEC survival. These results indicate that, of the pathogens examined, STEC is of the greatest concern in Cheddar varieties with altered compositions and that pH is the microbial hurdle primarily responsible for controlling STEC in these products. PMID:25200778

  10. Low pH, Aluminum, and Phosphorus Coordinately Regulate Malate Exudation through GmALMT1 to Improve Soybean Adaptation to Acid Soils1[W][OA

    PubMed Central

    Liang, Cuiyue; Piñeros, Miguel A.; Tian, Jiang; Yao, Zhufang; Sun, Lili; Liu, Jiping; Shaff, Jon; Coluccio, Alison; Kochian, Leon V.; Liao, Hong

    2013-01-01

    Low pH, aluminum (Al) toxicity, and low phosphorus (P) often coexist and are heterogeneously distributed in acid soils. To date, the underlying mechanisms of crop adaptation to these multiple factors on acid soils remain poorly understood. In this study, we found that P addition to acid soils could stimulate Al tolerance, especially for the P-efficient genotype HN89. Subsequent hydroponic studies demonstrated that solution pH, Al, and P levels coordinately altered soybean (Glycine max) root growth and malate exudation. Interestingly, HN89 released more malate under conditions mimicking acid soils (low pH, +P, and +Al), suggesting that root malate exudation might be critical for soybean adaptation to both Al toxicity and P deficiency on acid soils. GmALMT1, a soybean malate transporter gene, was cloned from the Al-treated root tips of HN89. Like root malate exudation, GmALMT1 expression was also pH dependent, being suppressed by low pH but enhanced by Al plus P addition in roots of HN89. Quantitative real-time PCR, transient expression of a GmALMT1-yellow fluorescent protein chimera in Arabidopsis protoplasts, and electrophysiological analysis of Xenopus laevis oocytes expressing GmALMT1 demonstrated that GmALMT1 encodes a root cell plasma membrane transporter that mediates malate efflux in an extracellular pH-dependent and Al-independent manner. Overexpression of GmALMT1 in transgenic Arabidopsis, as well as overexpression and knockdown of GmALMT1 in transgenic soybean hairy roots, indicated that GmALMT1-mediated root malate efflux does underlie soybean Al tolerance. Taken together, our results suggest that malate exudation is an important component of soybean adaptation to acid soils and is coordinately regulated by three factors, pH, Al, and P, through the regulation of GmALMT1 expression and GmALMT1 function. PMID:23341359

  11. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    SciTech Connect

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at a proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ

  12. Utilizing rare earth elements as tracers in high TDS reservoir brines in CCS applications

    DOE PAGESBeta

    McLing, Travis; Smith, William; Smith, Robert

    2014-12-31

    In this paper we report the result of research associated with the testing of a procedures necessary for utilizing natural occurring trace elements, specifically the Rare Earth Elements (REE) as geochemical tracers in Carbon Capture and Storage (CCS) applications. Trace elements, particularly REE may be well suited to serve as in situ tracers for monitoring geochemical conditions and the migration of CO₂-charged waters within CCS storage systems. We have been conducting studies to determine the efficacy of using REE as a tracer and characterization tool in the laboratory, at a CCS analogue site in Soda Springs, Idaho, and at amore » proposed CCS reservoir at the Rock Springs Uplift, Wyoming. Results from field and laboratory studies have been encouraging and show that REE may be an effective tracer in CCS systems and overlying aquifers. In recent years, a series of studies using REE as a natural groundwater tracer have been conducted successfully at various locations around the globe. Additionally, REE and other trace elements have been successfully used as in situ tracers to describe the evolution of deep sedimentary Basins. Our goal has been to establish naturally occurring REE as a useful monitoring measuring and verification (MMV) tool in CCS research because formation brine chemistry will be particularly sensitive to changes in local equilibrium caused by the addition of large volumes of CO₂. Because brine within CCS target formations will have been in chemical equilibrium with the host rocks for millions of years, the addition of large volumes of CO₂ will cause reactions in the formation that will drive changes to the brine chemistry due to the pH change caused by the formation of carbonic acid. This CO₂ driven change in formation fluid chemistry will have a major impact on water rock reaction equilibrium in the formation, which will impart a change in the REE fingerprint of the brine that can measured and be used to monitor in situ reservoir

  13. NICE3: Textile Brine Separation

    SciTech Connect

    Recca, L.

    1999-01-29

    The goal of this project is to demonstrate the significant energy and waste savings that can be realized by using nanofiltration technology to reuse textile dyebath brines. Read this new fact sheet to learn how this new membrane technology can benefit your business.

  14. PhTX-II a Basic Myotoxic Phospholipase A2 from Porthidium hyoprora Snake Venom, Pharmacological Characterization and Amino Acid Sequence by Mass Spectrometry

    PubMed Central

    Huancahuire-Vega, Salomón; Ponce-Soto, Luis Alberto; Marangoni, Sergio

    2014-01-01

    A monomeric basic PLA2 (PhTX-II) of 14149.08 Da molecular weight was purified to homogeneity from Porthidium hyoprora venom. Amino acid sequence by in tandem mass spectrometry revealed that PhTX-II belongs to Asp49 PLA2 enzyme class and displays conserved domains as the catalytic network, Ca2+-binding loop and the hydrophobic channel of access to the catalytic site, reflected in the high catalytic activity displayed by the enzyme. Moreover, PhTX-II PLA2 showed an allosteric behavior and its enzymatic activity was dependent on Ca2+. Examination of PhTX-II PLA2 by CD spectroscopy indicated a high content of alpha-helical structures, similar to the known structure of secreted phospholipase IIA group suggesting a similar folding. PhTX-II PLA2 causes neuromuscular blockade in avian neuromuscular preparations with a significant direct action on skeletal muscle function, as well as, induced local edema and myotoxicity, in mice. The treatment of PhTX-II by BPB resulted in complete loss of their catalytic activity that was accompanied by loss of their edematogenic effect. On the other hand, enzymatic activity of PhTX-II contributes to this neuromuscular blockade and local myotoxicity is dependent not only on enzymatic activity. These results show that PhTX-II is a myotoxic Asp49 PLA2 that contributes with toxic actions caused by P. hyoprora venom. PMID:25365526

  15. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    USGS Publications Warehouse

    Gammons, C.H.; Wood, S.A.; Nimick, D.A.

    2005-01-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  16. Diel behavior of rare earth elements in a mountain stream with acidic to neutral pH

    NASA Astrophysics Data System (ADS)

    Gammons, Christopher H.; Wood, Scott A.; Nimick, David A.

    2005-08-01

    Diel (24-h) changes in concentrations of rare earth elements (REE) were investigated in Fisher Creek, a mountain stream in Montana that receives acid mine drainage in its headwaters. Three simultaneous 24-h samplings were conducted at an upstream station (pH = 3.3), an intermediate station (pH = 5.5), and a downstream station (pH = 6.8). The REE were found to behave conservatively at the two upstream stations. At the downstream station, REE partitioned into suspended particles to a degree that varied with the time of day, and concentrations of dissolved REE were 2.9- to 9.4-fold (190% to 830%) higher in the early morning vs. the late afternoon. The decrease in dissolved REE concentrations during the day coincided with a corresponding increase in the concentration of REE in suspended particles, such that diel changes in the total REE concentrations were relatively minor (27% to 55% increase at night). Across the lanthanide series, the heavy REE partitioned into the suspended solid phase to a greater extent than the light REE. Filtered samples from the downstream station showed a decrease in shale-normalized REE concentration across the lanthanide series, with positive anomalies at La and Gd, and a negative Eu anomaly. As the temperature of the creek increased in the afternoon, the slope of the REE profile steepened and the magnitude of the anomalies increased. The above observations are explained by cyclic adsorption of REE onto suspended particles of hydrous ferric and aluminum oxides (HFO, HAO). Conditional partition coefficients for each REE between the suspended solids and the aqueous phase reached a maximum at 1700 hours and a minimum at 0700 hours. This pattern is attributed to diel variations in stream temperature, possibly reinforced by kinetic factors (i.e., slower rates of reaction at night than during the day). Estimates of the enthalpy of adsorption of each REE onto suspended particles based on the field results averaged +82 kJ/mol and are similar in

  17. Spontaneous remodeling of HDL particles at acidic pH enhances their capacity to induce cholesterol efflux from human macrophage foam cells[S

    PubMed Central

    Nguyen, Su Duy; Öörni, Katariina; Lee-Rueckert, Miriam; Pihlajamaa, Tero; Metso, Jari; Jauhiainen, Matti; Kovanen, Petri T.

    2012-01-01

    HDL particles may enter atherosclerotic lesions having an acidic intimal fluid. Therefore, we investigated whether acidic pH would affect their structural and functional properties. For this purpose, HDL2 and HDL3 subfractions were incubated for various periods of time at different pH values ranging from 5.5 to 7.5, after which their protein and lipid compositions, size, structure, and cholesterol efflux capacity were analyzed. Incubation of either subfraction at acidic pH induced unfolding of apolipoproteins, which was followed by release of lipid-poor apoA-I and ensuing fusion of the HDL particles. The acidic pH-modified HDL particles exhibited an enhanced ability to promote cholesterol efflux from cholesterol-laden primary human macrophages. Importantly, treatment of the acidic pH-modified HDL with the mast cell-derived protease chymase completely depleted the newly generated lipid-poor apoA-I, and prevented the acidic pH-dependent increase in cholesterol efflux. The above-found pH-dependent structural and functional changes were stronger in HDL3 than in HDL2. Spontaneous acidic pH-induced remodeling of mature spherical HDL particles increases HDL-induced cholesterol efflux from macrophage foam cells, and therefore may have atheroprotective effects. PMID:22855736

  18. Effects of CO2 and pH on inhibition of TEM-1 and other beta-lactamases by penicillanic acid sulfones.

    PubMed Central

    Livermore, D M; Corkill, J E

    1992-01-01

    Incubation in 5% CO2 reduced the inhibition zones of piperacillin-tazobactam (75/10 micrograms) disks for Escherichia coli strains with TEM-1, TEM-2, and SHV-1 beta-lactamases. Similarly, MICs of piperacillin-tazobactam and other penicillin-sulfone combinations for TEM producers were up to 500-fold higher at pH 6.5 than at pH 8.0. This effect was greatest for organisms with high levels of enzyme activity. CO2 and mild acidity did not affect the susceptibility of beta-lactamase-negative strains to penicillin-sulfone combinations, and the effects of these conditions were variable for organisms with beta-lactamases other than TEM-1, TEM-2, and SHV-1. These last observations discounted acid-mediated inactivation of piperacillin or tazobactam. MICs of amoxicillin or piperacillin alone or with clavulanate for TEM and SHV producers were affected only less than or equal to 16-fold by 5% CO2 or acidity, indicating that the greater effects seen with the penicillin-sulfone combinations depended on the behavior of the sulfones and not on that of the penicillins. This pH effect was studied in detail for TEM-1 enzyme. Inhibition of this enzyme by sulfones but not clavulanate varied grossly with pH, with 50% inhibitory concentrations of tazobactam and sulbactam up to 300-fold higher at pH 6.5 than at 8.0. By contrast, the hydrolytic activity of TEM-1 enzyme for substrates and its level of production varied threefold or less between pH 6.5 and pH 8.0. Increased inhibition at pH 8.0 reflected sequestration of the enzyme into a secondary noncovalent complex rather than increased irreversible inactivation. PMID:1329633

  19. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2<pH<3), the nature of the acid plays an important role. Citric and malic acid seem to be more aggressive to the glaze than acetic acid except for aluminum, barium, chromium, iron and magnesium. The migration kinetics between pH 2 and 3 in acetic acid of these exceptions also are more exponential while the other elements display a decreasing linear gradient. In ceramics used for this study (fired at 900 °C), a linear relationship between the migration and the temperature was observed. PMID:22265939

  20. pH dependent growth of poly( L-lysine)/poly( L-glutamic) acid multilayer films and their cell adhesion properties

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Arntz, Youri; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2004-10-01

    The short-term interaction of chondrosarcoma cells with (PGA/PLL) polyelectrolyte multilayers was investigated in a serum-containing medium for films built at different pHs and subsequently exposed to the culture medium. The buildup of the films and their stability was first investigated by means of optical waveguide lightmode spectroscopy, quartz crystal microbalance, streaming potential measurements and atomic force microscopy. While film growth is linear at all pHs, after a few layers have been deposited the growth is much larger for the films built at basic pH and even more pronounced for those built at acidic pH. However, these latter films remain stable in the culture medium only if they have been crosslinked prior to the ionic strength and pH jumps. The films built at acidic pH were found to swell in water by about 200% whereas those built at other pHs did not swell in a physiological buffer. For thin films (≈20 nm) built at pH = 7.4, the detachment forces were dependent on the outermost layer, the forces being significantly higher on PLL-ending films than on PGA-ending ones. In contrast, for the thick films built at pH = 4.4 and at pH = 10.4 (thickness of the order of few hundred of nanometers), the detachment forces were independent of the outermost layer of the film. The films built at pH = 10.4, which shrink in contact with salt containing solutions, were highly cell adhesive whereas those built at acidic pH were highly cell resistant. Protein adsorption and film roughness (as measured by AFM) could not explain these striking differences. The high adhesion observed on the film built at pH 10.4 may rather be related to the secondary structure of the film and to its relatively low swellability in water, whereas the cell resistance of the films built at pH 4.4 may be linked to their high swellability. Therefore, for the PGA/PLL films, the cell adhesion properties can be tuned depending on the deposition pH of the polyelectrolyte solutions. This study

  1. Oxygen, pHi and arrest of biosynthesis in brine shrimp embryos.

    PubMed

    Hand, S C

    1997-12-01

    Embryos of the brine shrimp Artemia franciscana are able to withstand bouts of environmental anoxia for several years by entering a quiescent state, during which time metabolism is greatly depressed. Within minutes of oxygen removal, intracellular pH (pHi) drops at least 1.0 unit. This acidification has been strongly implicated in the arrest of both catabolic and anabolic processes in the cytoplasm. A global arrest of cytoplasmic translation accompanies the transition into anoxia or into aerobic acidosis (artificial quiescence imposed by intracellular acidification with CO2 in the presence of oxygen). Similarly, protein synthesis in isolated mitochondria from these embryos is also reduced markedly in response to acidic pH (80% reduction) or anoxia (79% reduction). The constancy of mRNA levels during quiescence indicates that protein synthesis is likely to be controlled at the translational level. Mitochondrial matrix pH is 8.2 during protein synthesis assays performed at the extramitochondrial pH optimum of 7.5. When this proton gradient is abolished with the K+/H+ ionophore nigericin, the extramitochondrial pH optimum for protein synthesis displays an alkaline shift of approximately 0.7 pH unit. These data suggest the presence of proton-sensitive translational components within the mitochondrion. The oxygen dependency of mitochondrial protein synthesis is not explained simply by blockage of the electron transport chain or by the increased redox state. Whereas oxygen deprivation substantially depresses protein synthesis by 77% after 1 h, normoxic incubations with saturating concentrations of cyanide or antimycin A have only a modest effect (36% reduction, cyanide; 20%, antimycin A). This cyanide- and antimycin-insensitive, but hypoxia-sensitive, inhibitory signature for the arrest of protein synthesis suggests the presence of a molecular oxygen sensor within the mitochondrion. PMID:9429663

  2. Acidic Digestion in a Teleost: Postprandial and Circadian Pattern of Gastric pH, Pepsin Activity, and Pepsinogen and Proton Pump mRNAs Expression

    PubMed Central

    Yúfera, Manuel; Moyano, Francisco J.; Astola, Antonio; Pousão-Ferreira, Pedro; Martínez-Rodríguez, Gonzalo

    2012-01-01

    Two different modes for regulation of stomach acid secretion have been described in vertebrates. Some species exhibit a continuous acid secretion maintaining a low gastric pH during fasting. Others, as some teleosts, maintain a neutral gastric pH during fasting while the hydrochloric acid is released only after the ingestion of a meal. Those different patterns seem to be closely related to specific feeding habits. However, our recent observations suggest that this acidification pattern could be modified by changes in daily feeding frequency and time schedule. The aim of this study was to advance in understanding the regulation mechanisms of stomach digestion and pattern of acid secretion in teleost fish. We have examined the postprandial pattern of gastric pH, pepsin activity, and mRNA expression for pepsinogen and proton pump in white seabream juveniles maintained under a light/dark 12/12 hours cycle and receiving only one morning meal. The pepsin activity was analyzed according to the standard protocol buffering at pH 2 and using the actual pH measured in the stomach. The results show how the enzyme precursor is permanently available while the hydrochloric acid, which activates the zymogen fraction, is secreted just after the ingestion of food. Results also reveal that analytical protocol at pH 2 notably overestimates true pepsin activity in fish stomach. The expression of the mRNA encoding pepsinogen and proton pump exhibited almost parallel patterns, with notable increases during the darkness period and sharp decreases just before the morning meal. These results indicate that white seabream uses the resting hours for recovering the mRNA stock that will be quickly used during the feeding process. Our data clearly shows that both daily illumination pattern and feeding time are involved at different level in the regulation of the secretion of digestive juices. PMID:22448266

  3. Composition of Simulated Martian Brines and Implications for the Origin of Martian Salts

    NASA Technical Reports Server (NTRS)

    Bullock, M. A.; Moore, J. M.; Mellon, M. T.

    2004-01-01

    We report on laboratory experiments that have produced dilute brines under controlled conditions meant to simulate past and present Mars. We allowed an SNC-derived mineral mix to react with pure water under a simulated present-Mars atmosphere for seven months. We then subjected the same mineral mix to a similar aqueous environment for one year, but with a simulated Mars atmosphere that contained the added gases SO2, HCl and NO2. The addition of acidic gases was designed to mimic the effects of volcanic gases that may have been present in the martian atmosphere during periods of increased volcanic activity. The experiments were performed at one bar and at two different temperatures in order to simulate subsurface conditions where liquid water and rock are likely to interact on Mars. The dominant cations dissolved in the solutions we produced were Ca(2+), Mg(2+), Al(3+) and Na(+), while the major anions are dissolved C, F(-), SO4(2-) and Cl(-). Typical solution pH was 4.2 to 6.0 for experiments run with a Mars analog atmosphere, and 3.6-5.0 for experiments with acidic gases added. Abundance patterns of elements in the synthetic sulfate-chloride brines produced under acidic conditions were distinctly unlike those of terrestrial ocean water, terrestrial continental waters, and those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. In particular, the S/Cl ratio in these experiments was about 200, compared with an average value of approx. 5 in martian fines. In contrast, abundance patterns of elements in the brines produced under a present day Mars analog atmosphere were quite similar to those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. This suggests that salts present in the martian regolith may have formed over time as a result of the interaction of surface or subsurface liquid water with basalts in the presence of a martian atmosphere similar in composition to that of today, rather than

  4. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    NASA Astrophysics Data System (ADS)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  5. Brine Sampling and Evaluation Program, 1990 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M.; Belski, D.S.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

  6. Impact of brine acidification on hatchability, survival and reproduction of Artemia parthenogenetica and Artemia franciscana in salt ponds, Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Sui, Liying; Deng, Yuangao; Wang, Jing; Sorgeloos, Patrick; Van Stappen, Gilbert

    2014-01-01

    We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artemia franciscana from San Francisco Bay, and A. franciscana artificially produced in salt ponds in Vietnam. The latter was included as a potential inoculum for biological management of salt ponds. The hatching percentage of cysts after 24 h and the survival rate of the tested Artemia strains were significantly reduced when exposed to a culture medium at pH 5 for 18 d ( P<0.05). The tolerance of Artemia to 48 h acid exposure varied with developmental stage, increasing in the following order: juvenile, nauplii, pre-adult, with maximum tolerance in adults. All strains of Artemia tested could not reproduce at pH 5. At pH levels from pH 6-8, a higher pH generally resulted in a shorter brood interval and enhanced ovoviviparity. Hence, we suggest that brine acidification has a negative impact on Artemia populations in the Bohai Bay saltworks. Inoculation of Artemia with either local parthenogenetic Artemia or exotic A. franciscana should be feasible at pH 7-8.

  7. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH.

    PubMed

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten; Spieck, Eva

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  8. Relative Abundance of Nitrotoga spp. in a Biofilter of a Cold-Freshwater Aquaculture Plant Appears To Be Stimulated by Slightly Acidic pH

    PubMed Central

    Hüpeden, Jennifer; Wegen, Simone; Off, Sandra; Lücker, Sebastian; Bedarf, Yvonne; Daims, Holger; Kühn, Carsten

    2016-01-01

    The functioning of recirculation aquaculture systems (RAS) is essential to maintain water quality for fish health, and one crucial process here is nitrification. The investigated RAS was connected to a rainbow trout production system and operated at an average temperature of 13°C and pH 6.8. Community analyses of the nitrifying biofilm revealed a coexistence of Nitrospira and Nitrotoga, and it is hypothesized that a slightly acidic pH in combination with lower temperatures favors the growth of the latter. Modification of the standard cultivation approach toward lower pH values of 5.7 to 6.0 resulted in the successful enrichment (99% purity) of Nitrotoga sp. strain HW29, which had a 16S rRNA sequence similarity of 99.0% to Nitrotoga arctica. Reference cultures of Nitrospira defluvii and the novel Nitrotoga sp. HW29 were used to confirm differentiation of these nitrite oxidizers in distinct ecological niches. Nitrotoga sp. HW29 revealed pH and temperature optima of 6.8 and 22°C, respectively, whereas Nitrospira defluvii displayed the highest nitrite oxidation rate at pH 7.3 and 32°C. We report here the occurrence of Nitrotoga as one of the main nitrite-oxidizing bacteria in freshwater aquaculture systems and indicate that a slightly acidic pH, in addition to temperatures below 20°C, can be applied as a selective isolation criterion for this microorganism. PMID:26746710

  9. Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background

    NASA Astrophysics Data System (ADS)

    Baldock, Daniel; Nebe-von-Caron, Gerhard; Bongaerts, Roy; Nocker, Andreas

    2013-12-01

    Unspecific background caused by biotic or abiotic particles, cellular debris, or autofluorescence is a well-known interfering parameter when applying flow cytometry to the detection of microorganisms in combination with fluorescent dyes. We present here an attempt to suppress the background signal intensity and thus to improve the detection of microorganisms using the nucleic acid stain SYBR® Green I. It has been observed that the fluorescent signals from SYBR Green I are greatly reduced at acidic pH. When lowering the pH of pre-stained samples directly prior to flow cytometric analysis, we hypothesized that the signals from particles and cells with membrane damage might therefore be reduced. Signals from intact cells, temporarily maintaining a neutral cytosolic pH, should not be affected. We show here that this principle holds true for lowering background interference, whereas the signals of membrane-compromised dead cells are only affected weakly. Signals from intact live cells at low pH were mostly comparable to signals without acidification. Although this study was solely performed with SYBR® Green I, the principle of low pH flow cytometry (low pH-FCM) might hold promise when analyzing complex matrices with an abundance of non-cellular matter, especially when expanded to non-DNA binding dyes with a stronger pH dependence of fluorescence than SYBR Green I and a higher pKa value.

  10. Acidic extracellular pH of tumors induces octamer-binding transcription factor 4 expression in murine fibroblasts in vitro and in vivo

    PubMed Central

    Som, Avik; Bloch, Sharon; Ippolito, Joseph E.; Achilefu, Samuel

    2016-01-01

    Octamer-binding transcription factor 4 (OCT-4) is an important marker of cellular de-differentiation that can be induced by environmental stressors, such as acidity. Here we demonstrate that chronic acidic stress in solid tumors induced OCT-4 expression in fibroblasts and other stromal cells in four tumor models. The results have implications for how tumors utilize pH modulation to recruit associated stromal cells, induce partial reprogramming of tumor-associated stromal cells, and respond to therapy. PMID:27302093

  11. Fate of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during storage of fermented green table olives in brine.

    PubMed

    Argyri, Anthoula A; Lyra, Efstathia; Panagou, Efstathios Z; Tassou, Chrysoula C

    2013-10-01

    The survival of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes during the storage of fermented green table olives cv. Halkidiki in brine was studied in parallel with the evolution of lactic acid bacteria (LAB), yeasts and pH. The olives were previously fermented with a starter culture (a potential probiotic strain of Lactobacillus pentosus B281--starter process) or with the indigenous microbiota (control). After the end of fermentation, olives were placed in brine, inoculated with a cocktail of 5 strains of E. coli O157:H7, 5 strains of L. monocytogenes and 4 strains of S. Enteritidis, with a final concentration in the brine of ca. 7.0 log CFU/ml, and subsequently packaged in polyethylene pouches and stored at 20 °C. The population of E. coli O157:H7 reduced gradually and was detected in the brine until the 27th day of storage in both cases (i.e., starter and control process), and on olive fruits until the 19th and 16th days of storage in the starter and control process, respectively. S. Enteritidis population showed also a decrease and it was detected until the 21st day of storage in both brine and olive fruits in both cases. The population of L. monocytogenes declined during storage and it was detected until the 31st day of storage in both brine and olive fruits in both cases, showing a longer survival period in comparison to the other two studied pathogens. The presence of the potential probiotic starter did not affect the pathogen survival. The results demonstrated that even though the growth of the pathogenic strains was not supported, they may survive for a long period in a stressful environment of a fermented product with low pH value (4.2) and high salt concentration (6.0%). These results are a valuable contribution to risk assessment studies related to ready to eat foods in general. PMID:23764213

  12. In Silico Prediction of Drug Dissolution and Absorption with variation in Intestinal pH for BCS Class II Weak Acid Drugs: Ibuprofen and Ketoprofen§

    PubMed Central

    Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.

    2012-01-01

    The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122

  13. Selenium biotransformations in an engineered aquatic ecosystem for bioremediation of agricultural wastewater via brine shrimp production.

    PubMed

    Schmidt, Radomir; Tantoyotai, Prapakorn; Fakra, Sirine C; Marcus, Matthew A; Yang, Soo In; Pickering, Ingrid J; Bañuelos, Gary S; Hristova, Krassimira R; Freeman, John L

    2013-05-21

    An engineered aquatic ecosystem was specifically designed to bioremediate selenium (Se), occurring as oxidized inorganic selenate from hypersalinized agricultural drainage water while producing brine shrimp enriched in organic Se and omega-3 and omega-6 fatty acids for use in value added nutraceutical food supplements. Selenate was successfully bioremediated by microalgal metabolism into organic Se (seleno-amino acids) and partially removed via gaseous volatile Se formation. Furthermore, filter-feeding brine shrimp that accumulated this organic Se were removed by net harvest. Thriving in this engineered pond system, brine shrimp ( Artemia franciscana Kellogg) and brine fly (Ephydridae sp.) have major ecological relevance as important food sources for large populations of waterfowl, breeding, and migratory shore birds. This aquatic ecosystem was an ideal model for study because it mimics trophic interactions in a Se polluted wetland. Inorganic selenate in drainage water was metabolized differently in microalgae, bacteria, and diatoms where it was accumulated and reduced into various inorganic forms (selenite, selenide, or elemental Se) or partially incorporated into organic Se mainly as selenomethionine. Brine shrimp and brine fly larva then bioaccumulated Se from ingesting aquatic microorganisms and further metabolized Se predominately into organic Se forms. Importantly, adult brine flies, which hatched from aquatic larva, bioaccumulated the highest Se concentrations of all organisms tested. PMID:23621086

  14. Oil production enhancement through a standardized brine treatment. Final report

    SciTech Connect

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  15. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research.

  16. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes.

    PubMed

    Culcasi, Marcel; Thétiot-Laurent, Sophie; Atteia, Ariane; Pietri, Sylvia

    2015-01-01

    (31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate. PMID:25634273

  17. An evaluation of MES (2(N-Morpholino)ethanesulfonic acid) and Amberlite IRC-50 as pH buffers for nutrient solution studies.

    PubMed

    Bugbee, B G; Salisbury, F B

    1985-01-01

    All buffering agents used to stabilize pH in hydroponic research have disadvantages. Inorganic buffers are absorbed and may become phytotoxic. Solid carbonate salts temporarily mitigate decreasing pH but provide almost no protection against increasing pH, and they alter nutrient absorption. Exchange resins are more effective, but we find that they remove magnesium and manganese from solution. We have tested 2(N-Morpholino)ethanesulfonic acid (MES) as a buffering agent at concentrations of 1 and 10 mol m-3 (1 and 10 mM) with beans, corn, lettuce, tomatoes, and wheat. MES appears to be biologically inert and does not interact significantly with other solution ions. Relative growth rates among controls and MES treatments were nearly identical for each species during the trial period. The pH was stabilized by 1 mol m-3 MES. This buffer warrants further consideration in nutrient research. PMID:11539688

  18. Geochemistry of Aluminum in High Temperature Brines

    SciTech Connect

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  19. Transport and Retention of TiO2 Rutile Nanoparticles in Saturated Porous Media: Influence of Solution pH, Ionic Strength, and the Presence of Humic Acid

    EPA Science Inventory

    The influence of solution pH, ionic strength, and varying concentrations of the Suwannee River Humic Acid (SRHA) on the transport of titanium dioxide (TiO2, rutile) nanoparticle aggregates (nTiO2) in saturated porous media was investigated through systematically examining the tra...

  20. Effects of pH, dissolved oxygen, and ionic strength on the survival of Escherichia coli O157:H7 in organic acid solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Escherichia coli O157:H7 to survive in acidified vegetable products is of concern because of previously documented outbreaks associated with fruit juices. A study was conducted to determine the survival of E. coli O157:H7 in organic acids at pH values typical of acidified vegetable pr...

  1. The Effect of Level of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    Within high school chemistry the topic of acids, bases, and pH is particularly challenging because robust understanding of the topic depends heavily on the student possessing deep concepts of atoms, molecules, ions, and chemical reactions. Since knowledge is acquired and stored in a dynamic structure, it was investigated in this study how…

  2. Sensitivity of mycobacterium avium subsp paratuberculosis, escherichia coli and salmonella enterica serotype typhimurium to low pH, high organic acids and ensiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Mycobacterium avium subsp paratuberculosis (M. paratuberculosis), Salmonella enterica serotype Typhimurium (S. Typhimurium) and a commensal Escherichia coli (E. coli) isolate to persist under low pH and high organic acid conditions was determined. Die-off rates were calculated followi...

  3. Novel acidophilic β-galactosidase with high activity at extremely acidic pH region from Teratosphaeria acidotherma AIU BGA-1.

    PubMed

    Chiba, Serina; Yamada, Miwa; Isobe, Kimiyasu

    2015-09-01

    A β-galactosidase exhibiting maximal activity at pH 1.0 was purified from Teratosphaeria acidotherma AIU BGA-1. The enzyme had a molecular mass of 180 kDa and consisted of two heterosubunits of 120 kDa and 66 kDa. The N-terminal amino acid sequence of the large subunit was found to be SPNLQDIVTVDGESY. These physicochemical properties differed from those of other microbial β-galactosidases. At pH values of 1.5 and pH 4.5, the enzyme exhibited its highest activity at temperatures of 70°C and 80°C, respectively. Thus, the enzyme exhibited the lowest optimal pH and highest optimal temperature among the microbial β-galactosidases thus reported. The enzyme retained more than 80% of its original activity in the pH range from 2.0 to 8.0 by incubation at 50°C for 30 min. The enzyme hydrolyzed 4-nitrophenyl-β-D-fucopyranoside, 2-nitrophenyl-β-D-galactopyranoside, and 4-nitrophenyl-β-D-galacto-pyranoside at relative reaction rates of 100, 59, and 24, respectively, at pH 1.5, and its affinity for β-D-galactopyranosides was higher than that for β-D-fucopyranosides. The enzyme also efficiently hydrolyzed lactose in milk and whey from yoghurt at pH 1.5. PMID:25797715

  4. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport.

    PubMed

    Vylkova, Slavena; Lorenz, Michael C

    2014-03-01

    Candida albicans, the most important fungal pathogen of humans, has a unique interaction with macrophages in which phagocytosis induces a switch from the yeast to hyphal form, allowing it to escape by rupturing the immune cell. While a variety of factors induce this switch in vitro, including neutral pH, it is not clear what triggers morphogenesis within the macrophage where the acidic environment should inhibit this transition. In vitro, C. albicans grown in similar conditions in which amino acids are the primary carbon source generate large quantities of ammonia to raise the extracellular pH and induce the hyphal switch. We show here that C. albicans cells neutralize the macrophage phagosome and that neutral pH is a key inducer of germination in phagocytosed cells by using a mutant lacking STP2, a transcription factor that regulates the expression of multiple amino acid permeases, that is completely deficient in alkalinization in vitro. Phagocytosed stp2Δ mutant cells showed significant reduction in hypha formation and escaped from macrophages less readily compared to wild type cells; as a result stp2Δ mutant cells were killed at a higher rate and caused less damage to RAW264.7 macrophages. Stp2p-regulated import leads to alkalinization of the phagosome, since the majority of the wild type cells fail to co-localize with acidophilic dyes, whereas the stp2Δ mutant cells were located in acidic phagosomes. Furthermore, stp2Δ mutant cells were able to form hyphae and escape from neutral phagosomes, indicating that the survival defect in these cells was pH dependent. Finally, these defects are reflected in an attenuation of virulence in a mouse model of disseminated candidiasis. Altogether our results suggest that C. albicans utilizes amino acids to promote neutralization of the phagosomal pH, hyphal morphogenesis, and escape from macrophages. PMID:24626429

  5. Improved Water Flooding through Injection Brine Modification

    SciTech Connect

    Robertson, Eric Partridge; Thomas, Charles Phillip; Morrow, Norman

    2003-01-01

    Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of waterflooding, by far the most widely applied method of improved oil recovery. Laboratory waterflood tests show that injection of dilute brine can increase oil recovery. Numerous fields in the Powder River basin have been waterflooded using low salinity brine (about 500 ppm) from the Madison limestone or Fox Hills sandstone. Although many uncertainties arise in the interpretation and comparison of field production data, injection of low salinity brine appears to give higher recovery compared to brine of moderate salinity (about 7,000 ppm). Laboratory studies of the effect of brine composition on oil recovery cover a wide range of rock types and crude oils. Oil recovery increases using low salinity brine as the injection water ranged from a low of no notable increase to as much as 37.0% depending on the system being studied. Recovery increases using low salinity brine after establishing residual oil saturation (tertiary mode) ranged from no significant increase to 6.0%. Tests with two sets of reservoir cores and crude oil indicated slight improvement in recovery for low salinity brine. Crude oil type and rock type (particularly the presence and distribution of kaolinite) both play a dominant role in the effect that brine composition has on waterflood oil recovery.

  6. Influence of pH and diluent on the ion-pair solvent extraction of aromatic carboxylic acids using quaternary ammonium salts

    SciTech Connect

    Kawamura, K.; Takahashi, K.; Okuwaki, A.

    2006-07-01

    The influence of pH and diluent on the ion-pair solvent extraction of benzene polycarboxylic acids have been investigated for the separation of the coal oxidation products, which are formed by the treatment with alkaline solutions at high temperatures. Although the extent of the solvent extraction of benzoic acid (1BE) with a quaternary ammonium reagent (tri-n-octylmethylammonium chloride) into chloroform and benzene did not change at a very acidic and alkaline solutions, those of 1,2-benzenedicarboxylic acid (12BE) and trimellitic acid (124BE) somewhat decreased at very low pH and very high pH. The magnitudes of the equilibrium constants (K{sub ex}) of 1BE using a different diluent decreased in the order benzene {gt} carbontetrachloride {gt} 1,2-dichloroethane {gt} cyclohexane {gt} hexane {gt} chloroform {gt} 1-octanol and those of 12BE decreased in the order benzene {gt} cyclohexane {gt} carbontetrachloride {gt} hexane {gt} 1,2-dichloroethane {gt} chloroform. The inspection of the correlation between the values of K{sub ex} and several parameters of the diluent implies that the magnitude of K{sub ex} can be described by using the dielectric constant and the solubility parameter of diluent.

  7. 2′-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions

    PubMed Central

    Araki, Ryoichi; Kousaka, Kayoko; Namba, Kosuke; Murata, Yoshiko; Murata, Jun

    2015-01-01

    Poaceae plants release 2′-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values after treatment with 3–30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT-PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions. PMID:25393516

  8. Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus.

    PubMed

    Vatsyayan, Preety; Goswami, Pranab

    2011-02-01

    The stability (half-life, t(½)) of the large catalase (CAT) isolated from Aspergillus terreus was decreased under acidic conditions (maximum t(½) approximately 8.5 months at pH ≤ 6) versus alkaline conditions (t(½) approximately 15 months at pH 8-12). Acidic conditions induce the dissociation of haem from CAT, as revealed from a reduction in the Soret peak intensity at 405 nm and an increase in the peak current at Fe(3+)/Fe(2+) redox potentials. This increase in current is attributed to the facile electron transfer from the free haem generated on the electrode surface as a result of its disintegration from the insulating protein matrix. The haem isolated from CAT at acidic condition was reconstituted with apo-CAT at alkaline denaturing conditions to regenerate the CAT activity. PMID:20972700

  9. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH.

    PubMed

    Sànchez i Nogué, Violeta; Narayanan, Venkatachalam; Gorwa-Grauslund, Marie F

    2013-08-01

    The release of acetic acid due to deacetylation of the hemicellulose fraction during the treatment of lignocellulosic biomass contributes to the inhibitory character of the generated hydrolysates. In the present study, we identified a strain-independent adaptation protocol consisting of pre-cultivating the strain at pH 5.0 in the presence of at least 4 g L⁻¹ acetic acid that enabled aerobic growth and improved fermentation performance of Saccharomyces cerevisiae cells at low pH (3.7) and in the presence of inhibitory levels of acetic acid (6 g L⁻¹). During anaerobic cultivation with adapted cells of strain TMB3500, the specific ethanol production rate was increased, reducing the fermentation time to 48 %. PMID:23872959

  10. Effects of dietary conjugated linoleic acid on DNA adduct formation of PhIP and IQ after bolus administration to female F344 rats.

    PubMed

    Josyula, S; Schut, H A

    1998-01-01

    Meats cooked at high temperatures contain mutagenic heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). In female Fischer 344 rats, IQ is a multiorgan carcinogen, whereas PhIP induces mammary adenocarcinomas. For IQ and PhIP, N-hydroxylation, catalyzed by microsomal cytochrome P-450 1A1 and/or 1A2, and then esterification, especially O-acetylation, are the principal steps leading to DNA adduct formation. Conjugated linoleic acid (CLA) is a mixture of conjugated linoleic acid isomers found in various meat and dairy products. We have examined the effect of dietary CLA on DNA adduct formation by PhIP and IQ in female Fischer 344 rats. Four-week-old animals were maintained on AIN-76A diet without or with CLA (4% wt/wt) and treated with IQ or PhIP (50 mg/kg by gavage) after two weeks. Animals were killed (4/group) one, four, and eight days later. DNA isolated from mammary epithelial cells, liver, colon, and white blood cells was analyzed for carcinogen-DNA adducts by 32P-postlabeling assays. On Day 1, dietary CLA significantly inhibited adduct formation (82.0%) in mammary epithelial cells in IQ--but not in PhIP-treated rats. In the colon, dietary CLA significantly inhibited PhIP-DNA adduct formation (18.7%) on Day 8 but increased IQ-DNA adduct formation (30.5%) on Day 8. Dietary CLA had no effect on adduct levels in liver or white blood cells. Calf thymus DNA was incubated with N-hydroxy-PhIP or -IQ in the presence of acetyl-CoA. Enzymatic activation was catalyzed by liver or mammary cytosol. A two-week pretreatment with 2% (wt/wt) dietary CLA had no effect on O-acetyltransferase-catalyzed IQ- or PhIP-DNA adduct formation. It is concluded, under certain conditions, that dietary CLA can lower IQ- and PhIP-DNA adduct formation. Overall, however, the major mode of action of CLA is probably by a mechanism other than the inhibition of the N-hydroxylation and subsequent O-acetylation of PhIP or

  11. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control.

    PubMed

    Kwak, E-J; Lim, S-I

    2004-08-01

    The color intensities was determined of Maillard reaction products (MRPs) prepared by heating each of five sugars (maltose, fructose, glucose, arabinose, and xylose) with each of 12 amino acids (aspartic acid, glutamic acid, alanine, leucine, isoleucine, valine, proline, serine, cysteine, phenylalanine, arginine, and lysine). The remaining percentages of glucose and rate of change of color intensity due to the addition of a metal ion and NaCl were monitored for nine MRPs that had been formed between glucose and each of nine amino acids (aspartic acid, glutamic acid, alanine, valine, serine, cysteine, phenylalanine, arginine, and lysine). Model MRPs were prepared in a block heater at 100 degrees C for 1-12 h with the pH value controlled at 6.5. The resulting color intensity of each MRPs formed from the basic amino acids was greater due to the higher reactivity than those from the acidic amino acids. The remaining percentage of glucose in each MRPs from the basic amino acids was lower than those from the acidic amino acids. The MRPs from the nonpolar amino acids showed an intermediate color intensity and remaining percentages of glucose between those formed from the basic and acidic amino acids. Browning tended to be accelerated in the presence of metal ions, especially Fe2+ and Cu2+, although it was affected by the property of the amino acid and heating time as well as by the type of metal ion. On the other hand, browning was greatly inhibited by a high concentration of NaCl. PMID:15309575

  12. Surface-enhanced raman scattering detection of pH with silica-encapsulated 4-mercaptobenzoic acid-functionalized silver nanoparticles.

    PubMed

    Wang, Fenglin; Widejko, Ryan G; Yang, Zhiqiang; Nguyen, KhanhVan T; Chen, Hongyu; Fernando, Lawrence P; Christensen, Kenneth A; Anker, Jeffrey N

    2012-09-18

    Sensors based upon surface-enhanced Raman spectroscopy (SERS) are attractive because they have narrow, vibrationally specific spectral peaks that can be excited using red and near-infrared light which avoids photobleaching, penetrates tissue, and reduces autofluorescence. Several groups have fabricated pH nanosensors by functionalizing silver or gold nanoparticle surfaces with an acidic molecule and measuring the ratio of protonated to deprotonated Raman bands. However, a limitation of these sensors is that macromolecules in biological systems can adsorb onto the nanoparticle surface and interfere with measurements. To overcome this interference, we encapsulated pH SERS sensors in a 30 nm thick silica layer with small pores which prevented bovine serum albumin (BSA) molecules from interacting with the pH-indicating 4-mercaptobenzoic acid (4-MBA) on the silver surfaces but preserved the pH-sensitivity. Encapsulation also improved colloidal stability and sensor reliability. The noise level corresponded to less than 0.1 pH units from pH 3 to 6. The silica-encapsulated functionalized silver nanoparticles (Ag-MBA@SiO(2)) were taken up by J774A.1 macrophage cells and measured a decrease in local pH during endocytosis. This strategy could be extended for detecting other small molecules in situ. PMID:22881392

  13. Acidic pH changes receptor binding specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress) proteins mediate sulfatide recognition in gastric colonization.

    PubMed Central

    Huesca, M; Borgia, S; Hoffman, P; Lingwood, C A

    1996-01-01

    The gastric pathogen helicobacter pylori is one of a number of bacteria which bind specifically to gangliotetraosylceramide, gangliotriaosylceramide, and phosphatidylethanolamine in vitro at neutral pH. Since this organism encounters an acid pH during initial infection of the stomach, we have monitored the effect of pH on receptor binding specificity and found induction of specific binding to sulfoglycolipids (sulfatide) following brief treatment at low pH. We have previously shown that heat shock proteins (hsps) bind to sulfatide, and the suspicion that this was a stress-induced response is supported by the fact that a similar change in H. pylori binding specificity was observed if the organisms were briefly exposed to heat shock treatment. Following the stress stimulus, the change in glycolipid binding specificity was prevented by the inclusion of inhibitors of protein synthesis or by incubation with anti-hsp antibodies. Expression of hsps in the surface extract and surface reactivity with anti-hsp antibodies correlated with the change in glycolipid binding specificity. Despite the presence of high levels of H. pylori cell surface urease activity which may neutralize the microenvironmental pH, the acid-induced change in binding specificity was enhanced in the presence of urea. These studies suggest that cell surface hsps mediate sulfatide recognition by this organism under stress conditions. A binary receptor model is proposed for gastric colonization by H. pylori. PMID:8698490

  14. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus

    NASA Astrophysics Data System (ADS)

    Vet, Robert; Artz, Richard S.; Carou, Silvina

    2014-08-01

    Investigating and assessing the chemical composition of precipitation and atmospheric deposition is essential to understanding how atmospheric pollutants contribute to contemporary environmental concerns including ecosystem acidification and eutrophication, loss of biodiversity, air pollution and global climate change. Evidence of the link between atmospheric deposition and these environmental issues is well established. The state of scientific understanding of this link is that present levels of atmospheric deposition of sulfur and nitrogen adversely affect terrestrial and aquatic ecosystems, putting forest sustainability and aquatic biodiversity at risk. Nitrogen and phosphorus loadings are linked to impacts on the diversity of terrestrial and aquatic vegetation through biological cycling, and atmospheric deposition plays a major role in the emission-transport-conversion-loss cycle of chemicals in the atmosphere as well as the formation of particulate matter and ozone in the troposphere. Evidence also shows that atmospheric constituents are changing the earth's climate through direct and indirect atmospheric processes. This Special Issue, comprising a single article titled "A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus", presents a recent comprehensive review of precipitation chemistry and atmospheric deposition at global and regional scales. The information in the Special Issue, including all supporting data sets and maps, is anticipated to be of great value not only to the atmospheric deposition community but also to other science communities including those that study ecosystem impacts, human health effects, nutrient processing, climate change, global and hemispheric modeling and biogeochemical cycling. Understanding and quantifying pollutant loss from the atmosphere is, and will remain, an important component of each of these scientific fields as they

  15. Factors determining growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2.7)

    NASA Astrophysics Data System (ADS)

    Bissinger, Vera

    2003-04-01

    In this thesis, I investigated the factors influencing the growth and vertical distribution of planktonic algae in extremely acidic mining lakes (pH 2-3). In the focal study site, Lake 111 (pH 2.7; Lusatia, Germany), the chrysophyte, Ochromonas sp., dominates in the upper water strata and the chlorophyte, Chlamydomonas sp., in the deeper strata, forming a pronounced deep chlorophyll maximum (DCM). Inorganic carbon (IC) limitation influenced the phototrophic growth of Chlamydomonas sp. in the upper water strata. Conversely, in deeper strata, light limited its phototrophic growth. When compared with published data for algae from neutral lakes, Chlamydomonas sp. from Lake 111 exhibited a lower maximum growth rate, an enhanced compensation point and higher dark respiration rates, suggesting higher metabolic costs due to the extreme physico-chemical conditions. The photosynthetic performance of Chlamydomonas sp. decreased in high-light-adapted cells when IC limited. In addition, the minimal phosphorus (P) cell quota was suggestive of a higher P requirement under IC limitation. Subsequently, it was shown that Chlamydomonas sp. was a mixotroph, able to enhance its growth rate by taking up dissolved organic carbon (DOC) via osmotrophy. Therefore, it could survive in deeper water strata where DOC concentrations were higher and light limited. However, neither IC limitation, P availability nor in situ DOC concentrations (bottom-up control) could fully explain the vertical distribution of Chlamydomonas sp. in Lake 111. Conversely, when a novel approach was adopted, the grazing influence of the phagotrophic phototroph, Ochromonas sp., was found to exert top-down control on its prey (Chlamydomonas sp.) reducing prey abundance in the upper water strata. This, coupled with the fact that Chlamydomonas sp. uses DOC for growth, leads to a pronounced accumulation of Chlamydomonas sp. cells at depth; an apparent DCM. Therefore, grazing appears to be the main factor influencing the

  16. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage. PMID:26070329

  17. Calculation of the acid-base equilibrium constants at the alumina/electrolyte interface from the ph dependence of the adsorption of singly charged ions (Na+, Cl-)

    NASA Astrophysics Data System (ADS)

    Gololobova, E. G.; Gorichev, I. G.; Lainer, Yu. A.; Skvortsova, I. V.

    2011-05-01

    A procedure was proposed for the calculation of the acid-base equilibrium constants at an alumina/electrolyte interface from experimental data on the adsorption of singly charged ions (Na+, Cl-) at various pH values. The calculated constants (p K {1/0}= 4.1, p K {2/0}= 11.9, p K {3/0}= 8.3, and p K {4/0}= 7.7) are shown to agree with the values obtained from an experimental pH dependence of the electrokinetic potential and the results of potentiometric titration of Al2O3 suspensions.

  18. Purification and cloning of a thermostable xylose (glucose) isomerase with an acidic pH optimum from Thermoanaerobacterium strain JW/SL-YS 489.

    PubMed Central

    Liu, S Y; Wiegel, J; Gherardini, F C

    1996-01-01

    An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed

  19. Effectiveness of the bran media and bacteria inoculum treatments in increasing pH and reducing sulfur-total of acid sulfate soils

    NASA Astrophysics Data System (ADS)

    Taufieq, Nur Anny Suryaningsih; Rahim, Sahibin Abdul; Jamil, Habibah

    2013-11-01

    This study was carried out to determine the effectiveness ofsulfate reducing bacteria (SRB) in using bran as a source of food and energy, and to see the effectiveness of the bran media and bacteria inoculums treatments for pH and sulfur-total of acid sulfate reduction insoils. This study used two factors in group random designs with four treatments for bacteria inoculum of B1 (1%), B2 (5%), B3 (10%), B4 (15%) and two treatments for organic media (bran) of D1 (1:1) and D2 (1:19). Based on three replications, the combination resulted in a total of 24 treatments. Soil pH was measured using the Duddridge and Wainright method and determination of sulfate content in soil was conducted by the spectrophotometry method. The data obtained was analyzed for significance by Analysis of Variance and the Least Significant Difference Test. The pH of the initial acid sulfate soils ranged from 3 to 4 and the soil sulfur-total ranged from 1.4% to 10%. After mixing sulfate reducing bacteria with the bran mediaand incubated for four days, the pH of the acid sulfate soils increased from 3.67 to 4.20, while the soil sulfur-total contents had been reduced by 2.85% to 0.35%. This experiment has proven that an acid sulfate soil with low pH is a good growth medium for the sulfate reducing bacteria. The bestincubation period to achieve an effective bioremediation resultthrough sulfate percentage reduction by sulfate reducing bacteria was 10 days, while the optimum bran media dose was 1:19, and the bacteria inoculums dose was 10%.

  20. Effect of digestion temperature and pH on treatment efficiency and evolution of volatile fatty acids during thermophilic aerobic digestion of model high strength agricultural waste.

    PubMed

    Ugwuanyi, J Obeta; Harvey, L M; McNeil, B

    2005-04-01

    Thermophilic aerobic digestion (TAD) of a model agricultural waste, potato peel slurry, at soluble chemical oxygen demand (COD) load equivalent to approximately 8.0 gl(-1), was carried out under batch conditions at 0.5 vvm aeration rate. Digestions were carried out at temperatures of 45, 50, 55, 60 and 65 degrees C (or left unregulated) without pH control to study the effect of digestion temperatures on TAD. The effects of digestion pH on the process were studied at pH 6.0, 7.0, 8.0, 9.0 and 9.5 (and in unregulated control) all at 55 degrees C. Except for digestion at 65 degrees C, which was inoculated extraneously using culture of Bacillus strearothermophilus all reactions were carried out using the populations indigenous to the waste. During digestion at different temperatures, the removal of soluble COD increased with temperature to reach a peak at 60 degrees C before declining slightly, removal of soluble solid (SS) followed similar pattern and reached peak at 65 degrees C being the highest temperature studied, while the degradation of TSS and TS (TSS + TS) decreased with an increase in temperature. Digestion at pH 7.0 was more efficient than at other pH values. Acetate was the predominant volatile fatty acid (VFA) in all the reactions and accounted for up to 90% of the total. Digestion at 60 degrees C led to the greatest accumulation of acetate, and this coincided with the period of highest oxygen uptake, and rapid consumption of soluble carbohydrate. Iso-valerate was also produced at all pH values. Digestion at 55 degrees C and also at pH 7.0 led to rapid and efficient processes with least accumulation of VFA and should be of interest in full-scale processes whenever it is practicable to regulate the digestion pH and temperature. The result of digestion at unregulated pH indicates that gradual adaptation may be used to achieve efficient treatment at elevated pH values. This would be of interest in full-scale processes where it is not practicable to tightly

  1. Optimization of operation conditions for extracting lithium ions from calcium chloride-type oil field brine

    NASA Astrophysics Data System (ADS)

    Yang, Hong-jun; Li, Qing-hai; Li, Bing; Guo, Feng-qin; Meng, Qing-fen; Li, Wu

    2012-04-01

    Al(OH)3 was prepared to extract lithium ions from calcium chloride-type oil field brine. The influences of four factors, namely temperature, Al3+/Li+ molar ratio, OH-/Al3+ molar ratio, and contact time between Al(OH)3 and the brine, on the yield of lithium ions were investigated. It is found that their optimal values are 35°C, 4.5, 2.6, and 6 h, respectively. In the course of the experiment, the apparent pH value was observed. The results reveal that the apparent pH value has no remarkable influence on the yield of lithium ions. Meanwhile, the effects of the concentrations of calcium ions and magnesium ions in the brine on lithium recovery were studied. The results indicate that calcium ions have minor negative influence on the yield of lithium ions under optimal conditions, and magnesium ions slightly influence the yield of lithium ions.

  2. Modelling the unexpected effect of acetic and lactic acid in combination with pH and aw on the growth/no growth interface of Zygosaccharomyces bailii.

    PubMed

    Vermeulen, A; Dang, T D T; Geeraerd, A H; Bernaerts, K; Debevere, J; Van Impe, J; Devlieghere, F

    2008-05-10

    Microbial spoilage of shelf-stable acidified sauces is predominantly caused by lactic acid bacteria and yeasts. A specific spoilage yeast in these products is Zygosaccharomyces bailii, as this fructophilic, osmotolerant, and weak acid resistant yeast is difficult to control. A growth/no growth model was developed describing the influence of (i) pH in a range from pH 3.0 to pH 5.0 (5 levels), (ii) acetic acid in a range from 0 to 3.5% (w/v), and (iii) lactic acid in a range from 0 to 3.0% (w/v). aw was fixed at a level of 0.95 which is representative for acidified sauces with high sugar content. Modified Sabouraud medium was inoculated at +/- 10(4) CFU/ml, incubated at 30 degrees C and growth was assessed by optical density measurements. All combinations of environmental conditions were tested in at least twelve replicates, yielding precise values for the probability of growth. Results showed that replacing acetic acid by lactic acid, which has a milder taste, may imply some risks on food spoilage because, under some conditions, stimulation of growth by lactic acid was observed. This stimulation had also consequences on the model development: (i) only ordinary logistic regression models were able to describe this phenomenon due to their flexible behaviour, (ii) it was necessary to split up the data set into two subsets to have the best description of the obtained data. Two different ordinary logistic regression models were fitted on these data sets taking either the total acid concentration as one of the explanatory variables or differentiating between the undissociated and dissociated acid concentrations. The obtained models were compared with the CIMSCEE code [CIMSCEE, 1992. Code for the production of microbiologically safe and stable emulsified and non-emulsified sauces containing acetic acid. Comité des Industries des Mayonnaise et Sauces Condimentaires, de la Communauté Economique Européenne, Brussels, Belgium], a formula which is nowadays often used by the

  3. Thermal resistance parameters of acid-adapted and unadapted Escherichia coli O157:H7 in apple-carrot juice blends: effect of organic acids and pH.

    PubMed

    Usaga, Jessie; Worobo, Randy W; Padilla-Zakour, Olga I

    2014-04-01

    Numerous outbreaks involving fresh juices contaminated with Escherichia coli O157:H7 have occurred in the United States and around the world, raising concern for the safety of these products. Until now, only a few studies regarding the thermal tolerance of this pathogen in acidic juices over a wide range of pH values have been published. Therefore, the effect of varying the pH with different organic acids on the thermal inactivation of non-acid-adapted and acid-adapted E. coli O157:H7 (strain C7927) was determined. The decimal reduction times (D-values) and the change in temperature required for the thermal destruction curve to traverse 1 log cycle (z-values) were calculated for non-acid-adapted E. coli in an apple-carrot juice blend (80:20) adjusted to three pH values (3.3, 3.5, and 3.7) by the addition of lactic, malic, or acetic acid and at a pH of 4.5 adjusted with NaOH. Thermal parameters were also determined for acid-adapted cells in juices acidified with malic acid. The effect of the soluble solids content on the thermal tolerance was studied in samples with a pH of 3.7 at 9.4 to 11.5 °Brix. The D-values were determined at 54, 56, and 58 °C, and trials were conducted in triplicate. Non-acid-adapted E. coli exhibited the highest thermal tolerance at pH 4.5 (D-value at 54 °C [D54 °C] of 20 ± 4 min and z-value of 6.2 °C), although on average, the D-values increased significantly (P < 0.01) due to acid adaptation. In acidified juices, the highest tolerance was observed in acid-adapted E. coli in samples adjusted to pH 3.7 with malic acid (D54 °C of 9 ± 2 min and z-value of 5.4 °C) and the lowest in unadapted E. coli at pH 3.3 acidified with acetic acid (D58 °C of 0.03 ± 0.01 min and z-value of 10.4 °C). For juices acidified to the same endpoint pH with different acids, E. coli was found to be more tolerant in samples acidified with malic acid, followed by lactic and acetic acids. Increasing the soluble solids content from 9.4 to 11.5 °Brix showed no

  4. The accelerated testing of cements in brines

    SciTech Connect

    Krumhansl, J.L.

    1993-12-31

    Cementitious materials may be employed in settings where they face prolonged exposure to Mg-rich brines. This study evaluated the possibility of using high temperatures to accelerate brine-cement reaction rates. Class-H cement coupons were tested in Mg-K-Na-C1- SO{sub 4} brines to 100{degrees}C. MgC1{sub 2}-NaC1 solutions were also employed in a test sequence that extended to 200{degrees}C. It was found that accelerated testing could be used successfully to evaluate the compatability of cementitious materials with such brines.

  5. Kinetics and mechanism of formation of chlorate ion from the hypochlorous acid/chlorite ion reaction at pH 6-10

    SciTech Connect

    Gordon, G.; Tachiyashiki, Satoshi )

    1991-03-01

    The reaction between free chlorine (HOCl/OCl{sup {minus}}) and chlorite ion (ClO{sub 2}{sup {minus}}) has been studied in the pH 6.4-10.0 region. The reaction proceeds through the Cl{sub 2}O{sub 2} intermediate followed by a direct reaction of the intermediate with hypochlorous acid to form chlorate ion. Time-concentration profiles were measured for each chlorine species, resulting in both total chlorine and redox balance. Negligibly small amounts of chlorine dioxide are formed above pH 7. Indirect evidence suggests that, in this pH region, the formation of any chlorine dioxide is primarily due to the presence of concentration gradients or because of the adventitious presence of catalytic metal ion impurities. Details of the overall reaction mechanism for the formation of chlorate ion are presented.

  6. Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures.

    PubMed

    Cromwick, A M; Birrer, G A; Gross, R A

    1996-04-20

    Bacillus licheniformis ATCC 9945A was grown on Medium E in batch fermentations in which the pH was maintained at 5.5., 6.5, 7.4, and 8.25. The effects of pH on cell growth, carbon source utilization, and gamma-polyglutamic acid (gamma-PGA) production, molecular weight, and polymer stereochemistry were determined. The gamma-PGA yield was highest (15 g/L, 96 h growth time) at pH 6.5. The increase in gamma-PGA formation at pH 6.5 corresponded with a relatively high specific production rate at high gamma-PGA concentration (0.09 h(-1), approximately 15 g/L gamma-PGA). In contrast, the specific gamma-PGA production rates at fermentor pH values of 5.5 and 7.4 decreased significantly for gamma-PGA fermentor yields > approximately 5 g/L. Interestingly, alteration of the medium pH had little to no significant effects on the product quality as measured by stereochemical composition and molecular weight. While glutamate and glycerol utilization were similar as a function of pH, citrate consumption increased at pH 6.5, indicating that the formation of gamma-PGA from citrate at pH 6.5 was of increased importance. The effect of aeration was evaluated by increasing the agitation speed (250 to 800 rpm) and aeration rate (0.5 to 2.0 L/min) at pH 6.5, the pH of maximal gamma-PGA production. Increased aeration resulted in doubling of the cell dry weights (2 to 4 g/L), increasing gamma-PGA yields (6.3 to 23 g/L by 48 h) and increasing in the maximum gamma-PGA-specific production rate (0.09 to 0.11 h(-1)). Other effects of increased agitation included a rapid depletion of glutamate and citrate (by 50 h) and a decrease in product molecular weight. Despite the increase in agitation and aeration, oxygen limitation of the culture was not avoided, because the partial pressure decreased to <1.0% by 29 h. PMID:18626940

  7. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. PMID:27521936

  8. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater using high-efficiency industrial sorbents: Effect of pH, contact time and humic acid.

    PubMed

    Genç-Fuhrman, Hülya; Mikkelsen, Peter S; Ledin, Anna

    2016-10-01

    The effect of contact time, solution pH, and the presence of humic acid (HA) on the combined removal of As, Cd, Cr, Cu, Ni and Zn is investigated in batch tests using alumina, granulated activated carbon (GAC), and bauxsol coated sand (BCS) as sorbents. It is found that the equilibrium time for Cd, Cu, Ni and Zn is about 4h, while no clear equilibrium is observed for As and Cr. It is also found that increasing the pH until pH~8 enhanced Cd, Cu, Ni and Zn removal, but increasing the pH above this point had no major effect. In the cases of As and Cr, higher pH values (i.e. >7) decreased their removal. The presence of both 20 and 100mg/L HA suppressed the heavy metal removal except for Cr, and the suppression was higher at the higher HA concentration. Geochemical simulations suggest that this is due to the formation of dissolved HA-metal complexes preventing effective metal sorption. In the case of Cr, the presence of HA increased the removal when using alumina or BCS, while hindering the removal when using GAC. The findings show that the pH-value of the stormwater to be treated must be in the range of 6-7 in order to achieve removal of the full spectrum of metals. The results also show that natural organic matter may severely influence the removal efficiency, such that, for most metals the removal was reduced to the half, while for Cr it was increased to the double for alumina and BCS. Consequently, a properly working filter set up may not work properly anymore when receiving high loads of natural organic acids during the pollen season in spring or during defoliation in autumn and early winter, and during mixing of runoff with snowmelt having a low pH. PMID:27213673

  9. Kinetics of silica deposition from simulated geothermal brines

    SciTech Connect

    Bohlmann, E.G.; Mesmer, R.E.; Berlinski, P.

    1980-03-01

    Supersaturated brines were passed through columns packed with several forms of silica (crystalline ..cap alpha.. quartz, polycrystalline ..cap alpha.. quartz, and porous Vycor). Also, silica deposition on ThO/sub 2/ microspheres and titanium powder was studied under controlled conditions of supersaturation, pH, temperature, and salinity. The residence time was varied by adjustments of flow rate and column length. The silica contents of the input and effluent solutions were determined colorimetrically by a molybdate method which does not include polymers without special pretreatment. Essentially identical deposition behavior was observed once the substrate was thoroughly coated with amorphous silica and the BET surface area of the coated particles was taken into account. The reaction rate is not diffusion limited in the columns. The silica deposition is a function of the monomeric Si(OH)/sub 4/ concentration in the brine. The deposition on all surfaces examined was spontaneously nucleated. The dependence on the supersaturation concentration, hydroxide ion concentration, surface area, temperature and salinity were examined. Fluoride was shown to have no effect at pH 5.94 and low salinity. The empirical rate law which describes the data in 1 m NaCl in the pH range 5-7 and temperatures from 60 to 120/sup 0/C is given.

  10. AtNHX5 and AtNHX6 Control Cellular K+ and pH Homeostasis in Arabidopsis: Three Conserved Acidic Residues Are Essential for K+ Transport

    PubMed Central

    Wang, Liguang; Wu, Xuexia; Liu, Yafen; Qiu, Quan-Sheng

    2015-01-01

    AtNHX5 and AtNHX6, the endosomal Na+,K+/H+ antiporters in Arabidopsis, play an important role in plant growth and development. However, their function in K+ and pH homeostasis remains unclear. In this report, we characterized the function of AtNHX5 and AtNHX6 in K+ and H+ homeostasis in Arabidopsis. Using a yeast expression system, we found that AtNHX5 and AtNHX6 recovered tolerance to high K+ or salt. We further found that AtNHX5 and AtNHX6 functioned at high K+ at acidic pH while AtCHXs at low K+ under alkaline conditions. In addition, we showed that the nhx5 nhx6 double mutant contained less K+ and was sensitive to low K+ treatment. Overexpression of AtNHX5 or AtNHX6 gene in nhx5 nhx6 recovered root growth to the wild-type level. Three conserved acidic residues, D164, E188, and D193 in AtNHX5 and D165, E189, and D194 in AtNHX6, were essential for K+ homeostasis and plant growth. nhx5 nhx6 had a reduced vacuolar and cellular pH as measured with the fluorescent pH indicator BCECF or semimicroelectrode. We further show that AtNHX5 and AtNHX6 are localized to Golgi and TGN. Taken together, AtNHX5 and AtNHX6 play an important role in K+ and pH homeostasis in Arabidopsis. Three conserved acidic residues are essential for K+ transport. PMID:26650539

  11. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions

    PubMed Central

    Delaunay, Anne; Gasull, Xavier; Salinas, Miguel; Noël, Jacques; Friend, Valérie; Lingueglia, Eric; Deval, Emmanuel

    2012-01-01

    In rodent sensory neurons, acid-sensing ion channel 3 (ASIC3) has recently emerged as a particularly important sensor of nonadaptive pain associated with tissue acidosis. However, little is known about the human ASIC3 channel, which includes three splice variants differing in their C-terminal domain (hASIC3a, hASIC3b, and hASIC3c). hASIC3a transcripts represent the main mRNAs expressed in both peripheral and central neuronal tissues (dorsal root ganglia [DRG], spinal cord, and brain), where a small proportion of hASIC3c transcripts is also detected. We show that hASIC3 channels (hASIC3a, hASIC3b, or hASIC3c) are able to directly sense extracellular pH changes not only during acidification (up to pH 5.0), but also during alkalization (up to pH 8.0), an original and inducible property yet unknown. When the external pH decreases, hASIC3 display a transient acid mode with brief activation that is relevant to the classical ASIC currents, as previously described. On the other hand, an external pH increase activates a sustained alkaline mode leading to a constitutive activity at resting pH. Both modes are inhibited by the APETx2 toxin, an ASIC3-type channel inhibitor. The alkaline sensitivity of hASIC3 is an intrinsic property of the channel, which is supported by the extracellular loop and involves two arginines (R68 and R83) only present in the human clone. hASIC3 is thus able to sense the extracellular pH in both directions and therefore to dynamically adapt its activity between pH 5.0 and 8.0, a property likely to participate in the fine tuning of neuronal membrane potential and to neuron sensitization in various pH environments. PMID:22829666

  12. The effect of acidic pH and presence of metals as parameters in establishing a sulfidogenic process in anaerobic reactor.

    PubMed

    Vieira, Bárbara F; Couto, Pâmela T; Sancinetti, Giselle P; Klein, Bernhard; van Zyl, Dirk; Rodriguez, Renata P

    2016-08-23

    The successful use of anaerobic reactors for bioremediation of acid mine drainage has been shown in systems with neutral pH. However, the choice of an efficient and suitable process for such wastewater must consider the capability of operating at acidic pH and in the presence of metals. This work studies the performance of an anaerobic batch reactor, under conditions of varying initial pH for its efficiencies in sulfate removal and metal precipitation from synthetic acid mine drainage. The chemical oxygen demand/sulfate (COD/SO4(2-)) ratio used was 1.00, with ethanol chosen as the only energy and carbon source. The initial pH of the synthetic drainage was progressively set from 7.0 to 4.0 to make it as close as possible to that of real acid mine drainage. Metals were also added starting with iron, zinc, and finally copper. The effectiveness of sulfate and COD removal from the synthetic acid mine drainage increased as the initial pH was reduced. The sulfate removal increased from 38.5 ± 3.7% to 52.2 ± 3%, while the removal of organic matter started at 91.7 ± 2.4% and ended at 99 ± 1%. These results indicate that the sulfate reducing bacteria (SRB) community adapted to lower pH values. The metal removal observed was 88 ± 7% for iron, 98.0 ± 0.5% for zinc and 99 ± 1% for copper. At this stage, an increase in the sulfate removal was observed, which reaches up to 82.2 ± 5.8%. The kinetic parameters for sulfate removal were 0.22 ± 0.04 h(-1) with Fe, 0.26 ± 0.04 h(-1) with Fe and Zn and 0.44 ± 0.04 h(-1) with Fe, Zn, and Cu. PMID:27222283

  13. REFUSE OF FERMENTATION BRINES IN THE CUCUMBER PICKLING INDUSTRY

    EPA Science Inventory

    The project evaluated on a commercial scale the technological and economic feasibility of recycling spent cucumber fermentation brine. Two brine treatment procedures, heat treatment and chemical treatment, were used. The results showed that brine recycling was practical on a comm...

  14. Shaker Table Experiments with Rare Earth Elements Sorption from Geothermal Brine

    SciTech Connect

    Gary Garland

    2015-07-21

    This dataset described shaker table experiments ran with sieved -50 +100 mesh media #1 in brine #1 that have 2ppm each of the 7 REE metals at different starting pH's of 3.5, 4.5, and 5.5. The experimental conditions are 2g media to 150mL of REE solution, at 70C.

  15. A study of hydrocarbons associated with brines from DOE geopressured wells

    SciTech Connect

    Keeley, D.F.

    1993-01-01

    Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

  16. A study of hydrocarbons associated with brines from DOE geopressured wells. Final report

    SciTech Connect

    Keeley, D.F.

    1993-07-01

    Accomplishments are summarized on the following tasks: distribution coefficients and solubilities, DOE design well sampling, analysis of well samples, review of theoretical models of geopressured reservoir hydrocarbons, monitor for aliphatic hydrocarbons, development of a ph meter probe, DOE design well scrubber analysis, removal and disposition of gas scrubber equipment at Pleasant Bayou Well, and disposition of archived brines.

  17. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH.

    PubMed

    Lipczynska-Kochany, Ewa; Kochany, Jan

    2008-10-01

    This paper describes results of treatability studies of the effect of humic substances (humate, HS, at the concentration 500-5000 mg l-1) on the Fenton (Fe2+/H2O2) treatment of industrial wastewater at pH 3.5 and 7.0. Without humate, the removal of all contaminants was significantly higher at pH 3.5 than at pH 7. At pH 7.0, the removal of all compounds in the presence of HS (3000 mg l-1) was comparable to that at pH 3.5 without HS. At pH 3.5, humate had no effect on the removal of arsenic, thiocyanate and cyanide, but the removal of all organic compounds (phenol, 2,4-dimethylphenol, benzene, toluene, o-xylene, m- & p-xylene and dichloromethane) was significantly inhibited. Mechanisms of the processes are discussed. It is suggested that, in the presence of HS, acidification of the treated wastewater may not only be unnecessary but it can even hinder the degradation of organic pollutants. PMID:18657846

  18. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine

    NASA Technical Reports Server (NTRS)

    Bhupathiraju, V. K.; McInerney, M. J.; Woese, C. R.; Tanner, R. S.

    1999-01-01

    Three strains, designated VS-751T, VS-511 and VS-732, of a strictly anaerobic, moderately halophilic, Gram-negative, rod-shaped bacterium were isolated from a highly saline (15-20%) brine from an oil reservoir in central Oklahoma, USA. The optimal concentration of NaCl for growth of these three strains was 2 M (12%), and the strains also grew in the presence of an additional 1 M MgCl2. The strains were mesophilic and grew at a pH range of 6-8. Carbohydrates used by all three strains included glucose, fructose, arabinose, galactose, maltose, mannose, cellobiose, sucrose and inulin. Glucose fermentation products included ethanol, acetate, H2 and CO2, with formate produced by two of the three strains. Differences were noted among strains in the optimal temperature and pH for growth, the maximum and minimum NaCl concentration that supported growth, substrate utilization and cellular fatty acid composition. Despite the phenotypic differences among the three strains, analysis of the 16S rRNA gene sequences and DNA-DNA hybridizations showed that these three strains were members of the same genospecies which belonged to the genus Haloanaerobium. The phenotypic and genotypic characteristics of strains VS-751T, VS-511 and VS-732 are different from those of previously described species of Haloanaerobium. It is proposed that strain VS-751T (ATCC 700103T) be established as the type strain of a new species, Haloanaerobium kushneri.

  19. Coal ash basin effects (particulates, metals, acidic pH) upon aquatic biota: an eight-year evaluation. [Gambusia affinis; Plathemis lydia; Libellula spp

    SciTech Connect

    Cerry, D.S.; Guthrie, R.K.; Davis, E.M.; Harvey, R.S.

    1984-08-01

    Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swanmp drainage system over an eight-year period. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions, and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic pH excursions after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long-chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the US Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquito-fish populations recovered within one year afterward.

  20. Effect of Ethephon, Indole Butyric Acid, and Treatment Solution pH on Rooting and on Ethylene Levels within Mung Bean Cuttings.

    PubMed

    Mudge, K W; Swanson, B T

    1978-02-01

    Light-grown mung bean (Phaseolus aureus Roxb.) cuttings were treated with buffered and nonbuffered solutions of Ethephon, indole butyric acid (IBA), and the combination of both. Ethephon treatment resulted in increased tissue ethylene levels with increasing solution pH, but had no effect on rooting. IBA treatment had no effect on tissue ethylene levels, but strongly promoted rooting. Combinations of Ethephon and IBA had no effect on rooting of mung bean cuttings beyond that obtained by IBA alone. PMID:16660274

  1. Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulations

    SciTech Connect

    Ho, K.T.; Burgess, R.M. ); Mitchell, K. . Biology Dept.); Zappala, M. )

    1995-02-01

    Little information is available concerning the effect of salinity adjustment on effluent storage and toxicity identification evaluation (TIE) performance. These factors are important for accurate assessments of potential toxicity to marine organisms. The objective of this study was to determine (a) the effect of salinity adjustment using hypersaline brine on the toxicity of effluents stored up to 40 d, and (b) to determine the effect of salinity adjustment on TIE manipulations. Changes in effluent toxicity over time were examined by using a municipal and an industrial effluent. A toxicity time series was performed for 16 d for the industrial effluent and 40 d for the municipal effluent. Toxicity was measured with modified 48-h acute Mysidopsis bahia and Menidia beryllina tests. Results indicate that, compared to day 0 test results, effluent stored with brine had fewer significant changes in toxicity than did effluent stored without brine. To determine the effects of brine addition on TIE manipulations, the authors conducted a series of manipulations in which one aliquot of an effluent had brine added prior to the TIE manipulations and the other aliquot had brine added after the TIE manipulation. The manipulations conducted were EDTA addition, sodium thiosulfate addition, C[sub 18] extraction, aeration, filtration, and graduated pH manipulations. Toxicity was measured with the modified 48-h acute mysid test. Addition of brine had no effect on the outcome of TIE manipulations. They have concluded that it is operationally easier to add brine as soon as possible after sampling and that effluent tests should be conducted as soon as practical.

  2. Microbiological profiles, pH, and titratable acidity of chorizo and salchichón (two Spanish dry fermented sausages) manufactured with ostrich, deer, or pork meat.

    PubMed

    Capita, Rosa; Llorente-Marigómez, Sandra; Prieto, Miguel; Alonso-Calleja, Carlos

    2006-05-01

    Microbial counts, pH, and titratable acidity were determined in 102 Spanish dry fermented sausages (chorizo and salchichón) made with ostrich, deer, or pork meat. Average microbial counts (log CFU per gram) varied from 5.46 +/- 0.24 to 8.25 +/- 0.80 (total viable counts), from 4.79 +/- 0.36 to 7.99 +/- 0.20 (psychrotrophs), from 0.00 +/- 0.00 to 0.99 +/- 1.10 (undetectable values were assumed to be zero) (Enterobacteriaceae), from 0.00 +/- 0.00 to 4.27 +/- 1.47 (enterococci), from 5.15 +/- 1.15 to 8.46 +/- 0.49 (lactic acid bacteria), from 3.08 +/- 0.44 to 6.59 +/- 1.76 (Micrococcaceae), from 2.27 +/- 1.53 to 5.11 +/- 1.81 (molds and yeasts), from 0.00 +/- 0.00 to 2.25 +/- 0.81 (pseudomonads), and from 0.00 +/- 0.00 to 2.78 +/- 0.46 (Brochothrix thermosphacta). Average pH and titratable acidity varied from 5.07 +/- 0.25 to 5.63 +/- 0.51 (pH units) and from 0.30 +/- 0.01 to 0.86 +/- 0.19 (% lactic acid). Both type of sausage (P < 0.05) and species of meat (P < 0.001) influenced microbial counts. Salchich6n samples showed lower average values than chorizo samples for most microbial groups (significant for Enterobacteriaceae, lactic acid bacteria, and B. thermosphacta) and titratable acidity. Sausages made from pork showed the highest microbial loads for total viable counts, psychrotrophs, Enterobacteriaceae, enterococci, lactic acid bacteria, and yeasts and molds. Higher counts were observed only for pseudomonads in ostrich sausages. B. thermosphacta levels were similar for all species of meat. The highest average pH value was observed in sausages made from ostrich meat, and the lowest titratable acidity level was found in pork sausages. PMID:16715825

  3. Forces of interactions between bare and polymer-coated iron and silica: effect of pH, ionic strength, and humic acids.

    PubMed

    Pensini, Erica; Sleep, Brent E; Yip, Christopher M; O'Carroll, Denis

    2012-12-18

    The interactions between a silica substrate and iron particles were investigated using atomic force microscopy-based force spectroscopy (AFM). The micrometer- and nanosized iron particles employed were either bare or coated with carboxymethyl cellulose (CMC), a polymer utilized to stabilize iron particle suspensions. The effect of water chemistry on the forces of interaction was probed by varying ionic strength (with 100 mM NaCl and 100 mM CaCl₂) or pH (4, 5.5, and 8) or by introducing 10 mg/L of humic acids (HA). When particles were uncoated, the forces upon approach between silica and iron were attractive at pH 4 and 5.5 and in 100 mM CaCl₂ at pH 8, but they were negligible in 100 mM NaCl buffered to pH 8 and repulsive in water buffered to pH 8 and in HA solutions. HA produced electrosteric repulsion between iron particles and silica, likely due to its sorption to iron particles. HA sorption to silica was excluded on the basis of experiments conducted with a quartz-crystal microbalance with dissipation monitoring. Repulsion with CMC-coated iron was attributed to electrosteric forces, which were damped at high ionic strength. An extended DLVO model and a modified version of Ohshima's theory were successfully utilized to model AFM data. PMID:23163600

  4. The pH sensor of the plant K+-uptake channel KAT1 is built from a sensory cloud rather than from single key amino acids.

    PubMed

    González, Wendy; Riedelsberger, Janin; Morales-Navarro, Samuel E; Caballero, Julio; Alzate-Morales, Jans H; González-Nilo, Fernando D; Dreyer, Ingo

    2012-02-15

    The uptake of potassium ions (K+) accompanied by an acidification of the apoplasm is a prerequisite for stomatal opening. The acidification (approximately 2-2.5 pH units) is perceived by voltage-gated inward potassium channels (K(in)) that then can open their pores with lower energy cost. The sensory units for extracellular pH in stomatal K(in) channels are proposed to be histidines exposed to the apoplasm. However, in the Arabidopsis thaliana stomatal K(in) channel KAT1, mutations in the unique histidine exposed to the solvent (His267) do not affect the pH dependency. We demonstrate in the present study that His267 of the KAT1 channel cannot sense pH changes since the neighbouring residue Phe266 shifts its pKa to undetectable values through a cation-π interaction. Instead, we show that Glu240 placed in the extracellular loop between transmembrane segments S5 and S6 is involved in the extracellular acid activation mechanism. Based on structural models we propose that this region may serve as a molecular link between the pH- and the voltage-sensor. Like Glu240, several other titratable residues could contribute to the pH-sensor of KAT1, interact with each other and even connect such residues far away from the voltage-sensor with the gating machinery of the channel. PMID:22070190

  5. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. PMID:27032508

  6. Lithium recovery from salt lake brine by H2TiO3.

    PubMed

    Chitrakar, Ramesh; Makita, Yoji; Ooi, Kenta; Sonoda, Akinari

    2014-06-21

    The details of the ion exchange properties of layered H2TiO3, derived from the layered Li2TiO3 precursor upon treatment with HCl solution, with lithium ions in the salt lake brine (collected from Salar de Uyuni, Bolivia) are reported. The lithium adsorption rate is slow, requiring 1 d to attain equilibrium at room temperature. The adsorption of lithium ions by H2TiO3 follows the Langmuir model with an adsorptive capacity of 32.6 mg g(-1) (4.7 mmol g(-1)) at pH 6.5 from the brine containing NaHCO3 (NaHCO3 added to control the pH). The total amount of sodium, potassium, magnesium and calcium adsorbed from the brine was <0.30 mmol g(-1). The H2TiO3 was found capable of efficiently adsorbing lithium ions from the brine containing competitive cations such as sodium, potassium, magnesium and calcium in extremely large excess. The results indicate that the selectivity order Li(+) ≫ Na(+), K(+), Mg(2+), Ca(2+) originates from a size effect. The H2TiO3 can be regenerated and reused for lithium exchange in the brine with an exchange capacity very similar to the original H2TiO3. PMID:24801244

  7. Preservation of glutamic acid-iron chelate into montmorillonite to efficiently degrade Reactive Blue 19 in a Fenton system under sunlight irradiation at neutral pH

    NASA Astrophysics Data System (ADS)

    Huang, Zhujian; Wu, Pingxiao; Gong, Beini; Yang, Shanshan; Li, Hailing; Zhu, Ziao; Cui, Lihua

    2016-05-01

    To further enhance the visible light responsive property and the chemical stability of Fe/clay mineral catalysts, glutamic acid-iron chelate intercalated montmorillonite (G-Fe-Mt) was developed. The physiochemical properties of G-Fe-Mt were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), etc. The results showed that glutamic acid-iron chelates were successfully intercalated into the gallery of montmorillonite and the intercalated glutamic acid-iron chelate molecules were well preserved. The product G-Fe-Mt displayed excellent catalytic performance in heterogeneous photo-Fenton reaction under sunlight irradiation at acidic and neutral pH values. The chelation and the visible light responsiveness of glutamic acid produce a synergistic effect leading to greatly enhanced sunlight-Fenton reaction catalyzed by the heterogeneous G-Fe-Mt under neutral pH. G-Fe-Mt is a promising catalyst for advanced oxidation processes.

  8. Development of a pH sensor based on a nanostructured filter adding pH-sensitive fluorescent dye for detecting acetic acid in photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Asaka, Takashi; Itayama, Tomohiro; Nagasaki, Hideaki; Iwami, Kentaro; Yamamoto, Chizuko; Hara, Yukiko; Masuda, Atsushi; Umeda, Norihiro

    2015-08-01

    Acetic acid formed via the hydrolysis of ethylene vinyl acetate (EVA) as an encapsulant in photovoltaic (PV) modules causes a decrease in the conversion efficiency of such modules by grid corrosion. Here, a nondestructive and simple optical method for evaluating the condition of PV modules is proposed. This method uses a dual-wavelength pH-sensitive fluorescent dye to detect acetic acid in PV modules using a change in pH. The change in pH induced by the formation of acetic acid is detected by the change in the ratio of the fluorescent intensities of two peaks of the dye. A pH-sensitive fluorescent dye showed sensitivity for small amounts of acetic acid such as that produced from EVA. Furthermore, a membrane filter dyed with a pH-sensitive fluorescent dye was confirmed to detect acetic acid in aged EVA after a damp-heat test (85 °C, 85%) for 5000 h in PV modules.

  9. Gum arabic and Fe²⁺ synergistically improve the heat and acid stability of norbixin at pH 3.0-5.0.

    PubMed

    Guan, Yongguang; Zhong, Qixin

    2014-12-31

    Thermal and acid stabilities of norbixin are challenges for its application as a food colorant. In this work, gum arabic and Fe(2+) were studied for the possibility to improve the thermal and acid stabilities of norbixin. Norbixin was dissolved at 0.004% w/v in deionized water with and without 0.2% w/v gum arabic and/or 0.15 mM ferrous chloride, adjusted to pH 3.0-5.0, and heated at 90 or 126 °C for 30 min. Before heating, norbixin precipitated at pH 3.0-4.0, which was prevented by gum arabic. The thermal stability of norbixin was improved by the combination of gum arabic and Fe(2+). Fluorescence analyses indicated the complex formation between norbixin and gum arabic with and without Fe(2+). Particle size and atomic force microscopy results suggested Fe(2+) and gum arabic synergistically prevented the aggregation of norbixin at acidic pH and during heating. It was hypothesized that the core of gum arabic-norbixin complexes was strengthened by Fe(2+) to enable the synergy. PMID:25479179

  10. Structure formation in sugar containing pectin gels - influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin.

    PubMed

    Kastner, H; Kern, K; Wilde, R; Berthold, A; Einhorn-Stoll, U; Drusch, S

    2014-02-01

    The aim of the study was the application of a recently published method, using structuring parameters calculated from dG'/dt, for the characterisation of the pectin sugar acid gelation process. The influence of cooling rate and pH on structure formation of HM pectin gels containing 65 wt.% sucrose were investigated. The results show that the structure formation process as well as the properties of the final gels strongly depended on both parameters. With increasing cooling rates from 0.5 to 1.0 K/min the initial structuring temperature slightly decreased and the maximum structuring velocity increased. The lower the cooling rates, the firmer and more elastic were the final gels. With increasing acid content (decreasing pH from 2.5-2.0) the initial structuring temperatures were nearly constant. The final gel properties varied visibly but not systematically. Gels with the lowest and highest pH were less elastic and weaker compared to those with medium acid concentrations. PMID:24099540

  11. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. PMID:25592465

  12. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    PubMed

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  13. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release

    PubMed Central

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  14. Sodium chloride induces an NhaA/NhaR-independent acid sensitivity at neutral external pH in Escherichia coli.

    PubMed Central

    Rowbury, R J; Goodson, M; Humphrey, T J

    1994-01-01

    Escherichia coli previously grown in low-salt broth, pH 7.0, produced organisms which were markedly more acid sensitive when subsequently cultured in the same broth with 200 mM or more salt (NaCl) added. Induction of acid sensitivity occurred rapidly at both 37 and 30 degrees C, with a substantial effect within 15 min. Sensitization was partially inhibited by chloramphenicol and tetracycline and may depend on both protein synthesis-dependent and -independent physiological changes in the NaCl-induced organisms; sensitization did not result from osmotic shocking on transfer to challenge medium. Induction of acid sensitivity was affected by neither the sodium ion pore inhibitor amiloride nor the DNA synthesis inhibitor nalidixic acid; rifampin had a small effect, similar to that of chloramphenicol. Chlorides of other monovalent cations, especially Li+ and NH4+, also produced sensitization to acid, although CsCl was ineffective but did not interfere with sensitization by NaCl. Other sodium salts were also active as sensitizers, as were chlorides of divalent cations, but although sucrose (but not glycerol) was a good inducer, the results were not fully in accord with triggering of induction solely by the NaCl-associated increase in osmotic pressure. Sensitization was not prevented by deletion of the nhaA, nhaR, or nhaB gene. Acid sensitivity of NaCl-induced cells was slightly reduced after 90 min of growth at 37 degrees C in low-salt broth but was completely lost after 240 min. For NaCl-induced cells, acid killing in challenge media was not inhibited by amiloride. The NaCl-induced sensitization is distinct from the phenomenon of acid sensitivity induction in E. coli at alkaline external pH. PMID:8017942

  15. Biomass production from inland brines

    SciTech Connect

    Reach, C.D. Jr.

    1985-01-01

    The feasibility of utilizing inland saline waters to produce biomass through the application of marine aquaculture was investigated. From available data, the diatom Phaeodactylum tricornutum and the crustacea Artemia salina were selected as the experimental marine organisms. The proposed diatom served to establish primary productivity and concurrently provide a food source for the herbivorus crustacea. The objective of the first phase research was to investigate the ability of P. tricornutum and A. salina to survive in the inland saline environment. Clarified activated sludge and anaerobic digester effluents were evaluated as nutrient sources for the diatom cultures. Experimental results indicated that diatom and crustacea growth in the inland brine was equivalent to control cultures utilizing seawater. Wastewater effluents were successful as nutrient sources for the diatom cultures. Bioassay experiments conducted with petroleum related brines yielded mixed results respect to the survival and growth of the P. tricornutum and A. salina organisms. A second series of experiments involved cholornaphthalene, chlorophenanthene, and chlorophenanthrene, and chloroanthracene as the experimental hydrocarbons. Results of the diatom studies show chloroanthracene to induce toxic effects at a concentration of 500 ug/L. Artemia studies showed no acutely toxic effects relative to the test hydrocarbons at 50 and 100 ug/L.

  16. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters

    NASA Astrophysics Data System (ADS)

    Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C. R.; Marwick, T. R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A. V.

    2015-01-01

    Inland waters have been recognized as a significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Currently, direct measurements of water pCO2 remain scarce in freshwaters, and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14 200 μmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were >10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were >100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, which increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. No empirical relationship could be derived from our data set in order to correct calculated pCO2 for this bias. Owing to the widespread distribution of acidic, organic-rich freshwaters, we conclude that regional and global estimates of CO2 outgassing from freshwaters based on pH and TA data only are most likely overestimated, although the magnitude of the overestimation needs further quantitative analysis. Direct measurements of pCO2 are recommended in inland waters in general

  17. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.

    PubMed

    Loosli, Frédéric; Le Coustumer, Philippe; Stoll, Serge

    2013-10-15

    The behavior of manufactured TiO2 nanoparticles is studied in a systematic way in presence of alginate and Suwannee River humic acids at variable concentrations. TiO2 nanoparticles aggregation, disaggregation and stabilization are investigated using dynamic light scattering and electrophoretic experiments allowing the measurement of z-average hydrodynamic diameters and zeta potential values. Stability of the TiO2 nanoparticles is discussed by considering three pH-dependent electrostatic scenarios. In the first scenario, when pH is below the TiO2 nanoparticle point of zero charge, nanoparticles exhibit a positively charged surface whereas alginate and Suwannee River humic acids are negatively charged. Fast adsorption at the TiO2 nanoparticles occurs, promotes surface charge neutralization and aggregation. By increasing further alginate and Suwannee River humic acids concentrations charge inversion and stabilization of TiO2 nanoparticles are obtained. In the second electrostatic scenario, at the surface charge neutralization pH, TiO2 nanoparticles are rapidly forming aggregates. Adsorption of alginate and Suwannee River humic acids on aggregates leads to their partial fragmentation. In the third electrostatic scenario, when nanoparticles, alginate and Suwannee River humic acids are negatively charged, only a small amount of Suwannee River humic acids is adsorbed on TiO2 nanoparticles surface. It is found that the fate and behavior of individual and aggregated TiO2 nanoparticles in presence of environmental compounds are mainly driven by the complex interplay between electrostatic attractive and repulsive interactions, steric and van der Waals interactions, as well as concentration ratio. Results also suggest that environmental aquatic concentration ranges of humic acids and biopolymers largely modify the stability of aggregated or dispersed TiO2 nanoparticles. PMID:23969399

  18. Influence of brine concentration and temperature on composition, microstructure, and yield of feta cheese.

    PubMed

    McMahon, D J; Motawee, M M; McManus, W R

    2009-09-01

    The protein matrix of cheese undergoes changes immediately following cheesemaking in response to salting and cooling. Normally, such changes are limited by the amount of water entrapped in the cheese at the time of block formation but for brined cheeses such as feta cheese brine acts as a reservoir of additional water. Our objective was to determine the extent to which the protein matrix of cheese expands or contracts as a function of salt concentration and temperature, and whether such changes are reversible. Blocks of feta cheese made with overnight fermentation at 20 and 31 degrees C yielded cheese of pH 4.92 and pH 4.83 with 50.8 and 48.9 g/100 g of moisture, respectively. These cheeses were then cut into 100-g pieces and placed in plastic bags containing 100 g of whey brine solutions of 6.5, 8.0, and 9.5% salt, and stored at 3, 6, 10, and 22 degrees C for 10 d. After brining, cheese and whey were reweighed, whey volume measured, and cheese salt, moisture, and pH determined. A second set of cheeses were similarly placed in brine (n = 9) and stored for 10 d at 3 degrees C, followed by 10 d at 22 degrees C, followed by 10 d at 3 degrees C, or the complementary treatments starting at 22 degrees C. Cheese weight and whey volume (n = 3) were measured at 10, 20, and 30 d of brining. Cheese structure was examined using laser scanning confocal microscopy. Brining temperature had the greatest influence on cheese composition (except for salt content), cheese weight, and cheese volume. Salt-in-moisture content of the cheeses approached expected levels based on brine concentration and ratio of brine to cheese (i.e., 4.6, 5.7 and 6.7%). Brining at 3 degrees C increased cheese moisture, especially for cheese with an initial pH of 4.92, producing cheese with moisture up to 58 g/100 g. Cheese weight increased after brining at 3, 6, or 10 degrees C. Cold storage also prevented further fermentation and the pH remained constant, whereas at 22 degrees C the pH dropped as low as pH

  19. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils

    PubMed Central

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  20. Effects of a Bacteria-Based Probiotic on Ruminal pH, Volatile Fatty Acids and Bacterial Flora of Holstein Calves

    PubMed Central

    QADIS, Abdul Qadir; GOYA, Satoru; IKUTA, Kentaro; YATSU, Minoru; KIMURA, Atsushi; NAKANISHI, Shusuke; SATO, Shigeru

    2014-01-01

    ABSTRACT Twelve ruminally cannulated Holstein calves (age, 12 ± 3 weeks) were used to identify the effect of a probiotic comprised of Lactobacillus plantarum, Enterococcus faecium and Clostridium butyricum on ruminal components. The calves were adapted to a diet containing a 50% high-concentrate (standard diet) for 1 week, and then, the probiotic was given once daily for 5 days (day 1–5) at 1.5 or 3.0 g/100 kg body weight to groups of four calves each. Four additional calves fed the standard diet without probiotic served as the corresponding control. Ruminal pH was measured continuously throughout the 15-day experimental period. Ruminal fluid was collected via a fistula at a defined time predose and on days 7 and 14 to assess volatile fatty acid (VFA), lactic acid and ammonia-nitrogen concentrations, as well as the bacterial community. The probiotic at either dose improved the reduced 24-hr mean ruminal pH in calves. The circadian patterns of the 1 hr mean ruminal pH were identical between the probiotic doses. In both probiotic groups, ruminal lactic acid concentrations remained significantly lower than that of the control. Probiotic did not affect ruminal VFA concentrations. L. plantarum and C. butyricum were not detected in the rumen of calves given the high-dose probiotic, whereas Enterococcus spp. remained unchanged. These results suggest that calves given a probiotic had stable ruminal pH levels (6.6–6.8), presumably due to the effects of the probiotic on stabilizing rumen-predominant bacteria, which consume greater lactate in the rumen. PMID:24614603

  1. Effect of Soil pH Increase by Biochar on NO, N2O and N2 Production during Denitrification in Acid Soils.

    PubMed

    Obia, Alfred; Cornelissen, Gerard; Mulder, Jan; Dörsch, Peter

    2015-01-01

    Biochar (BC) application to soil suppresses emission of nitrous- (N2O) and nitric oxide (NO), but the mechanisms are unclear. One of the most prominent features of BC is its alkalizing effect in soils, which may affect denitrification and its product stoichiometry directly or indirectly. We conducted laboratory experiments with anoxic slurries of acid Acrisols from Indonesia and Zambia and two contrasting BCs produced locally from rice husk and cacao shell. Dose-dependent responses of denitrification and gaseous products (NO, N2O and N2) were assessed by high-resolution gas kinetics and related to the alkalizing effect of the BCs. To delineate the pH effect from other BC effects, we removed part of the alkalinity by leaching the BCs with water and acid prior to incubation. Uncharred cacao shell and sodium hydroxide (NaOH) were also included in the study. The untreated BCs suppressed N2O and NO and increased N2 production during denitrification, irrespective of the effect on denitrification rate. The extent of N2O and NO suppression was dose-dependent and increased with the alkalizing effect of the two BC types, which was strongest for cacao shell BC. Acid leaching of BC, which decreased its alkalizing effect, reduced or eliminated the ability of BC to suppress N2O and NO net production. Just like untreated BCs, NaOH reduced net production of N2O and NO while increasing that of N2. This confirms the importance of altered soil pH for denitrification product stoichiometry. Addition of uncharred cacao shell stimulated denitrification strongly due to availability of labile carbon but only minor effects on the product stoichiometry of denitrification were found, in accordance with its modest effect on soil pH. Our study indicates that stimulation of denitrification was mainly due to increases in labile carbon whereas change in product stoichiometry was mainly due to a change in soil pH. PMID:26397367

  2. Propagated fixed-bed mixed-acid fermentation: effect of volatile solid loading rate and agitation at near-neutral pH.

    PubMed

    Golub, Kristina W; Golub, Stacey R; Meysing, Daniel M; Holtzapple, Mark T

    2012-11-01

    To increase conversion and product concentration, mixed-acid fermentation can use a countercurrent strategy where solids and liquids pass in opposite directions through a series of fermentors. To limit the requirement for moving solids, this study employed a propagated fixed-bed fermentation, where solids were stationary and only liquid was transferred. To evaluate the role of agitation, continuous mixing was compared with periodic mixing. The periodically mixed fermentation had similar conversion, but lower yield and selectivity. Increasing volatile solid loading rate from 1.5 to 5.1g non-acid volatile solids/(L(liq)·d) and increasing liquid retention time decreased yield, conversion, selectivity, but increased product concentrations. Compared to a previous study at high pH (~9), this study achieved higher performance at near neutral pH (~6.5) and optimal C-N ratios. Compared to countercurrent fermentation, propagated fixed-bed fermentations have similar selectivities and produce similar proportions of acetic acid, but have lower yields, conversion, productivities, and acid concentrations. PMID:22995159

  3. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    PubMed

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. PMID:27021959

  4. Aluminium Uptake and Translocation in Al Hyperaccumulator Rumex obtusifolius Is Affected by Low-Molecular-Weight Organic Acids Content and Soil pH

    PubMed Central

    Vondráčková, Stanislava; Száková, Jiřina; Drábek, Ondřej; Tejnecký, Václav; Hejcman, Michal; Müllerová, Vladimíra; Tlustoš, Pavel

    2015-01-01

    Background and Aims High Al resistance of Rumex obtusifolius together with its ability to accumulate Al has never been studied in weakly acidic conditions (pH > 5.8) and is not sufficiently described in real soil conditions. The potential elucidation of the role of organic acids in plant can explain the Al tolerance mechanism. Methods We established a pot experiment with R. obtusifolius planted in slightly acidic and alkaline soils. For the manipulation of Al availability, both soils were untreated and treated by lime and superphosphate. We determined mobile Al concentrations in soils and concentrations of Al and organic acids in organs. Results Al availability correlated positively to the extraction of organic acids (citric acid < oxalic acid) in soils. Monovalent Al cations were the most abundant mobile Al forms with positive charge in soils. Liming and superphosphate application were ambiguous measures for changing Al mobility in soils. Elevated transport of total Al from belowground organs into leaves was recorded in both lime-treated soils and in superphosphate-treated alkaline soil as a result of sufficient amount of Ca available from soil solution as well as from superphosphate that can probably modify distribution of total Al in R. obtusifolius as a representative of “oxalate plants.” The highest concentrations of Al and organic acids were recorded in the leaves, followed by the stem and belowground organ infusions. Conclusions In alkaline soil, R. obtusifolius is an Al-hyperaccumulator with the highest concentrations of oxalate in leaves, of malate in stems, and of citrate in belowground organs. These organic acids form strong complexes with Al that can play a key role in internal Al tolerance but the used methods did not allow us to distinguish the proportion of total Al-organic complexes to the free organic acids. PMID:25880431

  5. State-of-the-Art pH Electrode Quality Control for Measurements of Acidic, Low Ionic Strength Waters.

    ERIC Educational Resources Information Center

    Stapanian, Martin A.; Metcalf, Richard C.

    1990-01-01

    Described is the derivation of the relationship between the pH measurement error and the resulting percentage error in hydrogen ion concentration including the use of variable activity coefficients. The relative influence of the ionic strength of the solution on the percentage error is shown. (CW)

  6. Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions▿

    PubMed Central

    Yuan, Ze-Chun; Liu, Pu; Saenkham, Panatda; Kerr, Kathleen; Nester, Eugene W.

    2008-01-01

    Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer. PMID:17993523

  7. Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH.

    PubMed Central

    Garidel, P; Johann, C; Blume, A

    1997-01-01

    The miscibilities of phosphatidic acids (PAs) and phosphatidylcholines (PCs) with different chain lengths (n = 14, 16) at pH 4, pH 7, and pH 12 were examined by differential scanning calorimetry. Simulation of heat capacity curves was performed using a new approach that incorporates changes of cooperativity of the transition in addition to nonideal mixing in the gel and the liquid-crystalline phase as a function of composition. From the simulations of the heat capacity curves, first estimates for the nonideality parameters for nonideal mixing as a function of composition were obtained, and phase diagrams were constructed using temperatures for onset and end of melting, which were corrected for the broadening effect caused by a decrease in cooperativity. In all cases the composition dependence of the nonideality parameters indicated nonsymmetrical mixing behavior. The phase diagrams were therefore further refined by simulations of the coexistence curves using a four-parameter approximation to account for nonideal and nonsymmetrical mixing in the gel and the liquid-crystalline phase. The mixing behavior was studied at three different pH values to investigate how changes in headgroup charge of the PA influences the miscibility. The experiments showed that at pH 7, where the PA component is negatively charged, the nonideality parameters are in most cases negative, indicating that electrostatic effects favor a mixing of the two components. Partial protonation of the PA component at pH 4 leads to strong changes in miscibility; the nonideality parameters for the liquid-crystalline phase are now in most cases positive, indicating clustering of like molecules. The phase diagram for 1,2-dimyristoyl-sn-glycero-3-phosphatidic acid:1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine mixtures at pH 4 indicates that a fluid-fluid immiscibility is likely. The results show that a decrease in ionization of PAs can induce large changes in mixing behavior. This occurs because of a

  8. Interaction of Pb2+, PbMe22+ and PbPh22+ with 3-(phenyl)-2-sulfanylpropenoic acid: a coordinative and toxicological approach.

    PubMed

    Félix Camiña, M; Casas, José S; Victoria Castaño, M; Couce, María D; Gato, Angeles; Herbello-Hermelo, Paloma; Sánchez, Agustín; Sordo, José; Dolores Torres, M

    2010-05-01

    We investigated the reaction of Pb(2+), PbMe(2)(2+) and PbPh(2)(2+) with 3-(phenyl)-2-sulfanylpropenoic acid (H(2)pspa) to give the complexes [Pb(pspa)], [PbMe(2)(pspa)], [PbPh(2)(pspa)], [HQ](2)[Pb(pspa)(2)] and [HQ[(2)[PbPh(2)(pspa)(2)] (HQ=diisopropylammonium), which were characterized by IR and NMR ((1)H, (13)C and (207)Pb) spectroscopy and by fast atom bombardment (FAB) spectrometry. The structures of [PbMe(2)(pspa)], [PbPh(2)(pspa)], [PbPh(2)(pspa)(dmso)].dmso and [HQ[(2)[PbPh(2)(pspa)(2)] are interesting examples of unexplored Pb coordination kernels and supramolecular association. Pig renal proximal tubule LLC-PK1 culture cells were used to determine in vitro the effect of the pretreatment with H(2)pspa (alone or combined with vitamin B(6)) and [HQ](2)[Zn(pspa)(2)] on the cytotoxicity of PbMe(2)(2+) and PbPh(2)(2+) by comparing the results with those of meso-2,3-dimercaptosuccinic acid (dmsa). The results show that the cell viability was scarcely affected by these agents. The ability of these reagents to decorporate lead was investigated in vivo by analysing the lead levels in the liver, kidney, brain and blood. In the case of the dimethyl derivative, and under certain protocols, undesirable effects such as an increase in brain and liver lead levels were detected. These increases were not detected when the diphenyl derivative was assayed but in this case a positive effect was not identified either. The blood lead levels also increased in the case of the dimethyl derivative and the activity of delta-ALAD was significantly recovered upon treatment with vitamin B(6) or H(2)pspa; neither the blood lead levels nor the delta-ALAD activity was modified in the case of the diphenyl derivative. PMID:20211491

  9. Transport and deposition of Suwannee River Humic Acid/Natural Organic Matter formed silver nanoparticles on silica matrices: the influence of solution pH and ionic strength.

    PubMed

    Akaighe, Nelson; Depner, Sean W; Banerjee, Sarbajit; Sohn, Mary

    2013-07-01

    The transport and deposition of silver nanoparticles (AgNPs) formed from Ag(+) reduction by Suwannee River Humic Acid (SRHA) and Suwannee River Natural Organic Matter (SRNOM) utilizing a silica matrix is reported. The morphology and stability of the AgNPs was analyzed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. The percentage conversion of the initial [Ag(+)] to [AgNPs] was determined from a combination of atomic absorption (AAS) and UV-Vis spectroscopy, and centrifugation techniques. The results indicate higher AgNP transport and consequently low deposition in the porous media at basic pH conditions and low ionic strength. However, at low acidic pH and high ionic strength, especially with the divalent metallic cations, the mobility of the AgNPs in the porous media was very low, most likely due to NP aggregation. Overall, the results suggest the potential for AgNP contamination of subsurface soils and groundwater aquifers is mostly dependent on their aggregation state, controlled by the soil water and sediment ionic strength and pH. PMID:23422173

  10. Effects of the pH and the urine infected by Escherichia coli and Proteus mirabilis on chromic catgut, polyglycolic acid and polyglactin 910: study in vitro.

    PubMed

    Hering, F L; Rosenberg, D; Chade, J

    1989-01-01

    In order to study the effects of the pH and the urine infected by Escherichia coli and Proteus mirabilis on chromic catgut, polyglycolic acid (PGA) and polyglactin 910 (P910), we divided the experiment into three steps. In the first step, the behavior of suture material immersed in sterile urine, urine infected by E. coli and urine infected by P. mirabilis and in culture environment infected by P. mirabilis was studied. The physical features were observed continuously up to the 6th day. In the second step, every element of the urea-splitting reaction was isolatedly studied , without the presence of bacterial agents. And in the last step, that reaction was mimetized in sterile environments and in environments with acid and alkaline pH. While the chromic catgut was kept integral in all the environments, the PGA and the P910 dissolved in urine infected by Proteus, which was caused by the ammonia resulting from the urea-splitting reaction. This dissolution was also observed in sterile environment (mimetization of the urea-splitting reaction by urease, with no Proteus). The destruction of the sutures was not influenced by the pH variance. PMID:2552634

  11. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities.

    PubMed

    Mandotra, S K; Kumar, Pankaj; Suseela, M R; Nayaka, S; Ramteke, P W

    2016-02-01

    The present study dealt with biomass, lipid concentration, fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under different phosphate concentrations, pH and light intensities, one at a time. Among different phosphate concentrations, higher biomass (770.10±11.0mg/L) and lipid concentration (176.87±4.6mg/L) were at the concentration of 60mg/L. Light intensity at 6000lux yielded higher biomass and lipid concentration of 742.0±9.7 and 243.15±9.1mg/L, respectively. The biomass (769.0±12.3mg/L) and lipid (179.47±5.5mg/L) concentration were highest at pH 8 and pH 6, respectively. All the culture treatments showed marked effect on the fatty acid profile and biodiesel properties of the extracted oil. FAME derived biodiesel properties were compared with European biodiesel standards (EN 14214), Indian biodiesel standards (IS 15607) and American biodiesel standards (ASTM D 6751-08) to assess the suitability of algal oil as biodiesel feedstock. PMID:26675046

  12. pH- and ionic-strength-induced structural changes in poly(acrylic acid)-lipid-based self-assembled materials.

    SciTech Connect

    Crisci, A.; Hay, D. N. T.; Seifert, S.; Firestone, M. A.

    2009-01-01

    The effect of a polyanion introduced as a lipid conjugate (poly(acrylic acid)- dimyristoyl-sn-glycero-3-phosphoethanolamine, PAA-DMPE) on the structure of a self-assembled, biomembrane mimetic has been evaluated using synchrotron small-angle X-ray scattering (SAXS). At high grafting density (8-11 mol.%), the PAA chains were found to produce significant changes in structure in response to changes in pH and electrolyte composition. At low pH and in the absence of salt (NaCl), the neutral PAA chains adopt a coil conformational state that leads to the formation of a swollen lamellar structure. Upon the addition of salt at low to intermediate pH values, two lamellar phases, a collapsed and an expanded structure, coexist. Finally, when the polymer is fully ionized (at high pH), the extended conformation of the polymer generates a cubic phase. The results of this study contribute to an understanding of how polyelectrolytes may ultimately be harnessed for the preparation of self-assembling materials responsive to external stimuli.

  13. Novel pH control strategy for efficient production of optically active l-lactic acid from kitchen refuse using a mixed culture system.

    PubMed

    Tashiro, Yukihiro; Inokuchi, Shota; Poudel, Pramod; Okugawa, Yuki; Miyamoto, Hirokuni; Miayamoto, Hisashi; Sakai, Kenji

    2016-09-01

    Uninvestigated control factors of meta-fermentation, the fermentative production of pure chemicals and fuels in a mixed culture system, were examined for production of optically pure l-lactic acid (LA) from food waste. In meta-fermentations by pH swing control, l-LA production with 100% optical purity (OPl-LA) was achieved even using unsterilized model kitchen refuse medium with preferential proliferation of l-LA-producing Bacillus coagulans, a minor member in the seed, whereas agitation decreased OPl-LA drastically. pH constant control shortened the fermentation time but decreased OPl-LA and LA selectivity (SLA) by stimulating growth of heterofermentative Bacillus thermoamylovorans. Deliberately switching from pH swing control to constant control exhibited the best performance for l-LA production: maximum accumulation, 39.2gL(-1); OPl-LA, 100%; SLA, 96.6%; productivity, 1.09gL(-1)h(-1). These results present a novel pH control strategy for efficient l-LA production in meta-fermentation based on a concept different from that of pure culture systems. PMID:27233097

  14. An Evaluation of Geopressured Brine Injectability

    SciTech Connect

    Owen, L.B.; Blair, C.K.; Harrar, J.E.; Netherton, R.

    1980-12-16

    We-have developed an apparatus with a capability for evaluating geopressured brine injectability at elevated pressures and temperatures. The apparatus utilizes membrane filters as injection zone reservoir analogs and permits injectability tests to be performed in accordance with Barkman and Davidson Methdology. A field evaluation of geopressured brine injectability was completed during September 22-25, 1980 at the DOE, Brazoria test site in Texas. Membrane filters, with pore sizes of 0.4-{micro}m and 10.0-{micro}m, were used as the basis for obtaining suspended solids data and for developing performance-life estimates of typical spent brine injection wells. Field measurements were made at 130{degree}C and line pressures up to 3800 psig. Scale inhibited (phosphonate-polyacrylate threshold-type, carbonate scale inhibitor), prefiltered-scale-inhibited, and raw (untreated) brine were evaluated. Test results indicated raw brine was highly injectable, while scale-inhibited brine had extremely low quality. The poor injectability of scale-inhibited brine resulted from partial precipitation of the scale inhibitor.

  15. Lithium brines: A global perspective: Chapter 14

    USGS Publications Warehouse

    Munk, LeeAnn; Hynek, Scott; Bradley, Dwight C.; Boutt, David; Labay, Keith A.; Jochens, Hillary

    2016-01-01

    Lithium is a critical and technologically important element that has widespread use, particularly in batteries for hybrid cars and portable electronic devices. Global demand for lithium has been on the rise since the mid-1900s and is projected to continue to increase. Lithium is found in three main deposit types: (1) pegmatites, (2) continental brines, and (3) hydrothermally altered clays. Continental brines provide approximately three-fourths of the world’s Li production due to their relatively low production cost. The Li-rich brine systems addressed here share six common characteristics that provide clues to deposit genesis while also serving as exploration guidelines. These are as follows: (1) arid climate; (2) closed basin containing a salar (salt crust), a salt lake, or both; (3) associated igneous and/or geothermal activity; (4) tectonically driven subsidence; (5) suitable lithium sources; and (6) sufficient time to concentrate brine. Two detailed case studies of Li-rich brines are presented; one on the longest produced lithium brine at Clayton Valley, Nevada, and the other on the world’s largest producing lithium brine at the Salar de Atacama, Chile.

  16. Effect of amino acids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures.

    PubMed

    Zamora, Rosario; Alcón, Esmeralda; Hidalgo, Francisco J

    2013-12-15

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation in mixtures of creatinine, phenylalanine, amino acids and 4-oxo-2-nonenal was studied, to analyse the role of amino acids on the generation of this heterocyclic aromatic amine. When oxidised lipid was absent, cysteine, serine, aspartic acid, threonine, asparagine, tryptophan, tyrosine, proline, and methionine increased significantly (p < 0.05) the amount of PhIP formed in comparison to the control. When lipid was present, only the addition of methionine, glycine, and serine increased significantly (p < 0.05) the amount of PhIP produced, while histidine, cysteine, lysine, tryptophan, tyrosine, and alanine reduced significantly (p < 0.05) PhIP. These results may be a consequence of the different competitive reactions that occur. Thus, in the absence of lipids, thermal decomposition of the amino acids produced reactive carbonyls that converted phenylalanine into phenylacetaldehyde as a key step in the formation of PhIP. When oxidised lipid was present, amino acids competed with phenylalanine for the lipid, and amino acid degradation products were formed, among which alpha-keto acids seemed to play a role in these reactions. These results suggest that PhIP can be produced by several alternative reaction pathways from all major food components, including amino acids and lipids, in addition to carbohydrates. PMID:23993611

  17. Formate brines for drilling and completion: State of the art

    SciTech Connect

    Howard, S.K.

    1995-12-31

    Low solids drilling fluids based on formate brines (sodium, potassium and caesium salts of formic acid) were originally designed to minimise frictional pressure losses in slim hole drilling applications. In addition, their unique capability of stabilising polymers to high temperatures made them more temperature resistant than any other polymer based drilling fluids. Subsequent work has shown that these brines, because of their high densities and low corrosivity, are also ideal completion and packer fluids. Formate brines have excellent HSE profiles and they are compatible with reservoir fluids, good shale stabilisers, gas hydrate inhibitors, and scale dissolvers. Also, a technique has been found for cost effective clean-up and recycling of formate based drilling fluids. The commercialisation and introduction of these fluids into the field (especially caesium formate) has taken a long time, due to high prices and few manufacturers. This situation is now changing, as the number of manufacturers is increasing, and buy-back arrangements have been made available. Also, a number of successful drilling and completion trials have been carried out.

  18. Survival of foodborne pathogens in natural cracked olive brines.

    PubMed

    Medina, Eduardo; Romero-Gil, Verónica; Garrido-Fernández, Antonio; Arroyo-López, Francisco Noé

    2016-10-01

    This work reports the survival (challenge tests) of foodborne pathogen species (Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica) in Aloreña de Málaga table olive brines. The inhibitions were fit using a log-linear model with tail implemented in GInaFIT excel software. The olive brine had a considerable inhibitory effect on the pathogens. The residual (final) populations (Fp) after 24 h was below detection limit (<1.30 log10 cfu/mL) for all species assayed. The maximum death rate (kmax) was 9.98, 51.37, 38.35 and 53.01 h(-1), while the time for 4 log10 reductions (4Dr) was 0.96, 0.36, 0.36 and 0.24 h for E. coli, S. aureus, L. monocytogenes and S. enterica, respectively. Brine dilutions increased Fp and 4Dr, while decreased kmax. A cluster analysis showed that E. coli had an overall quite different behaviour being the most resistant species, but the others bacteria behaved similarly, especially S. aureus and S. enterica. Partial Least Squares regression showed that the most influential phenols on microbial survival were EDA (dialdehydic form of decarboxymethyl elenolic acid), HyEDA (EDA linked to hydroxytyrosol), hydroxytyrosol 4-glucoside, tyrosol, and oleoside 11-methyl ester. Results confirm the adverse habitats of table olives for foodborne pathogenic microorganisms. PMID:27375250

  19. Brine resistance of window materials for a Borehole Televiewer tool

    SciTech Connect

    Arnold, C. Jr.

    1982-02-01

    The Borehole Televiewer is a data logging tool that was developed to inspect boreholes and evaluate geological formations. Window failures were observed after the manufacturer of the tool replaced the elastomeric windows with windows made from polyimide (Vespel), a plastic material noted for its high thermal stability. In this work, it was demonstrated that while Vespel was quite stable thermally at 250/sup 0/C in an inert environment (argon), stress cracking occurred in the presence of brine at these temperatures over a period of 2 to 3 hours. Somewhat longer exposures to brine (24 hours) at 260/sup 0/C and 20.7 MPa resulted in extensive chemical reversion of polyimides. Acids and amines were detected by infrared analysis. In contrast, the mechanical and chemical properties of Teflon (poly(tetrafluorethylene)) were unaffected after exposure to brine under the same conditions. On the basis of these results, it was recommended that acoustic windows for the Borehole Televiewer be made of Teflon. It was also recommended that the configuration of the window be modified to allow for the tendency of Teflon to flow under stress.

  20. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    USGS Publications Warehouse

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon

  1. Experimental Work Conducted on MgO Inundated Hydration in WIPP-Relevant Brines

    NASA Astrophysics Data System (ADS)

    Deng, H.; Xiong, Y.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    Magnesium oxide (MgO) is being emplaced in the Waste Isolation Pilot Plant (WIPP) as an engineered barrier to mitigate the effect of microbial CO2 generation on actinide mobility in a postclosure repository environment. MgO will sequester CO2 and consume water in brine or water vapor in the gaseous phase. Martin Marietta (MM) MgO is currently being emplaced in the WIPP. A fractional-factorial experiment has been performed to study the inundated-hydration of MM MgO as a function of its particle size, solid-to-liquid ratio, and brine type. MgO hydration experiments have been carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. ERDA-6 is a synthetic NaCl-rich brine typical of a Castile brine reservoir below the repository. GWB is a synthetic MgCl2- and NaCl-rich brine representative of intergranular brines from the Salado Formation at or near the stratigraphic horizon of the repository. Simplified GWB contains amounts of Mg, Na, and Cl similar to those in GWB without other minor constituents. The hydration products include brucite (Mg(OH)2) and phase 5 (Mg3(OH)5Cl4H2O). In addition to phase 5, MgO hydration in GWB or simplified GWB produces brucite, whereas MgO hydrated in ERDA-6 only produces brucite. The MgO particle size has had a significant effect on the formation of hydration products: small MgO particles have hydrated before the large particles. MgO has hydrated faster in simplified GWB than in the other two brines. In ERDA-6, the solid-to-liquid ratio has affected the brine pH due to the presence of CaO (~1 wt %) as an impurity in MM MgO. GWB has sufficient dissolved Mg to buffer pH despite small amounts of CaO. Both our results and thermodynamic modeling indicate that phase-5 is the stable Mg-OH-Cl phase in Mg-Na-Cl-dominated brines with ionic strengths and chemical compositions similar to that of GWB. In contrast, phase-3 (Mg2(OH)3Cl4H2O) is the stable phase in the MgCl2

  2. Fatty acid binding protein 10 in the orange-spotted grouper (Epinephelus coioides): characterization and regulation under pH and temperature stress.

    PubMed

    Qi, Zeng-hua; Liu, Yu-feng; Wang, Wei-Na; Xin, Yu; Xie, Fu-xing; Wang, An-Li

    2012-04-01

    We have isolated and characterized a fatty acid binding protein from the liver of the orange-spotted grouper (Epinephelus coioides). Amino acid sequence similarity of the Ec-FABP (E. coioides-FABP) was highest to FABP10s isolated from the livers of catfish, chicken, salamander and iguana. The open-reading frame of the Ec-FABP codes for a protein of 14.0 kDa with a calculated isoelectric point of 8.5. We first expressed a FABP10 protein from orange-spotted grouper (E. coioides) in Pichia pastoris, and then characterized the antioxidative potential of our recombinant Ec-FABP by DCF fluorescence assay. RT-PCR assays showed that endogenous Ec-FABP mRNA is most strongly expressed in liver with the most abundance and intestine. Change in the groupers' blood cells respiratory burst activity was examined during and after exposure to the pH and temperature stress using flow cytometry. Further analysis of Ec-FABP gene expression in liver tissue by quantitative real-time PCR demonstrated that Ec-FABP transcript levels increased when the fish were exposed to both pH and temperature stress, but the time when its mRNA expression level peaked differed under these stresses. Western blot analyses confirmed that the Ec-FABP protein was strongly expressed in the liver after exposure to the pH and temperature stress. These results suggest that Ec-FABP expression is stimulated by pH and temperature stress and that it may play important roles in general adaptive and antioxidant responses. PMID:22182678

  3. An empirical method for estimating instream pre-mining pH and dissolved Cu concentration in catchments with acidic drainage and ferricrete

    USGS Publications Warehouse

    Nimick, D.A.; Gurrieri, J.T.; Furniss, G.

    2009-01-01

    Methods for assessing natural background water quality of streams affected by historical mining are vigorously debated. An empirical method is proposed in which stream-specific estimation equations are generated from relationships between either pH or dissolved Cu concentration in stream water and the Fe/Cu concentration ratio in Fe-precipitates presently forming in the stream. The equations and Fe/Cu ratios for pre-mining deposits of alluvial ferricrete then were used to reconstruct estimated pre-mining longitudinal profiles for pH and dissolved Cu in three acidic streams in Montana, USA. Primary assumptions underlying the proposed method are that alluvial ferricretes and modern Fe-precipitates share a common origin, that the Cu content of Fe-precipitates remains constant during and after conversion to ferricrete, and that geochemical factors other than pH and dissolved Cu concentration play a lesser role in determining Fe/Cu ratios in Fe-precipitates. The method was evaluated by applying it in a fourth, naturally acidic stream unaffected by mining, where estimated pre-mining pH and Cu concentrations were similar to present-day values, and by demonstrating that inflows, particularly from unmined areas, had consistent effects on both the pre-mining and measured profiles of pH and Cu concentration. Using this method, it was estimated that mining has affected about 480 m of Daisy Creek, 1.8 km of Fisher Creek, and at least 1 km of Swift Gulch. Mean values of pH decreased by about 0.6 pH units to about 3.2 in Daisy Creek and by 1-1.5 pH units to about 3.5 in Fisher Creek. In Swift Gulch, mining appears to have decreased pH from about 5.5 to as low as 3.6. Dissolved Cu concentrations increased due to mining almost 40% in Daisy Creek to a mean of 11.7 mg/L and as much as 230% in Fisher Creek to 0.690 mg/L. Uncertainty in the fate of Cu during the conversion of Fe-precipitates to ferricrete translates to potential errors in pre-mining estimates of as much as 0.25 units

  4. Manipulating the pH response of 2,3-diaminopropionic acid rich peptides to mediate highly effective gene silencing with low-toxicity☆

    PubMed Central

    Abbate, Vincenzo; Liang, Wanling; Patel, Jayneil; Lan, Yun; Capriotti, Luigi; Iacobucci, Valentina; Bui, Tam T.; Chaudhuri, Poulami; Kudsiova, Laila; Vermeer, Louic S.; Chan, Patrick F.L.; Kong, Xiaole; Drake, Alex F.; Lam, Jenny K.W.; Bansal, Sukhvinder S.; Mason, A. James

    2013-01-01

    Cationic amphipathic pH responsive peptides possess high in vitro and in vivo nucleic acid delivery capabilities and function by forming a non-covalent complex with cargo, protecting it from nucleases, facilitating uptake via endocytosis and responding to endosomal acidification by being released from the complex and inserting into and disordering endosomal membranes. We have designed and synthesised peptides to show how Coulombic interactions between ionizable 2,3-diaminopropionic acid (Dap) side chains can be manipulated to tune the functional pH response of the peptides to afford optimal nucleic acid transfer and have modified the hydrogen bonding capabilities of the Dap side chains in order to reduce cyt