Science.gov

Sample records for acidic conditions present

  1. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions (Presentation)

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  2. Verbal evaluative conditioning with undetected US presentations.

    PubMed

    De Houwer, J; Baeyens, F; Eelen, P

    1994-07-01

    In evaluative conditioning research it has been shown that a neutral stimulus (CS) acquires the valence of a positive or negative stimulus (US) with which it is presented contingently. An experiment is reported in which it is examined whether evaluative shifts can also be observed in the complete absence of contingency-awareness. Neutral words were either followed by a briefly presented positive or negative word. Results showed that neutral words which were presented contingently with a positive word, were afterwards liked more than words which were paired with negative words. This result was obtained despite the fact that Ss were not aware of the presentation of the briefly presented USs.

  3. Present weather and climate: evolving conditions

    USGS Publications Warehouse

    Hoerling, Martin P; Dettinger, Michael; Wolter, Klaus; Lukas, Jeff; Eischeid, Jon K.; Nemani, Rama; Liebmann, Brant; Kunkel, Kenneth E.

    2013-01-01

    This chapter assesses weather and climate variability and trends in the Southwest, using observed climate and paleoclimate records. It analyzes the last 100 years of climate variability in comparison to the last 1,000 years, and links the important features of evolving climate conditions to river flow variability in four of the region’s major drainage basins. The chapter closes with an assessment of the monitoring and scientific research needed to increase confidence in understanding when climate episodes, events, and phenomena are attributable to human-caused climate change.

  4. Enhanced consumption of an aversively conditioned taste following the presentation of a "medicine" taste.

    PubMed

    Pineño, Oskar

    2010-06-01

    Rats given presentations of a citric acid solution while recovering from LiCl-induced illness (i.e., a "medicine effect" treatment) subsequently drank more of an aversively conditioned NaCl solution at test, when the NaCl presentation was immediately preceded by citric acid. That is, citric acid passed a summation test of conditioned inhibition. Such an effect was not observed in a group given explicitly unpaired presentations of LiCl and citric acid. It is proposed that enhanced consumption of an aversive taste due to the previous presentation of a "medicine" taste can provide an animal model of human maladaptive behavior in regards to food consumption.

  5. Second-order conditioning with and without unconditioned stimulus presentation.

    PubMed

    Holland, P C

    1980-07-01

    The effects of presenting various episodes after serial presentation of two conditioned stimuli (CS2-CS1 sequences) on second-order conditioning to CS2 were examined in three experiments using rat subjects in an appetitive conditioning situation. In Experiment 1, presentation of food unconditioned stimuli (USs) immediately after CS2-CS1 sequences interfered with second-order conditioning of CS2. In Experiment 2, postsequence presentation of a "surprising" US interfered with second-order conditioning more than did presentation of an "expected" US; similarly, less second-order conditioning of CS2 was observed when postsequence nonpresentation of a US was surprising than when US omission was expected. In Experiment 3, the interfering effect of US presentation on second-order conditioning was smaller when a brief delay was introduced between presentation of the CS2-CS-1 sequence and the US. The results are discussed in terms of an information-processing theory recently proposed by Wagner and his colleagues.

  6. Other Skin Conditions Often Present in Rosacea Patients

    MedlinePlus

    ... Treatment Survey: Other Skin Conditions Often Present in Rosacea Patients Although rosacea patients often have to cope ... ocular rosacea. arrow Follow us on Facebook arrow Rosacea Review Current Issue Past Issues Index by Topic ...

  7. Non-convulsive status epilepticus presenting as a psychiatric condition.

    PubMed

    Walker, M C; Cockerell, O C; Sander, J W

    1996-02-01

    Non-convulsive status epilepticus may present as confusion, behavioural disturbances and psychiatric conditions. We present the case of a 17-year-old man who had episodes of non-convulsive status epilepticus as his only manifestation of epilepsy which was mis-diagnosed as a psychiatric condition for over 10 years. He has had almost complete resolution of his symptoms with the introduction of carbamazepine. Non-convulsive status epilepticus is probably commoner than previously thought, and should be considered as a possible diagnosis in all patients presenting with prolonged episodes of altered consciousness even without other manifestations of epilepsy.

  8. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    SciTech Connect

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  9. Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)

    SciTech Connect

    Sheng, S.; Yang, W.

    2013-07-01

    High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

  10. Multiphase Chemistry of Pyruvic Acid Under Atmospherically Relevant Conditions

    NASA Astrophysics Data System (ADS)

    Vaida, V.; Monod, A.; Doussin, J. F.; Reed Harris, A. E.; Griffith, E. C.; Kroll, J. A.; Rapf, R.

    2014-12-01

    Chemistry in the natural environment proceeds in multiple phases and is subject to effects from atmospheric constituents and conditions. This presentation will use pyruvic acid as a case study to demonstrate the complexity of atmospheric multiphase chemistry. The photophysics and photochemistry of pyruvic acid proceeds on different potential energy surfaces with different reaction mechanisms, rates, and products in gas versus the aqueous phase. While the gas phase reaction generally decreases the complexity of products, the aqueous chemistry creates higher molecular weight, surface-active compounds. The studies presented involve a combination of laboratory studies that focus on the photochemistry of pyruvic acid in both the gas and aqueous phases. Further, experiments in an environmental simulation chamber (CESAM) that follow the photochemistry chemistry of pyruvic acid under atmospherically relevant conditions will be presented to highlight the effect of pressure, oxygen, relative humidity, and phase on the photochemistry of pyruvic acid. The results provide new input for atmospheric chemistry models that is required to better describe the behavior of α-keto acids in the environment.

  11. Challenges to Cabin Humidity Removal Presented by Intermittent Condensing Conditions

    NASA Technical Reports Server (NTRS)

    vonJouanne, Roger G.; Williams, David E.

    2007-01-01

    On-orbit temperature and humidity control (THC) is more easily accomplished when the THC hardware is either consistently dry (i.e., no humidity control is occurring), or consistently wet. The system is especially challenged when intermittent wet/dry conditions occur. The first six years of on-orbit ISS operations have revealed specific concerns within the THC system, specifically in the condensing heat exchanger and the downstream air/water separator. Failed or degraded hardware has been returned to ground and investigated. This paper presents the investigation findings, and the recommended hardware and procedural revisions to prevent and recover from the effects of intermittent condensing conditions.

  12. Extinction of conditioned inhibition through nonreinforced presentation of the inhibitor.

    PubMed

    Melchers, Klaus G; Wolff, Susann; Lachnit, Harald

    2006-08-01

    In previous studies that have tried to extinguish conditioned inhibition through nonreinforced presentations of the inhibitor, researchers have repeatedly failed to find evidence for such extinction. The present study revealed that extinction can be achieved through nonreinforcement of the inhibitor, depending on properties of the reinforcer. In a human causal learning experiment, we found complete extinction in a scenario in which the reinforcer could take on negative values. Thereby, this scenario reflected the assumed symmetrical continuum on which associative strength can vary, according to the Rescorla-Wagner theory of associative learning. In contrast to this, the inhibitory cue retained its inhibitory potential in another condition, in which the scenario did not allow negative values of the reinforcer.

  13. Challenges in the Assessment and Presentation of California Drought Conditions

    NASA Astrophysics Data System (ADS)

    Edwards, L. M.; Redmond, K. T.

    2008-12-01

    The water year 2007-08 exhibited a pattern similar to that projected by climate models, with a contracted wet season followed by a warm spring. These conditions exacerbated antecedent dry conditions to set in place moderate to severe drought conditions over most of the state by September 2008. This sequence of events has brought to light the challenges in depicting and communicating drought to California's public, and also relating California to drought elsewhere in the U.S. Through ties with the NIDIS effort, the Western Regional Climate Center has an array of climatological resources that can be utilized in the assessment of drought, with a new WestWide Drought Tracker that is in development. There are some web resources available to access these products, including a California-specific climate data access interface. The most significant challenge is how to accurately present a drought in California using these and other data products in a manner the user can understand, with its unique water storage and supply system, in combination with natural environmental conditions. Suggestions to ameliorate this difficulty will be discussed, with the possible development of new products for drought monitoring that are specific to the state of California that can be incorporated into a NIDIS or similar infrastructure.

  14. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    SciTech Connect

    Alyapyshev, M.; Paulenova, A.; Tkac, P.; Cleveland, M.A.; Bruso, J.E.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the method of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)

  15. Present Status of Networking Conditions in Univ. of South Pacific

    NASA Astrophysics Data System (ADS)

    Takahashi, Fujinobu

    Three years program of Japanese Info-Communication Technology (ICT) Capacity Building Project in the University of South Pacific (USP) will terminate in June 2005. Japanese government has a plan of the new Pacific ICT Center program in USP from 2006. The author will introduce the recent status of USP networking conditions both of satellite and marine cable. The present global VLBI (and even GPS/IGS) network has a weak point of asymmetric distribution by very few number or luck of stations in the huge south Pacific/water hemisphere because of many difficulties such as narrow/poor telecommunication line. It is very important and urgent matters to enhance the space geodetic activities in USP.

  16. Fatty Acids Present in the Lipopolysaccharide of Rhizobium trifolii

    PubMed Central

    Russa, R.; Lorkiewicz, Z.

    1974-01-01

    Approximately 70% of the fatty acids recovered after acid or alkaline hydrolysis of the lipopolysaccharide of Rhizobium trifolii were hydroxy fatty acids identified as hydroxymyristic and hydroxypalmitic acids. Palmitic acid was the only saturated fatty acid found in the lipopolysaccharide of R. trifolii. Octadecenoic and a small amount of hexadecenoic acids were also identified. The results of BF3 methanolysis and hydroxylaminolysis suggest that hydroxypalmitic acid is N-acyl bound. PMID:4852028

  17. The mutating preconscious archetype in present-day ecological conditions.

    PubMed

    Włoch, K

    1990-12-01

    Competition is an important force behind evolution in present-day ecological conditions, its intensity varying according to the organisms' expectations vis-à-vis resources available. On the other hand, the role of mutation in the evolutionary process can hardly be underestimated: Leading to the change of the preconsciously functioning archetype, mutation makes it impossible for the ego to realize its image. This is a consequence of the clash between the mutated, preconsciously functioning archetype and the system of ethical and moral norms functioning in the collective superego of a given population group. The type of mutation that results from the accelerated pace of evolution can be viewed as a continuity in the development of an organism's behavior. The preconsciously functioning archetype, resulting from these mutations, contains impulses and predispositions that differ markedly from the impulses and predispositions functioning in the genetically determined "pattern of behavior." In a situation where anxiety results from the inhibition of impulses and dispositions, hostility reactions are likely to occur. In its turn, reactive hostility can induce anxiety, thus creating a reaction cycle. Underlying this mechanism is the mutated, preconsciously functioning archetype, which itself is a result of the development of civilization in our contemporary world.

  18. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  19. Simultaneous ozonation kinetics of phenolic acids present in wastewaters

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1996-12-31

    Among the several chemical processes conducted for the removal of organic matter present in wastewaters coming from some agro-industrial plants (wine distilleries, olive oil mills, etc), the oxidation by ozone has shown a great effectiveness in the destruction of specially refractory pollutants: it is demonstrated that the biodegradability of those wastewaters increases aflcer an ozonation pretreatment. Their great pollutant character is imputed to the presence of some organic compounds, like phenols and polyphenols, which are toxic and inhibit the latter biological treatments. In this research, a competitive kinetic procedure reported by Clurol and Nekouinaini is applied to determine the degradation rate constants by ozone of several phenolic acids which are present in the wastewaters from the olive oil obtaining process. The resulting kinetic expressions for the ozonation reactions are useful for the successful design and operation of ozone reactors in water and wastewaters treatment plants.

  20. Mauna Loa sky conditions - Bench mark and present

    NASA Astrophysics Data System (ADS)

    Garcia, C. J.; Yasukawa, E. A.

    1983-08-01

    Sky conditions at the Mauna Loa Solar Observatory (MLSO) were measured during a period of uncontaminated skies in July 1981, and during the presence of volcanic dust clouds in 1982 using MLSO instrument systems. A six-fold increase in scattering due to aerosols, is accompanied by a 25 percent direct incident radiation decrease, and sky polarization/intensity perturbations were detected after the onset of volcanic clouds.

  1. Clinical presentation and manual therapy for lower quadrant musculoskeletal conditions

    PubMed Central

    Courtney, Carol A; Clark, Jeffrey D; Duncombe, Alison M; O’Hearn, Michael A

    2011-01-01

    Chronic lower quadrant injuries constitute a significant percentage of the musculoskeletal cases seen by clinicians. While impairments may vary, pain is often the factor that compels the patient to seek medical attention. Traumatic injury from sport is one cause of progressive chronic joint pain, particularly in the lower quarter. Recent studies have demonstrated the presence of peripheral and central sensitization mechanisms in different lower quadrant pain syndromes, such as lumbar spine related leg pain, osteoarthritis of the knee, and following acute injuries such as lateral ankle sprain and anterior cruciate ligament rupture. Proper management of lower quarter conditions should include assessment of balance and gait as increasing pain and chronicity may lead to altered gait patterns and falls. In addition, quantitative sensory testing may provide insight into pain mechanisms which affect management and prognosis of musculoskeletal conditions. Studies have demonstrated analgesic effects and modulation of spinal excitability with use of manual therapy techniques, with clinical outcomes of improved gait and functional ability. This paper will discuss the evidence which supports the use of manual therapy for lower quarter musculoskeletal dysfunction. PMID:23115474

  2. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  3. Conditions Presenting with Symptoms of Peripheral Arterial Disease

    PubMed Central

    Sharma, Aditya M.; Norton, Patrick T.; Zhu, Daisy

    2014-01-01

    Peripheral artery disease (PAD) is estimated to affect more than 20% of people older than 65 years. The vast majority of patients with symptoms suggestive of PAD have atherosclerosis often associated with conventional vascular risk factors such as smoking, diabetes, dyslipidemia, and inflammation. A minority of people presenting with symptoms suggesting PAD have an alternative etiology. These groups of disorders are often underdiagnosed, and if diagnosed correctly the diagnosis may be delayed. Understanding these pathologies well is important, as they can be very debilitating and optimal treatment may vary significantly. Inappropriate treatment of these disorders can lead to worsening morbidity and mortality. This article discusses the underlying causes of nonatherosclerotic PAD, including the diagnosis and treatment of these disorders. PMID:25435652

  4. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  5. Selection of acid compositions in well construction in difficult geological conditions

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. V.; Kamartdinov, M. R.

    2016-03-01

    Within the scope of the current work we have presented an approach towards selecting and substantiation of acid composition in accordance with petrophysical characteristics of formations for acid treatment of bottom-hole formation zones. Article presents the results of lab tests of selected acid compositions, in conditions, which model thermobaric conditions of a payzone, combined with an evaluation of hydraulic permeability change, and this, in its turn, should allow us to evaluate the quality of impact of the acid composition recipe on the reservoir formation.

  6. Ecoclimatic indicators to study crop suitability in present and future climatic conditionsTIC CONDITIONS

    NASA Astrophysics Data System (ADS)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  7. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  8. Lipid production on free fatty acids by oleaginous yeasts under non-growth conditions.

    PubMed

    Yang, Xiaobing; Jin, Guojie; Wang, Yandan; Shen, Hongwei; Zhao, Zongbao K

    2015-10-01

    Microbial lipids produced by oleaginous yeasts serve as promising alternatives to traditional oils and fats for the production of biodiesel and oleochemicals. To improve its techno-economics, it is pivotal to use wastes and produce high quality lipids of special fatty acid composition. In the present study, four oleaginous yeasts were tested to use free fatty acids for lipid production under non-growth conditions. Microbial lipids of exceptionally high fatty acid relative contents, e.g. those contained over 70% myristic acid or 80% oleic acid, were produced that may be otherwise inaccessible by growing cells on various carbon sources. It was found that Cryptococcus curvatus is a robust strain that can efficiently use oleic acid as well as even-numbered saturated fatty acids with carbon atoms ranging from 10 to 20. Our results provided new opportunity for the production of functional lipids and for the exploitation of organic wastes rich in free fatty acids.

  9. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  10. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  11. Amyloid Aggregates Arise from Amino Acid Condensations under Prebiotic Conditions.

    PubMed

    Greenwald, Jason; Friedmann, Michael P; Riek, Roland

    2016-09-12

    Current theories on the origin of life reveal significant gaps in our understanding of the mechanisms that allowed simple chemical precursors to coalesce into the complex polymers that are needed to sustain life. The volcanic gas carbonyl sulfide (COS) is known to catalyze the condensation of amino acids under aqueous conditions, but the reported di-, tri-, and tetra-peptides are too short to support a regular tertiary structure. Here, we demonstrate that alanine and valine, two of the proteinogenic amino acids believed to have been among the most abundant on a prebiotic earth, can polymerize into peptides and subsequently assemble into ordered amyloid fibers comprising a cross-β-sheet quaternary structure following COS-activated continuous polymerization of as little as 1 mm amino acid. Furthermore, this spontaneous assembly is not limited to pure amino acids, since mixtures of glycine, alanine, aspartate, and valine yield similar structures. PMID:27511635

  12. Phytanic acid alpha-oxidase deficiency (Refsum disease) presenting in infancy.

    PubMed

    Herbert, M A; Clayton, P T

    1994-01-01

    This report describes a patient with high serum phytanic acid concentration due to phytanic acid alpha-oxidase deficiency (classical Refsum disease). He presented unusually early, hypotonia and developmental delay being apparent by 7 months. A generalized peroxisomal disorder (so-called 'infantile Refsum disease') was excluded by analyses of pristanic acid, very long-chain fatty acids, bile acids and plasmalogen synthesis. The early presentation raises the possibility of in utero exposure to phytanate.

  13. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  14. How are the Concepts and Theories of Acid Base Reactions Presented? Chemistry in Textbooks and as Presented by Teachers

    NASA Astrophysics Data System (ADS)

    Furió-Más, Carlos; Calatayud, María Luisa; Guisasola, Jenaro; Furió-Gómez, Cristina

    2005-09-01

    This paper investigates the views of science and scientific activity that can be found in chemistry textbooks and heard from teachers when acid base reactions are introduced to grade 12 and university chemistry students. First, the main macroscopic and microscopic conceptual models are developed. Second, we attempt to show how the existence of views of science in textbooks and of chemistry teachers contributes to an impoverished image of chemistry. A varied design has been elaborated to analyse some epistemological deficiencies in teaching acid base reactions. Textbooks have been analysed and teachers have been interviewed. The results obtained show that the teaching process does not emphasize the macroscopic presentation of acids and bases. Macroscopic and microscopic conceptual models involved in the explanation of acid base processes are mixed in textbooks and by teachers. Furthermore, the non-problematic introduction of concepts, such as the hydrolysis concept, and the linear, cumulative view of acid base theories (Arrhenius and Brönsted) were detected.

  15. Synthesis and chirality of amino acids under interstellar conditions.

    PubMed

    Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J

    2013-01-01

    Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices.

  16. Synthesis and chirality of amino acids under interstellar conditions.

    PubMed

    Giri, Chaitanya; Goesmann, Fred; Meinert, Cornelia; Evans, Amanda C; Meierhenrich, Uwe J

    2013-01-01

    Amino acids are the fundamental building blocks of proteins, the biomolecules that provide cellular structure and function in all living organisms. A majority of amino acids utilized within living systems possess pre-specified orientation geometry (chirality); however the original source for this specific orientation remains uncertain. In order to trace the chemical evolution of life, an appreciation of the synthetic and evolutional origins of the first chiral amino acids must first be gained. Given that the amino acids in our universe are likely to have been synthesized in molecular clouds in interstellar space, it is necessary to understand where and how the first synthesis might have occurred. The asymmetry of the original amino acid synthesis was probably the result of exposure to chiral photons in the form of circularly polarized light (CPL), which has been detected in interstellar molecular clouds. This chirality transfer event, from photons to amino acids, has been successfully recreated experimentally and is likely a combination of both asymmetric synthesis and enantioselective photolysis. A series of innovative studies have reported successful simulation of these environments and afforded production of chiral amino acids under realistic circumstellar and interstellar conditions: irradiation of interstellar ice analogues (CO, CO2, NH3, CH3OH, and H2O) with circularly polarized ultraviolet photons at low temperatures does result in enantiomer enriched amino acid structures (up to 1.3% ee). This topical review summarizes current knowledge and recent discoveries about the simulated interstellar environments within which amino acids were probably formed. A synopsis of the COSAC experiment onboard the ESA cometary mission ROSETTA concludes this review: the ROSETTA mission will soft-land on the nucleus of the comet 67P/Churyumov-Gerasimenko in November 2014, anticipating the first in situ detection of asymmetric organic molecules in cometary ices. PMID:22976459

  17. Modeling of matrix acidizing process under reservoir conditions

    NASA Astrophysics Data System (ADS)

    Turegeldieva, Karlygash; Assilbekov, Bakhytzhan; Zhapbasbayev, Uzak; Zolotukhin, Anatoly; Bekibaev, Timur; Kenzhebekov, Nurlan; Gubkin Russian State University of oil; gas Collaboration

    2013-11-01

    Effectiveness of the process depends on the parameters: well choice, geological structure of the reservoir, definition of physical and chemical properties of rocks and fluids, agent choice. There are different mathematical models of the matrix acidizing, including the two scale model. These models describe the process in the core scale and Darcy scale, i.e. in an area with dimensions of several centimeters. It leads to the main problem - how to use these models to the near wellbore scale under reservoir conditions. Some authors have increased the dimensions of the cores in numerical simulations and investigated the influence of the core dimensions to acidizing process. In this paper effort to indirectly solve this problem made. It based on boundary conditions alteration and simultaneous solution of matrix acidizing in damaged zone and reservoir fluid flow models. Furthermore in this work the criterion of the acid injection shut down for optimal breakthrough volume calculation was modified. Influence of boundary conditions on near well-bore zone treatment process was investigated. Science Committee of Ministry of Education and Science of Republic of Kazakhstan.

  18. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  19. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively.

  20. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively. PMID:27086997

  1. Response of gonococcal clinical isolates to acidic conditions.

    PubMed

    Pettit, R K; McAllister, S C; Hamer, T A

    1999-02-01

    This study examined the response to acidic conditions of four gonococcal isolates -NRL38874 (Proto/IB-2), NRL38884 (Pro/IA-2), NRL38953 (Proto/IB-3) and NRL39029 (Pro/IA-3) - obtained from various sites in patients in whom a diagnosis of pelvic inflammatory disease had been made by laparoscopic examination. Acid tolerance of the clinical isolates was strain and growth phase dependent. Growth of the four strains on solid media was undetectable below pH 5.8. In liquid culture, strain NRL38884 did not survive below pH 5.2; strains NRL38874, NRL38953 and NRL39029 survived to pH 4.5. Between pH 4.2 and pH 5.1, the latter three strains exhibited a peak in survival at pH 4.6-4.7 during log phase, suggesting that there may be a distinct acid tolerance system operating at this pH. SDS-PAGE of whole-cell, total membrane and outer-membrane fractions of the four strains prepared from pH 7.2 and pH 6.1 plate cultures revealed numerous differences in protein composition. Acidic conditions reduced the expression of the reduction modifiable outer-membrane protein Rmp, and induced the expression of many membrane proteins, including gonococcal hsp63. Immunoblotting studies with matched serum samples and strains from patients with pelvic inflammatory disease indicated that IgG recognition of outer-membrane components from strains cultured in acidic and neutral conditions was quite different. The results suggest that the immune system interacts with unique outer-membrane constituents on gonococci colonising sites at different pH.

  2. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  3. Growth of sulphuric acid nanoparticles under wet and dry conditions

    NASA Astrophysics Data System (ADS)

    Škrabalová, L.; Brus, D.; Anttila, T.; Ždímal, V.; Lihavainen, H.

    2013-09-01

    New particle formation, which greatly influences the number concentrations and size distributions of an atmospheric aerosol, is often followed by a rapid growth of freshly formed particles. The initial growth of a newly formed aerosol is the crucial process determining the fraction of nucleated particles growing into cloud condensation nuclei sizes, which have a significant influence on climate. In this study, we report the laboratory observations of the growth of nanoparticles produced by nucleation of H2SO4 and water in a laminar flow tube at temperatures of 283, 293 and 303 K, under dry (a relative humidity of 1%) and wet conditions (relative humidity of 30%) and residence times of 30, 45, 60 and 90 s. The initial H2SO4 concentration spans the range from 2 × 108 to 1.4 × 1010 molecule cm-3 and the calculated wall losses of H2SO4 were assumed to be diffusion limited. The detected particle number concentrations, measured by the Ultrafine Condensation Particle Counter (UCPC) and Differential Mobility Particle Sizer (DMPS), were found to depend strongly on the residence time. Hygroscopic particle growth, presented by growth factors, was found to be in good agreement with the previously reported studies. The experimental growth rates ranged from 20 nm h-1 to 890 nm h-1 at RH 1% and from 7 nm h-1 to 980 nm h-1 at RH 30% and were found to increase significantly with the increasing concentration of H2SO4. Increases in the nucleation temperature had a slight enhancing effect on the growth rates under dry conditions. The influence of relative humidity on growth was not consistent - at lower H2SO4 concentrations, the growth rates were higher under dry conditions while at H2SO4 concentrations greater than 1×109molecule cm-3 the growth rates were higher under wet conditions. The growth rates show only a weak dependence on the residence time. The experimental observations were compared with predictions made using a numerical model, which investigates the growth of

  4. Growth of sulphuric acid nanoparticles under wet and dry conditions

    NASA Astrophysics Data System (ADS)

    Skrabalova, L.; Brus, D.; Anttila, T.; Zdimal, V.; Lihavainen, H.

    2014-06-01

    New particle formation, which greatly influences the number concentrations and size distributions of an atmospheric aerosol, is often followed by a rapid growth of freshly formed particles. The initial growth of newly formed aerosol is the crucial process determining the fraction of nucleated particles growing to cloud condensation nuclei sizes, which have a significant influence on climate. In this study, we report the laboratory observations of the growth of nanoparticles produced by nucleation of H2SO4 and water in a laminar flow tube at temperatures of 283, 293 and 303 K, under dry (a relative humidity of 1%) and wet conditions (relative humidity of 30%) and residence times of 30, 45, 60 and 90 s. The initial H2SO4 concentration spans the range from 2 × 108 to 1.4 × 1010 molecule cm-3 and the calculated wall losses of H2SO4 were assumed to be diffusion limited. The detected particle number concentrations, measured by the Ultrafine Condensation Particle Counter (UCPC) and Differential Mobility Particle Sizer (DMPS), were found to depend strongly on the residence time. Hygroscopic particle growth, presented by growth factors, was found to be in good agreement with the previously reported studies. The experimental growth rates ranged from 20 nm h-1 to 890 nm h-1 at relative humidity (RH) 1% and from 7 nm h-1 to 980 nm h-1 at RH 30% and were found to increase significantly with the increasing concentration of H2SO4. Increases in the nucleation temperature had a slight enhancing effect on the growth rates under dry conditions. The influence of relative humidity on growth was not consistent - at lower H2SO4 concentrations, the growth rates were higher under dry conditions while at H2SO4 concentrations greater than 1 × 1010 molecule cm-3, the growth rates were higher under wet conditions. The growth rates show only a weak dependence on the residence time. The experimental observations were compared with predictions made using a numerical model, which investigates

  5. Carboxymethylcellulose Obtained by Ethanol/Water Organosolv Process Under Acid Conditions

    NASA Astrophysics Data System (ADS)

    Ruzene, Denise S.; Gonçalves, Adilson R.; Teixeira, José A.; Pessoa de Amorim, Maria T.

    Sugar cane bagasse pulps were obtained by ethanol/water organosolv process under acid and alkaline conditions. The best condition of acid pulping for the sugarcane bagasse was 0.02 mol/L sulfuric acid at 160°C, for 1h, whereas the best condition for alkaline pulping was 5% sodium hydroxide (base pulp) at 160°C, for 3h. For the residual lignin removal, the acid and alkaline pulps were submitted to a chemical bleaching using sodium chlorite. Pulps under acid and alkaline conditions bleached with sodium chlorite presented viscosities of 3.6 and 7.8 mPas, respectively, and μ-kappa numbers of 1.1 and 2.4, respectively. The pulp under acid condition, bleached with sodium chlorite was used to obtain carboxymethylcellulose (CMC). CMC yield was 35% (pulp based), showing mass gain after the carboxymethylation reaction corresponding to 23.6% of substitution or 0.70 groups-CH2COONa per unit of glucose residue. The infrared spectra showed the CMC characteristic bands and by the infrared technique it was possible to obtain a substitution degree (0.63), similar to the substitution degree calculated by mass gain (0.70).

  6. Dilute-acid hydrolysis of sugarcane bagasse at varying conditions.

    PubMed

    Neureiter, Markus; Danner, Herbert; Thomasser, Christiane; Saidi, Bamusi; Braun, Rudolf

    2002-01-01

    Sugarcane bagasse, a byproduct of the cane sugar industry, is an abundant source of hemicellulose that could be hydrolyzed to yield a fermentation feedstock for the production of fuel ethanol and chemicals. The effects of sulfuric acid concentration, temperature, time, and dry matter concentration on hemicellulose hydrolysis were studied with a 20-L batch hydrolysis reactor using a statistical experimental design. Even at less severe conditions considerable amounts (>29%) of the hemicellulose fraction could be extracted. The percentage of soluble oligosaccharides becomes very low in experiments with high yields in monosaccharides, which indicates that the cellulose fraction is only slightly affected. For the sugar yields, acid concentration appears to be the most important parameter, while for the formation of sugar degradation products, temperature shows the highest impact. It could be demonstrated that the dry matter concentration in the reaction slurry has a negative effect on the xylose yield that can be compensated by higher concentrations of sulfuric acid owing to a positive interaction between acid concentration and dry matter contents.

  7. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Astrophysics Data System (ADS)

    Lerner, N. R.

    1995-09-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched [1]. It is postulated that they arose from a common interstellar source: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alph-hydroxy nitriles, RR'CO + HCN <--> RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibirum with the alpha-amino nitriles, RR'C(OH)CN +NH3 .<--> RRCNH2CN + H2O. Both nitriles are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O --> RR'C(OH)CO2H and RR'C(NH2)CN + H2O --> RR'C(NH2)CO2H. Carbonyl compounds observed in the interstellar medium have been shown to be deuterium enriched [2]. The combined alpha-amino acids found on Murchison have deltaD = +1751 o/oo while the combined alpha-hydroxy acids have deltaD = +573. o/oo [1]. This large discrepancy in deltaD values does not preclude common precursors for the alpha-amino acids and the alpha-hydroxy acids. Different relative amounts of specific alpha-amino and alpha-hydroxy acids could lead to quite different combined D/H ratios. If the alpha-hydroxy acids lose significantly more deuterium during synthesis than the alpha-amino acids or if they have a higher rate of H/D exchange with liquid water than alpha-amino acids, the alpha-hydroxy acids would be isotopically lighter than the alpha-amino acids, because the water responsible for the aqueous alteration of the Murchison parent body was deuterium depleted with deltaD = -100. o/oo [3]. To determine between these alternative mechanisms we measured the rates of hydrogen-deuterium exchange of glycolic acid (the alpha-hydroxy analog of glycine), lactic acid (the alpha-hydroxy analog of alanine), and alpha-hydroxy isobutyric acid have been measured in D2O as a function of pH, temperature and the presence of Allende or Murchison minerals. No detectable H/D exchange was observed. Glycine subjected to similar conditons exchanged

  8. Past and Present Insights on Alpha-linolenic Acid and the Omega-3 Fatty Acid Family.

    PubMed

    Stark, Aliza H; Reifen, Ram; Crawford, Michael A

    2016-10-25

    Alpha-linolenic acid (ALA) is the parent essential fatty acid of the omega-3 family. This family includes docosahexaenoic acid (DHA), which has been conserved in neural signaling systems in the cephalopods, fish, amphibian, reptiles, birds, mammals, primates, and humans. This extreme conservation, in spite of wide genomic changes of over 500 million years, testifies to the uniqueness of this molecule in the brain and affirms the importance of omega-3 fatty acids. While DHA and its close precursor, eicosapentaenoic acids (EPA), have received much attention by the research community, ALA, as the precursor of both, has been considered of little interest. There are many papers on ALA requirements in experimental animals. Unlike humans, rats and mice can readily convert ALA to EPA and DHA, so it is unclear whether the effect is solely due to the conversion products or to ALA itself. The intrinsic role of ALA has yet to be defined. This paper will discuss both recent and historical findings related to this distinctive group of fatty acids, and will highlight the physiological significance of the omega-3 family.

  9. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    PubMed Central

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  10. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  11. "Danger" conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells.

    PubMed

    Lavergne, S N; Wang, H; Callan, H E; Park, B K; Naisbitt, D J

    2009-11-01

    Antigen-presenting cells (APC) are thought to play an important role in the pathogenesis of drug-induced immune reactions. Various pathological factors can activate APC and therefore influence the immune equilibrium. It is interesting that several diseases have been associated with an increased rate of drug allergy. The aim of this project was to evaluate the impact of such "danger signals" on sulfamethoxazole (SMX) metabolism in human APC (peripheral blood mononuclear cells, Epstein-Barr virus-modified B lymphocytes, monocyte-derived dendritic cells, and two cell lines). APC were incubated with SMX (100 microM-2 mM; 5 min-24 h), in the presence of pathological factors: bacterial endotoxins (lipopolysaccharide and staphylococcal enterotoxin B), flu viral proteins, cytokines [interleukin (IL)-1beta, IL-6, IL-10; tumor necrosis factor-alpha; interferon-gamma; and transforming growth factor-beta], inflammatory molecules (prostaglandin E2, human serum complement, and activated protein C), oxidants (buthionine sulfoximine and H(2)O(2)), and hyperthermia (37.5-39.5 degrees C). Adduct formation was evaluated by enzyme-linked immunosorbent assay and confocal microscopy. SMX-protein adduct formation was time- and concentration-dependent for each cell type tested, in both physiological and danger conditions. A danger environment significantly increased the formation of SMX-protein adducts and significantly shortened the delay for their detection. An additive effect was observed with a combination of danger signals. Dimedone (chemical selectively binding cysteine sulfenic acid) and antioxidants decreased both baseline and danger-enhanced SMX-adduct formation. Various enzyme inhibitors were associated with a significant decrease in SMX-adduct levels, with a pattern varying depending on the cell type and the culture conditions. These results illustrate that danger signals enhance the formation of intracellular SMX-protein adducts in human APC. These findings might be relevant

  12. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    PubMed

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications. PMID:27399667

  13. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  14. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  15. Conditioned Taste Aversion Is Enhanced When the Unconditioned Stimulus Is Presented in a Different Context

    ERIC Educational Resources Information Center

    Ishii, Kiyoshi; Iguchi, Yoshio; Fukumoto, Kazuya; Nakayasu, Tomohiro

    2008-01-01

    Using a conditioned taste aversion procedure with rats as the subjects, two experiments examined the effect of presenting a conditioned stimulus (CS saccharin solution) in one context followed by an unconditioned stimulus (US LiCl) in a different context. Experiment 1 showed that animals which received the above-mentioned procedure (Group D)…

  16. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  17. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  18. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  19. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions.

    PubMed

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C-50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO₄(-)• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO₄(-)•, followed by a HF elimination process aided by •OH, which produces one-CF₂-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn-1F2n-1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs.

  20. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil. PMID:24007995

  1. Acetic Acid Increases Stability of Silage under Aerobic Conditions

    PubMed Central

    Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R.

    2003-01-01

    The effects of various compounds on the aerobic stability of silages were evaluated. It has been observed that inoculation of whole-crop maize with homofermentative lactic acid bacteria leads to silages which have low stability against aerobic deterioration, while inoculation with heterofermentative lactic acid bacteria, such as Lactobacillus brevis or Lactobacillus buchneri, increases stability. Acetic acid has been proven to be the sole substance responsible for the increased aerobic stability, and this acid acts as an inhibitor of spoilage organisms. Therefore, stability increases exponentially with acetic acid concentration. Only butyric acid has a similar effect. Other compounds, like lactic acid, 1,2-propanediol, and 1-propanol, have been shown to have no effect, while fructose and mannitol reduce stability. PMID:12514042

  2. Nutrient dynamics in the lower Mississippi river floodplain: Comparing present and historic hydrologic conditions

    USGS Publications Warehouse

    Schramm, H.L.; Cox, M.S.; Tietjen, T.E.; Ezell, A.W.

    2009-01-01

    Alterations to the lower Mississippi River-floodplain ecosystem to facilitate commercial navigation and to reduce flooding of agricultural lands and communities in the historic floodplain have changed the hydrologic regime. As a result, the flood pulse usually has a lower water level, is of shorter duration, has colder water temperatures, and a smaller area of floodplain is inundated. Using average hydrologic conditions and water temperatures, we used established nitrogen and phosphorus processes in soils, an aquatic ecosystem model, and fish bioenergetic models to provide approximations of nitrogen and phosphorus flux in Mississippi River flood waters for the present conditions of a 2-month (mid-March to mid-May) flood pulse and for a 3-month (mid-March to mid-June), historic flood pulse. We estimated that the soils and aquatic biota can remove or sequester 542 and 976 kg nitrogen ha-1 during the present and historic hydrologic conditions, respectively. Phosphorus, on the other hand, will be added to the water largely as a result of anaerobic soil conditions but moderated by biological uptake by aquatic biota during both present and historic hydrologic conditions. The floodplain and associated water bodies may provide an important management opportunity for reducing downstream transport of nitrogen in Mississippi River waters. ?? 2009, The Society of Wetland Scientists.

  3. Education and the Economic Condition of Hispanics in the United States: Background Tables for NCREST Presentation.

    ERIC Educational Resources Information Center

    Rivera-Batiz, Francisco L.

    This document consists of 15 data tables, without accompanying text, for a National Center for Restructuring Education, Schools, and Teaching (NCREST) presentation on the education and economic condition of Hispanic Americans. Each table contains a source note. The following are the table titles: (1) "Resident Population of the United States, By…

  4. Human evaluative conditioning: acquisition trials, presentation schedule, evaluative style and contingency awareness.

    PubMed

    Baeyens, F; Eelen, P; Crombez, G; Van den Bergh, O

    1992-03-01

    Two different processes may be operative in human Pavlovian conditioning: signal learning and evaluative learning. Whereas most studies on evaluative conditioning focused on a mere demonstration of the phenomenon or on a theoretical analysis of the underlying processes, some basic parameters of evaluative learning are still unexplored. Hence, using the standard neutral picture--(dis)liked picture pairing paradigm (Baeyens, Eelen & Van den Bergh, 1990), in this study the effect of two parameters of evaluative conditioning was assessed on a between-subjects base, namely the Number of Acquisition Trials (2/5/10/20) and the Presentation Schedule of the stimulus pairs (blockwise or random). Additionally, the study included an exploratory analysis of the potential effects of the Evaluative Style of subjects (Feelers vs Thinkers, operationalized in terms of speed of emitting evaluations). Finally, the relationship between contingency awareness and evaluative learning was reassessed. Neutral-liked conditioning was found to be quadratically related to the number of acquisition trials (increase in effect up to 10 trials, decrease from 10 to 20 trials), whereas neutral-disliked conditioning linearly increased with increasing numbers of trials. Randomized vs blockwise presentation schedules of the stimulus pairs did differentially affect the overall pattern of conditioning, but in a way which was both unexpected and difficult to account for theoretically. Both the Evaluative Style of subjects and contingency awareness were demonstrated to be generally orthogonal to conditioned shifts in CS valence. Based on these findings, some practical suggestions are provided for the application of evaluating conditioning based therapeutical interventions to affective-behavioral disorders which are centred around inappropriate (dis)likes.

  5. Prebiotic Nitrogen Fixation by FeS Reduction of Nitrite Under Acidic Conditions

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Theories for the origin of life require the availability of reduced nitrogen for the formation of such species as amino acid and nucleic acids. In a strongly reducing atmosphere, compounds essential to the chemical evolution of life, such as amino acids, can form by reactions between HCN, NH3, and carbonyl compounds produced in spark discharges. However, under non-reducing atmospheres, electric discharges produced NO rather than HCN or NH3. This raises the questions of; how ammonia can be formed under a neutral atmosphere, and what conditions are needed such formation to occur? On possibility is the conversion of NO into nitric and nitrous acids (through HNO) and rained into the oceans. The reduction of nitrite by aqueous Fe(II) (6 Fe(+2) + 7 H(+) + NO2(-) yields 6 Fe(III) + 2 H2O + NH3) such as was present on the early Earth could then have produced ammonia. However, this reaction does not proceed at pHs less than 7.3. An alternative is reduction by other forms of Fe(II), such as FeS. We will present results that show that FeS can reduce nitrite to ammonia at pHs as low as pH 5 under a variety of conditions.

  6. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  7. [Present condition and new vista of the future in robotic-assisted laparoscopic surgeries].

    PubMed

    Abe, Takashige; Maruyama, Satoru; Shichinohe, Toshiaki; Honma, Shigenori; Kudo, Masataka; Shinohara, Nobuo

    2015-05-01

    The introduction of robotic surgical system is one of the most exciting topic in the field of the surgery. In this symposium, we presented and explained the present condition of robotic-assisted laparoscopic surgeries performed in the department of Urology, Gastroenterology and Gynecology of the Hokkaido University Hospital. By using this surgical system, laparoscopic surgery, which is generally considered to be difficult, can be safely performed by surgeons. Especially in radical prostatectomy against localized prostate cancer, this surgical approach brought the decrease in peri- and postoperative problems including blood loss and postoperative urinary incontinence in comparison with open or laparoscopic radical prostatectomy. We wish that this symposium would help the audience to understand the present condition and new vista of the future in robotic-assisted laparoscopic surgeries.

  8. Identification and Characterization of Two New Degradation Products of Saikosaponin A under Acid Hydrolytic Conditions.

    PubMed

    Li, Jun; Xu, Qiang; Jiang, Hua

    2016-01-01

    Saikosaponin (SS) A is a compound with various pharmacological properties and is easily degraded into SS-B1 and SS-G under acid conditions. In the present work, two new degradation products of SS-A, formed under acid hydrolytic conditions, were detected and isolated using analytical and semi-preparative liquid chromatography technology; furthermore, their structures were characterized as hydroxy-saikosaponin A and SS-B2 by spectral analysis, which is not only essential in stability-indicating method development and validation, but also could be used as a worst case scenario to assess the analytical method performance of SS-A. Moreover, their structural transformation pathways are also proposed. PMID:27649123

  9. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    PubMed

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values

  10. Present conditions on the dissemination of Japanese scientific and technical information to the U.S.

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi; Hasegawa, Tomohiko

    Present conditions concerning distribution of Japanese scientific and technical information to the U.S. are surveyed for promoting international distribution of it. The investigation, focusing on Japanese gray literature, is carried out into distribution to foreign countries, utilization/demand/difficulty to obtain in the U.S., and etc., through interviews and questionnaire surveys to researchers and librarians in Japan and the U.S. It is pointed out the needs to improve accessibility for Japanese technical reports, doctral dissertations, and technical bulletins/newsletters, and necessity to arrange conditions of distribution to the U.S. by increasing directory information and reducing language barrier between both countries.

  11. Optimization of the condition for adsorption of gallic acid by Aspergillus oryzae mycelia using Box-Behnken design.

    PubMed

    Zhang, Zhicai; Pang, Qiaoxia; Li, Min; Zheng, Huihua; Chen, Hui; Chen, Keping

    2015-01-01

    Fresh biomass of Aspergillus oryzae (A. oryzae) CGMCC5992 can effectively remove gallic acid from aqueous solution. To improve the removal rate of gallic acid, this study first identified the important factors affecting the removal rate of gallic acid with univariate analysis, and then used four-factor and three-level Box-Behnken design (BBD) with the removal rate of gallic acid as response value, to obtain the optimum conditions for the removal of gallic acid as follows: 6.95 h treatment time, pH 3.70, 7.07 g/L mycelium volume, and 120.64 mg/L initial concentration of gallic acid. Under such optimized condition, the removal rate of gallic acid approached 99.21 %. HPLC-MS analysis proved that the gallic acid in aqueous solution was completely removed by A. oryzae, rather than being metabolized into its derivatives. Scanning electron microscopy (SEM) indicated that the biomass morphology and surface structure of A. oryzae changed after the adsorption of gallic acid. Thus, the present study has provided an optimal condition for A. oryzae removal of gallic acid in water.

  12. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-01

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics. PMID:27083372

  13. Effects of microwave cooking conditions on bioactive compounds present in broccoli inflorescences.

    PubMed

    López-Berenguer, Carmen; Carvajal, Micaela; Moreno, Diego A; García-Viguera, Cristina

    2007-11-28

    Cooking as a domestic processing method has a great impact on food nutrients. Most Brassica (Brassicaceae, Cruciferae) vegetables are mainly consumed after being cooked, and cooking considerably affects their health-promoting compounds (specifically, glucosinolates, phenolic compunds, minerals, and vitamin C studied here). The microwave cooking process presents controversial results in the literature due to the different conditions that are employed (time, power, and added water). Therefore, the aim of this work was to study the influence of these conditions during microwave cooking on the human bioactive compounds of broccoli. The results show a general decrease in the levels of all the studied compounds except for mineral nutrients which were stable under all cooking conditions. Vitamin C showed the greatest losses mainly because of degradation and leaching, whereas losses for phenolic compounds and glucosinolates were mainly due to leaching into water. In general, the longest microwave cooking time and the higher volume of cooking water should be avoided to minimize losses of nutrients.

  14. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  15. Oxidation of dissolved iron under warmer, wetter conditions on Mars: Transitions to present-day arid environments

    NASA Astrophysics Data System (ADS)

    Burns, R. G.

    The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.

  16. Oxidation of dissolved iron under warmer, wetter conditions on Mars: Transitions to present-day arid environments

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.

  17. Changes of nucleic acids of wheat seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Musatenko, L. I.

    1983-01-01

    The effects of space flight on the growth of wheat seedlings and their nucleic acid content were studied. It was shown that both space and ground seedlings have almost the same appearance, dry weight and nucleic acid content in the root, coleoptile and leaves. The only difference found is in the RNA and DNA content, which is twice as much in the ground seedling apices as in the space-grown seedlings.

  18. Proboscis Conditioning Experiments with Honeybees, Apis Mellifera Caucasica, with Butyric Acid and DEET Mixture as Conditioned and Unconditioned Stimuli

    PubMed Central

    Abramson, Charles I.; Giray, Tugrul; Mixson, T. Andrew; Nolf, Sondra L.; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee. PMID:20879917

  19. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    PubMed

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  20. Applications for biotechnology: present and future improvements in lactic acid bacteria.

    PubMed

    McKay, L L; Baldwin, K A

    1990-09-01

    The lactic acid bacteria are involved in the manufacture of fermented foods from raw agricultural materials such as milk, meat, vegetables, and cereals. These fermented foods are a significant part of the food processing industry and are often prepared using selected strains that have the ability to produce desired products or changes efficiently. The application of genetic engineering technology to improve existing strains or develop novel strains for these fermentations is an active research area world-wide. As knowledge about the genetics and physiology of lactic acid bacteria accumulates, it becomes possible to genetically construct strains with characteristics shaped for specific purposes. Examples of present and future applications of biotechnology to lactic acid bacteria to improve product quality are described. Studies of the basic biology of these bacteria are being actively conducted and must be continued, in order for the food fermentation industry to reap the benefits of biotechnology.

  1. Hydrofluoric acid exposure: a case report and review on the clinical presentation and management.

    PubMed

    Strausburg, Matthew; Travers, Jeffrey; Mousdicas, Nico

    2012-01-01

    Exposure to hydrofluoric acid can cause severe skin damage via both corrosive and chemical means. Dermatologists should be aware of the various clinical presentations and knowledgeable of how to manage such patients. A case of a man with exposure of the hands after use of a consumer product containing hydrofluoric acid is presented. The presentation may vary depending on the concentration and duration of exposure. Patients experiencing exposure are at risk of serious complications, including death, resulting from electrolyte abnormalities. Information regarding the source of exposure will allow the physician to better predict the patient's course. The use of immediate flushing with water and the use of topical calcium gluconate can prevent extensive damage to the area of exposure and potentially fatal complications that may occur. More extensive burns may necessitate more invasive therapies. The treatment and the management and monitoring of such cases will allow for more optimal outcomes.

  2. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  3. The savant syndrome: an extraordinary condition. A synopsis: past, present, future

    PubMed Central

    Treffert, Darold A.

    2009-01-01

    Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some ‘island of genius’ which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular savant skill, it is always linked to massive memory. This paper presents a brief review of the phenomenology of savant skills, the history of the concept and implications for education and future research. PMID:19528017

  4. The savant syndrome: an extraordinary condition. A synopsis: past, present, future.

    PubMed

    Treffert, Darold A

    2009-05-27

    Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some 'island of genius' which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular savant skill, it is always linked to massive memory. This paper presents a brief review of the phenomenology of savant skills, the history of the concept and implications for education and future research. PMID:19528017

  5. The savant syndrome: an extraordinary condition. A synopsis: past, present, future.

    PubMed

    Treffert, Darold A

    2009-05-27

    Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some 'island of genius' which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular savant skill, it is always linked to massive memory. This paper presents a brief review of the phenomenology of savant skills, the history of the concept and implications for education and future research.

  6. How are the Concepts and Theories of Acid-Base Reactions Presented? Chemistry in Textbooks and as Presented by Teachers

    ERIC Educational Resources Information Center

    Furio-Mas, Carlos; Calatayud, Maria Luisa; Guisasola, Jenaro; Furio-Gomez, Cristina

    2005-01-01

    This paper investigates the views of science and scientific activity that can be found in chemistry textbooks and heard from teachers when acid-base reactions are introduced to grade 12 and university chemistry students. First, the main macroscopic and microscopic conceptual models are developed. Second, we attempt to show how the existence of…

  7. ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines

    SciTech Connect

    Lyssoivan, A.; Koch, R.; Van Eester, D.; Vervier, M.; Louche, F.; Lerche, E.; Ongena, J.; Paul, M. K.; Van Schoor, M.; Van Wassenhove, G.; Weynants, R.; Philipps, V.; Sergienko, G.; Esser, H. G.; Laengner, R.; Marchuk, O.; Schmitz, O.; Unterberg, B.; Rohde, V.

    2009-11-26

    ITER and future superconducting fusion machines need efficient wall conditioning techniques for routine operation in between shots in the presence of permanent high magnetic field for wall cleaning, surface isotope exchange and to control the in-vessel long term tritium retention. Ion Cyclotron Wall Conditioning (ICWC) based on the ICRF discharge is fully compatible and needs the presence of the magnetic field. The present paper focuses on the principal aspects of the ICWC discharge performance in large-size fusion machines: (i) neutral gas RF breakdown with conventional ICRF heating antennas, (ii) antenna coupling with low density ({approx}10{sup 17} m{sup -3}) RF plasmas and (iii) ICWC scenarios with improved RF plasma homogeneity in the radial and poloidal directions. All these factors were identified as crucial to achieve an enhanced conditioning effect (e.g. removal rates of selected 'marker' masses). All the observed effects are analyzed in terms of RF plasma wave excitation/absorption and compared with the predictions from 1-D RF full wave and 0-D RF plasma codes. Numerical modeling and empirical extrapolation from the existing machines give good evidence for the feasibility of using ICWC in ITER with the main ICRF antenna.

  8. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  9. [Cardioprotective properties of new glutamic acid derivative under stress conditions].

    PubMed

    Perfilova, V N; Sadikova, N V; Berestovitskaia, V M; Vasil'eva, O S

    2014-01-01

    The effect of new glutamic acid derivative on the cardiac ino- and chronotropic functions has been studied in experiments on rats exposed to 24-hour immobilization-and-pain stress. It is established that glutamic acid derivative RGPU-238 (glufimet) at a dose of 28.7 mg/kg increases the increment of myocardial contractility and relaxation rates and left ventricular pressure in stress-tested animals by 13 1,1, 72.4, and 118.6%, respectively, as compared to the control group during the test for adrenoreactivity. Compound RGPU-238 increases the increment of the maximum intensity of myocardium functioning by 196.5 % at 30 sec of isometric workload as compared to the control group. The cardioprotective effect of compound RGPU-238 is 1.5 - 2 times higher than that of the reference drug phenibut.

  10. Gamma-hydroxybutyric acid affects the acquisition and reinstatement of cocaine-induced conditioned place preference in mice.

    PubMed

    Maldonado, Concepción; Rodríguez-Arias, Marta; Castillo, Ana; Aguilar, María A; Miñarro, José

    2006-03-01

    Cocaine addicts very often use different combinations of cocaine and other drugs of abuse such as gamma-hydroxybutyric acid. The objective of the present work was to evaluate the impact of gamma-hydroxybutyric acid administration on the rewarding actions of cocaine, using the conditioned place preference procedure. Cocaine-induced conditioned place preference (50 mg/kg) was studied after pairing this drug with different gamma-hydroxybutyric acid doses (6.25, 12.5, 25, 50 and 100 mg/kg) during either the acquisition or the expression phase of the procedure. After conditioned place preference had been established, and the preference was extinguished, a reinstatement was induced by a dose of cocaine half of that used to produce conditioning, or by gamma-hydroxybutyric acid alone or by both drugs together. The doses of 12.5 and 100 mg/kg of gamma-hydroxybutyric acid blocked the acquisition of cocaine-induced conditioned place preference, and no dose affected the expression of this conditioning. Reinstatement was abolished only with the dose of 25 mg/kg gamma-hydroxybutyric acid, which did not reinstate the preference by itself. This is the first study evaluating the effects of gamma-hydroxybutyric acid on the rewarding properties of cocaine using the conditioned place preference procedure. The principal conclusion of the study is that gamma-hydroxybutyric acid does not enhance the rewarding effect of cocaine, and within a narrow margin of effective doses, blocks the acquisition and reinstatement of cocaine-induced preference.

  11. Optimization on preparation condition of polyunsaturated fatty acids nanoliposome prepared by Mozafari method.

    PubMed

    Rasti, B; Jinap, S; Mozafari, M R; Abd-Manap, M Y

    2014-06-01

    This study presents the application of the response surface methodology (design) to develop an optimal preparation condition (independent variables) namely shear rate (600-1000 rpm), mixing time (30-60 min), and sonication time (10-20 min) for polyunsaturated fatty acids (docosahexaenoic acid and eicosapentaenoic acid) nanoliposomes. Fifteen lipid mixtures were generated by the Box-Behnken design and nanoliposomes were prepared by the Mozafari (direct hydration and without using organic solvents) method. Nanoliposomes were characterized with respect to entrapment efficiency (EE) and vesicle size as Y1 and Y2 dependent variables, respectively. The results were then applied to estimate the coefficients of response surface model and to find the optimal preparation conditions with maximum EE and minimum vesicle size. The response surface analysis exhibited that the significant (p < 0.05) second-order polynomial regression equations were successfully fitted for all dependent variables with no significant (p > 0.05) lack of fit for the reduced models. The response optimization of experiments was the shear rate: 795 rpm; mixing time: 60 min; and sonication time: 10 min. The optimal nanoliposome had an average diameter of 81.4 nm and EE of 100%. The experimental results of optimal nanoliposomes characterization confirmed an accurate fitness of the predicted values by reduced response surface models. PMID:24099144

  12. Jasmonic acid transient accumulation is needed for abscisic acid increase in citrus roots under drought stress conditions.

    PubMed

    de Ollas, Carlos; Hernando, Bárbara; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2013-03-01

    Phytohormones are central players in sensing and signaling numerous environmental conditions like drought stress. In this work, an experimental system based on severe drought was established and hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonic acid (JA) biosynthesis was studied in roots of citrumelo CPB 4475 (a commercial citrus rootstock) plants. JA concentration transiently increased after a few hours of stress, returning to control levels 30 h after the onset of the condition. A more progressive ABA accumulation was observed, with the onset of this increase at the same time or right after the JA transient accumulation. Molecular data suggested that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also pointed to a possible involvement of JA on ABA biosynthesis under stress. To test this hypothesis, JA and ABA biosynthesis were chemically inhibited and subsequently phenotypes rescued by the addition of exogenous hormones. Results showed that the early JA accumulation was necessary for the subsequent ABA increase in roots under stress whereas the opposite could not be stated. The model includes a burst of JA in roots of citrus under severe drought stress conditions that leads to a more progressive ABA accumulation that will induce later plant responses. The present work adds a new level of interaction between JA and ABA at the biosynthetic level that together with the previously described interaction between signal transduction cascades of the two hormones would allow plants to fine-tune specific responses to different stimuli.

  13. Culture Conditions stimulating high γ-Linolenic Acid accumulation by Spirulina platensis

    PubMed Central

    Ronda, Srinivasa Reddy; Lele, S.S.

    2008-01-01

    Gamma-linolenic acid (GLA) production by Spirulina platensis under different stress-inducing conditions was studied. Submerged culture studies showed that low temperature (25°C), strong light intensity (6 klux) and primrose oil supplement (0.8%w/v) induced 13.2 mg/g, 14.6 mg/g and 13.5 mg linolenic acid per gram dry cell weight respectively. A careful observation of fatty acid profile of the cyanobacteria shows that, oleic acid and linoleic acid, in experiments with varying growth temperature and oil supplements respectively, helped in accumulating excess γ-linolenic acid. In addition, cultures grown at increasing light regimes maintained the γ-linolenic acid to the total fatty acid ratio(GLA/TFA) constant, despite any change in γ-linolenic acid content of the cyanobacteria. PMID:24031291

  14. Ecoclimatic indicators to study crop suitability in present and future climatic conditions

    NASA Astrophysics Data System (ADS)

    Caubel, Julie; Garcia de Cortazar Atauri, Inaki; Huard, Frédéric; Launay, Marie; Ripoche, Dominique; Gouache, David; Bancal, Marie-Odile; Graux, Anne-Isabelle; De Noblet, Nathalie

    2013-04-01

    Climate change is expected to affect both regional and global food production through changes in overall agroclimatic conditions. It is therefore necessary to develop simple tools of crop suitability diagnosis in a given area so that stakeholders can envisage land use adaptations under climate change conditions. The most common way to investigate potential impacts of climate on the evolution of agrosystems is to make use of an array of agroclimatic indicators, which provide synthetic information derived from climatic variables and calculated within fixed periods (i.e. January first - 31th July). However, the information obtained during these periods does not enable to take account of the plant response to climate. In this work, we present some results of the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe). We proposed a suite of relevant ecoclimatic indicators, based on temperature and rainfall, in order to evaluate crop suitability for both present and new climatic conditions. Ecoclimatic indicators are agroclimatic indicators (e.g., grain heat stress) calculated during specific phenological phases so as to take account of the plant response to climate (e.g., the grain filling period, flowering- harvest). These indicators are linked with the ecophysiological processes they characterize (for e.g., the grain filling). To represent this methodology, we studied the suitability of winter wheat in future climatic conditions through three distinct French sites, Toulouse, Dijon and Versailles. Indicators have been calculated using climatic data from 1950 to 2100 simulated by the global climate model ARPEGE forced by a greenhouse effect corresponding to the SRES A1B scenario. The Quantile-Quantile downscaling method was applied to obtain data for the three locations. Phenological stages (emergence, ear 1 cm, flowering, beginning of grain filling and harvest) have been

  15. Software sensor design considering oscillating conditions as present in industrial scale fed-batch cultivations.

    PubMed

    Lyubenova, V; Junne, S; Ignatova, M; Neubauer, P

    2013-07-01

    Investigations of inhomogeneous dynamics in industrial-scale bioreactors can be realized in laboratory simulators. Such studies will be improved by on line observation of the growth of microorganisms and their product synthesis at oscillating substrate availability which represents the conditions in industrial-scale fed-batch cultivations. A method for the kinetic monitoring of such processes, supported by on line measurements accessible in industrial practice, is proposed. It consists of a software sensor (SS) system composed of a cascade structure. Process kinetics are simulated in models with a structure including time-varying yield coefficients. SSs for measured variable kinetics have classical structures. The SS design of unmeasured variables is realized after a linear transformation using a logarithmic function. For these software sensors, a tuning procedure is proposed, at which an arbitrary choice of one tuning parameter value that guarantees stability of the monitoring system allows the calculation of the optimal values of six parameters. The effectiveness of the proposed monitoring approach is demonstrated with experimental data from a glucose-limited fed-batch process of Bacillus subtilis in a laboratory two-compartment scale down reactor which tries to mimic the conditions present in industrial scale nutrient-limited fed-batch cultivations. PMID:23436309

  16. The Patient Educator Presentation in Dental Education: Reinforcing the Importance of Learning About Rare Conditions.

    PubMed

    Edwards, Paul C; Graham, Jasmine; Oling, Rebecca; Frantz, Kate E

    2016-05-01

    The aim of this study was to determine whether a patient educator presentation (PEP) on pemphigus vulgaris would increase second-year dental students' awareness of the importance of learning about rare conditions and improve their retention of rare disease knowledge. The study involved students' subjective assessments of a PEP experience at two U.S. dental schools. In this mixed methods study, cross-sectional data were obtained by surveys and in-depth interviews. Questions focused on students' assessment of the messages acquired from the PEP and its likely impact on their future clinical care. At University 1, students completed paper surveys with open-ended questions and participated in a focus group. At University 2, students completed an online survey consisting of rating scale and open-ended questions. Responses to open-ended questions were categorized into themes. At University 1, 79 students (out of a possible 102; response rate 77.5%) completed the survey, and an additional ten students participated in a focus group. At University 2, 30 students (out of a possible 104; response rate 28.8%) completed the survey. At Universities 1 and 2, 88% and 100%, respectively, of respondents stated the PEP would influence their future clinical decision making. The vast majority of respondents (94% and 100% at University 1 and University 2, respectively) were of the opinion that the personal testimonial from a patient would help them recall information about pemphigus vulgaris in five years' time. Respondents from both universities commented that the PEP emphasized the importance of not dismissing a patient's concerns. These results suggest that a presentation by a patient with a rare condition can be an effective educational tool for preclinical dental students. PMID:27139204

  17. Present and Future Human Thermal Bioclimatic Conditions and Impacts on Respiratory Admissions in Crete Island, Greece

    NASA Astrophysics Data System (ADS)

    Bleta, Anastasia; Nastos, Panagiotis

    2015-04-01

    The objective of this study is to assess and quantify the association between present and future human thermal bioclimatic conditions and daily counts of respiratory problems in Heraklion city, Crete Island, Greece. The bioclimatic conditions were analyzed in terms of the Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI), which are two of the most popular human thermal indices based on the human energy balance. The PET and UTCI analysis was performed by the application of the bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. Future changes in meteorological parameters such as air temperature, relative humidity, wind speed and cloudiness (used as input variables in the estimation of PET and UTCI) were derived by the simulations of the regional atmospheric climate model KNMI under SRES A1B, for the near (2021-2050) and far (2071-2100) future with respect to the reference period 1961-1990. Generalized linear models (GLM) with Poisson distribution were applied to the time series of daily numbers of outpatients (total, males and females) with respiratory problems against present and future bioclimatic changes, after controlling for possible confounders and adjustment for season and trends. The interpretation of the results of this analysis suggests a significant association between cold weather and increased respiratory admissions. For the near future, the projected increase of 1.6oC in PET may result in reducing the incidence of respiratory problemsby almost 3% against 7.5% in the far future, when PET is projected to increase by 4oC.

  18. The Patient Educator Presentation in Dental Education: Reinforcing the Importance of Learning About Rare Conditions.

    PubMed

    Edwards, Paul C; Graham, Jasmine; Oling, Rebecca; Frantz, Kate E

    2016-05-01

    The aim of this study was to determine whether a patient educator presentation (PEP) on pemphigus vulgaris would increase second-year dental students' awareness of the importance of learning about rare conditions and improve their retention of rare disease knowledge. The study involved students' subjective assessments of a PEP experience at two U.S. dental schools. In this mixed methods study, cross-sectional data were obtained by surveys and in-depth interviews. Questions focused on students' assessment of the messages acquired from the PEP and its likely impact on their future clinical care. At University 1, students completed paper surveys with open-ended questions and participated in a focus group. At University 2, students completed an online survey consisting of rating scale and open-ended questions. Responses to open-ended questions were categorized into themes. At University 1, 79 students (out of a possible 102; response rate 77.5%) completed the survey, and an additional ten students participated in a focus group. At University 2, 30 students (out of a possible 104; response rate 28.8%) completed the survey. At Universities 1 and 2, 88% and 100%, respectively, of respondents stated the PEP would influence their future clinical decision making. The vast majority of respondents (94% and 100% at University 1 and University 2, respectively) were of the opinion that the personal testimonial from a patient would help them recall information about pemphigus vulgaris in five years' time. Respondents from both universities commented that the PEP emphasized the importance of not dismissing a patient's concerns. These results suggest that a presentation by a patient with a rare condition can be an effective educational tool for preclinical dental students.

  19. Liquid Water Lakes on Mars Under Present-Day Conditions: Sustainability and Effects on the Subsurface

    NASA Astrophysics Data System (ADS)

    Goldspiel, Jules M.

    2015-11-01

    Decades of Mars exploration have produced ample evidence that aqueous environments once existed on the surface. Much evidence supports groundwater emergence as the source of liquid water on Mars [1-4]. However, cases have also been made for rainfall [5] and snow pack melts [6].Whatever the mechanism by which liquid water is emplaced on the surface of Mars, whether from groundwater seeps, atmospheric precipitation, or some combination of sources, this water would have collected in local topographic lows, and at least temporarily, would have created a local surface water system with dynamic thermal and hydrologic properties. Understanding the physical details of such aqueous systems is important for interpreting the past and present surface environments of Mars. It is also important for evaluating potential habitable zones on or near the surface.In conjunction with analysis of surface and core samples, valuable insight into likely past aqueous sites on Mars can be gained through modeling their formation and evolution. Toward that end, we built a 1D numerical model to follow the evolution of small bodies of liquid water on the surface of Mars. In the model, liquid water at different temperatures is supplied to the surface at different rates while the system is subjected to diurnally and seasonally varying environmental conditions. We recently simulated cases of cold (275 K) and warm (350 K) water collecting in a small depression on the floor of a mid southern latitude impact crater. When inflows create an initial pool > 3 m deep and infiltration can be neglected, we find that the interior of the pool can remain liquid over a full Mars year under the present cold and dry climate as an ice cover slowly thickens [7]. Here we present new results for the thermal and hydrologic evolution of surface water and the associated subsurface region for present-day conditions when infiltration of surface water into the subsurface is considered.[1] Pieri (1980) Science 210.[2] Carr

  20. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells.

    PubMed

    Serafim, Teresa L; Carvalho, Filipa S; Marques, Maria P M; Calheiros, Rita; Silva, Tiago; Garrido, Jorge; Milhazes, Nuno; Borges, Fernanda; Roleira, Fernanda; Silva, Elisiaario T; Holy, Jon; Oliveira, Paulo J

    2011-05-16

    In the present work, lipophilic caffeic and ferulic acid derivatives were synthesized, and their cytotoxicity on cultured breast cancer cells was compared. A total of six compounds were initially evaluated: caffeic acid (CA), hexyl caffeate (HC), caffeoylhexylamide (HCA), ferulic acid (FA), hexyl ferulate (HF), and feruloylhexylamide (HFA). Cell proliferation, cell cycle progression, and apoptotic signaling were investigated in three human breast cancer cell lines, including estrogen-sensitive (MCF-7) and insensitive (MDA-MB-231 and HS578T). Furthermore, direct mitochondrial effects of parent and modified compounds were investigated by using isolated liver mitochondria. The results indicated that although the parent compounds presented no cytotoxicity, the new compounds inhibited cell proliferation and induced cell cycle alterations and cell death, with a predominant effect on MCF-7 cells. Interestingly, cell cycle data indicates that effects on nontumor BJ fibroblasts were predominantly cytostatic and not cytotoxic. The parent compounds and derivatives also promoted direct alterations on hepatic mitochondrial bioenergetics, although the most unexpected and never before reported one was that FA induces the mitochondrial permeability transition. The results show that the new caffeic and ferulic acid lipophilic derivatives show increased cytotoxicity toward human breast cancer cell lines, although the magnitude and type of effects appear to be dependent on the cell type. Mitochondrial data had no direct correspondence with effects on intact cells suggesting that this organelle may not be a critical component of the cellular effects observed. The data provide a rational approach to the design of effective cytotoxic lipophilic hydroxycinnamic derivatives that in the future could be profitably applied for chemopreventive and/or chemotherapeutic purposes.

  1. A laboratory study of the nucleation kinetics of nitric acid hydrates under stratospheric conditions

    NASA Astrophysics Data System (ADS)

    James, Alexander D.; Murray, Benjamin J.; Plane, John M. C.

    2016-04-01

    Measurements of the kinetics of crystallisation of ternary H2O-H2SO4-HNO3 mixtures to produce nitric acid hydrate phases, as occurs in the lower stratosphere, have been a long-standing challenge for investigators in the laboratory. Understanding polar stratospheric chlorine chemistry and thereby ozone depletion is increasingly limited by descriptions of nucleation processes. Meteoric smoke particles have been considered in the past as heterogeneous nuclei, however recent studies suggest that these particles will largely dissolve, leaving mainly silica and alumina as solid inclusions. In this study the nucleation kinetics of nitric acid hydrate phases have been measured in microliter droplets at polar stratospheric cloud (PSC) temperatures, using a droplet freezing assay. A clear heterogeneous effect was observed when silica particles were added. A parameterisation based on the number of droplets activated per nuclei surface area (ns) has been developed and compared to global model data. Nucleation experiments on identical droplets have been performed in an X-Ray Diffractometer (XRD) to determine the nature of the phase which formed. β-Nitric Acid Trihydrate (NAT) was observed alongside a mixture of Nitric Acid Dihydrate (NAD) phases. It is not possible to determine whether NAT nucleates directly or is formed by a phase transition from NAD (likely requiring the presence of a mediating liquid phase). Regardless, these results demonstrate the possibility of forming NAT on laboratory timescales. In the polar stratosphere, sulfuric acid (present at several weight percent of the liquid under equilibrium conditions) could provide such a liquid phase. This study therefor provides insight into previous discrepancies between phases formed in the laboratory and those observed in the atmosphere. It also provides a basis for future studies into atmospheric nucleation of solid PSCs.

  2. Determination of Acid Dissociation Constant of Pravastatin under Degraded Conditions by Capillary Zone Electrophoresis.

    PubMed

    Takayanagi, Toshio; Amiya, Mika; Shimakami, Natsumi; Yabutani, Tomoki

    2015-01-01

    The acid dissociation constant of pravastatin was determined under degraded conditions. Pravastatin was degraded in an acidic solution (pH = 2.0) for 5 h, and the degradation solution was subjected to the measurement of the effective electrophoretic mobility by capillary zone electrophoresis. Although the amount of pravastatin decreased by the acid degradation, its acid dissociation constant was successfully determined with the residual pravastatin through its effective electrophoretic mobility. The determined acid dissociation constant value agreed well with the one obtained with freshly prepared solution and with some reported values.

  3. Modeling deep ocean shipping noise in varying acidity conditions.

    PubMed

    Udovydchenkov, Ilya A; Duda, Timothy F; Doney, Scott C; Lima, Ivan D

    2010-09-01

    Possible future changes of ambient shipping noise at 0.1-1 kHz in the North Pacific caused by changing seawater chemistry conditions are analyzed with a simplified propagation model. Probable decreases of pH would cause meaningful reduction of the sound absorption coefficient in near-surface ocean water for these frequencies. The results show that a few decibels of increase may occur in 100 years in some very quiet areas very far from noise sources, with small effects closer to noise sources. The use of ray physics allows sound energy attenuated via volume absorption and by the seafloor to be compared.

  4. E-waste management challenges in Iran: presenting some strategies for improvement of current conditions.

    PubMed

    Taghipour, Hassan; Nowrouz, Parviz; Jafarabadi, Mohamad Asghari; Nazari, Jalil; Hashemi, Ahmad Asl; Mosaferi, Mohammad; Dehghanzadeh, Reza

    2012-11-01

    E-waste is one of the fastest-growing waste streams in Iran, owing to an increase in consumption of electrical and electronic equipment. Nevertheless, as is the case in some other countries, E-waste management has not received sufficient attention. For the successful implementation of any waste management plan (including an E-waste management plan), the availability of sufficient and accurate information on the quantities and composition of the waste generated and on current management conditions is a fundamental prerequisite. At present, in Iran, there is no available and accurate information that describes the characteristics and generation rate of E-waste or the actual practice of management and handling of the waste. For this initial study, eight electronic products were selected for the determination of their E-waste generation rate in the country, and two cities, Tehran and Tabriz, were selected for assessment of the current condition of E-waste management. The study found that the amount of E-waste generation in the country for the eight selected electronic items alone was 115,286, 112,914 and 115,151 metric tons in 2008, 2009 and 2010, respectively. Of the types of electronic items included in the study, televisions, with an average of 42.42%, and PCs, with an average of 32.66% accounted for the greatest proportions of the total mass of E-waste generated during 2008-2010. Currently, despite the fact that primary legislation for E-waste management (as part of general waste legislation) exists in Iran, this primary legislation has not yet been implemented. In practical terms, there is no definite policy or plan for the allocation of funds to prepare suitable equipment and facilities for the management and recycling of E-waste at the end of the products' useful life. Proposed improvements in current conditions are identified, first by considering other countries' experiences and then suggesting specific practical policies, rules, and regulations that should be

  5. Brushing abrasion of luting cements under neutral and acidic conditions.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    2000-01-01

    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  6. Regulation of legume nodulation by acidic growth conditions.

    PubMed

    Ferguson, Brett J; Lin, Meng-Han; Gresshoff, Peter M

    2013-03-01

    Legumes represent some of the most important crop species worldwide. They are able to form novel root organs known as nodules, within which biological nitrogen fixation is facilitated through a symbiotic interaction with soil-dwelling bacteria called rhizobia. This provides legumes with a distinct advantage over other plant species, as nitrogen is a key factor for growth and development. Nodule formation is tightly regulated by the plant and can be inhibited by a number of external factors, such as soil pH. This is of significant agricultural and economic importance as much of global legume crops are grown on low pH soils. Despite this, the precise mechanism by which low pH conditions inhibits nodule development remains poorly characterized.

  7. Enantioselective Hydrogenation of β,β-Disubstituted Unsaturated Carboxylic Acids under Base-Free Conditions.

    PubMed

    Yan, Qiaozhi; Kong, Duanyang; Zhao, Wei; Zi, Guofu; Hou, Guohua

    2016-03-01

    An additive-free enantioselective hydrogenation of β,β-disubstituted unsaturated carboxylic acids catalyzed by the Rh-(R,R)-f-spiroPhos complex has been developed. Under mild conditions, a wide scope of β,β-disubstituted unsaturated carboxylic acids were hydrogenated to the corresponding chiral carboxylic acids with excellent enantioselectivities (up to 99.3% ee). This methodology was also successfully applied to the synthesis of the pharmaceutical molecule indatraline.

  8. Instability of Amide Bond Comprising the 2-Aminotropone Moiety: Cleavable under Mild Acidic Conditions.

    PubMed

    Balachandra, Chenikkayala; Sharma, Nagendra K

    2015-08-21

    An unusual hydrolysis/solvolysis of the classical acyclic amide bond, derived from N-troponylaminoethylglycine (Traeg) and α-amino acids, is described under mild acidic conditions. The reactivity of this amide bond is possibly owed to the protonation of the troponyl carbonyl functional group. The results suggest that the Traeg amino acid is a potential candidate for protecting and caging of the amine functional group of bioactive molecules via a cleavable amide bond.

  9. Formation of phenol under conditions of the reaction of oxidative carbonylation of benzene to benzoic acid

    SciTech Connect

    Kalinovsky, I.O.; Leshcheva, A.N.; Pogorelov, V.V.; Gelbshtein, A.I.

    1993-12-31

    This paper describes conditions for the oxidation of benzene to phenol. It is shown that a reaction mixture of water, carbon monoxide, and oxygen are essential to the oxidation. The oxidation is a side reaction found to occur during the oxidative carbonylation of benzene to benzoic acid in a medium of trifluoroacetic acid.

  10. Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua

    2016-11-01

    Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (<10 kD) in the groundwater (neutral to alkaline pH) may cause solubilization of the polymers. Also, humic acids have the native reducing capacity and potentially reduce the polymeric Pu(IV) to Pu(III)aq (log[Pu(III)aq]total = -5.3 at pH 7.2 and I = 0). Solubilization and reduction of the polymers can enhance their mobility in subsurface environments. Nevertheless, humic acids readily coat the surfaces of metal oxides via electrostatic interaction and ligand exchange mechanisms. The humic coatings are expected to prevent both solubilization and reduction of the polymers. Experiments were conducted under anoxic and slightly alkaline (pH 7.2) conditions in order to study whether humic acids have effects on stability of the polymers. The results show that the polymeric Pu(IV) was almost completely transformed into aqueous Pu(IV) in the presence of EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu

  11. Uranium partitioning under acidic conditions in a sandy soil aquifer

    SciTech Connect

    Johnson, W.H. |; Serkiz, S.M.; Johnson, L.M.

    1995-07-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K{sub d} model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data.

  12. Monitoring present day climatic conditions in tropical caves using an Environmental Data Acquisition System (EDAS)

    NASA Astrophysics Data System (ADS)

    Sondag, Francis; van Ruymbeke, Michel; Soubiès, François; Santos, Roberto; Somerhausen, André; Seidel, Alexandre; Boggiani, Paulo

    2003-03-01

    This paper presents data from automatic stations which have been installed for monitoring climatic parameters in caves in two areas of Brazil. These devices, initially developed at the Royal Observatory of Belgium to monitor environmental parameters in geophysical observatories, were adapted in our study to operate under tropical cave conditions and to measure temperature, atmospheric pressure and drip rate of stalactites. Similar devices were installed at the surface near to the caves to measure air temperature, atmospheric pressure and rainfall. The results reveal that the drip rate at the tip of stalactites is related to the effective rainfall (water excess). The stable drip regime observed during the dry season seems to be reproducible from one year to the other and could be related to the infiltration of water which has a long residence time in the aquifer. Regular pressure oscillations, with amplitude ranging between 1 and 2 mb, are observed in both of the monitored caves. Spectral analysis of the data suggests that these oscillations are linked to the diurnal and semi-diurnal solar tides (S1 and S2). In one cave, very small temperature variations (0.02-0.05 °C) are also observed with a similar diurnal and semi-diurnal pattern, and we argue that the generating process of the thermal components of the S1 and S2 frequencies is a mixture of thermal convection produced by the surface meteorological variations and of an adiabatic induction of the S2 atmospheric pressure modulation. A very large annual thermal amplitude (13 °C) is observed in the other cave; this is a great motivation to study the stable isotope geochemistry of its speleothems as they probably have recorded past temperature fluctuations linked to paleoclimate variations in this area of south-western Brazil.

  13. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin.

    PubMed

    Liu, Dasong; Wei, Guanmian; Li, Tiancheng; Hu, Jinhua; Lu, Naiyan; Regenstein, Joe M; Zhou, Peng

    2015-04-01

    This study investigated the effects of alkaline pretreatments and acid extraction conditions on the production of acid-soluble collagen (ASC) from grass carp skin. For alkaline pretreatment, 0.05 and 0.1M NaOH removed non-collagenous proteins without significant loss of ASC at 4, 10, 15 and 20 °C; while 0.2 and 0.5M NaOH caused significant loss of ASC, and 0.5M NaOH caused structural modification of ASC at 15 and 20 °C. For acid extraction at 4, 10, 15 and 20 °C, ASC was partly extracted by 0.1 and 0.2M acetic acid, while 0.5 and 1.0M acetic acid resulted in almost complete extraction. The processing conditions involving 0.05-0.1M NaOH for pretreatment, 0.5M acetic acid for extraction and 4-20 °C for both pretreatment and extraction, produced ASC with the structural integrity being well maintained and hence were recommended to prepare ASC from grass carp skin in practical application.

  14. Modeling of yeast Brettanomyces bruxellensis growth at different acetic acid concentrations under aerobic and anaerobic conditions.

    PubMed

    Yahara, Garcia Alvarado; Javier, Mendez Ancona; Tulio, Mata Jimenez Marco; Javier, Gómez Rodriguez; Guadalupe, Aguilar Uscanga Maria

    2007-11-01

    Glucose utilization by Brettanomyces bruxellensis at different acetic acid concentrations under aerobic and anaerobic conditions was investigated. The presence of the organic acid disturbs the growth and fermentative activity of the yeast when its concentration exceeds 2 g l(-1). A mathematical model is proposed for the kinetic behavior analysis of yeast growing in batch culture. A Matlab algorithm was used for estimation of model parameters, whose confidence intervals were also calculated at a 0.95 probability level using a t-Student distribution for f degrees of freedom. The model successfully simulated the batch kinetics observed at different concentrations of acetic acid under both oxygen conditions.

  15. A Novel Method for Presenting the Amino Acids in an Introductory Biochemistry Course.

    ERIC Educational Resources Information Center

    Kuehl, LeRoy

    1978-01-01

    Introduces an approach to teaching amino acids that employs the use of a poem containing information on the structure and properties of amino acids, and of slides illustrating the poem. Student response to the method was positive. (MA)

  16. Copper binding to soil fulvic and humic acids: NICA-Donnan modeling and conditional affinity spectra.

    PubMed

    Xu, Jinling; Tan, Wenfeng; Xiong, Juan; Wang, Mingxia; Fang, Linchuan; Koopal, Luuk K

    2016-07-01

    Binding of Cu(II) to soil fulvic acid (JGFA), soil humic acids (JGHA, JLHA), and lignite-based humic acid (PAHA) was investigated through NICA-Donnan modeling and conditional affinity spectrum (CAS). It is to extend the knowledge of copper binding by soil humic substances (HS) both in respect of enlarging the database of metal ion binding to HS and obtaining a good insight into Cu binding to the functional groups of FA and HA by using the NICA-Donnan model to unravel the intrinsic and conditional affinity spectra. Results showed that Cu binding to HS increased with increasing pH and decreasing ionic strength. The amount of Cu bound to the HAs was larger than the amount bound to JGFA. Milne's generic parameters did not provide satisfactory predictions for the present soil HS samples, while material-specific NICA-Donnan model parameters described and predicted Cu binding to the HS well. Both the 'low' and 'high' concentration fitting procedures indicated a substantial bidentate structure of the Cu complexes with HS. By means of CAS underlying NICA isotherm, which was scarcely used, the nature of the binding at different solution conditions for a given sample and the differences in binding mode were illustrated. It was indicated that carboxylic group played an indispensable role in Cu binding to HS in that the carboxylic CAS had stronger conditional affinity than the phenolic distribution due to its large degree of proton dissociation. The fact was especially true for JGFA and JLHA which contain much larger amount of carboxylic groups, and the occupation of phenolic sites by Cu was negligible. Comparable amounts of carboxylic and phenolic groups on PAHA and JGHA, increased the occupation of phenolic type sites by Cu. The binding strength of PAHA-Cu and JGHA-Cu was stronger than that of JGFA-Cu and JLHA-Cu. The presence of phenolic groups increased the chance of forming more stable complexes, such as the salicylate-Cu or catechol-Cu type structures. PMID:27061366

  17. Past and present: conditions of life during childhood and mortality of older adults

    PubMed Central

    Gomes, Marília Miranda Forte; Turra, Cássio Maldonado; Fígoli, Moema Gonçalves Bueno; Duarte, Yeda A O; Lebrão, Maria Lúcia

    2016-01-01

    ABSTRACT OBJECTIVE To analyze whether socioeconomic and health conditions during childhood are associated with mortality during old age. METHODS Data were extracted from the SABE Study (Saúde, Bem-estar e Envelhecimento – Health, Welfare and Aging), which were performed in 2000 and 2006. The sample consisted of 2004 (1,355 living and 649 dead) older adults. The statistical analysis was performed based on Poisson regression models, taking into account the time variation of risk observed. Older adults’ demographic characteristics and life conditions were evaluated, as were the socioeconomic and lifestyle conditions they acquired during their adult life. RESULTS Only the area of residence during childhood (rural or urban) remained as a factor associated with mortality at advanced ages. However, this association lost significance when the variables acquired during adulthood were added to the model. CONCLUSIONS Despite the information regarding the conditions during childhood being limited and perhaps not accurately measure the socioeconomic status and health in the first years of life, the findings of this study suggest that improving the environmental conditions of children and creating opportunities during early adulthood may contribute to greater survival rates for those of more advanced years. PMID:26786474

  18. The gallbladder: uncommon gallbladder conditions and unusual presentations of the common gallbladder pathological processes.

    PubMed

    Revzin, Margarita V; Scoutt, Leslie; Smitaman, Edward; Israel, Gary M

    2015-02-01

    This article reviews a spectrum of gallbladder conditions that are either uncommon or represent unusual manifestations of common diseases. These conditions are divided into four major categories: (a) congenital anomalies and normal variants including duplication, ectopia, and lymphangioma; (b) inflammatory processes and stone-related diseases and complications including adenomyomatosis, emphysematous cholecystitis, xanthogranulomatous cholecystitis, gangrenous and hemorrhagic cholecystitis, perforation, gallstone ileus, and Bouveret and Mirizzi syndromes; (c) gallbladder neoplasms including adenocarcinoma with associated porcelain gallbladder, squamous cell carcinoma, lymphoma, melanoma, and neurofibroma. A thorough understanding of the imaging characteristics of each condition can help the radiologist to make a timely and accurate diagnosis, thus avoiding potentially harmful delays in patient management and decreasing morbidity and mortality rates.

  19. Shear conditions in clavulanic acid production by Streptomyces clavuligerus in stirred tank and airlift bioreactors.

    PubMed

    Cerri, M O; Badino, A C

    2012-08-01

    In biochemical processes involving filamentous microorganisms, the high shear rate may damage suspended cells leading to viability loss and cell disruption. In this work, the influence of the shear conditions in clavulanic acid (CA) production by Streptomyces clavuligerus was evaluated in a 4-dm(3) conventional stirred tank (STB) and in 6-dm(3) concentric-tube airlift (ALB) bioreactors. Batch cultivations were performed in a STB at 600 and 800 rpm and 0.5 vvm (cultivations B1 and B2) and in ALB at 3.0 and 4.1 vvm (cultivations A1 and A2) to define two initial oxygen transfer conditions in both bioreactors. The average shear rate ([Formula: see text]) of the cultivations was estimated using correlations of recent literature based on experimental data of rheological properties of the broth (consistency index, K, and flow index, n) and operating conditions, impeller speed (N) for STB and superficial gas velocity in the riser (UGR) for ALB. In the same oxygen transfer condition, the [Formula: see text] values for ALB were higher than those obtained in STB. The maximum [Formula: see text] presented a strong correlation with a maximum consistency index (K (max)) of the broth. Close values of maximum CA production were obtained in cultivations A1 and A2 (454 and 442 mg L(-1)) with similar maximum [Formula: see text] values of 4,247 and 4,225 s(-1). In cultivations B1 and B2, the maximum CA production of 269 and 402 mg L(-1) were reached with a maximum [Formula: see text] of 904 and 1,786 s(-1). The results show that high values of average shear rate increase the CA production regardless of the oxygen transfer condition and bioreactor model.

  20. Development of an Index of Ecological Condition Based on Great River Fish Assemblages, Presentation

    EPA Science Inventory

    As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi,.unimpounded...

  1. Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry.

    PubMed

    Otake, Tsubasa; Taniguchi, Takashi; Furukawa, Yoshihiro; Kawamura, Fumio; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2011-10-01

    The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5 GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination.

  2. Stability of amino acids and their oligomerization under high-pressure conditions: implications for prebiotic chemistry.

    PubMed

    Otake, Tsubasa; Taniguchi, Takashi; Furukawa, Yoshihiro; Kawamura, Fumio; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2011-10-01

    The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5 GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination. PMID:21961531

  3. Influence of mineralogy on the preservation of amino acids under simulated Mars conditions

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato; Patel, Manish; Cuadros, Javier; Martins, Zita

    2016-10-01

    The detection of organic molecules associated with life on Mars is one of the main goals of future life-searching missions such as the ESA-Roscosmos ExoMars and NASA 2020 mission. In this work we studied the preservation of 25 amino acids that were spiked onto the Mars-relevant minerals augite, enstatite, goethite, gypsum, hematite, jarosite, labradorite, montmorillonite, nontronite, olivine and saponite, and on basaltic lava under simulated Mars conditions. Simulations were performed using the Open University Mars Chamber, which mimicked the main aspects of the martian environment, such as temperature, UV radiation and atmospheric pressure. Quantification and enantiomeric separation of the amino acids were performed using gas-chromatography-mass spectrometry (GC-MS). Results show that no amino acids could be detected on the mineral samples spiked with 1 μM amino acid solution (0.1 μmol of amino acid per gram of mineral) subjected to simulation, possibly due to complete degradation of the amino acids and/or low extractability of the amino acids from the minerals. For higher amino acid concentrations, nontronite had the highest preservation rate in the experiments in which 50 μM spiking solution was used (5 μmol/g), while jarosite and gypsum had a higher preservation rate in the experiments in which 25 and 10 μM spiking solutions were used (2.5 and 1 μmol/g), respectively. Overall, the 3 smectite minerals (montmorillonite, saponite, nontronite) and the two sulfates (gypsum, jarosite) preserved the highest amino acid proportions. Our data suggest that clay minerals preserve amino acids due to their high surface areas and small pore sizes, whereas sulfates protect amino acids likely due to their opacity to UV radiation or by partial dissolution and crystallization and trapping of the amino acids. Minerals containing ferrous iron (such as augite, enstatite and basaltic lava) preserved the lowest amount of amino acids, which is explained by iron (II) catalyzed

  4. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  5. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.

    PubMed

    Sun, Jing; Bostick, Benjamin C; Mailloux, Brian J; Ross, James M; Chillrud, Steven N

    2016-07-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As.

  6. Dietary fatty acids modulate antigen presentation to hepatic NKT cells in nonalcoholic fatty liver disease[S

    PubMed Central

    Hua, Jing; Ma, Xiong; Webb, Tonya; Potter, James J.; Oelke, Mathias; Li, Zhiping

    2010-01-01

    Dietary fatty acids are major contributors to the development and progression of insulin resistance and nonalcoholic fatty liver disease (NAFLD). Dietary fatty acids also alter hepatic NKT cells that are activated by antigens presented by CD1d. In the current study, we examine the mechanism of dietary fatty acid induced hepatic NKT cell deficiency and its causal relationship to insulin resistance and NAFLD. We discover that dietary saturated fatty acids (SFA) or monounsaturated fatty acids (MUFA), but not polyunsaturated fatty acids (PUFA), cause hepatic NKT cell depletion with increased apoptosis. Dietary SFA or MUFA also impair hepatocyte presentation of endogenous, but not exogenous, antigen to NKT cells, indicating alterations of the endogenous antigen processing or presenting pathway. In vitro treatment of normal hepatocytes with fatty acids also demonstrates impaired ability of CD1d to present endogenous antigen by dietary fatty acids. Furthermore, dietary SFA and MUFA activate the NFκB signaling pathway and lead to insulin resistance and hepatic steatosis. In conclusion, both dietary SFA and MUFA alter endogenous antigen presentation to hepatic NKT cells and contribute to NKT cell depletion, leading to further activation of inflammatory signaling, insulin resistance, and hepatic steatosis. PMID:20185414

  7. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    PubMed

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene. PMID:27052714

  8. Present and future assessment of growing degree days over selected Greek areas with different climate conditions

    NASA Astrophysics Data System (ADS)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2016-06-01

    The determination of heat requirements in the first developing phases of plants has been expressed as Growing Degree Days (GDD). The current study focuses on three selected study areas in Greece that are characterised by different climatic conditions due to their location and aims to assess the future variation and spatial distribution of Growing Degree Days (GDD) and how these can affect the main cultivations in the study areas. Future temperature data were obtained and analysed by the ENSEMBLES project. The analysis was performed for the future periods 2021-2050 and 2071-2100 with the A1B and B1 scenarios. Spatial distribution was performed using a combination of dynamical and statistical downscaling technique through ArcGIS 10.2.1. The results indicated that for all the future periods and scenarios, the GDD are expected to increase. Furthermore, the increase in the Sperchios River basin will be the highest, followed by the Ardas and the Geropotamos River basins. Moreover, the cultivation period will be shifted from April-October to April-September which will have social, economical and environmental benefits. Additionally, the spatial distribution indicated that in the upcoming years the existing cultivations can find favourable conditions and can be expanded in mountainous areas as well. On the other hand, due to the rough topography that exists in the study areas, the wide expansion of the existing cultivations into higher altitudes is unaffordable. Nevertheless, new more profitable cultivations can be introduced which can find propitious conditions in terms of GDD.

  9. Present and future assessment of growing degree days over selected Greek areas with different climate conditions

    NASA Astrophysics Data System (ADS)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2016-08-01

    The determination of heat requirements in the first developing phases of plants has been expressed as Growing Degree Days (GDD). The current study focuses on three selected study areas in Greece that are characterised by different climatic conditions due to their location and aims to assess the future variation and spatial distribution of Growing Degree Days (GDD) and how these can affect the main cultivations in the study areas. Future temperature data were obtained and analysed by the ENSEMBLES project. The analysis was performed for the future periods 2021-2050 and 2071-2100 with the A1B and B1 scenarios. Spatial distribution was performed using a combination of dynamical and statistical downscaling technique through ArcGIS 10.2.1. The results indicated that for all the future periods and scenarios, the GDD are expected to increase. Furthermore, the increase in the Sperchios River basin will be the highest, followed by the Ardas and the Geropotamos River basins. Moreover, the cultivation period will be shifted from April-October to April-September which will have social, economical and environmental benefits. Additionally, the spatial distribution indicated that in the upcoming years the existing cultivations can find favourable conditions and can be expanded in mountainous areas as well. On the other hand, due to the rough topography that exists in the study areas, the wide expansion of the existing cultivations into higher altitudes is unaffordable. Nevertheless, new more profitable cultivations can be introduced which can find propitious conditions in terms of GDD.

  10. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    NASA Astrophysics Data System (ADS)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  11. Modeling Sucrose Hydrolysis in Dilute Sulfuric Acid Solutions at Pretreatment Conditions for Lignocellulosic Biomass

    SciTech Connect

    Bower, S.; Wickramasinghe, R.; Nagle, N. J.; Schell, D. J.

    2008-01-01

    Agricultural and herbaceous feedstocks may contain appreciable levels of sucrose. The goal of this study was to evaluate the survivability of sucrose and its hydrolysis products, fructose and glucose, during dilute sulfuric acid processing at conditions typically used to pretreat lignocellulose biomass. Solutions containing 25 g/l sucrose with 0.1-2.0% (w/w) sulfuric acid concentrations were treated at temperatures of 160-200 C for 3-12 min. Sucrose was observed to completely hydrolyze at all treatment conditions. However, appreciable concentrations of fructose and glucose were detected and glucose was found to be significantly more stable than fructose. Different mathematical approaches were used to fit the kinetic parameters for acid-catalyzed thermal degradation of these sugars. Since both sugars may survive dilute acid pretreatment, they could provide an additional carbon source for production of ethanol and other bio-based products.

  12. Frog population viability under present and future climate conditions: a Bayesian state-space approach.

    PubMed

    McCaffery, R; Solonen, A; Crone, E

    2012-09-01

    1. World-wide extinctions of amphibians are at the forefront of the biodiversity crisis, with climate change figuring prominently as a potential driver of continued amphibian decline. As in other taxa, changes in both the mean and variability of climate conditions may affect amphibian populations in complex, unpredictable ways. In western North America, climate models predict a reduced duration and extent of mountain snowpack and increased variability in precipitation, which may have consequences for amphibians inhabiting montane ecosystems. 2. We used Bayesian capture-recapture methods to estimate survival and transition probabilities in a high-elevation population of the Columbia spotted frog (Rana luteiventris) over 10 years and related these rates to interannual variation in peak snowpack. Then, we forecasted frog population growth and viability under a range of scenarios with varying levels of change in mean and variance in snowpack. 3. Over a range of future scenarios, changes in mean snowpack had a greater effect on viability than changes in the variance of snowpack, with forecasts largely predicting an increase in population viability. Population models based on snowpack during our study period predicted a declining population. 4. Although mean conditions were more important for viability than variance, for a given mean snowpack depth, increases in variability could change a population from increasing to decreasing. Therefore, the influence of changing climate variability on populations should be accounted for in predictive models. The Bayesian modelling framework allows for the explicit characterization of uncertainty in parameter estimates and ecological forecasts, and thus provides a natural approach for examining relative contributions of mean and variability in climatic variables to population dynamics. 5. Longevity and heterogeneous habitat may contribute to the potential for this amphibian species to be resilient to increased climatic variation, and

  13. Changes in fatty acid and hydrocarbon composition of zooplankton assemblages related to environmental conditions

    SciTech Connect

    Lambert, R.M.

    1989-01-01

    Changes in zooplankton fatty acid and hydrocarbon patterns are described in relation to changes in environmental conditions and species composition. The regulation of zooplankton abundance by sea nettle-ctenophore interaction was examined in a small Rhode Island coastal pond. Sea nettles were nettles were able to eliminate ctenophores from the pond and subsequently zooplankton abundance increased. During one increase in zooplankton abundance, it was found that polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. It was concluded that this shift in biochemical pattern was due to food limitation. In addition, zooplankton fatty acids were used in multivariate discriminant analysis to classify whether zooplankton were from coastal or estuarine environments. Zooplankton from coastal environments were characterized by higher monounsaturate fatty acids. Zooplankton hydrocarbon composition was affected by species composition and by pollution inputs. The presence of Calanus finmarchicus was detected by increased levels of pristane.

  14. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  15. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  16. Systems Pharmacology Modeling Predicts Delayed Presentation and Species Differences in Bile Acid-Mediated Troglitazone Hepatotoxicity

    PubMed Central

    Yang, Kyunghee; Woodhead, Jeffrey L; Watkins, Paul B; Howell, Brett A; Brouwer, Kim LR

    2014-01-01

    Troglitazone (TGZ) caused delayed, life-threatening drug-induced liver injury (DILI) in some patients, but was not hepatotoxic in rats. This study investigated altered bile acid (BA) homeostasis as a mechanism of TGZ hepatotoxicity using a systems pharmacology model incorporating drug/metabolite disposition, BA physiology/pathophysiology, hepatocyte life cycle, and liver injury biomarkers. In the simulated human population, TGZ (200–600mg/day×6months) resulted in delayed increases in serum ALT>3× ULN in 0.3–5.1% of the population with concomitant bilirubin elevations>2× ULN in 0.3–3.6%. In contrast, pioglitazone (15–45mg/day×6months) did not elicit hepatotoxicity, consistent with clinical data. TGZ was not hepatotoxic in the simulated rat population. In summary, mechanistic modeling based only on BA effects accurately predicted the incidence, delayed presentation, and species differences in TGZ hepatotoxicity, and the relative liver safety of pioglitazone. Systems pharmacology models integrating physiology and experimental data can evaluate DILI mechanisms and may be useful to predict hepatotoxic potential of drug candidates. PMID:25068506

  17. Unique odd-chain polyenoic phospholipid fatty acids present in chytrid fungi.

    PubMed

    Akinwole, Philips O; Lefevre, Emilie; Powell, Martha J; Findlay, Robert H

    2014-09-01

    Chytrid fungi are ubiquitous components of aquatic and terrestrial ecosystems yet they remain understudied. To investigate the use of phospholipid fatty acids as phenotypic characteristics in taxonomic studies and biomarkers for ecological studies, 18 chytrid fungi isolated from soil to freshwater samples were grown in defined media and their phospholipid fatty acid profile determined. Gas chromatographic/mass spectral analysis indicated the presence of fatty acids typically associated with fungi, such as 16:1(n-7), 16:0, 18:2(n-6), 18:3(n-3) 18:1(n-9), and 18:0, as well as, a number of odd-chain length fatty acids, including two polyunsaturated C-17 fatty acids. Conversion to their 3-pyridylcarbinol ester facilitated GC-MS determination of double-bond positions and these fatty acid were identified as 6,9-17:2 [17:2(n-8)] and 6,9,12-17:3 [17:3(n-5)]. To the best of our knowledge, this is the first report of polyunsaturated C-17 fatty acids isolated from the phospholipids of chytrid fungi. Cluster analysis of PLFA profiles showed sufficient correlation with chytrid phylogeny to warrant inclusion of lipid analysis in species descriptions and the presence of several phospholipid fatty acids of restricted phylogenetic distributions suggests their usefulness as biomarkers for ecological studies. PMID:25119485

  18. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    PubMed Central

    Jamalzadeh, Elaheh; Verheijen, Peter J. T.; Heijnen, Joseph J.

    2012-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a successful metabolic engineering approach for overproduction of organic acids requires an incorporation of a proper exporter to increase the productivity. Moreover, low-pH fermentations, which are desirable for facilitating the downstream processing, may cause back diffusion of the undissociated acid into the cells with simultaneous active export, thereby creating an ATP-dissipating futile cycle. In this work, we have studied the uptake of fumaric acid in S. cerevisiae in carbon-limited chemostat cultures under anaerobic conditions. The effect of the presence of fumaric acid at different pH values (3 to 5) has been investigated in order to obtain more knowledge about possible uptake mechanisms. The experimental results showed that at a cultivation pH of 5.0 and an external fumaric acid concentration of approximately 0.8 mmol · liter−1, the fumaric acid uptake rate was unexpectedly high and could not be explained by diffusion of the undissociated form across the plasma membrane alone. This could indicate the presence of protein-mediated import. At decreasing pH levels, the fumaric acid uptake rate was found to increase asymptotically to a maximum level. Although this observation is in accordance with protein-mediated import, the presence of a metabolic bottleneck for fumaric acid conversion under anaerobic conditions could not be excluded. PMID:22113915

  19. Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix.

    PubMed

    Brauge, Thomas; Sadovskaya, Irina; Faille, Christine; Benezech, Thierry; Maes, Emmanuel; Guerardel, Yann; Midelet-Bourdin, Graziella

    2016-01-01

    The aim of this study was to characterize the Listeria monocytogenes biofilm and particularly the nature of the carbohydrates in the biofilm extracellular matrix and culture supernatant versus to cell wall carbohydrates. Listeria monocytogenes serotype 1/2a and 4b strains were able to form complex biofilms embedded in an extracellular matrix. The soluble carbohydrates from biofilm extracellular matrix and culture supernatant were identified as teichoic acids, structurally identical to cell wall teichoic acids. In addition, the DSS 1130 BFA2 strain had a serotype 1/2a teichoic acid lacking N-acetyl glucosamine glycosylation due to a mutation in the lmo2550 gene. Consequently, we hypothesized that the extracellular teichoic acids in L. monocytogenes biofilms have the same origin as cell wall teichoic acid.

  20. Fe/Mg smectite formation under acidic conditions on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2016-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.

  1. Additional Boundary Condition for List-Method Directed Forgetting: The Effect of Presentation Format

    ERIC Educational Resources Information Center

    Hupbach, Almut; Sahakyan, Lili

    2014-01-01

    The attempt to forget some recently encoded information renders this information difficult to recall in a subsequent memory test. "Forget" instructions are only effective when followed by learning of new material. In the present study, we asked whether the new material needs to match the format of the to-be-forgotten information for…

  2. Stable condition of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid ( DMDTAV) in landfill leachate

    NASA Astrophysics Data System (ADS)

    Kwon, E.; Yoon, H. O.; Kim, J. A.; Lee, H.; Jung, S.; Kim, Y. T.

    2015-12-01

    When waste containing arsenic (As) are disposed of landfill, such facilities (i.e., landfill) can play an important role in disseminating As to the surrounding environment. These disposal of waste containing As might cause a serious environmental pollution due to potentially As remobilization in landfill. Especially, As species containing sulfur such as DMDTAv and DMMTAv found occasionally high concentration in landfill leachate. These As species (i.e., DMDTAv and DMMTAv) had the higher toxicity to human cells compared to other pentavalent As species. However, there was no chemical standard material of these As species (i.e., DMDTAv and DMMTAv) commercially. In this study, we synthesized DMDTAv and DMMTAv by simulating reaction with the sufficient sulfur condition from DMAv. DMMTAv was quite changeable to DMDTAv due to its short life time from our preliminary study. Thus, it is important to find the stable condition of synthesis process for DMDTAv and DMMTAv under suitable environmental condition. This study can be very significant in quantitative analysis area to detect the various As species in environmental media such as landfill.

  3. Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions

    PubMed Central

    Kostic, Ivana; Fidalgo-Carvalho, Isabel; Aday, Sezin; Vazão, Helena; Carvalheiro, Tiago; Grãos, Mário; Duarte, António; Cardoso, Carla; Gonçalves, Lino; Carvalho, Lina; Paiva, Artur; Ferreira, Lino

    2015-01-01

    Several clinical trials are exploring therapeutic effect of human CD34+ cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34+ cells cultured under hypoxic and serum-deprived conditions present 2.2-fold and 1.3-fold higher survival relatively to non-treated cells and prostaglandin E2-treated cells, respectively. The pro-survival effect of LPA is concentration- and time-dependent and it is mediated by the activation of peroxisome proliferator-activator receptor γ (PPARγ) and downstream, by the activation of pro-survival ERK and Akt signaling pathways and the inhibition of mitochondrial apoptotic pathway. In hypoxia and serum-deprived culture conditions, LPA induces CD34+ cell proliferation without maintaining the their undifferentiating state, and enhances IL-8, IL-6 and G-CSF secretion during the first 12 h compared to non-treated cells. LPA-treated CD34+ cells delivered in fibrin gels have enhanced survival and improved cardiac fractional shortening at 2 weeks on rat infarcted hearts as compared to hearts treated with placebo. We have developed a new platform to enhance the survival of CD34+ cells using a natural and cost-effective ligand and demonstrated its utility in the preservation of the functionality of the heart after infarction. PMID:26553339

  4. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  5. Conditions for charge transport without recombination in low mobility organic solar cells and photodiodes (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Stolterfoht, Martin; Armin, Ardalan; Philippa, Bronson; White, Ronald D.; Burn, Paul L.; Meredith, Paul; Juška, Gytis; Pivrikas, Almantas

    2015-10-01

    Organic semiconductors typically possess low charge carrier mobilities and Langevin-type recombination dynamics, which both negatively impact the performance of organic solar cells and photodetectors. Charge transport in organic solar cells is usually characterized by the mobility-lifetime product. Using newly developed transient and steady state photocurrent measurement techniques we show that the onset of efficiency limiting photocarrier recombination is determined by the charge that can be stored on the electrodes of the device. It is shown that significant photocarrier recombination can be avoided when the total charge inside the device, defined by the trapped, doping-induced and mobile charge carriers, is less than the electrode charge. Based upon this physics we propose the mobility-recombination coefficient product as an alternative and more convenient figure of merit to minimize the recombination losses. We validate the results in 3 different organic semiconductor-based light harvesting systems with very different charge transport properties. The findings allow the determination of the charge collection efficiency in fully operational devices. In turn, knowing the conditions under which non-geminate recombination is eliminated enables one to quantify the generation efficiency of free charge carriers. The results are relevant to a wide range of light harvesting systems, particularly those based upon disordered semiconductors, and require a rethink of the critical parameters for charge transport.

  6. [On systemic training of preventive medical specialists under the present conditions].

    PubMed

    Makarova, V G; Tkachev, P G; Kiriushin, V A

    2002-01-01

    The results of a systemic approach to training the students of the Faculty of Preventive Medicine, I. P. Pavlov Ryazan State Medical University during the reorganization of higher medical education in the country, which covered pre-higher higher, and post-higher education are presented. Prehigher education on the basis of school and the university assumes that students will obtain extended theoretical and practical skills in chemistry, anatomy, and biology. Higher education at the stage of propedeutic hygiene forms in students ideas of the significance of environmental factors for human health, the threshold of their action, and sanitary standardization. PMID:12198902

  7. Microporous materials under extreme conditions - EMU Medal for Excellence in Research 2013 presentation

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego

    2014-05-01

    Zeolites are a class of "microporous materials" characterised by open-structures with cavities (i.e. channels or cages) with free diameters smaller than 20 Å. In Nature, zeolites with SiO4-AlO4-PO4-tetrahedra form open frameworks; polar molecules (in particular H2O) and monovalent or divalent cations, which are commonly exchangeable, are the extra-framework species. The selective cation-exchange capacity, along with T-induced reversible hydration/dehydration and the catalytic activity (mainly promoted by Brønsted acid sites) of zeolites have made this class of natural or synthetic materials an object of attention for their advanced technological applications, spanning from water treatment, soil remediation, cements production, biomedical and veterinary applications, gas separation to catalysis in the petroleum industry and nuclear-waste processing. As a consequence, zeolites are an important bulk commodity: the world production of natural zeolites in 2012 was about 2,800,000 tons and the consumption of synthetic zeolites was approximately 1,900,000 tons. Over the last 60 years, many experiments have addressed the behaviour of zeolites in response to applied temperature, describing the mechanisms of T-induced dehydration, cation migration and the rearrangement of extra-framework species. On the other hand, experiments on zeolite at high pressure have been done only in the last 10-15 years, shedding new insight into the elastic behaviour and phase stability in response to changing pressure, coupled with the P-induced deformation mechanisms at the atomistic level, P-induced over-hydration and its corresponding volume expansion, P-induced amorphization processes along with the effect of pressure on the ionic conductivity of zeolites. The comparative elastic analysis and the high-P structural data of zeolites so far reported allow us to make some generalizations: 1) The range of compressibility among this class of open-framework silicates is large, with bulk moduli

  8. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars suggests that neutral to mildly alkaline conditions prevailed during the early history of Mars. If early Mars surface geochemical conditions were neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. Why have so few carbonate deposits been detected compared to Fe/Mg smectites? Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would preclude the extensive formation of carbonate deposits. The goal of the proposed work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions.

  9. Thermal stability of 5-o-caffeoylquinic acid in aqueous solutions at different heating conditions.

    PubMed

    Dawidowicz, Andrzej L; Typek, Rafal

    2010-12-22

    Chlorogenic acid is a naturally occurring phenolic compound found in all higher plants. This component, being the ester of caffeic acid with quinic acid, is an important biosynthetic intermediate and plays an important role in the plant's response to stress. Potential uses of chlorogenic acid are suggested in pharmaceuticals, foodstuffs, feed additives, and cosmetics due to its recently discovered biomedical activity. This finding caused new interest in chlorogenic acid properties, its isomers, and its natural occurrence. It has been found that as many as nine compounds (chlorogenic acid derivatives and its reaction product with water) can be formed from 5-o-caffeoylquinic acid during the heating of its water solution. Three of them, two hydroxylated 5-o-caffeoylquinic acid derivatives and 4,5-dicaffeoylquinic acid, have been not reported, yet. The amount of each formed component depends on the heating time and temperature. The presented results are important for researchers investigating plant metabolism and looking for new plant components. The transformation product can be mistakenly treated as a new component, not found before in the examined plant, or can be a cause of erroneous quantitative estimations of plant composition.

  10. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  11. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  12. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  13. The environmental history and present condition of Saudi Arabia's northern sand seas

    USGS Publications Warehouse

    Whitney, John W.; Faulkender, D.J.; Rubin, Meyer

    1983-01-01

    Saudi Arabia's northern sand seas are composed dominantly of stable dune systems, even though the modern climate is arid. The stable dunes are large and support a sparse semidesert vegetation. Active dunes are small and commonly confined to the crests of stable dunes; they comprise less than 5 percent of the dunes in the sand seas. Both the stability of the major dune systems and the small percentage of active dunes in the modern environment indicate a significant decrease in the average velocity and frequency of sand-moving winds since the time of stable-dune deposition. Comparison of modern wind directions with dune trends indicates that southwesterly winds responsible for dune formation in the southern and western An Nafud sand sea and in Nafud Urayq are no longer prevailing winds. Lake deposits are locally interbedded with deposits of eolian sand and in the lee of stable dunes. Radiocarbon dating of calcareous lake deposits defines at least two episodes of moisture-effective climate and minimal eolianactivity: between about 32,000 and 24,000 B.P., just before the onset of the last worldwide glacial stade of the Pleistocene, and during the Holocene between about 8,500 and 5,000 B.P. One lake deposit is more than 38,000 years old and may have been deposited during an earlier pluvial episode about 85,000 to 70,000 B.P. Pollen extracted from these lake deposits indicates that vegetation during late Pleistocene and Holocene pluvial episodes was similar to the present semidesert vegetation; however, the density of shrubs and grasses on the dunes was greater. The main dune systems overlie the 32,000 to 24,000-yearold lake deposits, whereas the Holocene lakebeds are found in modern interdunal environments, usually at the base of stable dunes. The main dune systems probably formed between 24,000 and 8,500 B.P., during the last episode of worldwide cold temperatures. Increased windiness at this time is also recorded in the world's oceans and in both polar ice caps

  14. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.

    PubMed

    Asta, María P; Cama, Jordi; Martínez, María; Giménez, Javier

    2009-11-15

    Schwertmannite (Fe(8)O(8)(OH)(5.5)(SO(4))(1.25)), jarosite (KFe(3)(SO(4))(2)(OH)(6)) and goethite (FeOOH) control natural attenuation of arsenic in acid mine drainage (AMD) impacted areas. Batch experiments were conducted to examine the sorption capacity of synthetic goethite and synthetic jarosite at highly acidic pH (1.5-2.5), at two ionic strengths (0.02-0.15 mol dm(-3), NaCl) and at sulphate concentrations in the range of 5 x 10(-3) to 2.8 x 10(-1) mol dm(-3). In the absence of competitive effects of other anions, K-jarosite presents better removal efficiency than goethite for As(V). The maximum sorption capacity is estimated to be 1.2 x 10(-4) and 7.0 x 10(-6)mol m(-2) for jarosite and goethite, respectively, under similar experimental conditions. The variation of arsenic sorbed on goethite as a function of the equilibrium arsenic concentration in solution fits a non-competitive Langmuir isotherm. In the case of K-jarosite, sorption data could not fit a Langmuir or Freundlich isotherm since sulphate-arsenate anion exchange is probably the sorption mechanism. Ionic strength and pH have little effect on the sorption capacity of goethite and jarosite in the small range of pH studied. The presence of sulphate, which is the main anion in AMD natural systems, has a negative effect on arsenic removal since sulphate competes with arsenate for surface sorption sites. Moreover, mobilization of arsenic in the transformation of schwertmannite to jarosite or goethite at pH 2-3 is proposed since the sorption capacities of goethite and K-jarosite are considerably lower than those reported for schwertmannite.

  15. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions.

    PubMed

    Camerino, Saulo Rodrigo Alves e Silva; Lima, Rafaela Carvalho Pereira; França, Thássia Casado Lima; Herculano, Edla de Azevedo; Rodrigues, Daniela Souza Araújo; Gouveia, Marcos Guilherme de Sousa; Cameron, L C; Prado, Eduardo Seixas

    2016-02-01

    Alterations of cerebral function, fatigue and disturbance in cognitive-motor performance can be caused by hyperammonemia and/or hot environmental conditions during exercise. Exercise-induced hyperammonemia can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA) to improve exercise tolerance. In the present study, we evaluated KAAA supplementation on ammonia metabolism and cognitive-motor performance after high-intensity exercise under a low heat stress environment. Sixteen male cyclists received a ketogenic diet for 2 d and were divided into two groups, KAAA (KEx) or placebo (CEx) supplementation. The athletes performed a 2 h cycling session followed by a maximum test (MAX), and blood samples were obtained at rest and during exercise. Cognitive-motor tasks were performed before and after the protocol, and the exhaustion time was used to evaluate physical performance. The hydration status was also evaluated. The CEx group showed a significant increase (∼ 70%) in ammonia concentration at MAX, which did not change in the KEx group. The non-supplemented group showed a significant increase in uremia. Both the groups had a significant increase in blood urate concentrations at 120 min, and an early significant increase from 120 min was observed in the CEx group. There was no change in the glucose concentrations of the two groups. A significant increase in lactate was observed at the MAX moment in both groups. There was no significant difference in the exhaustion times between the groups. No changes were observed in the cognitive-motor tasks after the protocol. We suggest that KAAA supplementation decreases ammonia concentration during high-intensity exercise but does not affect physical or cognitive-motor performances under a low heat stress environment. PMID:26679329

  16. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  17. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Golden, D. C.; Ming, D.; Niles, P. B.

    2011-12-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then "large" carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  18. Effect of aluminum ion on Fe(2+)-induced lipid peroxidation in phospholipid liposomes under acidic conditions.

    PubMed

    Ohyashiki, T; Karino, T; Suzuki, S; Matsui, K

    1996-11-01

    The effects of Al3+ on Fe(2+)-induced lipid peroxidation in phospholipid liposomes consisting of phosphatidylcholine (PC) and phosphatidylserine (PS) were examined under acidic conditions. The stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation in the liposomes showed a biphasic response against pH variation, and the maximum stimulation was observed around pH 6.0. In addition, it was found that the stimulatory effect of Al3+ on the lipid peroxidation was dependent on the proportion of PS in the liposomes. On the other hand, the lipid peroxidation in PC liposomes was not stimulated by the addition of Al3+. From these findings, it is suggested that the Al3+ effect on Fe(2+)-induced lipid peroxidation under acidic conditions is largely dependent on the phospholipid composition. Trivalent cations such as Tb3+ and Ga3+ also stimulated Fe(2+)-induced lipid peroxidation in PC/PS liposomes under acidic conditions, but divalent cations (Zn2+ and Mn2+) showed no stimulatory effect. The extents of Fe2+ disappearance and Fe3+ formation during the reaction were enhanced by the addition of Al3+ or Ga2+, but Tb3+ had no effect on Fe2+ disappearance. The results with 1,6-diphenyl-1,3,5-hexatriene (DPH) showed that the fluorescence anisotropy of DPH-labeled PC/PS liposomes under acidic conditions was increased by the addition of Al3+. Furthermore, there is a relation between the extents of the fluorescence anisotropy of the complex and TBARS production. In contrast, the fluorescence anisotropy of DPH molecules embedded in PC liposomes was not changed by the addition of Al3+. Based on these results, a possible mechanism of the stimulatory effect of Al3+ on Fe(2+)-induced lipid peroxidation under acidic conditions is discussed. PMID:8982853

  19. Reinstatement of short-latency responses after asymptotic Pavlovian conditioning training by the presentation of an extraneous stimulus.

    PubMed

    Vogel, Edgar H

    2012-01-01

    The purpose of this study was to examine whether the progressive disappearance of short-latency conditioned responses, or inhibition of delay, observed in Pavlovian conditioning with long inter-stimulus intervals, could be reverted by the presentation of a novel stimulus. In one experiment, two groups of rabbits received extensive training with a short (250 ms) or a long (1500 ms) tone that overlapped and terminated with a periorbital shock unconditioned stimulus. After training, the presentation of an extraneous stimulus prior to tone onset produced a reinstatement of short latency CRs in the group trained with the long CS, but did not affect CR latency in the group trained with the short CS. This finding is consistent with Pavlov's (1927) view that conditioning with long conditioned stimuli involves the acquisition of response tendencies in the early portion of the stimulus that are subsequently suppressed by the development of an inhibitory process.

  20. A glycoprotein binding retinoids and fatty acids is present in Drosophila.

    PubMed

    Duncan, T; Kutty, G; Chader, G J; Wiggert, B

    1994-07-01

    In the search for a possible Drosophila melanogaster homolog of interphotoreceptor retinoid-binding protein (IRBP), a approximately 140-kDa retinoid- and fatty acid-binding glycoprotein found in vertebrates, the 110,000 g supernatant fraction prepared from homogenates of fly heads was analyzed for the presence of proteins capable of binding radiolabeled retinol and palmitic acid. A soluble protein, which binds concanavalin A and has a retention time on size-exclusion high-performance liquid chromatography identical to that of purified bovine IRBP, was identified as binding both ligands. As assessed by fluorescence titration, the protein fraction obtained by concanavalin A-Sepharose affinity chromatography and size-exclusion chromatography of fly head supernatant had apparent dissociation constants of 2.9 x 10(-7) +/- 0.6 M for all-trans retinol, with the number (n) of independent ligand binding sites per protein molecule = 2, and 3.5 x 10(-7) +/- 0.1 M for 16-[9-anthroyloxy] palmitic acid with n = 7. High-performance liquid chromatography of hexane extracts of this protein fraction resolved several peaks with polarity and relative retention times similar, but not identical to all-trans retinol and retinal and their 9-, 11-, and 13-cis isomers. Gas chromatography/mass spectrometry analysis of fatty acid methyl esters prepared following lipid extraction of the protein identified lauric, myristic, palmitic, palmitoleic, and oleic acids as being covalently bound. Laurate, myristate, palmitate, and stearate were noncovalently bound. The apparent molecular mass of the Drosophila protein as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining of the retinoid- and fatty acid-binding peak obtained by hydrophobic interaction chromatography of the size-exclusion fraction was approximately 70 kDa. PMID:8031123

  1. Experimental Control of Nodality via Equal Presentations of Conditional Discriminations in Different Equivalence Protocols under Speed and No-Speed Conditions

    ERIC Educational Resources Information Center

    Imam, Abdulrazaq A.

    2006-01-01

    A within-participant comparison of simple-to-complex, complex-to-simple, and simultaneous protocols was conducted establishing different sets of three 7-member equivalence classes for 4 undergraduate students. The protocols were implemented under either accuracy-only or accuracy-plus-speed conditions while keeping number of presentations of…

  2. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus.

  3. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review.

    PubMed

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  4. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  5. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation. PMID:25100156

  6. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.

    PubMed

    Pham, Trong Khoa; Wright, Phillip C

    2008-11-01

    Ethanol yield by Saccharomyces cerevisiae in very high glucose (VHG) media with an amino acid supplement was investigated. Amino acid supplementation led to positive cell responses, including reduced lag time and increased cell viability in VHG media. A quantitative shotgun proteomic analysis was used to understand how amino acid supplemented S. cerevisiae responds to high osmotic conditions. iTRAQ data revealed that most proteins involved in glycolysis and pentose phosphate pathways were up-regulated under high glucose shock. Reactivation of amino acid metabolism was also observed at the end of the lag phase. The relative abundance of most identified proteins, including aminoacyl-tRNA biosynthesis proteins, and heat-shock proteins, remained unchanged in the hours immediately following application of glucose shock. However, the expression of these proteins increased significantly at the end of the lag phase. Furthermore, the up-regulation of trehalose and glycogen biosynthesis proteins, first maintaining then latterly increasing glycolysis pathway activity was also observed. This was verified by enhanced ethanol yields at 10 and 12 h (0.43 and 0.45 g ethanol/g glucose) compared to 2 h (0.32 g ethanol/g glucose). These data combined with relevant metabolite measurements demonstrates that enhanced ethanol fermentation under VHG conditions can be achieved with the aid of amino acid supplementation.

  7. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation.

  8. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  9. Comparing oxalic acid and sucrocide treatments for Varroa destructor (Acari: Varroidae) control under desert conditions.

    PubMed

    Sammataro, D; Finley, J; Underwood, R

    2008-08-01

    The effectiveness of oxalic acid (OA) and Sucrocide (S) (AVA Chemical Ventures, L.L.C., Portsmouth, NH) in reducing populations of the varroa mite Varroa destructor Anderson & Trueman (Acari: Varroidae) in honey bee, Apis mellifera L. (Hymenoptera: Apidae) colonies was measured under the desert conditions of Arizona, USA. OA and S were applied three times 7 d apart. A 3.2% solution of OA was applied in sugar syrup via a large volume syringe, trickling 5 ml per space between frames in the colony. S was applied at a concentration of 0.625% (mixed with water), according to the label directions, using a compressed air Chapin sprayer at 20 psi to apply 59 ml per frame space. Varroa mites, collected on a sticky board before, during, and after the treatments, were counted to assess the effectiveness of the treatments. This study showed that a desert climate zone did not confer any positive or negative results on the acaricidal properties of OA. Even with brood present in colonies, significant varroa mite mortality occurred in the OA colonies. In contrast, we found that Sucrocide was not effective as a mite control technique. Despite its ability to increase mite mortality in the short-term, varroa mite populations measured posttreatment were not affected any more by Sucrocide than by no treatment at all.

  10. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  11. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  12. Experimental dissolution vs. transformation of micas under acidic soil conditions: Clues from boron isotopes

    NASA Astrophysics Data System (ADS)

    Voinot, A.; Lemarchand, D.; Collignon, C.; Granet, M.; Chabaux, F.; Turpault, M.-P.

    2013-09-01

    Minerals in soils evolve through contact with water and other weathering agents (protons, organic acids and ligands) from the atmosphere or released by the surrounding vegetation and associated fauna. Determining the respective contribution of these agents to weathering budgets and the mechanisms by which they interact with soil minerals is a key step toward obtaining refined models of soil development, plant/mineral interactions and, ultimately, soil sustainability. To test the influence of different chemical agents on the processes of mica weathering (dissolution and transformation), we conducted a series of laboratory flow-through experiments on biotite using three chemical groups of reactants found in forest soils: protons (HCl), organic acids (citric acid) and ligands (siderophores). These experiments were performed at two different pH values (pH 3 and pH 4.5) for 37 days at 20 °C. Biotite was chosen as a test-mineral because it is reactive with acids and water and because it is commonly found in granite soils. To investigate the weathering reactions, the chemical and isotopic compositions of B (δ11B) and the concentrations of predominant cation (Si, Al, Mg, K and Fe) were monitored in the outflowing solutions. The choice of B as a proxy for weathering processes is based on the fact that B is located in different crystallographic sites in biotite (interlayers and structural sites, named I- and S-sites, respectively). We observed a large δ11B contrast between these sites (Δ11BS-I sites˜80‰), which allows for a precise quantification of the respective contribution of I- and S-sites to B released during biotite weathering. The individual reaction rates for these crystallographic sites were inferred from the B chemical and isotopic compositions of the outflowing solutions. A comparison with the major elements reveals that B is preferentially released to solution under all tested experimental conditions (up to 4 times more), particularly in the presence of

  13. Growth and survival of Escherichia coli O157:H7 under acidic conditions.

    PubMed Central

    Conner, D E; Kotrola, J S

    1995-01-01

    The effect of pH reduction with acetic (pH 5.2), citric (pH 4.0), lactic (pH 4.7), malic (pH 4.0), mandelic (pH 5.0), or tartaric (pH 4.1) acid on growth and survival of Escherichia coli O157:H7 in tryptic soy broth with 0.6% yeast extract held at 25, 10, or 4 degrees C for 56 days was determined. Triplicate flasks were prepared for each acid treatment at each temperature. At 25 degrees C, populations increased 2 to 4 log10 CFU/ml in all treatments except that with mandelic acid, whereas no growth occurred at 10 or 4 degrees C in any treatments except the control. However, at all sampling times, higher (P < 0.05) populations were recovered from treatments held at 4 degrees C than from those held at 10 degrees C. At 10 degrees C, E. coli O157:H7 was inactivated at higher rates in citric, malic, and mandelic acid treatments than in the other treatments. At the pH values tested, the presence of the organic acids enhanced survival of the pathogen at 4 degrees C compared with the unacidified control. E. coli O157:H7 has the ability to survive in acidic conditions (pH, > or = 4.0) for up to 56 days, but survival is affected by type of acidulant and temperature. PMID:7887621

  14. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions

    PubMed Central

    Jiang, Liying; Dziedzic, Pawel; Spacil, Zdenek; Zhao, Gui-Ling; Nilsson, Lennart; Ilag, Leopold L.; Córdova, Armando

    2014-01-01

    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life. PMID:25346284

  15. Inactivation model equations and their associated parameter values obtained under static acid stress conditions cannot be used directly for predicting inactivation under dynamic conditions.

    PubMed

    Janssen, M; Verhulst, A; Valdramidis, V; Devlieghere, F; Van Impe, J F; Geeraerd, A H

    2008-11-30

    Organic acids (e.g., lactic acid, acetic acid and citric acid) are popular preservatives. In this study, the Listeria innocua inactivation is investigated under dynamic conditions of pH and undissociated lactic acid ([LaH]). A combined primary (Weibull-type) and secondary model developed for the L. innocua inactivation under static conditions [Janssen, M., Geeraerd, A.H., Cappuyns, A., Garcia-Gonzalez, L., Schockaert, G., Van Houteghem, N., Vereecken, K.M., Debevere, J., Devlieghere, F., Van Impe, J.F., 2007. Individual and combined effects of pH and lactic acid concentration on L. innocua inactivation: development of a predictive model and assessment of experimental variability. Applied and Environmental Microbiology 73(5), 1601-1611] was applied to predict the microbial inactivation under dynamic conditions. Because of its non-autonomous character, two approaches were proposed for the application of the Weibull-type model to dynamic conditions. The results quantitatively indicated that the L. innocua cell population was able to develop an induced acid stress resistance under dynamic conditions of pH and [LaH]. From a modeling point of view, it needs to be stressed that (i) inactivation model equations and associated parameter values, derived under static conditions, may not be suitable for use as such under dynamic conditions, and (ii) non-autonomous dynamic models reveal additional technical intricacies in comparison with autonomous models.

  16. Growth conditions differentially modulate the vulnerability of developing cerebellar granule cells to excitatory amino acids.

    PubMed

    Resink, A; Hack, N; Boer, G J; Balázs, R

    1994-08-29

    The survival of immature nerve cells in a cerebellar culture, predominantly excitatory granule cells, is known to be promoted by chronic exposure to high K+ (> 20 mM) or glutamate (Glu) receptor agonists. These treatments are believed to mimic the in vivo effect of the incoming glutamatergic afferents, the mossy fibres. Here we report that with maturation the cells become vulnerable to excitatory amino acids (EAAs) and that the characteristics of EAA sensitivity are dependent on the environmental influences being either "trophic" (25 mM K+ or 140 microM NMDA, K25 or K10 + NMDA) or "non-trophic" (10 mM K+, K10). Toxicity was assayed routinely at 9 days in vitro (DIV) after 24 h exposure to EAAs. Under all the tested conditions, the effect of Glu was mediated exclusively through NMDA receptors. However, the efficacy and potency of Glu were high in K25- and K10 + NMDA-grown cells compared with K10-grown cells. Growth conditions had the same influence on NMDA as on Glu-induced toxicity, but with the following special features: (1) in comparison with K25 cells, the potency of NMDA was significantly lower in K10 + NMDA cells. The K10 + NMDA cultures behaved as if they were completely insensitive to the NMDA which is present in their growth medium. (2) The K10-grown cells were not vulnerable to NMDA, unless the cell membrane was depolarised by shifting the cells into K25 medium. The efficacy of NMDA became then similar to that in K25 cultures, although the potency was about 7-fold less. Thus NMDA receptors can be activated by the depolarisation of K10 cells, implying the operation of Mg2+ blockade of the channel at normal resting membrane potential. Although non-NMDA receptors did not seem to be involved in Glu toxicity, cells were vulnerable to kainate, which killed significantly more cells than Glu (about 80% vs 70%). This was partly due to the resistance of GABAergic interneurons present in the cultures to Glu- or NMDA-induced toxicity. In contrast to the effects of

  17. High-quality green tea leaf production by artificial cultivation under growth chamber conditions considering amino acids profile.

    PubMed

    Miyauchi, Shunsuke; Yuki, Takayuki; Fuji, Hiroshi; Kojima, Kunio; Yonetani, Tsutomu; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-12-01

    The current study focused on the tea plant (Camellia sinensis) as a target for artificial cultivation because of the variation in its components in response to light conditions. We analyzed its sensory quality by multi-marker profiling using multicomponent data based on metabolomics to optimize the conditions of light and the environment during cultivation. From the analysis of high-quality tea samples ranked in a tea contest, the ranking predictive model was created by the partial least squares (PLS) regression analysis to examine the correlation between the amino-acid content (X variables) and the ranking in the tea contest (Y variables). The predictive model revealed that glutamine, arginine, and theanine were the predominant amino acids present in high-ranking teas. Based on this result, we established a cover-culture condition (i.e., a low-light intensity condition) during the later stage of the culture process and obtained artificially cultured tea samples, which were predicted to be high-quality teas. The aim of the current study was to optimize the light conditions for the cultivation of tea plants by performing data analysis of their sensory qualities through multi-marker profiling in order to facilitate the development of high-quality teas by plant factories.

  18. High-quality green tea leaf production by artificial cultivation under growth chamber conditions considering amino acids profile.

    PubMed

    Miyauchi, Shunsuke; Yuki, Takayuki; Fuji, Hiroshi; Kojima, Kunio; Yonetani, Tsutomu; Tomio, Ayako; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-12-01

    The current study focused on the tea plant (Camellia sinensis) as a target for artificial cultivation because of the variation in its components in response to light conditions. We analyzed its sensory quality by multi-marker profiling using multicomponent data based on metabolomics to optimize the conditions of light and the environment during cultivation. From the analysis of high-quality tea samples ranked in a tea contest, the ranking predictive model was created by the partial least squares (PLS) regression analysis to examine the correlation between the amino-acid content (X variables) and the ranking in the tea contest (Y variables). The predictive model revealed that glutamine, arginine, and theanine were the predominant amino acids present in high-ranking teas. Based on this result, we established a cover-culture condition (i.e., a low-light intensity condition) during the later stage of the culture process and obtained artificially cultured tea samples, which were predicted to be high-quality teas. The aim of the current study was to optimize the light conditions for the cultivation of tea plants by performing data analysis of their sensory qualities through multi-marker profiling in order to facilitate the development of high-quality teas by plant factories. PMID:24915994

  19. Heat-moisture treatment under mildly acidic conditions alters potato starch physicochemical properties and digestibility.

    PubMed

    Kim, Jong-Yea; Huber, Kerry C

    2013-11-01

    Potato starch was subjected to heat-moisture treatment (HMT; 120 °C, 3 h) under mildly acidic conditions (pH 5, 6, or 6.5 [control]) at moisture levels of 15, 20 or 25%. HMT starches exhibited significantly delayed pasting times and reduced overall paste viscosities, amylose leaching, and granular swelling characteristics relative to native starch, as well as enhanced levels of thermo-stable resistant starch (≈24%). HMT appeared to alter/enhance short-range chain associations (FT-IR) within amorphous and/or crystalline regions of starch granules. However, the extent of physicochemical change and RS enhancement during HMT was most facilitated by a mildly acidic condition (pH 6) at higher treatment moisture levels (20 or 25%). These conditions promoted limited hydrolysis of amylopectin molecules, primarily at α-(1→6) branch points, likely enhancing mobility and interaction of starch chains during HMT. Thus, a slightly acidic pH might reduce conditions and/or timeframe needed to impart physicochemical changes and reduced digestibility to potato starch. PMID:24053800

  20. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products.

    PubMed

    Ye, Feng; Zushi, Yasuyuki; Masunaga, Shigeki

    2015-05-01

    Perfluoroalkyl acids (PFAAs) and their precursors have been used in various consumer products. However, limited information regarding their occurrence and concentration levels in products is available. In this study, we investigated 18 PFAAs and 14 PFAA precursors in various categories of consumer products purchased in Japan. Relatively high total concentrations of PFAAs and their precursors were found in sprays for fabrics and textiles (acid (PFOS), N-methyl perfluorooctane sulfonamidoethanol (MeFOSE) was detected in a higher frequency (8%) and in greater concentrations (acids (PFCAs) (carbon chain length⩾7) were also detected in greater concentrations than short chain PFCAs (⩽6). This result suggests that consumer products are one of the important sources of long-chain PFCAs in the environment.

  1. Photoproduction of Amino Acids in Simulated Interstellar Pre-Cometary Conditions

    NASA Astrophysics Data System (ADS)

    Muñoz Caro, G. M.

    2007-08-01

    Amino acids are the essential molecular components of living organisms. The delivery of extraterrestrial organic compounds was likely a source of prebiotic matter on the early Earth. Amino acids from space were certainly delivered to our planet since they are present in several carbonaceous chondrites; these and other organic molecules observed in comets and meteorites could have been formed by UV and cosmic ray irradiation of icy grain mantles in the solar nebula. Five years after the publication that reported the laboratory synthesis of amino acids by vacuum UV-photoprocessing of circumstellar and interstellar ice analogs (Muñoz Caro et al. 2002, Nature, 416, 403), we re-evaluate those results. We will discuss the influence of several parameters on the amino acid outcome of the experiments, such as: the composition of the starting ice mixture, the temperature of formation, the alternative use of circularly polarized UV light, the use of HCl-hydrolysis as part of the analysis protocol, and the detection technique (gas chromatography vs. liquid chromatography). We will also make a comparison between the amino acid content of the Murchison meteorite and the amino acids generated in our experiments. A possible scenario for the formation of organic grain mantles in the solar nebula, containing prebiotic species, and their incorporation into small solar system bodies, will be presented.

  2. Fatty acid profiles of four filamentous green algae under varying culture conditions.

    PubMed

    Liu, Junzhuo; Vanormelingen, Pieter; Vyverman, Wim

    2016-01-01

    Although benthic filamentous algae are interesting targets for wastewater treatment and biotechnology, relatively little is known about their biochemical composition and variation in response to growth conditions. Fatty acid composition of four benthic filamentous green algae was determined in different culture conditions. Although the response was partly species-dependent, increasing culture age, nitrogen deprivation and dark exposure of stationary phase greatly increased both total fatty acid content (TFA) from 12-35 to 40-173mgg(-1) dry weight (DW) and the relative proportion of polyunsaturated fatty acids (PUFAs) from 21-58% to 55-87% of TFA, with dark exposure having the greatest effect. However, the main variation in fatty acid composition was between species, with Uronema being rich in C16:0 (2.3% of DW), Klebsormidium in C18:2ω6 (5.4% of DW) and Stigeoclonium in C18:3ω3 (11.1% of DW). This indicates the potential of the latter two species as potential sources of these PUFAs.

  3. [Optimization of the fermentation conditions for 5-keto-D-gluconic acid production].

    PubMed

    Li, Boyi; Pan, Haifeng; Sun, Weirong; Cheng, Yongqing; Xie, Zhipeng; Zhang, Jianguo

    2014-09-01

    Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of industrially important L(+)-tartaric acid. To increase the yield of 5-KGA, fermentation conditions of 5-KGA production was optimized. Under the optimum medium and culture conditions in the shake flask, the highest 5-KGA production reached 19.7 g/L, increased by 43.8% after optimization. In a 5-L bioreactor, the pH was controlled at 5.5 and dissolved oxygen (DO) at 15%, 5-KGA production reached 46.0 g/L, raised at least 1.3 times than in the shake flask. Glucose feeding fermentation process was further developed, and the highest 5-KGA production of 75.5 g/L with 70% of yield was obtained, 32.0% higher than the highest reported value. Therefore, this newly developed fermentation process provided a practical and effective alternative for the commercial production of 5-KGA, and further of L(+)-tartaric acid.

  4. Pseudomonas putida response in membrane bioreactors under salicylic acid-induced stress conditions.

    PubMed

    Collado, Sergio; Rosas, Irene; González, Elena; Gutierrez-Lavin, Antonio; Diaz, Mario

    2014-02-28

    Starvation and changing feeding conditions are frequently characteristics of wastewater treatment plants. They are typical causes of unsteady-state operation of biological systems and provoke cellular stress. The response of a membrane bioreactor functioning under feed-induced stress conditions is studied here. In order to simplify and considerably amplify the response to stress and to obtain a reference model, a pure culture of Pseudomonas putida was selected instead of an activated sludge and a sole substrate (salicylic acid) was employed. The system degraded salicylic acid at 100-1100mg/L with a high level of efficiency, showed rapid acclimation without substrate or product inhibition phenomena and good stability in response to unsteady states caused by feed variations. Under starvation conditions, specific degradation rates of around 15mg/gh were achieved during the adaptation of the biomass to the new conditions and no biofilm formation was observed during the first days of experimentation using an initial substrate to microorganisms ratio lower than 0.1. When substrate was added to the reactor as pulses resulting in rapidly changing concentrations, P. putida growth was observed only for substrate to microorganism ratios higher than 0.6, with a maximum YX/S of 0.5g/g. Biofilm development under changing feeding conditions was fast, biomass detachment only being significant for biomass concentrations on the membrane surface that were higher than 16g/m(2).

  5. Effects of hippocampal state-contingent trial presentation on hippocampus-dependent nonspatial classical conditioning and extinction.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2014-04-23

    Hippocampal local field potentials are characterized by two mutually exclusive states: one characterized by regular θ oscillations (∼4-8 Hz) and the other by irregular sharp-wave ripples. Presenting stimuli during dominant θ oscillations leads to expedited learning, suggesting that θ indexes a state in which encoding is most effective. However, ripple-contingent training also expedites learning, suggesting that any discrete brain state, much like the external context, can affect learning. We trained adult rabbits in trace eyeblink conditioning, a hippocampus-dependent nonspatial task, followed by extinction. Trials were delivered either in the presence or absence of θ or regardless of hippocampal state. Conditioning in the absence of θ led to more animals learning, although learning was slower compared with a yoked control group. Contrary to expectations, conditioning in the presence of θ did not affect learning. However, extinction was expedited both when it was conducted contingent on θ and when it was conducted in a state contrary to that used to trigger trials during conditioning. Strong phase-locking of hippocampal θ-band responses to the conditioned stimulus early on during conditioning predicted good learning. No such connection was observed during extinction. Our results suggest that any consistent hippocampal oscillatory state can potentially be used to regulate learning. However, the effects depend on the specific state and task at hand. Finally, much like the external environment, the ongoing neural state appears to act as a context for learning and memory retrieval.

  6. Firefighters' exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams.

    PubMed

    Laitinen, Juha Ari; Koponen, Jani; Koikkalainen, Janne; Kiviranta, Hannu

    2014-12-01

    The aim of this study was to assess eight firefighters' exposure to Sthamex 3% AFFF (aqueous film forming foam) in the simulation of aircraft accidents at Oulu airport in Finland. Study was conducted in 2010 before limitation for the use of PFOA and PFOS in AFFFs. Due to prospective limitation also eight commercially available AFFFs were evaluated from occupational and environmental point of view to find substitutive AFFFs for future. The firefighters' exposure to twelve perfluoroalkyl acids (PFAS) was analyzed in order to observe the signs of accumulation during three consecutive training sessions. The firefighters' short-term exposure to 2-butoxyethanol (EGBE) was analyzed by urinalysis of 2-butoxyacetic acid (2-BAA). For the background information also the concentration of PFAS in used AFFF-liquid was analyzed. Fire fighters' serum PFHxS and PFNA concentrations seemed to increase during the three training sessions although they were not the main PFAS in used AFFF. The statistical significance for the elevations was not able to test due to limited size of test group. In two training sessions, the average urinary excretions of 2-BAA exceeded the reference limit of the occupationally unexposed population. In the evaluations of the firefighting foams, non-fluorine based products were favored and the alcohol resistance properties of foams were recommended for consideration due to the increasing use of biofuels.

  7. Firefighters' exposure to perfluoroalkyl acids and 2-butoxyethanol present in firefighting foams.

    PubMed

    Laitinen, Juha Ari; Koponen, Jani; Koikkalainen, Janne; Kiviranta, Hannu

    2014-12-01

    The aim of this study was to assess eight firefighters' exposure to Sthamex 3% AFFF (aqueous film forming foam) in the simulation of aircraft accidents at Oulu airport in Finland. Study was conducted in 2010 before limitation for the use of PFOA and PFOS in AFFFs. Due to prospective limitation also eight commercially available AFFFs were evaluated from occupational and environmental point of view to find substitutive AFFFs for future. The firefighters' exposure to twelve perfluoroalkyl acids (PFAS) was analyzed in order to observe the signs of accumulation during three consecutive training sessions. The firefighters' short-term exposure to 2-butoxyethanol (EGBE) was analyzed by urinalysis of 2-butoxyacetic acid (2-BAA). For the background information also the concentration of PFAS in used AFFF-liquid was analyzed. Fire fighters' serum PFHxS and PFNA concentrations seemed to increase during the three training sessions although they were not the main PFAS in used AFFF. The statistical significance for the elevations was not able to test due to limited size of test group. In two training sessions, the average urinary excretions of 2-BAA exceeded the reference limit of the occupationally unexposed population. In the evaluations of the firefighting foams, non-fluorine based products were favored and the alcohol resistance properties of foams were recommended for consideration due to the increasing use of biofuels. PMID:25447453

  8. Identification of 4-deoxythreonic acid present in human urine by combining HPLC and NMR techniques

    PubMed Central

    Appiah-Amponsah, Emmanuel; Shanaiah, Narasimhamurthy; Nagana Gowda, G. A.; Owusu-Sarfo, Kwadwo; Ye, Tao; Raftery, Daniel

    2010-01-01

    The 1H NMR spectrum of urine exhibits a large number of detectable and quantifiable metabolites and hence urine metabolite profiling is potentially useful for the study of systems biology and the discovery of biomarkers for drug development or clinical applications. While a number of metabolites (50–100) are readily detectable in urine by NMR, a much larger number is potentially available if lower concentration species can be detected unambiguously. Lower concentration metabolites are thought to be more specific to certain disease states and thus it is important to detect these metabolites with certainty. We report the identification of 4-deoxythreonic acid, a relatively low concentration endogenous metabolite that has not been previously identified in the 1H NMR spectrum of human urine. The complimentary use of HPLC and NMR spectroscopy facilitated the unequivocal and non-invasive identification of the molecule in urine which is complicated by extensive peak overlap and multiple, similar resonances from other metabolites such as 3-hydroxybutanoic acid. High-resolution detection and good sensitivity were achieved by the combination of multiple chromatographic fraction collection, sample pre-concentration, and the use of a cryogenically cooled NMR probe. PMID:19615840

  9. Acid rain monitoring in East-Central Florida from 1977 to present

    NASA Technical Reports Server (NTRS)

    Madsen, B. C.; Kheoh, T.; Hinkle, C. R.; Dreschel, T. W.

    1990-01-01

    Rainfall has been collected on the University of Central Florida campus and at the Kennedy Space Center over a 12 year period. The chemical composition has been determined and summarized by monthly, annual periods, and for the entire 12 year period at both locations. The weighted average pH at each site is 4.58; however, annual weighted average pH has been equal to or above the 12 year average during six of the past eight years. Nitrate concentrations have increased slightly during recent years while excess sulfate concentrations have remained below the 12 year weighted average during six of the past seven years. Stepwise regression suggests that sulfate, nitrate, ammonium ion and calcium play major roles in the description of rainwater acidity. Annual acid deposition and annual rainfall have varied from 20 to 50 meg/(m(exp 2) year) and 100 to 180 cm/year, respectively. Sea salt comprises at least 25 percent of the total ionic composition.

  10. Interaction of Polyelectrolytes with Salivary Pellicles on Hydroxyapatite Surfaces under Erosive Acidic Conditions.

    PubMed

    Delvar, Alice; Lindh, Liselott; Arnebrant, Thomas; Sotres, Javier

    2015-09-30

    The modification of acidic beverage formulations with food-approved, nonhazardous substances with antierosive properties has been identified as a key strategy for counteracting the prevalence of dental erosion, i.e., the acid-induced dissolution of hydroxyapatite (HA, the main mineral component of tooth surfaces). While many of such substances have been reported, very little is known on how they interact with teeth and inhibit their acid-induced dissolution. With the aim of filling this gap in knowledge, we have studied under acidic conditions the interaction between two polyelectrolytes of differing ionic character, carboxymethyl cellulose (CMC) and chitosan, and saliva-coated hydroxyapatite, i.e., a model for the outer surface of teeth. These studies were performed by means of ellipsometry, quartz crystal microbalance with dissipation monitoring, and atomic force microscopy. We also studied, by means of pH variations, how dissolution of saliva-coated HA is affected by including these polyelectrolytes in the erosive solutions. Our results confirm that salivary films protect HA from acid-induced dissolution, but only for a limited time. If the acid is modified with CMC, this polyelectrolyte incorporates into the salivary films prolonging in time their protective function. Eventually, the CMC-modified salivary films are removed from the HA surfaces. From this moment, HA is continuously coated with CMC, but this offers only a weak protection against erosion. When the acid is modified with the cationic chitosan, the polyelectrolyte adsorbs on top of the salivary films. Chitosan-modified salivary films are also eventually replaced by bare chitosan films. In this case both coatings offer a similar protection against HA dissolution, which is nevertheless notably higher than that offered by CMC. PMID:26368580

  11. Enhanced transformation of diphenylarsinic acid in soil under sulfate-reducing conditions.

    PubMed

    Guan, Ling; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2012-11-30

    Diphenylarsinic acid (DPAA) is known to be the major contaminant in soils where diphenylchloroarsine and diphenylcyanoarsine were abandoned after World Wars I and II. In this study, experimental model studies were performed to elucidate key factors regulating the transformation of DPAA under anaerobic soil conditions. The elimination of DPAA in Gleysol soils (Qiqihar and Shindori soils) was more rapid than in Mollisol and Regosol soils (Heihe and Ikarashi soils, respectively) during a 5-week incubation. No clear relationship between decreasing rates of DPAA concentrations and soil Eh values was found. The Ikarashi soil showed the slowest decrease in DPAA concentrations among the four soils, but the transformation of DPAA was notably enhanced by addition of exogenous sulfate together with acetate, cellulose or rice straw. Addition of molybdate, a specific inhibitor of sulfate reduction, resulted in the stagnation of DPAA transformation, suggesting that indigenous sulfate reducers play a role in DPAA transformation under anaerobic conditions. Arsenate, phenylarsonic acid, phenylmethylarsinic acid, diphenylmethylarsine oxide and three unknown compounds were detected as metabolites of DPAA. This is the first study to reveal enhancement of DPAA transformation under sulfate-reducing conditions. PMID:23069334

  12. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  13. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production.

  14. Nucleic acid aptamers stabilize proteins against different types of stress conditions.

    PubMed

    Jetani, Hardik C; Bhadra, Ankan Kumar; Jain, Nishant Kumar; Roy, Ipsita

    2014-01-01

    It has been observed that the same osmolyte cannot provide protection to a protein exposed to more than one stress condition. We wanted to study the effect of nucleic acid aptamers on the stabilization of proteins against a variety of stress conditions. Adjuvanted tetanus toxoid was exposed to thermal, freeze-thawing, and agitation stress. The stability and antigenicity of the toxoid were measured. Using nucleic acid aptamers selected against tetanus toxoid, we show that these specific RNA sequences were able to stabilize alumina-adsorbed tetanus toxoid against thermal-, agitation-, and freeze-thawing-induced stress. Binding affinity of the aptamer-protein complex did not show any significant change at elevated temperature as compared with that at room temperature, indicating that the aptamer protected the protein by remaining bound to it under stress conditions and did not allow either the protein to unfold or to promote protein-protein interaction. Thus, we show that by changing the stabilization strategy from a solvent-centric to a protein-centric approach, the same molecule can be employed as a stabilizer against more than one stress condition and thus probably reduce the cost of the product during its formulation.

  15. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali.

    PubMed

    Hong, Chen; Xing, Yi; Hua, Xiufu; Si, Yanxiao; Qiao, Geng; Wang, Zhiqiang

    2015-07-01

    The potential benefits of surfactant-conditioned sludge dewatering treatment with acid/alkali pretreatment were investigated in this study. The water content of dewatered sludge (W C) and specific resistance of filtration (SRF) were used to evaluate sludge dewaterability. Extracellular polymeric substance (EPS) content, bound water content, zeta potential, and rheological properties were measured to explain the change of dewaterability observed in the conditioning process. By introducing dodecyl dimethyl benzyl ammonium chloride (DDBAC), the EPS content of the sludge supernatant changed, and bound water content, charge strength, and apparent viscosity decreased simultaneously. Although DDBAC-conditioned sludge in strong alkaline had low bound water content, W C and SRF increased rapidly because of the dramatically increasing of EPS in sludge supernatant. Remarkable decrement was observed in bound water content and W C in DDBAC-conditioned sludge which was in weak acid environment for comparison. The results indicated that 75 mg/g of DDBAC at pH 4.84 was the optimum under which W C and SRF were at their lowest point in sludge, 58.22 % and 0.521 × 10(13) m/kg, respectively.

  16. Acid rain monitoring in Florida from 1978 to the present and evaluation of trends in rainwater composition

    SciTech Connect

    Madsen, B.C.; Dreschel, T.W.

    1996-12-31

    The occurrence of acid rain has prompted extensive research and monitoring activities which began in the U.S. during the late 1970`s. In the mid 1970`s the National Aeronautics and Space Administration (NASA) funded an extensive environmental monitoring program which included a substantial acid rain monitoring component. Results from that study and subsequent activities have been summarized in previous reports. One site from the original network has remained in continuous operation to the present time. That site is located on the campus of the University of Central Florida (UCF) near Orlando. The site provides the longest continuous record of rainwater composition data of any site ever operated in the state of Florida. In addition several sites that operate as part of the National Atmospheric Deposition (NADP) network continue in operation. Observations from the UCF site and the NADP sites document substantial changes in rainwater composition and acid deposition.

  17. Synthesis of boron suboxide from boron and boric acid under mild pressure and temperature conditions

    SciTech Connect

    Jiao, Xiaopeng; Jin, Hua; Ding, Zhanhui; Yang, Bin; Lu, Fengguo; Zhao, Xudong; Liu, Xiaoyang; Peng, Liping

    2011-05-15

    Graphical abstract: Well-crystallized and icosahedral B{sub 6}O crystals were prepared by reacting boron and boric acid at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work.. Research highlights: {yields} Well-crystallized icosahedral B{sub 6}O was synthesized by reacting boric acid and boron. {yields} The synthesis conditions (1 GPa and 1300 {sup o}C for 2 h) are milder in comparison with previous work. {yields} The more practical synthesis method may make B{sub 6}O as a potential substitute for diamond in industry. -- Abstract: Boron suboxide (B{sub 6}O) was synthesized by reacting boron and boric acid (H{sub 3}BO{sub 3}) at pressures between 1 and 10 GPa, and at temperatures between 1300 and 1400 {sup o}C. The B{sub 6}O samples prepared were icosahedral with diameters ranging from 20 to 300 nm. Well-crystallized and icosahedral crystals with an average size of {approx}100 nm can be obtained at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work. The bulk B{sub 6}O sample was stable in air at 600 {sup o}C and then slowly oxidized up to 1000 {sup o}C. The relatively mild synthetic conditions developed in this study provide a more practical synthesis of B{sub 6}O, which may potentially be used as a substitute for diamond in industry as a new superhard material.

  18. Comparative analysis of near-present and future synoptic conditions and their contribution to precipitation in central Greece

    NASA Astrophysics Data System (ADS)

    Karacostas, Theodore S.; Bampzelis, Dimitrios; Karipidou, Symela; Pytharoulis, Ioannis; Tegoulias, Ioannis; Kartsios, Stergios; Kotsopoulos, Stylianos; Pakalidou, Nikoletta

    2015-04-01

    The objective on this study is to identify and categorize the daily synoptic circulation patterns encountered between the two periods, in near-present (2001-2010) and future (2041-2050), over the greater area of central and northern Greece, under the "DAPHNE" project (www.daphne-meteo.gr). The followed up statistical analyses and comparisons are focus on the demonstration of the differences in the frequency of occurrences of the synoptic situations between the two time periods, aiming at mitigating drought in central Greece by means of Weather Modification. Actually, within the context of the project, the daily synoptic circulation patterns encountered during the near-present ten-year period are identified and classified according to Karacostas et al. (1992) synoptic classification, into ten distinct synoptic conditions, based on the isobaric level of 500hPa. A similar procedure is adopted for the future period 2041-2050, by developing the mid-tropospheric synoptic circulation patterns through the RegCM3 regional climate model, under the IPCC scenario A1B. Results indicate that certain differences exist between near-present and future frequency distribution of occurrences of the synoptic situations over the study area. The northwest (NW) and southwest (SW) synoptic circulation patterns remain the most frequent synoptic conditions observed for both examined periods. The low pressure system activity over the area exhibit significant decrease during the future period, as it is depicted from the inter-comparison of the frequencies of the closed low (L-2) and cut-off low (L-3) systems. On the other hand, the unorganized synoptic conditions, which are mostly identified as high-low patterns (H-L), appear to increase considerably. The frequencies of zonal flow (ZON) and those of synoptic conditions associated with the presence of high-pressure system over the area, that is (H-1) and (H-2), remain almost unchanged between the two periods. The impact of the aforementioned

  19. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring.

    PubMed

    Hizume, Masaki; Kobayashi, Atsushi; Mizusawa, Hidehiro; Kitamoto, Tetsuyuki

    2010-01-22

    Prion protein (PrP) is a glycosylphosphatidylinositol (GPI)-anchored protein, and the C-terminal GPI anchor signal sequence (GPI-SS) of PrP is cleaved before GPI anchoring. However, mutations near the GPI anchor attachment site (the omega site) in the GPI-SS have been recognized in human genetic prion diseases. Moreover, the omega site of PrP has not been identified except hamster, though it is known that amino acid restrictions are very severe at the omega and omega+2 sites in other GPI-anchored proteins. To investigate the effect of mutations near the omega site of PrP on the conversion and the GPI anchoring, and to discover the omega site of murine PrP, we systematically created mutant murine PrP with all possible single amino acid substitutions at every amino acid residue from codon 228 to 240. We transfected them into scrapie-infected mouse neuroblastoma cells and examined the conversion efficiencies and the GPI anchoring of each mutant PrP. Mutations near the omega site altered the conversion efficiencies and the GPI anchoring efficiencies. Especially, amino acid restrictions for the conversion and the GPI anchoring were severe at codons 230 and 232 in murine PrP, though they were less severe than in other GPI-anchored proteins. Only the mutant PrPs presented on a cell surface via a GPI anchor were conversion competent. The present study shows that mutations in the GPI-SS can affect the GPI anchoring and the conversion efficiency of PrP. We clarified for the first time the omega site of murine PrP and the amino acid conditions near the omega site for the conversion as well as GPI anchoring.

  20. Mass spectrometric characterization of limited proteolysis activity in human plasma samples under mild acidic conditions.

    PubMed

    Yang, Jingzhi; Röwer, Claudia; Koy, Cornelia; Ruß, Manuela; Rüger, Christopher P; Zimmermann, Ralf; von Fritschen, Uwe; Bredell, Marius; Finke, Juliane C; Glocker, Michael O

    2015-11-01

    We developed a limited proteolysis assay for estimating dynamics in plasma-borne protease activities using MALDI ToF MS analysis as readout. A highly specific limited proteolysis activity was elicited in human plasma by shifting the pH to 6. Mass spectrometry showed that two singly charged ion signals at m/z 2753.44 and m/z 2937.56 significantly increased in abundance under mild acidic conditions as a function of incubation time. For proving that a provoked proteolytic activity in mild acidic solution caused the appearance of the observed peptides, control measurements were performed (i) with pepstatin as protease inhibitor, (ii) with heat-denatured samples, (iii) at pH 1.7, and (iv) at pH 7.5. Mass spectrometric fragmentation analysis showed that the observed peptides encompass the amino acid sequences 1-24 and 1-26 from the N-terminus of human serum albumin. Investigations on peptidase specificities suggest that the two best candidates for the observed serum albumin cleavages are cathepsin D and E. Reproducibility, robustness, and sensitivity prove the potential of the developed limited proteolysis assay to become of clinical importance for estimating dynamics of plasma-borne proteases with respect to associated pathophysiological tissue conditions.

  1. Mixing Acid Salts and Layered Double Hydroxides in Nanoscale under Solid Condition.

    PubMed

    Nakayama, Hirokazu; Hayashi, Aki

    2014-01-01

    The immobilization of potassium sorbate, potassium aspartate and sorbic acid in layered double hydroxide under solid condition was examined. By simply mixing two solids, immobilization of sorbate and aspartate in the interlayer space of nitrate-type layered double hydroxide, so called intercalation reaction, was achieved, and the uptakes, that is, the amount of immobilized salts and the interlayer distances of intercalation compounds were almost the same as those obtained in aqueous solution. However, no intercalation was achieved for sorbic acid. Although intercalation of sorbate and aspartate into chloride-type layered double hydroxide was possible, the uptakes for these intercalation compounds were lower than those obtained using nitrate-type layered double hydroxide. The intercalation under solid condition could be achieved to the same extent as for ion-exchange reaction in aqueous solution, and the reactivity was similar to that observed in aqueous solution. This method will enable the encapsulation of acidic drug in layered double hydroxide as nano level simply by mixing both solids. PMID:25080007

  2. Understanding E2 versus SN2 Competition under Acidic and Basic Conditions

    PubMed Central

    Wolters, Lando P; Ren, Yi; Bickelhaupt, F Matthias

    2014-01-01

    Our purpose is to understand the mechanism through which pH affects the competition between base-induced elimination and substitution. To this end, we have quantum chemically investigated the competition between elimination and substitution pathways in H2O+C2H5OH2+ and OH−+C2H5OH, that is, two related model systems that represent, in a generic manner, the same reaction under acidic and basic conditions, respectively. We find that substitution is favored in the acidic case while elimination prevails under basic conditions. Activation-strain analyses of the reaction profiles reveal that the switch in preferred reactivity from substitution to elimination, if one goes from acidic to basic catalysis, is related to (1) the higher basicity of the deprotonated base, and (2) the change in character of the substrates LUMO from Cβ−H bonding in C2H5OH2+ to Cβ−H antibonding in C2H5OH. PMID:24688892

  3. Fate of aniline and sulfanilic acid in UASB bioreactors under denitrifying conditions.

    PubMed

    Pereira, Raquel; Pereira, Luciana; van der Zee, Frank P; Madalena Alves, M

    2011-01-01

    Two upflow anaerobic sludge blanket (UASB) reactors were operated to investigate the fate of aromatic amines under denitrifying conditions. The feed consisted of synthetic wastewater containing aniline and/or sulfanilic acid and a mixture of volatile fatty acids (VFA) as the primary electron donors. Reactor 1 (R1) contained a stoichiometric concentration of nitrate and Reactor 2 (R2) a stoichiometric nitrate and nitrite mixture as terminal electron acceptors. The R1 results demonstrated that aniline could be degraded under denitrifying conditions while sulfanilic acid remains. The presence of nitrite in the influent of R2, caused a chemical reaction that led to immediate disappearance of both aromatic amines and the formation of an intense yellow coloured solution. HPLC analysis of the influent solution, revealed the emergence of three product peaks: the major one at retention time (R(t)) 14.3 min and two minor at R(t) 17.2 and 21.5 min. In the effluent, the intensity of the peaks at R(t) 14.3 and 17.2 min was very low and of that at R(t) 21.5 min increased (∼3-fold). Based on the mass spectrometry analysis, we propose the structures of some possible products, mainly azo compounds. Denitrification activity tests suggest that biomass needed to adapt to the new coloured compounds, but after a 3 days lag phase, activity is recovered and the final (N(2) + N(2)O) is even higher than that of the control.

  4. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    PubMed Central

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; Martin-Uriz, Patxi San; Rodríguez, Nuria; McKenzie, Judith A.; Vasconcelos, Crisogono

    2014-01-01

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets. PMID:24755961

  5. Functioning of antimony film electrode in acid media under cyclic and anodic stripping voltammetry conditions.

    PubMed

    Sebez, Bine; Ogorevc, Bozidar; Hocevar, Samo B; Veber, Marjan

    2013-06-27

    New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L(-1) levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost

  6. Evaluation of the performance degradation at PAFC effect of operating conditions on acid loss

    SciTech Connect

    Miyoshi, Hideaki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY conducted by NEDO, with the objective of establishing an estimation method for the service life-time of the cell stacks. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, PAFC-TRA and PAFC manufacturers. The acid loss into exhaust gases is one of life limiting factors in PAFCs. To design the cells of long-life, it is important to estimate the phosphoric acid loss and to contrive ideas eliminating it. With the objective of obtaining basic data for simulating the acid loss in the large size cells, the effect of the operating conditions on the acid loss into exhaust gases has been studied experimentally by using a single cell with an active electrode area of 100 cm{sup 2}.

  7. Comparative characterization of the deamidation of carboxylic acid deamidated wheat gluten by altering the processing conditions.

    PubMed

    Liao, Lan; Han, Xueyue; Chen, Lin-Ping; Ni, Li; Liu, Zhi-Bin; Zhang, Wen; Chen, Qing

    2016-11-01

    The physicochemical, structural and functional properties of citric-acid-deamidated wheat gluten at controlled degrees of deamidation (25%, 40% and 55%), which were obtained by using different acid concentrations (3.93×10(-5), 3.14×10(-3) and 2.36×10(-2)mol/L) and temperatures (70°C 2h, 90°C 1h and 110°C 40min), were compared. Various deamidation processing conditions leading to the same degree of deamidation resulted in proteins with different physicochemical and structural characteristics, as indicted by the degree of hydrolysis, Z-potential, surface hydrophobicity, particle size, SDS-PAGE results, SEC-HPLC results, intrinsic fluorescence and FTIR spectra. Agglomerative hierarchical clustering analysis and principal component analysis qualitatively indicated a significant effect of pH on protein deamidation. Three samples at 40% deamidation, which were produced by a moderate acid concentration, showed the best emulsifying and foaming properties. Processes conducted at greater than 90°C causing protein aggregation and at a high acid concentration rupturing peptide bonds, impaired protein quality. These findings demonstrated that a limited amount of H(+) could function well in the catalysis of the deamidation of amide groups without an excess of H(+), which hydrolyses peptide bonds in a stronger hydrothermal treatment.

  8. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions

    PubMed Central

    Adler, Philipp; Frey, Lasse Jannis; Berger, Antje; Bolten, Christoph Josef; Hansen, Carl Erik

    2014-01-01

    Acetic acid bacteria (AAB) play an important role during cocoa fermentation, as their main product, acetate, is a major driver for the development of the desired cocoa flavors. Here, we investigated the specialized metabolism of these bacteria under cocoa pulp fermentation-simulating conditions. A carefully designed combination of parallel 13C isotope labeling experiments allowed the elucidation of intracellular fluxes in the complex environment of cocoa pulp, when lactate and ethanol were included as primary substrates among undefined ingredients. We demonstrate that AAB exhibit a functionally separated metabolism during coconsumption of two-carbon and three-carbon substrates. Acetate is almost exclusively derived from ethanol, while lactate serves for the formation of acetoin and biomass building blocks. Although this is suboptimal for cellular energetics, this allows maximized growth and conversion rates. The functional separation results from a lack of phosphoenolpyruvate carboxykinase and malic enzymes, typically present in bacteria to interconnect metabolism. In fact, gluconeogenesis is driven by pyruvate phosphate dikinase. Consequently, a balanced ratio of lactate and ethanol is important for the optimum performance of AAB. As lactate and ethanol are individually supplied by lactic acid bacteria and yeasts during the initial phase of cocoa fermentation, respectively, this underlines the importance of a well-balanced microbial consortium for a successful fermentation process. Indeed, AAB performed the best and produced the largest amounts of acetate in mixed culture experiments when lactic acid bacteria and yeasts were both present. PMID:24837393

  9. Hetropolyacid-Catalyzed Oxidation of Glycerol into Lactic Acid under Mild Base-Free Conditions.

    PubMed

    Tao, Meilin; Yi, Xiaohu; Delidovich, Irina; Palkovits, Regina; Shi, Junyou; Wang, Xiaohong

    2015-12-21

    Lactic acid (LA) is a versatile platform molecule owing to the opportunity to transform this compound into useful chemicals and materials. Therefore, efficient production of LA based on inexpensive renewable feedstocks is of utmost importance for insuring its market availability. Herein, we report the efficient conversion of glycerol into LA catalyzed by heteropolyacids (HPAs) under mild base-free conditions. The catalytic performance of molecular HPAs appears to correlate with their redox potential and Brønsted acidity. Namely, H3 PMo(12)O(40) (HPMo) exhibits the best selectivity towards LA (90 %) with 88 % conversion of glycerol. Loading of HPMo onto a carbon support (HPMo/C) further improves LA productivity resulting in 94 % selectivity at 98 % conversion under optimized reaction conditions. The reaction takes place through the formation of dihydroxyacetone/glyceraldehyde and pyruvaldehyde as intermediates. No leaching of HPMo was observed under the applied reaction conditions and HPMo/C could be recycled 5 times without significant loss of activity.

  10. Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions.

    PubMed

    Holic, Nathalie; Fenard, David

    2016-01-01

    Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications. PMID:27317171

  11. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  12. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions.

    PubMed

    Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé

    2010-05-01

    The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.

  13. UVolution, a Photochemistry Experiment in Low Earth Orbit: Investigation of the Photostability of Carboxylic Acids Exposed to Mars Surface UV Radiation Conditions

    NASA Astrophysics Data System (ADS)

    Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé

    2010-05-01

    The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [α-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.

  14. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions.

    PubMed

    Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé

    2010-05-01

    The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer. PMID:20528199

  15. SORPTION BEHAVIOR OF MONOSODIUM TITANATE AND AMORPHOUS PEROXOTITANATE MATERIALS UNDER WEAKLY ACIDIC CONDITIONS

    SciTech Connect

    Hobbs, D.; Elvington, M.; Click, D.

    2009-11-11

    Inorganic, titanate-based sorbents are tested with respect to adsorption of a variety of sorbates under weakly acidic conditions (pH 3). Specifically, monosodium titanate (MST) and amorphous peroxotitanate (APT) sorption characteristics are initially probed through a screening process consisting of a pair of mixed metal solutions containing a total of 29 sorbates including alkali metals, alkaline earth metals, transition metals, metalloids and nonmetals. MST and APT sorption characteristics are further analyzed individually with chromium(III) and cadmium(II) using a batch method at ambient laboratory temperature, varying concentrations of the sorbents and sorbates and contact times. Maximum sorbate loadings are obtained from the respective adsorption isotherms.

  16. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions.

    PubMed

    Bosica, Giovanna; Abdilla, Roderick

    2016-06-22

    Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.

  17. PRESENT CONDITION OF FOOD WASTE RECYCLING LOOP BASED ON RECYCLING PROJECT CERTIFICATION OF THE FOOD WASTE RECYCLING LAW

    NASA Astrophysics Data System (ADS)

    Kita, Tomoko; Kanaya, Ken

    Purpose of this research is to clear present condition of food waste recycling loops based on recycling project certification of the Food Waste Recycling Law. Method of this research is questionnaire survey to companies constituting the loops. Findings of this research are as follows: 1. Proponents of the loop is most often the recycling companies. 2. Food waste recycling rate is 61% for the food retailing industry and 81% for the food service industry. These values are higher than the national average in 2006. The effect of the revision of recycling project certification is suggested.

  18. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    PubMed

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  19. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    PubMed

    Liang, Ningjian; Kitts, David D

    2016-01-01

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions. PMID:26712785

  20. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    PubMed Central

    Liang, Ningjian; Kitts, David D.

    2015-01-01

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices are linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions. PMID:26712785

  1. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization.

  2. Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions

    NASA Technical Reports Server (NTRS)

    Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.

    2005-01-01

    Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.

  3. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants?

    PubMed Central

    De Bigault Du Granrut, Antoine; Cacas, Jean-Luc

    2016-01-01

    Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed. PMID:27803703

  4. Sorption Behavior of Iodine on Allophane under Acid and Alkaline Conditions - 12203

    SciTech Connect

    Amemiya, Kiyoshi; Nakano, Masashi

    2012-07-01

    In the safety assessment of TRU geological disposal, Iodine-129 (I-129) is considered a key radionuclide. In Japan the reference buffer material within the repository is a bentonite based sand mixture, which is lacking in iodine adsorbent capacity. Additives or alternative buffer materials that can enhance iodine adsorption are desired. Allophane, a common soil material in Japan, is a potential candidate to aid in iodine retention. In order to assess the potential for improvement of buffer and backfill material to limit release of I-129, the sorption behavior of iodine (IO{sub 3}{sup -} and I{sup -}) on allophane was examined in this research. The sorption behavior of IO{sub 3}{sup -} by allophane is strong in acidic conditions, and markedly reduced in alkaline conditions. The K{sub d} values of IO{sub 3}{sup -} are approximately 0.4 m{sup 3}/kg (pH=5), 0.03 m{sup 3}/kg (pH=8), 0.011 m{sup 3}/kg (pH=9), 0.005 m{sup 3}/kg (pH=10). Conversely, the K{sub d} value of I{sup -} is as small as 0.01 m{sup 3}/kg in acidic conditions, and much smaller in alkaline conditions. The numerical analysis shows that a maximum release rate of I-129 from the engineered barrier in the geological disposal system decreased approximately one order of magnitude and the K{sub d} of the buffer increased up to 0.1 m{sup 3}/kg by applying allophane soils to engineered barriers. (authors)

  5. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  6. A high throughput method for rapid screening of chitosanase-producing fungal strain under acidic conditions.

    PubMed

    Ding, Su; Chen, Gui-Guang; Liang, Zhi-Qun; Zeng, Wei; Cao, Mu-Ming; Chen, Guo-Pin; Xie, Shu-Yu; Li, Wei

    2016-11-01

    A novel high-throughput method was established for rapid screening of a large numbers of Aspergillus fumigatus (A. fumigatus) mutants with high chitosanase production under acidic culture condition by exploiting the fact that iodine can be used as the indicator to stain chitosan but is ineffective for chitooligosaccharides. The mutant population was generated by irradiating A. fumigatus CICC 2434 with Co(60)-γ rays. Mutants were cultured on acidic plates containing colloidal chitosan and preliminary screened according to diameter of haloes formed around colonies. Then, chitosanase production of the isolates were verified by dinitrosalicylic acid assay. Lastly, molecular masses on enzymolysis products of isolated mutants were rapidly compared by aniline blue plate assay. Using this method, the mutant strain Co-8 was selected, which had chitosanase activity of 24.87 U/mL (increased by 369.2 % as compared to that of its parental strain).Taking together, the method is easy, efficient and particularly suited to rapid screen acidophilic fungal strains with high chitosanase-production. PMID:27628334

  7. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  8. Influence of unsaturated fatty acid membrane component on sensitivity of an Escherichia coli fatty acid auxotroph to conditions of nutrient depletion.

    PubMed Central

    Massa, E M; López Vińals, A; Farías, R N

    1988-01-01

    The unsaturated fatty acid auxotroph Escherichia coli AK7 was provided with either oleic acid (cis 18:1) or linolenic acid (cis 18:3) to vary the degree of unsaturation of cell membrane lipids. The susceptibility of oleic acid- and linolenic acid-grown cells to starvation at 37 degrees C in 154 mM NaCl was compared following the decline in the number of CFU by plating the cells on agar medium. The decline in CFU was faster for linolenic acid-than for oleic acid-grown cells, but it was not indicative of cell death, since culturable CFU was recovered after respirable substrate was added to the starved cell suspension. Cell envelope microviscosity (determined by fluorescence polarization) of oleic acid- and linolenic acid-grown cells was equal in the presence of a respirable substrate, but in its absence the microviscosity of linolenic acid-grown cells was lower than that of oleic acid-grown cells. The results suggest that cell envelope microviscosity is an important factor in determining the sensitivity of E. coli to conditions of nutrient depletion. PMID:3052298

  9. Formation of N-nitrosamine and N-nitrosamino acids from food products and nitrite under simulated gastric conditions.

    PubMed

    Groenen, P J; de Cock-Bethbeder, M W; Bouwman, J; Dhont, J H

    1980-01-01

    Average-sized portions of a variety of food products were reacted with nitrite under realistically simulated gastric conditions. The aqueous incubation medium contained sodium nitrite (10 mg/l) and potassium thiocyanate to mimic the incoming flux of saliva, as well as pepsin, sodium chloride and hydrochloric acid, reflecting the composition of gastric juice. After incubation for 2 hr at 37 degrees C, volatile N-nitrosamines and N-nitrosamino acids were determined in the reaction mixtures. Nitrosodimethylamine (NDMA) was present in the incubation mixtures of smoked mackerel (8.5 micrograms per portion), canned herring (0.66 micrograms per portion) and beer (0.70 micrograms per 'portion'). Smaller amounts per portion, sometimes of other nitrosamines as well, were observed with canned salmon and anchovy, mustard, yoghurt and coffee brew. Negative results were obtained for canned tuna, soya sauce, ketchup, white bread, 'nasi goreng', tea brew and cocoa milk. Nitrosamino acids were detected in the reaction mixtures of smoked mackerel (58 micrograms per portion), soya sauce (24 micrograms per portion) and canned salmon (6.9 micrograms per portion) and in smaller amounts in those of canned herring, anchovy and cocoa milk. In order to reduce the number of analyses to be performed, most products have been studied only after incubation, so that the nitrosamines and nitrosamino acids found may already have been present -- wholly or partly -- in the original products, before incubation. Such is the case for part of the NDMA in the reaction mixture of smoked mackerel and for all the NDMA in beer. The toxicological implications of these findings remain to be established. PMID:7228254

  10. Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid.

    PubMed

    Pham Minh, Doan; Tran, Ngoc Dung; Nzihou, Ange; Sharrock, Patrick

    2013-07-01

    The synthesis of carbonate-containing apatite (CAP) from calcium carbonate and orthophosphoric acid under moderate conditions was investigated. In all cases, complete precipitation of orthophosphate species was observed. The reaction temperature influenced strongly the decomposition of calcium carbonate and therefore the composition of formed products. The reaction temperature of 80 °C was found to be effective for the complete decomposition of calcium carbonate particles after 48 h of reaction. Infra-red spectroscopy (IR), nuclear magnetic resonance (NMR), thermogravimetry/mass spectroscopy (TG-MS) coupling, and X-ray diffraction (XRD) characterizations allowed the identification of the composition of formed products. By increasing the reaction temperature from 20 °C to 80 °C, the content of A-type CAP increased and that of B-type CAP decreased, according to the favorable effect of temperature on the formation of A-type CAP. The total amount of carbonate content incorporated in CAP's structure, which was determined by TG-MS analysis, increased with the reaction temperature and reached up to 4.1% at 80 °C. At this temperature, the solid product was mainly composed of apatitic components and showed the typical flat-needle-like structure of CAP particles obtained in hydrothermal conditions. These results show an interesting one-step synthesis of CAP from calcium carbonate and orthophosphoric acid as low cost but high purity starting materials.

  11. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars

    PubMed Central

    Marcucci, Emma C; Hynek, Brian M

    2014-01-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1–60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals. PMID:26213665

  12. Microbial sulfate reduction under sequentially acidic conditions in an upflow anaerobic packed bed bioreactor.

    PubMed

    Jong, Tony; Parry, David L

    2006-07-01

    The aim of this study was to operate an upflow anaerobic packed bed reactor (UAPB) containing sulfate reducing bacteria (SRB) under acidic conditions similar to those found in acid mine drainage (AMD). The UAPB was filled with sand and operated under continuous flow at progressively lower pH and was shown to be capable of supporting sulfate reduction at pH values of 6.0, 5.0, 4.5, 4.0 and 3.5 in a synthetic medium containing 53.5 mmol l(-1) lactate. Sulfate reduction rates of 553-1,052 mmol m(-3) d(-1) were obtained when the influent solution pH was progressively lowered from pH 6.0 to 4.0, under an optimal flow rate of 2.61 ml min(-1). When the influent pH was further lowered to pH 3.5, sulfate reduction was substantially reduced with only about 1% sulfate removed at a rate of 3.35 mmol m(-3) d(-1) after 20 days of operation. However, viable SRB were recovered from the column, indicating that the SRB population was capable of surviving and metabolizing at low levels even at pH 3.5 conditions for at least 20 days. The changes in conductivity in the SRB column did not always occur with changes in pH and redox potential, suggesting that conductivity measurements may be more sensitive to SRB activity and could be used as an additional tool for monitoring SRB activity. The bioreactor containing SRB was able to reduce sulfate and generate alkalinity even when challenged with influent as low as pH 3.5, indicating that such treatment systems have potential for bioremediating highly acidic, sulfate contaminated waste waters.

  13. Effects of organic phase, fermentation media, and operating conditions on lactic Acid extraction.

    PubMed

    Hossain, Md Monwar; Maisuria, J L

    2008-01-01

    /h. These results suggest that the hollow-fiber membrane process yields good percentage extraction at the fermentation conditions and its in situ application could improve the process productivity by suppressing the inhibitory effect of lactic acid.

  14. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production.

    PubMed

    Liu, Jin; Sommerfeld, Milton; Hu, Qiang

    2013-06-01

    Isochrysis is a genus of marine unicellular microalgae that produces docosahexaenoic acid (DHA, C22:6), a very long chain polyunsaturated fatty acid (PUFA) of significant health and nutritional value. Mass cultivation of Isochrysis for DHA production for human consumption has not been established due to disappointing low DHA productivity obtained from commonly used Isochrysis strains. In this study, 19 natural Isochrysis strains were screened for DHA yields and the results showed that the cellular DHA content ranged from 6.8 to 17.0 % of total fatty acids with the highest DHA content occurring in the exponential growth phase. Isochrysis galbana #153180 exhibited the greatest DHA production potential and was selected for further investigation. The effects of different light intensities, forms, and concentrations of nitrogen, phosphorus, and salinity on growth and DHA production of I. galbana #153180 were studied in a bubble column photobioreactor (PBR). Under favorable culture conditions, I. galbana #153180 contained DHA up to 17.5 % of total fatty acids or 1.7 % of cell dry weight. I. galbana #153180 was further tested in outdoor flat-plate PBRs varying in light path length, starting cell density (SCD), and culture mode (batch versus semicontinuous). When optimized, record high biomass and DHA productivity of I. galbana #153180 of 0.72 g L(-1) day(-1) and 13.6 mg L(-1) day(-1), or 26.4 g m(-2) day(-1) and 547.7 mg m(-2) day(-1), respectively, were obtained, suggesting that I. galbana #153180 may be a desirable strain for commercial production of DHA.

  15. Isolation and Characterization of Alfalfa-Nodulating Rhizobia Present in Acidic Soils of Central Argentina and Uruguay

    PubMed Central

    del Papa, María F.; Balagué, Laura J.; Sowinski, Susana Castro; Wegener, Caren; Segundo, Eduardo; Abarca, Francisco Martínez; Toro, Nicolás; Niehaus, Karsten; Pühler, Alfred; Aguilar, O. Mario; Martínez-Drets, Gloria; Lagares, Antonio

    1999-01-01

    We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191. PMID:10103231

  16. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  17. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    PubMed

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation. PMID:23886646

  18. Short communication: Latin-style fresh cheese enhances lactic acid bacteria survival but not Listeria monocytogenes resistance under in vitro simulated gastrointestinal conditions.

    PubMed

    Silva, C C G; Domingos-Lopes, M F P; Magalhães, V A F; Freitas, D A S R; Coelho, M C; Rosa, H J D; Dapkevicius, M L N E

    2015-07-01

    Different studies in humans have provided evidence about the health benefits of probiotics. However, most probiotic strains do not maintain good viability in the harsh conditions of the gastrointestinal tract (GIT). In the present study, Latin-style fresh cheese produced with potential probiotic bacteria was tested to evaluate this cheese type as a food carrier for the delivery of viable microorganisms after exposure to simulated GIT conditions. The resistance of 28 lactic acid bacteria (LAB) strains and Listeria monocytogenes upon exposure to acidic conditions (pH 2.5) and bile and pancreatic enzymes (0.3% of bile salts and 0.1% of pancreatin) was evaluated in vitro. When compared with fresh cultures, fresh cheese greatly improved LAB survival to simulated GIT conditions, as no loss of viability was observed in either acidic conditions (pH 2.5) or bile salts and pancreatin environment over a 3-h period. In opposition, L. monocytogenes did not survive after 1h under acidic conditions. These data demonstrated that Latin-style fresh cheese could play an important role in probiotic protection against gastrointestinal juices, enhancing delivery within the gut and thereby maximizing potential health benefits of LAB. PMID:25912867

  19. Short communication: Latin-style fresh cheese enhances lactic acid bacteria survival but not Listeria monocytogenes resistance under in vitro simulated gastrointestinal conditions.

    PubMed

    Silva, C C G; Domingos-Lopes, M F P; Magalhães, V A F; Freitas, D A S R; Coelho, M C; Rosa, H J D; Dapkevicius, M L N E

    2015-07-01

    Different studies in humans have provided evidence about the health benefits of probiotics. However, most probiotic strains do not maintain good viability in the harsh conditions of the gastrointestinal tract (GIT). In the present study, Latin-style fresh cheese produced with potential probiotic bacteria was tested to evaluate this cheese type as a food carrier for the delivery of viable microorganisms after exposure to simulated GIT conditions. The resistance of 28 lactic acid bacteria (LAB) strains and Listeria monocytogenes upon exposure to acidic conditions (pH 2.5) and bile and pancreatic enzymes (0.3% of bile salts and 0.1% of pancreatin) was evaluated in vitro. When compared with fresh cultures, fresh cheese greatly improved LAB survival to simulated GIT conditions, as no loss of viability was observed in either acidic conditions (pH 2.5) or bile salts and pancreatin environment over a 3-h period. In opposition, L. monocytogenes did not survive after 1h under acidic conditions. These data demonstrated that Latin-style fresh cheese could play an important role in probiotic protection against gastrointestinal juices, enhancing delivery within the gut and thereby maximizing potential health benefits of LAB.

  20. Structural and thermotropic properties of calcium-dimyristoylphosphatidic acid complexes at acidic and neutral pH conditions.

    PubMed Central

    Takahashi, H.; Yasue, T.; Ohki, K.; Hatta, I.

    1995-01-01

    Two kinds of calcium-dimyristoylphosphatidic acid (DMPA) complexes at acidic and neutral pH conditions were prepared in the following ways. The complex at pH 4 was obtained by adding Ca2+ to DMPA dispersion in pure water. On the other hand, the complex at pH 7.4 was obtained by adding Ca2+ to DMPA dispersion in the presence of NaOH. The stoichiometries of Ca2+ ion to DMPA molecule are 0.5-0.67 and approximately 1 for the complexes at pH 4 and 7.4, respectively. Static x-ray diffraction shows that the hydrocarbon chains of the Ca(2+)-DMPA complex at pH 4 at 20 degrees C are more tightly packed than those of the complex at pH 7.4 at 20 degrees C. Furthermore, the complex at pH 4 at 20 degrees C gives rise to several reflections that might be related to the ordered arrangement of the Ca2+ ions. These results indicate that the structure of the complex at pH 4 is crystalline-like. In the differential scanning calorimetry (DSC) thermogram, the complex at pH 7.4 undergoes no phase transition in a temperature range between 30 and 80 degrees C. On the other hand, in the DSC thermogram for the complex at pH 4, a peak appears at 65.8 degrees C in the first heating scan. In the successive second heating scan, a transition peak appears at 63.5 degrees C. In connection with the DSC results, the structural changes associated with these phase transitions were studied with temperature-scan x-ray diffraction. In the first heating scan, although a peak appears at 65.80C in the DSC thermogram, the hydrocarbon chain packing gradually converts from an orthorhombic lattice to a hexagonal lattice near 52 degree C, and successively the chain melting phase transition occurs near 670C. In the second heating scan, the hydrocarbon chains are packed in a hexagonal lattice over the whole temperature range and the chain melting phase transition occurs near 63.5 degree C. Therefore,the Ca2+-DMPA complex at pH 4 has a metastable state. The metastable state transforms to a stable state by

  1. Acid back-diffusion and mucosal H+ handling in the rat stomach under normal and stress-induced conditions.

    PubMed

    Takeuchi, K; Okabe, S

    1983-02-01

    We determined acid back-diffusion and pepsin output simultaneously in vagotomized rats after instillation of HCl into the stomach under normal and stress-induced conditions. With exposure to 6 ml of 100 mM HCl, spontaneous acid back-diffusion increased with the duration of the experiment under both conditions, and the magnitude of the acid back-diffusion was decreased significantly by stress. There was no change in the output of pepsin. While disappearance of luminal acid caused by aspirin or taurocholic acid was not altered by stress, the pepsin output in response to H+ increased significantly in the stressed rats. With exposure to various concentrations of HCl for 3 hr, disappearance of the luminal acid increased linearly with the grade of HCl under both conditions. Except for the concentration of 300 mM, the magnitude of the acid back-diffusion was triple in the normal condition, and the ratio of pepsin output/net flux of H+ was significantly increased by stress. Thus, (1) spontaneous acid back-diffusion decreased with stress, while diffusion induced by chemical barrier breakers remained the same; (2) the action of H+ diffused back into the mucosa did not always parallel the amount of diffusion determined from the loss of H+ in the lumen; (3) intramucosal H+ may be largely dissipated in normal mucosa; and (4) the initiation or aggravation of drug-induced mucosal damages by stress may be related to insufficiency of the H+ dissipating mechanisms. PMID:6410110

  2. Studying the pseudomorphic replacement of olivine by silica at acidic conditions

    NASA Astrophysics Data System (ADS)

    King, Helen E.; Geisler, Thorsten; Putnis, Andrew

    2010-05-01

    different reaction conditions highlights the sensitivity of olivine replacement in acidic conditions to factors such as pH. We used an 18O-enriched fluid to trace the mechanism of the pseudomorphic replacement. Raman spectroscopy of the silica layer showed that the 18O was taken into the silica rim in enough concentration to produce a shift in the Raman peaks resulting from 18O-Si bonding within the silica network. The products from experiments with different sulphuric acid concentrations showed that as concentration was reduced the silica layer became increasingly fragile until it no longer precipitated as a pseudomorph. This observation and the incorporation of 18O into the amorphous silica structure indicate that the formation of a pseudomorph occurs via an interface-coupled dissolution-reprecipitation mechanism (Putnis and Putnis, 2007). References Africano F. and Bernard A. (2000), J. Volcanol. Geoth. Res., 97 475-495 Putnis A. and Putnis C. V. (2007), J. Solid State Chem., 180, 1783-1786 Varekamp J. C., Pasternack G. B. and Rowe Jr. G. L. (2000), J. Volcanol. Geoth. Res., 97 161-179

  3. [The effects of number of pre-target items and order of conditions on attention in rapid serial visual presentation].

    PubMed

    Nishiura, K

    1999-12-01

    Using rapid serial visual presentation, the present study attempted to show that an attentional control error in integrating the target-definition dimension into the response-definition dimension caused a target intrusion error. It also examined the temporal relation between such attentional control and monitoring. Forty-eight undergraduate and graduate students participated. Two conditions, consistent or varied timing of target presentation, were used to manipulate attentional control in the dimension integration. Each series of stimuli consisted of 7 (consistent timing) or from 7 to 15 (varied timing) pre-target items, followed by target and 8 post-target items. Results showed that timing had an effect on mean probability of report, but not on confidence rating. In addition, average position of reported items came later for consistent than varied timing. These results suggested that average position of reported items was delayed because a portion of attentional resources was allocated to processing of timing. Further, average position of confident items was earlier than that of reported items. It was suggested that monitoring seemed to precede attentional control.

  4. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions. PMID:27387660

  5. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  6. Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid.

    PubMed

    Baba, Seigo; Osakabe, Naomi; Natsume, Midori; Terao, Junji

    2004-05-28

    Rosmarinic acid (RA) is contained in various Lamiaceae herbs used commonly as culinary herbs. Although RA has various potent physiological actions, little is known on its bioavailability. We therefore investigated the absorption and metabolism of orally administered RA in rats. After being deprived of food for 12 h, RA (50 mg/kg body weight) or deionized water was administered orally to rats. Blood samples were collected from a cannula inserted in the femoral artery before and at designated time intervals after administration of RA. Urine excreted within 0 to 8 h and 8 to 18 h post-administration was also collected. RA and its related metabolites in plasma and urine were measured by LC-MS after treatment with sulfatase and/or beta-glucuronidase. RA, mono-methylated RA (methyl-RA) and m-coumaric acid (COA) were detected in plasma, with peak concentrations being reached at 0.5, 1 and 8 h after RA administration, respectively. RA, methyl-RA, caffeic acid (CAA), ferulic acid (FA) and COA were detected in urine after RA administration. These components in plasma and urine were present predominantly as conjugated forms such as glucuronide or sulfate. The percentage of the original oral dose of RA excreted in the urine within 18 h of administration as free and conjugated forms was 0.44 +/- 0.21% for RA, 1.60 +/- 0.74% for methyl-RA, 1.06 +/- 0.35% for CAA, 1.70 +/- 0.45% for FA and 0.67 +/- 0.29% for COA. Approximately 83% of the total amount of these metabolites was excreted in the period 8 to 18 h after RA administration. These results suggest that RA was absorbed and metabolized as conjugated and/or methylated forms, and that the majority of RA absorbed was degraded into conjugated and/or methylated forms of CAA, FA and COA before being excreted gradually in the urine. PMID:15120569

  7. Ibotenic acid lesions in the amygdaloid central nucleus but not in the lateral subthalamic area prevent the acquisition of differential Pavlovian conditioning of bradycardia in rabbits.

    PubMed

    McCabe, P M; Gentile, C G; Markgraf, C G; Teich, A H; Schneiderman, N

    1992-05-15

    The present study examined the effect of ibotenic acid lesions in the amygdaloid central nucleus (ACe) or in the lateral zona incerta of the subthalamus (LZI) on the acquisition of differential Pavlovian conditioning of bradycardia in rabbits. Previous work has shown that bilateral electrolytic lesions in either ACe or LZI abolished the retention of conditioned heart rate (HR) responses. In order to determine whether these findings were due to destruction of cells intrinsic to ACe or LZI, ibotenic acid lesions were placed bilaterally in either structure or in control sites. Following recovery, animals were subjected to differential Pavlovian conditioning in which one tone (CS+) was paired with periorbital shock and a second tone (CS-) was presented alone. It was found that destruction of cell bodies in ACe, but not LZI, prevented the acquisition of the differential bradycardiac conditioned response. In addition, ACe lesions did not interfere with baseline HR, the HR orienting response, the HR unconditioned response to shock, or the concomitantly conditioned corneoretinal potential. The results of this study suggest that destruction of cells intrinsic to ACe selectively prevents the acquisition of differentially conditioned HR, and perhaps other conditioned responses related to conditioned arousal, but does not affect unlearned HR responses or specific somatomotor conditioned responses.

  8. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Griffin, Philippa J.; Waite, T. David

    2015-07-01

    In this study, the rates of Fe(II) oxidation by molecular oxygen in the presence of citrate, ethylenediaminetetraacetic acid (EDTA) and Suwannee River fulvic acid (SRFA) were determined over the pH range 4.0-5.5 and, for all of the ligands investigated, found to be substantially faster than oxidation rates in the absence of any ligand. EDTA was found to be particularly effective in enhancing the rate of Fe(II) oxidation when sufficient EDTA was available to complex all Fe(II) present in solution, with a kinetic model of the process found to adequately describe all results obtained. When Fe(II) was only partially complexed by EDTA, reactions with reactive oxygen species (ROS) and heterogeneous Fe(II) oxidation were found to contribute significantly to the removal rate of iron from solution at different stages of oxidation. This was possible due to the rapid rate at which EDTA enhanced Fe(II) oxidation and formed ROS and Fe(III). The rapid rate of Fe(III) generation facilitated the formation of free ferric ion activities in excess of those required for ferric oxyhydroxide precipitation following Fe(III)-EDTA dissociation. In comparison, the rate of Fe(II) oxidation was slower in the presence of citrate, and therefore the concentrations of free Fe(III) able to form in the initial stages of Fe(II) oxidation were much lower than those formed in the presence of EDTA, despite the resultant Fe(III)-citrate complex being less stable than that of Fe(III)-EDTA. The slower rate of citrate enhanced oxidation also resulted in slower rates of ROS generation, and, as such, oxidation of the remaining inorganic Fe(II) species by ROS was negligible. Overall, this study demonstrates that organic ligands may substantially enhance the rate of Fe(II) oxidation. Even under circumstances where the ligand is not present at sufficient concentrations to complex all of the Fe(II) in solution, ensuing oxidative processes may sustain an enhanced rate of Fe(II) oxidation relative to that of

  9. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies.

    PubMed

    Auer, Sonya K; Lopez-Sepulcre, Andrés; Heatherly, Thomas; Kohler, Tyler J; Bassar, Ronald D; Thomas, Steven A; Reznick, David N

    2012-07-01

    1. Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2. We examined the influence of food availability at the time of sampling, 2 months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3. We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2 months prior to growth measurements had positive effects on adult growth rate; though, food levels 2 months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2 months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2 months prior such that the effects of juvenile food level diminished as the food level experienced 2 months prior increased. 4. These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5. A simultaneous consideration of past events in both the

  10. Safe conditions for contacting nitric acid or nitrates with tri-n-butyl phosphate (TBP)

    SciTech Connect

    Hyder, M.L

    1994-01-01

    In response to a request from DOE-SR, the current state of knowledge of the reactions between TBP and aqueous nitrate solutions is critically reviewed, and recommendations are made for the safe operation of SRS separations equipment in which this combination of chemicals may be present. The existing limits for evaporation are validated. Guidelines are presented for cases in which general limits do not apply. The rate of reaction between nitric acid and TBP appears to be controlled by the rate of TBP hydrolysis. The hydrolysis reaction produces dibutyl phosphate and n-butanol. The hydrolysis rate is a strong function of temperature, and becomes very fast at temperatures in the range 130{degrees} to 150{degrees}C. The resulting n-butanol is volatile at high temperatures, boiling at 117.5{degrees}C, but is also subject to exothermic oxidation by nitric acid or nitrates. If oxidation occurs before the n-butanol evaporates, the heat of oxidation may exceed local cooling by convection. The resulting heating will further accelerate the reaction, leading to an energetic runaway and possibly (in confined systems) an explosion. Extensive experiments and practice have shown that in a well-mixed and well-vented aqueous system such as an evaporator, at moderate acidities and temperatures below 130{degrees}C, the heat of reaction is adequately removed by vaporization of steam. In general, the heating will be so slow that natural processes provide adequate cooling at temperatures below 80{degrees}C. Above this temperature, care should be taken to ensure that adequate cooling is available for the amount of TBP that may be present. Experiments suggest that in well-ventilated systems n-butanol evaporation and convective cooling are sufficient to control the reaction at temperatures up to 120{degrees}C.

  11. Synthetic drought event sets: thousands of meteorological drought events for risk-based management under present and future conditions

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Massey, Neil; Otto, Friederike E. L.; Allen, Myles R.; Jones, Richard; Hall, Jim W.

    2016-04-01

    Droughts and related water scarcity can have large impacts on societies and consist of interactions between a number of natural and human factors. Meteorological conditions are usually the first natural trigger of droughts, and climate change is expected to impact these and thereby the frequency and intensity of the events. However, extreme events such as droughts are, by definition, rare, and accurately quantifying the risk related to such events is therefore difficult. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying the risks associated with droughts in the UK under present and future conditions. To do so, a large number of drought events, from climate model simulations downscaled at 25km over Europe, are being fed into hydrological models of various complexity and used for the estimation of drought risk associated with human and natural systems, including impacts on the economy, industry, agriculture, terrestrial and aquatic ecosystems, and socio-cultural aspects. Here, we present the hydro-meteorological drought event set that has been produced by weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model (GCM) simulations, downscaled at 25km over Europe by a nested Regional Climate Model (RCM). Simulations include the past 100 years as well as two future horizons (2030s and 2080s), and provide a large number of sequences of spatio-temporally consistent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. The drought event set for use in impact studies is constructed by extracting sequences of dry conditions from these model runs, leading to several thousand drought events. In addition to describing methodological and validation aspects of the synthetic drought event sets, we provide insights into drought risk in the UK, its

  12. Removal of co-present chromate and arsenate by zero-valent iron in groundwater with humic acid and bicarbonate.

    PubMed

    Liu, Tongzhou; Rao, Pinhua; Mak, Mark S H; Wang, Peng; Lo, Irene M C

    2009-05-01

    The interactions of co-present Cr(VI) and As(V), and the influences of humic acid and bicarbonate in the process of Cr(VI) and As(V) removal by Fe(0) were investigated in a batch setting using simulated groundwater with 5 mM NaCl, 1 mM Na(2)SO(4), and 0.8 mM CaCl(2) as background electrolytes at an initial pH value of 7. Cr(VI) and As(V) were observed to be subject to different impacts induced by co-existing As(V) or Cr(VI), humic acid and bicarbonate, originating from their distinct removal mechanisms by Fe(0). Cr(VI) removal is a reduction-dominated process, whereas As(V) removal principally involves adsorption onto iron corrosion products. Experimental results showed that Cr(VI) removal was not affected by the presence of As(V) and humic acid. However, As(V) removal appeared to be inhibited by co-present Cr(VI). When the Cr(VI) concentration was 2, 5, and 10 mg/L, in the absence of humic acid and bicarbonate, As(V) removal rate constants were decreased by 27.9%, 49.0%, and 61.2%, respectively, which probably resulted from competition between Cr(VI) and As(V) for adsorption sites of the iron corrosion products. Furthermore, the presence of humic acid significantly varied As(V) removal kinetics by delaying the formation and aggregation of iron hydroxides due to the formation of soluble Fe-humate complexes and stably dispersed fine iron hydroxides colloids. In the presence of bicarbonate, both Cr(VI) and As(V) removal was increased and the inhibitory effect of Cr(VI) on As(V) removal was suppressed, resulting from the buffering effects and the promoted iron corrosion induced by bicarbonate, and the formation of CaCO(3) in solution, which enhanced As(V) adsorption. PMID:19321187

  13. Optimisation and establishment of separation conditions of organic acids from Usnea longissima Ach. by pH-zone-refining counter-current chromatography: Discussion of the eluotropic sequence.

    PubMed

    Sun, Changlei; Liu, Feng; Sun, Jie; Li, Jia; Wang, Xiao

    2016-01-01

    The major bioactive constituents of Usnea longissima Ach. are organic acids. However, few recent literatures involve the preparative separation of these organic acids. In the present study, pH zone-refining counter-current chromatography is used to separate organic acids from crude sample of U. longissima Ach. The crude extract was separated with the two-phase solvent system Pet-EtAc-MeOH-H2O (5:5:3:7, v/v) with 10mM TFA in organic stationary phase and different concentration of the eluter in aqueous mobile phase for the screening of the most suitable separation conditions. From the crude extract (1.2g), 74.0mg of orsellinic acid at 92.7% purity, 55.5mg of 4-O-methylorsellinic acid at 97.7% purity, 353.5mg of evernic acid at 93.8% purity, 102.0mg of barbatic acid at 94.8% purity, 19.4 mg of diffractaic acid at 92.2% purity, and 44.9 mg of usnic acid at 95.7% purity were obtained using the selected conditions in which the concentration of TFA in stationary phase was 10mM and the concentration of NaOH in mobile phase was 10-20mM. The purities of the separated organic acids were measured by HPLC. And the data of electrospray ionization-liquid chromatography/mass spectrometry (ESI-LC/MS), (1)H NMR, and (13)C NMR were used for confirming chemical structures.

  14. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  15. Relationship between nine haloacetic acids with total organic halogens in different experimental conditions.

    PubMed

    Pourmoghadas, Hossein; Kinman, Riley N

    2013-04-03

    The effects of pH and bromide ion concentration on the formation of nine haloacetic acids (HAAs) and total organic halogens (TOX) in chlorinated drinking water have been evaluated. In an extensive study, the relationships of nine HAAs with TOX have been investigated. Honesty Significant Differences test (HSD) and ANOVA tests were used for the statistical analyses. The study determined the concentration range of nine HAAs as of a percentage of TOX at varying experimental conditions. Statistical analyses showed that the parameters pH and Br had significant effects on the formation of nine HAAs and TOX. This study also showed that brominated and mixed species of HAAs would be dominant in the presence of high bromide ion concentration which contributes a high percentage of the TOX. The results of this study could be used to set up a maximum contaminant level of TOX as a water quality standard for chlorination by-products.

  16. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  17. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; Rampe, E. B.; Crisp, J. A.

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  18. Investigation of the L-Glutamic acid polymorphism: Comparison between stirred and stagnant conditions

    NASA Astrophysics Data System (ADS)

    Tahri, Yousra; Gagnière, Emilie; Chabanon, Elodie; Bounahmidi, Tijani; Mangin, Denis

    2016-02-01

    This work highlights the effect of the stirring, the temperature and the supersaturation on the cooling crystallization of L-Glutamic acid (LGlu) polymorphs. First, solubility measurements of the metastable polymorph α and the stable polymorph β were performed. Then, crystallization experiments were carried out in stirred vessel and in stagnant cell. All these experiments were monitored by in situ devices. The effect of the temperature on the LGlu polymorphs was found to be more relevant than the supersaturation in the stirred crystallizer. In the stagnant cell, only the stable form β crystallized regardless of the operating conditions. Moreover, an unexpected and new habit of the β form was discovered and confirmed. These results suggest that the temperature and the stirring can strongly affect the nucleation and the growth kinetics of polymorphic forms.

  19. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions. PMID:25228086

  20. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  1. Water oxidation catalysis with nonheme iron complexes under acidic and basic conditions: homogeneous or heterogeneous?

    PubMed

    Hong, Dachao; Mandal, Sukanta; Yamada, Yusuke; Lee, Yong-Min; Nam, Wonwoo; Llobet, Antoni; Fukuzumi, Shunichi

    2013-08-19

    Thermal water oxidation by cerium(IV) ammonium nitrate (CAN) was catalyzed by nonheme iron complexes, such as Fe(BQEN)(OTf)2 (1) and Fe(BQCN)(OTf)2 (2) (BQEN = N,N'-dimethyl-N,N'-bis(8-quinolyl)ethane-1,2-diamine, BQCN = N,N'-dimethyl-N,N'-bis(8-quinolyl)cyclohexanediamine, OTf = CF3SO3(-)) in a nonbuffered aqueous solution; turnover numbers of 80 ± 10 and 20 ± 5 were obtained in the O2 evolution reaction by 1 and 2, respectively. The ligand dissociation of the iron complexes was observed under acidic conditions, and the dissociated ligands were oxidized by CAN to yield CO2. We also observed that 1 was converted to an iron(IV)-oxo complex during the water oxidation in competition with the ligand oxidation. In addition, oxygen exchange between the iron(IV)-oxo complex and H2(18)O was found to occur at a much faster rate than the oxygen evolution. These results indicate that the iron complexes act as the true homogeneous catalyst for water oxidation by CAN at low pHs. In contrast, light-driven water oxidation using [Ru(bpy)3](2+) (bpy = 2,2'-bipyridine) as a photosensitizer and S2O8(2-) as a sacrificial electron acceptor was catalyzed by iron hydroxide nanoparticles derived from the iron complexes under basic conditions as the result of the ligand dissociation. In a buffer solution (initial pH 9.0) formation of the iron hydroxide nanoparticles with a size of around 100 nm at the end of the reaction was monitored by dynamic light scattering (DLS) in situ and characterized by X-ray photoelectron spectra (XPS) and transmission electron microscope (TEM) measurements. We thus conclude that the water oxidation by CAN was catalyzed by short-lived homogeneous iron complexes under acidic conditions, whereas iron hydroxide nanoparticles derived from iron complexes act as a heterogeneous catalyst in the light-driven water oxidation reaction under basic conditions.

  2. Present condition of the coniferous undergrowth of forest-tundra ecotone of North-Chuya ridge (Central Altai)

    NASA Astrophysics Data System (ADS)

    Propastilova, Olga; Timoshok, Elena

    2010-05-01

    Investigations of high-mountain regions which are characterized by extreme climate conditions are of current importance since the response of environmental ecosystems to climate changes is clearly expressed there. The work presented was performed on the territory of two mountain glacial basins located on the northern macroslope of North-Chuya ridge (Russia, Central Altai). High-mountain vegetation of the area being considered didn't undergo an anthropogenic impact. It should be noted that investigations of coniferous undergrowth of forest-tundra ecotone of Aktru and Korumdu mountain glacial basins (2200-2500 m ab. s.l.) haven't been conducted before. A climatic representativeness of Aktru basin was proved by numerous data (Tronov et all, 1965, Sevastianov, 1998). The goal of the work was studying of condition and adaptations of young Pinus sibirica Du Tour and Larix sibirica Ledeb. to forest-tundra ecotone conditions. These species form the treeline on many ridges of Central Altai (Kuminova, 1960), including North-Chuya (Timoshok, 2004). It is shown that the number of young Siberian stone pines and larches in the forest-tundra ecotone is not big, Siberian stone pine being found more often than larch. A considerable quantity of young Siberian stone pines grows in sheltered sites (near big stones, boulders, stumps, etc.). During the research period dead young trees have been found in single cases. The maximum percentage of Siberian stone pine trees (42.4%) growing in sheltered sites was registered in Aktru basin on the east-southeast slope whereas on the west-northwest slope the maximum percentage of Siberian stone pines growing in clusters has been revealed (34.4%). Also on the west-northwest slope the maximum quantity of Siberian stone pines that changed their terminal shoots have been found (62.5%). During the investigation young trees with signs of diseases were registered. Chermes (Pineus cembrae Chol.) has been found on shoots and needles. On the west

  3. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present.

    PubMed

    Hüsch, Jan; Gerbeth, Kathleen; Fricker, Gert; Setzer, Constanze; Zirkel, Jürgen; Rebmann, Herbert; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2012-10-26

    Boswellia serrata gum resin extracts are used widely for the treatment of inflammatory diseases. However, very low concentrations in the plasma and brain were observed for the boswellic acids (1-6, the active constituents of B. serrata). The present study investigated the effect of phospholipids alone and in combination with common co-surfactants (e.g., Tween 80, vitamin E-TPGS, pluronic f127) on the solubility of 1-6 in physiologically relevant media and on the permeability in the Caco-2 cell model. Because of the high lipophilicity of 1-6, the permeability experiments were adapted to physiological conditions using modified fasted state simulated intestinal fluid as apical (donor) medium and 4% bovine serum albumin in the basolateral (receiver) compartment. A formulation composed of extract/phospholipid/pluronic f127 (1:1:1 w/w/w) increased the solubility of 1-6 up to 54 times compared with the nonformulated extract and exhibited the highest mass net flux in the permeability tests. The oral administration of this formulation to rats (240 mg/kg) resulted in 26 and 14 times higher plasma levels for 11-keto-β-boswellic acid (1) and acetyl-11-keto-β-boswellic acid (2), respectively. In the brain, five times higher levels for 2 compared to the nonformulated extract were determined 8 h after oral administration.

  4. Relevance of organic farming and effect of climatological conditions on the formation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.).

    PubMed

    Keukeleire, Jelle De; Janssens, Ina; Heyerick, Arne; Ghekiere, Greet; Cambie, Joris; Roldan-Ruiz, Isabel; Bockstaele, Erik Van; Keukeleire, Denis De

    2007-01-10

    The concentrations of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol were monitored in the hop varieties Admiral (A), Wye Challenger (WC), and First Gold (FG) during the harvest seasons of 2003 through 2005. Hops grown under an organic regimen were compared to plants grown conventionally in hop fields in close vicinity. The concentrations of the key compounds depended very much on climatological conditions showing, in general, highest levels in poorest weather conditions (2004). Of the three varieties studied, FG was the only one showing a clear trend for higher concentrations of secondary metabolites under organic growing conditions than under conventional farming conditions. Cultivation of A and WC seems to be very sensitive to climatic conditions and environmental stresses caused by pests and diseases, thereby leading to various results. WC proved to be a rich source of bioactive chalcones, particularly desmethylxanthohumol. PMID:17199314

  5. Using Water Isotope Tracers to Investigate Past and Present Water Balance Conditions in the Old Crow Flats, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Turner, K.; Wolfe, B. B.; Edwards, T. W.

    2010-12-01

    The Old Crow Flats (OCF), Yukon Territory, is a wetland of international significance that comprises approximately 2700 shallow thermokarst lakes. Located near the northern limit of the boreal forest, the OCF provides vital habitat for abundant wildlife including waterfowl, moose, muskrat, and the Porcupine Caribou Herd, which support the traditional lifestyle of the Vuntut Gwitchin First Nation. Thermokarst lakes, which occupy vast northern regions, are greatly influenced by climate conditions. In the OCF and other regions there have been observations of decreasing water levels and an increase in frequency of lake drainage events over recent decades. Though there is widespread concern that thermokarst landscape changes are accelerating as a result of ongoing climate change, there are few studies that have investigated current and past variability of lake water balances and climate interactions at the landscape scale. As part of a Government of Canada International Polar Year multidisciplinary project, the present and past hydrology of lakes spanning the OCF are being investigated using water isotope tracers and paleolimnological approaches. Water samples were obtained from 57 lakes three times over three ice-free seasons (2007-09) and analyzed for oxygen and hydrogen isotope composition in order to capture seasonal and interannual changes in water balance conditions. Results highlight strong diversity in the hydrology of lakes throughout the OCF. Based on patterns of isotopic evolution and calculations of input source compositions and evaporation-to-inflow ratios, we identified snowmelt-dominated, rainfall-dominated, groundwater-influenced, evaporation-dominated and drained lake types, which represent the dominant hydrological processes influencing lake water balances. Lake physical and catchment land cover characteristics influence dominant input type (rain or snow). Snowmelt-dominated catchments are large relative to lake surface areas and typically contain

  6. Chemometric analysis of the interactions among different parameters describing health conditions, breast cancer risk and fatty acids profile in serum of rats supplemented with conjugated linoleic acids.

    PubMed

    Białek, Agnieszka; Zagrodzki, Paweł; Tokarz, Andrzej

    2016-03-01

    We investigated how different doses of conjugated linoleic acids applied for various periods of time influence breast cancer risk and fatty acids profile in serum of rats treated or not with 7,12-dimethylbenz[a]anthracene (DMBA). We also search for interactions among parameters describing health conditions and cancer risk. Animals were divided into 18 groups with different diet modifications (vegetable oil, 1.0%, 2.0% additions of CLA) and different periods of supplementation. In groups treated with DMBA mammary adenocarcinomas appeared. Due to the complexity of experiment apart from statistical analysis a chemometric tool-Partial Least Square method was applied. Analysis of pairs of correlated parameters allowed to identify some regularities concerning the relationships between fatty acid profiles and clinical features of animals. Fatty acids profile was the result of prolonged exposure to high dose of CLA and DMBA administration. These two factors underlined the differences in fatty acids profiles among clusters of animals. PMID:26926361

  7. Fatty acid profiles of blood lipids in a population group in Tibet: correlations with diet and environmental conditions.

    PubMed

    Risé, Patrizia; Marangoni, Franca; Martiello, Antonella; Colombo, Claudio; Manzoni, Cristina; Marconi, Claudio; Cattabeni, Flaminio; Galli, Claudio

    2008-01-01

    The aim of this study was to compare blood fatty acid profiles of two population groups: Italian and Tibetan, differing with regard to ethnic, life style and environmental aspects. Additionally the collection of two staple foods provided the opportunity to analyze typical Tibetan dishes. A new, simple, rapid, and substantially non invasive method for fatty acid (FA) analysis of blood lipids was applied to healthy Italian (n=14) and Tibetan (n=13) subjects. Blood drops obtained from the ear lobe of Tibetans or the fingertip of Italians were adsorbed by a special strip of paper and processed for fatty acid analysis. The fatty acid profiles of the two groups are different, and environmental factors, such as dietary fats and altitudes of Milan, Italy (a low altitude site), and Lhasa, Tibet (a high altitude site) appear to contribute to these differences. More specifically, in Ti-betans higher levels of monounsaturated fatty acids, including the 22 and 24 carbon molecules, were found. This appears to be derived mainly from locally consumed fats (mustard seed oil), and are associated with lower levels of total polyunsaturated fatty acids and higher levels of selected omega 3 fatty acids, when compared to the Italians. These relatively higher levels of monounsaturated fatty acids may also indicate means of adaptation to local prooxidant conditions. The observed differences in blood fatty acid profiles in Tibetans vs. Italians appear to result both from dietary factors and adaptation to local environmental conditions such as the high altitude of the Tibetan location.

  8. Frequency and duration of flooding of Grove Creek near Kenansville, North Carolina, for present and proposed restored channel conditions

    USGS Publications Warehouse

    Stamey, T.C.

    1985-01-01

    The Grove Creek basin includes an area of about 42 square miles in Duplin County, southeastern North Carolina. The North Carolina Department of Human Resources (DHR) proposes to implement a channel restoration project on about an eight-mile reach of Grove Creek. The purpose of the restoration program is to improve drainage, thereby reducing frequency and duration of overbank flooding and reducing the opportunity for mosquito breeding in frequently flooded areas adjacent to Grove Creek. This study evaluates the effects of the restoration on the frequency and duration of flooding within the study reach for present (1984) and proposed restored channel conditions. The proposed restored channel is estimated to increase the carrying capacity of the main channel from 10 to 19 times. The greatest reduction in areas of flooded land immediately adjacent to the study reach would be west of North Carolina Highway 11 (between sites 4 and 6) and would be reduced by an average of 29 percent during floods up through the 10-year flood level and reduced by an average of 5 percent for the 25- to 100-year flood levels. An average reduction of 1 percent is indicated for areas inundated east of North Carolina Highway 11 (for sites 1 through 3) for the 2-, 5-, 10-, 25-, 50-, and 100-year floods; while reductions in inundated area of the total study reach of 13, 5, 4, and 1.5 percent are indicated for the 2-, 5-, 10-, and 100-year floods, respectively. Overbank flooding during 1983 and 1984 water years occurred 32 times and persisted from a few hours up to about 3 months. For proposed restored-channel conditions, overbank flooding would have been reduced to 5 occurrences, and areal flooding would have persisted from a few hours to about 2 days. Flooding on the Northeast Cape Fear River causes variable backwater conditions on the lower Grove Creek study reach. A 100-year flood on the Northeast Cape Fear River would create backwater for about 1.5 miles upstream on Grove Creek.

  9. Acute Generalized Exanthematous Pustulosis Induced by Amoxicillin/Clavulanic Acid: Report of a Case Presenting With Generalized Lymphadenopathy.

    PubMed

    Syrigou, Ekaterini; Grapsa, Dimitra; Charpidou, Andriani; Syrigos, Konstantinos

    2015-01-01

    Drug-induced acute generalized exanthematous pustulosis is a rare pustular skin reaction, most commonly triggered by antibiotics. Although its diagnosis is based primarily on the presence of specific clinical and histopathologic features, additional in vivo (patch testing) or in vitro testing may be required, especially in atypical cases, to more accurately determine the causative agent. The authors report a histologically confirmed case of acute generalized exanthematous pustulosis that was induced by amoxicillin/clavulanic acid, as documented by subsequent patch testing, and presented with generalized painful lymphadenopathy, mimicking an acute infectious process. This is a very rare and diagnostically challenging clinical presentation of acute generalized exanthematous pustulosis, which has been reported, to the best of our knowledge, only once previously.

  10. To pre-challenge lactic acid bacteria with simulated gastrointestinal conditions is a suitable approach to studying potential probiotic properties.

    PubMed

    Huang, Hui-Ying; Hsieh, Hsin-Yi; King, V An-Erl; Chi, Li-Ling; Tsen, Jen-Horng

    2014-12-01

    The potential probiotic properties of lactic acid bacteria (LAB) after treatment with gastrointestinal (GI) conditions were investigated. Some LAB strains that survived simulated GI treatment retained their adhesiveness and antagonism against the pathogen. Therefore pre-challenging LAB with simulated GI conditions is a suitable way for potential probiotic studies. PMID:25281473

  11. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  12. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  13. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  14. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  15. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  16. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals

    PubMed Central

    Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles

    2013-01-01

    Brain activity often consists of interactions between internal—or on-going—and external—or sensory—activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal’s on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5 ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40 Hz. Our software’s architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system “StimOMatic” is available freely as open-source. PMID:23473800

  17. PRESENT CONDITION AND MEASURES TO EXPAND OF VOLUNTARY AGREEMENT ON PLASTIC SHOPPING BAGS REDUCTION AT THE PREFECTURAL LEVEL

    NASA Astrophysics Data System (ADS)

    Mori, Mayuka; Kanaya, Ken

    Purpose of this research is to clear present condition and measures to expand of voluntary agreement on plastic shopping bags reduction at the prefectural level. Methods of this research are questionnaire survey to prefectures implementing the agreement and survey by i town page to the number of stores of companies and the number of companies in the prefectures. Findings of this research are as follows: 1. The refusal rate of plastic shopping bags was 10-40% before the implementation of voluntary agreements. And the rate is approximately 70-90% after the implementation. Therefore, before and after the implementation of voluntary agreements, the refusal rate of plastic shopping bags is approximately 40-70% less. 2. It is suggested that the time and number of meetings from proposal to conclusion of the agreement are related in some way, to the ratio of stores participating. On the participation of administration, the ratio of stores participating in the case in which prefecture and cities participate is higher than in the case in which prefecture participates.

  18. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios.

  19. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. PMID:27459161

  20. Control of enzymatic browning in apple slices by using ascorbic acid under different conditions.

    PubMed

    el-Shimi, N M

    1993-01-01

    Control of phenol oxidase activity in apple slices by the use of ascorbic acid at different pH values, temperature and time of incubation was investigated. The enzyme was almost inactivated at 1% and 1.5% ascorbic acid. Ascorbic acid solution (1%) caused a remarkable inhibition with the increasing acidity up to pH = 1. Heating treatments for apple slices dipped in 1% ascorbic acid caused a reduction of enzymatic browning, optimum temperature for inactivation of the enzyme was between 60-70 degrees C for 15 minutes. Increasing the time of dipping apple slices in 1% ascorbic acid solutions and at different pH values reduce phenolase activity.

  1. Extended survival of several organisms and amino acids under simulated martian surface conditions

    NASA Astrophysics Data System (ADS)

    Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.; Radtke, K.; Chan, E.; Tronick, S.; Borgonie, G.; Mancinelli, R. L.; Rothschild, L. J.; Rogoff, D. A.; Horikawa, D. D.; Onstott, T. C.

    2011-02-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms' survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical

  2. Involvement of Intermediate Sulfur Species in Biological Reduction of Elemental Sulfur under Acidic, Hydrothermal Conditions

    PubMed Central

    Druschel, Gregory K.

    2013-01-01

    The thermoacidophile and obligate elemental sulfur (S80)-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S80-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H2S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S80 and the biologically produced H2S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S80 was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S80 can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S80 provided as a solid phase in the medium or with S80 sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S80 sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S80 provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S80 particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S80 particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens. PMID:23335768

  3. The role of carboxylic acids in albite and quartz dissolution: An experimental study under diagenetic conditions

    SciTech Connect

    Franklin, S.P. ); Hajash, A. Jr.; Tieh, T.T. ); Dewers, T.A. )

    1994-10-01

    Simple water soluble organic acids may promote secondary porosity development in sandstones during diagenesis by increasing feldspar solubility and dissolution rate. To test this hypothesis, Amelia albite and Brazilian hydrothermal quartz were reacted with 0.07 m acetate and 0.07 m acetate-0.005 m oxalate solutions at selected pH values, and distilled water. Pore fluid chemistry was monitored through time at various flow rates to obtain both solubility and dissolution rate data. The experiments were conducted in large volume, semi-static, flow-through systems at 100[degrees]C and 347 bars. These systems simulate subsurface flow rates, low mass water/rock, and high surface area/fluid mass. Acetate and acetate + oxalate solutions significantly increase albite solubility at temperatures, pressures, and pH values typical of diagenetic environments. Albite solubilities increased in acetate and acetate + oxalate solutions by factors of 2 and 3.4, respectively, compared to distilled water. In these same solutions, Al concentrations were [approx] 140 and [approx] 480 times higher than that calculated for kaolinite solubility at the same conditions without organic species. These enhanced solubilities occur at pH values (4.6-4.8) that may overlap with formation waters. In contrast to albite, quartz solubility was essentially identical in all solutions investigated. Dissolution rates in the acid region decreased with increasing pH in the acetate and acetate + oxalate solutions. Slopes of log rate vs. pH curves were [approx] 0.6 for acetate and [approx] 0.3 for acetate + oxalate. Although the effects of acetate on the dissolution rate are small, the effects of oxalate are significant. A rate law valid for albite dissolution at 100[degrees]C, oxalate concentrations to 0.01 m, and pH values ranging from 3.4 to 5.5 is given.

  4. Polymerization Experiment Of Amino Acids Under High Pressure And Temperature Conditions Simulating The Deep Lithosphere

    NASA Astrophysics Data System (ADS)

    Ohara, S.; Kakegawa, T.; Nakazawa, H.

    2005-12-01

    Chemical evolution in deep sea or deep lithosphere is one of the popular hypotheses for the origin of life on the early Earth. In such hypothesis, effects of pressure and temperature on polymerization (and/or stability) of amino acids needed to be evaluated. In this study, high temperature and pressure experiments were performed using of a test-tube-type autoclave for polymerization of amino acids. Approximately 100 mg of Glycine powder were placed into sterilized gold capsule. Multiple experiments were done at 150 degrees for 1 to 8 days at variable pressures (25MPa, 50MPa, 75MPa and 100MPa). Glycine peptides were identified and quantified by high performance liquid chromatography (HPLC). Each capsule was opened carefully and 1 ml of mobile phase was added to release the amino acids and oligopeptide from the solid phase. Liquid phases were separated by the cetrifugal method. Peptides were identified by retention times of authentic reference substances. The reaction yields were determined as percentage of the reactant converted to the reaction product. Pligopeptides more than hexamer were additionally identified by the detection of the molecular ion by liquid chromatography mass spectrometry (LC / MS). A HPLC chromatogram of the products indicated at least seven oligomers: diketopiperazine (cyc(Gly)2), di-glycine (Gly2), tri-glycine (Gly3), tetra-glycine (Gly4), penta-glycine (Gly5) and hexa-glycine (Gly6). We also identified hepta-glycine (Gly7), octa-glycine (Gly8) and nona-glycine (Gly9) with LC/MS. This is the first report that up to nona-glycine was synthesized under high temperature and pressure conditions. In addition, our experiments indicate that polymerization occurs wide range of pressure from 25 to 100 MPa. On the other hand, yields of total amounts of peptide did not change with pressure, suggesting that an unknown process in the autoclave is limiting the yield. We speculate the activity of water vapor, generated by peptide formation reaction

  5. Integrated analysis of present and future responses of precipitation over selected Greek areas with different climate conditions

    NASA Astrophysics Data System (ADS)

    Paparrizos, Spyridon; Maris, Fotios; Matzarakis, Andreas

    2016-03-01

    The assessment of future precipitation variations prevailing in an area is essential for the research regarding climate and climate change. The current paper focuses on 3 selected areas in Greece that present different climatic characteristics due to their location and aims to assess and compare the future variation of annual and seasonal precipitation. Future precipitation data from the ENSEMBLES anthropogenic climate-change (ACC) global simulations and the Climate version of the Local Model (CLM) were obtained and analyzed. The climate simulations were performed for the future periods 2021-2050 and 2071-2100 under the A1B and B1 scenarios. Mann-Kendall test was applied to investigate possible trends. Spatial distribution of precipitation was performed using a combination of dynamic and statistical downscaling techniques and Kriging method within ArcGIS 10.2.1. The results indicated that for both scenarios, reference periods and study areas, precipitation is expected to be critically decreased. Additionally, Mann-Kendall test application showed a strong downward trend for every study area. Furthermore, the decrease in precipitation for the Ardas River basin characterized by the continental climate will be tempered, while in the Sperchios River basin it will be smoother due to the influence of some minor climatic variations in the basins' springs in the highlands where milder conditions occur. Precipitation decrease in the Geropotamos River basin which is characterized by Mediterranean climate will be more vigorous. B1 scenario appeared more optimistic for the Ardas and Sperchios River basins, while in the Geropotamos River basin, both applied scenarios brought similar results, in terms of future precipitation response.

  6. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment.

    PubMed

    Edwards, K J; Gihring, T M; Banfield, J F

    1999-08-01

    Microbial populations, their distributions, and their aquatic environments were studied over a year (1997) at an acid mine drainage (AMD) site at Iron Mountain, Calif. Populations were quantified by fluorescence in situ hybridizations with group-specific probes. Probes were used for the domains Eucarya, Bacteria, and Archaea and the two species most widely studied and implicated for their role in AMD production, Thiobacillus ferrooxidans and Leptospirillum ferrooxidans. Results show that microbial populations, in relative proportions and absolute numbers, vary spatially and seasonally and correlate with geochemical and physical conditions (pH, temperature, conductivity, and rainfall). Bacterial populations were in the highest proportion (>95%) in January. Conversely, archaeal populations were in the highest proportion in July and September ( approximately 50%) and were virtually absent in the winter. Bacterial and archaeal populations correlated with conductivity and rainfall. High concentrations of dissolved solids, as reflected by high conductivity values (up to 125 mS/cm), occurred in the summer and correlated with high archaeal populations and proportionally lower bacterial populations. Eukaryotes were not detected in January, when total microbial cell numbers were lowest (<10(5) cells/ml), but eukaryotes increased at low-pH sites ( approximately 0.5) during the remainder of the year. This correlated with decreasing water temperatures (50 to 30 degrees C; January to November) and increasing numbers of prokaryotes (10(8) to 10(9) cells/ml). T. ferrooxidans was in highest abundance (>30%) at moderate pHs and temperatures ( approximately 2.5 and 20 degrees C) in sites that were peripheral to primary acid-generating sites and lowest (0 to 5%) at low-pH sites (pH approximately 0.5) that were in contact with the ore body. L. ferrooxidans was more widely distributed with respect to geochemical conditions (pH = 0 to 3; 20 to 50 degrees C) but was more abundant at

  7. Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdala of methamphetamine-sensitized rats.

    PubMed

    Miyagi, Junko; Oshibuchi, Hidehiro; Kasai, Akiko; Inada, Ken; Ishigooka, Jun

    2014-05-01

    Valproic acid, an established antiepileptic and antimanic drug, has recently emerged as a promising emotion-stabilizing agent for patients with psychosis. Although dopamine transmission in the amygdala plays a key role in emotional processing, there has been no direct evidence about how valproic acid acts on the dopaminergic system in the brain during emotional processing. In the present study, we tested the effect of valproic acid on a trait marker of vulnerability to emotional stress in psychosis, which is excess dopamine release in response to a fear-conditioned stimulus (CS) in the basolateral complex of the amygdala of methamphetamine-sensitized rats. Extracellular dopamine was collected from the amygdala of freely moving methamphetamine-sensitized rats by in vivo microdialysis and was measured using high-performance liquid chromatography. During microdialysis, valproic acid was intraperitoneally injected followed by CS exposure. Valproic acid treatment decreased baseline levels of dopamine and also attenuated the excess dopamine release in response to the CS in the amygdala of methamphetamine-sensitized rats. The results prove that valproic acid inhibits spontaneous dopamine release and also attenuates excess dopaminergic signaling in response to emotional stress in the amygdala. These findings suggest that the mechanisms of the emotion-stabilizing effect of valproic acid in psychosis involve modulation of dopaminergic transmission in emotional processing.

  8. Complex investigation of the effects of lambertianic acid amide in female mice under conditions of social discomfort.

    PubMed

    Avgustinovich, D F; Fomina, M K; Sorokina, I V; Tolstikova, T G

    2014-09-01

    The effects of chronic administration of a new substance lambertianic acid amide and previously synthesized methyl ester of this acid were compared in female mice living under conditions of social discomfort. For modeling social discomfort, female mouse was housed for 30 days in a cage with aggressive male mouse kept behind a transparent perforated partition and observed its confrontations with another male mouse daily placed to the cage. The new agent more effectively than lambertianic acid methyl ester improved communicativeness and motor activity of animals, reduced hypertrophy of the adrenal glands, and enhanced catalase activity in the blood. These changes suggest that lambertianic acid amide produces a pronounced stress-protective effect under conditions of social discomfort.

  9. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores.

    PubMed

    De Koster, J; Hostens, M; Van Eetvelde, M; Hermans, K; Moerman, S; Bogaert, H; Depreester, E; Van den Broeck, W; Opsomer, G

    2015-07-01

    The objective of the present research was to determine the insulin response of the glucose and fatty acid metabolism in dry dairy cows with a variable body condition score (BCS). Ten pregnant Holstein Friesian dairy cows (upcoming parity 2 to 5) were selected based on BCS at the beginning of the study (2mo before expected parturition date). During the study, animals were monitored weekly for BCS and backfat thickness and in the last 2wk, blood samples were taken for determination of serum nonesterified fatty acid (NEFA) concentration. Animals underwent a hyperinsulinemic euglycemic clamp test in the third week before the expected parturition date. The hyperinsulinemic euglycemic clamp test consisted of 4 consecutive insulin infusions with increasing insulin doses: 0.1, 0.5, 2, and 5mIU/kg per minute. For each insulin infusion period, a steady state was defined as a period of 30min where no or minor changes of the glucose infusion were necessary to keep the blood glucose concentration constant and near basal levels. During the steady state, the glucose infusion rate [steady state glucose infusion rate (SSGIR) in µmol/kg per minute] and NEFA concentration [steady state NEFA concentration (SSNEFA) in mmol/L] were determined and reflect the insulin response of the glucose and fatty acid metabolism. Dose response curves were created based on the insulin concentrations during the steady state and the SSGIR or SSNEFA. The shape of the dose response curves is determined by the concentration of insulin needed to elicit the half maximal effect (EC50) and the maximal SSGIR or the minimal SSNEFA for the glucose or fatty acid metabolism, respectively. The maximal SSGIR was negatively associated with variables reflecting adiposity of the cows (BCS, backfat thickness, NEFA concentration during the dry period, and absolute weight of the different adipose depots determined after euthanasia and dissection of the different depots), whereas the EC50 of the glucose metabolism was

  10. Frequency Patterns of T-Cell Exposed Amino Acid Motifs in Immunoglobulin Heavy Chain Peptides Presented by MHCs

    PubMed Central

    Bremel, Robert D.; Homan, E. Jane

    2014-01-01

    Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV) to assess the diversity of T-cell exposed motifs (TCEMs). TCEM comprise those amino acids in a MHC-bound peptide, which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM). Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of TCEM re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by T-cell clonal expansion that develops along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs. PMID:25389426

  11. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  12. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  13. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  14. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone. PMID:25046756

  15. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone.

  16. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R. M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.

    2012-10-01

    Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that carbonates can form under diverse macroscopic physicochemical conditions ranging from very low to neutral pH (1.5-7.0). A multi-technique approach demonstrates that carbonate minerals are closely associated with microbial activity. Carbonates occur in the form of micron-size carbonate precipitates under bacterial biofilms, mineralization of subsurface colonies, and possible biogenic microstructures including globules, platelets and dumbbell morphologies. We propose that carbonate precipitation in the low-pH environment of Río Tinto is a process enabled by microbially-mediated neutralization driven by the reduction of ferric iron coupled to the oxidation of biomolecules in microbially-maintained circumneutral oases, where the local pH (at the scale of cells or cell colonies) can be much different than in the macroscopic environment. Acidic conditions were likely predominant in vast regions of Mars over the last four billion years of planetary evolution. Ancient Martian microbial life inhabiting low-pH environments could have precipitated carbonates similar to those observed at Río Tinto. Preservation of carbonates at Río Tinto over geologically significant timescales suggests that similarly-formed carbonate minerals could also be preserved on Mars. Such carbonates could soon be observed by the Mars Science Laboratory, and by future missions to the red planet.

  17. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  18. Biomineralization of arsenate to arsenic sulfides is greatly enhanced at mildly acidic conditions.

    PubMed

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A

    2014-12-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (As(V)) and sulfate (SO4(2-)). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO4(2-) and As(V) by an anaerobic biofilm mixed culture in a range of pH conditions (6.1-7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions.

  19. Biomineralization of Arsenate to Arsenic Sulfides is Greatly Enhanced at Mildly Acidic Conditions

    PubMed Central

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A.

    2014-01-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (AsV) and sulfate (SO42−). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO42− and AsV by an anaerobic biofilm mixed culture in a range of pH conditions (6.1–7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  20. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2009-11-01

    Acid and heat inactivation in orange and apple juices of Salmonella enterica serovar Typhimurium Colección Española de Cultivos Tipo (i.e., Spanish Type Culture Collection) 443 (CECT 443) (Salmonella Typhimurium) and S. enterica serovar Senftenberg CECT 4384 (Salmonella Senftenberg) grown in buffered brain heart infusion (pH 7.0) and acidified brain heart infusion up to pH 4.5 with acetic, citric, lactic, and hydrochloric acids was evaluated. Acid adaptation induced an adaptive response that increased the subsequent resistance to extreme pH conditions (pH 2.5) and to heat, although the magnitude of these responses differed between the two isolates and fruit juices. The acid resistance in orange juice for acid-adapted cells (D-values of 28.3-34.5 min for Salmonella Senftenberg and 30.0-39.2 min for Salmonella Typhimurium) resulted to be about two to three times higher than that corresponding to non-acid-adapted cells. In apple juice, acid-adapted Salmonella Senftenberg cells survived better than those of Salmonella Typhimurium, obtaining mean D-values of 114.8 +/- 12.3 and 41.9 +/- 2.5 min, respectively. The thermotolerance of non-acid-adapted Salmonella Typhimurium in orange (D(58)-value: 0.028 min) and apple juices (D(58)-value: 0.10 min) was approximately double for acid-adapted cells. This cross-protection to heat was more strongly expressed in Salmonella Senftenberg. D(58)-values obtained for non-acid-adapted cells in orange (0.11 min) and apple juices (0.19 min) increased approximately 10 and 5 times, respectively, after their growth in acidified media. The conditions prevailing during bacterial growth and heat treatment did not significantly influence the z-values observed (6.0 +/- 0.3 degrees C for Salmonella Typhimurium and 7.0 +/- 0.3 degrees C for Salmonella Senftenberg). The enhanced acid resistance found for both isolates could enable them to survive for prolonged time periods in the gastrointestinal tract, increasing the risk of illness. Further, it

  1. Role of the tissue free amino acids in adaptation of medicinal leeches Hirudo medicinalis L., 1758 to extreme climatic conditions.

    PubMed

    Chernaya, L V; Kovalchuk, L A; Nokhrina, E S

    2016-01-01

    The first comparison of the spectra of free amino acids in tissues of the medicinal leeches H. medicinalis from different climatic and geographical Eurasian areas has been performed. Adaptation of H. medicinalis to extreme climatic conditions occurs via intensification of the amino acid metabolism resulting from a significant increase in the content of essential amino acids. Accumulation of arginine, histidine, and lysine (3.6-, 3.9-, and 2.0-fold increases, respectively) has proved to play a special protective role in adaptation of H. medicinalis to the low positive temperatures.

  2. Acid-induced folding of yeast alcohol dehydrogenase under low pH conditions.

    PubMed

    Le, W P; Yan, S X; Zhang, Y X; Zhou, H M

    1996-04-01

    Under conditions of low pH, the conformational states of holo-YADH and apo-YADH were examined by protein intrinsic fluorescence, ANS fluorescence, and far-UV CD measurements. The results obtained show that a low ionic strength, with the addition of HCl, the holo- and apo- YADH denatured gradually to reach the ultimate unfolded conformation in the vicinity of pH 2.0 and 2.5, respectively. With the decrease of pH from 7.0 to 2.0, the fluorescence emission decreased markedly, with its emission maximum red-shifting from 335 to 355 nm, indicating complete exposure of the buried tryptophan residues to the solvent. The far-UV CD spectra show the loss of the arrayed secondary structure, though the acid-denatured enzyme still maintained a partially arrayed secondary structure. A further decrease in pH by increasing the concentration of HClO4 induced a cooperative folding of the denatured enzyme to a compact conformation with the properties of a molten globule, described previously by Goto et al. [Proc. Natl. Acad. Sci. USA 87, 573-577 (1990)]. More extensive studies showed that although apo-YADH and holo-YADH exhibited similar behavior, the folding cooperative ability of apo-YADH was lower than that of the holo-enzyme. From the above results, it is suggested that the zinc ion plays an important role in the proper folding of YADH and in stabilizing its native conformation.

  3. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions.

    PubMed

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-10-21

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

  4. Cloud point extraction of uranium using H₂DEH[MDP] in acidic conditions.

    PubMed

    Labrecque, Charles; Potvin, Sabrina; Whitty-Léveillé, Laurence; Larivière, Dominic

    2013-03-30

    A procedure has been developed for the cloud point extraction (CPE) of uranium (VI) using H2DEH[MDP] (P,P-di(2-ethylhexyl) methanediphosphonic acid) with inductively coupled plasma coupled to mass spectrometry (ICP-MS). The method is based on the modification of the cloud point temperature using cetyl trimethyl ammonium bromide (CTAB) and KI. Optimal conditions of extraction were found using a cross-optimization of every parameter (non-ionic and ionic surfactant concentrations, chelating agent concentration, pH and the extraction, and phase separation temperatures). Furthermore, the figures of merit of the methodology were assessed (limit of detection, limit of quantification, recovery, sensibility, and linear range) and are reported. Quantitative extraction (99 ± 0.5%) was obtained in drinking water samples over a wide range of uranium concentrations. The approach was also validated using drinking (SCP EP-L-3 and SCP EP-H-3), and wastewater (SCP EU-L-3) certified materials. Interferences from most critical anions and cations were evaluated to determine the reliability of the method. The proposed method showed robustness since its performance is maintained over a wide range of pH and metal ion concentrations.

  5. Influence of low concentrations of an acid preservative on sponge cakes under different storage conditions.

    PubMed

    de la Rosa, P; Jordano, R; Medina, L M

    2009-03-01

    In a previous study, we demonstrated the efficiency of an acid test preservative at concentrations higher than 10 g/kg of product. The aim of the current study has been to assay, in a pilot plant, a preservative at lower and different doses than tested in the aforementioned study, in contrast with different storage temperature and relative humidity (RH) conditions and to check the possibilities of the growth of molds with a toxigenic capacity. The effect of the test preservative is not demonstrable at very low concentrations, as occurs in batch 2. In this case, the influence of the other storage parameters, temperature and RH, has a mixed effect, which makes it difficult to draw conclusions about the convenience of the preservative. In our opinion, the minimal concentration of the test preservative to reach readable results is 4 g/kg, but it is not enough to guarantee a longer shelf life. Regarding the mycotoxigenic study, the majority of molds obtained in the isolations from the cakes after their macroscopic identification corresponded to the genera Aspergillus and Penicillium. Only 5 turned out to be mycotoxigenic, with citrinin and viridicatumtoxin being detected.

  6. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account.

  7. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    PubMed Central

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  8. Bile Acid Malabsorption After Pelvic and Prostate Intensity Modulated Radiation Therapy: An Uncommon but Treatable Condition

    SciTech Connect

    Harris, Victoria; Benton, Barbara; Sohaib, Aslam; Dearnaley, David; Andreyev, H. Jervoise N.

    2012-12-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Methods and Materials: Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75 homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Results: Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an {alpha}/{beta} ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received {>=}45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Conclusions: Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede accurate

  9. Applying support vector machine on hybrid fNIRS/EEG signal to classify driver's conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien; Ahn, Sangtae; Jang, Hyojung; Jun, Sung C.; Kim, Jae G.

    2016-03-01

    Driver's condition plays a critical role in driving safety. The fact that about 20 percent of automobile accidents occurred due to driver fatigue leads to a demand for developing a method to monitor driver's status. In this study, we acquired brain signals such as oxy- and deoxyhemoglobin and neuronal electrical activity by a hybrid fNIRS/EEG system. Experiments were conducted with 11 subjects under two conditions: Normal condition, when subjects had enough sleep, and sleep deprivation condition, when subject did not sleep previous night. During experiment, subject performed a driving task with a car simulation system for 30 minutes. After experiment, oxy-hemoglobin and deoxy-hemoglobin changes were derived from fNIRS data, while beta and alpha band relative power were calculated from EEG data. Decrement of oxy-hemoglobin, beta band power, and increment of alpha band power were found in sleep deprivation condition compare to normal condition. These features were then applied to classify two conditions by Fisher's linear discriminant analysis (FLDA). The ratio of alpha-beta relative power showed classification accuracy with a range between 62% and 99% depending on a subject. However, utilization of both EEG and fNIRS features increased accuracy in the range between 68% and 100%. The highest increase of accuracy is from 63% using EEG to 99% using both EEG and fNIRS features. In conclusion, the enhancement of classification accuracy is shown by adding a feature from fNIRS to the feature from EEG using FLDA which provides the need of developing a hybrid fNIRS/EEG system.

  10. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    PubMed Central

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  11. Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions.

    PubMed

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik; Wittmann, Christoph

    2013-09-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive (13)C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel (13)C studies with [(13)C6]glucose, [1,2-(13)C2]glucose, and [(13)C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity.

  12. Deuterium Enrichment of Amino and Hydroxy Acids Found in the Murchison Meteorite: Constraints on Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The alpha-amino and alpha-hydroxy acids found in the Murchison carbonaceous chondrite are deuterium enriched. These compounds are thought to have originated from common deuterium enriched carbonyl precursors, by way of a Strecker synthesis which took place in a solution of HCN, NH3, and carbonyl compounds during the period of aqueous alteration of the meteorite parent body. However, the hydroxy acids found on Murchison are less deuterium enriched than the amino acids. With the objective of determining if the discrepancy in deuterium enrichment between the amino acids and the hydroxy acids found on Murchison is consistent with their formation in a Strecker synthesis, we have measured the deuterium content of alpha-amino and alpha-hydroxy acids produced in solutions of deuterated carbonyl compounds, KCN and NH4Cl, and also in mixtures of such solutions and Allende dust at 263 K and 295 K. Retention of the isotopic signature of the starting carbonyl by both alpha amino acids and alpha hydroxy acids is more dependent upon temperature, concentration and pH than upon the presence of meteorite dust in the solution. The constraints these observations place on Murchison parent body conditions will be discussed.

  13. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed

    Castilla Casadiego, D A; Albis Arrieta, A R; Angulo Mercado, E R; Cervera Cahuana, S J; Baquero Noriega, K S; Suárez Escobar, A F; Morales Avendaño, E D

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained "Nutrifoliar," a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using "Nutrifoliar" as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  14. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed

    Castilla Casadiego, D A; Albis Arrieta, A R; Angulo Mercado, E R; Cervera Cahuana, S J; Baquero Noriega, K S; Suárez Escobar, A F; Morales Avendaño, E D

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained "Nutrifoliar," a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using "Nutrifoliar" as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  15. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed Central

    Castilla Casadiego, D. A.; Albis Arrieta, A. R.; Angulo Mercado, E. R.; Cervera Cahuana, S. J.; Baquero Noriega, K. S.; Suárez Escobar, A. F.; Morales Avendaño, E. D.

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  16. Involvement of intermediate sulfur species in biological reduction of elemental sulfur under acidic, hydrothermal conditions.

    PubMed

    Boyd, Eric S; Druschel, Gregory K

    2013-03-01

    The thermoacidophile and obligate elemental sulfur (S(8)(0))-reducing anaerobe Acidilobus sulfurireducens 18D70 does not associate with bulk solid-phase sulfur during S(8)(0)-dependent batch culture growth. Cyclic voltammetry indicated the production of hydrogen sulfide (H(2)S) as well as polysulfides after 1 day of batch growth of the organism at pH 3.0 and 81°C. The production of polysulfide is likely due to the abiotic reaction between S(8)(0) and the biologically produced H(2)S, as evinced by a rapid cessation of polysulfide formation when the growth temperature was decreased, inhibiting the biological production of sulfide. After an additional 5 days of growth, nanoparticulate S(8)(0) was detected in the cultivation medium, a result of the hydrolysis of polysulfides in acidic medium. To examine whether soluble polysulfides and/or nanoparticulate S(8)(0) can serve as terminal electron acceptors (TEA) supporting the growth of A. sulfurireducens, total sulfide concentration and cell density were monitored in batch cultures with S(8)(0) provided as a solid phase in the medium or with S(8)(0) sequestered in dialysis tubing. The rates of sulfide production in 7-day-old cultures with S(8)(0) sequestered in dialysis tubing with pore sizes of 12 to 14 kDa and 6 to 8 kDa were 55% and 22%, respectively, of that of cultures with S(8)(0) provided as a solid phase in the medium. These results indicate that the TEA existed in a range of particle sizes that affected its ability to diffuse through dialysis tubing of different pore sizes. Dynamic light scattering revealed that S(8)(0) particles generated through polysulfide rapidly grew in size, a rate which was influenced by the pH of the medium and the presence of organic carbon. Thus, S(8)(0) particles formed through abiological hydrolysis of polysulfide under acidic conditions appeared to serve as a growth-promoting TEA for A. sulfurireducens.

  17. Study on the relationship between meteorological conditions and acid rain in mid-eastern Fujian.

    PubMed

    Lin, C C; Liu, J X; Cai, Y Y; Li, B L; Wang, Z L; Chen, B B

    2009-08-01

    Based on the acid rain observation data and the contemporaneous historical synoptic charts of Mid-Eastern Fujian during the period of 1991 to 2003, we analyzed the distribution characteristics of acid rain in different seasons, weather types, precipitation grades and wind directions. The results showed that the acid pollution in Mid-Eastern Fujian was still serious. In winter, the precipitation pH value was 4.79, and the acid rain frequency was 60.62% which was twice higher than that in summer. The pH value of warm shear-type precipitation at 850 hPa was 4.79. Nearly half of these precipitations had the problems of acid rain pollution. The acid rain frequency of the inverted trough type was only 26.11% which was the lowest one in all types. There was no marked difference of the acid rain distribution characteristics between ahead-of-trough and behind-the-trough. The precipitation pH values of the five grades were lower than 5.30 and the acid rain frequency changed as an inverted U shape with the increasing of the rainfall. The pH values of precipitations in the eight wind directions were generally below 5.20, and the acid rain frequencies were about 40%.

  18. Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests.

    PubMed

    Leduc, Antoine O H C; Kelly, Jocelyn M; E Brown, Grant

    2004-04-01

    A variety of fishes possess damage-released chemical alarm cues, which play a critical role in the detection and avoidance of potential predation threats. Recently, we have demonstrated that the ability of fathead minnows ( Pimephales promelas) and finescale dace ( Phoxinus neogaeus) to detect and respond to conspecific alarm cues is significantly reduced under weakly acidic conditions (pH 6.0). Rainbow trout ( Oncorhynchus mykiss) and brook charr ( Salvelinus fontinalis) possess an analogous alarm cue system. However, it is unknown if the trout alarm cue system is likewise affected by relatively small changes in pH. In addition, previous studies have not verified this phenomenon under natural conditions. We conducted laboratory and field trials to examine the potential effects of acute exposure to weakly acidic (pH 6.0) conditions on the detection and response of conspecific alarm cues by juvenile trout. Our laboratory results demonstrate that while juvenile rainbow trout exhibit significant increases in antipredator behaviour under normal pH conditions (pH 7.0-7.2), they do not respond to the presence of conspecific chemical alarm cues (i.e. response is not different from controls) under weakly acidic conditions. Similarly, a wild strain of brook charr in their natural streams near Sudbury, Ontario, failed to detect conspecific alarm cues in a weakly acidic stream (mean pH 6.11) while they responded to these cues in a neutral stream (mean pH of 6.88). This is the first demonstration that relatively small changes in ambient pH can influence alarm responses under natural conditions. These data suggest significant, sub-lethal effects of acid precipitation on natural waterways.

  19. Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: laboratory and field tests.

    PubMed

    Leduc, Antoine O H C; Kelly, Jocelyn M; E Brown, Grant

    2004-04-01

    A variety of fishes possess damage-released chemical alarm cues, which play a critical role in the detection and avoidance of potential predation threats. Recently, we have demonstrated that the ability of fathead minnows ( Pimephales promelas) and finescale dace ( Phoxinus neogaeus) to detect and respond to conspecific alarm cues is significantly reduced under weakly acidic conditions (pH 6.0). Rainbow trout ( Oncorhynchus mykiss) and brook charr ( Salvelinus fontinalis) possess an analogous alarm cue system. However, it is unknown if the trout alarm cue system is likewise affected by relatively small changes in pH. In addition, previous studies have not verified this phenomenon under natural conditions. We conducted laboratory and field trials to examine the potential effects of acute exposure to weakly acidic (pH 6.0) conditions on the detection and response of conspecific alarm cues by juvenile trout. Our laboratory results demonstrate that while juvenile rainbow trout exhibit significant increases in antipredator behaviour under normal pH conditions (pH 7.0-7.2), they do not respond to the presence of conspecific chemical alarm cues (i.e. response is not different from controls) under weakly acidic conditions. Similarly, a wild strain of brook charr in their natural streams near Sudbury, Ontario, failed to detect conspecific alarm cues in a weakly acidic stream (mean pH 6.11) while they responded to these cues in a neutral stream (mean pH of 6.88). This is the first demonstration that relatively small changes in ambient pH can influence alarm responses under natural conditions. These data suggest significant, sub-lethal effects of acid precipitation on natural waterways. PMID:14758533

  20. Interface engineering of hybrid perovskite solar cells with poly(3-thiophene acetic acid) under ambient conditions.

    PubMed

    Shit, Arnab; Nandi, Arun K

    2016-04-21

    The properties of methyl ammonium lead iodide (MAPbI3) perovskite solar cells with poly(3-thiophene acetic acid) (P3TAA) as a hole transporting material (HTM) and a dense layer of ZnO nanoparticle film as an electron transporting material (ETM) are described using the conventional ZnO (n)/perovskite (i)/P3TAA (p) (n-i-p) architecture. The FT-IR spectra of a MAPbI3/P3TAA mixture indicate a shift of the N-H stretching and the abolition of the N-H bending peak indicating the interaction between the components. UV-Vis spectra of the mixture exhibit a large red shift of the π-π* transition peak of the conjugated chain arising from the interaction causing an increase of the conjugation length. The cross-sectional SEM image of the device shows the sequence of the individual layers of ZnO, MAPbI3, P3TAA and Ag, respectively. The current density (J)-voltage (V) curves obtained upon illumination with a light of 100 mW cm(-2) indicate the average PCE to be 7.38 ± 0.59% under ambient conditions. The IPCE values of these cells reach about 63% across a broad range of wavelength (300-800 nm). The HOMO and the LUMO of P3TAA are measured using cyclic voltammetry and the optical band gap and the relative energy level of the components explain the operation of photocurrent in the cell. For comparison purposes a device using poly(3-hexyl thiophene) (P3HT) as the HTM is fabricated under similar conditions and it exhibits a lower PCE (5.85 ± 0.51%) than that of the P3TAA based device. The longevity of the P3TAA based cell is also found to be better than that of the P3HT based cell for storing in air. The UV-Vis and impedance spectral results clearly explain the above results, signifying the influence of the interface on the performance of hybrid solar cells. PMID:27020145

  1. A Comparison of Expedition Medical Condition List Treatment Directives with Integrated Medical Model Simulation Data Presentation and Briefing Report

    NASA Technical Reports Server (NTRS)

    Lewis, Robert

    2013-01-01

    This aerospace medicine clerkship project is under the direction of Dr. Sharmila Watkins and is in cooperation with Dr. Eric Kerstman and Dr. Ronak Shah. The questions of the research project are: 1. What are the main drivers of evacuation and loss of crew life (LOCL) on three Design Reference Missions (DRMs): Near Earth Asteroid (NEA), Lunar Sortie and Lunar Outpost using an inexhaustible International Space Station medical kit 2. What are the treatment designations for these driving medical conditions as listed in Expedition Medical Condition List (EMCL) 3. Do the drivers make sense in the context of the given Design Reference Mission (DRM) 4. Do any EMCL treatment designations need re-assessing.

  2. Taurine, a conditionally essential amino acid, ameliorates arsenic-induced cytotoxicity in murine hepatocytes.

    PubMed

    Sinha, Mahua; Manna, Prasenjit; Sil, Parames C

    2007-12-01

    Arsenic is a potent environmental toxin. Present study has been designed to evaluate the protective role of taurine (2-aminoethanesulfonic acid) against arsenic induced cytotoxicity in murine hepatocytes. Sodium arsenite (NaAsO(2)) was chosen as the source of arsenic. Incubation of hepatocytes with the toxin (1 mM) for 2 h reduced the cell viability as well as intra-cellular antioxidant power. Increased activities of alanine transaminase (ALT) and alkaline phosphatase (ALP) due to toxin exposure confirmed membrane damage. Toxin treatment caused reduction in the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). In addition, the same treatment reduced the level of glutathione (GSH), elevated the level of oxidized glutathione (GSSG) and increased the extent of lipid peroxidation. Incubation of hepatocytes with taurine, both prior to and in combination with NaAsO(2), attenuated the extent of lipid peroxidation and enhanced the activities of enzymatic as well as non enzymatic antioxidants. Besides, taurine administration normalized the arsenic-induced enhanced levels of the marker enzymes ALT and ALP in hepatocytes. The cytoprotective activity of taurine against arsenic poisoning was found to be comparable to that of a known antioxidant, vitamin C. Combining all, the results suggest that taurine protects mouse hepatocytes against arsenic induced cytotoxicity.

  3. Peroxide promoted tunable decarboxylative alkylation of cinnamic acids to form alkenes or ketones under metal-free conditions.

    PubMed

    Ji, Jing; Liu, Ping; Sun, Peipei

    2015-05-01

    A tunable decarboxylative alkylation of cinnamic acids with alkanes was developed to form alkenes or ketones under transition metal-free conditions. In the presence of DTBP or DTBP/TBHP, the reaction gave alkenes and ketones respectively via a radical mechanism in moderate to good yields.

  4. Merging Photoredox with Palladium Catalysis: Decarboxylative ortho-Acylation of Acetanilides with α-Oxocarboxylic Acids under Mild Reaction Conditions.

    PubMed

    Zhou, Chao; Li, Pinhua; Zhu, Xianjin; Wang, Lei

    2015-12-18

    A room temperature decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids has been developed via a novel Eosin Y with Pd dual catalytic system. This dual catalytic reaction shows a broad substrate scope and good functional group tolerance, and an array of ortho-acylacetanilides can be afforded in high yields under mild conditions.

  5. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions.

    PubMed

    Yang, Wenchao; Yang, Shuai; Li, Pinhua; Wang, Lei

    2015-05-01

    A visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids has been developed. The arylsulfonylation of alkynes was performed at room temperature under metal-free conditions to generate coumarin derivatives with wide functional group tolerance, good yields and high regioselectivity.

  6. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    PubMed

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding. PMID:27336313

  7. A Novel Phytase Derived from an Acidic Peat-Soil Microbiome Showing High Stability under Acidic Plus Pepsin Conditions.

    PubMed

    Tan, Hao; Wu, Xiang; Xie, Liyuan; Huang, Zhongqian; Peng, Weihong; Gan, Bingcheng

    2016-01-01

    Four novel phytases of the histidine acid phosphatase family were identified in two publicly available metagenomic datasets of an acidic peat-soil microbiome in northeastern Bavaria, Germany. These enzymes have low similarity to all the reported phytases. They were overexpressed in Escherichia coli and purified. Catalytic efficacy in simulated gastric fluid was measured and compared among the four candidates. The phytase named rPhyPt4 was selected for its high activity. It is the first phytase identified from unculturable Acidobacteria. The phytase showed a longer half-life than all the gastric-stable phytases that have been reported to date, suggesting a strong resistance to low pH and pepsin. A wide pH profile was observed between pH 1.5 and 5.0. At the optimum pH (2.5) the activity was 2,790 μmol/min/mg at the physiological temperature of 37°C and 3,989 μmol/min/mg at the optimum temperature of 60°C. Due to the competent activity level as well as the high gastric stability, the phytase could be a potential candidate for practical use in livestock and poultry feeding.

  8. Simulated moving bed chromatography for the separation of ethyl esters of eicosapentaenoic acid and docosahexaenoic acid under nonlinear conditions.

    PubMed

    Li, Min; Bao, Zongbi; Xing, Huabin; Yang, Qiwei; Yang, Yiwen; Ren, Qilong

    2015-12-18

    In this study, ethyl esters of eicosapentaenoic acid and docosahexaenoic acid were separated with simulated moving bed (SMB) chromatography, where the stationary phase was C18 silica gel with particle size of 10μm packed in eight columns, and the mobile phase was pure methanol. The Henry constants, transport parameters and total porosity were measured from pulse response chromatographic experiments using a single column. The Henry constants were obtained from the first moment analysis. The transport parameters including axial dispersion coefficients and effective mass transfer coefficients were obtained from the second moment analysis. Nonlinear adsorption equilibrium isotherms for the pure components and their mixture were determined from adsorption-desorption method. The Langmuir model was used to fit the experimental data, and the corresponding parameters were further used to predict the competitive adsorption equilibria of the mixture. The validity of mathematical model parameters was checked by a frontal chromatography experiment. The simulated results of the SMB process using these parameters agreed well with the experimental results. At the feed concentration of 100g/L, the SMB separation was able to produce both solutes with relative purity above 99%, productivity of 13.11g/L adsorbent/h, and solvent consumption of 0.46L/g. PMID:26620595

  9. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  10. Behavioral and electrophysiological responses of Aedes albopictus to certain acids and alcohols present in human skin emanations.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Iqbal, S Thanvir; Agrawal, O P; Parashar, B D

    2014-10-01

    Human skin emanations attract hungry female mosquitoes toward their host for blood feeding. In this study, we report the flight orientation and electroantennogram response of Aedes albopictus females to certain unsaturated acids and alcohols found in human skin. In the Y-tube olfactometer, odors of lactic acid and 2-methyl-3-pentanol attracted 54-65% of Ae. albopictus females at all doses in a dose-dependent manner. However, at the highest dose (10(-2) g), the acids repelled 40-45% females. Attractancy (ca. 62-68%) at lower doses and repellency (ca. 30-45%) at higher doses were recorded for 3-methyl-3-pentanol and 1-octen-3-ol, while 5-hexen-1-ol, cis-2-hexen-1-ol, and trans 2-hexen-1-ol odor repelled ca. 55-65% of Ae. albopictus females at all doses. Antenna of female Ae. albopictus exhibited a dose-dependent EAG response up to 10(-3) g of L-lactic acid, trans-2-methyl-2-pentenoic acid, 2-octenoic acid, trans-2-hexen-1-ol and 1-octen-3-ol stimulations; however, the highest dose (10(-2) g) caused a little decline in the EAG response. EAG response of 9-10-fold was elicited by lactic acid, 2-octenoic acid, trans-2-hexenoic acid, and 3-methyl-3-pentanol, while cis-2-hexen-1-ol and trans-2-methyl pentenoic acid elicited 1-5-fold responses compared to solvent control. A blend of attractive compounds could be utilized in odor-baited trap for surveillance and repellent molecules with suitable formulation could be used to reduce the biting menace of mosquitoes.

  11. Behavioral and electrophysiological responses of Aedes albopictus to certain acids and alcohols present in human skin emanations.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Iqbal, S Thanvir; Agrawal, O P; Parashar, B D

    2014-10-01

    Human skin emanations attract hungry female mosquitoes toward their host for blood feeding. In this study, we report the flight orientation and electroantennogram response of Aedes albopictus females to certain unsaturated acids and alcohols found in human skin. In the Y-tube olfactometer, odors of lactic acid and 2-methyl-3-pentanol attracted 54-65% of Ae. albopictus females at all doses in a dose-dependent manner. However, at the highest dose (10(-2) g), the acids repelled 40-45% females. Attractancy (ca. 62-68%) at lower doses and repellency (ca. 30-45%) at higher doses were recorded for 3-methyl-3-pentanol and 1-octen-3-ol, while 5-hexen-1-ol, cis-2-hexen-1-ol, and trans 2-hexen-1-ol odor repelled ca. 55-65% of Ae. albopictus females at all doses. Antenna of female Ae. albopictus exhibited a dose-dependent EAG response up to 10(-3) g of L-lactic acid, trans-2-methyl-2-pentenoic acid, 2-octenoic acid, trans-2-hexen-1-ol and 1-octen-3-ol stimulations; however, the highest dose (10(-2) g) caused a little decline in the EAG response. EAG response of 9-10-fold was elicited by lactic acid, 2-octenoic acid, trans-2-hexenoic acid, and 3-methyl-3-pentanol, while cis-2-hexen-1-ol and trans-2-methyl pentenoic acid elicited 1-5-fold responses compared to solvent control. A blend of attractive compounds could be utilized in odor-baited trap for surveillance and repellent molecules with suitable formulation could be used to reduce the biting menace of mosquitoes. PMID:25049052

  12. Banding of Nonrestrictive Large Hypertensive Aortopulmonary Collaterals in Patients With Ventricular Septal Defect and Pulmonary Atresia Presenting in Suboptimal Condition.

    PubMed

    Dutta Baruah, Sudip; Singh, Vishal Kamalaprasad; Marwah, Ashutosh; Sharma, Rajesh

    2016-09-01

    Infants with pulmonary atresia and nonrestrictive ventricular septal defect with large hypertensive aortopulmonary collaterals demand early surgical intervention. This presentation in the extremely low-weight child or in the moribund septic child may preclude single-stage repair even if anatomically suited. We propose that such infants may be temporized by means of banding of individual aortopulmonary collaterals as a means of bridging to a second-stage complete repair. Two such cases are presented. PMID:27587500

  13. Effect of fermentation conditions on the production of citric acid from cheese whey by Aspergillus niger.

    PubMed

    el-Samragy, Y A; Khorshid, M A; Foda, M I; Shehata, A E

    1996-04-01

    The effect of pH value, methanol, and salt concentration on the production of citric acid from cheese whey by two strains of Aspergillus niger, i.e. CAIM 111 and CAIM 167, was investigated. Lactose concentration, utilized lactose, citric acid concentration, conversion coefficient of lactose to citric acid, and mycelial dry weight were measured during the fermentation process. The maximum citric acid concentration (1.06 and 0.82 g/l), and conversion coefficient (5.58 and 7.45%) were obtained at pH 3.5 after 9 days of fermentation for A. niger CAIM 111 and A. niger CAIM 167, respectively. The presence of 4% (v/v) methanol in the fermentation medium increased the amount of citric acid produced by A. niger CAIM 111 and A. niger CAIM 167 by 23% and 18%, respectively. Both strains showed a high ability to utilize lactose for the production of citric acid when grown in the presence of 10% (w/v) salt. The conversion coefficient of lactose to citric acid was 28.24% for A. niger CAIM 111 and 25.60% for A. niger CAIM 167 when the fermentation medium had a 10% (w/v) level of salt. The cumulative effect of fermentation medium pH (3.5), methanol concentration (4%, v/v) and salt concentration (10%, w/v) during the fermentation process of whey did not enhance the production of citric acid by A. niger CAIM 111, while it did increase the production of citric acid by A. niger CAIM 167 by about 4-fold.

  14. Catchment scale modelling of changes in pesticide leaching under present and future climate conditions. Demonstrated for two cases in Denmark

    NASA Astrophysics Data System (ADS)

    van der Keur, P.; Henriksen, H.; Sonnenborg, T.; van Roosmalen, L.; Rosenbom, A. E.; Olesen, J. E.; Kjaer, J.; Jørgensen, L. N.; Christensen, O. B.

    2011-12-01

    A catchment scale model MACRO-MIKE SHE is applied for simulating changes in pesticide concentrations to the aquatic environment. The MACRO model is used to model the effect of changes in climate and pesticide management on pesticide leaching from the unsaturated zone and simulated percolation as well as solute flow is propagated to the MIKE SHE model. The intensity based bias correction method for converting from Regional Climate Modelling data to hydrological input data is the most appropriate method as it best reflects changes in rainfall intensity, and thus also in intensity for MACRO simulated percolation and solute flow. Results show that increased percolation simulated by the MACRO model and propagated to the MIKE SHE model nearly all ends up in increased drainage to the river. Further, pesticide solute entering the saturated zone (SZ) is mainly leaving SZ via drainage (85-94%), base flow (3.8-11.3%) and overland flow (0-3.1 %). Mean concentrations in groundwater (SZ) increase by 30-99% for one type of herbicide under future climatic conditions, whereas mean concentrations decrease for two other types by app. 93 and 91 % respectively. Future climatic conditions lead to higher concentrations in surface water for the first type of herbicides, but to decreased concentrations for the another type of herbicide and insecticide. It is overall concluded that an integrated catchment scale modeling approach is essential for pesticide fate simulation taking account of all possible hydrologic pathways.

  15. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  16. Particle size conditions water repellency in sand samples hydrophobized with stearic acid

    NASA Astrophysics Data System (ADS)

    González-Peñaloza, F. A.; Jordán, A.; Bellinfante, N.; Bárcenas-Moreno, G.; Mataix-Solera, J.; Granged, A. J. P.; Gil, J.; Zavala, L. M.

    2012-04-01

    The main objective of this research is to study the effects of particle size and soil moisture on water repellency (WR) from hydrophobized sand samples. Quartz sand samples were collected from the top 15 cm of sandy soils, homogenised and divided in different sieve fractions: 0.5 - 2 mm (coarse sand), 0.25 - 0.5 mm (medium sand), and 0.05 - 0.25 mm (fine sand). WR was artificially induced in sand samples using different concentrations of stearic acid (SA; 0.5, 1, 5, 10, 20 and 30 g kg-1). Sand samples were placed in Petri plates and moistened with distilled water until 10% water content in weight. After a period of 30 min, soil WR was determined using the water drop penetration time (WDPT) test. A set of sub-samples was placed in an oven (50 oC) during the experimental period, and the rest was left air-drying at standard laboratory conditions. Water repellent soil samples were used as control, and the same treatments were applied. WR was determined every 24 h. No changes in WR were observed after 6 days of treatment. As expected, air-dried fine sand samples showed WR increasing with SA concentration and decreasing with soil moisture. In contrast, oven-dried samples remained wettable at SA concentrations below 5 g kg-1. Fine sand oven-dried samples showed extreme WR after just one day of treatment, but air-dried samples did not show extreme repellency until three days after treatment. SA concentrations above 5 g kg-1 always induced extreme WR. Medium sand air-dried samples showed hydrophilic properties when moist and low SA concentration (£1 g kg-1), but strong to extreme WR was induced by higher SA concentrations. In the case of oven-dried samples, medium sand showed severe to extreme WR regardless of soil moisture. Coarse sand showed the longest WDPTs, independently of soil moisture content or SA concentration. This behaviour may be caused by super-hydrophobicity. Also, it is suggested that movements of sand particles during wetting, contribute to expose new

  17. Multifunctional Hyaluronic Acid and Chondroitin Sulfate Nanoparticles: Impact of Glycosaminoglycan Presentation on Receptor Mediated Cellular Uptake and Immune Activation.

    PubMed

    Oommen, Oommen P; Duehrkop, Claudia; Nilsson, Bo; Hilborn, Jöns; Varghese, Oommen P

    2016-08-17

    Hyaluronic acid (HA) and chondroitin sulfate (CS) polymers are extensively used for various biomedical applications, such as for tissue engineering, drug delivery, and gene delivery. Although both these biopolymers are known to target cell surface CD44 receptors, their relative cellular targeting properties and immune activation potential have never been evaluated. In this article, we present the synthesis and characterization of novel self-assembled supramolecular HA and CS nanoparticles (NPs). These NPs were developed using fluorescein as a hydrophobic component that induced amphiphilicity in biopolymers and also efficiently stabilized anticancer drug doxorubicin (DOX) promoting a near zero-order drug release. The cellular uptake and cytotoxicity studies of these NPs in different human cancer lines, namely, human colorectal carcinoma cell line HCT116 and human breast cancer cell line MCF-7 demonstrated dose dependent cytotoxicity. Interestingly, both NPs showed CD44 dependent cellular uptake with the CS-DOX NP displaying higher dose-dependent cytotoxicity than the HA-DOX NP in different mammalian cells tested. Immunological evaluation of these nanocarriers in an ex vivo human whole blood model revealed that unlike unmodified polymers, the HA NP and CS NP surprisingly showed platelet aggregation and thrombin-antithrombin complex formation at high concentrations (0.8 mg/mL). We also observed a clear difference in early- and late-stage complement activation (C3a and sC5b-9) with CS and CS NP triggering significant complement activation at high concentrations (0.08-0.8 mg/mL), unlike HA and HA NP. These results offer new insight into designing glycosaminoglycan-based NPs and understanding their hematological responses and targeting ability. PMID:27468113

  18. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions

    PubMed Central

    2013-01-01

    We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature of 30°C, showed 32% and 19%, respectively, higher productivity of the organic acids lactate, succinate, and acetate compared to that at 30°C. However, α-amylase was not stably anchored and released into the medium from the cell surface during reactions at these higher temperatures, as demonstrated by the 61% and 85% decreases in activity, respectively, from baseline, compared to the only 8% decrease at 30°C. The AmyA-displaying C. glutamicum cells retained their starch-degrading capacity during five 10 h reaction cycles at 30°C, producing 107.8 g/l of total organic acids, including 88.9 g/l lactate and 14.0 g/l succinate. The applicability of cell surface-engineering technology for the production of organic acids from biomass by high cell-density cultures of C. glutamicum under anaerobic conditions was demonstrated. PMID:24342107

  19. Helicobacter pylori environmental interactions: effect of acidic conditions on H. pylori-induced gastric mucosal interleukin-8 production

    PubMed Central

    Choi, Il Ju; Fujimoto, Saori; Yamauchi, Kazuyoshi; Graham, David Y.; Yamaoka, Yoshio

    2010-01-01

    Summary To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori [wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-κB pathways, the extracellular signal-regulated kinase (ERK)→ c-Fos/c-Jun→activating protein (AP-1) pathways, JNK→c-Jun→AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-κB pathways and the ERK→c-Fos→AP-1 pathways. In contrast, activation of the JNK→c-Jun→AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis. PMID:17517062

  20. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.

    PubMed

    Knuf, Christoph; Nookaew, Intawat; Brown, Stephen H; McCulloch, Michael; Berry, Alan; Nielsen, Jens

    2013-10-01

    Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter(-1), using peptone than the one of 22.27 ± 0.46 g liter(-1) obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes.

  1. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  2. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production. PMID:25152056

  3. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

  4. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect

    Churchfield, M. J.

    2013-06-01

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  5. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    NASA Astrophysics Data System (ADS)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  6. Changes in body condition and fatty acid composition of wild Mediterranean horse mackerel (Trachurus mediterraneus, Steindachner, 1868) associated to sea cage fish farms.

    PubMed

    Fernandez-Jover, Damian; Jimenez, Jose Angel Lopez; Sanchez-Jerez, Pablo; Bayle-Sempere, Just; Casalduero, Francisca Gimenez; Lopez, Francisco Javier Martinez; Dempster, Tim

    2007-02-01

    Net-cage fish farms attract a great number of wild fishes, altering their behaviour and possibly their physiology. Wild Mediterranean horse mackerel (Trachurus mediterraneus), sampled from populations aggregated around two Mediterranean fish farms and from two natural control populations, were analyzed for differences in body condition, stomach content and fatty acid composition. Pellets used to feed caged fish in both farms were also analyzed to identify their relationship with the fatty acid composition of tissue of wild fish. T. mediterraneus aggregated around the farms throughout the year although large seasonal changes in abundance and biomass occurred. Wild fish aggregated at farms mainly ate food pellets while control fish fed principally on juvenile fish and cephalopods. Wild fish that fed around the cages had a significantly higher body fat content than the control fish (7.30+/-1.8% and 2.36+/-0.7%, respectively). The fatty acid composition also differed between farm-associated and control fish, principally because of the significantly increased levels of linoleic (C18:2omega6) and oleic (C18:1omega9) acids and decreased docosahexaenoic acid (C22:6omega3) in farm-associated fish. The increased condition of wild fish associated with farms could increase the spawning ability of coastal fish populations, if wild fish are protected from fishing while they are present at farms. The fatty acids compositions could also serve as biomarkers to infer the influence of a fish farm on the local fish community, helping to better describe the environmental impact of fish farming. PMID:17095083

  7. Computational modeling of optogenetic neuronal excitation under complex illumination conditions using a Matlab-Neuron interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yona, Guy; Weissler, Yonatan; Meitav, Nizan; Guzi, Eliran; Rifold, Dafna D.; Kahn, Itamar; Shoham, Shy

    2016-03-01

    Optogenetics has in recent years become a central tool in neuroscience research. Creating a realistic model of optogenetic neuronal excitation is of crucial importance for controlling the activation levels of various neuronal populations in different depths, predicting experimental results and designing the optical systems. However, current approaches to modeling light propagation through rodents' brain tissue suffer from major shortcomings and comprehensive modeling of local illumination levels together with other important factors governing excitation (i.e., cellular morphology, channel dynamics and expression), are still lacking. To address this challenge we introduce a new simulation tool for optogenetic neuronal excitation under complex and realistic illumination conditions that implements a detailed physical model for light scattering (in MATLAB) together with neuron morphology and channelrhodopsin-2 model (in NEURON). These two disparate simulation environments were interconnected using a newly developed generic interface termed 'NeuroLab'. Applying this method, we show that in a layer-V cortical neuron, the relative contribution of the apical dendrites to neuronal excitation is considerably greater than that of the soma or basal dendrites, when illuminated from the surface.

  8. Discrepancies in pain presentation caused by adverse psychosocial conditions as compared to pain due to high physical workload?

    PubMed

    Arvidsson, Inger; Simonsen, Jenny Gremark; Balogh, Istvan; Hansson, Gert-Åke; Dahlqvist, Camilla; Granqvist, Lothy; Ohlsson, Kerstina; Axmon, Anna; Karlson, Björn; Nordander, Catarina

    2012-01-01

    Disorders in the musculoskeletal system have been associated with a high physical workload as well as psychosocial and individual factors. It is however not obvious which of these factors that is most important to prevent. Musculoskeletal disorders in neck and upper extremity was assessed by interview and clinical examination in 79 teachers and 93 assisting nurses, all females. Psychosocial work environment was assessed by questionnaire. The physical workload was recorded by technical measurements of postures, movements and muscular load, in 9 teachers and 12 nurses. The physical workload was lower among the teachers, but they had a more demanding psychosocial work environment. Among the nurses, but not in the teachers, the neck-shoulder disorders were associated with a high body mass index (BMI). The teachers reported neck-shoulder complaints to a higher extent than the nurses, but had much lower prevalence of diagnoses in the clinical examination (12% vs. 25%; POR 0.3 CI 0.1 - 1.2; adjusted for age and BMI). The results suggest that adverse psychosocial conditions among the teachers give rise to a different kind of pain in the neck-shoulder region than from physical overload, troublesome but not as severe as the one afflicting the nurses. PMID:22317089

  9. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction

    PubMed Central

    Kaya, Merve; Sousa, António G.; Crépeau, Marie-Jeanne; Sørensen, Susanne O.; Ralet, Marie-Christine

    2014-01-01

    Background and Aims Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. Methods Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. Key Results Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. Conclusions Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains. PMID:25081519

  10. Optimisation of fermentation conditions for gluconic acid production by a mutant of Aspergillus niger.

    PubMed

    Singh, O V; Sharma, A; Singh, R P

    2001-11-01

    Aspergillus niger ORS-4, isolated from the sugarcane industry waste materials was found to produce notable level of gluconic acid. From this strain, a mutant Aspergillus niger ORS-4.410 having remarkable increase in gluconic acid production was isolated and compared for fermentation properties. Among the various substrates used, glucose resulted into maximum production of gluconic acid (78.04 g/L). 12% concentration led to maximum production. Effect of spore age and inoculum level on fermentation indicated an inoculum level of 2% of the 4-7 days old spores were best suited for gluconic acid production. Maximum gluconate production could be achieved after 10-12 days of the fermentation at 30 degrees C and at a pH of 5.5. Kinetic analysis of production indicated that growth of the mutant was favoured during initial stages of the fermentation (4-8 days) and production increased during the subsequent 8-12 days of the fermentation. CaCO3 and varying concentrations of different nutrients affected the production of gluconic acid. Analysis of variance for the factors evaluated the significant difference in the production levels.

  11. Evaluation of a chlorous acid-chlorine dioxide teat dip under experimental and natural exposure conditions.

    PubMed

    Drechsler, P A; Wildman, E E; Pankey, J W

    1990-08-01

    A postmilking teat dip containing chlorous acid-chlorine dioxide was evaluated by experimental challenge and in two herds under natural exposure. The test product had an efficacy of 78.9% against Staphylococcus aureus and 52.5% against Streptococcus agalactiae in the experimental challenge trial. The product was compared with a 1% iodine product in a 15-mo natural exposure study. Post-dipping with chlorous acid-chlorine dioxide reduced incidence of udder infection by major mastitis pathogens 36.1% when data were combined from the two herds. The 1% iodine and the chlorous acid-chlorine dioxide products were not equivalent for major mastitis pathogens; the test product was more effective. Incidence of udder infection by environmental mastitis pathogens was reduced 36.8% in both herds combined. Efficacy of the two teat dips was equivalent for environmental pathogens. PMID:2229601

  12. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  13. Molybdic acid ionisation under hydrothermal conditions to 300 °C

    NASA Astrophysics Data System (ADS)

    Minubayeva, Z.; Seward, T. M.

    2010-08-01

    This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H 2MoO 4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows. The following van't Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:

  14. Dissolution and precipitation reactions in human tooth enamel under weak acid conditions.

    PubMed

    Borggreven, J M; Driessens, F C; van Dijk, J W

    1986-01-01

    Slices of enamel were demineralized in weak acid solutions at pH 5. The solutions were analysed for Ca, P, Na and Mg. A substantial increase of the Ca/P ratio in the solution after about 6 h of demineralization was ascribed to brushite formation. The ratios of liberated Ca/Na, P/Na, Ca/Mg and P/Mg were always lower than the correspondent ratios in sound enamel. It was concluded that precipitation of brushite, and a preferential dissolution of Na and Mg compounds from the enamel both play a role in the dissolution-precipitation reactions in dental enamel during acid attack.

  15. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    PubMed

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  16. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    PubMed

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions. PMID:22680690

  17. Distributional potential of the Triatoma brasiliensis species complex at present and under scenarios of future climate conditions

    PubMed Central

    2014-01-01

    Background The Triatoma brasiliensis complex is a monophyletic group, comprising three species, one of which includes two subspecific taxa, distributed across 12 Brazilian states, in the caatinga and cerrado biomes. Members of the complex are diverse in terms of epidemiological importance, morphology, biology, ecology, and genetics. Triatoma b. brasiliensis is the most disease-relevant member of the complex in terms of epidemiology, extensive distribution, broad feeding preferences, broad ecological distribution, and high rates of infection with Trypanosoma cruzi; consequently, it is considered the principal vector of Chagas disease in northeastern Brazil. Methods We used ecological niche models to estimate potential distributions of all members of the complex, and evaluated the potential for suitable adjacent areas to be colonized; we also present first evaluations of potential for climate change-mediated distributional shifts. Models were developed using the GARP and Maxent algorithms. Results Models for three members of the complex (T. b. brasiliensis, N = 332; T. b. macromelasoma, N = 35; and T. juazeirensis, N = 78) had significant distributional predictivity; however, models for T. sherlocki and T. melanica, both with very small sample sizes (N = 7), did not yield predictions that performed better than random. Model projections onto future-climate scenarios indicated little broad-scale potential for change in the potential distribution of the complex through 2050. Conclusions This study suggests that T. b. brasiliensis is the member of the complex with the greatest distributional potential to colonize new areas: overall; however, the distribution of the complex appears relatively stable. These analyses offer key information to guide proactive monitoring and remediation activities to reduce risk of Chagas disease transmission. PMID:24886587

  18. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    PubMed

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  19. Aluminium-phosphate-sulphate minerals as markers of sustained acidic conditions during the Permian-Triassic transition in E Iberia.

    NASA Astrophysics Data System (ADS)

    Borruel-Abadía, Violeta; Belén Galán-Abellán, Ana; Barrenechea, José F.; De la Horra, Raúl; Luque, Francisco Javier; Alonso-Azcárate, Jacinto; López-Gómez, José

    2016-04-01

    Strontium-rich hydrated Aluminium phosphate-sulphate (APS) minerals are markers of an acidic formation environment due to their precipitation at low pH conditions. However, their small size (0.5-6 μm), low concentrations, and optical properties represent the main problems to quantify these minerals. This study provides quantitative data on APS mineral concentrations for the Late Permian and Early-Middle Triassic in different continental sections of East Iberia. By quantifying APS minerals useful insight can be obtained into the environmental conditions that prevailed during the biotic crisis of the PTB and during the later recovery of life at the end of the Early Triassic. For that, a quantification method based on element mapping of randomly selected areas of thin sections on the electron microprobe is proposed, with relative errors ranging from 5.6% to 11.7%. The results are considered on a detailed petrographic, sedimentological, and palaeontological framework, and compared with other geochemical. Thus, in the first sedimentary record after the Permian-Triassic boundary (Olenekian), it has been possible to correlate relatively high concentration levels of APS minerals with the lack of signs of living organisms. Our findings suggest a long period of sustained acidic conditions followed by an environmental change that permitted the recovery of life, as reflected by lower APS mineral contents detected at the end of the Spathian and the first presence of bioturbation, paleosols, footprints, and plant remains. Early Anisian acidic episodes were much more sporadic than those during the Olenekian deposition, in which APS mineral concentrations were an order of magnitude higher. This fact would indicate punctual acidic conditions still during the beginning of the Anisian. Based on these results, this method is proposed as a tool for addressing environmental changes that took place during the Permian-Triassic transition in continental environments.

  20. K Basin Sludge Conditioning Testing: Nitric Acid Dissolution Testing of K East Canister Sludge

    SciTech Connect

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.: Schmidt, A.J.; Bredt, P.R.; Silvers, K.L.

    1999-04-01

    This report describes tests performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) as part of the overall activities for the development of the K Basin Sludge Treatment System. These tests were conducted to examine the dissolution behavior of a K East Basin canister sludge composite in nitric acid at the following concentrations: 2 M, 4 M, 6 M, 7.8 M and 10 M and temperatures of 25 C and boiling. Assuming that the sludge was 100% uranium metal, a 4X stoichiometric excess of nitric acid was used for all testing, except that conducted at 4 M. In the 4 M nitric acid dissolution test, 50% excess nitric acid was used resulting in a dissolver solution with a significantly higher solids loading. The boiling tests were conducted for 11 hr, the 25 C dissolution tests were conducted from 24 hr to 2 weeks. For the 25 C dissolution testing, the weight percent residual solids was determined, however, chemical and radiochemical analyses were not performed.

  1. Injury and death of various Salmonella serotypes due to acidic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid injury of Salmonella could prevent detection of Salmonella in feed and feed-type samples. A previous study showed that after incubation in commonly used pre-enrichment media, mixed feeds and feed ingredients reached a pH (4.0 to 5.0) capable of injuring or killing Salmonella. Approximately 10...

  2. The Effects of Salicylic Acid on Juvenile Zebrafish Danio rerio Under Flow-Through Conditions.

    PubMed

    Zivna, Dana; Blahova, Jana; Siroka, Zuzana; Plhalova, Lucie; Marsalek, Petr; Doubkova, Veronika; Zelinska, Gabriela; Vecerek, Vladimir; Tichy, Frantisek; Sehonova, Pavla; Svobodova, Zdenka

    2016-09-01

    The aquatic environment is becoming increasingly contaminated with pharmaceuticals. Salicylic acid (SA), which can be used individually or appear as a degradation product of the widely used acetylsalicylic acid was chosen for testing. Juvenile zebrafish Danio rerio were subjected to OECD test No. 215 (fish, juvenile growth test) with salicylic acid concentrations of 0.004; 0.04; 0.4; 4 and 40 mg/L. Specific growth rate (SGR), histological changes, and parameters of oxidative stress were evaluated. SA had no effects on histological changes, SGR, glutathione reductase, and lipid peroxidation. Increased catalytic activity of GPx was found at 0.04 mg/L compared to control, increased catalytic activity of catalase was found at 0.04 and 4 mg/L compared to control, and increased catalytic activity of glutathione-S-transferase was found at 0.004 and 0.04 mg/L compared to control (P < 0.05). Juvenile zebrafish turned out to be relatively insensitive to both environmentally relevant (0.004 mg/L) and higher concentrations of salicylic acid. PMID:27385367

  3. The Effects of Salicylic Acid on Juvenile Zebrafish Danio rerio Under Flow-Through Conditions.

    PubMed

    Zivna, Dana; Blahova, Jana; Siroka, Zuzana; Plhalova, Lucie; Marsalek, Petr; Doubkova, Veronika; Zelinska, Gabriela; Vecerek, Vladimir; Tichy, Frantisek; Sehonova, Pavla; Svobodova, Zdenka

    2016-09-01

    The aquatic environment is becoming increasingly contaminated with pharmaceuticals. Salicylic acid (SA), which can be used individually or appear as a degradation product of the widely used acetylsalicylic acid was chosen for testing. Juvenile zebrafish Danio rerio were subjected to OECD test No. 215 (fish, juvenile growth test) with salicylic acid concentrations of 0.004; 0.04; 0.4; 4 and 40 mg/L. Specific growth rate (SGR), histological changes, and parameters of oxidative stress were evaluated. SA had no effects on histological changes, SGR, glutathione reductase, and lipid peroxidation. Increased catalytic activity of GPx was found at 0.04 mg/L compared to control, increased catalytic activity of catalase was found at 0.04 and 4 mg/L compared to control, and increased catalytic activity of glutathione-S-transferase was found at 0.004 and 0.04 mg/L compared to control (P < 0.05). Juvenile zebrafish turned out to be relatively insensitive to both environmentally relevant (0.004 mg/L) and higher concentrations of salicylic acid.

  4. PRELIMINARY RESULTS: RELEASE OF METALS FROM ACID-MINE DRAINAGE CONTAMINATED STREAMBED SEDIMENTS UNDER ANOXIC CONDITIONS

    EPA Science Inventory

    Many miles of streams are contaminated with acid-mine drainage (AMD) from abandoned metal mines in the western U.S. Treatment of these streams may include dredging of the existing sediments, with subsequent burial. Burial of previously toxic sediments may result in release of met...

  5. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  6. WAViS server for handling, visualization and presentation of multiple alignments of nucleotide or amino acids sequences.

    PubMed

    Zika, Radek; Paces, Jan; Pavlícek, Adam; Paces, Václav

    2004-07-01

    Web Alignment Visualization Server contains a set of web-tools designed for quick generation of publication-quality color figures of multiple alignments of nucleotide or amino acids sequences. It can be used for identification of conserved regions and gaps within many sequences using only common web browsers. The server is accessible at http://wavis.img.cas.cz.

  7. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.

    PubMed

    Jensen, Jill R; Morinelly, Juan E; Gossen, Kelsey R; Brodeur-Campbell, Michael J; Shonnard, David R

    2010-04-01

    The effects of dilute acid hydrolysis conditions were investigated on total sugar (glucose and xylose) yields after enzymatic hydrolysis with additional analyses on glucose and xylose monomer and oligomer yields from the individual hydrolysis steps for aspen (a hardwood), balsam (a softwood), and switchgrass (a herbaceous energy crop). The results of this study, in the form of measured versus theoretical yields and a severity analysis, show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations (0.25-0.75 wt.%) and temperatures (150-175 degrees C) studied as long as reaction time was optimized. Switchgrass shows a relatively stronger dependence on dilute acid hydrolysis acid concentration due to its higher neutralizing mineral content. Maximum total sugar (xylose and glucose; monomer plus oligomer) yields post-enzymatic hydrolysis for aspen, balsam, and switchgrass, were 88.3%, 21.2%, and 97.6%, respectively. In general, highest yields of total sugars (xylose and glucose; monomer plus oligomer) were achieved at combined severity parameter values (log CS) between 2.20 and 2.40 for the biomass species studied.

  8. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    PubMed

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  9. 2-Nitrobenzoate 2-Nitroreductase (NbaA) Switches Its Substrate Specificity from 2-Nitrobenzoic Acid to 2,4-Dinitrobenzoic Acid under Oxidizing Conditions

    PubMed Central

    Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C. K.

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5′-dithio-bis-(2-nitrobenzoic acid) and ZnCl2, which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H2O2. SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions. PMID:23123905

  10. Corrosion management of PbCaSn alloys in lead-acid batteries: Effect of composition, metallographic state and voltage conditions

    NASA Astrophysics Data System (ADS)

    Rocca, E.; Bourguignon, G.; Steinmetz, J.

    Since several years, lead calcium-based alloys have supplanted lead antimony alloys as structural materials for positive grids of lead-acid batteries in many applications, especially for VRLA batteries. Nevertheless, the positive grid corrosion probably remains one of the causes of rapid and premature failure of lead-acid batteries. The objective of the present study is to present a comprehensive study of the PbCaSn alloy corrosion in function of their composition, metallographic state and voltage conditions (discharge, overcharge, floating and cycling conditions). For that, four alloys PbCaSn x wt.% (x = 0, 0.6, 1.2, 2) were synthesized in two extreme metallurgical conditions and tested by four electrochemical lab-tests. Weight loss measurements and analyses by SEM, EPMA and XRD allowed to monitor the oxidation tests and to characterize the corrosion layers after the oxidation tests. The results show that the tin level in PbCaSn alloys should be adapted on the calcium concentration and the rate of overageing process, to maintain the beneficial effect of tin in service during the battery lifetime. According to our results, a Sn/Ca ratio of 2.5 gives good corrosion resistance in all potential conditions. Nevertheless, when tin level is too high, the corrosion layers can peel off from the metal, which involves a lack of cohesion between the collector and the paste, in cycling conditions. The anodic potential undergone by the metal is a second main factor determining the corrosion, especially the floating conditions and the frequency of deep discharge and overcharge. Thus the adjustment of the charge controller parameters of a battery system is a necessity to increase the lifetime of the grids and maintain a good rechargeability.

  11. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process.

  12. Interactions in the solid state. I: Interactions of sodium bicarbonate and tartaric acid under compressed conditions.

    PubMed

    Usui, F; Carstensen, J T

    1985-12-01

    The interaction of NaHCO3 and tartaric acid in powder mixtures and compressed tablets has been studied. It has been found that in an open system the reaction is simply a decarboxylation of NaHCO3 and that the effect of compression on the reaction rate can be attributed to the brittle fracture (and subsequent surface area increase) that occurs on compaction. In a closed system the decomposition of the mixture is an interaction between the acid and the base, and it is mediated by the amount of moisture in the system. This latter is a product of reaction, and a suitable kinetic scheme is described for this. It is shown that "curing" the sodium bicarbonate by heating it to, e.g., 90 degrees C stabilizes the system by virtue of the formation of surface Na2CO3, which acts as a moisture scavenger.

  13. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  14. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified.

  15. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  16. Relationship between texture and acidic properties of aluminosilicates and the conditions of their preparation

    SciTech Connect

    Grzechowiak, E.R.; Masalska, A.

    1986-04-01

    A study has been made of the method of pH adjustment in the precipitation of hydrogel in relation to its influence on the texture and acidic properties of alumino-silicates. It has been established that large-pore aluminosilicates can be obtained from neutral solutions. X-ray diffraction analysis of aluminosilicates has shown that the method of pH adjustment also affects their phase composition.

  17. Influence of wine-like conditions on arginine utilization by lactic acid bacteria.

    PubMed

    Araque, Isabel; Reguant, Cristina; Rozès, Nicolas; Bordons, Albert

    2011-12-01

    Wine can contain trace amounts of ethyl carbamate (EC), a carcinogen formed when ethanol reacts with carbamyl compounds such as citrulline. EC is produced from arginine by lactic acid bacteria (LAB), e.g., Lactobacillus and Pediococcus. Although the amounts of EC in wine are usually negligible, over the last few years there has been a slight but steady increase, as climate change has increased temperatures and alcohol levels have become proportionately higher, both of which favor EC formation. In this study, resting cells of LAB were used to evaluate the effects of ethanol, glucose, malic acid, and low pH on the ability of non-oenococcal strains of these bacteria to degrade arginine and excrete citrulline. Malic acid was found to clearly inhibit arginine consumption in all strains. The relation between citrulline produced and arginine consumed was clearly higher in the presence of ethanol (10-12%) and at low pH (3.0), which is consistent with both the decreased amount of ornithine produced from arginine and the reduction in arginine degradation. In L. brevis and L. buchneri strains isolated from wine and beer, respectively, the synthesis of citrulline from arginine was highest. PMID:22569760

  18. Whiteness improvement of citric acid crosslinked cotton fabrics: H2O2 bleaching under alkaline condition.

    PubMed

    Tang, Peixin; Ji, Bolin; Sun, Gang

    2016-08-20

    Polycarboxylic acids have been employed as formaldehyde-free crosslinking agents in anti-wrinkle treatment for cotton fabrics. Cotton fabrics treated by citric acid (CA) catalyzed with effective catalysts have shown satisfactory anti-wrinkle properties. Meanwhile, CA is a natural-based and environmental friendly compound. However, the yellowing of CA treated fabrics is a stumbling block for its practical application. Due to the fact that CA firstly forms aconitic acid (AA) before forming anhydrides, the cause of the yellowing, hydrogen peroxide (H2O2) bleaching was adopted to treat the CA treated fabrics in order to break the CC bond structure and reduce the yellow color but retaining the desired anti-wrinkle properties. Thermogravimetric analysis and Fourier transformed infrared spectroscopy were employed to investigate the reactions. The results revealed that the H2O2 bleaching can effectively improve the whiteness and also maintain a good anti-wrinkle performance of the CA treated fabrics under an appropriate bleaching temperature and time. PMID:27178918

  19. A unique enzyme of acetic acid bacteria, PQQ-dependent alcohol dehydrogenase, is also present in Frateuria aurantia.

    PubMed

    Trček, Janja; Matsushita, Kazunobu

    2013-08-01

    A membrane-bound, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) was purified from Frateuria aurantia LMG 1558(T). Although F. aurantia belongs to a group of γ-Proteobacteria, the characteristics of its PQQ-ADH were similar to the enzyme characteristics of the typical high-acetic acid-resistant bacterium Gluconacetobacter europaeus from the group of α-Proteobacteria. The PQQ-dependent ADH was solubilized from the membranes and purified after anionic, cationic, and affinity chromatography with specific activity of 117 U/mg. The purified enzyme was estimated to be composed of two subunits of ca. 72 and 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had maximum activity at pH 4.5 and showed the highest substrate specificity to ethanol, isoamyl alcohol, 1-butanol, and 1-propanol. The deduced sequences of cloned genes adhA and adhB encoding subunits I and II of PQQ-ADH showed 80 % amino acid (AA) identity to AdhA and 68 % AA identity to AdhB of Ga. europaeus V3 (LMG 18494). Because of the high similarity between genes encoding subunits I and II of PQQ-ADH and its homologous genes found in a distantly related taxonomic group of acetic acid bacteria, the results suggest the possibility of horizontal gene transfer between these two groups of genera.

  20. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  1. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  2. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  3. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    PubMed

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models.

  4. Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS

    PubMed Central

    Pan, Jianyang; Gong, Xingchu; Qu, Haibin

    2016-01-01

    A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM. PMID:27776128

  5. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng

    PubMed Central

    Gui, Ying; Ryu, Gi Hyung

    2013-01-01

    This study was conducted to investigate the effect of extrusion conditions (moisture content 20% and 30%, screw speed 200 and 250 rpm, barrel temperature 115℃ and 130℃) on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng (KRG). Extruded KRGs showed relatively higher amounts of acidic polysaccharide (6.80% to 9.34%) than nonextruded KRG (4.34%). Increased barrel temperature and screw speed significantly increased the content of acidic polysaccharide. The major ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg2s, Rg3s, Rh1, and Rg3r) of KRG increased through extrusion, while the ginsenoside (Rg1) decreased. The EX8 (moisture 30%, screw speed 250 rpm, and temperature 130℃) had more total phenolics and had a better scavenging effect on 2,2-diphenyl-1-picrylhydrazyl radicals than those of extruded KRG samples. The extrusion cooking showed a significant increase (6.8% to 20.9%) in reducing power. Increased barrel temperature significantly increased the values of reducing power, the highest value was 1.152 obtained from EX4 (feed moisture 20%, screw speed 250 rpm, and temperature 130℃). These results suggest that extrusion conditions can be optimized to retain the health promoting compounds in KRG products. PMID:23717175

  6. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  7. Decomposition of cyclohexanoic acid by the UV/H2O2 process under various conditions.

    PubMed

    Afzal, Atefeh; Drzewicz, Przemysław; Martin, Jonathan W; Gamal El-Din, Mohamed

    2012-06-01

    Naphthenic acids (NAs) are a broad range of alicyclic and aliphatic compounds that are persistent and contribute to the toxicity of oil sands process affected water (OSPW). In this investigation, cyclohexanoic acid (CHA) was selected as a model naphthenic acid, and its oxidation was investigated using advanced oxidation employing a low-pressure ultraviolet light in the presence of hydrogen peroxide (UV/H(2)O(2) process). The effects of two pHs and common OSPW constituents, such as chloride (Cl(-)) and carbonate (CO(3)(2-)) were investigated in ultrapure water. The optimal molar ratio of H(2)O(2) to CHA in the treatment process was also investigated. The pH had no significant effect on the degradation, nor on the formation and degradation of byproducts in ultrapure water. The presence of CO(3)(2-) or Cl(-) significantly decreased the CHA degradation rate. The presence of 700 mg/L CO(3)(2-) or 500 mg/L Cl(-), typical concentrations in OSPW, caused a 55% and 23% decrease in the pseudo-first order degradation rate constants for CHA, respectively. However, no change in byproducts or in the degradation trend of byproducts, in the presence of scavengers was observed. A real OSPW matrix also had a significant impact by decreasing the CHA degradation rate, such that by spiking CHA into the OSPW, the degradation rate decreased up to 82% relative to that in ultrapure water. The results of this study show that UV/H(2)O(2) AOP is capable of degrading CHA as a model NA in ultrapure water. However, in the real applications, the effect of radical scavengers should be taken into consideration for the achievement of best performance of the process. PMID:22521165

  8. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss. PMID:27421101

  9. Mechanism of formation of trans fatty acids under heating conditions in triolein.

    PubMed

    Li, Changmo; Zhang, Yubin; Li, Shuai; Wang, Guanhua; Xu, Chong; Deng, Yingying; Wang, Shuo

    2013-10-30

    To elucidate the relationship between heat-induced cis/trans isomerization and reaction temperature and energy in unsaturated lipids, we investigated the molecular mechanism of the heat-induced cis/trans isomerization of 18:1 isomers. Triolein (18:1,9c) was heated at two range temperatures (130, 160, 190, 220 °C and 135, 140, 145, 150, 155 °C) and analyzed by the gas chromatography (GC) method. When the heating temperature increased to 150 °C, the amount of trans 18:1n-9 changed from 0.0897 mg/g oil (1 h) to 0.1700 mg/g oil (3 h). This study shows that the cis to trans isomerization may occur at 150 °C. The formation of fatty acid isomers followed a proton transfer route. All key geometries, transition states, intermediates, and bond dissociation energies (BDE) were optimized at the B3LYP/6-31G* level for the density functional theory (DFT). The zero-point energy corrections of the isomers were carried out using calculations at the B3LYP/6-311++G** level. The calculated energy difference between the cis and trans oleic acid was equal to 7.6 kJ/mol, and the energy barriers of the transition from cis 18:1n-9 to trans 18:1n-9 were 294.5 kJ/mol. The intrinsic reaction coordinates (IRCs) were obtained to be used as an expression of the reaction route and to analyze the transition states and intermediates. The study results suggest that the heating temperature should be kept under 150 °C, to avoid the risk of trans fatty acid (TFA) intake in daily food.

  10. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.

    PubMed

    Elshaghabee, Fouad M F; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD(+)/NADP(+), drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  11. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  12. Enhancement of sludge anaerobic biodegradability by combined microwave-H2O2 pretreatment in acidic conditions.

    PubMed

    Eswari, Parvathy; Kavitha, S; Kaliappan, S; Yeom, Ick-Tae; Banu, J Rajesh

    2016-07-01

    The aim of this study was to increase the sludge disintegration and reduce the cost of microwave (MW) pretreatment. Thermodynamic analysis of MW hydrolysis revealed the best fit with a first-order kinetic model at a specific energy of 18,600 kJ/kg total solids (TS). Combining H2O2 with MW resulted in a significant increment in solubilization from 30 to 50 % at 18,600 kJ/kg TS. The pH of H2O2-assisted MW-pretreated sludge (MW + H2O2) was in the alkaline range (pH 9-10), and it made the sludge unfavorable for subsequent anaerobic digestion and inhibits methane production. In order to nullify the alkaline effect caused by the MW + H2O2 combination, the addition of acid was considered for pH adjustment. H2O2-assisted MW-pretreated sludge in acidic conditions (MW + H2O2 + acid) showed a maximum methane production of 323 mL/g volatile solids (VS) than others during anaerobic biodegradability. A cost analysis of this study reveals that MW + H2O2 + acid was the most economical method with a net profit of 59.90 €/t of sludge.

  13. Olfaction Presentation System Using Odor Scanner and Odor-Emitting Apparatus Coupled with Chemical Capsules of Alginic Acid Polymer

    NASA Astrophysics Data System (ADS)

    Sakairi, Minoru; Nishimura, Ayako; Suzuki, Daisuke

    For the purpose of the application of odor to information technology, we have developed an odor-emitting apparatus coupled with chemical capsules made of alginic acid polymer. This apparatus consists of a chemical capsule cartridge including chemical capsules of odor ingredients, valves to control odor emission, and a temperature control unit. Different odors can be easily emitted by using the apparatus. We have developed an integrated system of vision, audio and olfactory information in which odor strength can be controlled coinciding with on-screen moving images based on analytical results from the odor scanner.

  14. Corrosion Behavior of 35CrMn and Q235 Steel in Simulated Acid Rain Conditions

    NASA Astrophysics Data System (ADS)

    Zuo, Xiu-li; Xiang, Bin; Li, Xing; Wei, Zi-dong

    2012-04-01

    Effects of pH value, chloride ion concentration and alternation of wetting and drying time in acid rain on the corrosion of 35CrMn and Q235 steel were investigated through the measurement of polarization curves, electrochemical impedance spectroscopy, x-ray diffraction, and quantum mechanical calculations. The corrosion rate of 35CrMn and Q235 steel increased with decreasing pH values of the simulated acid rain, whereas the corrosion potential of 35CrMn and Q235 steel became more negative. The impedance became higher and the corrosion rate decreased with increasing test time. The dissolution rate of samples increased with chloride ion concentration. Results suggested that the corrosion rate of 35CrMn steel was obviously lower than that of Q235 steel for a more compact rust, α-FeOOH. Quantum chemical calculations further revealed that the increase in corrosion rate of the steel resulted from pitting corrosion caused by the corrosive chloride ion.

  15. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    PubMed

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-01

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid. PMID:26018867

  16. Accumulation of fatty acids in purslane grown in hydroponic salt stress conditions.

    PubMed

    Anastácio, Ana; Carvalho, Isabel S

    2013-03-01

    Purslane (Portulaca oleracea L.) is the eighth most common plant distributed throughout the world being a heat- and drought-tolerant plant. In this study, we evaluated the effect of salinity on total amounts of fatty acids (FAs) and ω3/ω6 ratio in leaves of purslane. Plants exposed to four levels of chloride salinity in the root zone (60, 90, 120 and 240 mM NaCl) for 40 days showed no signs of toxicity or death. The main FAs detected were C16:0>C18:3>C18:2. The ratio of ω6 to ω3 was not changed with salt stress. Hierarchic cluster analysis brought together 60 and 90 mM NaCl in control plants, based on their FA content. The results of this study confirm the purslane as a plant rich in FAs whose consumption may contribute to dietary intake of ω3 polyunsaturated fatty acid, with obvious benefits to human health.

  17. Effects of Bauxsol and biosolids on soil conditions of acid-generating mine spoil for plant growth.

    PubMed

    Maddocks, G; Lin, C; McConchie, D

    2004-01-01

    Pot trials were conducted to examine the effects of Bauxsol and biosolids on mine soil conditions for plant growth. Sole application of biosolids did not significantly enhance the growth of the plant because the soils remained highly acidic with soluble concentrations of many metals in excess of toxic levels. Addition of Bauxsol generally resulted in an increase in biomass production by effectively correcting soil acidity and metal toxicity. However, sole application of Bauxsol did not enable meaningful establishment of the grass although the tree grew very well. The combination of Bauxsol and biosolids allowed the establishment of both the grass and the tree and therefore had the better effects on total biomass production, compared to the control and the sole treatments.

  18. Relative Importance of Nitrite Oxidation by Hypochlorous Acid under Chloramination Conditions

    EPA Science Inventory

    The importance of nitrite’s oxidation by tree chlorine under chloramination conditions was evaluated using batch kinetic experiments and a chloramine model implemented into the computer program AWUASIM. The experimental data was best represented with the inclusion of a reaction b...

  19. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  20. Distribution of Polyunsaturated Fatty Acids in Bacteria Present in Intestines of Deep-Sea Fish and Shallow-Sea Poikilothermic Animals

    PubMed Central

    Yano, Y.; Nakayama, A.; Yoshida, K.

    1997-01-01

    The lipid and fatty acid compositions in nine obligate and facultative barophilic bacteria isolated from the intestinal contents of seven deep-sea fish were determined. Phospholipid compositions were simple, with phosphatidylethanolamine and phosphatidylglycerol predominating in all strains. Docosahexaenoic acid (DHA; 22:6n-3), which has not been reported in procaryotes except for deep-sea bacteria, was found to be present in eight strains at a level of 8.1 to 21.5% of total fatty acids. In the other strain, eicosapentaenoic acid (EPA; 20:5n-3) was present at a level of 31.5% of total fatty acids. Other fatty acids observed in all strains were typical of marine gram-negative bacteria. Subcultures from pouches prepared from intestinal contents of five deep-sea fish by the most-probable-number (MPN) method were analyzed for fatty acids, and all subcultures contained DHA and/or EPA. Accordingly, viable cell counts of bacteria containing DHA and EPA were estimated at a maximum of 1.3 x 10(sup8) and 2.4 x 10(sup8) cells per ml, respectively, and accounted for 14 and 30%, respectively, of the total cell counts in the intestinal contents of the deep-sea fish. In the case of 10 shallow-sea poikilothermic animals having bacterial populations of 1.1 x 10(sup6) to 1.9 x 10(sup9) CFU per ml in intestinal contents, no DHA was found in the 112 isolates examined, while production of EPA was found in 40 isolates from cold- and temperate-sea samples. These results suggest that DHA and EPA are involved in some adaptations of bacteria to low temperature and high pressure. PMID:16535638

  1. Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis

    PubMed Central

    Ito, Shinsaku; Nozoye, Tomoko; Sasaki, Eriko; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Ishige, Taichiro; Fukui, Kosuke; Ito, Ken; Nakanishi, Hiromi; Nishizawa, Naoko K.; Yajima, Shunsuke; Asami, Tadao

    2015-01-01

    Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants. PMID:25793732

  2. Isolation and characterization of an amino acid-selective channel protein present in the chloroplastic outer envelope membrane

    PubMed Central

    Pohlmeyer, Kai; Soll, Jürgen; Steinkamp, Thomas; Hinnah, Silke; Wagner, Richard

    1997-01-01

    The reconstituted pea chloroplastic outer envelope protein of 16 kDa (OEP16) forms a slightly cation-selective, high-conductance channel with a conductance of Λ = 1,2 nS (in 1 M KCl). The open probability of OEP16 channel is highest at 0 mV (Popen = 0.8), decreasing exponentially with higher potentials. Transport studies using reconstituted recombinant OEP16 protein show that the OEP16 channel is selective for amino acids but excludes triosephosphates or uncharged sugars. Crosslinking indicates that OEP16 forms a homodimer in the membrane. According to its primary sequence and predicted secondary structure, OEP16 shows neither sequence nor structural homologies to classical porins. The results indicate that the intermembrane space between the two envelope membranes might not be as freely accessible as previously thought. PMID:9256512

  3. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions.

    PubMed

    Ayayee, Paul A; Larsen, Thomas; Sabree, Zakee

    2016-01-01

    Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host's demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ (13)CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ(13)C) between cockroach (δ (13)CCockroach EAA) and dietary (δ (13)CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using (13)C-fingerprinting with dietary and representative bacterial and fungal δ (13)CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency.

  4. Trichloroacetic acid fate and toxicity to the macrophytes Myriophyllum spicatum and Myriophyllum sibiricum under field conditions.

    PubMed

    Hanson, Mark L; Sibley, Paul K; Ellis, David A; Fineberg, Neil A; Mabury, Scott A; Solomon, Keith R; Muir, Derek C

    2002-03-01

    Trichloroacetic acid (TCA) has been detected in rain, snow, and river samples throughout the world. It may enter into natural water systems via herbicide use, as a by-product of water disinfection, from emissions of spent bleach liquor of kraft pulp mills, and as a natural fungal product. This compound is phytotoxic and likely to accumulate in aquatic environments. A study to assess the fate of TCA in semi-natural aquatic environments and the toxicity of TCA to rooted aquatic macrophytes was conducted. The experiment involved exposing three replicate 12000 l aquatic microcosms at the University of Guelph Microcosm Facility to 0.05, 0.5, 3, and 10 mg/l of TCA for 35 days in a one-way analysis of variance design. Each microcosm was stocked with 14 individual 5 cm apical shoots of Myriophyllum spicatum and M. sibiricum. The plants were sampled at regular intervals and assessed for the somatic endpoints of plant length, root growth, number of nodes and wet and dry mass and the biochemical endpoints of chlorophyll-a and chlorophyll-b, carotenoid content, and citric acid levels. TCA half-lives in the microcosms ranged from 190 to 296 h depending on the initial concentration of TCA. Myriophyllum spp. results indicate that while there were some statistically significant differences from controls, there were no biologically significant effects of TCA for any of the endpoints examined. These data suggest that TCA does not pose a significant risk to these macrophytes up to 10 mg/l, which typically exceeds environmentally relevant concentrations by several orders of magnitude.

  5. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions

    PubMed Central

    Larsen, Thomas; Sabree, Zakee

    2016-01-01

    Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host’s demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ13CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ13C) between cockroach (δ13CCockroach EAA) and dietary (δ13CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using 13C-fingerprinting with dietary and representative bacterial and fungal δ13CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency. PMID:27231663

  6. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions.

    PubMed

    Ayayee, Paul A; Larsen, Thomas; Sabree, Zakee

    2016-01-01

    Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host's demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ (13)CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ(13)C) between cockroach (δ (13)CCockroach EAA) and dietary (δ (13)CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using (13)C-fingerprinting with dietary and representative bacterial and fungal δ (13)CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency. PMID:27231663

  7. Phthalic acid esters found in municipal organic waste: enhanced anaerobic degradation under hyper-thermophilic conditions.

    PubMed

    Hartmann, H; Ahring, B K

    2003-01-01

    Contamination of the organic fraction of municipal solid waste (OFMSW) with xenobiotic compounds and their fate during anaerobic digestion was investigated. The phthalic acid ester di-(2-ethylhexyl)phthalate (DEHP) was identified as the main contaminant in OFMSW in concentrations more than half of the threshold value for the use as fertilizer on agricultural soil in Denmark. Analysis of DEHP in samples before and after large-scale anaerobic digesters revealed higher concentrations of DEHP per kg dry matter in the effluent than in the influent. The concentration of DEHP and DBP (dibutylphthalate) in OFMSW was monitored in the influent and effluent of anaerobic thermophilic (55 degrees C) and hyper-thermophilic (68 degrees C) laboratory-scale reactor systems. In the thermophilic reactors with a hydraulic retention time (HRT) of 15 days 38-70% of DBP was removed, but no consistent removal of DEHP was observed. However, after treatment of the effluent from the thermophilic reactor in a hyper-thermophilic digester (HRT: 5 days) 34-53% of the DEHP content was removed and the DBP removal was increased to further 62-74%. Removal rates (k(h)) of DEHP and DBP were found to be 0.11-0.32 d(-1) and 0.41-0.79 d(-1), which is much higher than in previous investigations. It can be concluded that the higher removal rates are due to the higher temperature and higher initial concentrations per kg dry matter. These results suggest that the limiting factor for DEHP degradation is the bioavailability, which is enhanced at higher temperature and higher degradation of solid organic matter, to which the highly hydrophobic DEHP is adsorbed. The investigated reactor configuration with a thermophilic and a hyper-thermophilic treatment is, therefore, a good option for combining high rate degradation of organic matter with high biogas yields and efficient reduction of the phthalic acid ester contamination.

  8. Effects of a New Glutamic Acid Derivative on Myocardial Contractility of Stressed Animals under Conditions of Nitric Oxide Synthesis Blockade.

    PubMed

    Tyurenkov, I N; Perfilova, V N; Sadikova, N V; Berestovitskaya, V M; Vasil'eva, O S

    2015-07-01

    Glufimet (glutamic acid derivative) in a dose of 28.7 mg/kg limited the reduction of the cardiac functional reserve in animals subjected to 24-h stress under conditions of nonselective NO synthase blockade with L-NAME (10 mg/kg). Adrenoreactivity and increased afterload tests showed that the increment of myocardial contraction/relaxation rates, left-ventricular pressure, and HR were significantly higher in glufimet-treated stressed animals with NO synthesis blockade than in animals which received no glufimet. The efficiency of glufimet was higher than that of phenibut (the reference drug).

  9. Comparison of dissolution under oxic acid drainage conditions for eight sedimentary and hydrothermal pyrite samples

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wolfe, Amy L.; Dzombak, David A.; Stewart, Brian W.; Capo, Rosemary C.

    2008-11-01

    The abiotic oxidative dissolution behaviors of eight natural pyrite samples, five sedimentary and three hydrothermal, from various geological environments were compared under oxic conditions at pH 3 and 6 in a highly controlled batch reactor dissolution system. The three sedimentary pyrite samples associated with coal had greater specific surface areas and also exhibited greater apparent dissolution rates and extent than the other two sedimentary and three hydrothermal samples under both pH conditions. However, after normalizing for surface area, the dissolution rate constants for the different pyrite samples were similar; the greatest difference was between the two non-coal sedimentary pyrite samples. Pyrite morphology and the presence of trace metals could contribute to the differences in dissolution behavior as reflected in the normalized dissolution rates. The sulfur:iron ratio observed in the aqueous solution at pH 3 increased with time, but was always less than 2.0 (predicted from the stoichiometry of dissolution) for all the pyrite samples during the 24-h experimental duration. This can be explained by the disproportionation dissociation of thiosulfate, an initial product of pyrite dissolution, to elemental sulfur and sulfate which does not occur in a 1:1 ratio. The results of this work indicate the importance of extracting and using the specific pyrite(s) relevant to particular mining areas in order to understand pyrite dissolution rates and the influence of environmental conditions on those rates.

  10. Stability of Bovine viral diarrhea virus 1 nucleic acid in fetal bovine samples stored under different conditions.

    PubMed

    Ridpath, Julia F; Neill, John D; Chiang, Yu-Wei; Waldbillig, Jill

    2014-01-01

    Infection of pregnant cattle with both species of Bovine viral diarrhea virus (BVDV) can result in reproductive disease that includes fetal reabsorption, mummification, abortion, stillbirths, congenital defects affecting structural, neural, reproductive, and immune systems, and the birth of calves persistently infected with BVDV. Accurate diagnosis of BVDV-associated reproductive disease is important to control BVDV at the production unit level and assessment of the cost of BVDV infections in support of BVDV control programs. The purpose of the current study was to examine the stability of viral nucleic acid in fetal tissues exposed to different conditions, as measured by detection by polymerase chain reaction. Five different types of fetal tissue, including brain, skin and muscle, ear, and 2 different pooled organ samples, were subjected to conditions that mimicked those that might exist for samples collected after abortions in production settings or possible storage conditions after collection and prior to testing. In addition, tissues were archived for 36 months at -20°C and then retested, to mimic conditions that might occur in the case of retrospective surveillance studies. Brain tissue showed the highest stability under the conditions tested. The impact of fecal contamination was increased following archiving in all tissue types suggesting that, for long-term storage, effort should be made to reduce environmental contaminants before archiving.

  11. Separation of post-translational modifications in monoclonal antibodies by exploiting subtle conformational changes under mildly acidic conditions.

    PubMed

    Wang, Shiyi; Ionescu, Roxana; Peekhaus, Norbert; Leung, Jin-Yu; Ha, Sha; Vlasak, Josef

    2010-10-15

    Chromatographic separation plays a key role in the identification, quantification, and characterization of protein variants. Here we describe separation of species containing two post-translational modifications (glycosylation and methionine oxidation) in the Fc fragment of a monoclonal antibody. The method is based on cation-exchange chromatography under mildly acidic conditions that destabilize mainly the CH2 domain. Our data suggest that the separation is not mediated by the chemical modification itself, but rather by subtle structural changes induced by the chemical modification in the domain-decoupled conformation that monoclonal antibodies adopt around pH 4. Compared to other procedures already described in the literature, this method demonstrates an improved separation and allows purification of species in the native fold for additional functional characterization. This approach of separation under conditions where the protein assumes an alternative conformation could find a more general utility for the separation of chemical modifications in proteins.

  12. Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions.

    PubMed

    Davis, Sarah C; LeBauer, David S; Long, Stephen P

    2014-07-01

    There has been little attention paid to crassulacean acid metabolism (CAM) as a mechanism for bioenergy crop tolerance to water limitation, in part, because potential yields of CAM plants have been assumed to be lower than those of most commonly studied bioenergy crops. The photochemical efficiency, water-use efficiency (WUE), biomass production, and fuel yield potentials of CAM, C3, and C4 plants that are considered or already in use for bioenergy are reviewed here. The theoretical photosynthetic efficiency of CAM plants can be similar to or greater than other photosynthetic pathways. In arid conditions, the greater WUE of CAM species results in theoretical biomass yield potentials that are 147% greater than C4 species. The realized yields of CAM plants are similar to the theoretical yields that account for water-limiting conditions. CAM plants can potentially be viable commercial bioenergy crops, but additional direct yield measurements from field trials of CAM species are still needed. PMID:24744431

  13. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    PubMed

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  14. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    PubMed

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes.

  15. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions: Performance and mechanisms.

    PubMed

    Su, Gaoqiang; Wang, Shuying; Yuan, Zhiguo; Peng, Yongzhen

    2016-03-01

    Volatile fatty acids (VFAs) are essential for removing biological nitrogen and phosphorus in wastewater treatment plants. The purpose of this work was to investigate whether and how the addition of NaCl could improve the production of VFAs from waste activated sludge (WAS). Sludge solubilization was efficiently improved by the addition of NaCl. Both protein and carbohydrate in the fermentation liquid increased with the dosage of NaCl, and it provided a larger amount of organic compounds for the production of the VFAs. NaCl had inhibitory effects on the production of methane and a high dosage of NaCl could severely suppress the growth of methanogens, which decreased the consumption of the VFAs. Consequently, the production of VFAs was significantly enhanced by the addition of NaCl. The maximum production of VFAs was achieved with the highest dosage of NaCl (3316 mg (COD)/L at the NaCl dosage 0.5 mol/L; 783 mg (COD)/L without the addition of NaCl). Therefore, this study indicates that using NaCl could be an efficient method for improving the production of VFAs from WAS. PMID:26320405

  16. Interactions of 57Co, 85Sr and 137Cs with peat under acidic precipitation conditions.

    PubMed

    Sanchez, A L; Schell, W R; Thomas, E D

    1988-03-01

    Following the burial of low-level wastes in nuclear waste repositories, the interactions of radionuclides with surrounding soil infiltrated by acid precipitation could cause radionuclide migration and transport into nearby wells. To evaluate this migration through organically rich soil in the unsaturated zone, we measured sorption and desorption distribution ratios (Rd) of 57Co, 85Sr and 137Cs onto peat at pH 4. Peat samples rich in organic C showed relatively higher sorption Rd values for 57Co and 85Sr compared to soil samples with less organic C. The sorption and desorption Rd values for these radionuclides are similar, indicating the reversibility of the sorption process. The measurements suggest the importance of organic complexes for the retention of these radionuclides at the pH range (pH 4), where hydrolysis of the metals is not important and sorption is expected to be low. Cesium-137, on the other hand, appears to be associated more strongly with inorganic components of the soil samples, with its Rd value significantly higher in the peat material containing less organic C. The 137Cs desorption Rd on the same peat sample is also comparable to the sorption Rd indicating equilibrium. Both the organic and inorganic components of peat are thus able to retard the migration of radionuclides which may be found in nuclear waste repositories. The design of such a repository may be improved using a peat barrier to restrict radionuclide migration.

  17. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P. PMID:26367705

  18. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  19. Clinical vampirism. A presentation of 3 cases and a re-evaluation of Haigh, the 'acid-bath murderer'.

    PubMed

    Hemphill, R E; Zabow, T

    1983-02-19

    Clinical vampirism is named after the mythical vampire, and is a recognizable, although rare, clinical entity characterized by periodic compulsive blood-drinking, affinity with the dead and uncertain identity. It is hypothetically the expression of an inherited archaic myth, the act of taking blood being a ritual that gives temporary relief. From ancient times vampirists have given substance to belief in the existence of supernatural vampires. Four vampirists, including Haigh, the 'acid-bath murderer', are described. From childhood they cut themselves, drank their own, exogenous human or animal blood to relieve a craving, dreamed of blood-shed, associated with the dead, and had a changing identity. They were intelligent, with no family mental or social pathology. Some self-cutters are auto-vampirists; females are not likely to assault others for blood, but males are potentially dangerous. Vampirism may be a cause of unpredictable repeated assault and murder, and should be looked for in violent criminals who are self-mutilators. No specific treatment is known.

  20. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions.

    PubMed

    Zhang, Kaisong; Zhou, Qixing

    2005-04-01

    The ecotoxicological effects of aluminum (Al)-based coagulants are of concern because of their wide-ranging applications in wastewater treatment and water purification. As important Al-based coagulants, AlCl(3) and PAC (polyaluminum-chloride) were selected as examples to examine the toxic effects on representative vegetables including the cabbage Brassica chinensis and the radish Raphanus sativus over a range of exposure concentrations in neutral (pH 7.00) and acidic (pH 4.00) conditions, using seed germination and root elongation in the early-growth stage as indicators of toxicity. The results showed that root elongation of the two vegetables was a more sensitive indicator than was seed germination for evaluating the toxicity of Al. As a single influencing factor, H(+) had no significant direct effects on root elongation of Brassica chinensis and Raphanus sativus under the experimental conditions. The toxicity of Al played the main role in inhibiting root elongation and seed germination and was strongly related to changes in pH. There was a markedly positive relationship between the inhibitory rate of root elongation, seed germination, and the concentration of Al at pH 4.00 (p < 0.01). The toxic effect of AlCl(3) on Brassica chinensis was less with a neutral pH than at pH 4.00, but Raphanus sativus was more susceptible to AlCl(3) toxicity at a neutral pH than at pH 4.00. Both Raphanus sativus and Brassica chinensis had a more toxic response to a low concentration (<64 mg . L(-1)) of PAC in a neutral condition than in an acidic condition. Undoubtedly, the Al toxicity caused by Al-based coagulants at a neutral pH is relevant when treatment solids are used in agriculture.

  1. [Fatty-acid composition of cells and lipopolysaccharides in different Yersinia species under the conditions of growth at low temperature].

    PubMed

    Sel'nikova, O P; Polishchuk, E I; Vasiurenko, Z P; Ruban, N M

    2005-01-01

    Y. pestis, Y. pseudotuberculosis, Y. enterocolitica, Y. frederiksenii, Y. intermedia, Y. kristensenii and Y. ruckeri grown at 4 degrees C were characterized by fatty acid composition with a high content of C16:1 and C18:1, as well as the proportion of saturated to nonsaturated fatty acids equal to, on the average, 2.0. In Yersinia lipopolysaccharides a relatively high level of C16:1 and C12:0 was observed with the prevalence of 3-OH-C14:0. In the fatty-acid spectra of both cells and lipopolysaccharides no essential difference was noted. Thus, during growth at low temperature differences, earlier detected in the studied Yersinia species grown at 37 degrees C and making it possible to divide 7 Yersinia species into 2 groupes, were completely leveled. These results confirmed the close phylogenetic relationship between the Yersinia species under study and were indicative of more pronounced biological community of Yersinia under the conditions of growth at low temperature.

  2. Clay mineralogical evolution as a function of acidic leaching conditions: implications for alteration pathways on Mars' surface

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Cuadros, Javier; Nieto, Jose Miguel; Bishop, Janice; Vega, Raquel; Michalski, Joe

    2015-04-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages suggesting processes for which Earth analogues exist. One of these cases is represented by aluminous clay-sulphate assemblages, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration.The oxidation of an extensive pyrite-rich orebody provided extreme to mild acidic fluxes that leached the surrounding rocks for over 20 million years (1). Samples from several locations in the Riotinto area show a range of clay products: vermiculite, smectite, possibly halloysite, and kaolinite with a wide range of crystal order. Jarosite and iron oxides appear in the most intensely leached areas. The different alteration products are due to the nature of the original rocks and the conditions in which low-pH leaching took place. Both mineral assemblages and spectral features of clay minerals from Riotinto can be used to interpret acidic alteration on Mars' surface. (1) Essalhi et al., 2011. Mineralium Deposita 46, 981-999.

  3. Determination of operating conditions in an anaerobic acid-phase reactor treating dairy wastewater

    SciTech Connect

    Kasapgil, B.; Ince, O.; Anderson, G.K.

    1996-11-01

    Anaerobic digestion of organic material is a multistep process. Two groups of bacteria, namely acidogenic and methanogenic bacteria, are responsible for the acidification and for the methane formation, respectively. The growth requirements of the two groups of bacteria are rather different. In order to create optimum conditions for the process, it was first proposed to separate the process into two phases. Operating variables applicable for the selection and enrichment of microbial populations in phased digesters include digester loading, hydraulic retention time (HRT), pH, temperature, reactor design, and operating mode. By proper manipulation of these operating parameters it is possible to prevent any significant growth of methane bacteria and at the same time achieve the required level of acidification in the first reactor. Further enrichment of two cultures is possible by biomass recycle around each phase. Since the 1970s, phase separation has been introduced into anaerobic digestion technology. However, data concerning the optimization of operating conditions in both acidogenic and methanogenic phase reactors are scarce. This study was therefore carried out for the purposes given below. These were: (1) to determine the best combination of pH and temperature within the ranges studied for the pre-acidification of dairy wastewater; (2) to determine the maximum acidogenic conversion from COD to VFAs, and (3) to determine the changes in the distribution of major VFAs being produced during the pre-acidification of dairy wastewater.

  4. Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions▿

    PubMed Central

    Yuan, Ze-Chun; Liu, Pu; Saenkham, Panatda; Kerr, Kathleen; Nester, Eugene W.

    2008-01-01

    Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer. PMID:17993523

  5. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  6. Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization.

    PubMed

    Park, Eun Young; Kim, Min-Jung; Cho, MyoungLae; Lee, Ju Hun; Kim, Jong-Yea

    2016-10-20

    Normal maize starch was subjected to heat-moisture treatment (HMT) under mildly acidic conditions (0.000, 0.050, or 0.075M H2SO4) for various treatment times (3, 5, or 8h) followed by homogenization up to 60min to prepare nanoparticles. The combination of HMT (0.075M, for 8h) and homogenization (60min) produced nanoparticles with diameters of less than 50nm at a yield higher than 80%. X-ray diffractometry and size-exclusion chromatography revealed that HMT under mildly acidic conditions selectively hydrolyzed the starch chains (especially amylose and/or long chains of amylopectin) in the amorphous region of the granules without significant damage to the crystalline structure, however, modification of the molecular structure in the amorphous region increased fragility of the granules during homogenization. Homogenization for 60min caused obvious damage in the long-range crystalline structure of the HMT starch (0.15N, for 8h), while the short-range chain associations (FT-IR) remained intact. PMID:27474568

  7. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  8. Molecular and Physiological Analysis of Al3+ and H+ Rhizotoxicities at Moderately Acidic Conditions1[W][OPEN

    PubMed Central

    Kobayashi, Yasufumi; Kobayashi, Yuriko; Watanabe, Toshihiro; Shaff, Jon E.; Ohta, Hiroyuki; Kochian, Leon V.; Wagatsuma, Tadao; Kinraide, Thomas B.; Koyama, Hiroyuki

    2013-01-01

    Al3+ and H+ toxicities predicted to occur at moderately acidic conditions (pH [water] = 5–5.5) in low-Ca soils were characterized by the combined approaches of computational modeling of electrostatic interactions of ions at the root plasma membrane (PM) surface and molecular/physiological analyses in Arabidopsis (Arabidopsis thaliana). Root growth inhibition in known hypersensitive mutants was correlated with computed {Al3+} at the PM surface ({Al3+}PM); inhibition was alleviated by increased Ca, which also reduced {Al3+}PM and correlated with cellular Al responses based on expression analysis of genes that are markers for Al stress. The Al-inducible Al tolerance genes ALUMINUM-ACTIVATED MALATE TRANSPORTER1 and ALUMINUM SENSITIVE3 were induced by levels of {Al3+}PM too low to inhibit root growth in tolerant genotypes, indicating that protective responses are triggered when {Al3+}PM was below levels that can initiate injury. Modeling of the H+ sensitivity of the SENSITIVE TO PROTON RHIZOTOXICITY1 knockout mutant identified a Ca alleviation mechanism of H+ rhizotoxicity, possibly involving stabilization of the cell wall. The phosphatidate phosphohydrolase1 (pah1) pah2 double mutant showed enhanced Al susceptibility under low-P conditions, where greater levels of negatively charged phospholipids in the PM occur, which increases {Al3+}PM through increased PM surface negativity compared with wild-type plants. Finally, we found that the nonalkalinizing Ca fertilizer gypsum improved the tolerance of the sensitive genotypes in moderately acidic soils. These findings fit our modeling predictions that root toxicity to Al3+ and H+ in moderately acidic soils involves interactions between both toxic ions in relation to Ca alleviation. PMID:23839867

  9. Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions

    EPA Science Inventory

    Sulfonamide-based antibiotics are often detected in surface waters and secondary wastewater effluents and pose an eminent threat for the development of antibiotic resistance bacteria and genes in aquatic environment. This paper presents the kinetics and stoichiometry of the oxid...

  10. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

    PubMed

    Gruhn, Marvin; Frigon, Jean-Claude; Guiot, Serge R

    2016-01-01

    This study compared the acidogenic fermentation of Scenedesmus sp.-AMDD at laboratory-scale, under mesophilic (35°C) and thermophilic conditions (55°C). Preliminary batch tests were performed to evaluate best conditions for volatile fatty acid (VFA) production from microalgal biomass, with respect to the inoculum, pH and nutrients. The use of bovine manure as inoculum, the operating pH of 4.5 and the addition of a nutrient mix, resulted in a high VFA production of up to 222mgg(-1) total volatile solid (TVS), with a butyrate share of 27%. Both digesters displayed similar hydrolytic activity with 0.38±0.02 and 0.42±0.03 g soluble chemical oxygen demand (COD)g(-1) TVS for the digesters operated at 35 and 55°C, respectively. Mesophilic conditions were more favorable for VFA production, which reached 171±5, compared to 88±12 mg soluble CODg(-1) TVS added under thermophilic conditions (94% more). It was shown that in both digesters, butyrate was the predominant VFA. PMID:26551650

  11. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y

  12. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  13. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice.

    PubMed

    Zheng, Jie; Yang, Baoru; Trépanier, Martin; Kallio, Heikki

    2012-03-28

    Sea buckthorn berries (Hippophaë rhamnoides ssp. mongolica) of nine varieties were collected from three growth locations in five inconsecutive years (n = 152) to study the compositional differences of sugars, sugar alcohols, fruit acids, and ascorbic acid in berries of different genotypes. Fructose and glucose (major sugars) were highest in Chuiskaya and Vitaminaya among the varieties studied, respectively. Malic acid and quinic acid (major acids) were highest in Pertsik and Vitaminaya, respectively. Ascorbic acid was highest in Oranzhevaya and lowest in Vitaminaya. Berry samples of nine varieties collected from two growth locations in five years (n = 124) were combined to study the effects of latitude and weather conditions on the composition of H. rhamnoides ssp. mongolica. Sea buckthorn berries grown at lower latitude had higher levels of total sugar and sugar/acid ratio and a lower level of total acid and were supposed to have better sensory properties than those grown at higher latitude. Glucose, quinic acid, and ascorbic acid were hardly influenced by weather conditions. The other components showed various correlations with temperature, radiation, precipitation, and humidity variables. In addition, fructose, sucrose, and myo-inositol correlated positively with each other and showed negative correlation with malic acid on the basis of all the samples studied (n = 152).

  14. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  15. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis.

    PubMed

    Bhatt, Apoorva; Kremer, Laurent; Dai, Annie Z; Sacchettini, James C; Jacobs, William R

    2005-11-01

    Inhibition or inactivation of InhA, a fatty acid synthase II (FASII) enzyme, leads to mycobacterial cell lysis. To determine whether inactivation of other enzymes of the mycolic acid-synthesizing FASII complex also leads to lysis, we characterized the essentiality of two beta-ketoacyl-acyl carrier protein synthases, KasA and KasB, in Mycobacterium smegmatis. Using specialized transduction for allelic exchange, null kasB mutants, but not kasA mutants, could be generated in Mycobacterium smegmatis, suggesting that unlike kasB, kasA is essential. To confirm the essentiality of kasA, and to detail the molecular events that occur following depletion of KasA, we developed CESTET (conditional expression specialized transduction essentiality test), a genetic tool that combines conditional gene expression and specialized transduction. Using CESTET, we were able to generate conditional null inhA and kasA mutants. We studied the effects of depletion of KasA in M. smegmatis using the former strain as a reference. Depletion of either InhA or KasA led to cell lysis, but with different biochemical and morphological events prior to lysis. While InhA depletion led to the induction of an 80-kDa complex containing both KasA and AcpM, the mycobacterial acyl carrier protein, KasA depletion did not induce the same complex. Depletion of either InhA or KasA led to inhibition of alpha and epoxy mycolate biosynthesis and to accumulation of alpha'-mycolates. Furthermore, scanning electron micrographs revealed that KasA depletion resulted in the cell surface having a "crumpled" appearance, in contrast to the blebs observed on InhA depletion. Thus, our studies support the further exploration of KasA as a target for mycobacterial-drug development. PMID:16267284

  16. Definitions of critical environmental conditions for selected Chesapeake Bay finfishes exposed to acidic episodes in spawning and nursery habitats. Final report

    SciTech Connect

    Klauda, R.J.

    1989-10-01

    Definitions of critical environmental conditions associated with acidic episodes are defined for yellow perch, alewife, blueback herring, American shad, and white perch, based on a review of field and laboratory data. These species are an important biological resource in the mid-Atlantic Coastal Plain. Values for blueback herring and alewife reproduction are an acid pulse between pH 5.5 and 6.2 with dissolved Ca at least 2 mg/l, with total monomeric Al levels between 15 and 137 microgram/l. Critical acidic conditions for American shad reproduction are an acid pulse between pH 5.7 and 6.7, dissolved Ca at least 2 micrograms/l, and total monomeric Al levels between 0 and 137 micrograms/l. Using data from the congeneric striped bass as a proxy, critical acidic conditions for white perch are an acid pulse between pH 6.5 and 6.7, total monomeric Al concentration of 25 microgram/l persisting for 7 days, and dissolved Ca at least 2 microgram/l. Based on a combination of life stage exposure and tolerance to acidic conditions the species can be ranked from high to low potential with regard to risks posed by acidic episodes on their early life stages: white perch, alewife/blueback herring, American shad, yellow perch.

  17. Effect of poly(aspartic acid) on calcium phosphate removal from stainless steel tubing under turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Littlejohn, Felicia

    Calcium phosphate deposition causes cleaning problems in a number of situations including water treatment, dairy processing, and dental applications. This problem is exacerbated by the limited choices of cleaning chemicals that meet environmental regulations. To promote the development of biodegradable, non-toxic alternatives, this research examines the removal of calcium phosphate deposits consisting of brushite (dicalcium phosphate dihydrate; DCPD) and a mixture of hydroxyapatite (HAP) and DCPD from stainless steel in the presence of poly(aspartic acid) and its sodium salt (PASP). The effects of solvent pH, PASP concentration, and flow rate on the calcium phosphate removal rates are measured from stainless steel tubing under turbulent flow conditions using a solid scintillation detection technique. A mechanistic evaluation of the cleaning data in the absence of PASP indicates that DCPD removal is dominated by shear while HAP/DCPD deposit removal is limited by a combination of mass transfer and interfacial processes. Although the removal mechanisms differ, the results conclusively show that PASP promotes calcium phosphate removal under conditions that favor calcium sequestration in both cases. An in-depth study of DCPD removal in the presence of PASP reveals that this additive is most effective under conditions where calcium sequestration and phosphate protonation occur simultaneously.

  18. Quinic Acid Could Be a Potential Rejuvenating Natural Compound by Improving Survival of Caenorhabditis elegans under Deleterious Conditions

    PubMed Central

    Zhang, Longze; Zhang, Junjing

    2012-01-01

    Abstract Quinic acid (QA) is an active ingredient of Cat's Claw (Uncaria tomentosa), which is found to be active in enhancing DNA repair and immunity in model systems and able to generate neuroprotective effects in neurons. However, QA's role in improving survival is not well studied. Here we report that QA can provide protection in Caenorhabidits elegans and improve worm survival under stress. Under heat stress and oxidative stress, QA-treated wild-type C. elegans N2 (N2) survived 17.8% and 29.7% longer, respectively, than the control worms. Our data suggest that under heat stress, QA can upregulate the expression of the small heat shock protein hsp-16.2 gene, which could help the worms survive a longer time. We also found that QA extended the C. elegans mutant VC475 [hsp-16.2 (gk249)] life span by 15.7% under normal culture conditions. However, under normal culture conditions, QA did not affect hsp-16.2 expression, but upregulated the expression of daf-16 and sod-3 in a DAF-16–dependent manner, and downregulated the level of reactive oxygen species (ROS), suggesting that under normal conditions QA acts in different pathways. As a natural product, QA demonstrates great potential as a rejuvenating compound. PMID:22950425

  19. Kinetics and isotherm analysis of 2,4-dichlorophenoxyl acetic acid adsorption onto soil components under oxic and anoxic conditions.

    PubMed

    Ololade, Isaac A; Alomaja, Folasade; Oladoja, Nurudeen A; Ololade, Oluwaranti O; Oloye, Femi F

    2015-01-01

    2,4-dichlorophenoxyl acetic acid (2,4-D, pKa = 2.8) is used extensively as a herbicide in agricultural practices. Its sorption behavior on both untreated and soils treated to significantly remove specific components (organic and iron and manganese [Fe-Mn] oxides and hydroxides phases) was investigated under oxic and anoxic conditions. The chemical and structural heterogeneity of the soil components were characterized by elemental analysis and X-ray diffraction (XRD). The coexistence of the various components seems to either mask sorption sites on the untreated soil surfaces or inhibit interlayer diffusion of 2,4-D. All sorption data conform to the Freundlich description and a pseudo-second-order kinetic model. There was a strong positive correlation between sorption capacity K(d), and surface area (r(2) ≤ 0.704), but a negative correlation was uncovered with both pH and organic carbon (r(2) ≤ -0.860). The results indicate that 2,4-D is preferably sorbed under oxic rather than anoxic conditions and it is greater on soils containing a high Fe content. There was incomplete 2,4-D sorption reversibility, with desorption occurring more rapidly under anoxic conditions. The study suggests that stimulation of Fe III reduction could be used for the bioremediation of a 2,4-D-contaminated site. PMID:25996813

  20. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions.

    PubMed

    Torres-Moreno, M; Torrescasana, E; Salas-Salvadó, J; Blanch, C

    2015-01-01

    Nutritional composition and fatty acids (FA) profile were determined in cocoa and chocolates of different geographical origin and subject to different processing conditions. Cocoa butter was the major nutrient in cocoa beans and carbohydrates were the most important in chocolates. Cocoa composition and FA profile varied depending on geographical origin whilst in chocolates only carbohydrates and fat content varied significantly due to the effect of origin and no significant effect was observed for processing conditions. Both for cocoa and chocolates differences in FA profile were mainly explained as an effect of the geographical origin, and were not due to processing conditions in chocolate. For cocoa, differences in FA profile were found in C12:0, C14:0, C16:0, C16:1, C17:0, C17:1 and C18:0 whilst for chocolates only differences were found in C16:0, C18:0, C18:1 and C18:2. For all samples, C16:0, C18:0, C18:1 and C18:2 were quantitatively the most important FA. Ecuadorian chocolate showed a healthier FA profile having higher amounts of unsaturated FA and lower amounts of saturated FA than Ghanaian chocolate.

  1. Effect of ascorbic acid (vitamin C) on the ESR spectra of the red and black hair: pheomelanin free radicals are not always present in red hair.

    PubMed

    Chikvaidze, Eduard; Topeshashvili, Maia

    2015-12-01

    Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology.

  2. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.

    PubMed

    Blagojević, Slavica M; Anić, Slobodan R; Cupić, Zeljko D; Pejić, Natasa D; Kolar-Anić, Ljiljana Z

    2008-11-28

    The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) < or = [MA]0 < or = 4.30 x 10(-2) mol dm(-3)) in the presence of bromate (6.20 x 10(-2) mol dm(-3)), bromide (1.50 x 10(-5) mol dm(-3)), sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained.

  3. CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions.

    PubMed

    Chen, Lisong; Cui, Xiangzhi; Wang, Qingsong; Zhang, Xiaohua; Wan, Gang; Cui, Fangming; Wei, Chenyang; Shi, Jianlin

    2015-12-21

    The design of a non-precious metal oxygen reduction reaction (ORR) catalyst of high activity and long durability in acidic electrolyte is of great importance for the development and commercialization of low-temperature fuel cells, which remains a great challenge to date. Here, we demonstrate a facile, scalable protocol for the controlled synthesis of CoxC encapsulated in carbon nanotubes as a novel kind of efficient electrochemical oxygen reduction reaction (ORR) catalyst. The synthesized CoxC/carbon nanotube features a high BET surface area, large pore volume and high graphitic content, which greatly favors enhanced ORR properties. The resultant composite electro-catalyst shows high ORR activity which is comparable with that of 20 wt% Pt/C in 0.1 M KOH electrolyte. More importantly, it also exhibits a high ORR activity in 0.1 M HClO4 with a near-complete 4e pathway. More attractively, compared to the most investigated FexC, CoxC as the proposed main catalytically active center shows much enhanced activity in acidic electrolyte, which will pave the way towards the rational design of an advanced electro-catalyst for an efficient ORR process especially under acidic conditions. Moreover, a fuel cell using the synthesized CoxC/carbon nanotube as a cathode catalyst showed a large open-circuit potential, high output power density and long durability, which make it a promising alternative to Pt/C as a non-precious metal ORR catalyst in proton exchange membrane fuel cells. PMID:26565522

  4. CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions.

    PubMed

    Chen, Lisong; Cui, Xiangzhi; Wang, Qingsong; Zhang, Xiaohua; Wan, Gang; Cui, Fangming; Wei, Chenyang; Shi, Jianlin

    2015-12-21

    The design of a non-precious metal oxygen reduction reaction (ORR) catalyst of high activity and long durability in acidic electrolyte is of great importance for the development and commercialization of low-temperature fuel cells, which remains a great challenge to date. Here, we demonstrate a facile, scalable protocol for the controlled synthesis of CoxC encapsulated in carbon nanotubes as a novel kind of efficient electrochemical oxygen reduction reaction (ORR) catalyst. The synthesized CoxC/carbon nanotube features a high BET surface area, large pore volume and high graphitic content, which greatly favors enhanced ORR properties. The resultant composite electro-catalyst shows high ORR activity which is comparable with that of 20 wt% Pt/C in 0.1 M KOH electrolyte. More importantly, it also exhibits a high ORR activity in 0.1 M HClO4 with a near-complete 4e pathway. More attractively, compared to the most investigated FexC, CoxC as the proposed main catalytically active center shows much enhanced activity in acidic electrolyte, which will pave the way towards the rational design of an advanced electro-catalyst for an efficient ORR process especially under acidic conditions. Moreover, a fuel cell using the synthesized CoxC/carbon nanotube as a cathode catalyst showed a large open-circuit potential, high output power density and long durability, which make it a promising alternative to Pt/C as a non-precious metal ORR catalyst in proton exchange membrane fuel cells.

  5. Studies on electrolyte formulations to improve life of lead acid batteries working under partial state of charge conditions

    NASA Astrophysics Data System (ADS)

    Hernández, J. C.; Soria, M. L.; González, M.; García-Quismondo, E.; Muñoz, A.; Trinidad, F.

    For decades, valve regulated lead acid batteries with gel electrolyte have proved their excellent performance in deep cycling applications. However, their higher cost, when compared with flooded batteries, has limited their use in cost sensitive applications, such as automotive or PV installations. The use of flooded batteries in deep or partial state of charge working conditions leads to limited life due to premature capacity loss provoked by electrolyte stratification. Different electrolyte formulations have been tested, in order to achieve the best compromise between cost and life performance. Work carried out included electrochemical studies in order to determine the electrolyte stability and diffusional properties, and kinetic studies to check the processability of the electrolyte formulation. Finally, several 12 V batteries have been assembled and tested according to different ageing profiles.

  6. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated.

  7. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    PubMed

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  8. Studies of optimum conditions for covalent immobilization of Candida rugosa lipase on poly(gamma-glutamic acid) by RSM.

    PubMed

    Chang, S-W; Shaw, J-F; Yang, K-H; Chang, S-F; Shieh, C-J

    2008-05-01

    Poly(gamma-glutamic acid) (gamma-PGA) is a material of polymer. Immobilization of Candida rugosa lipase (Lipase AY-30) by covalent binding on gamma-PGA led to a markedly improved performance of the enzyme. Response surface methodology (RSM) and 3-level-3-factor fractional factorial design were employed to evaluate the effects of immobilization parameters, such as immobilization time (2-6h), immobilization temperature (0-26 degrees C), and enzyme/support ratio (0.1-0.5, w/w). Based on the analysis of ridge max, the optimum immobilization conditions were as follows: immobilization time 2.3h, immobilization temperature 13.3 degrees C, and enzyme/support ratio 0.41 (w/w); the highest lipase activity obtained was 1196 U/mg-protein.

  9. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated. PMID:27561540

  10. Omental infarction and its mimics: imaging features of acute abdominal conditions presenting with fat stranding greater than the degree of bowel wall thickening.

    PubMed

    Tonerini, Michele; Calcagni, Francesca; Lorenzi, Silvia; Scalise, Paola; Grigolini, Alessandro; Bemi, Pietro

    2015-08-01

    The segmental omental infarction is a rare self-limited disorder presenting with aspecific clinical symptoms that may mimic several acute abdominal conditions. Therefore, a correct noninvasive diagnosis is important because treatment approaches range from monitoring to surgery. As omental infarction results in an important fat stranding that is much greater than the degree of bowel wall thickening, it suggests a narrower differential diagnosis: appendicitis, diverticulitis, epiploic appendagitis, and mesenteric panniculitis. In this pictorial essay, we point out the importance of imaging in identifying this typical sign allowing alternate diagnoses such as segmental omental infarction that can be conservatively managed.

  11. Cloud point extraction of plutonium in environmental matrixes coupled to ICPMS and α spectrometry in highly acidic conditions.

    PubMed

    Labrecque, Charles; Whitty-Léveillé, Laurence; Larivière, Dominic

    2013-11-01

    A new cloud point extraction procedure has been developed for the quantification of plutonium(IV) in environmental samples. The separation procedure can be either coupled to inductively coupled plasma mass spectrometry (ICPMS) or α spectrometry for plutonium quantification. The method uses a combination of selective ligand (P,P'-di(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP])) and micelle shielding by bromine formation to enable quantitative extraction of Pu in highly acidic solutions. Cross-optimization of all parameters (nonionic and ionic surfactant, chelating agent, bromate, bromide, and pH) led to optimal of the extraction conditions. Figures of merit of the method for the detection using α spectrometry and ICPMS are reported (limit of detection, limit of quantification, minimal detectable activity, and recovery). Quantitative extractions (>95%) were obtained for a wide variety of aqueous and digested samples (synthetic urine, wastewater, drinking water, seawater, and soil samples). The method features the first successful coupling between α spectrometry and cloud point extraction and is the first demonstration of CPE suitability with metaborate fusion as a sample preparation approach, techniques used extensively in nuclear industries.

  12. Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization.

    PubMed

    Lange, Maren D; Jüngling, Kay; Paulukat, Linda; Vieler, Marc; Gaburro, Stefano; Sosulina, Ludmila; Blaesse, Peter; Sreepathi, Hari K; Ferraguti, Francesco; Pape, Hans-Christian

    2014-08-01

    An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.

  13. An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage.

    PubMed

    Ding, W K; Shah, N P

    2009-03-01

    The purpose of this study was to develop a method for applying an extra coating of palm oil and poly-L-lysine (POPL) to alginate (ALG) microcapsules to enhance the survival of probiotic bacteria. Eight strains of probiotic bacteria including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07 were encapsulated using alginate alone or alginate with POPL. Electron microscopy was used to measure the size of the microcapsules and to determine their surface texture. To assess if the addition of POPL improved the viability of probiotic bacteria in acidic conditions, both ALG and POPL microcapsules were inoculated into pH 2.0 MRS broths and their viability was assessed over a 2-h incubation period. Two bile salts including oxgall bile salt and taurocholic acid were used to test the bile tolerance of probiotic bacteria entrapped in ALG and POPL microcapsules. To assess the porosity and the ability of the microcapsule to hold small molecules in an aqueous environment a water-soluble fluorescent dye, 6-carboxyflourescin (6 FAM), was encapsulated and its release was monitored using a UV spectrophotometer. The results indicated that coating the microcapsules with POPL increased the overall size of the capsules by an average of 3 microm +/- 0.67. However, microcapsules with added POPL had a much smoother surface texture when examined under an electron microscope. The results also indicated that the addition of POPL to microcapsules improved the average viability of probiotic bacteria by > 1 log CFU/mL when compared to ALG microcapsules at 2 h of exposure to acidic conditions. However, similar plate counts were observed between ALG and POPL microcapsules when exposed to bile salts. This suggests that an extra coating of POPL could be readily broken down by bile salts that are commonly found in the lower gastrointestinal tract (GIT). Upon testing the porosity of the

  14. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods.

    PubMed

    Moreira-Vilar, Flavia Carolina; Siqueira-Soares, Rita de Cássia; Finger-Teixeira, Aline; de Oliveira, Dyoni Matias; Ferro, Ana Paula; da Rocha, George Jackson; Ferrarese, Maria de Lourdes L; dos Santos, Wanderley Dantas; Ferrarese-Filho, Osvaldo

    2014-01-01

    We compared the amount of lignin as determined by the three most traditional methods for lignin measurement in three tissues (sugarcane bagasse, soybean roots and soybean seed coat) contrasting for lignin amount and composition. Although all methods presented high reproducibility, major inconsistencies among them were found. The amount of lignin determined by thioglycolic acid method was severely lower than that provided by the other methods (up to 95%) in all tissues analyzed. Klason method was quite similar to acetyl bromide in tissues containing higher amounts of lignin, but presented lower recovery of lignin in the less lignified tissue. To investigate the causes of the inconsistencies observed, we determined the monomer composition of all plant materials, but found no correlation. We found that the low recovery of lignin presented by the thioglycolic acid method were due losses of lignin in the residues disposed throughout the procedures. The production of furfurals by acetyl bromide method does not explain the differences observed. The acetyl bromide method is the simplest and fastest among the methods evaluated presenting similar or best recovery of lignin in all the tissues assessed.

  15. Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACl: influences of hydraulic condition and water chemistry.

    PubMed

    Ma, Si; Liu, Changli; Yang, Kun; Lin, Daohui

    2012-11-15

    Discharged carbon nanotubes (CNTs) can adsorb the widely-distributed humic acid (HA) in aquatic environments and thus be stabilized. HA-stabilized CNTs can find their way into and challenge the potable water treatment system. This study investigated the efficiency of coagulation and sedimentation techniques in the removal of the HA-stabilized multi-walled carbon nanotubes (MWCNTs) using polyaluminum chloride (PACl) as a coagulant, with a focus on the effects of hydraulic conditions and water chemistry. Stirring speeds in the mixing and reacting stages were gradually changed to examine the effect of the hydraulic conditions on the removal rate. The stirring speed in the reacting stage affected floc formation and thereby had a greater impact on the removal rate than the stirring speed in the mixing stage. Water chemistry factors such as pH and ionic strength had a significant effect on the stability of MWCNT suspension and the removal efficiency. Low pH (4-7) was favorable for saving the coagulant and maintaining high removal efficiency. High ionic strength facilitated the destabilization of the HA-stabilized MWCNTs and thereby lowered the required PACl dosage for the coagulation. However, excessively high ionic strength (higher than the critical coagulation concentration) decreased the maximum removal rate, probably by inhibiting ionic activity of PACl hydrolyzate in water. These results are expected to shed light on the potential improvement of coagulation removal of aqueous stabilized MWCNTs in water treatment systems.

  16. Modeling present hydrological conditions as a key to predict the future - results from a case study of a periglacial catchment in Greenland

    NASA Astrophysics Data System (ADS)

    Johansson, E.; Lindborg, T.; Berglund, S.

    2015-12-01

    The routing of water through periglacial landscapes is closely connected to the presence of permafrost, and freezing and thawing processes. To predict responses in the landscape to climate driven changes, we need to better understand the present day hydrology. The present hydrological processes, and the uncertainties in the data used to describe them, must be investigated and understood before we can develop models describing possible future conditions. In this work we have studied the hydrology of a catchment in the Kangerlussuaq region, Greenland. Johansson et al. (2015) presented a hydrological model of the catchment based on a new hydrological and meteorological data set from the catchment area. The present water balance was quantified, and the spatial and seasonal dynamics of the main hydrological fluxes were presented. It was shown that the model was able to reproduce the measured lake level dynamics and the measured components of the water balance. Based on this work we have used the numerical model to investigate the sensitivity in hydrological responses to different meteorological, geological and geometrical model input data. The aim with this study is to investigate the importance of the use of local data, but also to highlight the importance of present day site understanding when developing and applying the model for predicting responses to a changing climate. The results show that the site specific model is highly sensitive to the meteorological input data. Driving the model with precipitation data from a meteorological station only 30 km away from the catchment instead of local data from the studied catchment, or using local precipitation data not corrected for wind and adhesion losses, resulted in large discrepancies between measured and calculated lake levels. The modelled intra-annual dynamics of the active layer groundwater was shown to be sensitive both to the applied soil temperatures but also to the active layer depth and sediment stratigraphy.

  17. Effect of β-hydroxybutyric acid, parity, and body condition score on phenotype and proliferative capacity of colostral mononuclear leukocytes of high-yielding dairy cows.

    PubMed

    Meganck, V; Goddeeris, B M; De Campeneere, S; Hostens, M; Van Eetvelde, M; Piepers, S; Cox, E; Opsomer, G

    2015-10-01

    In neonatal calves, the ingestion of colostrum is imperative for preventing infectious diseases. Investigations into the transfer of passive immunity of cattle have primarily focused on the importance of colostral immunoglobulins, with a recent increase in focus on understanding the role of colostral leukocytes. The main objective of the present study was to measure the influence of parity, body condition score, serum nonesterified fatty acids, and serum β-hydroxybutyrate concentrations of periparturient cows on phenotype and mitogen- and antigen-induced proliferative capacity of bovine colostral leukocytes. Holstein-Friesian cows (n=141) were intramuscularly vaccinated at 60 and 30 d before the expected parturition date with a tetanus toxoid vaccine. Of these 141 animals, 28 primiparous and 72 multiparous cows were sampled immediately after parturition. Colostrum mononuclear cell populations were identified by flow cytometry using bovine cluster of differentiation markers, and the proliferative capacity of these cells was determined using a (3)H-thymidine proliferation assay. Under-conditioned cows had a significantly higher percentage of colostral macrophages than normal-conditioned animals, whereas over-conditioned cows had significantly more colostral B-lymphocytes. Serum β-hydroxybutyrate was significantly associated with higher numbers of colostral T-lymphocytes and macrophages. Heifers had significantly higher mitogen- and antigen-induced proliferation of their colostral leukocytes than third parity or older cows. In conclusion, body condition score, parity, and serum β-hydroxybutyrate concentration of periparturient high-yielding dairy cows were shown to influence the number of colostral macrophages or the mitogen- and antigen-induced proliferation of colostral leukocytes, possibly influencing the cellular immunity of the newborn calf. PMID:26233460

  18. Further evidence for involvement of the dorsal hippocampus serotonergic and γ-aminobutyric acid (GABA)ergic pathways in the expression of contextual fear conditioning in rats.

    PubMed

    Almada, Rafael C; Albrechet-Souza, Lucas; Brandão, Marcus L

    2013-12-01

    Intra-dorsal hippocampus (DH) injections of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a serotonin-1A (5-hydroxytryptamine (5-HT)-1A) receptor agonist, were previously shown to inhibit the expression of contextual fear when administered six hours after conditioning. However, further understanding of the consolidation and expression of aversive memories requires investigations of these and other mechanisms at distinct time points and the regions of the brain to which they are transferred. Thus, the purpose of the present study was to investigate the role of DH serotonergic and γ-aminobutyric acid (GABA)ergic mechanisms in the expression of contextual fear 24 h after conditioning, reflected by fear-potentiated startle (FPS) and freezing behavior. The recruitment of the amygdala and medial prefrontal cortex (mPFC) in these processes was also evaluated by measuring Fos protein immunoreactivity. Although intra-DH injections of 8-OH-DPAT did not produce behavioral changes, muscimol reduced both FPS and the freezing response. Fos protein immunoreactivity revealed that contextual fear promoted wide activation of the mPFC, which was significantly reduced after intra-DH infusions of muscimol. The present findings, together with previous data, indicate that in contrast to 5-HT, which appears to play a role during the early phases of contextual aversive memory consolidation, longer-lasting GABA-mediated mechanisms are recruited during the expression of contextual fear memories.

  19. Sodium-bicarbonate cotransporter NBCn1 in the kidney medullary thick ascending limb cell line is upregulated under acidic conditions and enhances ammonium transport.

    PubMed

    Lee, Soojung; Lee, Hye Jeong; Yang, Han Soo; Thornell, Ian M; Bevensee, Mark O; Choi, Inyeong

    2010-09-01

    In this study, we examined the effect of bicarbonate transporters on ammonium/ammonia uptake in the medullary thick ascending limb cell line ST-1. Cells were treated with 1 mm ouabain and 0.2 mM bumetanide to minimize carrier-mediated NH(4)(+) transport, and the intracellular accumulation of (14)C-methylammonium/methylammonia ((14)C-MA) was determined. In CO(2)/HCO(3)(-)-free solution, cells at normal pH briefly accumulated (14)C-MA over 7 min and reached a plateau. In CO(2)/HCO(3)(-) solution, however, cells markedly accumulated (14)C-MA over the experimental period of 30 min. This CO(2)/HCO(3)(-)-dependent accumulation was reduced by the bicarbonate transporter blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS; 0.5 mM). Replacing Cl(-) with gluconate reduced the accumulation, but the reduction was more substantial in the presence of DIDS. Incubation of cells at pH 6.8 (adjusted with NaHCO(3) in 5% CO(2)) for 24 h lowered the mean steady-state intracellular pH to 6.96, significantly lower than 7.28 for control cells. The presence of DIDS reduced (14)C-MA accumulation in control conditions but had no effect after acidic incubation. Immunoblotting showed that NBCn1 was upregulated after acidic incubation and in NH(4)Cl-containing media. The Cl(-)-HCO(3)(-) exchanger AE2 was present, but its expression remained unaffected by acidic incubation. Expressed in Xenopus oocytes, NBCn1 increased carrier-mediated (14)C-MA transport, which was abolished by replacing Na(+). Two-electrode voltage clamp of oocytes exhibited negligible current after NH(4)Cl application. These results suggest that DIDS-sensitive HCO(3)(-) extrusion normally governs NH(4)(+)/NH(3) uptake in the medullary thick ascending limb cells. We propose that, in acidic conditions, DIDS-sensitive HCO(3)(-) extrusion is inactivated, while NBCn1 is upregulated to stimulate NH(4)(+) transport.

  20. Structural Complexity of Non-acid Glycosphingolipids in Human Embryonic Stem Cells Grown under Feeder-free Conditions*

    PubMed Central

    Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.

    2013-01-01

    Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501

  1. Furan occurrence in starchy food model systems processed at high temperatures: effect of ascorbic acid and heating conditions.

    PubMed

    Mariotti, María; Granby, Kit; Fromberg, Arvid; Risum, Jørgen; Agosin, Eduardo; Pedreschi, Franco

    2012-10-10

    Furan, a potential carcinogen, has been detected in highly consumed starchy foods, such as bread and snacks; however, research on furan generation in these food matrixes has not been undertaken, thus far. The present study explored the effect of ascorbic acid addition and cooking methods (frying and baking) over furan occurrence and its relation with the non-enzymatic browning in a wheat flour starchy food model system. Results showed that furan generation significantly increased in the presence of ascorbic acid after 7 min of heating (p < 0.05). The strongest effect was observed for baked products. Additionally, the furan content in fried products increased with the increase of the oil uptake levels. As for Maillard reactions, in general, the furan level in all samples linearly correlated with their degree of non-enzymatic browning, represented by L* and a* color parameters (e.g., wheat flour baked samples showed a R(2) of 0.88 and 0.87 for L* and a*, respectively), when the sample moisture content decreased during heating.

  2. Furan occurrence in starchy food model systems processed at high temperatures: effect of ascorbic acid and heating conditions.

    PubMed

    Mariotti, María; Granby, Kit; Fromberg, Arvid; Risum, Jørgen; Agosin, Eduardo; Pedreschi, Franco

    2012-10-10

    Furan, a potential carcinogen, has been detected in highly consumed starchy foods, such as bread and snacks; however, research on furan generation in these food matrixes has not been undertaken, thus far. The present study explored the effect of ascorbic acid addition and cooking methods (frying and baking) over furan occurrence and its relation with the non-enzymatic browning in a wheat flour starchy food model system. Results showed that furan generation significantly increased in the presence of ascorbic acid after 7 min of heating (p < 0.05). The strongest effect was observed for baked products. Additionally, the furan content in fried products increased with the increase of the oil uptake levels. As for Maillard reactions, in general, the furan level in all samples linearly correlated with their degree of non-enzymatic browning, represented by L* and a* color parameters (e.g., wheat flour baked samples showed a R(2) of 0.88 and 0.87 for L* and a*, respectively), when the sample moisture content decreased during heating. PMID:22985355

  3. Regional climate response to land surface changes after harvest in the North China Plain under present and possible future climate conditions

    NASA Astrophysics Data System (ADS)

    Cho, Mee-Hyun; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Lim, Gyu-Ho

    2014-04-01

    In this study, we investigated the impacts of land use alterations from harvesting practices on the regional surface climate over the North China Plain. The surface climate responses after harvest in June in regions where double-cropping is practiced were evaluated using observations and model simulations with the global climate model HadGEM2-Atmosphere. Responses were modeled under both present and possible future climate conditions. In the model, double-cropping was represented using the monthly varying fraction of vegetation. This contributed to an improvement in the model simulation over East Asia. Modeling results showed that the land surface was warmer and drier after harvest, and these simulation results were consistent with observations. The bare soil surface after harvest in June had biophysical impacts on the surface climate that were mediated by decreasing evapotranspiration and latent heat flux effects, which increased surface air temperatures and decreased surface humidity. An increase in shortwave radiation also contributed to the rise in temperatures. Under two Representative Concentration Pathways (RCP) scenarios for possible future climate conditions, land conversion induced additional warming in addition to greenhouse gases induced global warming. The RCP 8.5 and RCP 2.6 scenarios demonstrated a warming of 1.0°C and 1.4°C due to harvesting practices in June, respectively. The response magnitude was affected by the climate conditions in each RCP. Our results suggest that potential impacts of harvest on the local climate need to be considered in future projections of CO2-induced warming on a regional scale.

  4. Carbonic acid salts at 25 or 45 degrees C to control loquat decay under shelf life conditions.

    PubMed

    Molinu, M G; D'Hallewin, G; Dore, A; Serusi, A; Venditti, T; Agabbio, M

    2005-01-01

    Generally recognised as save compounds (G.R.A.S) are attractive substitutes to synthetic chemicals in postharvest control diseases. They meet safety requirements, are cheap and able to be integrated with other disease control technologies. Among G.R.A.S compounds, carbonic acid salts have been investigated on carrots, bell pepper, melons, sweet cherries and their efficacy was also evaluated when combined with biological control agents. Moreover, the possibility to use sodium carbonate and sodium bicarbonate to prevent P. digitatum an P. italicum spread on Citrus fruit was studied since the begin of the 20th century. We explored the possibility to extend the use of carbonate-bicarbonate salts on loquat fruit in order to control the pathogens and to extend postharvest life. Loquat is a very perishable fruit, susceptible to decay, mechanical damage, moisture and nutritional losses during its postharvest life. We tested the combined effect of temperature and sodium or potassium carbonate-bicarbonate and ammonium carbonate. The fruit was dipped in the salt solutions at variable concentrations (0.5, 1 and 2% w/v) at 25 or 45 degrees C for two minutes and than stored under shelf life conditions (25 degrees C and 70% RH). Decay, weight loss, pH, titrable acidity and sugar content were detected after twelve days. Preliminary data show that the combined treatments were effective in decay control depending on salts. Best results were obtained with 2% potassium and sodium carbonate solution at 25 degrees C. Weight losses were related to treatment temperature and salts concentrations whereas, no differences were detected in the chemical parameters compared to the control. PMID:16637201

  5. Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    NASA Astrophysics Data System (ADS)

    Ivanovic, Ruza; Gregoire, Lauren; Kageyama, Masa; Roche, Didier; Valdes, Paul; Burke, Andrea; Drummond, Rosemarie; Peltier, W. Richard; Tarasov, Lev

    2016-04-01

    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21-9 thousand years before present (ka) with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will concentrate on shorter durations around specific events to allow the more computationally expensive models to take part. Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev. Discuss., 8, 9045-9102, doi:10.5194/gmdd-8-9045-2015, 2015.

  6. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid. PMID:27101475

  7. [Effect of salicylic acid on water potential, ethylene secretion and activity of antioxidative processes in the winter wheat leaves under drought conditions].

    PubMed

    Mamenko, T P; Iaroshenko, O A

    2009-01-01

    Effect of plants treatment by salicylic acid on the water potential, ethylene emission, intensity of lipid peroxidation oxidation and enzymatic antioxidative activity in the leaves with contrasting drought-resistance of winter wheat cultivars was investigated. It is ascertain, that the treatment of plants by salicylic acid contributes to a decrease of water loss and intensity of lipid peroxidation, to an increase of ethylene synthesis and peroxidase, catalase, superoxide dismutase activity in the winter wheat leaves under drought conditions.

  8. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  9. Skin surface lipids and skin and hair coat condition in dogs fed increased total fat diets containing polyunsaturated fatty acids.

    PubMed

    Kirby, N A; Hester, S L; Rees, C A; Kennis, R A; Zoran, D L; Bauer, J E

    2009-08-01

    It is generally believed that diets containing increased amounts of polyunsaturated fatty acids (PUFA) result in improved canine skin and hair coat (SHC). However, the extent to which dietary fat amount and type play a role remains to be systematically investigated. The objective of this study was to investigate the role of both increased dietary fat amount and type on SHC assessments of dogs. Improvements of SHC conditions were investigated after feeding three diets containing increased total dietary fat (i.e. 13% total fat) for 12 weeks in relation to a lower fat acclimation diet (i.e. 9% total fat). The higher fat diets varied in polyunsaturated and saturated fat types and amounts but total fat was kept constant. Skin and hair coat assessments were performed at selected intervals by a trained group of veterinarians and graduate students. In addition, hair lipids were fractionated by thin layer chromatography after extraction of plucked hair samples. Significant improvements were found in hair coat glossiness and softness in all dogs fed the higher fat diets in relation to the acclimation diet. Improvements as a result of fat type were also seen but only at 12 weeks. A parallel finding was a marked increase in hair cholesteryl ester content determined at the end of the study at which time SHC scores were significantly improved. Skin and hair coat condition improvements may thus be related to increased cholesteryl ester deposited on the hair shaft surface when high fat diets are fed. Whereas this finding is preliminary, hair lipid analysis may be a useful, non-invasive technique with which to help assess dietary effects on canine SHC.

  10. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    PubMed

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions. PMID:26945637

  11. The effect of oxygen supply on the dual growth kinetics of Acidithiobacillus thiooxidans under acidic conditions for biogas desulfurization.

    PubMed

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-27

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%-6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration.

  12. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    PubMed Central

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  13. Theoretical study of chlordecone and surface groups interaction in an activated carbon model under acidic and neutral conditions.

    PubMed

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Enriquez-Victorero, Carlos; Montero-Alejo, Ana Lilian; Gaspard, Sarra; Jáuregui-Haza, Ulises Javier

    2016-04-01

    Activated carbons (ACs) are widely used in the purification of drinking water without almost any knowledge about the adsorption mechanisms of the persistent organic pollutants. Chlordecone (CLD, Kepone) is an organochlorinated synthetic compound that has been used mainly as agricultural insecticide. CLD has been identified and listed as a persistent organic pollutant by the Stockholm Convention. The selection of the best suited AC for this type of contaminants is mainly an empirical and costly process. A theoretical study of the influence of AC surface groups (SGs) on CLD adsorption is done in order to help understanding the process. This may provide a first selection criteria for the preparation of AC with suitable surface properties. A model of AC consisting of a seven membered ring graphene sheet (coronene) with a functional group on the edge was used to evaluate the influence of the SGs over the adsorption. Multiple Minima Hypersurface methodology (MMH) coupled with PM7 semiempirical Hamiltonian was employed in order to study the interactions of the chlordecone with SGs (hydroxyl and carboxyl) at acidic and neutral pH and different hydration conditions. Selected structures were re-optimized using CAM-B3LYP to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The deprotonated form of surface carboxyl and hydroxyl groups of AC models show the strongest interactions, suggesting a chemical adsorption. An increase in carboxylic SGs content is proposed to enhance CLD adsorption onto AC at neutral pH conditions.

  14. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition.

    PubMed

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-07-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4(+) T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4(+) T cells via the HLA class II pathway. This defect in CD4(+) T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4(+) T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II-peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4(+) T-cell recognition. Biochemical analysis showed that these molecules were greater than 30,000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47,000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.

  15. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis

    PubMed Central

    Yamamoto, Eduardo S.; Campos, Bruno L. S.; Jesus, Jéssica A.; Laurenti, Márcia D.; Ribeiro, Susan P.; Kallás, Esper G.; Rafael-Fernandes, Mariana; Santos-Gomes, Gabriela; Silva, Marcelo S.; Sessa, Deborah P.; Lago, João H. G.; Levy, Débora; Passero, Luiz F. D.

    2015-01-01

    Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 μg/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment

  16. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant.

    PubMed

    Furikado, Yuki; Nagahata, Tomomi; Okamoto, Takuya; Sugaya, Tomoaki; Iwatsuki, Satoshi; Inamo, Masahiko; Takagi, Hideo D; Odani, Akira; Ishihara, Koji

    2014-10-01

    To establish a detailed reaction mechanism for the condensation between a boronic acid, RB(OH)2, and a diol, H2L, in aqueous solution, the acid dissociation constants (Ka(BL)) of boronic acid diol esters (HBLs) were determined based on the well-established concept of conditional formation constants of metal complexes. The pKa values of HBLs were 2.30, 2.77, and 2.00 for the reaction systems, 2,4-difluorophenylboronic acid and chromotropic acid, 3-nitrophenylboronic acid and alizarin red S, and phenylboronic acid and alizarin red S, respectively. A general and precise reaction mechanism of RB(OH)2 with H2L in aqueous solution, which can serve as a universal reaction mechanism for RB(OH)2 and H2L, was proposed on the basis of (a) the relative kinetic reactivities of the RB(OH)2 and its conjugate base, that is, the boronate ion, toward H2L, and (b) the determined pKa values of HBLs. The use of the conditional formation constant, K', based on the main reaction: RB(OH)2 + H2L (K1)⇌ RB(L)(OH)(-) + H3O(+) instead of the binding constant has been proposed for the general reaction of uncomplexed boronic acid species (B') with uncomplexed diol species (L') to form boronic acid diol complex species (esters, BL') in aqueous solution at pH 5-11: B' + L' (K')⇌ BL'. The proposed reaction mechanism explains perfectly the formation of boronic acid diol ester in aqueous solution.

  17. Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum

    SciTech Connect

    David E. Cummings; Scott Fendorf; Rajesh K. Sani; Brent M. Peyton; Timothy S. Magnuson

    2007-01-01

    The potential for biological reduction of Cr(VI) under acidic conditions was evaluated with the acidophilic, facultatively metal-reducing bacterium Acidiphilium cryptum strain JF-5 to explore the role of acidophilic microorganisms in the Cr cycle in low-pH environments. An anaerobic suspension of washed A. cryptum cells rapidly reduced 50 M Cr(VI) at pH 3.2; biological reduction was detected from pH 1.7-4.7. The reduction product, confirmed by XANES analysis, was entirely Cr(III) that was associated predominantly with the cell biomass (70-80%) with the residual residing in the aqueous phase. Reduction of Cr(VI) showed a pH optimum similar to that for growth and was inhibited by 5 mM HgCl2, suggesting that the reaction was enzyme-mediated. Introduction of O2 into the reaction medium slowed the reduction rate only slightly, whereas soluble Fe(III) (as ferric sulfate) increased the rate dramatically, presumably by the shuttling of electrons from bioreduced Fe(II) to Cr(VI) in a coupled biotic-abiotic cycle. Starved cells could not reduce Cr(VI) when provided as sole electron acceptor, indicating that Cr(VI) reduction is not an energy-conserving process in A. cryptum. We speculate, rather, that Cr(VI) reduction is used here as a detoxification mechanism.

  18. Removal of chromium (VI) by acid-washed zero-valent iron under various groundwater geochemistry conditions.

    PubMed

    Lai, Keith C K; Lo, Irene M C

    2008-02-15

    The hexavalent chromium (Cr(VI)) removal capacity of acid-washed zerovalent iron (AW-Fe0) was evaluated under different groundwater geochemistry conditions through column experiments. It was found that each gram of the AW-Fe0 could remove 0.65-1.76 mg of Cr(VI) from synthetic groundwater in the absence of bicarbonate (HCO3-), magnesium and/or calcium ions. Groundwater geochemistry was found to exert various degrees of impact on Cr(VI) removal by the AW-Fe0, in which HCO3- alone gave the mildest impact whereas the copresence of calcium and HCO3- exerted the greatest impact In comparison with the unwashed Fe0, the AW-Fe0 showed a poorer Cr(VI) removal capacity and was also more susceptible to the influence of the dissolved groundwater constituents on Cr(VI) removal,thereby indicating the unsuitability of using AW-Fe0 in permeable reactive barriers for remediation of Cr(VI)-contaminated groundwater. On the AW-Fe0 surface, where the indigenous iron precipitates were almost erased, trivalent chromium including chromium (III) oxides, hydroxides, and oxyhydroxides in irregular strip, chick footmark-liked or boulder-liked forms as well as Cr(III)-Cr(VI) mixed oxides were detected.

  19. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site