Science.gov

Sample records for acidic conditions present

  1. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions (Presentation)

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  2. A maize death acid, 10-oxo-11-phytoenoic acid, is the predominant cyclopentenone signal present during multiple stress and developmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently we investigated the function of the 9-lipoxygenase (LOX) derived cyclopentenones 10-oxo-11-phytoenoic acid (10-OPEA) and 10-oxo-11-phytodienoic acid (10-OPDA) and identified their C-14 and C-12 derivatives. 10-OPEA accumulation is elicited by fungal and insect attack and acts as a strong in...

  3. [Toxocariasis under the present conditions].

    PubMed

    Uspenskiĭ, A V; Peshkov, R A; Gorokhov, V V; Gorokhova, E V

    2011-01-01

    Toxocariasis is today the most widespread zoonotic, helminthic infection in Russia and other countries of the world. A large population of Toxocara has recently inhabited the urban populations of dogs and cats. Therefore toxocariasis canis and toxocariasis cati have shifted from rural areas to cities and megalopolises where Toxocara canis infestation amounts to as much as 100%, without excluding that in the rural populations of dogs. Due to the fact that the number of dogs and cats has considerably increased (20% of adult dogs and 80% of puppies are infected with Toxocara) in our megalopolises, cities, and urban communities as in foreign countries, this substantially increases the risk of toxacariasis. From the above reasoning, environmental contamination with Toxacara eggs creates an important reservoir of infestation for humans and animals (the contamination rates in different regions of Russia ranges from 1-3 to 50-60%, with the infestation rates of 1 - 10 eggs per 100 g of soil). Human toxocariasis is polymorphic, from its subclinical course to significant organ pathology, and detectable as a manifestation of eosinophilia, fever, hepatomegaly, hyperglobulinemia, lung and central nervous system lesions, myocarditis, and skin rash. The diagnosis of toxocariasis is established by its clinical presentation and serological findings. It is important in the history that children have spent much time with dogs or cats.

  4. How does Listeria monocytogenes combat acid conditions?

    PubMed

    Smith, James L; Liu, Yanhong; Paoli, George C

    2013-03-01

    Listeria monocytogenes, a major foodborne pathogen, possesses a number of mechanisms that enable it to combat the challenges posed by acidic environments, such as that of acidic foods and the gastrointestinal tract. One mechanism employed by L. monocytogenes for survival at low pH is the adaptive acid tolerance response (ATR) in which a short adaptive period at a nonlethal pH induces metabolic changes that allow the organism to survive a lethal pH. Overcoming acid conditions by L. monocytogenes involves a variety of regulatory responses, including the LisRK 2-component regulatory system, the SOS response, components of the σ(B) regulon, changes in membrane fluidity, the F0F1-ATPase proton pump, and at least 2 enzymatic systems that regulate internal hydrogen ion concentration (glutamate decarboxylase and arginine deiminase). It is not clear if these mechanisms exert their protective effects separately or in concert, but it is probable that these mechanisms overlap. Studies using mutants indicate that the glutamate decarboxylase system can protect L. monocytogenes when the organism is present in acidic juices, yogurt, salad dressing, mayonnaise, and modified CO2 atmospheres. The glutamate decarboxylase system also has a role in protecting L. monocytogenes against the acidic environment of the stomach. There is a need to study other acid resistance mechanisms of L. monocytogenes to determine their effectiveness in protecting the organism in acidic foods or during transit through the acid stomach.

  5. Present Global Situation of Amino Acids in Industry.

    PubMed

    Tonouchi, Naoto; Ito, Hisao

    2016-11-11

    At present, amino acids are widely produced and utilized industrially. Initially, monosodium glutamate (MSG) was produced by extraction from a gluten hydrolysate. The amino acid industry started using the residual of the lysate. The discovery of the functions of amino acids has led to the expansion of their field of use. In addition to seasoning and other food use, amino acids are used in many fields such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the invention of the glutamate fermentation process, followed by the development of fermentation methods for many other amino acids, is no less important. The supply of these amino acids at a low price is very essential for their industrial use. Most amino acids are now produced by fermentation. The consumption of many amino acids such as MSG or feed-use amino acids is still rapidly increasing.

  6. The cost of proactive interference is constant across presentation conditions.

    PubMed

    Endress, Ansgar D; Siddique, Aneela

    2016-10-01

    Proactive interference (PI) severely constrains how many items people can remember. For example, Endress and Potter (2014a) presented participants with sequences of everyday objects at 250ms/picture, followed by a yes/no recognition test. They manipulated PI by either using new images on every trial in the unique condition (thus minimizing PI among items), or by re-using images from a limited pool for all trials in the repeated condition (thus maximizing PI among items). In the low-PI unique condition, the probability of remembering an item was essentially independent of the number of memory items, showing no clear memory limitations; more traditional working memory-like memory limitations appeared only in the high-PI repeated condition. Here, we ask whether the effects of PI are modulated by the availability of long-term memory (LTM) and verbal resources. Participants viewed sequences of 21 images, followed by a yes/no recognition test. Items were presented either quickly (250ms/image) or sufficiently slowly (1500ms/image) to produce LTM representations, either with or without verbal suppression. Across conditions, participants performed better in the unique than in the repeated condition, and better for slow than for fast presentations. In contrast, verbal suppression impaired performance only with slow presentations. The relative cost of PI was remarkably constant across conditions: relative to the unique condition, performance in the repeated condition was about 15% lower in all conditions. The cost of PI thus seems to be a function of the relative strength or recency of target items and interfering items, but relatively insensitive to other experimental manipulations.

  7. Investigation of Various Wind Turbine Drivetrain Condition Monitoring Techniques (Presentation)

    SciTech Connect

    Sheng, S.

    2011-08-01

    This presentation was given at the 2011 Wind Turbine Reliability Workshop sponsored by Sandia National Laboratories in Albuquerque, NM on August 2-3, 2011. It discusses work for the Gearbox Reliability Collaborative including downtime caused by turbine subsystems, annual failure frequency of turbine subsystems, cost benefits of condition monitoring (CM), the Gearbox Reliability Collaborative's condition monitoring approach and rationale, test setup, and results and observations.

  8. Wind Turbine Drivetrain Condition Monitoring - An Overview (Presentation)

    SciTech Connect

    Sheng, S.; Yang, W.

    2013-07-01

    High operation and maintenance costs still hamper the development of the wind industry despite its quick growth worldwide. To reduce unscheduled downtime and avoid catastrophic failures of wind turbines and their components have been and will be crucial to further raise the competitiveness of wind power. Condition monitoring is one of the key tools for achieving such a goal. To enhance the research and development of advanced condition monitoring techniques dedicated to wind turbines, we present an overview of wind turbine condition monitoring, discuss current practices, point out existing challenges, and suggest possible solutions.

  9. Which Dermatological Conditions Present to an Emergency Department in Australia?

    PubMed Central

    Weiland, Tracey J.; Chong, Alvin H.; Jelinek, George A.

    2014-01-01

    Background/Objectives. There is minimal data available on the types of dermatological conditions which present to tertiary emergency departments (ED). We analysed demographic and clinical features of dermatological presentations to an Australian adult ED. Methods. The St. Vincent's Hospital Melbourne (SVHM) ED database was searched for dermatological presentations between 1 January 2009 and 31 December 2011 by keywords and ICD-10 diagnosis codes. The lists were merged, and the ICD-10 codes were grouped into 55 categories for analysis. Demographic and clinical data for these presentations were then analysed. Results. 123 345 people presented to SVHM ED during the 3-year period. 4817 (3.9%) presented for a primarily dermatological complaint. The most common conditions by ICD-10 diagnosis code were cellulitis (n = 1741, 36.1%), allergy with skin involvement (n = 939, 19.5%), boils/furuncles/pilonidal sinuses (n = 526, 11.1%), eczema/dermatitis (n = 274, 5.7%), and varicella zoster infection (n = 161, 3.3%). Conclusion. The burden of dermatological disease presenting to ED is small but not insignificant. This information may assist in designing dermatological curricula for hospital clinicians and specialty training organisations as well as informing the allocation of dermatological resources to ED. PMID:24800080

  10. Challenges to Cabin Humidity Removal Presented by Intermittent Condensing Conditions

    NASA Technical Reports Server (NTRS)

    vonJouanne, Roger G.; Williams, David E.

    2007-01-01

    On-orbit temperature and humidity control (THC) is more easily accomplished when the THC hardware is either consistently dry (i.e., no humidity control is occurring), or consistently wet. The system is especially challenged when intermittent wet/dry conditions occur. The first six years of on-orbit ISS operations have revealed specific concerns within the THC system, specifically in the condensing heat exchanger and the downstream air/water separator. Failed or degraded hardware has been returned to ground and investigated. This paper presents the investigation findings, and the recommended hardware and procedural revisions to prevent and recover from the effects of intermittent condensing conditions.

  11. Extinction of conditioned inhibition through nonreinforced presentation of the inhibitor.

    PubMed

    Melchers, Klaus G; Wolff, Susann; Lachnit, Harald

    2006-08-01

    In previous studies that have tried to extinguish conditioned inhibition through nonreinforced presentations of the inhibitor, researchers have repeatedly failed to find evidence for such extinction. The present study revealed that extinction can be achieved through nonreinforcement of the inhibitor, depending on properties of the reinforcer. In a human causal learning experiment, we found complete extinction in a scenario in which the reinforcer could take on negative values. Thereby, this scenario reflected the assumed symmetrical continuum on which associative strength can vary, according to the Rescorla-Wagner theory of associative learning. In contrast to this, the inhibitory cue retained its inhibitory potential in another condition, in which the scenario did not allow negative values of the reinforcer.

  12. Congenital Uterine Arteriovenous Malformation Presenting as Postcoital bleeding: A Rare Presentation of a Rare Clinical Condition

    PubMed Central

    Agarwal, Neha; Chopra, Seema; Aggarwal, Neelam; Gorsi, Ujjwal

    2017-01-01

    Congenital uterine arteriovenous malformation (AVM) is an extremely rare condition with <100 cases documented in literature. We report multiparous women presenting to us with a history of postcoital bleed. Initial Doppler ultrasonography was consistent with features suggestive of AVM. Subsequently, computed tomography (CT) angiography confirmed the diagnosis. Embolization was chosen as the treatment because of the large extension of AVM and the risk of hemorrhage during hysterectomy. The patient was discharged in a stable condition with a plan of repeat embolization in the next setting. At 6 and 12 weeks of follow-up, she did not experience any further episodes of bleed. The purpose of this case report is to highlight the salient clinical features, diagnosis, and the management options available for this rare clinical condition.

  13. Multiple Uric Acid Bladder Stones: Clinical Presentation and Endoscopic Management

    PubMed Central

    Torricelli, Fabio Cesar Miranda; Chueh, Shih-Chieh Jeff; Shen, Shujane

    2017-01-01

    Abstract Background: Bladder urinary calculi occur in 3%–8% of men with bladder outlet obstruction, and although most of them are composed of calcium, in a few cases uric acid bladder stones are diagnosed. Case Presentation: We present clinical images and therapeutic management of a 65-year-old diabetic man with significant prostate enlargement and >30 bladder stones, the largest being 17 mm. Despite the large stone burden, the patient was managed by cystolithotripsy. Remarkably, stone composition analysis revealed 100% uric acid stone. Intraoperative and postoperative course were uneventfully. Conclusion: Uric acid bladder stone pathogenesis seems to be multifactorial with local and systemic factors contributing in different manners and even large stone burdens may be cystoscopically managed. PMID:28265592

  14. Present Status of Networking Conditions in Univ. of South Pacific

    NASA Astrophysics Data System (ADS)

    Takahashi, Fujinobu

    Three years program of Japanese Info-Communication Technology (ICT) Capacity Building Project in the University of South Pacific (USP) will terminate in June 2005. Japanese government has a plan of the new Pacific ICT Center program in USP from 2006. The author will introduce the recent status of USP networking conditions both of satellite and marine cable. The present global VLBI (and even GPS/IGS) network has a weak point of asymmetric distribution by very few number or luck of stations in the huge south Pacific/water hemisphere because of many difficulties such as narrow/poor telecommunication line. It is very important and urgent matters to enhance the space geodetic activities in USP.

  15. Simultaneous ozonation kinetics of phenolic acids present in wastewaters

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1996-12-31

    Among the several chemical processes conducted for the removal of organic matter present in wastewaters coming from some agro-industrial plants (wine distilleries, olive oil mills, etc), the oxidation by ozone has shown a great effectiveness in the destruction of specially refractory pollutants: it is demonstrated that the biodegradability of those wastewaters increases aflcer an ozonation pretreatment. Their great pollutant character is imputed to the presence of some organic compounds, like phenols and polyphenols, which are toxic and inhibit the latter biological treatments. In this research, a competitive kinetic procedure reported by Clurol and Nekouinaini is applied to determine the degradation rate constants by ozone of several phenolic acids which are present in the wastewaters from the olive oil obtaining process. The resulting kinetic expressions for the ozonation reactions are useful for the successful design and operation of ozone reactors in water and wastewaters treatment plants.

  16. Analysis and mapping of present and future drought conditions over Greek areas with different climate conditions

    NASA Astrophysics Data System (ADS)

    Paparrizos, Spyridon; Maris, Fotios; Weiler, Markus; Matzarakis, Andreas

    2016-10-01

    Estimation of drought in a certain temporal and spatial scale is crucial in climate change studies. The current study targets on three agricultural areas widespread in Greece, Ardas River Basin in Northeastern Greece, Sperchios River Basin in Central Greece, and Geropotamos River Basin in Crete Island in South Greece that are characterized by diverse climates as they are located in various regions. The objective is to assess the spatiotemporal variation of drought conditions prevailing in these areas. The Standardized Precipitation Index (SPI) was used to identify and assess the present and future drought conditions. Future simulated data were derived from a number of Regional Climatic Models (RCMs) from the ENSEMBLES European Project. The analysis was performed for the future periods of 2021-2050 and 2071-2100, implementing A1B and B1 scenarios. The spatial analysis of the drought conditions was performed using a combined downscaling technique and the Ordinary Kriging. The Mann-Kendall test was implemented for trend investigation. During both periods and scenarios, drought conditions will tend to be more severe in the upcoming years. The decrease of the SPI values in the Sperchios River Basin is expected to be the strongest, as it is the only study area that will show a negative balance (in SPI values), regarding the drought conditions. For the Ardas and the Geropotamos River Basins, a great increase of the drought conditions will occur during the 2021-2050 period, while for 2071-2100 period, the decrease will continue but it will be tempered. Nevertheless, the situation in all study areas according to the SPI classification is characterized as "Near-normal", in terms of drought conditions.

  17. Verrucous Lichen Planus: A Rare Presentation of a Common Condition

    PubMed Central

    Audhya, Moutusi; Varughese, Jenny S.; Nakhwa, Yuti C.

    2014-01-01

    Lichen planus is a chronic papulosquamous dermatoses in which both skin and mucosae are involved. There are various morphological forms of lichen planus. Hypertrophic lichen planus is one of the rare clinical variants. Herein, we report a very unusual presentation of hypertrophic lichen planus. A similar presentation has not been reported in literature yet, to the best of our knowledge. PMID:25386324

  18. Presentation of opsoclonus myoclonus ataxia syndrome with glutamic acid decarboxylase antibodies.

    PubMed

    Bhandari, Hanul Srinivas

    2012-08-08

    In this rare case, the patient presented with opsoclonus, myoclonus and ataxia. Serological and imaging studies revealed high glutamic acid decarboxylase antibody (GAD-Ab) levels. High-dose corticosteroids were of no benefit and subsequent intravenous immunoglobulin (IVIg) administration proved resolution of the condition. Levetiracetam proved useful in symptomatically controlling the myoclonus. Follow-up GAD-Ab levels were within normal limits.

  19. Systemic regulation of soybean nodulation by acidic growth conditions.

    PubMed

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  20. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  1. Conditions Presenting with Symptoms of Peripheral Arterial Disease

    PubMed Central

    Sharma, Aditya M.; Norton, Patrick T.; Zhu, Daisy

    2014-01-01

    Peripheral artery disease (PAD) is estimated to affect more than 20% of people older than 65 years. The vast majority of patients with symptoms suggestive of PAD have atherosclerosis often associated with conventional vascular risk factors such as smoking, diabetes, dyslipidemia, and inflammation. A minority of people presenting with symptoms suggesting PAD have an alternative etiology. These groups of disorders are often underdiagnosed, and if diagnosed correctly the diagnosis may be delayed. Understanding these pathologies well is important, as they can be very debilitating and optimal treatment may vary significantly. Inappropriate treatment of these disorders can lead to worsening morbidity and mortality. This article discusses the underlying causes of nonatherosclerotic PAD, including the diagnosis and treatment of these disorders. PMID:25435652

  2. [Morphological diagnosis of tuberculosis under present-day conditions].

    PubMed

    Zinserling, V A; Svistunov, V V; Karev, V E; Semenova, N Yu

    2015-01-01

    The paper presents general statistical data on morbidity and mortality rates of tuberculosis, which show positive trends in recent years, with exception of those of its concurrence with HIV infection. The tasks of the morphological diagnosis of tuberculosis are divided into 4 groups: 1) to refine approaches to detecting mycobacteria in tissues; 2) to optimize the postmortem diagnosis of tuberculosis; 3) to optimize the lifetime differential diagnosis of tuberculosis and to develop methods for predicting its course; 4) to study the pathogenesis of tuberculosis from the standpoint of modern views on an infectious process. The data suggesting that the tissue forms of mycobacteria, the types of inflammatory responses, and the specific features of the pathogenesis of tuberculosis call for further investigations are given. To establish the real role of nontuberculous mycobacteria, to study the likelihood that the patient will be superinfected with other M. tuberculosis genotypes, and to elaborate a uniform (clinical, pathogenetic, and morphological) classification of tuberculosis should be also regarded as the most important tasks in its morphological examination.

  3. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  4. Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present in Brain?*

    PubMed Central

    Ogundare, Michael; Theofilopoulos, Spyridon; Lockhart, Andrew; Hall, Leslie J.; Arenas, Ernest; Sjövall, Jan; Brenton, A. Gareth; Wang, Yuqin; Griffiths, William J.

    2010-01-01

    In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C27 and C24 intermediates of the bile acid biosynthetic pathways with structures corresponding to 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 ± 2.826 ng/ml, mean ± S.D., six subjects), 3β-hydroxycholest-5-en-26-oic acid (0.416 ± 0.193 ng/ml), 7α,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 ± 0.543 ng/ml), and 7α-hydroxy-3-oxochol-4-en-24-oic acid (0.172 ± 0.085 ng/ml), and the C26 sterol 7α-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 ± 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3β-hydroxycholest-5-en-26-oic acid and 3β,7α-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7α-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7α-Hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3β,7α-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239–248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease. PMID:19996111

  5. Influences of acidic conditions on formazan assay: a cautionary note.

    PubMed

    Johno, Hisashi; Takahashi, Shuhei; Kitamura, Masanori

    2010-11-01

    Formazan assay has been used for several decades to evaluate metabolic activity of eukaryotic and prokaryotic cells. In particular, it has been often applied for quantitative assessment of viable cells under acidic circumstances caused by, e.g., ischemia and hypoxia. However, little attention has been paid to the influence of acidic pH on formazan assays. We found that acidic culture conditions significantly affect outcomes of the assays. Absorbance of tetrazolium-formazan decreased in a pH-dependent manner without affecting cell viability. This nonspecific effect was ascribed to influences of acidic pH on the production of formazan. Replacement of culture media to fresh medium at physiologic pH partially overcame this problem. The influence of acidic culture conditions should be carefully considered when formazan assays are used for the assessment of viable cells under various experimental situations.

  6. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions

    NASA Astrophysics Data System (ADS)

    Tarasevych, Arkadii V.; Vives, Thomas; Snytnikov, Valeriy N.; Guillemin, Jean-Claude

    2017-03-01

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  7. Transfer of Asymmetry between Proteinogenic Amino Acids under Harsh Conditions.

    PubMed

    Tarasevych, Arkadii V; Vives, Thomas; Snytnikov, Valeriy N; Guillemin, Jean-Claude

    2017-03-31

    The heating above 400 °C of serine, cysteine, selenocysteine and threonine leads to a complete decomposition of the amino acids and to the formation in low yields of alanine for the three formers and of 2-aminobutyric acid for the latter. At higher temperature, this amino acid is observed only when sublimable α-alkyl-α-amino acids are present, and with an enantiomeric excess dependent on several parameters. Enantiopure or enantioenriched Ser, Cys, Sel or Thr is not able to transmit its enantiomeric excess to the amino acid formed during its decomposition. The presence during the sublimation-decomposition of enantioenriched valine or isoleucine leads to the enantioenrichment of all sublimable amino acids independently of the presence of many decomposition products coming from the unstable derivative. All these studies give information on a potentially prebiotic key-reaction of abiotic transformations between α-amino acids and their evolution to homochirality.

  8. Investigation of acyl migration in mono- and dicaffeoylquinic acids under aqueous basic, aqueous acidic, and dry roasting conditions.

    PubMed

    Deshpande, Sagar; Jaiswal, Rakesh; Matei, Marius Febi; Kuhnert, Nikolai

    2014-09-17

    Acyl migration in chlorogenic acids describes the process of migration of cinnamoyl moieties from one quinic acid alcohol group to another, thus interconverting chlorogenic acid regioisomers. It therefore constitutes a special case of transesterification reaction. Acyl migration constitutes an important reaction pathway in both coffee roasting and brewing, altering the structure of chlorogenic acid initially present in the green coffee bean. In this contribution we describe detailed and comprehensive mechanistic studies comparing inter- and intramolecular acyl migration involving the seven most common chlorogenic acids in coffee. We employe aqueous acidic and basic conditions mimicking the brewing of coffee along with dry roasting conditions. We show that under aqueous basic conditions intramolecular acyl migration is fully reversible with basic hydrolysis competing with acyl migration. 3-Caffeoylquinic acid was shown to be most labile to basic hydrolysis. We additionally show that the acyl migration process is strongly pH dependent with increased transesterification taking place at basic pH. Under dry roasting conditions acyl migration competes with dehydration to form lactones. We argue that acyl migration precedes lactonization, with 3-caffeoylquinic acid lactone being the predominant product.

  9. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  10. Gene Expressions for Signal Transduction under Acidic Conditions

    PubMed Central

    Fukamachi, Toshihiko; Ikeda, Syunsuke; Wang, Xin; Saito, Hiromi; Tagawa, Masatoshi; Kobayashi, Hiroshi

    2013-01-01

    Although it is now well known that some diseased areas, such as cancer nests, inflammation loci, and infarction areas, are acidified, little is known about cellular signal transduction, gene expression, and cellular functions under acidic conditions. Our group showed that different signal proteins were activated under acidic conditions compared with those observed in a typical medium of around pH 7.4 that has been used until now. Investigations of gene expression under acidic conditions may be crucial to our understanding of signal transduction in acidic diseased areas. In this study, we investigated gene expression in mesothelioma cells cultured at an acidic pH using a DNA microarray technique. After 24 h culture at pH 6.7, expressions of 379 genes were increased more than twofold compared with those in cells cultured at pH 7.5. Genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors numbered 35, 32, and 17 among the 379 genes, respectively. Since the functions of 78 genes are unknown, it can be argued that cells may have other genes for signaling under acidic conditions. The expressions of 37 of the 379 genes were observed to increase after as little as 2 h. After 24 h culture at pH 6.7, expressions of 412 genes were repressed more than twofold compared with those in cells cultured at pH 7.5, and the 412 genes contained 35, 76, and 7 genes encoding receptors, signal proteins including transcription factors, and cytokines including growth factors, respectively. These results suggest that the signal pathways in acidic diseased areas are different, at least in part, from those examined with cells cultured at a pH of around 7.4. PMID:24705103

  11. Growth Conditions To Reduce Oxalic Acid Content of Spinach

    NASA Technical Reports Server (NTRS)

    Johnson-Rutzke, Corinne

    2003-01-01

    A controlled-environment agricultural (CEA) technique to increase the nutritive value of spinach has been developed. This technique makes it possible to reduce the concentration of oxalic acid in spinach leaves. It is desirable to reduce the oxalic acid content because oxalic acid acts as an anti-nutritive calcium-binding component. More than 30 years ago, an enzyme (an oxidase) that breaks down oxalic acid into CO2 and H2O2 was discovered and found to be naturally present in spinach leaves. However, nitrate, which can also be present because of the use of common nitratebased fertilizers, inactivates the enzyme. In the CEA technique, one cuts off the supply of nitrate and keeps the spinach plants cool while providing sufficient oxygen. This technique provides the precise environment that enables the enzyme to naturally break down oxalate. The result of application of this technique is that the oxalate content is reduced by 2/3 in one week.

  12. Kinetics of Non-Catalytic Esterification of Free Fatty Acids Present in Jatropha Oil.

    PubMed

    Prasanna Rani, Karna Narayana; Ramana Neeharika, Tulasi Sri Venkata; Kumar, Thella Prathap; Satyavathi, Bankupalli; Sailu, Chintha

    2016-05-01

    Non-catalytic esterfication of free fatty acids (FFA) present in vegetable oils is an alternative pretreatment process for the biodiesel production. Biodiesel, consists of long-chain fatty acid methyl esters (FAME) and is obtained from renewable sources such as vegetable oils or animal fat. This study presents kinetics of thermal esterification of free fatty acids present in jatropha oil with methanol. The effect of process parameters like reaction time (1-5 h), temperature (170-190°C) and oil to methanol ratio (1:3-1:5) at constant pressure was investigated. The optimal conditions were found to be oil to methanol ratio of 1:4, 190°C, at 27.1 bar and 5 h which gave a maximum conversion of 95.1%. A second order kinetic model for both forward and backward reactions was proposed to study the reaction system. A good agreement was observed between the experimental data and the model values. The activation energy for forward reaction and the heat of reaction were found to be 36.364 Kcal/mol and 1.74 Kcal/mol respectively.

  13. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  14. Hydrothermal synthesis of hollow silica spheres under acidic conditions.

    PubMed

    Yu, Qiyu; Wang, Pengpeng; Hu, Shi; Hui, Junfeng; Zhuang, Jing; Wang, Xun

    2011-06-07

    It is well-known that silica can be etched in alkaline media or in a unique hydrofluoric acid (HF) solution, which is widely used to prepare various kinds of hollow nanostructures (including silica hollow structures) via silica-templating methods. In our experiments, we found that stöber silica spheres could be etched in generic acidic media in a well-controlled way under hydrothermal conditions, forming well-defined hollow/rattle-type silica spheres. Furthermore, some salts such as NaCl and Na(2)SO(4) were found to be favorable for the formation of hollow/rattle-type silica spheres.

  15. Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions

    NASA Astrophysics Data System (ADS)

    Al-Kindi, Suad S.; Pope, Francis D.; Beddows, David C.; Bloss, William J.; Harrison, Roy M.

    2016-12-01

    A chemical reaction chamber system has been developed for the processing of oleic acid aerosol particles with ozone under two relative humidity conditions: dry and humidified to 65 %. The apparatus consists of an aerosol flow tube, in which the ozonolysis occurs, coupled to a scanning mobility particle sizer (SMPS) and an aerosol time-of-flight mass spectrometer (ATOFMS) which measure the evolving particle size and composition. Under both relative humidity conditions, ozonolysis results in a significant decrease in particle size and mass which is consistent with the formation of volatile products that partition from the particle to the gas phase. Mass spectra derived from the ATOFMS reveal the presence of the typically observed reaction products: azelaic acid, nonanal, oxononanoic acid and nonanoic acid, as well as a range of higher molecular weight products deriving from the reactions of reaction intermediates with oleic acid and its oxidation products. These include octanoic acid and 9- and 10-oxooctadecanoic acid, as well as products of considerably higher molecular weight. Quantitative evaluation of product yields with the ATOFMS shows a marked dependence upon both particle size association (from 0.3 to 2.1 µm diameter) and relative humidity. Under both relative humidity conditions, the percentage residual of oleic acid increases with increasing particle size and the main lower molecular weight products are nonanal and oxononanoic acid. Under dry conditions, the percentage of higher molecular weight products increases with increasing particle size due to the poorer internal mixing of the larger particles. Under humidified conditions, the percentage of unreacted oleic acid is greater, except in the smallest particle fraction, with little formation of high molecular weight products relative to the dry particles. It is postulated that water reacts with reactive intermediates, competing with the processes which produce high molecular weight products. Whilst the

  16. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions.

    PubMed

    Ohno, Masaki; Ito, Masataka; Ohkura, Ryouichi; Mino A, Esteban R; Kose, Tomohiro; Okuda, Tetsuji; Nakai, Satoshi; Kawata, Kuniaki; Nishijima, Wataru

    2014-03-15

    The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe(3+) ion. Although Fe(3+) ion is consumed and is transformed to Fe(2+) ion by photochemical decomposition of PFOA and its intermediates, the produced Fe(2+) ion will change to Fe(3+) ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH)(2+). At pH 3.7 or higher pH, Fe(3+) ion will only be produced from the oxidation of Fe(2+) ion by hydroxyl radical produced by Fe(OH)(2+) under UV irradiation. These different mechanisms of Fe(3+) regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  17. Smectite Formation from Basaltic Glass Under Acidic Conditions on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2015-01-01

    Massive deposits of phyllosilicates of the smectite group, including Mg/Fe-smectite, have been identified in Mars's ancient Noachian terrain. The observed smectite is hypothesized to form through aqueous alteration of basaltic crust under neutral to alkaline pH conditions. These pH conditions and the presence of a CO2-rich atmosphere suggested for ancient Mars were favorable for the formation of large carbonate deposits. However, the detection of large-scale carbonate deposits is limited on Mars. We hypothesized that smectite deposits may have formed under acidic conditions that prevented carbonate precipitation. In this work we investigated formation of saponite at a pH of approximately 4 from Mars-analogue synthetic Adirondack basaltic glass of composition similar to Adirondack class rocks located at Gusev crater. Hydrothermal (200º Centigrade) 14 day experiments were performed with and without 10 millimoles Fe(II) or Mg under anoxic condition [hereafter denoted as anoxic_Fe, anoxic_Mg and anoxic (no addition of Fe(II) or Mg)] and under oxic condition [hereafter denoted as oxic (no addition of Fe(II) or Mg)]. Characterization and formation conditions of the synthesized saponite provided insight into the possible geochemical conditions required for saponite formation on Mars.

  18. Carboxymethylcellulose Obtained by Ethanol/Water Organosolv Process Under Acid Conditions

    NASA Astrophysics Data System (ADS)

    Ruzene, Denise S.; Gonçalves, Adilson R.; Teixeira, José A.; Pessoa de Amorim, Maria T.

    Sugar cane bagasse pulps were obtained by ethanol/water organosolv process under acid and alkaline conditions. The best condition of acid pulping for the sugarcane bagasse was 0.02 mol/L sulfuric acid at 160°C, for 1h, whereas the best condition for alkaline pulping was 5% sodium hydroxide (base pulp) at 160°C, for 3h. For the residual lignin removal, the acid and alkaline pulps were submitted to a chemical bleaching using sodium chlorite. Pulps under acid and alkaline conditions bleached with sodium chlorite presented viscosities of 3.6 and 7.8 mPas, respectively, and μ-kappa numbers of 1.1 and 2.4, respectively. The pulp under acid condition, bleached with sodium chlorite was used to obtain carboxymethylcellulose (CMC). CMC yield was 35% (pulp based), showing mass gain after the carboxymethylation reaction corresponding to 23.6% of substitution or 0.70 groups-CH2COONa per unit of glucose residue. The infrared spectra showed the CMC characteristic bands and by the infrared technique it was possible to obtain a substitution degree (0.63), similar to the substitution degree calculated by mass gain (0.70).

  19. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis.

    PubMed

    Van den Bossche, Lien; Borsboom, Daniel; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Devisscher, Lindsey; Hindryckx, Pieter; De Vos, Martine; Laukens, Debby

    2017-02-06

    Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNF(ΔARE/WT) mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNF(ΔARE/WT) mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNF(ΔARE/WT) mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.Laboratory Investigation advance online publication, 6 February 2017; doi:10

  20. Anaerobic conditions improve germination of a gibberellic acid deficient rice

    NASA Technical Reports Server (NTRS)

    Frantz, Jonathan M.; Bugbee, Bruce

    2002-01-01

    Dwarf plants are useful in research because multiple plants can be grown in a small area. Rice (Oryza sativa L.) is especially important since its relatively simple genome has recently been sequenced. We are characterizing a gibberellic acid (GA) mutant of rice (japonica cv 'Shiokari,' line N-71) that is extremely dwarf (20 cm tall). Unfortunately, this GA mutation is associated with poor germination (70%) under aerobic conditions. Neither exogenous GA nor a dormancy-breaking heat treatment improved germination. However, 95% germination was achieved by germinating the seeds anaerobically, either in a pure N2 environment or submerged in unstirred tap water. The anaerobic conditions appear to break a mild post-harvest dormancy in this rice cultivar. Copyright 2002 Crop Science Society of America.

  1. Kinetics of the reaction between ozone and phenolic acids present in agro-industrial wastewaters.

    PubMed

    Beltran-Heredia, J; Torregrosa, J; Dominguez, J R; Peres, J A

    2001-03-01

    The kinetics of the ozonation of three phenolic acids is investigated from ozone absorption experiments in a semi-continuous reactor. After the evaluation of stoichiometric ratios for the individual reactions between ozone and each phenolic acid, the oxidation of p-hydroxybenzoic acid by ozone is performed in a first stage. The influence of the operating variables on the degradation process is established, and the application of a mass transfer with chemical reaction model based on the film theory leads to the determination of the reaction orders and kinetic rate constants. The experimental absorption rates obtained agree well with those calculated theoretically. In the second stage, a mixture of ferulic acid (4-hydroxy-3-methoxycinnamic acid), beta-resorcylic acid (2,4-dihydroxybenzoic acid) and p-hydroxybenzoic acid is ozonated under different experimental conditions. The kinetic study is performed by means of a competitive method that takes p-hydroxybenzoic acid as reference compound. The application of this model allows to determine the kinetic rate constants for each compound, which are correlated as a function of pH and temperature. The results obtained support that the kinetic regime of absorption is fast and pseudo-first order with respect to ozone, a condition required by the competitive method used.

  2. Conditioned Taste Aversion Is Enhanced When the Unconditioned Stimulus Is Presented in a Different Context

    ERIC Educational Resources Information Center

    Ishii, Kiyoshi; Iguchi, Yoshio; Fukumoto, Kazuya; Nakayasu, Tomohiro

    2008-01-01

    Using a conditioned taste aversion procedure with rats as the subjects, two experiments examined the effect of presenting a conditioned stimulus (CS saccharin solution) in one context followed by an unconditioned stimulus (US LiCl) in a different context. Experiment 1 showed that animals which received the above-mentioned procedure (Group D)…

  3. Carboxylic Acids as Indicators of Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner N. R.; Chang, Sherwood (Technical Monitor)

    1995-01-01

    Alpha-hydroxy and alpha-amino carboxylic acids found on the Murchison meteorite are deuterium enriched. It is postulated that they arose from a common interstellar scurce: the reaction of carbonyl compounds in an aqueous mixture containing HCN and NH3. Carbonyl compounds react with HCN to form alpha-hydroxy nitriles, RR'CO + HCN right and left arrow RR'C(OH)CN. If ammonia is also present, the alpha-hydroxy nitriles will exist in equilibrium with the alpha-amino nitriles, RR'C(OH)CN + NH3 right and left arrow - RRCNH2CN + H2O. Both nitrites are hydrolyzed by water to form carboxylic acids: RR'C(OH)CN + H2O yields RR'C(OH)CO2H and RR'C(NH2)CN + H2O yields RR'C(NH2)CO2H.

  4. Acid-sensing ion channels in pathological conditions

    PubMed Central

    Chu, Xiang-Ping; Xiong, Zhi-Gang

    2013-01-01

    Acid-sensing ion channels (ASICs), a novel family of proton-gated amiloride-sensitive cation channels, are expressed primarily in neurons of peripheral sensory and central nervous systems. Recent studies have shown that activation of ASICs, particularly the ASIC1a channels, plays a critical role in neuronal injury associated with neurological disorders such as brain ischemia, multiple sclerosis, and spinal cord injury, etc. In normal conditions in vitro, ASIC1a channels desensitize rapidly in the presence of a continuous acidosis or following a pre-exposure to minor pH drop, raising doubt for their contributions to the acidosis-mediated neuronal injury. It is now known that the properties of ASICs can be dramatically modulated by signaling molecules or biochemical changes associated with pathological conditions. Modulation of ASICs by these molecules can lead to dramatically enhanced and/or prolonged activities of these channels thus promoting their pathological functions. Understanding of how ASICs behave in pathological conditions may help define new strategies for the treatment and/or prevention of neuronal injury associated with various neurological disorders. PMID:23224900

  5. Investigating the photostability of carboxylic acids exposed to Mars surface ultraviolet radiation conditions.

    PubMed

    Stalport, F; Coll, P; Szopa, C; Cottin, H; Raulin, F

    2009-01-01

    The detection and identification of organic molecules on Mars are of primary importance to establish the existence of a possible ancient prebiotic chemistry or even biological activity. The harsh environmental conditions at the surface of Mars could explain why the Viking probes-the only efforts, to date, to search for organics on Mars-detected no organic matter. To investigate the nature, abundance, and stability of organic molecules that could survive such environmental conditions, we developed a series of experiments that simulate martian surface environmental conditions. Here, we present results with regard to the impact of solar UV radiation on various carboxylic acids, such as mellitic acid, which are of astrobiological interest to the study of Mars. Our results show that at least one carboxylic acid, mellitic acid, could produce a resistant compound-benzenehexacarboxylic acid-trianhydride (C(12)O(9))-when exposed to martian surface radiation conditions. The formation of such products could contribute to the presence of organic matter in the martian regolith, which should be considered a primary target for in situ molecular analyses during future surface missions.

  6. Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions.

    PubMed

    Dine, Tharwat Mohy El; Evans, David; Rouden, Jacques; Blanchet, Jérôme

    2016-04-18

    A highly efficient and mild transamidation of amides with amines co-catalysed by borinic acid and acetic acid has been reported. A wide range of functionalised formamides was synthesized in excellent yields, including important chiral α-amino acid derivatives, with minor racemisation being observed. Experiments suggested that the reaction rely on a cooperative catalysis involving an enhanced boron-derived Lewis acidity rather than an improved Brønsted acidity of acetic acid.

  7. Batch salicylic acid nitration by nitric acid/acetic acid mixture under isothermal, isoperibolic and adiabatic conditions.

    PubMed

    Andreozzi, R; Canterino, M; Caprio, V; Di Somma, I; Sanchirico, R

    2006-12-01

    Runaway phenomena and thermal explosions can originate during the nitration of salicylic acid by means of a nitric acid/acetic acid mixture when the thermal control is lost, mainly as a result of the formation and thermal decomposition of picric acid. The prediction of the behaviour of this system is thus of great importance in view of possible industrial applications and the need to avoid the occurrence of unwanted dangerous events. During a previous investigation a model was developed to simulate its behaviour when the starting concentration of the substrate is too low, thus, preventing the precipitation of poor soluble intermediates. In this work this model is extended to deal with more concentrated systems even in case of a solid phase separating during the process. To this purpose the previously assessed dependence of the solubility of 3-nitro and 5-nitrosalicylic acids upon temperature and nitric acid concentration is included in the model. It is assumed that when 3-nitro and 5-nitrosalicylic acids are partially suspended in the reacting medium a kinetic regime of "dissolution with reaction" is established; that is, the redissolution of these species is a fast process compared to the successive nitration to give dinitroderivatives. Good results are obtained in the comparison of the experimental data with those calculated both in isoperibolic and adiabatic conditions when the revised model is used.

  8. Relationships among skin conditions, mood, and polyunsaturated fatty acids of RBCs in healthy women.

    PubMed

    Hamazaki-Fujita, Nina; Itomura, Miho; Hamazaki, Kei; Tohno, Hiromi; Yomoda, Satoshi; Terashima, Yoshihiro; Hamazaki, Tomohito

    2012-01-01

    Little is known about nonpathological facial skin problems at present. The aim of the present study was to investigate the relationships among facial skin conditions, mood, and the fatty acid composition of red blood cells (RBCs) in women. One hundred and thirty-two apparently healthy Japanese women aged between 20 and 60 years were recruited. Facial skin conditions were analyzed using a Robo Skin Analyzer, and the RBC fatty acid composition was also determined. Questionnaires concerning mood were administered. Forehead pigmentation was more mood-dependent (in 20s group) and less arachidonic acid (AA)-dependent (in all participants) than that in other areas of the face. Actually there was no correlation in pigmentation between the forehead and other areas of the face when adjusted for age, smoking, and drinking. Skin conditions were adversely correlated with a negative mood. α-Linolenic acid concentrations were negatively correlated with negative mood scores. Pigmentation characteristics in the forehead were independent from other areas of the face. Negative mood and AA were adversely correlated with skin conditions.

  9. Determination of the D and L isomers of some protein amino acids present in soils

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.; Cheng, C.-N.; Cronin, S. E.

    1977-01-01

    The D and L isomers of some protein amino acids present in soils were measured by using a gas chromatographic technique. The results of two processing procedures were compared to determine the better method. Results of the comparison indicated that the determination of D and L percentages requires amino acid purification if one is to obtain accurate data. It was found that very significant amounts of D-alanine, D-aspartic acid, and D-glutamic acid were present in the contemporary soils studied. Valine, isoleucine, leucine, proline, and phenylalanine generally contained only a trace to very small amounts of the D isomer. It is probable that the D-amino acids from the alanine, aspartic, and glutamic acids are contributed to the soil primarily via microorganisms. The finding of very significant quantities of some D-amino acids (about 5-16%) in present-day soils may alert some investigators of geological sediments to a possible problem in using amino acid racemization as an age-dating technique.

  10. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions.

    PubMed

    Hori, Katsuhito; Hori-Koriyama, Natsuko; Tsumura, Kazunobu; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-08-01

    Chloropropanol fatty acid esters (CPFAEs) are well-known contaminants in refined oils and fats, and several research groups have studied their formation. However, the results obtained in these studies were not satisfactory because the CPFAEs were not analyzed comprehensively. Thus, in the present study, a comprehensive analysis was performed to obtain new details about CPFAE formation. Each lipid (monopalmitin, dipalmitin, tripalmitin, monoolein, diolein, triolein, and crude palm oil) was heated at 250°C for 90 min, and the CPFAEs were analyzed using supercritical fluid chromatography/tandem mass spectrometry. It was found that CP fatty acid monoesters were formed from monoacylglycerols and diacylglycerols after heating in the presence of a chlorine compound. In addition, CP fatty acid diesters were formed from diacylglycerols and triacylglycerols under the same conditions. In the case of crude palm oil, only CP fatty acid diesters were formed. Therefore, these results indicated that CPFAEs in refined palm oil were formed mainly from triacylglycerols.

  11. A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism.

    PubMed

    Cabruja, Matías; Mondino, Sonia; Tsai, Yi Ting; Lara, Julia; Gramajo, Hugo; Gago, Gabriela

    2017-02-01

    Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria.

  12. Change of pH during excess sludge fermentation under alkaline, acidic and neutral conditions.

    PubMed

    Yuan, Yue; Peng, Yongzhen; Liu, Ye; Jin, Baodan; Wang, Bo; Wang, Shuying

    2014-12-01

    The change in pH during excess sludge (ES) fermentation of varying sludge concentrations was investigated in a series of reactors at alkaline, acidic, and neutral pHs. The results showed that the changes were significantly affected by fermentative conditions. Under different conditions, pH exhibited changing profiles. When ES was fermented under alkaline conditions, pH decreased in a range of (10±1). At the beginning of alkaline fermentation, pH dropped significantly, at intervals of 4h, 4h, and 5h with sludge concentrations of 8665.6mg/L, 6498.8mg/L, and 4332.5mg/L, then it would become moderate. However, under acidic conditions, pH increased from 4 to 5. Finally, under neutral conditions pH exhibited a decrease then an increase throughout entire fermentation process. Further study showed short-chain fatty acids (SCFAs), ammonia nitrogen and cations contributed to pH change under various fermentation conditions. This study presents a novel strategy based on pH change to predict whether SCFAs reach their stable stage.

  13. Nutrient dynamics in the lower Mississippi river floodplain: Comparing present and historic hydrologic conditions

    USGS Publications Warehouse

    Schramm, H.L.; Cox, M.S.; Tietjen, T.E.; Ezell, A.W.

    2009-01-01

    Alterations to the lower Mississippi River-floodplain ecosystem to facilitate commercial navigation and to reduce flooding of agricultural lands and communities in the historic floodplain have changed the hydrologic regime. As a result, the flood pulse usually has a lower water level, is of shorter duration, has colder water temperatures, and a smaller area of floodplain is inundated. Using average hydrologic conditions and water temperatures, we used established nitrogen and phosphorus processes in soils, an aquatic ecosystem model, and fish bioenergetic models to provide approximations of nitrogen and phosphorus flux in Mississippi River flood waters for the present conditions of a 2-month (mid-March to mid-May) flood pulse and for a 3-month (mid-March to mid-June), historic flood pulse. We estimated that the soils and aquatic biota can remove or sequester 542 and 976 kg nitrogen ha-1 during the present and historic hydrologic conditions, respectively. Phosphorus, on the other hand, will be added to the water largely as a result of anaerobic soil conditions but moderated by biological uptake by aquatic biota during both present and historic hydrologic conditions. The floodplain and associated water bodies may provide an important management opportunity for reducing downstream transport of nitrogen in Mississippi River waters. ?? 2009, The Society of Wetland Scientists.

  14. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  15. Formation of diphenylthioarsinic acid from diphenylarsinic acid under anaerobic sulfate-reducing soil conditions.

    PubMed

    Hisatomi, Shihoko; Guan, Ling; Nakajima, Mami; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2013-11-15

    Diphenylarsinic acid (DPAA) is a toxic phenylarsenical compound often found around sites contaminated with phenylarsenic chemical warfare agents, diphenylcyanoarsine or diphenylchloroarsine, which were buried in soil after the World Wars. This research concerns the elucidation of the chemical structure of an arsenic metabolite transformed from DPAA under anaerobic sulfate-reducing soil conditions. In LC/ICP-MS analysis, the retention time of the metabolite was identical to that of a major phenylarsenical compound synthesized by chemical reaction of DPAA and hydrogen sulfide. Moreover the mass spectra for the two compounds measured using LC/TOF-MS were similar. Subsequent high resolution mass spectral analysis indicated that two major ions at m/z 261 and 279, observed on both mass spectra, were attributable to C12H10AsS and C12H12AsSO, respectively. These findings strongly suggest that the latter ion is the molecular-related ion ([M+H](+)) of diphenylthioarsinic acid (DPTA; (C6H5)2AsS(OH)) and the former ion is its dehydrated fragment. Thus, our results reveal that DPAA can be transformed to DPTA, as a major metabolite, under sulfate-reducing soil conditions. Moreover, formation of diphenyldithioarsinic acid and subsequent dimerization were predicted by the chemical reaction analysis of DPAA with hydrogen sulfide. This is the first report to elucidate the occurrence of DPAA-thionation in an anaerobic soil.

  16. Education and the Economic Condition of Hispanics in the United States: Background Tables for NCREST Presentation.

    ERIC Educational Resources Information Center

    Rivera-Batiz, Francisco L.

    This document consists of 15 data tables, without accompanying text, for a National Center for Restructuring Education, Schools, and Teaching (NCREST) presentation on the education and economic condition of Hispanic Americans. Each table contains a source note. The following are the table titles: (1) "Resident Population of the United States,…

  17. Present conditions on the dissemination of Japanese scientific and technical information to the U.S.

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi; Hasegawa, Tomohiko

    Present conditions concerning distribution of Japanese scientific and technical information to the U.S. are surveyed for promoting international distribution of it. The investigation, focusing on Japanese gray literature, is carried out into distribution to foreign countries, utilization/demand/difficulty to obtain in the U.S., and etc., through interviews and questionnaire surveys to researchers and librarians in Japan and the U.S. It is pointed out the needs to improve accessibility for Japanese technical reports, doctral dissertations, and technical bulletins/newsletters, and necessity to arrange conditions of distribution to the U.S. by increasing directory information and reducing language barrier between both countries.

  18. HF acid blends based on formation conditions eliminate precipitation problems

    SciTech Connect

    Gdanski, R.; Shuchart, C.

    1997-03-01

    Formulating HCl-HF acid blends based on the mineralogy and temperature of a formation can increase the success of hydrofluoric acid (HF) treatments. Sodium and potassium in the structures of formation minerals can cause precipitation and matrix plugging problems during acidizing. Slight modifications of the acid blend used in the treatment can help eliminate fluosilicate precipitation. Researchers recently conducted tests to determine how acid blends react in different formations under varying temperatures. The results of the tests indicate that the minimum HCl:HF ratio in an acid blend is 6-to-1, and the optimum ratio is 9-to-1. Regular mud acid (12% HCl-3% HF) has been used successfully for years to enhance production in sandstone formations. By the 1980s, operators began to vary the concentration of HF and HCl acids to solve excessive sanding problems in sandstone. The paper discusses treatment problems, formation characteristics, alumino-silicate scaling, research results, brine compatibility, optimum treatment, and acid volume guidelines.

  19. Prebiotic Nitrogen Fixation by FeS Reduction of Nitrite Under Acidic Conditions

    NASA Technical Reports Server (NTRS)

    Summers, David P.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Theories for the origin of life require the availability of reduced nitrogen for the formation of such species as amino acid and nucleic acids. In a strongly reducing atmosphere, compounds essential to the chemical evolution of life, such as amino acids, can form by reactions between HCN, NH3, and carbonyl compounds produced in spark discharges. However, under non-reducing atmospheres, electric discharges produced NO rather than HCN or NH3. This raises the questions of; how ammonia can be formed under a neutral atmosphere, and what conditions are needed such formation to occur? On possibility is the conversion of NO into nitric and nitrous acids (through HNO) and rained into the oceans. The reduction of nitrite by aqueous Fe(II) (6 Fe(+2) + 7 H(+) + NO2(-) yields 6 Fe(III) + 2 H2O + NH3) such as was present on the early Earth could then have produced ammonia. However, this reaction does not proceed at pHs less than 7.3. An alternative is reduction by other forms of Fe(II), such as FeS. We will present results that show that FeS can reduce nitrite to ammonia at pHs as low as pH 5 under a variety of conditions.

  20. Oxidation of dissolved iron under warmer, wetter conditions on Mars: Transitions to present-day arid environments

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The copious deposits of ferric-iron assemblages littering the surface of bright regions of Mars indicate that efficient oxidative weathering reactions have taken place during the evolution of the planet. Because the kinetics of atmosphere-surface (gas-solid) reactions are considerably slower than chemical weathering reactions involving an aqueous medium, most of the oxidation products now present in the martian regolith probably formed when groundwater flowed near the surface. This paper examines how chemical weathering reactions were effected by climatic variations when warm, wet environments became arid on Mars. Analogies are drawn with hydrogeochemical and weathering environments on the Australian continent where present-day oxidation of iron is occurring in acidic ground water under arid conditions.

  1. Heterogeneous photocatalytic degradation of gallic acid under different experimental conditions.

    PubMed

    Quici, Natalia; Litter, Marta I

    2009-07-01

    UV/TiO(2)-heterogeneous photocatalysis was tested as a process to degrade gallic acid (Gal) in oxygenated solutions at pH 3. In the absence of oxidants other than oxygen, decay followed a zero order rate at different concentrations and was slow at concentrations higher than 0.5 mM. Addition of Fe(3+), H(2)O(2) and the combination Fe(3+)/H(2)O(2) improved Gal degradation. In the absence of H(2)O(2), an optimal Fe : Gal molar ratio of 0.33 : 1 was found for the photocatalytic decay, beyond which addition of Fe(3+) was detrimental and even worse in comparison with the system in the absence of Fe(3+). TiO(2) addition was beneficial compared with the same system in the absence of the photocatalyst if Fe(3+) was added at low concentration (0.33 : 1 Fe : Gal molar ratio), while at high concentration (1 : 1 Fe : Gal molar ratio) TiO(2) did not exert any significant effect. H(2)O(2) addition (1 : 0.33 Gal : H(2)O(2) molar ratio, absence of Fe(iii)) also enhanced the heterogeneous photocatalytic reaction. Simultaneous addition of Fe(3+) and H(2)O(2) was more effective than the addition of the separate oxidants. This system was compared with Fenton and photo-Fenton systems. At low H(2)O(2) concentration (0.33 : 1 : 0.2 Fe : Gal : H(2)O(2) molar ratio), the presence of TiO(2) also enhanced the reaction. The influence of the thermal charge transfer reaction between Gal and Fe(iii), which leads to an important Gal depletion in the dark with formation of quinones, was analysed. The mechanisms taking place in these complex systems are proposed, paying particular attention to the important charge transfer reaction of the Fe(iii)-Gal complex operative in dark conditions.

  2. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  3. EFFECTIVE ACIDITY CONSTANT BEHAVIOR NEAR ZERO CHARGE CONDITIONS

    EPA Science Inventory

    Surface site (>SOH group) acidity reactions require expressions of the form: Ka = [>SOHn-1(z-1)]aH+EXP(-DG/RT)/[>SOHnz] (where all variables have their usual meaning). One can rearrange this expression to generate an effective acidity constant historically defined as: Qa = Ka...

  4. Survival of gas phase amino acids and nucleobases in space radiation conditions

    NASA Astrophysics Data System (ADS)

    Pilling, S.; Andrade, D. P. P.; de Castilho, R. B.; Cavasso-Filho, R. L.; Lago, A. F.; Coutinho, L. H.; de Souza, G. G. B.; Boechat-Roberty, H. M.; de Brito, A. Naves

    2008-10-01

    We present experimental studies on the photoionization and photodissociation processes (photodestruction) of gaseous amino acids and nucleobases in interstellar and interpla-netary radiation analogs conditions. The measurements have been undertaken at the Brazilian Synchrotron Light Laboratory (LNLS), employing vacuum ultraviolet (VUV) and soft X-ray photons. The experimental set up basically consists of a time-of-flight mass spectrometer kept under high vacuum conditions. Mass spectra were obtained using a photoelectron photoion coincidence technique. We have shown that the amino acids are effectively more destroyed (up to 70 80%) by the stellar radiation than the nucleobases, mainly in the VUV. Since polycyclic aromatic hydrocarbons have the same survival capability and seem to be ubiquitous in the ISM, it is not unreasonable to predict that nucleobases could survive in the interstellar medium and/or in comets, even as a stable cation.

  5. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    PubMed

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values

  6. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-05

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics.

  7. Changes of nucleic acids of wheat seedlings under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Sytnyk, K. M.; Musatenko, L. I.

    1983-01-01

    The effects of space flight on the growth of wheat seedlings and their nucleic acid content were studied. It was shown that both space and ground seedlings have almost the same appearance, dry weight and nucleic acid content in the root, coleoptile and leaves. The only difference found is in the RNA and DNA content, which is twice as much in the ground seedling apices as in the space-grown seedlings.

  8. Nitric acid uptake by sulfuric acid solutions under stratospheric conditions - Determination of Henry's Law solubility

    NASA Technical Reports Server (NTRS)

    Reihs, Christa M.; Golden, David M.; Tolbert, Margaret A.

    1990-01-01

    The uptake of nitric acid by sulfuric acid solutions representative of stratospheric particulate at low temperatures was measured to determine the solubility of nitric acid in sulfuric acid solutions as a function of H2SO4 concentration and solution temperature. Solubilities are reported for sulfuric acid solutions ranging from 58 to 87 wt pct H2SO4 over a temperature range from 188 to 240 K, showing that, in general, the solubility of nitric acid increases with decreasing sulfuric acid concentration and with decreasing temperature. The measured solubilities indicate that nitric acid in the global stratosphere will be found predominantly in the gas phase.

  9. The savant syndrome: an extraordinary condition. A synopsis: past, present, future

    PubMed Central

    Treffert, Darold A.

    2009-01-01

    Savant syndrome is a rare, but extraordinary, condition in which persons with serious mental disabilities, including autistic disorder, have some ‘island of genius’ which stands in marked, incongruous contrast to overall handicap. As many as one in 10 persons with autistic disorder have such remarkable abilities in varying degrees, although savant syndrome occurs in other developmental disabilities or in other types of central nervous system injury or disease as well. Whatever the particular savant skill, it is always linked to massive memory. This paper presents a brief review of the phenomenology of savant skills, the history of the concept and implications for education and future research. PMID:19528017

  10. Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli.

    PubMed

    Abramson, Charles I; Giray, Tugrul; Mixson, T Andrew; Nolf, Sondra L; Wells, Harrington; Kence, Aykut; Kence, Meral

    2010-01-01

    Three experiments are described investigating whether olfactory repellents DEET and butyric acid can support the classical conditioning of proboscis extension in the honeybee, Apis mellifera caucasica (Hymenoptera: Apidae). In the first experiment DEET and butyric acid readily led to standard acquisition and extinction effects, which are comparable to the use of cinnamon as a conditioned stimulus. These results demonstrate that the odor of DEET or butyric acid is not intrinsically repellent to honey bees. In a second experiment, with DEET and butyric acid mixed with sucrose as an unconditioned stimulus, proboscis conditioning was not established. After several trials, few animals responded to the unconditioned stimulus. These results demonstrate that these chemicals are gustatory repellents when in direct contact. In the last experiment a conditioned suppression paradigm was used. Exposing animals to butyric acid or DEET when the proboscis was extended by direct sucrose stimulation or by learning revealed that retraction of the proboscis was similar to another novel odor, lavender, and in all cases greatest when the animal was not permitted to feed. These results again demonstrate that DEET or butyric acid are not olfactory repellents, and in addition, conditioned suppression is influenced by feeding state of the bee.

  11. Failure of Serial Taste-Taste Compound Presentations to Produce Overshadowing of Extinction of Conditioned Taste Aversion

    ERIC Educational Resources Information Center

    Pineno, Oskar

    2010-01-01

    Two experiments were conducted to study overshadowing of extinction in a conditioned taste aversion preparation. In both experiments, aversive conditioning with sucrose was followed by extinction treatment with either sucrose alone or in compound with another taste, citric acid. Experiment 1 employed a simultaneous compound extinction treatment…

  12. How are the Concepts and Theories of Acid-Base Reactions Presented? Chemistry in Textbooks and as Presented by Teachers

    ERIC Educational Resources Information Center

    Furio-Mas, Carlos; Calatayud, Maria Luisa; Guisasola, Jenaro; Furio-Gomez, Cristina

    2005-01-01

    This paper investigates the views of science and scientific activity that can be found in chemistry textbooks and heard from teachers when acid-base reactions are introduced to grade 12 and university chemistry students. First, the main macroscopic and microscopic conceptual models are developed. Second, we attempt to show how the existence of…

  13. A conditional mutant of the fatty acid synthase unveils unexpected cross talks in mycobacterial lipid metabolism

    PubMed Central

    Cabruja, Matías; Mondino, Sonia; Tsai, Yi Ting; Lara, Julia; Gramajo, Hugo

    2017-01-01

    Unlike most bacteria, mycobacteria rely on the multi-domain enzyme eukaryote-like fatty acid synthase I (FAS I) to make fatty acids de novo. These metabolites are precursors of the biosynthesis of most of the lipids present both in the complex mycobacteria cell wall and in the storage lipids inside the cell. In order to study the role of the type I FAS system in Mycobacterium lipid metabolism in vivo, we constructed a conditional mutant in the fas-acpS operon of Mycobacterium smegmatis and analysed in detail the impact of reduced de novo fatty acid biosynthesis on the global architecture of the cell envelope. As expected, the mutant exhibited growth defect in the non-permissive condition that correlated well with the lower expression of fas-acpS and the concomitant reduction of FAS I, confirming that FAS I is essential for survival. The reduction observed in FAS I provoked an accumulation of its substrates, acetyl-CoA and malonyl-CoA, and a strong reduction of C12 to C18 acyl-CoAs, but not of long-chain acyl-CoAs (C19 to C24). The most intriguing result was the ability of the mutant to keep synthesizing mycolic acids when fatty acid biosynthesis was impaired. A detailed comparative lipidomic analysis showed that although reduced FAS I levels had a strong impact on fatty acid and phospholipid biosynthesis, mycolic acids were still being synthesized in the mutant, although with a different relative species distribution. However, when triacylglycerol degradation was inhibited, mycolic acid biosynthesis was significantly reduced, suggesting that storage lipids could be an intracellular reservoir of fatty acids for the biosynthesis of complex lipids in mycobacteria. Understanding the interaction between FAS I and the metabolic pathways that rely on FAS I products is a key step to better understand how lipid homeostasis is regulated in this microorganism and how this regulation could play a role during infection in pathogenic mycobacteria. PMID:28228470

  14. CONDITIONS NECESSARY FOR TRANSFORMATION TO PROTOTROPHY AND TO THE ABILITY TO SYNTHESIZE POLYGLUTAMIC ACID IN BACILLUS LICHENIFORMIS

    DTIC Science & Technology

    This report presents studies on the growth conditions necessary for transformation to prototrophy of 14 auxotrophs of B. licheniformis . The...described. In addition, this report presents evidence for the transformation of three non-encapsulated mutants of B. licheniformis for the ability to synthesize polyglutamic acid (capsular material).

  15. Formation of Organic Tracers for Isoprene SOA under Acidic Conditions

    EPA Science Inventory

    The chemical compositions of a series of secondary organic aerosol (SOA) samples, formed by irradiating mixtures of isoprene and NO in a smog chamber in the absence or presence of acidic aerosols, were analyzed using derivatization-based GC-MS methods. In addition to the known is...

  16. Accounts from 19th-century Canadian Arctic explorers' logs reflect present climate conditions

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wood, Kevin

    The widely perceived failure of 19th-century expeditions to find and transit the Northwest Passage in the Canadian Arctic is often attributed to extraordinary cold climatic conditions associated with the “Little Ice Age” evident in proxy records. However, examination of 44 explorers' logs for the western Arctic from 1818 to 1910 reveals that climate indicators such as navigability, the distribution and thickness of annual sea ice, monthly surface air temperature, and the onset of melt and freeze were within the present range of variability.The quest for the Northwest Passage through the Canadian archipelago during the 19th century is frequently seen as a vain and tragic failure. Polar exploration during the Victorian era seems to us today to have been a costly exercise in heroic futility, which in many respects it was. This perspective has been reinforced since the 1970s, when paleoclimate reconstructions based on Arctic ice core stratigraphy appeared to confirm the existence of exceptionally cold conditions consistent with the period glaciologists had termed the “Little Ice Age” (Figure 1a), with temperatures more than one standard deviation colder relative to an early 20th-century mean [Koerner, 1977; Koerner and Fisher, 1990; Overpeck et al., 1998]. In recent years, the view of the Little Ice Age as a synchronous worldwide and prolonged cold epoch that ended with modern warming has been questioned [Bradley and Jones, 1993; Jones and Briffa, 2001 ;Ogilvie, 2001].

  17. Software sensor design considering oscillating conditions as present in industrial scale fed-batch cultivations.

    PubMed

    Lyubenova, V; Junne, S; Ignatova, M; Neubauer, P

    2013-07-01

    Investigations of inhomogeneous dynamics in industrial-scale bioreactors can be realized in laboratory simulators. Such studies will be improved by on line observation of the growth of microorganisms and their product synthesis at oscillating substrate availability which represents the conditions in industrial-scale fed-batch cultivations. A method for the kinetic monitoring of such processes, supported by on line measurements accessible in industrial practice, is proposed. It consists of a software sensor (SS) system composed of a cascade structure. Process kinetics are simulated in models with a structure including time-varying yield coefficients. SSs for measured variable kinetics have classical structures. The SS design of unmeasured variables is realized after a linear transformation using a logarithmic function. For these software sensors, a tuning procedure is proposed, at which an arbitrary choice of one tuning parameter value that guarantees stability of the monitoring system allows the calculation of the optimal values of six parameters. The effectiveness of the proposed monitoring approach is demonstrated with experimental data from a glucose-limited fed-batch process of Bacillus subtilis in a laboratory two-compartment scale down reactor which tries to mimic the conditions present in industrial scale nutrient-limited fed-batch cultivations.

  18. Liquid Water Lakes on Mars Under Present-Day Conditions: Sustainability and Effects on the Subsurface

    NASA Astrophysics Data System (ADS)

    Goldspiel, Jules M.

    2015-11-01

    Decades of Mars exploration have produced ample evidence that aqueous environments once existed on the surface. Much evidence supports groundwater emergence as the source of liquid water on Mars [1-4]. However, cases have also been made for rainfall [5] and snow pack melts [6].Whatever the mechanism by which liquid water is emplaced on the surface of Mars, whether from groundwater seeps, atmospheric precipitation, or some combination of sources, this water would have collected in local topographic lows, and at least temporarily, would have created a local surface water system with dynamic thermal and hydrologic properties. Understanding the physical details of such aqueous systems is important for interpreting the past and present surface environments of Mars. It is also important for evaluating potential habitable zones on or near the surface.In conjunction with analysis of surface and core samples, valuable insight into likely past aqueous sites on Mars can be gained through modeling their formation and evolution. Toward that end, we built a 1D numerical model to follow the evolution of small bodies of liquid water on the surface of Mars. In the model, liquid water at different temperatures is supplied to the surface at different rates while the system is subjected to diurnally and seasonally varying environmental conditions. We recently simulated cases of cold (275 K) and warm (350 K) water collecting in a small depression on the floor of a mid southern latitude impact crater. When inflows create an initial pool > 3 m deep and infiltration can be neglected, we find that the interior of the pool can remain liquid over a full Mars year under the present cold and dry climate as an ice cover slowly thickens [7]. Here we present new results for the thermal and hydrologic evolution of surface water and the associated subsurface region for present-day conditions when infiltration of surface water into the subsurface is considered.[1] Pieri (1980) Science 210.[2] Carr

  19. The sealed lead-acid battery: performance and present aircraft applications

    NASA Astrophysics Data System (ADS)

    Timmons, John; Kurian, Raju; Goodman, Alan; Johnson, William R.

    The United States Navy has flown valve-regulated lead-acid batteries (VRLA) for approximately 22 years. The first VRLA aircraft batteries were of a cylindrical cell design and these evolved to a prismatic design to save weight, volume, and to increase rate capability. This paper discusses the evolution of the VRLA aircraft battery designs, present VRLA battery performance, and battery size availability along with their aircraft applications (both military and commercial). The paper provides some of the reliability data from present applications. Finally, the paper discusses what future evolution of the VRLA technology is required to improve performance and to remain the technology of choice over other sealed aircraft battery designs.

  20. [Cardioprotective properties of new glutamic acid derivative under stress conditions].

    PubMed

    Perfilova, V N; Sadikova, N V; Berestovitskaia, V M; Vasil'eva, O S

    2014-01-01

    The effect of new glutamic acid derivative on the cardiac ino- and chronotropic functions has been studied in experiments on rats exposed to 24-hour immobilization-and-pain stress. It is established that glutamic acid derivative RGPU-238 (glufimet) at a dose of 28.7 mg/kg increases the increment of myocardial contractility and relaxation rates and left ventricular pressure in stress-tested animals by 13 1,1, 72.4, and 118.6%, respectively, as compared to the control group during the test for adrenoreactivity. Compound RGPU-238 increases the increment of the maximum intensity of myocardium functioning by 196.5 % at 30 sec of isometric workload as compared to the control group. The cardioprotective effect of compound RGPU-238 is 1.5 - 2 times higher than that of the reference drug phenibut.

  1. Present and future bioclimatic conditions of importance to tourism over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Zerefos, Christos S.; Kapsomenakis, Ioannis N.; Douvis, Kostas; Konsta, Dimitra; Matzarakis, Andreas

    2014-05-01

    This work presents the results of changes of thermal comfort indices in the Mediterranean region and on time scales from seasonal to multi-decadal. The results are based on 6-hourly time series of the Physiological Equivalent Temperature (PET) and the Universal Thermal Climate Index (UTCI) in the Mediterranean. The two indices were calculated from 6-hourly meteorological parameters, acquired from the ERA-Interim ECMWF reanalysis records. Future climate change conditions were analyzed using the results of four regional climate simulations from the ENSEMBLES project. Two future periods are considered, 2021-2050 and 2071-2100 under the A1B scenario, in comparison to the reference period 1961-1990. Both the PET and UTCI analysis was performed using the radiation and bioclimate model, "RayMan", which is well-suited to calculate radiation fluxes and human biometeorological indices. In addition to the spatial and temporal analysis of the bioclimatic indices, for both the present and the future, concerning the Mediterranean tourism potential, a new approach in Climate-Tourism assessment was applied, namely the Climate-Tourism-Information-Scheme (CTIS), at representative tourist destinations in the Mediterranean. CTIS integrates and simplifies climate information for tourism in a convenient and easy to understand way which can be used by individual tourists and by local authorities responsible for tourism and health.

  2. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    SciTech Connect

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    2016-07-27

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able to completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation

  3. Enhanced succinic acid production under acidic conditions by introduction of glutamate decarboxylase system in E. coli AFP111.

    PubMed

    Wu, Mingke; Li, Xiaozhan; Guo, Shunfeng; Lemma, Wubliker Dessie; Zhang, Wenming; Ma, Jiangfeng; Jia, Honghua; Wu, Hao; Jiang, Min; Ouyang, Pingkai

    2017-04-01

    Biological synthesis of succinic acid at low pH values was favored since it not only decreased investment cost but also simplified downstream purification process. In this study, the feasibility of using glutamate decarboxylase system to improve succinic acid production of Escherichia coli AFP111, a succinate-producing candidate with mutations in pfl, ldhA, and ptsG, under acidic conditions was investigated. By overexpressing gadBC operon in AFP111, a recombinant named as BA201 (AFP111/pMD19T-gadBC) was constructed. Fermentation at pH 5.6 showed that 30 g L(-1) glucose was consumed and 26.58 g L(-1) succinic acid was produced by BA201, which was 1.22- and 1.32-fold higher than that by the control BA200 (AFP111/pMD19T) containing the empty vector. Analysis of intracellular enzymes activities and ATP concentrations revealed that the activities of key enzymes involved in glucose uptake and products synthesis and intracellular ATP levels were all increased after overexpression of gadBC which were benefit for cell metabolism under weak acidic conditions. To further improve the succinic acid titer by recombinant BA201 at pH 5.6, the extracellular glutamate concentration was optimized and the final succinic acid titer increased 20.4% to 32.01 g L(-1). Besides, the fermentation time was prolonged by repetitive fermentation and additional 15.78 g L(-1) succinic acid was produced by recovering cells into fresh medium. The results here demonstrated a potential strategy of overexpressing gadBC for increased succinic acid production of E. coli AFP111 under weak acidic conditions.

  4. Monitoring present day climatic conditions in tropical caves using an Environmental Data Acquisition System (EDAS)

    NASA Astrophysics Data System (ADS)

    Sondag, Francis; van Ruymbeke, Michel; Soubiès, François; Santos, Roberto; Somerhausen, André; Seidel, Alexandre; Boggiani, Paulo

    2003-03-01

    This paper presents data from automatic stations which have been installed for monitoring climatic parameters in caves in two areas of Brazil. These devices, initially developed at the Royal Observatory of Belgium to monitor environmental parameters in geophysical observatories, were adapted in our study to operate under tropical cave conditions and to measure temperature, atmospheric pressure and drip rate of stalactites. Similar devices were installed at the surface near to the caves to measure air temperature, atmospheric pressure and rainfall. The results reveal that the drip rate at the tip of stalactites is related to the effective rainfall (water excess). The stable drip regime observed during the dry season seems to be reproducible from one year to the other and could be related to the infiltration of water which has a long residence time in the aquifer. Regular pressure oscillations, with amplitude ranging between 1 and 2 mb, are observed in both of the monitored caves. Spectral analysis of the data suggests that these oscillations are linked to the diurnal and semi-diurnal solar tides (S1 and S2). In one cave, very small temperature variations (0.02-0.05 °C) are also observed with a similar diurnal and semi-diurnal pattern, and we argue that the generating process of the thermal components of the S1 and S2 frequencies is a mixture of thermal convection produced by the surface meteorological variations and of an adiabatic induction of the S2 atmospheric pressure modulation. A very large annual thermal amplitude (13 °C) is observed in the other cave; this is a great motivation to study the stable isotope geochemistry of its speleothems as they probably have recorded past temperature fluctuations linked to paleoclimate variations in this area of south-western Brazil.

  5. A laboratory study of the nucleation kinetics of nitric acid hydrates under stratospheric conditions

    NASA Astrophysics Data System (ADS)

    James, Alexander D.; Murray, Benjamin J.; Plane, John M. C.

    2016-04-01

    Measurements of the kinetics of crystallisation of ternary H2O-H2SO4-HNO3 mixtures to produce nitric acid hydrate phases, as occurs in the lower stratosphere, have been a long-standing challenge for investigators in the laboratory. Understanding polar stratospheric chlorine chemistry and thereby ozone depletion is increasingly limited by descriptions of nucleation processes. Meteoric smoke particles have been considered in the past as heterogeneous nuclei, however recent studies suggest that these particles will largely dissolve, leaving mainly silica and alumina as solid inclusions. In this study the nucleation kinetics of nitric acid hydrate phases have been measured in microliter droplets at polar stratospheric cloud (PSC) temperatures, using a droplet freezing assay. A clear heterogeneous effect was observed when silica particles were added. A parameterisation based on the number of droplets activated per nuclei surface area (ns) has been developed and compared to global model data. Nucleation experiments on identical droplets have been performed in an X-Ray Diffractometer (XRD) to determine the nature of the phase which formed. β-Nitric Acid Trihydrate (NAT) was observed alongside a mixture of Nitric Acid Dihydrate (NAD) phases. It is not possible to determine whether NAT nucleates directly or is formed by a phase transition from NAD (likely requiring the presence of a mediating liquid phase). Regardless, these results demonstrate the possibility of forming NAT on laboratory timescales. In the polar stratosphere, sulfuric acid (present at several weight percent of the liquid under equilibrium conditions) could provide such a liquid phase. This study therefor provides insight into previous discrepancies between phases formed in the laboratory and those observed in the atmosphere. It also provides a basis for future studies into atmospheric nucleation of solid PSCs.

  6. Allantoin, the oxidation product of uric acid is present in chicken and turkey plasma.

    PubMed

    Simoyi, Melvin F; Falkenstein, Elizabeth; Van Dyke, Knox; Blemings, Kenneth P; Klandorf, Hillar

    2003-06-01

    Urate oxidase is not present in birds yet allantoin, a product of this enzyme, has been measured in birds. Studies were designed to compare the concentrations of plasma purine derivatives in chickens and turkeys fed inosine-supplemented diets. The first study consisted of 12 male chicks that were fed diets supplemented with 0.6 mol inosine or hypoxanthine per kilogram diet from 3- to 6-week-old. Study 2 consisted of 12 turkey poults (toms) fed inosine-supplemented diets (0.7 mol/kg) from 6- to 8-week-old. Plasma allantoin and oxypurines concentrations were measured weekly using high performance liquid chromatography. Plasma uric acid (PUA) in chickens fed inosine-supplemented diets increased from 0.31 to 1.34 mM (P<0.05) at the end of week 2. In turkeys, those fed control diet had 0.17 mM PUA concentration compared to 0.3 mM in those fed the inosine diet at week 2 (P<0.05). Allantoin concentration increased in chickens from week 1 to 2 while a decrease was observed in turkeys (P<0.005) for both treatments. These data show that allantoin is present in turkey and chicken plasma. The presence of allantoin in avian plasma is consistent with uric acid acting as an antioxidant in these species.

  7. A Case of Mania Presenting with Hypersexual Behavior and Gender Dysphoria that Resolved with Valproic Acid

    PubMed Central

    Heare, Michelle R.; Barsky, Maria; Faziola, Lawrence R.

    2016-01-01

    Hypersexuality and gender dysphoria have both been described in the literature as symptoms of mania. Hypersexuality is listed in the Diagnostic and Statistical Manual of Mental Disorders 5 as part of the diagnostic criteria for bipolar disorder. Gender dysphoria is less often described and its relation to mania remains unclear. This case report describes a young homosexual man presenting in a manic episode with co-morbid amphetamine abuse whose mania was marked by hypersexuality and the new onset desire to be a woman. Both of these symptoms resolved with the addition of valproic acid to antipsychotics. This case report presents the existing literature on hypersexuality and gender dysphoria in mania and describes a treatment option that has not been previously reported. PMID:27994833

  8. Hyaluronic acid-coated chitosan nanoparticles: molecular weight-dependent effects on morphology and hyaluronic acid presentation.

    PubMed

    Almalik, Abdulaziz; Donno, Roberto; Cadman, Christopher J; Cellesi, Francesco; Day, Philip J; Tirelli, Nicola

    2013-12-28

    Chitosan nanoparticles are popular carriers for the delivery of macromolecular payloads, e.g. nucleic acids. In this study, nanoparticles were prepared via complexation with triphosphate (TPP) anions and were successively coated with hyaluronic acid (HA). Key variables of the preparative process (e.g. chitosan and HA molecular weight) were optimised in view of the maximisation of loading with DNA, of the Zeta potential and of the dimensional stability, and the resulting particles showed excellent storage stability. We have focused on the influence of chitosan molecular weight on nanoparticle properties. Larger molecular weight increased their porosity (=decreased cross-link density), and this caused also larger dimensional changes in response to variations in osmotic pressure or upon drying. The dependency of nanoparticle porosity on chitosan molecular weight had a profound effect on the adsorption of HA on the nanoparticles; HA was apparently able to penetrate deeply into the more porous high molecular weight (684 kDa) chitosan nanoparticles, while it formed a corona around those composed of more densely cross-linked low molecular weight (25 kDa) chitosan. Atomic Force Microscopy (AFM) allowed not only to highlight the presence of this corona, but also to estimate its apparent thickness to about 20-30 nm (in a dry state). The different morphology has a significant effect on the way HA is presented to biomolecules, and this has specific relevance in relation to interactions with HA receptors (e.g. CD44) that influence kinetics and mechanism of nanoparticle uptake. Finally, it is worth to mention that chitosan molecular weight did not appear to greatly affect the efficiency of nanoparticle loading with DNA, but significantly influenced its chitosanase-triggered release, with high molecular chitosan nanoparticles seemingly more prone to degradation by this enzyme.

  9. Brushing abrasion of luting cements under neutral and acidic conditions.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    2000-01-01

    Four resin based materials (Compolute Aplicap, ESPE; Variolink Ultra, Vivadent; C&B Metabond, Parkell and Panavia 21, Kuraray), two carboxylate cements (Poly-F Plus, Dentsply DeTrey and Durelon Maxicap, ESPE), two glass-ionomer cements (Fuji I, GC and Ketac-Cem Aplicap, ESPE), one resin-modified glass ionomer cement (Vitremer, 3M) one polyacid-modified resin composite (Dyract Cem, Dentsply DeTrey) and one zinc phosphate cement (Harvard, Richter & Hoffmann) were investigated according to their brushing resistance after storage in neutral and acidic buffer solutions. For this purpose 24 cylindrical acrylic molds were each filled with the materials. After hardening, the samples were stored for seven days in 100% relative humidity and at 37 degrees C. Subsequently, they were ground flat and polished. Then each specimen was covered with an adhesive tape leaving a 4 mm wide window on the cement surface. Twelve samples of each material were stored for 24 hours in a buffer solution with a pH of 6.8. The remaining 12 samples were placed in a buffer with a pH of 3.0. All specimens were then subjected to a three media brushing abrasion (2,000 strokes) in an automatic brushing machine. Storage and brushing were performed three times. After 6,000 brushing strokes per specimen, the tape was removed. Brushing abrasion was measured with a computerized laser profilometer and statistically analyzed with ANOVA and Tukey's Standardized Range Test (p < or = 0.05). The highest brushing abrasion was found for the two carboxylate cements. The lowest brushing abrasion was found for one resin based material, Compolute Aplicap. With the exception of three resin-based materials, a lower pH led to a higher brushing abrasion.

  10. The Effects of Acidic and Hypoxic Conditions on the Estuarine ...

    EPA Pesticide Factsheets

    The interactive and combined effects of coastal acidification and hypoxia on estuarine species is an increasing concern as these stressors change concomitantly. There is a need to understand how these environmental factors interact, as well as their effect on estuarine organisms. A method was developed for this research whereby four exposure treatments were created simultaneously: ambient, elevated pCO2, (~1300µatm, IPCC RCP 8.5 scenario), hypoxic (low dissolved oxygen, ~2 mg/L), and combined elevated pCO2 with low dissolved oxygen. An exposure with variant water quality parameters allows for the comparative study of organismal survival response to acidified and hypoxic conditions. The goal of this research is to determine acute species sensitivity, which is determined by survivability, to the combined effects of elevated pCO2 and hypoxia over a 5 day period, as well as possible differences in sensitivity between life-stages. Preliminary research on sheepshead minnow and mysid shrimp, indicates that mysid shrimp were tolerant of both elevated pCO2 and low DO exposure regardless of life-stage, whereas sheepshead minnows were more sensitive to the combined effects of acidification and hypoxia. This work is part of the first phase of the NECAH project, which is identifying species that are sensitive to the combined effects of acidification and hypoxia. The project describes the initial work on the first 2 species selected for testing and the final product will be

  11. Fluidised Bed Microencapsulation of Ascorbic Acid: Effectiveness of Protection under Simulated Tropical Storage Conditions

    DTIC Science & Technology

    2012-01-01

    evidence of poor microencapsulation were terminated. Trials that resulted in microcapsule breakage did not proceed to the storage study. 2.3.1...UNCLASSIFIED Fluidised Bed Microencapsulation of Ascorbic Acid: Effectiveness of Protection under Simulated Tropical Storage Conditions...investigates the use of microencapsulation by fluidised bed coating for the protection of ascorbic acid during long-term storage under simulated

  12. Polysaccharides isolated from sugar beet pulp by quaternization under acidic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet pulp was extracted and chemically modified under acidic conditions using glycidyltrimethylammonium chloride in the presence of trifuoroacetic (TFA), HCl or H3PO4. The goal was to find out how the type of acid used and quaternization could affect the yield of soluble polysaccharide, its mo...

  13. Past and present: conditions of life during childhood and mortality of older adults

    PubMed Central

    Gomes, Marília Miranda Forte; Turra, Cássio Maldonado; Fígoli, Moema Gonçalves Bueno; Duarte, Yeda A O; Lebrão, Maria Lúcia

    2016-01-01

    ABSTRACT OBJECTIVE To analyze whether socioeconomic and health conditions during childhood are associated with mortality during old age. METHODS Data were extracted from the SABE Study (Saúde, Bem-estar e Envelhecimento – Health, Welfare and Aging), which were performed in 2000 and 2006. The sample consisted of 2004 (1,355 living and 649 dead) older adults. The statistical analysis was performed based on Poisson regression models, taking into account the time variation of risk observed. Older adults’ demographic characteristics and life conditions were evaluated, as were the socioeconomic and lifestyle conditions they acquired during their adult life. RESULTS Only the area of residence during childhood (rural or urban) remained as a factor associated with mortality at advanced ages. However, this association lost significance when the variables acquired during adulthood were added to the model. CONCLUSIONS Despite the information regarding the conditions during childhood being limited and perhaps not accurately measure the socioeconomic status and health in the first years of life, the findings of this study suggest that improving the environmental conditions of children and creating opportunities during early adulthood may contribute to greater survival rates for those of more advanced years. PMID:26786474

  14. Decreased solubilization of Pu(IV) polymers by humic acids under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Xie, Jinchuan; Lin, Jianfeng; Liang, Wei; Li, Mei; Zhou, Xiaohua

    2016-11-01

    Pu(IV) polymer has a very low solubility (log[Pu(IV)aq]total = -10.4 at pH 7.2 and I = 0). However, some aspects of their environmental fate remain unclear. Humic acids are able to complex with Pu4+ ions and their dissolved species (<10 kD) in the groundwater (neutral to alkaline pH) may cause solubilization of the polymers. Also, humic acids have the native reducing capacity and potentially reduce the polymeric Pu(IV) to Pu(III)aq (log[Pu(III)aq]total = -5.3 at pH 7.2 and I = 0). Solubilization and reduction of the polymers can enhance their mobility in subsurface environments. Nevertheless, humic acids readily coat the surfaces of metal oxides via electrostatic interaction and ligand exchange mechanisms. The humic coatings are expected to prevent both solubilization and reduction of the polymers. Experiments were conducted under anoxic and slightly alkaline (pH 7.2) conditions in order to study whether humic acids have effects on stability of the polymers. The results show that the polymeric Pu(IV) was almost completely transformed into aqueous Pu(IV) in the presence of EDTA ligands. In contrast, the dissolved humic acids did not solubilize the polymers but in fact decreased their solubility by one order of magnitude. The humic coatings were responsible for the decreased solubilization. Such coatings limited the contact between the polymers and EDTA ligands, especially at the relatively high concentrations of humic acids (>0.57 mg/L). Solubilization of the humic-coated polymers was thus inhibited to a significant extent although EDTA, having the great complexation ability, was present in the humic solutions. Reduction of Pu(IV) polymers by the humic acids was also not observed in the absence of EDTA. In the presence of EDTA, the polymers were partially reduced to Pu(III)aq by the humic acids of 0.57 mg/L and the percentage of Pu(III)aq accounted for 51.7% of the total aqueous Pu. This demonstrates that the humic acids were able to reduce the aqueous Pu

  15. Uranium partitioning under acidic conditions in a sandy soil aquifer

    SciTech Connect

    Johnson, W.H. |; Serkiz, S.M.; Johnson, L.M.

    1995-07-01

    The partitioning of uranium in an aquifer down gradient of two large mixed waste sites was examined with respect to the solution and soil chemistry (e.g., pH redox potential and contaminant concentration) and aqueous-phase chemical speciation. This involved generation of field-derived, batch sorption, and reactive mineral surface sorption data. Field-derived distribution coefficients for uranium at these waste sites were found to vary between 0.40 and 15,000. Based on thermodynamic speciation modeling and a comparison of field and laboratory data, gibbsite is a potential reactive mineral surface present in modified soils at the sites. Uranium partitioning data are presented from field samples and laboratory studies of background soil and the mineral surface gibbsite. Mechanistic and empirical sorption models fit to the field-derived uranium partitioning data show an improvement of over two orders of magnitude, as measured by the normalized sum of errors squared, when compared with the single K{sub d} model used in previous risk work. Models fit to batch sorption data provided a better fit of sorbed uranium than do models fit to the field-derived data.

  16. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p.

    PubMed

    Kawahata, Miho; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2006-09-01

    Using two types of genome-wide analysis to investigate yeast genes involved in response to lactic acid and acetic acid, we found that the acidic condition affects metal metabolism. The first type is an expression analysis using DNA microarrays to investigate 'acid shock response' as the first step to adapt to an acidic condition, and 'acid adaptation' by maintaining integrity in the acidic condition. The other is a functional screening using the nonessential genes deletion collection of Saccharomyces cerevisiae. The expression analysis showed that genes involved in stress response, such as YGP1, TPS1 and HSP150, were induced under the acid shock response. Genes such as FIT2, ARN1 and ARN2, involved in metal metabolism regulated by Aft1p, were induced under the acid adaptation. AFT1 was induced under acid shock response and under acid adaptation with lactic acid. Moreover, green fluorescent protein-fused Aft1p was localized to the nucleus in cells grown in media containing lactic acid, acetic acid, or hydrochloric acid. Both analyses suggested that the acidic condition affects cell wall architecture. The depletion of cell-wall components encoded by SED1, DSE2, CTS1, EGT2, SCW11, SUN4 and YNL300W and histone acetyltransferase complex proteins encoded by YID21, EAF3, EAF5, EAF6 and YAF9 increased resistance to lactic acid. Depletion of the cell-wall mannoprotein Sed1p provided resistance to lactic acid, although the expression of SED1 was induced by exposure to lactic acid. Depletion of vacuolar membrane H+-ATPase and high-osmolarity glycerol mitogen-activated protein kinase proteins caused acid sensitivity. Moreover, our quantitative PCR showed that expression of PDR12 increased under acid shock response with lactic acid and decreased under acid adaptation with hydrochloric acid.

  17. Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.

    PubMed

    Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F

    2014-10-13

    The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure.

  18. A Novel Method for Presenting the Amino Acids in an Introductory Biochemistry Course.

    ERIC Educational Resources Information Center

    Kuehl, LeRoy

    1978-01-01

    Introduces an approach to teaching amino acids that employs the use of a poem containing information on the structure and properties of amino acids, and of slides illustrating the poem. Student response to the method was positive. (MA)

  19. Study of the interaction between rifapentine and isoniazid under acid conditions.

    PubMed

    Prasad, Bhagwat; Bhutani, Hemant; Singh, Saranjit

    2006-06-16

    A well-known problem of anti-tuberculosis fixed-dose combination (FDC) products containing rifampicin (R) and isoniazid (H) is the fall in bioavailability, in particular of R, when two or more drugs are present together. The same has been ascribed to hydrolysis of R to 3-formylrifamycin (3-RIF) under stomach acid conditions and reaction of the latter with H to form isonicotinyl hydrazone (HYD). The objective of present study was to explore whether the same reaction occurred when H was present along with rifapentine (Rp), a newer long acting rifamycin, which is structurally similar to R. Clinical trials are currently undergoing for co-administration of Rp with H in patients who had completed 2 months of standard chemotherapy. For the purpose, first a validated HPLC method was developed for the separation of Rp and H, and the same was used for the study of interaction between the two drugs. Like R, Rp was also found to convert to 3-RIF in acid conditions, which reacted further with H to form HYD. The pH-rate profile was also similar in shape to that established with the combination of R and H; maximum decomposition occurred at pH 2, where Rp loss was to an extent of approximately 30%, while corresponding decomposition of H was approximately 9%. These values were similar to those reported for the combination of R (approximately 33%) and H (approximately 10%). Hence, the study suggests that co-administration of Rp and H should be avoided, like in case of R and H, and the two drugs should not be formulated directly into a single dosage form.

  20. Development of an Index of Ecological Condition Based on Great River Fish Assemblages, Presentation

    EPA Science Inventory

    As part of the Environmental Monitoring and Assessment Program for Great River Ecosystems we developed a fish-assemblage based multimetric index (Great River Fish Index,GRFIn) as an indicator of ecological conditions in the Lower Missouri, impounded Upper Mississippi,.unimpounded...

  1. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp (Ctenopharyngodon idella) skin.

    PubMed

    Liu, Dasong; Wei, Guanmian; Li, Tiancheng; Hu, Jinhua; Lu, Naiyan; Regenstein, Joe M; Zhou, Peng

    2015-04-01

    This study investigated the effects of alkaline pretreatments and acid extraction conditions on the production of acid-soluble collagen (ASC) from grass carp skin. For alkaline pretreatment, 0.05 and 0.1M NaOH removed non-collagenous proteins without significant loss of ASC at 4, 10, 15 and 20 °C; while 0.2 and 0.5M NaOH caused significant loss of ASC, and 0.5M NaOH caused structural modification of ASC at 15 and 20 °C. For acid extraction at 4, 10, 15 and 20 °C, ASC was partly extracted by 0.1 and 0.2M acetic acid, while 0.5 and 1.0M acetic acid resulted in almost complete extraction. The processing conditions involving 0.05-0.1M NaOH for pretreatment, 0.5M acetic acid for extraction and 4-20 °C for both pretreatment and extraction, produced ASC with the structural integrity being well maintained and hence were recommended to prepare ASC from grass carp skin in practical application.

  2. Formation of flavor components by the reaction of amino acid and carbonyl compounds in mild conditions.

    PubMed

    Pripis-Nicolau, L; de Revel, G; Bertrand, A; Maujean, A

    2000-09-01

    This work describe products of reactions between four alpha-dicarbonyl compounds (diacetyl, pentan-2,3-dione, glyoxal, and methylglyoxal) or two alpha-hydroxy ketones, (acetoine and acetol) and amino acids present in wines. The results shows the formation of odorous products or strong-smelling additives resulting from the Maillard and Strecker reaction in a primarily aqueous medium, at low temperature and low pH ( approximately pH 3.5) of the wine. GC/FID, GC/FPD, GC/NPD and GC/MS techniques were used. The olfactive characteristics of the products are described. In the presence of sulfur amino acids and in particular cysteine, many products were formed with a heterocycle production such as pyrazines and methylpyrazines, methylthiazoles, acetylthiazoles, acetylthiazolines, acetylthiazolidines, trimethyloxazole, and dimethylethyloxazoles. These various compounds present odors of sulfur, cornlike, pungent, nut, popcorn, roasted hazelnut, toasted, roasted, and ripe fruits. The chemical conditions of the model reactions are specified. The influence of temperature and pH on the reactions in the presence of cysteine were also studied.

  3. Present and future assessment of growing degree days over selected Greek areas with different climate conditions

    NASA Astrophysics Data System (ADS)

    Pattanaik, D. R.; Mohapatra, M.; Srivastava, A. K.; Kumar, Arun

    2016-08-01

    The determination of heat requirements in the first developing phases of plants has been expressed as Growing Degree Days (GDD). The current study focuses on three selected study areas in Greece that are characterised by different climatic conditions due to their location and aims to assess the future variation and spatial distribution of Growing Degree Days (GDD) and how these can affect the main cultivations in the study areas. Future temperature data were obtained and analysed by the ENSEMBLES project. The analysis was performed for the future periods 2021-2050 and 2071-2100 with the A1B and B1 scenarios. Spatial distribution was performed using a combination of dynamical and statistical downscaling technique through ArcGIS 10.2.1. The results indicated that for all the future periods and scenarios, the GDD are expected to increase. Furthermore, the increase in the Sperchios River basin will be the highest, followed by the Ardas and the Geropotamos River basins. Moreover, the cultivation period will be shifted from April-October to April-September which will have social, economical and environmental benefits. Additionally, the spatial distribution indicated that in the upcoming years the existing cultivations can find favourable conditions and can be expanded in mountainous areas as well. On the other hand, due to the rough topography that exists in the study areas, the wide expansion of the existing cultivations into higher altitudes is unaffordable. Nevertheless, new more profitable cultivations can be introduced which can find propitious conditions in terms of GDD.

  4. Frog population viability under present and future climate conditions: a Bayesian state-space approach.

    PubMed

    McCaffery, R; Solonen, A; Crone, E

    2012-09-01

    1. World-wide extinctions of amphibians are at the forefront of the biodiversity crisis, with climate change figuring prominently as a potential driver of continued amphibian decline. As in other taxa, changes in both the mean and variability of climate conditions may affect amphibian populations in complex, unpredictable ways. In western North America, climate models predict a reduced duration and extent of mountain snowpack and increased variability in precipitation, which may have consequences for amphibians inhabiting montane ecosystems. 2. We used Bayesian capture-recapture methods to estimate survival and transition probabilities in a high-elevation population of the Columbia spotted frog (Rana luteiventris) over 10 years and related these rates to interannual variation in peak snowpack. Then, we forecasted frog population growth and viability under a range of scenarios with varying levels of change in mean and variance in snowpack. 3. Over a range of future scenarios, changes in mean snowpack had a greater effect on viability than changes in the variance of snowpack, with forecasts largely predicting an increase in population viability. Population models based on snowpack during our study period predicted a declining population. 4. Although mean conditions were more important for viability than variance, for a given mean snowpack depth, increases in variability could change a population from increasing to decreasing. Therefore, the influence of changing climate variability on populations should be accounted for in predictive models. The Bayesian modelling framework allows for the explicit characterization of uncertainty in parameter estimates and ecological forecasts, and thus provides a natural approach for examining relative contributions of mean and variability in climatic variables to population dynamics. 5. Longevity and heterogeneous habitat may contribute to the potential for this amphibian species to be resilient to increased climatic variation, and

  5. [Lation in ensuring the sanitary-and-epidemiological well-being under the present conditions].

    PubMed

    Filatov, N N; Ivanenko, A V; Khizgiiaev, V I; Safonkina, S G; Beliavskiĭ, A R; Kicha, D I

    2009-01-01

    The paper describes the basic principles in and approaches to the state regulation in ensuring the sanitary-and-epidemiological well-being. The necessity of enhancing the role of state regulation in ensuring the sanitary-and-epidemiological well-being stems from the intensive development of marketing relations and the complicated realization of the state role in the protection of consumers' rights and human well-being. The investigations provide evidence for the basic tasks of the sanitary-and-epidemiological service of Moscow under the specific conditions of the megalopolis.

  6. Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response.

    PubMed

    Ferreira, Adriana; Sue, David; O'Byrne, Conor P; Boor, Kathryn J

    2003-05-01

    The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, sigma(B), which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and DeltasigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the DeltasigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both DeltasigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is sigma(B) independent. sigma(B)-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional sigma(B) reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. sigma(B) does not appear to contribute to pH(i) homeostasis through regulation of net proton movement across the cell membrane or by regulation of pH(i) buffering by the GAD system under the conditions examined in this study. In summary, a functional sigma(B) protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.

  7. Distribution of Near-Surface Permafrost in Alaska: Estimates of Present and Future Conditions

    NASA Astrophysics Data System (ADS)

    Pastick, N.; Jorgenson, T.; Wylie, B. K.; Nield, S.; Johnson, K. D.; Finley, A.

    2014-12-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Further warming could lead to increasing ground temperatures, thickening active-layers, and accelerated thawing and degradation of permafrost. Despite permafrost's influence on ecosystem structure and functions, relatively little has been done to quantify permafrost properties across extremely large areas and at high resolutions. Detection and mapping of permafrost are difficult, however, because it is a subsurface condition of the ground, heterogeneous in nature, and largely exists in remote locations. Here we overcome complex interactions among surface and subsurface conditions to map permafrost through empirical modeling approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated high-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout most of Alaska. Our calibrated models were then used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  8. The effect of Coulomb interaction on spasing conditions in small nanoparticles (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pustovit, Vitaliy N.; Shahbazyan, Tigran V.; Chipouline, Arkadi; Urbas, Augustine M.

    2016-09-01

    The prediction of plasmonic laser (spaser) and its experimental realization in various systems have been among the highlights in the rapidly developing field of plasmonics during the past decade. First observed in gold nanoparticles (NP) coated by dye-doped dielectric shells spasing action was reported in hybrid plasmonic waveguides, semiconductor quantum dots on metal film, plasmonic nanocavities and nanocavity arrays, metallic NP and nanorods, and recently was studied in graphene-based structures. The small spaser size well below the diffraction limit gives rise to numerous promising applications, e.g., in sensing or medical diagnostics. However, most experimental realizations of spaser-based nanolasers were carried in relatively large systems, while only a handful of experiments reported spasing action in small systems with overall size below 50 nm. In this work, we perform a numerical study of the role of quenching and direct interactions between gain molecules in reaching the lasing threshold for small spherical NP with metal core and dye-doped dielectric shell. We use a semiclassical approach that combines Maxwell-Bloch equations with the Green function formalism to derive the threshold condition in terms of exact system eigenstates, which we find numerically. We show that for a large number of gain molecules needed to satisfy loss compensation condition, the coupling to nonresonant modes plays no significant role. In contrast, the direct dipole-dipole interactions, by causing random shifts in gain molecules' excitation energies, can hinder reaching the lasing threshold in small NP-based spasers.

  9. Additional Boundary Condition for List-Method Directed Forgetting: The Effect of Presentation Format

    ERIC Educational Resources Information Center

    Hupbach, Almut; Sahakyan, Lili

    2014-01-01

    The attempt to forget some recently encoded information renders this information difficult to recall in a subsequent memory test. "Forget" instructions are only effective when followed by learning of new material. In the present study, we asked whether the new material needs to match the format of the to-be-forgotten information for…

  10. Effects of Rate of Stimulus Presentation and Penalty Conditions on the Discrimination Learning of Normal and Retarded Children

    ERIC Educational Resources Information Center

    Harter, Susan; Zigler, Edward

    1972-01-01

    The effects of rate of stimulus presentation and reinforcement conditions on the two-choice discrimination learning performance of MA matched normal and familial retarded children were examined. (Authors)

  11. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    USGS Publications Warehouse

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  12. Influence of mineralogy on the preservation of amino acids under simulated Mars conditions

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato; Patel, Manish; Cuadros, Javier; Martins, Zita

    2016-10-01

    The detection of organic molecules associated with life on Mars is one of the main goals of future life-searching missions such as the ESA-Roscosmos ExoMars and NASA 2020 mission. In this work we studied the preservation of 25 amino acids that were spiked onto the Mars-relevant minerals augite, enstatite, goethite, gypsum, hematite, jarosite, labradorite, montmorillonite, nontronite, olivine and saponite, and on basaltic lava under simulated Mars conditions. Simulations were performed using the Open University Mars Chamber, which mimicked the main aspects of the martian environment, such as temperature, UV radiation and atmospheric pressure. Quantification and enantiomeric separation of the amino acids were performed using gas-chromatography-mass spectrometry (GC-MS). Results show that no amino acids could be detected on the mineral samples spiked with 1 μM amino acid solution (0.1 μmol of amino acid per gram of mineral) subjected to simulation, possibly due to complete degradation of the amino acids and/or low extractability of the amino acids from the minerals. For higher amino acid concentrations, nontronite had the highest preservation rate in the experiments in which 50 μM spiking solution was used (5 μmol/g), while jarosite and gypsum had a higher preservation rate in the experiments in which 25 and 10 μM spiking solutions were used (2.5 and 1 μmol/g), respectively. Overall, the 3 smectite minerals (montmorillonite, saponite, nontronite) and the two sulfates (gypsum, jarosite) preserved the highest amino acid proportions. Our data suggest that clay minerals preserve amino acids due to their high surface areas and small pore sizes, whereas sulfates protect amino acids likely due to their opacity to UV radiation or by partial dissolution and crystallization and trapping of the amino acids. Minerals containing ferrous iron (such as augite, enstatite and basaltic lava) preserved the lowest amount of amino acids, which is explained by iron (II) catalyzed

  13. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  14. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.

    PubMed

    Sun, Jing; Bostick, Benjamin C; Mailloux, Brian J; Ross, James M; Chillrud, Steven N

    2016-07-05

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As.

  15. Lorenz-Mie digital holographic microscopy on complex colloids and at extreme pressure conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto; Padgett, Miles J.; Gibson, Graham; Bowman, Richard W.; Paradossi, Gaio

    2016-03-01

    Lorenz-Mie scattering theory allows to predict the field scattered by spherical objects illuminated by coherent light. By fitting the fringe pattern resulting from the interference of incident and scattered light, it is possible to track and size colloidal particles with a few nanometer precision. Using digital holographic microscopy (DHM) we extend the applications of Lorenz-Mie theory to hollow spherical structures and to extremely high pressure conditions. On the one hand, we geometrically and optically characterize complex colloids as polymer-shelled microbubbles, with high precision, low costs and short acquisition time. These microbubbles are likely to be unique tools for targeted drug delivery and are currently used as contrast agents for sonography. We measured size, shell thickness and refractive index for hundreds of polymeric microbubbles showing that shell thickness displays a large variation that is strongly correlated with its refractive index and thus with its composition. On the other hand we demonstrate that DHM can be used for accurate 3D tracking and sizing of a holographically trapped colloidal probe in a diamond anvil cell (DAC). Polystyrene beads were trapped in water up to Gigapascal pressures while simultaneously recording in-line holograms at 1 KHz frame rate. This technique may potentially provide a new method for spatially resolved pressure measurements inside a DAC.

  16. Properties of whey protein isolates extruded under acidic and alkaline conditions.

    PubMed

    Onwulata, C I; Isobe, S; Tomasula, P M; Cooke, P H

    2006-01-01

    Whey proteins have wide acceptance and use in many products due to their beneficial nutritional properties. To further increase the amount of whey protein isolates (WPI) that may be added to products such as extruded snacks and meats, texturization of WPI is necessary. Texturization changes the folding of globular proteins to improve interaction with other ingredients and create new functional ingredients. In this study, WPI pastes (60% solids) were extruded in a twin-screw extruder at 100 degrees C with 4 pH-adjusted water streams: acidic (pH 2.0 +/- 0.2) and alkaline (pH 12.4 +/- 0.4) streams from 2 N HCl and 2 N NaOH, respectively, and acidic (pH 2.5 +/- 0.2) and alkaline (pH 11.5 +/- 0.4) electrolyzed water streams; these were compared with WPI extruded with deionized water. The effects of water acidity on WPI solubility at pH 7, color, microstructure, Rapid Visco Analyzer pasting properties, and physical structure were determined. Alkaline conditions increased insolubility caused yellowing and increased pasting properties significantly. Acidic conditions increased solubility and decreased WPI pasting properties. Subtle structural changes occurred under acidic conditions, but were more pronounced under alkaline conditions. Overall, alkaline conditions increased denaturation in the extruded WPI resulting in stringy texturized WPI products, which could be used in meat applications.

  17. Terminal acidic shock inhibits sour beer bottle conditioning by Saccharomyces cerevisiae.

    PubMed

    Rogers, Cody M; Veatch, Devon; Covey, Adam; Staton, Caleb; Bochman, Matthew L

    2016-08-01

    During beer fermentation, the brewer's yeast Saccharomyces cerevisiae experiences a variety of shifting growth conditions, culminating in a low-oxygen, low-nutrient, high-ethanol, acidic environment. In beers that are bottle conditioned (i.e., carbonated in the bottle by supplying yeast with a small amount of sugar to metabolize into CO2), the S. cerevisiae cells must overcome these stressors to perform the ultimate act in beer production. However, medium shock caused by any of these variables can slow, stall, or even kill the yeast, resulting in production delays and economic losses. Here, we describe a medium shock caused by high lactic acid levels in an American sour beer, which we refer to as "terminal acidic shock". Yeast exposed to this shock failed to bottle condition the beer, though they remained viable. The effects of low pH/high [lactic acid] conditions on the growth of six different brewing strains of S. cerevisiae were characterized, and we developed a method to adapt the yeast to growth in acidic beer, enabling proper bottle conditioning. Our findings will aid in the production of sour-style beers, a trending category in the American craft beer scene.

  18. Neurites outgrowth and amino acids levels in goldfish retina under hypo-osmotic or hyper-osmotic conditions.

    PubMed

    Cubillán, Lisbeth; Obregón, Francisco; Lima, Lucimey

    2012-02-01

    Amino acids are known to play relevant roles as osmolytes in various tissues, including the retina. Taurine is one of these active molecules. In addition, taurine stimulates outgrowth from the goldfish retina by mechanisms that include extracellular matrix, calcium fluxes and protein phosphorylation. The present report aims to explore the effect of medium osmolarity on goldfish retinal outgrowth and the possible modifications produced by changing eye osmolarity on amino acid levels in the retina. Goldfish retinal explants were obtained 10 days after crush of the optic nerve and cultured under iso-, hypo- or hyper-osmotic conditions. Hypo-osmotic medium was prepared by diluting the solutions 10% twice, preserving fetal calf serum concentration. Hyper-osmotic medium was done by adding 50 or 100 mM urea or mannitol. Evaluation of length and density of neurites was performed 5 days after plating. Outgrowth was reduced in hypo- and in hyper-osmotic conditions. Taurine, 4 mM, increased length and density of neurites in iso-osmotic, and produced stimulatory effects under both hyper-osmotic conditions. The in vivo modification of osmolarity by intraocular injection of water or 100 mM urea modified levels of free amino acids in the retina. Taurine and aspartate retinal levels increased in a time-dependent manner after hypo- and hyper-osmotic solution injections. Serine, threonine, arginine, γ-aminobutyric acid, alanine and tyrosine were elevated in hyper-osmotic conditions. Outgrowth in vitro, after in vivo osmolarity changes, was higher in the absence of taurine, but did not increase in the presence of the amino acid. The fact that certain outgrowth took place in these conditions support that the impairment was not due to tissue damage. Rather, the effects might be related to the cascade of kinase events described during osmolarity variations. The time course under these conditions produced adjustments in ganglion cells probably related to taurine transporter, and

  19. Dietary Trans Fatty Acids and Cardiovascular Disease Risk: Past and Present

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary trans double bond fatty acids have been associated with increased risk of cardiovascular disease. There are two main sources of dietary trans fatty acids: meat and dairy fats, and partially-hydrogenated oils. Due to a number of factors, including changes in federal labeling requirements fo...

  20. Epidural analgesia, fetal monitoring and the condition of the baby at birth with breech presentation.

    PubMed

    Donnai, P; Nicholas, A D

    1975-05-01

    Between December 1970 and March 1973, 138 patients with a singleton fetus presenting by the breech after 36 weeks of pregnancy were deemed suitable for vaginal delivery under epidural analgesia; 130 were delivered vaginally, 10 of them by breech extraction. There was one stillbirth and no neonatal deaths. Epidural analgesia for vaginal breech delivery seemed beneficial. In 65 cases it was possible to compare the umbilical vein pH with the Apgar score at one minute. In 35 patients a continuous recording of the fetal heart rate was used to predict the Apgar score at one minute and the results are discussed.

  1. Cyclopia: A Rare Condition with Unusual Presentation – A Case Report

    PubMed Central

    Salama, Ghassan SA; Kaabneh, Mahmoud AF; Al-Raqad, Mohamed K; Al-abdallah, Ibrahim MH; Shakkoury, Ayoub GA; Halaseh, Ruba AA

    2015-01-01

    INTRODUCTION Cyclopia (alobar holoprosencephaly) (OMIM% 236100) is a rare and lethal complex human malformation, resulting from incomplete cleavage of prosencephalon into right and left hemispheres occurring between the 18th and the 28th day of gestation. Holoprosencephaly occurs in 1/16,000 live births, and 1/250 during embryogenesis. Approximately 1.05 in 100,000 births are identified as infants with cyclopia, including stillbirths. Cyclopia typically presents with a median single eye or a partially divided eye in a single orbit, absent nose, and a proboscis above the eye. Extracranial malformations described in stillbirths with cyclopia include polydactyl, renal dysplasia, and an omphalocele. The etiology of this rare syndrome, which is incompatible with life, is still largely unknown. Most cases are sporadic. Heterogeneous risk factors have been implicated as possible causes. CASE PRESENTATION A live full-term baby with birth weight of 2900 g, product of cesarean section because of severe fetal bradycardia, was born at Prince Hashem Military Hospital – Zarqa city/Jordan. This newborn was the first baby to a non-consanguineous family, and a healthy 18-year-old mother, with no history of drug ingestion or febrile illnesses during pregnancy. Antenatal history revealed severe hydrocephalus diagnosed early by intrauterine ultrasound but the pregnancy was not terminated because of the lack of medical legitimization in the country. On examination, the newborn was found to have a dysmorphic face, with a median single eye, absence of nose, micrognathia, and a proboscis above the eye, all of which made cyclopia the possible initial diagnosis. Multiple unusual abdominal defects were present that include a huge omphalocele containing whole liver and spleen, urinary bladder extrophy, and undefined abnormal external genitalia, which called for urgent confirmation. Brain MRI was done and revealed findings consistent with alobar holoprosencephaly (cyclopia). CONCLUSION

  2. Intellectual disability complicated by sexual addiction: an uncommon presentation of a common condition.

    PubMed

    Pang, Nicholas Tze Ping; Masiran, Ruziana

    2017-03-08

    A young man presented with high libido for 3 years, associated with preoccupation with sexual thoughts combined with his pursuit of pornographic materials. He had strong psychological cravings for and had spent large amount of money on sex, resulting in a dispute with his family. There were no mood or psychotic symptoms. Medical history revealed recent diagnosis of gonococcal urethritis. Cognitive assessment showed subtle deficiencies in reasoning and executive functions. There was occasional use of alcohol. Sexual addiction with comorbid mild intellectual disability was diagnosed, and pharmacological as well as psychological management were started.

  3. Microporous materials under extreme conditions - EMU Medal for Excellence in Research 2013 presentation

    NASA Astrophysics Data System (ADS)

    Gatta, G. Diego

    2014-05-01

    Zeolites are a class of "microporous materials" characterised by open-structures with cavities (i.e. channels or cages) with free diameters smaller than 20 Å. In Nature, zeolites with SiO4-AlO4-PO4-tetrahedra form open frameworks; polar molecules (in particular H2O) and monovalent or divalent cations, which are commonly exchangeable, are the extra-framework species. The selective cation-exchange capacity, along with T-induced reversible hydration/dehydration and the catalytic activity (mainly promoted by Brønsted acid sites) of zeolites have made this class of natural or synthetic materials an object of attention for their advanced technological applications, spanning from water treatment, soil remediation, cements production, biomedical and veterinary applications, gas separation to catalysis in the petroleum industry and nuclear-waste processing. As a consequence, zeolites are an important bulk commodity: the world production of natural zeolites in 2012 was about 2,800,000 tons and the consumption of synthetic zeolites was approximately 1,900,000 tons. Over the last 60 years, many experiments have addressed the behaviour of zeolites in response to applied temperature, describing the mechanisms of T-induced dehydration, cation migration and the rearrangement of extra-framework species. On the other hand, experiments on zeolite at high pressure have been done only in the last 10-15 years, shedding new insight into the elastic behaviour and phase stability in response to changing pressure, coupled with the P-induced deformation mechanisms at the atomistic level, P-induced over-hydration and its corresponding volume expansion, P-induced amorphization processes along with the effect of pressure on the ionic conductivity of zeolites. The comparative elastic analysis and the high-P structural data of zeolites so far reported allow us to make some generalizations: 1) The range of compressibility among this class of open-framework silicates is large, with bulk moduli

  4. Webinar Presentation: Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS)

    EPA Pesticide Factsheets

    This presentation, Suspect Screening of Environmental Organic Acids in Human Serum Using High-resolution Mass Spectrometry (HRMS), was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Exposome held on May 11, 2016.

  5. Deoxyribonucleic Acid Polymerase of Rous Sarcoma Virus: Reaction Conditions and Analysis of the Reaction Product Nucleic Acids

    PubMed Central

    Bishop, D. H. L.; Ruprecht, Ruth; Simpson, R. W.; Spiegelman, S.

    1971-01-01

    Reaction conditions for Rous sarcoma virus ribonucleic acid (RNA)-instructed deoxyribonucleic acid (DNA) polymerase activity are described whereby the viral RNA is relatively protected from endogenous or added nuclease activity. Three analyses of reaction product nucleic acids (3H-RNA, 32P-DNA) were compared, namely, gel electrophoresis, Cs2SO4 gradient centrifugation, and hydroxyapatite column chromatography. It was found that hydroxyapatite analysis could be misleading unless the state of the template RNA was monitored concomitantly with the DNA analysis. Gel electrophoresis and Cs2SO4 gradient centrifugation gave comparable results. It was concluded that analyses of the product of reverse transcriptase reactions should not only refer to the template RNA and product DNA species, but also be performed with virus or viral RNA which do not have or obtain nicks in the 60S RNA. Otherwise, interpretation of the results would have the ambiguity of potential artifacts caused by those degraded RNA molecules. PMID:4332143

  6. Spontaneous perforation of pyometra presenting as acute abdomen: a rare condition with considerable mortality.

    PubMed

    Yin, Wan-Bin; Wei, Yan-Hua; Liu, Guang-Wei; Zhao, Xiao-Tang; Zhang, Mao-Shen; Hu, Ji-Lin; Zhang, Nan-Yang; Lu, Yun

    2016-04-01

    Pyometra is an uncommon and potentially lethal disease that occurs mainly in postmenopausal women. Spontaneous perforation of pyometra presenting as acute abdomen is an extremely rare complication of pyometra, and the patients are always admitted to the emergency department. An additional case is reported herein. In addition, a literature review was performed between 1949 and 2015. A correct preoperative diagnosis was made in 21.05% of all the cases. Of all cases, 25.71% were associated with malignant disease. The mortality rate of spontaneous perforation of pyometra is 31.88%. Thus, it should be considered in the differential diagnosis of acute abdomen in elderly women. Total hysterectomy along with bilateral salpingo-oophorectomy is the preferred treatment. Administration of broad-spectrum antibiotics and postoperative intensive care support are essential to reduce the high mortality.

  7. Short-fiber protein of ad40 confers enteric tropism and protection against acidic gastrointestinal conditions.

    PubMed

    Rodríguez, Ester; Romero, Carolina; Río, Adolfo; Miralles, Marta; Raventós, Aida; Planells, Laura; Burgueño, Joan F; Hamada, Hirofumi; Perales, Jose Carlos; Bosch, Assumpció; Gassull, Miguel Angel; Fernández, Ester; Chillon, Miguel

    2013-08-01

    The lack of vectors for selective gene delivery to the intestine has hampered the development of gene therapy strategies for intestinal diseases. We hypothesized that chimeric adenoviruses of Ad5 (species C) displaying proteins of the naturally enteric Ad40 (species F) might hold the intestinal tropism of the species F and thus be useful for gene delivery to the intestine. As oral-fecal dissemination of enteric adenovirus must withstand the conditions encountered in the gastrointestinal tract, we studied the resistance of chimeric Ad5 carrying the short-fiber protein of Ad40 to acid milieu and proteases and found that the Ad40 short fiber confers resistance to inactivation in acidic conditions and that AdF/40S was further activated upon exposure to low pH. In contrast, the chimeric AdF/40S exhibited only a slightly higher protease resistance compared with Ad5 to proteases present in simulated gastric juice. Then, the biodistribution of different chimeric adenoviruses by oral, rectal, and intravenous routes was tested. Expression of reporter β-galactosidase was measured in extracts of 15 different organs 3 days after administration. Our results indicate that among the chimeric viruses, only intrarectally given AdF/40S infected the colon (preferentially enteroendocrine cells and macrophages) and to a lesser extent, the small intestine, whereas Ad5 infectivity was very poor in all tissues. Additional in vitro experiments showed improved infectivity of AdF/40S also in different human epithelial cell lines. Therefore, our results point at the chimeric adenovirus AdF/40S as an interesting vector for selective gene delivery to treat intestinal diseases.

  8. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  9. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  10. Changes in fatty acid and hydrocarbon composition of zooplankton assemblages related to environmental conditions

    SciTech Connect

    Lambert, R.M.

    1989-01-01

    Changes in zooplankton fatty acid and hydrocarbon patterns are described in relation to changes in environmental conditions and species composition. The regulation of zooplankton abundance by sea nettle-ctenophore interaction was examined in a small Rhode Island coastal pond. Sea nettles were nettles were able to eliminate ctenophores from the pond and subsequently zooplankton abundance increased. During one increase in zooplankton abundance, it was found that polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. It was concluded that this shift in biochemical pattern was due to food limitation. In addition, zooplankton fatty acids were used in multivariate discriminant analysis to classify whether zooplankton were from coastal or estuarine environments. Zooplankton from coastal environments were characterized by higher monounsaturate fatty acids. Zooplankton hydrocarbon composition was affected by species composition and by pollution inputs. The presence of Calanus finmarchicus was detected by increased levels of pristane.

  11. Application of phase stretch transform to plate license identification under blur and noise conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Asghari, Hossein; Hadar, Ofer; Jalali, Bahram

    2016-09-01

    This paper deals with implementing a new algorithm for edge detection based on the Phase Stretch Transform (PST) for purposes of car plate license recognition. In PST edge detection algorithm, the image is first filtered with a spatial kernel followed by application of a nonlinear frequency-dependent phase. The output of the transform is the phase in the spatial domain. The main step is the 2-D phase function which is typically applied in the frequency domain. The amount of phase applied to the image is frequency dependent with higher amount of phase applied to higher frequency features of the image. Since sharp transitions, such as edges and corners, contain higher frequencies, PST emphasizes the edge information. Features can be further enhanced by applying thresholding and morphological operations. Here we investigate the influence of noise and blur on the ability to recognize the characters in the plate license, by comparison of our suggested algorithm with the well known Canny algorithm. We use several types of noise distributions among them, Gaussian noise, salt and paper noise and uniform distributed noise, with several levels of noise variances. The simulated blur is related to the car velocity and we applied several filters representing different velocities of the car. Another interesting degradation that we intend to investigate is the cases that Laser shield license plate cover is used to distort the image taken by the authorities. Our comparison results are presented in terms of True positive, False positive and False negative probabilities.

  12. Synthesis of repressible acid phosphatase in Saccharomyces cerevisiae under conditions of enzyme instability.

    PubMed Central

    Bostian, K A; Lemire, J M; Halvorson, H O

    1982-01-01

    The synthesis of repressible acid phosphatase in Saccharomyces cerevisiae was examined under conditions of blocked derepression as described by Toh-e et al. (Mol. Gen. Genet. 162:139-149, 1978). Based on a genetic and biochemical analysis of the phenomenon these authors proposed a new regulatory model for acid phosphatase expression involving a simultaneous interaction of regulatory factors in the control of structural gene transcription. We demonstrate here that under growth conditions that fail to produce acid phosphatase the enzyme is readily inactivated. Furthermore, we demonstrate under these conditions the production of acid phosphatase mRNA which is active both in vitro and in vivo in the synthesis of enzyme. This eliminates any step prior to translation of acid phosphatase polypeptide as an explanation for the phenomenon. We interpret our results for the block in appearance of acid phosphatase as a result of both deaccelerated growth and cellular biosynthesis during derepression, accompanied by an enhanced instability of the enzyme. Images PMID:7050664

  13. Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints

    NASA Technical Reports Server (NTRS)

    Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.

    1999-01-01

    The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.

  14. Monitoring the trihalomethanes present in water after treatment with chlorine under laboratory condition.

    PubMed

    Paim, A P S; Souza, J B; Adorno, M A T; Moraes, E M

    2007-02-01

    In this work assays involving chlorinated water samples, which were previous spiked with humic substances or algae blue green and following the production of the THMs for 30 days is described. To implement the assays, five portions of 1,000 ml of water were stored in glass bottles. The water samples were treated with solutions containing 2, 3, 4 and 5 mg l(-1) chlorine. The samples aliquots (60 ml) were transferred into the glass vials, 10 ml were removed to have a headspace and 100 microl of the 10 mg l(-1) pentafluortoluene bromide solution was added to each vial. The extraction step was performed by adding 10 g of Na(2)SO(4) followed by 5 ml of n-pentane. The vials were stopped with a TFE-faced septum and sealed with aluminum caps. The generated THMs were determined by gas chromatography with electron capture detector using reference solutions with concentration ranging from 8 to 120 microg l(-1) THMs. Three assays were monitored during 30 days and chloroform was the predominant compound found in the water samples, while other species of THMs were not detected. The results showed that when the chlorine concentration was increased in water samples containing algae the concentration of THM varied randomly. Nevertheless, in water samples containing humic substances the increase of the THM concentration presented a relationship with the chlorine concentration. It was also observed that chloroform concentration increased with the elapsed time up to one and six days to water samples spiked with humic substances and algae blue green, respectively and decreased along 30 days. By other hand, assays performed using water samples containing decanted algae material showed that THM was not generated by the chlorine addition.

  15. pH-Dependent Uptake of Fumaric Acid in Saccharomyces cerevisiae under Anaerobic Conditions

    PubMed Central

    Jamalzadeh, Elaheh; Verheijen, Peter J. T.; Heijnen, Joseph J.

    2012-01-01

    Microbial production of C4 dicarboxylic acids from renewable resources has gained renewed interest. The yeast Saccharomyces cerevisiae is known as a robust microorganism and is able to grow at low pH, which makes it a suitable candidate for biological production of organic acids. However, a successful metabolic engineering approach for overproduction of organic acids requires an incorporation of a proper exporter to increase the productivity. Moreover, low-pH fermentations, which are desirable for facilitating the downstream processing, may cause back diffusion of the undissociated acid into the cells with simultaneous active export, thereby creating an ATP-dissipating futile cycle. In this work, we have studied the uptake of fumaric acid in S. cerevisiae in carbon-limited chemostat cultures under anaerobic conditions. The effect of the presence of fumaric acid at different pH values (3 to 5) has been investigated in order to obtain more knowledge about possible uptake mechanisms. The experimental results showed that at a cultivation pH of 5.0 and an external fumaric acid concentration of approximately 0.8 mmol · liter−1, the fumaric acid uptake rate was unexpectedly high and could not be explained by diffusion of the undissociated form across the plasma membrane alone. This could indicate the presence of protein-mediated import. At decreasing pH levels, the fumaric acid uptake rate was found to increase asymptotically to a maximum level. Although this observation is in accordance with protein-mediated import, the presence of a metabolic bottleneck for fumaric acid conversion under anaerobic conditions could not be excluded. PMID:22113915

  16. Fe/Mg smectite formation under acidic conditions on early Mars

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T. S.; Sutter, B.; Morris, R. V.; Agresti, D. G.; Le, L.; Ming, D. W.

    2016-01-01

    Phyllosilicates of the smectite group detected in Noachian and early Hesperian terrains on Mars have been hypothesized to form under neutral to alkaline conditions. These pH conditions would also be favorable for formation of widespread carbonate deposits which have not been detected on Mars. We propose that smectite deposits on Mars formed under moderately acidic conditions inhibiting carbonate formation. We report here the first synthesis of Fe/Mg smectite in an acidic hydrothermal system [200 °C, pHRT ∼ 4 (pH measured at room temperature) buffered with acetic acid] from Mars-analogue, glass-rich, basalt simulant with and without aqueous Mg or Fe(II) addition under N2-purged anoxic and ambient oxic redox conditions. Synthesized Fe/Mg smectite was examined by X-ray-diffraction, Mössbauer spectroscopy, visible and near-infrared reflectance spectroscopy, scanning electron microscopy and electron microprobe to characterize mineralogy, morphology and chemical composition. Alteration of the glass phase of basalt simulant resulted in formation of the Fe/Mg smectite mineral saponite with some mineralogical and chemical properties similar to the properties reported for Fe/Mg smectite on Mars. Our experiments are evidence that neutral to alkaline conditions on early Mars are not necessary for Fe/Mg smectite formation as previously inferred. Phyllosilicate minerals could instead have formed under mildly acidic pH conditions. Volcanic SO2 emanation and sulfuric acid formation is proposed as the major source of acidity for the alteration of basaltic materials and subsequent formation of Fe/Mg smectite.

  17. Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions

    PubMed Central

    Kostic, Ivana; Fidalgo-Carvalho, Isabel; Aday, Sezin; Vazão, Helena; Carvalheiro, Tiago; Grãos, Mário; Duarte, António; Cardoso, Carla; Gonçalves, Lino; Carvalho, Lina; Paiva, Artur; Ferreira, Lino

    2015-01-01

    Several clinical trials are exploring therapeutic effect of human CD34+ cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34+ cells cultured under hypoxic and serum-deprived conditions present 2.2-fold and 1.3-fold higher survival relatively to non-treated cells and prostaglandin E2-treated cells, respectively. The pro-survival effect of LPA is concentration- and time-dependent and it is mediated by the activation of peroxisome proliferator-activator receptor γ (PPARγ) and downstream, by the activation of pro-survival ERK and Akt signaling pathways and the inhibition of mitochondrial apoptotic pathway. In hypoxia and serum-deprived culture conditions, LPA induces CD34+ cell proliferation without maintaining the their undifferentiating state, and enhances IL-8, IL-6 and G-CSF secretion during the first 12 h compared to non-treated cells. LPA-treated CD34+ cells delivered in fibrin gels have enhanced survival and improved cardiac fractional shortening at 2 weeks on rat infarcted hearts as compared to hearts treated with placebo. We have developed a new platform to enhance the survival of CD34+ cells using a natural and cost-effective ligand and demonstrated its utility in the preservation of the functionality of the heart after infarction. PMID:26553339

  18. Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.

    1989-01-01

    Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049

  19. The environmental history and present condition of Saudi Arabia's northern sand seas

    USGS Publications Warehouse

    Whitney, John W.; Faulkender, D.J.; Rubin, Meyer

    1983-01-01

    Saudi Arabia's northern sand seas are composed dominantly of stable dune systems, even though the modern climate is arid. The stable dunes are large and support a sparse semidesert vegetation. Active dunes are small and commonly confined to the crests of stable dunes; they comprise less than 5 percent of the dunes in the sand seas. Both the stability of the major dune systems and the small percentage of active dunes in the modern environment indicate a significant decrease in the average velocity and frequency of sand-moving winds since the time of stable-dune deposition. Comparison of modern wind directions with dune trends indicates that southwesterly winds responsible for dune formation in the southern and western An Nafud sand sea and in Nafud Urayq are no longer prevailing winds. Lake deposits are locally interbedded with deposits of eolian sand and in the lee of stable dunes. Radiocarbon dating of calcareous lake deposits defines at least two episodes of moisture-effective climate and minimal eolianactivity: between about 32,000 and 24,000 B.P., just before the onset of the last worldwide glacial stade of the Pleistocene, and during the Holocene between about 8,500 and 5,000 B.P. One lake deposit is more than 38,000 years old and may have been deposited during an earlier pluvial episode about 85,000 to 70,000 B.P. Pollen extracted from these lake deposits indicates that vegetation during late Pleistocene and Holocene pluvial episodes was similar to the present semidesert vegetation; however, the density of shrubs and grasses on the dunes was greater. The main dune systems overlie the 32,000 to 24,000-yearold lake deposits, whereas the Holocene lakebeds are found in modern interdunal environments, usually at the base of stable dunes. The main dune systems probably formed between 24,000 and 8,500 B.P., during the last episode of worldwide cold temperatures. Increased windiness at this time is also recorded in the world's oceans and in both polar ice caps

  20. Stable condition of dimethylmonothioarsinic acid (DMMTAV) and dimethyldithioarsinic acid ( DMDTAV) in landfill leachate

    NASA Astrophysics Data System (ADS)

    Kwon, E.; Yoon, H. O.; Kim, J. A.; Lee, H.; Jung, S.; Kim, Y. T.

    2015-12-01

    When waste containing arsenic (As) are disposed of landfill, such facilities (i.e., landfill) can play an important role in disseminating As to the surrounding environment. These disposal of waste containing As might cause a serious environmental pollution due to potentially As remobilization in landfill. Especially, As species containing sulfur such as DMDTAv and DMMTAv found occasionally high concentration in landfill leachate. These As species (i.e., DMDTAv and DMMTAv) had the higher toxicity to human cells compared to other pentavalent As species. However, there was no chemical standard material of these As species (i.e., DMDTAv and DMMTAv) commercially. In this study, we synthesized DMDTAv and DMMTAv by simulating reaction with the sufficient sulfur condition from DMAv. DMMTAv was quite changeable to DMDTAv due to its short life time from our preliminary study. Thus, it is important to find the stable condition of synthesis process for DMDTAv and DMMTAv under suitable environmental condition. This study can be very significant in quantitative analysis area to detect the various As species in environmental media such as landfill.

  1. Experimental Investigations of the Effects of Acid Gas (H2S/CO2) Exposure under Geological Sequestration Conditions

    NASA Astrophysics Data System (ADS)

    Hawthorne, S. B.; Miller, D.; Kutchko, B. G.; Strazisar, B. R.

    2009-12-01

    Acid gas (mixed CO2 and H2S) injection into geological formations is increasingly used as a disposal option. In contrast to pure CO2 injection, there is little understanding of the possible effects of acid gases under geological sequestration conditions on exposed materials ranging from reactions with reservoir minerals to the stability of proppants injected to improve oil recovery to the possible failure of well-bore cements. The number of laboratory studies investigating effects of acid gas has been limited by safety concerns and the difficulty in preparing and maintaining single-phase H2S/CO2 mixtures under the experimental pressures and temperatures required. We have developed approaches using conventional syringe pumps and reactor vessels to prepare and maintain H2S/CO2 mixtures under relevant sequestration conditions of temperature, pressure, and exposure to water and dissolved salts. These methods have been used to investigate and compare the effects of acid gas with those of pure CO2 on several materials including reservoir cores, oil recovery proppants, and well-bore cements, as well as to investigate the rates of model reactions such as the conversion of Fe3O4 to pyrite. The apparatus and methods used to perform acid gas exposures and representative results from the various exposed materials will be presented.

  2. Interaction forces and membrane charge tunability: Oleic acid containing membranes in different pH conditions.

    PubMed

    Kurniawan, James; Suga, Keishi; Kuhl, Tonya L

    2017-02-01

    Oleic acid is known to interact with saturated lipid molecules and increase the fluidity of gel phase lipid membranes. In this work, the thermodynamic properties of mixed monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and oleic acid at the air-water interface were determined using Langmuir isotherms. The isotherm study revealed an attractive interaction between oleic acid and DPPC. The incorporation of oleic acid also monotonically decreased the elastic modulus of the monolayer indicative of higher fluidity with increasing oleic acid content. Using the surface force apparatus, intermembrane force-distance profiles were obtained for substrate supported DPPC membranes containing 30mol% oleic acid at pH5.8 and 7.4. Three different preparation conditions resulted in distinct force profiles. Membranes prepared in pH5.8 subphase had a low number of nanoscopic defects ≤1% and an adhesion magnitude of ~0.6mN/m. A slightly higher defect density of 1-4% was found for membranes prepared in a physiological pH7.4 subphase. The presence of the exposed hydrophobic moieties resulted in a higher adhesion magnitude of 2.9mN/m. Importantly, at pH7.4, some oleic acid deprotonates resulting in a long-range electrostatic repulsion. Even though oleic acid increased the DPPC bilayer fluidity and the number of defects, no membrane restructuring was observed indicating that the system maintained a stable configuration.

  3. Experimental Control of Nodality via Equal Presentations of Conditional Discriminations in Different Equivalence Protocols under Speed and No-Speed Conditions

    ERIC Educational Resources Information Center

    Imam, Abdulrazaq A.

    2006-01-01

    A within-participant comparison of simple-to-complex, complex-to-simple, and simultaneous protocols was conducted establishing different sets of three 7-member equivalence classes for 4 undergraduate students. The protocols were implemented under either accuracy-only or accuracy-plus-speed conditions while keeping number of presentations of…

  4. Spectroscopic study of amino acids adsorption on pyrite surface: From vacuum to solution conditions.

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, E.; Sanchez-Arenillas, M.

    2015-10-01

    We characterized the adsorption of cystine molecules among other amino acids on pyrite surface via X-ray photoelectron spectroscopy. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the systems explored in this study hold interesting implications for supporting catalyzed prebiotic chemistry reactions.

  5. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  6. Effects of light condition after simulated acid snow stress on leaves of winter wheat.

    PubMed

    Inada, Hidetoshi; Fujikawa, Seizo; Saito, Hideyuki; Arakawa, Keita

    2007-01-01

    Winter plants regrow after freeze-thawing in acidic meltwater from the acid-snow layer in early winter or early spring. In this study, the responses of cold-acclimated wheat seedlings to different light conditions during the regrowth period after simulated acid snow (SAS) stress were investigated. After freeze-thawing in sulfuric acid (SAS stress) of pH 2.0, dry weight and the maximal quantum yield of photosystem II (PSII) decreased more in mature leaves than in young leaves. In a subsequent regrowth period under light condition, dry weight, relative water content, and the maximal quantum yield of PSII were severely affected in mature leaves but were only slightly affected in SAS (pH 2.0)-stressed young leaves. The levels of membrane lipid peroxidation and hydrogen peroxide in mature leaves of SAS (pH 2.0)-stressed seedlings were significantly higher than those in young leaves during the regrowth period under light condition. The superoxide dismutase activity in young leaves was higher than that in mature leaves during the regrowth period. These results indicate that mature leaves of seedlings during the snow melt season are more sensitive than young leaves to photooxidative stress because of their low acid snow stress tolerance and low capacity for the detoxification of superoxide.

  7. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions.

    PubMed

    Isar, Jasmine; Agarwal, Lata; Saran, Saurabh; Saxena, Rajendra Kumar

    2006-09-01

    The most influential parameters for succinic acid production obtained through one at a time method were sucrose, tryptone, magnesium carbonate, inoculum size and incubation period. These resulted in the production of 7.0 g L(-1) of succinic acid in 60 h from Escherichia coli W3110 under anaerobic conditions. Based on these results, a statistical method, face centered central composite design (FCCCD) falling under response surface method (RSM) was employed for further enhancing the succinic acid production and to monitor the interactive effect of these parameters, which resulted in a twofold increase in yield (14.3 g L(-1) in 48 h). The analysis of variance (ANOVA) showed the adequacy of the model and the verification experiments confirmed its validity. On subsequent scale-up in a 10-L bioreactor using conditions optimized through RSM, 24.2 g L(-1) of succinic acid was obtained in 30 h. This clearly indicated that the model stood valid even on large-scale. Thus, the statistical optimization strategy led to a 3.5-fold increase in the yield of succinic acid. This is the first report on the use of FCCCD to improve succinic acid production from E. coli.

  8. Using heat pipe to make isotherm condition in catalytic converters of sulfuric acid plants

    NASA Astrophysics Data System (ADS)

    Yousefi, M.; Pahlavanzadeh, H.; Sadrameli, S. M.

    2017-03-01

    In this study, for the first time, it is tried to construct a pilot reactor, for surveying the possibility of creating isothermal condition in the catalytic convertors where SO2 is converted to SO3 in the sulfuric acid plants by heat pipe. The thermodynamic and thermo-kinetic conditions were considered the same as the sulfuric acid plants converters. Also, influence of SO2 gas flow rate on isothermal condition, has been studied. A thermo-siphon type heat pipe contains the sulfur + 5% iodine as working fluid, was used for disposing the heat of reaction from catalytic bed. Our results show that due to very high energy-efficiency, isothermal and passive heat transfer mechanism of heat pipe, it is possible to reach more than 95% conversion in one isothermal catalytic bed. As the results, heat pipe can be used as a certain piece of equipment to create isothermal condition in catalytic convertors of sulphuric acid plants. With this work a major evaluation in design of sulphuric acid plants can be taken place.

  9. Transition-metal-free synthesis of phenanthridinones from biaryl-2-oxamic acid under radical conditions.

    PubMed

    Yuan, Ming; Chen, Li; Wang, Junwei; Chen, Shenjie; Wang, Kongchao; Xue, Yongbo; Yao, Guangmin; Luo, Zengwei; Zhang, Yonghui

    2015-01-16

    Na2S2O8-promoted decarboxylative cyclization of biaryl-2-oxamic acid for phenanthridinones has been developed. This work illustrates the first example of intramolecular decarboxylative amidation of unactivated arene under transition-metal-free conditions. Additionally, this approach provides an efficient and economical method to access biologically interesting phenanthridinones, an important structure motif in many natural products.

  10. The Histone Deacetylase Inhibitor Valproic Acid Enhances Acquisition, Extinction, and Reconsolidation of Conditioned Fear

    ERIC Educational Resources Information Center

    Bredy, Timothy W.; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its…

  11. Laboratory simulations of the interaction between ozone and chloroacetic acids in the conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Savilov, S. V.; Morozov, I. I.; Yagodovskaya, T. V.; Lunin, V. V.

    2015-01-01

    The interaction between ozone and mono-, di-, and trichloroacetic acids are studied using a flow vacuum gas discharge setup in a regime close to stratospheric conditions (in the temperature range of 77 to 250 K, at pressures of 10-3 to 0 Torr, and in the presence of ice). The interaction between ozone and trichloroacetic acid starts at 77 K, while interaction with monochloroacetic acid begins when the temperature is raised to 200 K. The reactions are assumed to proceed via different mechanisms: chlorine oxides of different composition are the reaction products, as is shown using low-temperature IR spectroscopy. Preliminary adsorption of the acids on a surface of ice raises the temperature of interaction to 190 K.

  12. 2('),3(')-didehydro-2('),3(')-dideoxynucleosides are degraded to furfuryl alcohol under acidic conditions.

    PubMed

    Shi, Junxing; Ray, Adrian S; Mathew, Judy S; Anderson, Karen S; Chu, Chung K; Schinazi, Raymond F

    2004-05-03

    2('),3(')-Didehydro-2('),3(')-dideoxynucleosides are clinically relevant antiviral agents. These nucleosides could be degraded under acidic conditions. Acidic stability studies showed the D4N had the following increasing stability order: D4Gacidic cleavage of D4-nucleosides. The cleavage products were characterized as furfuryl alcohol and the corresponding nucleobase. Furfuryl alcohol is an agent found in many everyday food products. The biological results demonstrated that furfuryl alcohol had neither anti-HIV activity nor cytotoxicity in vitro, suggesting the acid instability of D4-nucleosides is unlikely to have an impact on the toxicity of these nucleoside analogs in humans.

  13. From site data to safety assessment: analysis of present and future hydrological conditions at a coastal site in Sweden.

    PubMed

    Berglund, Sten; Bosson, Emma; Sassner, Mona

    2013-05-01

    This paper presents an analysis of present and future hydrological conditions at the Forsmark site in Sweden, which has been proposed as the site for a geological repository for spent nuclear fuel. Forsmark is a coastal site that changes in response to shoreline displacement. In the considered time frame (until year 10 000 AD), the hydrological system will be affected by landscape succession associated with shoreline displacement and changes in vegetation, regolith stratigraphy, and climate. Based on extensive site investigations and modeling of present hydrological conditions, the effects of different processes on future site hydrology are quantified. As expected, shoreline displacement has a strong effect on local hydrology (e.g., groundwater flow) in areas that change from sea to land. The comparison between present and future land areas emphasizes the importance of climate variables relative to other factors for main hydrological features such as water balances.

  14. Idiopathic bile acid malabsorption--a review of clinical presentation, diagnosis, and response to treatment.

    PubMed Central

    Williams, A J; Merrick, M V; Eastwood, M A

    1991-01-01

    Between 1982 and 1989, the seven day retention of 75SeHCAT was measured in 181 patients with chronic diarrhoea that remained unexplained after full investigation. Altogether 121 of the 181 had a seven day 75SeHCAT retention greater than or equal to 15% and thus had no evidence of abnormal bile acid turnover. Twenty one had a seven day 75SeHCAT retention greater than or equal to 10% but less than 15%. Their clinical features were typical of the irritable bowel syndrome, and none of eight treated with cholestyramine showed symptomatic improvement. Sixteen patients had a seven day retention greater than or equal to 5% and less than 10%, six of whom had improved symptoms after treatment with bile acid chelating agents. The remaining 23 patients had a 75SeHCAT retention of less than 5% at seven days and responded to bile acid chelators. This group had a characteristic illness with intermittent watery diarrhoea, but no constitutional upset. It was not possible to distinguish the patients with bile acid malabsorption exclusively on the basis of the clinical symptoms and investigations, other than 75SeHCAT retention. We conclude that the measurement of 75SeHCAT retention is useful, appropriate, and necessary in patients with unexplained chronic diarrhoea. PMID:1916479

  15. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  16. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Astrophysics Data System (ADS)

    Sutter, B.; Golden, D. C.; Ming, D.; Niles, P. B.

    2011-12-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then "large" carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  17. The Formation of Fe/Mg Smectite Under Mildly Acidic Conditions on Early Mars

    NASA Technical Reports Server (NTRS)

    Sutter, Brad; Golden, D. C.; Ming, Douglas W.; Niles, P. B.

    2011-01-01

    The detection of Fe/Mg smectites and carbonate in Noachian and early Hesperian terrain of Mars has been used to suggest that neutral to mildly alkaline conditions prevailed during the early history of Mars. However, if early Mars was neutral to moderately alkaline with a denser CO2 atmosphere than today, then large carbonates deposits should be more widely detected in Noachian terrain. The critical question is: Why have so few carbonate deposits been detected compared to Fe/Mg smectites? We suggest that Fe/Mg smectites on early Mars formed under mildly acidic conditions, which would inhibit the extensive formation of carbonate deposits. The goal of this work is to evaluate the formation of Fe/Mg smectites under mildly acidic conditions. The stability of smectites under mildly acidic conditions is attributed to elevated Fe/Mg activities that inhibit smectite dissolution. Beidelite and saponite have been shown to form from hydrothermal alteration of basaltic glass at pH 3.5-4.0 in seawater solutions. Nontronite is also known to be stable in mildly acidic systems associated with mafic and ultramafic rock. Nontronite was shown to form in acid sulfate soils in the Bangkok Plain, Thailand due to oxidation of Fe-sulfides that transformed saponite to nontronite. Smectite is known to transform to kaolinite in naturally acid soils due to selective leaching of Mg. However, if Mg removal is limited, then based on equilibrium relationships, the dissolution of smectite should be minimized. If Fe and Mg solution activities are sufficiently high, such as might be found in a low water/rock ratio system that is poorly drained, smectite could form and remain stable under mildly acidic conditions on Mars. The sources of mild acidity on early Mars includes elevated atmospheric CO2 levels, Fe-hydrolysis reactions, and the presence of volcanic SO2 aerosols. Equilibrium calculations dictate that water equilibrated with an early Mars CO2 atmosphere at 1 to 4 bar yields a pH of 3.6 to 3

  18. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  19. Triterpenic Acids Present in Hawthorn Lower Plasma Cholesterol by Inhibiting Intestinal ACAT Activity in Hamsters.

    PubMed

    Lin, Yuguang; Vermeer, Mario A; Trautwein, Elke A

    2011-01-01

    Hawthorn (Crataegus pinnatifida) is an edible fruit used in traditional Chinese medicine to lower plasma lipids. This study explored lipid-lowering compounds and underlying mechanisms of action of hawthorn. Hawthorn powder extracts inhibited acylCoA:cholesterol acyltransferase (ACAT) activity in Caco-2 cells. The inhibitory activity was positively associated with triterpenic acid (i.e., oleanolic acid (OA) and ursolic acid (UA)) contents in the extracts. Cholesterol lowering effects of hawthorn and its potential additive effect in combination with plant sterol esters (PSE) were further studied in hamsters. Animals were fed a semi-synthetic diet containing 0.08% (w/w) cholesterol (control) or the same diet supplemented with (i) 0.37% hawthorn dichloromethane extract, (ii) 0.24% PSE, (iii) hawthorn dichloromethane extract (0.37%) plus PSE (0.24%) or (iv) OA/UA mixture (0.01%) for 4 weeks. Compared to the control diet, hawthorn, PSE, hawthorn plus PSE and OA/UA significantly lowered plasma non-HDL (VLDL + LDL) cholesterol concentrations by 8%, 9%, 21% and 6% and decreased hepatic cholesterol ester content by 9%, 23%, 46% and 22%, respectively. The cholesterol lowering effects of these ingredients were conversely associated with their capacities in increasing fecal neutral sterol excretion. In conclusion, OA and UA are responsible for the cholesterol lowering effect of hawthorn by inhibiting intestinal ACAT activity. In addition, hawthorn and particularly its bioactive compounds (OA and UA) enhanced the cholesterol lowering effect of plant sterols.

  20. A Type II Pathway for Fatty Acid Biosynthesis Presents Drug Targets in Plasmodium falciparum

    PubMed Central

    Waller, Ross F.; Ralph, Stuart A.; Reed, Michael B.; Su, Vanessa; Douglas, James D.; Minnikin, David E.; Cowman, Alan F.; Besra, Gurdyal S.; McFadden, Geoffrey I.

    2003-01-01

    It has long been held that the malaria parasite, Plasmodium sp., is incapable of de novo fatty acid synthesis. This view has recently been overturned with the emergence of data for the presence of a fatty acid biosynthetic pathway in the relict plastid of P. falciparum (known as the apicoplast). This pathway represents the type II pathway common to plant chloroplasts and bacteria but distinct from the type I pathway of animals including humans. Specific inhibitors of the type II pathway, thiolactomycin and triclosan, have been reported to target this Plasmodium pathway. Here we report further inhibitors of the plastid-based pathway that inhibit Plasmodium parasites. These include several analogues of thiolactomycin, two with sixfold-greater efficacy than thiolactomycin. We also report that parasites respond very rapidly to such inhibitors and that the greatest sensitivity is seen in ring-stage parasites. This study substantiates the importance of fatty acid synthesis for blood-stage parasite survival and shows that this pathway provides scope for the development of novel antimalarial drugs. PMID:12499205

  1. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products.

    PubMed

    Ye, Feng; Zushi, Yasuyuki; Masunaga, Shigeki

    2015-05-01

    Perfluoroalkyl acids (PFAAs) and their precursors have been used in various consumer products. However, limited information regarding their occurrence and concentration levels in products is available. In this study, we investigated 18 PFAAs and 14 PFAA precursors in various categories of consumer products purchased in Japan. Relatively high total concentrations of PFAAs and their precursors were found in sprays for fabrics and textiles (acid (PFOS), N-methyl perfluorooctane sulfonamidoethanol (MeFOSE) was detected in a higher frequency (8%) and in greater concentrations (acids (PFCAs) (carbon chain length⩾7) were also detected in greater concentrations than short chain PFCAs (⩽6). This result suggests that consumer products are one of the important sources of long-chain PFCAs in the environment.

  2. Screening of Burkholderia sp. WGB31 producing anisic acid from anethole and optimization of fermentation conditions.

    PubMed

    Shen, Peihong; Song, Zhangyang; Zhang, Zhenyong; Zeng, Huahe; Tang, Xianlai; Jiang, Chengjian; Li, Junfang; Wu, Bo

    2014-11-01

    Anisic acid, the precursor of a variety of food flavors and industrial raw materials, can be bioconversed from anethole which extracted from star anise fruits. WGB31 strain with anisic acid molar production rate of 10.25% was isolated and identified as Burkholderia sp. Three significant influential factors, namely, glucose concentration, initial pH value, and medium volume were selected and their effects were evaluated by Box-Behnken Design (BBD). Regression analysis was performed to determine response surface methodology and the significance was tested to obtain the process model of optimal conditions for producing anisic acid. The fermentation conditions at the stable point of the model were obtained: glucose 6 g L(-1) , pH 6.2, culture medium volume 61 mL in a triangular flask with 250 ml volume. Verification test indicated that the production rate of anisic acid was 30.7%, which was three times of that before optimizing. The results provide a basis and reference for producing anisic acid by microbial transformation.

  3. The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.

    PubMed

    Pham, Trong Khoa; Wright, Phillip C

    2008-11-01

    Ethanol yield by Saccharomyces cerevisiae in very high glucose (VHG) media with an amino acid supplement was investigated. Amino acid supplementation led to positive cell responses, including reduced lag time and increased cell viability in VHG media. A quantitative shotgun proteomic analysis was used to understand how amino acid supplemented S. cerevisiae responds to high osmotic conditions. iTRAQ data revealed that most proteins involved in glycolysis and pentose phosphate pathways were up-regulated under high glucose shock. Reactivation of amino acid metabolism was also observed at the end of the lag phase. The relative abundance of most identified proteins, including aminoacyl-tRNA biosynthesis proteins, and heat-shock proteins, remained unchanged in the hours immediately following application of glucose shock. However, the expression of these proteins increased significantly at the end of the lag phase. Furthermore, the up-regulation of trehalose and glycogen biosynthesis proteins, first maintaining then latterly increasing glycolysis pathway activity was also observed. This was verified by enhanced ethanol yields at 10 and 12 h (0.43 and 0.45 g ethanol/g glucose) compared to 2 h (0.32 g ethanol/g glucose). These data combined with relevant metabolite measurements demonstrates that enhanced ethanol fermentation under VHG conditions can be achieved with the aid of amino acid supplementation.

  4. Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats.

    PubMed

    Ossenkopp, Klaus-Peter; Foley, Kelly A; Gibson, James; Fudge, Melissa A; Kavaliers, Martin; Cain, Donald P; Macfabe, Derrick F

    2012-02-01

    Propionic acid, an enteric bacterial fermentation product, has received recent attention in regards to satiety and obesity in humans. The possibility that propionic acid might produce internal aversive cues was investigated in two experiments using conditioned taste avoidance and place avoidance procedures to index the potential aversive nature of systemic treatment with propionic acid in male rats. Experiment 1 examined the effect of systemic treatment with propionic acid (500 mg/kg), LiCl (95 mg/kg) or vehicle (all corrected to pH 7.5) on the formation of conditioned taste avoidance using a lickometer procedure. On 3 acquisition days three groups of rats were injected with propionic acid, LiCl or vehicle, following 30 min access to 0.3M sucrose solution. Both the Propionic acid group and the LiCl group evidenced a conditioned taste avoidance by the end of the acquisition period. During a drug free extinction phase the Propionic acid group showed extinction of the taste avoidance whereas the LiCl group did not. Experiment 2 involved place preference conditioning with propionic acid treatment associated with one novel context and vehicle with a different novel context on 6 conditioning trials for each type of injection. Place avoidance was assessed on two drug free extinction trials. Multi-variable assessment of the unconditioned (Acquisition Trials) and conditioned effects (Extinction Trials) of propionic acid on locomotor activity was quantified as was chamber choice time on the extinction trials. Propionic acid induced a significant place avoidance and significantly reduced locomotor activity on some acquisition trials. During the extinction trials rats exhibited enhanced locomotor activity levels in the propionic acid associated chamber, likely due to the conditioned aversive nature of this chamber.

  5. Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions.

    PubMed

    Guimaraes, Talita A; Farias, Lucyana C; Fraga, Carlos A; Feltenberger, John D; Melo, Geraldo A; Coletta, Ricardo D; Souza Santos, Sergio H; de Paula, Alfredo M B; Guimaraes, Andre L

    2016-06-01

    The purpose of the current study was to develop and test a theoretical model that could explain the mechanism of action of gallic acid (GA) in the oral squamous cell carcinoma context for the first time. The theoretical model was developed using bioinformatics and interaction network analysis to evaluate the effect of GA on oral squamous cell carcinoma. In a second step to confirm theoretical results, migration, invasion, proliferation, and gene expression (Col1A1, E-cadherin, HIF-1α, and caspase-3) were performed under normoxic and hypoxic conditions. Our study indicated that treatment with GA resulted in the inhibition of cell proliferation, migration, and invasion in neoplastic cells. Observation of the molecular mechanism showed that GA upregulates E-cadherin expression and downregulates Col1A1 and HIF-1α expression, suggesting that GA might be a potential anticancer compound. In conclusion, the present study demonstrated that GA significantly reduces cell proliferation, invasion, and migration by increasing E-cadherin and repressing Col1A1.

  6. Comparing oxalic acid and sucrocide treatments for Varroa destructor (Acari: Varroidae) control under desert conditions.

    PubMed

    Sammataro, D; Finley, J; Underwood, R

    2008-08-01

    The effectiveness of oxalic acid (OA) and Sucrocide (S) (AVA Chemical Ventures, L.L.C., Portsmouth, NH) in reducing populations of the varroa mite Varroa destructor Anderson & Trueman (Acari: Varroidae) in honey bee, Apis mellifera L. (Hymenoptera: Apidae) colonies was measured under the desert conditions of Arizona, USA. OA and S were applied three times 7 d apart. A 3.2% solution of OA was applied in sugar syrup via a large volume syringe, trickling 5 ml per space between frames in the colony. S was applied at a concentration of 0.625% (mixed with water), according to the label directions, using a compressed air Chapin sprayer at 20 psi to apply 59 ml per frame space. Varroa mites, collected on a sticky board before, during, and after the treatments, were counted to assess the effectiveness of the treatments. This study showed that a desert climate zone did not confer any positive or negative results on the acaricidal properties of OA. Even with brood present in colonies, significant varroa mite mortality occurred in the OA colonies. In contrast, we found that Sucrocide was not effective as a mite control technique. Despite its ability to increase mite mortality in the short-term, varroa mite populations measured posttreatment were not affected any more by Sucrocide than by no treatment at all.

  7. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  8. Effects of hippocampal state-contingent trial presentation on hippocampus-dependent nonspatial classical conditioning and extinction.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2014-04-23

    Hippocampal local field potentials are characterized by two mutually exclusive states: one characterized by regular θ oscillations (∼4-8 Hz) and the other by irregular sharp-wave ripples. Presenting stimuli during dominant θ oscillations leads to expedited learning, suggesting that θ indexes a state in which encoding is most effective. However, ripple-contingent training also expedites learning, suggesting that any discrete brain state, much like the external context, can affect learning. We trained adult rabbits in trace eyeblink conditioning, a hippocampus-dependent nonspatial task, followed by extinction. Trials were delivered either in the presence or absence of θ or regardless of hippocampal state. Conditioning in the absence of θ led to more animals learning, although learning was slower compared with a yoked control group. Contrary to expectations, conditioning in the presence of θ did not affect learning. However, extinction was expedited both when it was conducted contingent on θ and when it was conducted in a state contrary to that used to trigger trials during conditioning. Strong phase-locking of hippocampal θ-band responses to the conditioned stimulus early on during conditioning predicted good learning. No such connection was observed during extinction. Our results suggest that any consistent hippocampal oscillatory state can potentially be used to regulate learning. However, the effects depend on the specific state and task at hand. Finally, much like the external environment, the ongoing neural state appears to act as a context for learning and memory retrieval.

  9. Abscisic acid substantially inhibits senescence of cucumber plants (Cucumis sativus) grown under low nitrogen conditions.

    PubMed

    Oka, Mariko; Shimoda, Yousuke; Sato, Naoko; Inoue, Junya; Yamazaki, Teru; Shimomura, Norihiro; Fujiyama, Hideyasu

    2012-05-15

    Low nitrogen (N) availability such as that found in both dry land and tropical regions limits plant growth and development. The relationship between the level of abscisic acid (ABA) in a plant and its growth under low-N conditions was investigated. The level of ABA in cucumber (Cucumis sativus) plants under low-N conditions was significantly higher at 10 and 20 d after transplantation compared with that under sufficient-N conditions. Chlorophyll was preserved in the aerial parts of cucumber plants grown under low-N conditions in the presence of ABA, while there was no significant difference between control plants and ABA-applied plants under sufficient-N conditions. ABA suppressed the reduction of chlorophyll biosynthesis under low-N conditions but not under sufficient-N conditions. On the other hand, ABA decreased the expression of the chlorophyll degradation gene in older cucumber plants grown under both conditions. In addition, transcript and protein levels of a gene encoding a chlorophyll a/b binding protein were positively correlated with ABA concentration under low-N conditions. The chloroplasts in control plants were round, and the stack of thylakoid membranes was reduced compared with that of plants treated with ABA 10(-5) M. These results strongly suggest that ABA is accumulated in cucumber plants grown under low-N conditions and that accumulated ABA promotes chlorophyll biosynthesis and inhibits its degradation in those plants.

  10. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Liying; Dziedzic, Pawel; Spacil, Zdenek; Zhao, Gui-Ling; Nilsson, Lennart; Ilag, Leopold L.; Córdova, Armando

    2014-10-01

    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life.

  11. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions

    PubMed Central

    Jiang, Liying; Dziedzic, Pawel; Spacil, Zdenek; Zhao, Gui-Ling; Nilsson, Lennart; Ilag, Leopold L.; Córdova, Armando

    2014-01-01

    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life. PMID:25346284

  12. Extracellular amino acid levels in the interpositus nucleus during classical eyeblink conditioning in alert cats.

    PubMed

    Jiménez-Díaz, Lydia; Gruart, Agnès; Miñano, Francisco Javier; Delgado-García, José María

    2007-10-01

    The extracellular levels of selected amino acids in the cerebellar posterior interpositus nucleus (PIN) during classical eyeblink conditioning was analyzed in alert cats using a delay paradigm. Animals were prepared for the chronic recording of eyelid movements (with the magnetic search-coil technique) and the electromyographic activity of the orbicularis oculi muscle. With the help of a guide and push-pull cannulae, selected PIN sites were perfused daily during classical eyeblink conditioning. The perfusate was sampled at intervals of 5 min and analyzed with a high-pressure liquid chromatography- electrochemical detection (HPLC-EC) method. The analysis of push-pull perfusate revealed a significant increase in the release of glycine, taurine, and glutamate across the successive conditioning sessions, in parallel with the acquisition of eyelid conditioned responses (CRs). Both CRs and extracellular levels of these three amino acids returned to control values during extinction. Other amino acids (alanine, GABA, glutamine, serine, and threonine) did not undergo modifications in their extracellular concentrations across the training. Results are discussed with regard to the role of PIN in this type of associative learning.

  13. Heat-moisture treatment under mildly acidic conditions alters potato starch physicochemical properties and digestibility.

    PubMed

    Kim, Jong-Yea; Huber, Kerry C

    2013-11-06

    Potato starch was subjected to heat-moisture treatment (HMT; 120 °C, 3 h) under mildly acidic conditions (pH 5, 6, or 6.5 [control]) at moisture levels of 15, 20 or 25%. HMT starches exhibited significantly delayed pasting times and reduced overall paste viscosities, amylose leaching, and granular swelling characteristics relative to native starch, as well as enhanced levels of thermo-stable resistant starch (≈24%). HMT appeared to alter/enhance short-range chain associations (FT-IR) within amorphous and/or crystalline regions of starch granules. However, the extent of physicochemical change and RS enhancement during HMT was most facilitated by a mildly acidic condition (pH 6) at higher treatment moisture levels (20 or 25%). These conditions promoted limited hydrolysis of amylopectin molecules, primarily at α-(1→6) branch points, likely enhancing mobility and interaction of starch chains during HMT. Thus, a slightly acidic pH might reduce conditions and/or timeframe needed to impart physicochemical changes and reduced digestibility to potato starch.

  14. Probiotic potential of lactic acid bacteria present in home made curd in southern India

    PubMed Central

    Balamurugan, Ramadass; Chandragunasekaran, Aarthi Sophia; Chellappan, Gowri; Rajaram, Krithika; Ramamoorthi, Gayathri; Ramakrishna, Balakrishnan S.

    2014-01-01

    Background & objectives: The human gut microbiota play a significant role in nutritional processes. The concept of probiotics has led to widespread consumption of food preparations containing probiotic microbes such as curd and yogurt. Curd prepared at home is consumed every day in most homes in southern India. In this study the home-made curd was evaluated for lactic acid bacteria (LAB) with probiotic potential. Methods: Fifteen LAB (12 lactobacilli, 1 Lactococcus, 2 Leuconostoc) and one yeast isolated from home-made curd were evaluated for resistance to acid, pepsin, pancreatin and bile salts; antimicrobial resistance; intrinsic antimicrobial activity; adherence to Caco-2 epithelial cells; ability to block pathogen adherence to Caco-2 cells; ability to inhibit interleukin (IL)-8 secretion from HT-29 epithelial cells in response to Vibrio cholerae; and ability to induce anti-inflammatory cytokine expression in THP-1 monocyte cells. Results: Lactobacillus abundance in fermenting curd peaked sharply at 12 h. Nine of the strains survived exposure to acid (pH 3.0) for at least one hour, and all strains survived in the presence of pancreatin or bile salts for 3 h. None showed haemolytic activity. All were resistant to most antimicrobials tested, but were sensitive to imipenem. Most strains inhibited the growth of Salmonella Typhimurium while five inhibited growth of V. cholerae O139. Seven strains showed adherence to Caco-2 cells ranging from 20-104 per cent of adherence of an adherent strain of Escherichia coli, but all inhibited V. cholerae adherence to Caco-2 cells by 20-100 per cent. They inhibited interleukin-8 secretion from HT-29 cells, in response to V. cholerae, by 50-80 per cent. Two strains induced IL-10 and IL-12 messenger ribonucleic acid (mRNA) expression in THP-1 cells. Interpretation & conclusions: LAB in curd had properties consistent with probiotic potential, but these were not consistent across species. LAB abundance in curd increased rapidly at 12 h

  15. Acid rain monitoring in East-Central Florida from 1977 to present

    NASA Technical Reports Server (NTRS)

    Madsen, B. C.; Kheoh, T.; Hinkle, C. R.; Dreschel, T. W.

    1990-01-01

    Rainfall has been collected on the University of Central Florida campus and at the Kennedy Space Center over a 12 year period. The chemical composition has been determined and summarized by monthly, annual periods, and for the entire 12 year period at both locations. The weighted average pH at each site is 4.58; however, annual weighted average pH has been equal to or above the 12 year average during six of the past eight years. Nitrate concentrations have increased slightly during recent years while excess sulfate concentrations have remained below the 12 year weighted average during six of the past seven years. Stepwise regression suggests that sulfate, nitrate, ammonium ion and calcium play major roles in the description of rainwater acidity. Annual acid deposition and annual rainfall have varied from 20 to 50 meg/(m(exp 2) year) and 100 to 180 cm/year, respectively. Sea salt comprises at least 25 percent of the total ionic composition.

  16. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions.

    PubMed

    Youngquist, J Tyler; Korosh, Travis C; Pfleger, Brian F

    2016-10-13

    Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.

  17. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions.

    PubMed

    Lu, Huiying J; Breidt, Frederick; Pérez-Díaz, Ilenys M; Osborne, Jason A

    2011-06-01

    Outbreaks of disease due to vegetative bacterial pathogens associated with acid foods (such as apple cider) have raised concerns about acidified vegetables and related products that have a similar pH (3.2 to 4.0). Escherichia coli O157:H7 and related strains of enterohemorrhagic E. coli (EHEC) have been identified as the most acid resistant vegetative pathogens in these products. Previous research has shown that the lack of dissolved oxygen in many hermetically sealed acid or acidified food products can enhance survival of EHEC compared with their survival under aerobic conditions. We compared the antimicrobial effects of several food acids (acetic, malic, lactic, fumaric, benzoic, and sorbic acids and sulfite) on a cocktail of EHEC strains under conditions representative of non-heat-processed acidified vegetables in hermetically sealed jars, holding the pH (3.2) and ionic strength (0.342) constant under anaerobic conditions. The overall antimicrobial effectiveness of weak acids used in this study was ranked, from most effective to least effective: sulfite > benzoic acid > sorbic acid > fumaric acid > L- and D-lactic acid > acetic acid > malic acid. These rankings were based on the estimated protonated concentrations required to achieve a 5-log reduction in EHEC after 24 h of incubation at 30°C. This study provides information that can be used to formulate safer acid and acidified food products and provides insights about the mode of action of weak acids against EHEC.

  18. Human skin permeability enhancement by lauric acid under equilibrium aqueous conditions.

    PubMed

    Smith, S W; Anderson, B D

    1995-05-01

    An in vitro method was developed to investigate the enhancement of hydrocortisone transport across human stratum corneum (SC) by a model enhancer, lauric acid, in aqueous solutions under equilibrium conditions with respect to the enhancer. In contrast to classical (i.e., nonequilibrium) loading techniques, in which the enhancer is applied only to the donor side of SC either in pure form or in an organic solvent while enhancer-free aqueous buffers are placed in the receptor phase, this method allowed the investigation of pH effects, concentration effects, and reversibility of both enhancer uptake and enhancement of drug transport under thermodynamically well-defined conditions. The SC-buffer partition coefficients for lauric acid were linear with concentration and sigmoidal with pH, suggesting that both the neutral species and laurate anion partition into SC. Comparisons of partition coefficients in delipidized and untreated SC as a function of pH indicated that the uptake of lauric acid in neutral form is governed primarily by the lipid domain, whereas the protein domain accounts for anion uptake. The effects of lauric acid on skin permeability were > 80% reversible upon extraction of the enhancer from the membrane. However, the degree of enhancement of hydrocortisone permeability was nonlinearly dependent on the equilibrium concentration of lauric acid in either the aqueous buffer or the membrane, exhibiting thresholds in the appearance of enhancement with concentration. The enhancer concentration necessary to achieve isoenhancement of about 6-fold varied from approximately 1 x 10(-5) M at pH < pKa to approximately 1 x 10(-2) M at high pH (pH > 8) demonstrating the higher influence of the free acid species.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The rapid identification of lactic acid bacteria present in Chilean winemaking processes using culture-independent analysis.

    PubMed

    Ilabaca, Carolina; Jara, Carla; Romero, Jaime

    2014-01-01

    A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of 16S ribosomal RNA (rRNA) genes was developed to identify lactic acid bacteria (LAB) that are commonly present in winemaking processes (Oenococcus, Pediococcus, Lactobacillus, and Leuconostoc). This culture-independent approach revealed the presence of Oenococcus in the spontaneous malolactic fermentation in industrial Chilean wines.

  20. Fatty acid profiles of four filamentous green algae under varying culture conditions.

    PubMed

    Liu, Junzhuo; Vanormelingen, Pieter; Vyverman, Wim

    2016-01-01

    Although benthic filamentous algae are interesting targets for wastewater treatment and biotechnology, relatively little is known about their biochemical composition and variation in response to growth conditions. Fatty acid composition of four benthic filamentous green algae was determined in different culture conditions. Although the response was partly species-dependent, increasing culture age, nitrogen deprivation and dark exposure of stationary phase greatly increased both total fatty acid content (TFA) from 12-35 to 40-173mgg(-1) dry weight (DW) and the relative proportion of polyunsaturated fatty acids (PUFAs) from 21-58% to 55-87% of TFA, with dark exposure having the greatest effect. However, the main variation in fatty acid composition was between species, with Uronema being rich in C16:0 (2.3% of DW), Klebsormidium in C18:2ω6 (5.4% of DW) and Stigeoclonium in C18:3ω3 (11.1% of DW). This indicates the potential of the latter two species as potential sources of these PUFAs.

  1. Formation Sequences of Iron Minerals in the Acidic Alteration Products and Variation of Hydrothermal Fluid Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Yoshizawa, M.

    2008-12-01

    Iron minerals have important role in environmental issues not only on the Earth but also other terrestrial planets. Iron mineral species related to alteration products of primary minerals with surface or subsurface fluids are characterized by temperature, acidity and redox conditions of the fluids. We can see various iron- bearing alteration products in alteration products around fumaroles in geothermal/volcanic areas. In this study, zonal structures of iron minerals in alteration products of the geothermal area are observed to elucidate temporal and spatial variation of hydrothermal fluids. Alteration of the pyroxene-amphibole andesite of Garan-dake volcano, Oita, Japan occurs by the acidic hydrothermal fluid to form cristobalite leaching out elements other than Si. Hand specimens with unaltered or weakly altered core and cristobalite crust show various sequences of layers. XRD analysis revealed that the alteration degree is represented by abundance of cristobalite. Intermediately altered layers are characterized by occurrence including alunite, pyrite, kaolinite, goethite and hematite. A specimen with reddish brown core surrounded by cristobalite-rich white crust has brown colored layers at the boundary of core and the crust. Reddish core is characterized by occurrence of crystalline hematite by XRD. Another hand specimen has light gray core, which represents reduced conditions, and white cristobalite crust with light brown and reddish brown layers of ferric iron minerals between the core and the crust. On the other hand, hornblende crystals, typical ferrous iron-bearing mineral of the host rock, are well preserved in some samples with strongly decolorized cristobalite-rich groundmass. Hydrothermal alteration experiments of iron-rich basaltic material shows iron mineral species depend on acidity and temperature of the fluid. Oxidation states of the iron-bearing mineral species are strongly influenced by the acidity and redox conditions. Variations of alteration

  2. Comparative analysis of near-present and future synoptic conditions and their contribution to precipitation in central Greece

    NASA Astrophysics Data System (ADS)

    Karacostas, Theodore S.; Bampzelis, Dimitrios; Karipidou, Symela; Pytharoulis, Ioannis; Tegoulias, Ioannis; Kartsios, Stergios; Kotsopoulos, Stylianos; Pakalidou, Nikoletta

    2015-04-01

    The objective on this study is to identify and categorize the daily synoptic circulation patterns encountered between the two periods, in near-present (2001-2010) and future (2041-2050), over the greater area of central and northern Greece, under the "DAPHNE" project (www.daphne-meteo.gr). The followed up statistical analyses and comparisons are focus on the demonstration of the differences in the frequency of occurrences of the synoptic situations between the two time periods, aiming at mitigating drought in central Greece by means of Weather Modification. Actually, within the context of the project, the daily synoptic circulation patterns encountered during the near-present ten-year period are identified and classified according to Karacostas et al. (1992) synoptic classification, into ten distinct synoptic conditions, based on the isobaric level of 500hPa. A similar procedure is adopted for the future period 2041-2050, by developing the mid-tropospheric synoptic circulation patterns through the RegCM3 regional climate model, under the IPCC scenario A1B. Results indicate that certain differences exist between near-present and future frequency distribution of occurrences of the synoptic situations over the study area. The northwest (NW) and southwest (SW) synoptic circulation patterns remain the most frequent synoptic conditions observed for both examined periods. The low pressure system activity over the area exhibit significant decrease during the future period, as it is depicted from the inter-comparison of the frequencies of the closed low (L-2) and cut-off low (L-3) systems. On the other hand, the unorganized synoptic conditions, which are mostly identified as high-low patterns (H-L), appear to increase considerably. The frequencies of zonal flow (ZON) and those of synoptic conditions associated with the presence of high-pressure system over the area, that is (H-1) and (H-2), remain almost unchanged between the two periods. The impact of the aforementioned

  3. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  4. Quantitative metabolomics analysis of amino acid metabolism in recombinant Pichia pastoris under different oxygen availability conditions

    PubMed Central

    2012-01-01

    Background Environmental and intrinsic stress factors can result in the global alteration of yeast physiology, as evidenced by several transcriptional studies. Hypoxia has been shown to have a beneficial effect on the expression of recombinant proteins in Pichia pastoris growing on glucose. Furthermore, transcriptional profiling analyses revealed that oxygen availability was strongly affecting ergosterol biosynthesis, central carbon metabolism and stress responses, in particular the unfolded protein response. To contribute to the better understanding of the effect and interplay of oxygen availability and foreign protein secretion on central metabolism, a first quantitative metabolomic analysis of free amino acids pools in a recombinant P. pastoris strain growing under different oxygen availability conditions has been performed. Results The values obtained indicate significant variations in the intracellular amino acid pools due to different oxygen availability conditions, showing an overall increase of their size under oxygen limitation. Notably, even while foreign protein productivities were relatively low (about 40–80 μg Fab/gDCW·h), recombinant protein production was found to have a limited but significant impact on the intracellular amino acid pools, which were generally decreased in the producing strain compared with the reference strain. However, observed changes in individual amino acids pools were not correlated with their corresponding relative abundance in the recombinant protein sequence, but to the overall cell protein amino acid compositional variations. Conclusions Overall, the results obtained, combined with previous transcriptomic and proteomic analyses provide a systematic metabolic fingerprint of the oxygen availability impact on recombinant protein production in P. pastoris. PMID:22704468

  5. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production.

  6. Dewaterability of sludge conditioned with surfactant DDBAC pretreatment by acid/alkali.

    PubMed

    Hong, Chen; Xing, Yi; Hua, Xiufu; Si, Yanxiao; Qiao, Geng; Wang, Zhiqiang

    2015-07-01

    The potential benefits of surfactant-conditioned sludge dewatering treatment with acid/alkali pretreatment were investigated in this study. The water content of dewatered sludge (W C) and specific resistance of filtration (SRF) were used to evaluate sludge dewaterability. Extracellular polymeric substance (EPS) content, bound water content, zeta potential, and rheological properties were measured to explain the change of dewaterability observed in the conditioning process. By introducing dodecyl dimethyl benzyl ammonium chloride (DDBAC), the EPS content of the sludge supernatant changed, and bound water content, charge strength, and apparent viscosity decreased simultaneously. Although DDBAC-conditioned sludge in strong alkaline had low bound water content, W C and SRF increased rapidly because of the dramatically increasing of EPS in sludge supernatant. Remarkable decrement was observed in bound water content and W C in DDBAC-conditioned sludge which was in weak acid environment for comparison. The results indicated that 75 mg/g of DDBAC at pH 4.84 was the optimum under which W C and SRF were at their lowest point in sludge, 58.22 % and 0.521 × 10(13) m/kg, respectively.

  7. Expressing acid-sensing ion channel 3 in the brain alters acid-evoked currents and impairs fear conditioning.

    PubMed

    Vralsted, V C; Price, M P; Du, J; Schnizler, M; Wunsch, A M; Ziemann, A E; Welsh, M J; Wemmie, J A

    2011-06-01

    Previous studies on mice with a disruption of the gene encoding acid-sensing ion channel 1a (ASIC1a) suggest that ASIC1a is required for normal fear behavior. To investigate the effects of altering the subunit composition of brain ASICs on behavior, we developed transgenic mice expressing ASIC3 via the pan-neuronal synapsin I promoter. These mice express ASIC3 in the brain, where the endogenous ASIC3 protein is not detected. We found that in ASIC3 transgenic mice, ASIC3 co-immunoprecipitated with the endogenous ASIC1a protein and distributed in the same subcellular brain fractions as ASIC1a. In addition, ASIC3 significantly increased the rate of desensitization of acid-evoked currents in cultured cortical neurons. Importantly, ASIC3 reduced Pavlovian fear conditioning to both context and auditory cues. These observations suggest that ASIC3 can heteromultimerize with ASIC1a in the brain and alter the biophysical properties of the endogenous channel complex. Moreover, these data suggest that ASIC subunit composition and channel desensitization may be critical determinants for ASIC-dependent behavior.

  8. Protonation of Alcohols in Sulfuric Acid Solutions at UT/LS Conditions

    NASA Astrophysics Data System (ADS)

    Michelsen, R. R.; Vernier, K.; Axson, J.; Morley, D.

    2007-12-01

    The protonation of several small alcohols (ethanol, 2-propanol, and 1-butanol) in cold sulfuric acid aqueous solutions was measured using variable temperature 13C nuclear magnetic resonance (NMR) spectroscopy. The acidity of the sulfuric acid + deuterium oxide solutions ranged from 43 to 81 weight percent (wt %) H2SO4. The pKBH+ values, which are a measure of the acidity of each alcohol, range from -2.0 for butanol at room temperature to -2.2 for ethanol at -20°C. The protonation enthalpies of the three alcohols over the temperature range of 22°C to -35°C were found to be small and negative, ranging from -1.8 kJ mol-1 for 2-propanol to -2.3 kJ mol-1 for ethanol. A small, negative protonation enthalpy means that the degree of protonation of the alcohol slightly decreases as temperature decreases. The pKBH+values and protonation enthalpies are used to predict the form of dissolved alcohols in sulfate aerosols. For typical upper troposphere/lower stratosphere (UT/LS) conditions (40-70 wt % H2SO4 and 220 K), all three alcohols increase from approximately 10% protonated in 40 wt % H2SO4 to over 60% protonated in 70 wt % H2SO4. The percent of protonated alcohol depends more strongly on m*, the slope factor of the excess acidity treatment, than on pKBH+ values. This relationship may reflect solvation effects. The treatment of strongly acidic, non-ideal solutions as applied to organic solutes in sulfate aerosol particles will be discussed.

  9. Synthesis of boron suboxide from boron and boric acid under mild pressure and temperature conditions

    SciTech Connect

    Jiao, Xiaopeng; Jin, Hua; Ding, Zhanhui; Yang, Bin; Lu, Fengguo; Zhao, Xudong; Liu, Xiaoyang; Peng, Liping

    2011-05-15

    Graphical abstract: Well-crystallized and icosahedral B{sub 6}O crystals were prepared by reacting boron and boric acid at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work.. Research highlights: {yields} Well-crystallized icosahedral B{sub 6}O was synthesized by reacting boric acid and boron. {yields} The synthesis conditions (1 GPa and 1300 {sup o}C for 2 h) are milder in comparison with previous work. {yields} The more practical synthesis method may make B{sub 6}O as a potential substitute for diamond in industry. -- Abstract: Boron suboxide (B{sub 6}O) was synthesized by reacting boron and boric acid (H{sub 3}BO{sub 3}) at pressures between 1 and 10 GPa, and at temperatures between 1300 and 1400 {sup o}C. The B{sub 6}O samples prepared were icosahedral with diameters ranging from 20 to 300 nm. Well-crystallized and icosahedral crystals with an average size of {approx}100 nm can be obtained at milder reaction conditions (1 GPa and 1300 {sup o}C for 2 h) as compared to previous work. The bulk B{sub 6}O sample was stable in air at 600 {sup o}C and then slowly oxidized up to 1000 {sup o}C. The relatively mild synthetic conditions developed in this study provide a more practical synthesis of B{sub 6}O, which may potentially be used as a substitute for diamond in industry as a new superhard material.

  10. Long-term geochemical evolution of acidic mine wastes under anaerobic conditions.

    PubMed

    Lu, Wenzhou; Lin, Chuxia; Ma, Yingqun

    2013-08-01

    A nearly 5-year anaerobic incubation experiment was conducted to observe the geochemical evolution of an acidic mine waste. Long-term storage of the mine waste under strict anaerobic conditions caused marked increase in aqueous sulfur, while aqueous iron showed no remarkable change. Co-existing oxidation and reduction of elemental sulfur appeared to play a central role in controlling the evolutionary trends of aqueous sulfur and iron. Addition of organic matter increased the aqueous Fe concentration, possibly due to enhanced iron mobilization by microbial iron reduction and increased iron solubility by forming organically complexed Fe species. Further addition of CaCO3 resulted in immobilization of aqueous iron and sulfur due to elevated pH and gypsum formation. The chemical behaviors of environmentally significant metals were markedly affected by the added organic matter; Al, Cr, Cu, Ni and Zn tended to be immobilized probably due to elevated pH and complexation with insoluble organic molecules, while As and Pb tended to be mobilized. Jarosite exhibited high stability after nearly 5 years of anaerobic incubation and even under circumneutral pH conditions. Long-term weathering of aluminosilicate through acid attack raised pH, while continuous reaction between the added CaCO3 and mine waste-borne stored acid decreased pH.

  11. Understanding E2 versus SN2 Competition under Acidic and Basic Conditions.

    PubMed

    Wolters, Lando P; Ren, Yi; Bickelhaupt, F Matthias

    2014-02-01

    Our purpose is to understand the mechanism through which pH affects the competition between base-induced elimination and substitution. To this end, we have quantum chemically investigated the competition between elimination and substitution pathways in H2O+C2H5OH2 (+) and OH(-)+C2H5OH, that is, two related model systems that represent, in a generic manner, the same reaction under acidic and basic conditions, respectively. We find that substitution is favored in the acidic case while elimination prevails under basic conditions. Activation-strain analyses of the reaction profiles reveal that the switch in preferred reactivity from substitution to elimination, if one goes from acidic to basic catalysis, is related to (1) the higher basicity of the deprotonated base, and (2) the change in character of the substrates LUMO from C(β)-H bonding in C2H5OH2 (+) to C(β)-H antibonding in C2H5OH.

  12. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    PubMed Central

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; Martin-Uriz, Patxi San; Rodríguez, Nuria; McKenzie, Judith A.; Vasconcelos, Crisogono

    2014-01-01

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets. PMID:24755961

  13. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions.

    PubMed

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; San Martin-Uriz, Patxi; Rodríguez, Nuria; McKenzie, Judith A; Vasconcelos, Crisogono

    2014-04-23

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.

  14. The effect of various treatment conditions on natural zeolites: ion exchange, acidic, thermal and steam treatments.

    PubMed

    Ates, Ayten; Hardacre, Christopher

    2012-04-15

    Two different natural zeolites having different phase compositions were obtained from different regions of Turkey and modified by ion-exchange (0.5M NH(4)NO(3)) and acid leaching using 1M HCl. The natural and modified samples were treated at low temperature (LT), high temperature (HT) and steam (ST) conditions and characterised by XRF, XRD, BET, FTIR, DR-UV-Vis, NH(3)-TPD and TGA. Ion-exchange with NH(4)(+) of natural zeolites results in the exchange of the Na(+) and Ca(2+) cations and the partial exchange of the Fe(3+) and Mg(2+) cations. However, steam and acidic treatments cause significant dealumination and decationisation, as well as loss of crystalline, sintering of phases and the formation of amorphous material. The presence of mordenite and quartz phases in the natural zeolites increases the stability towards acid treatment, whereas the structure of clinoptilolite-rich zeolites is mostly maintained after high temperature and steam treatments. The natural and modified zeolites treated at high temperature and in steam were found to be less stable compared with synthetic zeolites, resulting in a loss of crystallinity, a decrease in the surface area and pore volume, a decrease in the surface acidity as well as dealumination, and decationisation.

  15. Evaluation of the performance degradation at PAFC effect of operating conditions on acid loss

    SciTech Connect

    Miyoshi, Hideaki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complimentary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY conducted by NEDO, with the objective of establishing an estimation method for the service life-time of the cell stacks. As part of this project, this work has been performed to clarify basic phenomena of the performance degradation at PAFCs jointly by Yamanashi University, PAFC-TRA and PAFC manufacturers. The acid loss into exhaust gases is one of life limiting factors in PAFCs. To design the cells of long-life, it is important to estimate the phosphoric acid loss and to contrive ideas eliminating it. With the objective of obtaining basic data for simulating the acid loss in the large size cells, the effect of the operating conditions on the acid loss into exhaust gases has been studied experimentally by using a single cell with an active electrode area of 100 cm{sup 2}.

  16. Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare.

    PubMed

    Stinson, E E; Kwoczak, R; Kurantz, M J

    1991-10-01

    The effect of culture conditions upon lipid content and fatty acid composition of mycelia of Pythium irregulare was investigated with particular attention to increasing the yield of 5,8,11,14,17-eicosapentaenoic acid (20:5; omega-3)(EPA). All experiments were done by shake flask culture using a yeast extract + malt extract medium. The maximum growth rate was obtained at 25 degrees C, but maximum EPA production was obtained at 12 degrees C. The highest EPA production was 76.5 micrograms EPA/ml 13 days fermentation at 12 degrees C. Addition of glucose during fermentation increased the yield considerably. The highest yield was 112 micrograms/ml, obtained at 13 days fermentation with spiking on day 11. Fermentation time could be shortened by initial incubation at 25 degrees C for 2 days, followed by incubation at 12 degrees C for 6 days. The culture also produced arachidonic acid and other omega-6 polyunsaturated fatty acids. EPA production was also obtained with lactose or sweet whey permeate, a by-product of cheese manufacture that contains lactose as the main carbohydrate.

  17. Resazurin reduction assay, a useful tool for assessment of heavy metal toxicity in acidic conditions.

    PubMed

    Zare, Mohammadreza; Amin, Mohammad Mehdi; Nikaeen, Mahnaz; Bina, Bijan; Pourzamani, Hamidreza; Fatehizadeh, Ali; Taheri, Ensieh

    2015-05-01

    Almost all bioassays have been designed only for pH levels around 7; however, some toxicant characteristics may be different at lower pH values. In this study, a modified resazurin reduction method was used to evaluate the toxicity of heavy metals and metal plating wastewater on acid-tolerant (AT) and conventional bacteria at the natural and acidic pH conditions. According to our optimized protocol, resazurin was rapidly reduced by both conventional and AT active microorganisms. Considering the 30-min median effective concentration (30 min EC₅₀) values, conventional bacteria were comparatively more resistant than the acid-tolerant bacteria (ATB) in the case of exposure to Cd, Pb, Cr, and Zn, but the reverse case was found for Hg. After an exposure of 30 min, Cr and Hg showed the highest toxicity to ATB (30 min EC₅₀ values were 0.34 and 17.02 μmol/L, respectively), while Zn and Pb had a considerably lower toxicity. The modified resazurin reduction method successfully assessed the impact of metal plating wastewaters on the activities of conventional and AT bacteria. According to the findings where the wastewaters contain heavy metals, wastewater treatment facilities, which are dependent on ATB activity, should use bioassays at acidic pH values for better understanding of the effects of toxicants.

  18. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions.

    PubMed

    Cho, Hyun Uk; Kim, Young Mo; Park, Jong Moon

    2017-03-01

    The goal of this study was to investigate the influences of gradually mixotrophic culture conditions on microalgal biomass and lipid production by a consortium of indigenous microalgae and bacteria present in raw municipal wastewater. Lab-scale photobioreactors containing the consortium were operated in repeated batch mode. Initial cultivation (phase I) was performed using only the municipal wastewater, then 10% and 25% of the reactor volumes were replaced with the effluent from a sewage sludge fermentation system producing volatile fatty acids (SSFV) at the beginnings of phase II and phase III, respectively. The highest biomass productivity (117.1±2.7mg/L/d) was attained during phase II, but the lipid productivity (17.2±0.2mg/L/d) was attained during phase III. The increase in the effluent from the SSFV influenced microalgal diversity with a preference for Chlorella sp., but bacterial diversity increased significantly during phase III.

  19. Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood.

    PubMed

    Lim, Woo-Seok; Lee, Jae-Won

    2013-07-01

    In this study, the effects of different acid catalysts and pretreatment factors on the hydrolysis of mixed softwood were investigated over a range of thermochemical pretreatments. Maleic, oxalic, and sulfuric acids were each used, under different pretreatment conditions. The most influential factor for fermentable sugar production in the dicarboxylic acid pretreatment of softwood was the pH. Reaction temperature was the next significant factor. However, during sulfuric acid pretreatment, fermentable sugar production was more dependent on reaction temperature, than time or pH. Enzymatic hydrolysis yields differed, depending on acid catalyst and pretreatment factor, regardless of lignin content in pretreated biomass. The highest enzymatic hydrolysis yield was found following maleic acid pretreatment, which reached 61.23%. The trend in enzymatic hydrolysis yields that were detected concomitantly with pretreatment condition or type of acid catalyst was closely related to the fermentable sugar production in the hydrolysate.

  20. Pickled egg production: effect of brine acetic acid concentration and packing conditions on acidification rate.

    PubMed

    Acosta, Oscar; Gao, Xiaofan; Sullivan, Elizabeth K; Padilla-Zakour, Olga I

    2014-05-01

    U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25 °C/none/25 °C (cold fill), (ii) 25 °C/none/2 °C (cold fill/refrigerated), (iii) 85 °C/none/25 °C (hot fill), and (iv) 25 °C/100 °C for 16 min/25 °C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.

  1. Effect of Varying Acid Hydrolysis Condition in Gracilaria Sp. Fermentation Using Sasad

    NASA Astrophysics Data System (ADS)

    Mansuit, H.; Samsuri, M. D. C.; Sipaut, C. S.; Yee, C. F.; Yasir, S. M.; Mansa, R.

    2015-04-01

    Macroalgae or seaweed is being considered as promising feedstock for bioalcohol production due to high polysaccharides content. Polysaccharides can be converted into fermentable sugar through acid hydrolysis pre-treatment. In this study, the potential of using carbohydrate-rich macroalgae, Gracilaria sp. as feedstock for bioalcohol production via various acid hydrolysis conditions prior to the fermentation process was investigated and evaluated. The seaweed used in this research was from the red algae group, using species of Gracilaria sp. which was collected from Sg. Petani Kedah, Malaysia. Pre-treatment of substrate was done using H2SO4 and HCl with molarity ranging from 0.2M to 0.8M. The pretreatment time were varied in the range of 15 to 30 minutes. Fermentation was conducted using Sasad, a local Sabahan fermentation agent as a starter culture. Alcohol extraction was done using a distillation unit. Reducing sugar analysis was done by Benedict test method. Alcohol content analysis was done using specific gravity test. After hydrolysis, it was found out that acid hydrolysis at 0.2M H2SO4 and pre-treated for 20 minutes at 121°C has shown the highest reducing sugar content which has yield (10.06 mg/g) of reducing sugar. It was followed by other samples hydrolysis using 0.4M HCl with 30 minutes pre-treatment and 0.2M H2SO4, 15 minutes pre-treatment with yield of 8.06 mg/g and 5.75 mg/g reducing sugar content respectively. In conclusion, acid hydrolysis of Gracilaria sp. can produce higher reducing sugar yield and thus it can further enhance the bioalcohol production yield. Hence, acid hydrolysis of Gracilaria sp. should be studied more as it is an important step in the bioalcohol production and upscaling process.

  2. Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria.

    PubMed

    Abd Elrazak, Ahmed; Ward, Alan C; Glassey, Jarka

    2013-05-01

    Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), are increasingly attracting scientific attention owing to their significant health-promoting role in the human body. However, the human body lacks the ability to produce them in vivo. The limitations associated with the current sources of ω-3 fatty acids from animal and plant sources have led to increased interest in microbial production. Bacterial isolate 717 was identified as a potential high EPA producer. As an important step in the process development of the microbial PUFA production, the culture conditions at the bioreactor scale were optimised for the isolate 717 using a response surface methodology exploring the significant effect of temperature, pH and dissolved oxygen and the interaction between them on the EPA production. This optimisation strategy led to a significant increase in the amount of EPA produced by the isolate under investigation, where the amount of EPA increased from 9 mg/g biomass (33 mg/l representing 7.6 % of the total fatty acids) to 45 mg/g (350 mg/l representing 25 % of the total fatty acids). To avoid additional costs associated with extreme cooling at large scale, a temperature shock experiment was carried out reducing the overall cooling time from the whole cultivation process to 4 h only prior to harvest. The ability of the organism to produce EPA under the complete absence of oxygen was tested revealing that oxygen is not critically required for the biosynthesis of EPA but the production improved in the presence of oxygen. The stability of the produced oil and the complete absence of heavy metals in the bacterial biomass are considered as an additional benefit of bacterial EPA compared to other sources of PUFA. To our knowledge this is the first report of a bacterial isolate producing EPA with such high yields making the large-scale manufacture much more economically viable.

  3. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions.

    PubMed

    Bosica, Giovanna; Abdilla, Roderick

    2016-06-22

    Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs.

  4. SORPTION BEHAVIOR OF MONOSODIUM TITANATE AND AMORPHOUS PEROXOTITANATE MATERIALS UNDER WEAKLY ACIDIC CONDITIONS

    SciTech Connect

    Hobbs, D.; Elvington, M.; Click, D.

    2009-11-11

    Inorganic, titanate-based sorbents are tested with respect to adsorption of a variety of sorbates under weakly acidic conditions (pH 3). Specifically, monosodium titanate (MST) and amorphous peroxotitanate (APT) sorption characteristics are initially probed through a screening process consisting of a pair of mixed metal solutions containing a total of 29 sorbates including alkali metals, alkaline earth metals, transition metals, metalloids and nonmetals. MST and APT sorption characteristics are further analyzed individually with chromium(III) and cadmium(II) using a batch method at ambient laboratory temperature, varying concentrations of the sorbents and sorbates and contact times. Maximum sorbate loadings are obtained from the respective adsorption isotherms.

  5. UVolution, a photochemistry experiment in low earth orbit: investigation of the photostability of carboxylic acids exposed to mars surface UV radiation conditions.

    PubMed

    Stalport, Fabien; Guan, Yuan Yong; Coll, Patrice; Szopa, Cyril; Macari, Frédérique; Raulin, François; Chaput, Didier; Cottin, Hervé

    2010-05-01

    The detection and identification of organic molecules on Mars are of prime importance to establish the existence of a possible ancient prebiotic chemistry or even a biological activity. To date, however, no complex organic compounds have been detected on Mars. The harsh environmental conditions at the surface of Mars are commonly advocated to explain this nondetection, but few studies have been implemented to test this hypothesis. To investigate the nature, abundance, and stability of organic molecules that could survive under such environmental conditions, we exposed, in low Earth orbit, organic molecules of martian astrobiological relevance to solar UV radiation (>200 nm). The experiment, called UVolution, was flown on board the Biopan ESA module, which was situated outside a Russian Foton automated capsule and exposed to space conditions for 12 days in September 2007. The targeted organic molecules [alpha-aminoisobutyric acid (AIB), mellitic acid, phthalic acid, and trimesic acid] were exposed with, and without, an analogous martian soil. Here, we present experimental results of the impact of solar UV radiation on the targeted molecules. Our results show that none of the organic molecules studied seemed to be radiotolerant to the solar UV radiation when directly exposed to it. Moreover, the presence of a mineral matrix seemed to increase the photodestruction rate. AIB, mellitic acid, phthalic acid, and trimesic acid should not be considered as primary targets for in situ molecular analyses during future surface missions if samples are only collected from the first centimeters of the top surface layer.

  6. Small cell carcinoma of the prostate presenting with Cushing Syndrome. A narrative review of an uncommon condition.

    PubMed

    Rueda-Camino, José Antonio; Losada-Vila, Beatriz; De Ancos-Aracil, Cristina Lucía; Rodríguez-Lajusticia, Laura; Tardío, Juan Carlos; Zapatero-Gaviria, Antonio

    2016-01-01

    Small cell carcinoma (SCC) of the prostate is an uncommon condition; there are very few cases in which presenting symptoms are consistent with Cushing Syndrome (CS). We report a new case in which CS triggers the suspicion of an SCC of the prostate and a review of the published cases of SCC of the prostate presenting with CS. The origin of these neoplasms is still unclear. It may be suspected when laboratory features appear in patients diagnosed with prostatic adenocarcinoma which becomes resistant to specific therapy. SCC usually occurs after the 6th decade. Patients suffering SCC of the prostate presenting with CS usually present symptoms such as hypertension, hyperglycemia, alkalosis or hypokalemia; cushingoid phenotype is less frequent. Cortisol and ACTH levels are often high. Prostatic-specific antigen levels are usually normal. CT scan is the preferred imaging test to localize the lesion, but its performance may be improved by adding other tests, such as FDG-PET scan. All patients have metastatic disease at the time of diagnosis. Lymph nodes, liver and bone are the most frequent metastases sites. Surgery and Ketokonazole are the preferred treatments for CS. The prognosis is very poor: 2- and 5-year survival rates are 27.5 and 14.3%, respectively. Key messages When a patient presents with ectopic Cushing Syndrome but lungs are normal, an atypical localization should be suspected. We should suspect a prostatic origin if Cushing Syndrome is accompanied by obstructive inferior urinary tract symptoms or in the setting of a prostatic adenocarcinoma with rapid clinical and radiological progression with relatively low PSA levels. Although no imaging test is preferred to localize these tumors, FDG-PET-TC can be very useful. Hormone marker scintigraphy (e.g. somatostatin) could be used too. As Cushing Syndrome is a paraneoplastic phenomenon, treatment of the underlying disease may help control hypercortisolism manifestations. These tumors are usually metastatic by the

  7. Interaction of chemical and physical processes during deformation at fluid-present conditions: a case study from an anorthosite-leucogabbro deformed at amphibolite facies conditions

    NASA Astrophysics Data System (ADS)

    Svahnberg, Henrik; Piazolo, Sandra

    2013-03-01

    We present microstructural and chemical analyses of chemically zoned and recrystallized plagioclase grains in variably strained samples of a naturally deformed anorthosite-leucogabbro, southern West Greenland. The recorded microstructures formed in the presence of fluids at mid-crustal conditions (620-640 °C, 7.4-8.6 kbar). Recrystallized plagioclase grains (average grain size 342 μm) with a random crystallographic orientation are volumetrically dominant in high-strain areas. They are characterized by asymmetric chemical zoning (An80 cores and An64 rims) that are directly associated with areas exhibiting high amphibole content and phase mixing. Analyses of zoning indicate anisotropic behaviour of bytownite plagioclase with a preferred replacement in the < {0 10} rangle direction and along the (001) plane. In areas of high finite strain, recrystallization of plagioclase dominantly occurred by bulging recrystallization and is intimately linked to the chemical zoning. The lack of CPO as well as the developed asymmetric zoning can be explained by the activity of grain boundary sliding accommodated by dissolution and precipitation creep (DPC). In low-strain domains, grain size is on average larger and the rim distribution is not related to the inferred stress axes indicating chemically induced grain replacement instead of stress-related DPC. We suggest that during deformation, in high-strain areas, pre-existing phase mixture and stress induced DPC-caused grain rotations that allowed a deformation-enhanced heterogeneous fluid influx. This resulted in local plagioclase replacement through interface-coupled dissolution and precipitation and chemically induced grain boundary migration, accompanied by bulging recrystallization, along with neocrystallization of other phases. This study illustrates a strong interaction and feedback between physical and chemical processes where the amount of stress and fluids dictates the dominant active process. The interaction is a cause of

  8. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions

    PubMed Central

    Liang, Ningjian; Kitts, David D.

    2015-01-01

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices are linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions. PMID:26712785

  9. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions.

    PubMed

    Liang, Ningjian; Kitts, David D

    2015-12-25

    Chlorogenic acids (CGAs) are esters formed between caffeic and quinic acids, and represent an abundant group of plant polyphenols present in the human diet. CGAs have different subgroups that include caffeoylquinic, p-coumaroylquinic, and feruloyquinic acids. Results of epidemiological studies suggest that the consumption of beverages such as coffee, tea, wine, different herbal infusions, and also some fruit juices is linked to reduced risks of developing different chronic diseases. These beverages contain CGAs present in different concentrations and isomeric mixtures. The underlying mechanism(s) for specific health benefits attributed to CGAs involves mitigating oxidative stress, and hence the related adverse effects associated with an unbalanced intracellular redox state. There is also evidence to show that CGAs exhibit anti-inflammatory activities by modulating a number of important metabolic pathways. This review will focus on three specific aspects of the relevance of CGAs in coffee beverages; namely: (1) the relative composition of different CGA isomers present in coffee beverages; (2) analysis of in vitro and in vivo evidence that CGAs and individual isomers can mitigate oxidative and inflammatory stresses; and (3) description of the molecular mechanisms that have a key role in the cell signaling activity that underlines important functions.

  10. Gas-Phase Formation Rates of Nitric Acid and Its Isomers Under Urban Conditions

    NASA Technical Reports Server (NTRS)

    Okumura, M.; Mollner, A. K.; Fry, J. L.; Feng, L.

    2005-01-01

    Ozone formation in urban smog is controlled by a complex set of reactions which includes radical production from photochemical processes, catalytic cycles which convert NO to NO2, and termination steps that tie up reactive intermediates in long-lived reservoirs. The reaction OH + NO2 + M -4 HONO2 + M (la) is a key termination step because it transforms two short-lived reactive intermediates, OH and NO2, into relatively long-lived nitric acid. Under certain conditions (low VOC/NOx), ozone production in polluted urban airsheds can be highly sensitive to this reaction, but the rate parameters are not well constrained. This report summarizes the results of new laboratory studies of the OH + NO2 + M reaction including direct determination of the overall rate constant and branching ratio for the two reaction channels under atmospherically relevant conditions.

  11. Impact of acid adaptation on attachment of Listeria monocytogenes to stainless steel during long-term incubation under low or moderate temperature conditions and on subsequent recalcitrance of attached cells to lethal acid treatments.

    PubMed

    Giaouris, Efstathios; Chorianopoulos, Nikos; Nychas, George-John

    2014-02-03

    This study aimed to evaluate the possible impact of acid adaptation of Listeria monocytogenes cells on their attachment to stainless steel (SS) during long-term incubation under either low or moderate temperature conditions and on the subsequent recalcitrance of attached cells to lethal acid treatments. Initially, nonadapted or acid-adapted stationary phase L. monocytogenes cells were used to inoculate (ca. 10⁸ CFU/ml) brain-heart infusion (BHI) broth in test tubes containing vertically placed SS coupons. Incubation was carried out at either 5 or 30 °C for up to 15 days, under static conditions. On the 5th, 10th and 15th days of incubation, attached cells were subjected to lethal acid treatments by exposing them, for either 6 or 60 min, to pH 2, adjusted with either hydrochloric or lactic acid. Following the acid treatments, remaining viable cells were detached (through strong vortexing with glass beads) and enumerated by agar plating, and also indirectly quantified by conductance measurements via their metabolic activity. Results obtained from both quantification techniques, employed here in parallel, revealed that although the numbers of attached cells for nonadapted and acid-adapted ones were similar, the latter were found to present significantly (p<0.05) increased recalcitrance to all the acid treatments for both incubation temperatures and all sampling days. In addition and regardless of acid adaptation, when long (60 min) acid treatments were applied, conductance measurements revealed that the weak organic lactic acid exhibited significantly (p<0.05) stronger antilisterial activity compared to the strong inorganic hydrochloric acid (at the same pH value of 2). To conclude, present results show that acid adaptation of L. monocytogenes cells during their planktonic growth is conserved even after 15 days of incubation under both low and moderate temperature conditions, and results in the increased recalcitrance of their sessile population to otherwise lethal

  12. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus

    PubMed Central

    Rock, E M; Kopstick, R L; Limebeer, C L; Parker, L A

    2013-01-01

    BACKGROUND AND PURPOSE We evaluated the anti-emetic and anti-nausea properties of the acid precursor of Δ9-tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models. EXPERIMENTAL APPROACH We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA's ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA's effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist). KEY RESULTS In rats, THCA (0.05 and/or 0.5 mg·kg−1) suppressed LiCl-induced conditioned gaping to a flavour and context; the latter effect blocked by the CB1 receptor antagonist, SR, but not by the 5-hydroxytryptamine-1A receptor antagonist, WAY100635. In S. murinus, THCA (0.05 and 0.5 mg·kg−1) reduced LiCl-induced vomiting, an effect that was reversed with SR. A comparatively low dose of THC (0.05 mg·kg−1) did not suppress conditioned gaping to a LiCl-paired flavour or context. THCA did not induce hypothermia or reduce locomotion, indicating non-CB1 agonist-like effects. THCA, but not THC was detected in plasma samples. CONCLUSIONS AND IMPLICATIONS THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting. PMID:23889598

  13. Sorption Behavior of Iodine on Allophane under Acid and Alkaline Conditions - 12203

    SciTech Connect

    Amemiya, Kiyoshi; Nakano, Masashi

    2012-07-01

    In the safety assessment of TRU geological disposal, Iodine-129 (I-129) is considered a key radionuclide. In Japan the reference buffer material within the repository is a bentonite based sand mixture, which is lacking in iodine adsorbent capacity. Additives or alternative buffer materials that can enhance iodine adsorption are desired. Allophane, a common soil material in Japan, is a potential candidate to aid in iodine retention. In order to assess the potential for improvement of buffer and backfill material to limit release of I-129, the sorption behavior of iodine (IO{sub 3}{sup -} and I{sup -}) on allophane was examined in this research. The sorption behavior of IO{sub 3}{sup -} by allophane is strong in acidic conditions, and markedly reduced in alkaline conditions. The K{sub d} values of IO{sub 3}{sup -} are approximately 0.4 m{sup 3}/kg (pH=5), 0.03 m{sup 3}/kg (pH=8), 0.011 m{sup 3}/kg (pH=9), 0.005 m{sup 3}/kg (pH=10). Conversely, the K{sub d} value of I{sup -} is as small as 0.01 m{sup 3}/kg in acidic conditions, and much smaller in alkaline conditions. The numerical analysis shows that a maximum release rate of I-129 from the engineered barrier in the geological disposal system decreased approximately one order of magnitude and the K{sub d} of the buffer increased up to 0.1 m{sup 3}/kg by applying allophane soils to engineered barriers. (authors)

  14. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants?

    PubMed Central

    De Bigault Du Granrut, Antoine; Cacas, Jean-Luc

    2016-01-01

    Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed. PMID:27803703

  15. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting.

    PubMed

    Nakasaki, Kiyohiko; Araya, Shogo; Mimoto, Hiroshi

    2013-09-01

    In this study, the yeast strain Pichia kudriavzevii RB1 was used as an inoculum to accelerate organic matter degradation of rabbit food with added organic acids, which was used as a model food waste for composting. The RB1 strain rapidly degraded the organic acids present in the raw compost material, leading to an increase in pH beyond the neutral level, within 2 days. Both mesophilic and thermophilic bacteria proliferated faster in the compost with RB1 inoculation than in that without inoculation. Although the yeast died with the increase in compost temperature, it affected the early stages of composting prior to the thermophilic stage and accelerated the composting process by 2 days by eliminating the initial lag phase seen in the growth of other microorganisms. Moreover, populations of Bacillus thermoamylovorans, Bacillus foraminis, and Bacillus coagulans became dominant during the thermophilic stages of both composting with and without RB1 inoculation.

  16. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  17. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  18. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.

    PubMed

    Yan, Ruiwen; Kappler, Andreas; Peiffer, Stefan

    2015-10-06

    Chemolithotrophic denitrification coupled to pyrite oxidation is regarded a key process in the removal of nitrate in aquifers. A common product is nitrite, which is a strong oxidant under acidic conditions. Nitrite may thus interfere with Fe(II) during acidic extraction, a procedure typically used to quantify microbial pyrite oxidation, in overestimating Fe(III) production. We studied the reaction between pyrite (5-125 mM) and nitrite (40-2000 μM) at pH 0, 5.5, and 6.8 in the absence and presence of oxygen. Significant oxidation of pyrite was measured at pH 0 with a yield of 100 μM Fe(III) after 5 mM pyrite was incubated with 2000 μM nitrite for 24 h. Dissolved oxygen increased the rate at pH 0. No oxidation of pyrite was observed at pH 5.5 and 6.8. Our data imply a cyclic model for pyrite oxidation by Fe(III) on the basis of the oxidation of residual Fe(II) by NO and NO2. Interference by nitrite could be avoided if nitrite was removed from the pyrite suspensions through a washing procedure prior to acidic extraction. We conclude that such interferences should be considered in studies on microbially mediated pyrite oxidation with nitrate.

  19. Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact.

    PubMed

    Tuominen, Jukka; Kylmä, Janne; Kapanen, Anu; Venelampi, Olli; Itävaara, Merja; Seppälä, Jukka

    2002-01-01

    The biodegradability of lactic acid based polymers was studied under controlled composting conditions (CEN prEN 14046), and the quality of the compost was evaluated. Poly(lactic acids), poly(ester-urethanes), and poly(ester-amide) were synthesized and the effects of different structure units were investigated. The ecotoxicological impact of compost samples was evaluated by biotests, i.e., by the Flash test, measuring the inhibition of light production of Vibrio fischeri, and by plant growth tests with cress, radish, and barley. All the polymers biodegraded to over 90% of the positive control in 6 months, which is the limit set by the CEN standard. Toxicity was detected in poly(ester-urethane) samples where chain linking of lactic acid oligomers had been carried out with 1,6-hexamethylene diisocyanate (HMDI). Both the Flash test and the plant growth tests indicated equal response to initial HMDI concentration in the polymer. All other polymers, including poly(ester-urethane) chain linked with 1,4-butane diisocyanate, showed no toxicological effect.

  20. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies.

    PubMed

    Auer, Sonya K; Lopez-Sepulcre, Andrés; Heatherly, Thomas; Kohler, Tyler J; Bassar, Ronald D; Thomas, Steven A; Reznick, David N

    2012-07-01

    1. Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2. We examined the influence of food availability at the time of sampling, 2 months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3. We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2 months prior to growth measurements had positive effects on adult growth rate; though, food levels 2 months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2 months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2 months prior such that the effects of juvenile food level diminished as the food level experienced 2 months prior increased. 4. These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5. A simultaneous consideration of past events in both the

  1. Synthetic drought event sets: thousands of meteorological drought events for risk-based management under present and future conditions

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Massey, Neil; Otto, Friederike E. L.; Allen, Myles R.; Jones, Richard; Hall, Jim W.

    2016-04-01

    Droughts and related water scarcity can have large impacts on societies and consist of interactions between a number of natural and human factors. Meteorological conditions are usually the first natural trigger of droughts, and climate change is expected to impact these and thereby the frequency and intensity of the events. However, extreme events such as droughts are, by definition, rare, and accurately quantifying the risk related to such events is therefore difficult. The MaRIUS project (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) aims at quantifying the risks associated with droughts in the UK under present and future conditions. To do so, a large number of drought events, from climate model simulations downscaled at 25km over Europe, are being fed into hydrological models of various complexity and used for the estimation of drought risk associated with human and natural systems, including impacts on the economy, industry, agriculture, terrestrial and aquatic ecosystems, and socio-cultural aspects. Here, we present the hydro-meteorological drought event set that has been produced by weather@home [1] for MaRIUS. Using idle processor time on volunteers' computers around the world, we have run a very large number (10'000s) of Global Climate Model (GCM) simulations, downscaled at 25km over Europe by a nested Regional Climate Model (RCM). Simulations include the past 100 years as well as two future horizons (2030s and 2080s), and provide a large number of sequences of spatio-temporally consistent weather, which are consistent with the boundary forcing such as the ocean, greenhouse gases and solar forcing. The drought event set for use in impact studies is constructed by extracting sequences of dry conditions from these model runs, leading to several thousand drought events. In addition to describing methodological and validation aspects of the synthetic drought event sets, we provide insights into drought risk in the UK, its

  2. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars

    PubMed Central

    Marcucci, Emma C; Hynek, Brian M

    2014-01-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1–60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals. PMID:26213665

  3. Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid.

    PubMed

    Pham Minh, Doan; Tran, Ngoc Dung; Nzihou, Ange; Sharrock, Patrick

    2013-07-01

    The synthesis of carbonate-containing apatite (CAP) from calcium carbonate and orthophosphoric acid under moderate conditions was investigated. In all cases, complete precipitation of orthophosphate species was observed. The reaction temperature influenced strongly the decomposition of calcium carbonate and therefore the composition of formed products. The reaction temperature of 80 °C was found to be effective for the complete decomposition of calcium carbonate particles after 48 h of reaction. Infra-red spectroscopy (IR), nuclear magnetic resonance (NMR), thermogravimetry/mass spectroscopy (TG-MS) coupling, and X-ray diffraction (XRD) characterizations allowed the identification of the composition of formed products. By increasing the reaction temperature from 20 °C to 80 °C, the content of A-type CAP increased and that of B-type CAP decreased, according to the favorable effect of temperature on the formation of A-type CAP. The total amount of carbonate content incorporated in CAP's structure, which was determined by TG-MS analysis, increased with the reaction temperature and reached up to 4.1% at 80 °C. At this temperature, the solid product was mainly composed of apatitic components and showed the typical flat-needle-like structure of CAP particles obtained in hydrothermal conditions. These results show an interesting one-step synthesis of CAP from calcium carbonate and orthophosphoric acid as low cost but high purity starting materials.

  4. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars.

    PubMed

    Marcucci, Emma C; Hynek, Brian M

    2014-03-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1-60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals.

  5. Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars

    NASA Astrophysics Data System (ADS)

    Marcucci, Emma C.; Hynek, Brian M.

    2014-03-01

    We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1-60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals.

  6. Influence of unsaturated fatty acid membrane component on sensitivity of an Escherichia coli fatty acid auxotroph to conditions of nutrient depletion.

    PubMed Central

    Massa, E M; López Vińals, A; Farías, R N

    1988-01-01

    The unsaturated fatty acid auxotroph Escherichia coli AK7 was provided with either oleic acid (cis 18:1) or linolenic acid (cis 18:3) to vary the degree of unsaturation of cell membrane lipids. The susceptibility of oleic acid- and linolenic acid-grown cells to starvation at 37 degrees C in 154 mM NaCl was compared following the decline in the number of CFU by plating the cells on agar medium. The decline in CFU was faster for linolenic acid-than for oleic acid-grown cells, but it was not indicative of cell death, since culturable CFU was recovered after respirable substrate was added to the starved cell suspension. Cell envelope microviscosity (determined by fluorescence polarization) of oleic acid- and linolenic acid-grown cells was equal in the presence of a respirable substrate, but in its absence the microviscosity of linolenic acid-grown cells was lower than that of oleic acid-grown cells. The results suggest that cell envelope microviscosity is an important factor in determining the sensitivity of E. coli to conditions of nutrient depletion. PMID:3052298

  7. Alteration of Basaltic Glass to Mg/Fe-Smectite under Acidic Conditions: A Potential Smectite Formation Mechanism on Mars

    NASA Technical Reports Server (NTRS)

    Peretyazhko, Tanya; Sutter, Brad; Ming, Douglas W.

    2014-01-01

    Phyllosilicates of the smectite group including Mg- and Fe-saponite and Fe(III)-rich nontronite have been identified on Mars. Smectites are believed to be formed under neutral to alkaline conditions that prevailed on early Mars. This hypothesis is supported by the observation of smectite and carbonate deposits in Noachian terrain on Mars. However, smectite may have formed under mildly acidic conditions. Abundant smectite formations have been detected as layered deposits hundreds of meters thick in intracrater depositional fans and plains sediments, while no large deposits of carbonates are found. Development of mildly acidic conditions at early Mars might allow formation of smectite but inhibit widespread carbonate precipitation. Little is known regarding the mechanisms of smectite formation from basaltic glass under acidic conditions. The objective of this study was to test a hypothesis that Mars-analogue basaltic glass alters to smectite minerals under acidic conditions (pH 4). The effects of Mg and Fe concentrations and temperature on smectite formation from basaltic glass were evaluated. Phyllosilicate synthesis was performed in batch reactors (Parr acid digestion vessel) under reducing hydrothermal conditions at 200 C and 100 C. Synthetic basaltic glass with a composition similar to that of the Gusev crater rock Adirondack (Ground surface APXS measurement) was used in these experiments. Basaltic glass was prepared by melting and quenching procedures. X-ray diffraction (XRD) analysis indicated that the synthesized glass was composed of olivine, magnetite and X-ray amorphous phase. Samples were prepared by mixing 250 mg Adirondack with 0.1 M acetic acid (final pH 4). In order to study influence of Mg concentration on smectite formation, experiments were performed with addition of 0, 1 and 10 mM MgCl2. After 1, 7 and 14 day incubations the solution composition was analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the altered glass and formed

  8. Very high resolution modelling of the Surface Mass Balance of the Greenland Ice Sheet: Present day conditions and future prospects.

    NASA Astrophysics Data System (ADS)

    Mottram, Ruth; Aðalgeirsdóttir, Guðfinna; Boberg, Fredrik; Hesselbjerg Christensen, Jens; Bøssing Christensen, Ole; Langen, Peter; Rodehacke, Christian; Stendel, Martin; Yang, Shuting

    2014-05-01

    Recent experiments with the Regional Climate Model (RCM) HIRHAM5 have produced new surface mass balance (SMB) estimates at the unprecedented high horizontal resolution of 0.05 degrees (~5.5km). These simulations indicate a present day SMB of 347 ± 98 Gt/year over the whole ice sheet averaged over the period 1989 - 2012 driven by the ERA-Interim reanalysis dataset. We validate accumulation rates over the ice sheet using estimates from shallow firn cores to confirm the importance of resolution to accurate estimates of accumulation. Comparison with PROMICE and GC-Net automatic weather station observations shows the model represents present day climate and climate variability well when driven by the ERA-Interim reanalysis dataset. Comparison with a simulation at 0.25 degrees (~27km) resolution from the same model shows a significantly different calculated SMB over the whole ice sheet, largely due to changes in precipitation distribution over Greenland. The very high resolution requires a more sophisticated treatment of sub-grid scale processes in the snow pack including meltwater retention and refreezing and an enhanced albedo scheme. Our results indicate retention processes account for a significant proportion of the total surface budget based on a new parameterization scheme in the model. SMB projections, driven by the EC-Earth Global Climate Model (GCM) at the boundaries for the RCP 4.5 scenario indicate a declining surface mass balance over the 21st century with some compensation for warmer summer temperatures and enhanced melt in the form of increased precipitation. A cold bias in the driving GCM for present day conditions suggests that this simulation likely underestimates the change in SMB. However, the downscaled precipitation fields compare well with those in the reanalysis driven simulations. A soon-to-be complete simulation uses driving fields from the GCM running the RCP8.5 scenario.

  9. Present condition of the coniferous undergrowth of forest-tundra ecotone of North-Chuya ridge (Central Altai)

    NASA Astrophysics Data System (ADS)

    Propastilova, Olga; Timoshok, Elena

    2010-05-01

    Investigations of high-mountain regions which are characterized by extreme climate conditions are of current importance since the response of environmental ecosystems to climate changes is clearly expressed there. The work presented was performed on the territory of two mountain glacial basins located on the northern macroslope of North-Chuya ridge (Russia, Central Altai). High-mountain vegetation of the area being considered didn't undergo an anthropogenic impact. It should be noted that investigations of coniferous undergrowth of forest-tundra ecotone of Aktru and Korumdu mountain glacial basins (2200-2500 m ab. s.l.) haven't been conducted before. A climatic representativeness of Aktru basin was proved by numerous data (Tronov et all, 1965, Sevastianov, 1998). The goal of the work was studying of condition and adaptations of young Pinus sibirica Du Tour and Larix sibirica Ledeb. to forest-tundra ecotone conditions. These species form the treeline on many ridges of Central Altai (Kuminova, 1960), including North-Chuya (Timoshok, 2004). It is shown that the number of young Siberian stone pines and larches in the forest-tundra ecotone is not big, Siberian stone pine being found more often than larch. A considerable quantity of young Siberian stone pines grows in sheltered sites (near big stones, boulders, stumps, etc.). During the research period dead young trees have been found in single cases. The maximum percentage of Siberian stone pine trees (42.4%) growing in sheltered sites was registered in Aktru basin on the east-southeast slope whereas on the west-northwest slope the maximum percentage of Siberian stone pines growing in clusters has been revealed (34.4%). Also on the west-northwest slope the maximum quantity of Siberian stone pines that changed their terminal shoots have been found (62.5%). During the investigation young trees with signs of diseases were registered. Chermes (Pineus cembrae Chol.) has been found on shoots and needles. On the west

  10. Short communication: Latin-style fresh cheese enhances lactic acid bacteria survival but not Listeria monocytogenes resistance under in vitro simulated gastrointestinal conditions.

    PubMed

    Silva, C C G; Domingos-Lopes, M F P; Magalhães, V A F; Freitas, D A S R; Coelho, M C; Rosa, H J D; Dapkevicius, M L N E

    2015-07-01

    Different studies in humans have provided evidence about the health benefits of probiotics. However, most probiotic strains do not maintain good viability in the harsh conditions of the gastrointestinal tract (GIT). In the present study, Latin-style fresh cheese produced with potential probiotic bacteria was tested to evaluate this cheese type as a food carrier for the delivery of viable microorganisms after exposure to simulated GIT conditions. The resistance of 28 lactic acid bacteria (LAB) strains and Listeria monocytogenes upon exposure to acidic conditions (pH 2.5) and bile and pancreatic enzymes (0.3% of bile salts and 0.1% of pancreatin) was evaluated in vitro. When compared with fresh cultures, fresh cheese greatly improved LAB survival to simulated GIT conditions, as no loss of viability was observed in either acidic conditions (pH 2.5) or bile salts and pancreatin environment over a 3-h period. In opposition, L. monocytogenes did not survive after 1h under acidic conditions. These data demonstrated that Latin-style fresh cheese could play an important role in probiotic protection against gastrointestinal juices, enhancing delivery within the gut and thereby maximizing potential health benefits of LAB.

  11. Using Water Isotope Tracers to Investigate Past and Present Water Balance Conditions in the Old Crow Flats, Yukon Territory

    NASA Astrophysics Data System (ADS)

    Turner, K.; Wolfe, B. B.; Edwards, T. W.

    2010-12-01

    The Old Crow Flats (OCF), Yukon Territory, is a wetland of international significance that comprises approximately 2700 shallow thermokarst lakes. Located near the northern limit of the boreal forest, the OCF provides vital habitat for abundant wildlife including waterfowl, moose, muskrat, and the Porcupine Caribou Herd, which support the traditional lifestyle of the Vuntut Gwitchin First Nation. Thermokarst lakes, which occupy vast northern regions, are greatly influenced by climate conditions. In the OCF and other regions there have been observations of decreasing water levels and an increase in frequency of lake drainage events over recent decades. Though there is widespread concern that thermokarst landscape changes are accelerating as a result of ongoing climate change, there are few studies that have investigated current and past variability of lake water balances and climate interactions at the landscape scale. As part of a Government of Canada International Polar Year multidisciplinary project, the present and past hydrology of lakes spanning the OCF are being investigated using water isotope tracers and paleolimnological approaches. Water samples were obtained from 57 lakes three times over three ice-free seasons (2007-09) and analyzed for oxygen and hydrogen isotope composition in order to capture seasonal and interannual changes in water balance conditions. Results highlight strong diversity in the hydrology of lakes throughout the OCF. Based on patterns of isotopic evolution and calculations of input source compositions and evaporation-to-inflow ratios, we identified snowmelt-dominated, rainfall-dominated, groundwater-influenced, evaporation-dominated and drained lake types, which represent the dominant hydrological processes influencing lake water balances. Lake physical and catchment land cover characteristics influence dominant input type (rain or snow). Snowmelt-dominated catchments are large relative to lake surface areas and typically contain

  12. Jasmonoyl isoleucine accumulation is needed for abscisic acid build-up in roots of Arabidopsis under water stress conditions.

    PubMed

    de Ollas, Carlos; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2015-10-01

    Phytohormones are central players in sensing and signalling numerous environmental conditions like drought. In this work, hormone profiling together with gene expression of key enzymes involved in abscisic acid (ABA) and jasmonate biosynthesis were studied in desiccating Arabidopsis roots. Jasmonic acid (JA) content transiently increased after stress imposition whereas progressive and concomitant ABA and Jasmonoyl Isoleucine (JA-Ile) accumulations were detected. Molecular data suggest that, at least, part of the hormonal regulation takes place at the biosynthetic level. These observations also point to a possible involvement of jasmonates on ABA biosynthesis under stress. To test this hypothesis, mutants impaired in jasmonate biosynthesis (opr3, lox6 and jar1-1) and in JA-dependent signalling (coi1) were employed. Results showed that the early JA accumulation leading to JA-Ile build up was necessary for an ABA increase in roots under two different water stress conditions. Signal transduction between water stress-induced JA-Ile accumulation and COI1 is necessary for a full induction of the ABA biosynthesis pathway and subsequent hormone accumulation in roots of Arabidopsis plants. The present work adds a level of interaction between jasmonates and ABA at the biosynthetic level.

  13. Proposed modifications to AOAC 996.06, optimizing the determination of trans fatty acids: presentation of data.

    PubMed

    Rozema, Brent; Mitchell, Barbara; Winters, Doug; Kohn, Andrew; Sullivan, Darryl; Meinholz, Erin

    2008-01-01

    The increased focus on the accuracy of trans fatty acid data generated using current methodologies has resulted in research initiatives to optimize the quality of these assays. In this study, scientists combined the established methodology from AOAC 996.06 and the American Oil Chemists Society method Ce 1h-05, as well as other independent research. As a result, method modifications are proposed that could allow for a more accurate determination of trans fat than the current AOAC 996.06 method. Validation data from this study are presented. The authors encourage peer review and offer to facilitate a collaborative validation to update AOAC 996.06.

  14. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  15. Studying the pseudomorphic replacement of olivine by silica at acidic conditions

    NASA Astrophysics Data System (ADS)

    King, Helen E.; Geisler, Thorsten; Putnis, Andrew

    2010-05-01

    different reaction conditions highlights the sensitivity of olivine replacement in acidic conditions to factors such as pH. We used an 18O-enriched fluid to trace the mechanism of the pseudomorphic replacement. Raman spectroscopy of the silica layer showed that the 18O was taken into the silica rim in enough concentration to produce a shift in the Raman peaks resulting from 18O-Si bonding within the silica network. The products from experiments with different sulphuric acid concentrations showed that as concentration was reduced the silica layer became increasingly fragile until it no longer precipitated as a pseudomorph. This observation and the incorporation of 18O into the amorphous silica structure indicate that the formation of a pseudomorph occurs via an interface-coupled dissolution-reprecipitation mechanism (Putnis and Putnis, 2007). References Africano F. and Bernard A. (2000), J. Volcanol. Geoth. Res., 97 475-495 Putnis A. and Putnis C. V. (2007), J. Solid State Chem., 180, 1783-1786 Varekamp J. C., Pasternack G. B. and Rowe Jr. G. L. (2000), J. Volcanol. Geoth. Res., 97 161-179

  16. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Griffin, Philippa J.; Waite, T. David

    2015-07-01

    In this study, the rates of Fe(II) oxidation by molecular oxygen in the presence of citrate, ethylenediaminetetraacetic acid (EDTA) and Suwannee River fulvic acid (SRFA) were determined over the pH range 4.0-5.5 and, for all of the ligands investigated, found to be substantially faster than oxidation rates in the absence of any ligand. EDTA was found to be particularly effective in enhancing the rate of Fe(II) oxidation when sufficient EDTA was available to complex all Fe(II) present in solution, with a kinetic model of the process found to adequately describe all results obtained. When Fe(II) was only partially complexed by EDTA, reactions with reactive oxygen species (ROS) and heterogeneous Fe(II) oxidation were found to contribute significantly to the removal rate of iron from solution at different stages of oxidation. This was possible due to the rapid rate at which EDTA enhanced Fe(II) oxidation and formed ROS and Fe(III). The rapid rate of Fe(III) generation facilitated the formation of free ferric ion activities in excess of those required for ferric oxyhydroxide precipitation following Fe(III)-EDTA dissociation. In comparison, the rate of Fe(II) oxidation was slower in the presence of citrate, and therefore the concentrations of free Fe(III) able to form in the initial stages of Fe(II) oxidation were much lower than those formed in the presence of EDTA, despite the resultant Fe(III)-citrate complex being less stable than that of Fe(III)-EDTA. The slower rate of citrate enhanced oxidation also resulted in slower rates of ROS generation, and, as such, oxidation of the remaining inorganic Fe(II) species by ROS was negligible. Overall, this study demonstrates that organic ligands may substantially enhance the rate of Fe(II) oxidation. Even under circumstances where the ligand is not present at sufficient concentrations to complex all of the Fe(II) in solution, ensuing oxidative processes may sustain an enhanced rate of Fe(II) oxidation relative to that of

  17. Cerebellar cortex development in the weaver condition presents regional and age-dependent abnormalities without differences in Purkinje cells neurogenesis.

    PubMed

    Martí, Joaquín; Santa-Cruz, María C; Hervás, José P; Bayer, Shirley A; Villegas, Sandra

    2016-01-01

    Ataxias are neurological disorders associated with the degeneration of Purkinje cells (PCs). Homozygous weaver mice (wv/wv) have been proposed as a model for hereditary cerebellar ataxia because they present motor abnormalities and PC loss. To ascertain the physiopathology of the weaver condition, the development of the cerebellar cortex lobes was examined at postnatal day (P): P8, P20 and P90. Three approaches were used: 1) quantitative determination of several cerebellar features; 2) qualitative evaluation of the developmental changes occurring in the cortical lobes; and 3) autoradiographic analyses of PC generation and placement. Our results revealed a reduction in the size of the wv/wv cerebellum as a whole, confirming previous results. However, as distinguished from these reports, we observed that quantified parameters contribute differently to the abnormal growth of the wv/wv cerebellar lobes. Qualitative analysis showed anomalies in wv/wv cerebellar cytoarchitecture, depending on the age and lobe analyzed. Such abnormalities included the presence of the external granular layer after P20 and, at P90, ectopic cells located in the molecular layer following several placement patterns. Finally, we obtained autoradiographic evidence that wild-type and wv/wv PCs presented similar neurogenetic timetables, as reported. However, the innovative character of this current work lies in the fact that the neurogenetic gradients of wv/wv PCs were not modified from P8 to P90. A tendency for the accumulation of late-formed PCs in the anterior and posterior lobes was found, whereas early-generated PCs were concentrated in the central and inferior lobes. These data suggested that wv/wv PCs may migrate properly to their final destinations. The extrapolation of our results to patients affected with cerebellar ataxias suggests that all cerebellar cortex lobes are affected with several age-dependent alterations in cytoarchitectonics. We also propose that PC loss may be regionally

  18. Spray scrubbing of the nitrogen oxides into NaClO2 solution under acidic conditions.

    PubMed

    Chien, T W; Chu, H; Hsueh, H T

    2001-01-01

    The operating conditions of this study were closed to the typical operating conditions of flue gas desulfurization system in the coal-fired power plant. The objective of this study was to investigate the absorption performance of lean NO in an aqueous solution of acidic sodium chlorite using a bench-scale spraying column. The NO conversion and NOx removal efficiency were increasing with the increasing NO concentration, retention time, sodium chlorite concentration, operating temperature, and decreasing initial pH of solution. As the sodium chlorite concentration were higher than 0.4 M, the NO conversion and NOx removal efficiency were 100% and 80%, respectively. The NO conversion and NOx removal efficiency under initial pH 4-7 were higher than that of initial pH > 7. It meant that this process might be suitable to combining with traditional wet flue gas desulfurization system. As the NO2/NOx ratio in the effluent gas was closed to 0.5, it might be suitable to be absorbed in the second scrubbing column operated under alkaline condition.

  19. The histone deacetylase inhibitor valproic acid enhances acquisition, extinction, and reconsolidation of conditioned fear.

    PubMed

    Bredy, Timothy W; Barad, Mark

    2008-01-01

    Histone modifications contribute to the epigenetic regulation of gene expression, a process now recognized to be important for the consolidation of long-term memory. Valproic acid (VPA), used for many years as an anticonvulsant and a mood stabilizer, has effects on learning and memory and enhances the extinction of conditioned fear through its function as a histone deacetylase inhibitor (HDAC). Here we report that VPA enhances long-term memory for both acquisition and extinction of cued-fear. Interestingly, VPA enhances extinction, but also enhances renewal of the original conditioned fear when tested in a within-subjects design. This effect appears to be related to a reconsolidation-like process since a single CS reminder in the presence of VPA can enhance long-term memory for the original fear in the context in which fear conditioning takes place. We also show that by modifying the intertrial interval during extinction training, VPA can strengthen reconsolidation of the original fear memory or enhance long-term memory for extinction such that it becomes independent of context. These findings have important implications for the use of HDAC inhibitors as adjuncts to behavior therapy in the treatment of phobia and related anxiety disorders.

  20. PRESENT CONDITION AND MEASURES TO EXPAND OF VOLUNTARY AGREEMENT ON PLASTIC SHOPPING BAGS REDUCTION AT THE PREFECTURAL LEVEL

    NASA Astrophysics Data System (ADS)

    Mori, Mayuka; Kanaya, Ken

    Purpose of this research is to clear present condition and measures to expand of voluntary agreement on plastic shopping bags reduction at the prefectural level. Methods of this research are questionnaire survey to prefectures implementing the agreement and survey by i town page to the number of stores of companies and the number of companies in the prefectures. Findings of this research are as follows: 1. The refusal rate of plastic shopping bags was 10-40% before the implementation of voluntary agreements. And the rate is approximately 70-90% after the implementation. Therefore, before and after the implementation of voluntary agreements, the refusal rate of plastic shopping bags is approximately 40-70% less. 2. It is suggested that the time and number of meetings from proposal to conclusion of the agreement are related in some way, to the ratio of stores participating. On the participation of administration, the ratio of stores participating in the case in which prefecture and cities participate is higher than in the case in which prefecture participates.

  1. A method for closed-loop presentation of sensory stimuli conditional on the internal brain-state of awake animals.

    PubMed

    Rutishauser, Ueli; Kotowicz, Andreas; Laurent, Gilles

    2013-04-30

    Brain activity often consists of interactions between internal-or on-going-and external-or sensory-activity streams, resulting in complex, distributed patterns of neural activity. Investigation of such interactions could benefit from closed-loop experimental protocols in which one stream can be controlled depending on the state of the other. We describe here methods to present rapid and precisely timed visual stimuli to awake animals, conditional on features of the animal's on-going brain state; those features are the presence, power and phase of oscillations in local field potentials (LFP). The system can process up to 64 channels in real time. We quantified its performance using simulations, synthetic data and animal experiments (chronic recordings in the dorsal cortex of awake turtles). The delay from detection of an oscillation to the onset of a visual stimulus on an LCD screen was 47.5ms and visual-stimulus onset could be locked to the phase of ongoing oscillations at any frequency ≤40Hz. Our software's architecture is flexible, allowing on-the-fly modifications by experimenters and the addition of new closed-loop control and analysis components through plugins. The source code of our system "StimOMatic" is available freely as open-source.

  2. Effect of phospholipid-based formulations of Boswellia serrata extract on the solubility, permeability, and absorption of the individual boswellic acid constituents present.

    PubMed

    Hüsch, Jan; Gerbeth, Kathleen; Fricker, Gert; Setzer, Constanze; Zirkel, Jürgen; Rebmann, Herbert; Schubert-Zsilavecz, Manfred; Abdel-Tawab, Mona

    2012-10-26

    Boswellia serrata gum resin extracts are used widely for the treatment of inflammatory diseases. However, very low concentrations in the plasma and brain were observed for the boswellic acids (1-6, the active constituents of B. serrata). The present study investigated the effect of phospholipids alone and in combination with common co-surfactants (e.g., Tween 80, vitamin E-TPGS, pluronic f127) on the solubility of 1-6 in physiologically relevant media and on the permeability in the Caco-2 cell model. Because of the high lipophilicity of 1-6, the permeability experiments were adapted to physiological conditions using modified fasted state simulated intestinal fluid as apical (donor) medium and 4% bovine serum albumin in the basolateral (receiver) compartment. A formulation composed of extract/phospholipid/pluronic f127 (1:1:1 w/w/w) increased the solubility of 1-6 up to 54 times compared with the nonformulated extract and exhibited the highest mass net flux in the permeability tests. The oral administration of this formulation to rats (240 mg/kg) resulted in 26 and 14 times higher plasma levels for 11-keto-β-boswellic acid (1) and acetyl-11-keto-β-boswellic acid (2), respectively. In the brain, five times higher levels for 2 compared to the nonformulated extract were determined 8 h after oral administration.

  3. Corn stover saccharification with concentrated sulfuric acid: effects of saccharification conditions on sugar recovery and by-product generation.

    PubMed

    Liu, Ze-Shen; Wu, Xiao-Lei; Kida, Kenji; Tang, Yue-Qin

    2012-09-01

    Although concentrated sulfuric acid saccharification is not a novel method for breaking down lignocellulosic biomass, the process by which saccharification affects biomass decomposition, sugar recovery, and by-product generation is not well studied. The present study employed Taguchi experimental design to study the effects of seven parameters on corn stover concentrated sulfuric acid saccharification. The concentration of sulfuric acid and the temperature of solubilization significantly affect corn stover decomposition. They also have significant effects on glucose and xylose recoveries. Low generation of furfural and 5-hydroxymethyl-2-furfural (5HMF) was noted and organic acids were the main by-products detected in the hydrolysate. Temperature also significantly affected the generation of levulinic acid and formic acid; however, acetic acid generation was not significantly influenced by all seven parameters. The ratio of acid to feedstock significantly affected glucose recovery, but not total sugar recovery. The corn stover hydrolysate was well fermented by both glucose- and xylose-fermenting yeast strains.

  4. Optimisation and establishment of separation conditions of organic acids from Usnea longissima Ach. by pH-zone-refining counter-current chromatography: Discussion of the eluotropic sequence.

    PubMed

    Sun, Changlei; Liu, Feng; Sun, Jie; Li, Jia; Wang, Xiao

    2016-01-04

    The major bioactive constituents of Usnea longissima Ach. are organic acids. However, few recent literatures involve the preparative separation of these organic acids. In the present study, pH zone-refining counter-current chromatography is used to separate organic acids from crude sample of U. longissima Ach. The crude extract was separated with the two-phase solvent system Pet-EtAc-MeOH-H2O (5:5:3:7, v/v) with 10mM TFA in organic stationary phase and different concentration of the eluter in aqueous mobile phase for the screening of the most suitable separation conditions. From the crude extract (1.2g), 74.0mg of orsellinic acid at 92.7% purity, 55.5mg of 4-O-methylorsellinic acid at 97.7% purity, 353.5mg of evernic acid at 93.8% purity, 102.0mg of barbatic acid at 94.8% purity, 19.4 mg of diffractaic acid at 92.2% purity, and 44.9 mg of usnic acid at 95.7% purity were obtained using the selected conditions in which the concentration of TFA in stationary phase was 10mM and the concentration of NaOH in mobile phase was 10-20mM. The purities of the separated organic acids were measured by HPLC. And the data of electrospray ionization-liquid chromatography/mass spectrometry (ESI-LC/MS), (1)H NMR, and (13)C NMR were used for confirming chemical structures.

  5. Cementation and Aqueous Alteration of a Sandstone Unit Under Acidic Conditions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Yen, A. S.; Blake, D. F.; Ming, D. W.; Morris, R. V.; Gellert, R.; Clark, B.; Vaniman, D. T.; Chipera, S. J.; Thompson, L. M.; Bristow, T. F.; Rampe, E. B.; Crisp, J. A.

    2016-01-01

    The Curiosity rover landed on Mars in August 2012 to explore the sedimentary history and to assess the habitability of Gale Crater. After 1200 sols of surface operations and over 12 km of traverse distance, the mineralogy of 10 samples has been determined by the CheMin X-ray diffractometer (XRD) and the chemical composition of nearly 300 targets has been established by the Alpha Particle X-ray Spectrometer (APXS). Light-toned fracture zones containing elevated concentrations of silica have been studied by Curiosity's instruments to determine the nature of the fluids that resulted in the enrichment of SiO2. Multiple fluid exposures are evident, and the chemistry and mineralogy data indicate at least two aqueous episodes may have occurred under acidic conditions.

  6. Relationship between nine haloacetic acids with total organic halogens in different experimental conditions.

    PubMed

    Pourmoghadas, Hossein; Kinman, Riley N

    2013-04-03

    The effects of pH and bromide ion concentration on the formation of nine haloacetic acids (HAAs) and total organic halogens (TOX) in chlorinated drinking water have been evaluated. In an extensive study, the relationships of nine HAAs with TOX have been investigated. Honesty Significant Differences test (HSD) and ANOVA tests were used for the statistical analyses. The study determined the concentration range of nine HAAs as of a percentage of TOX at varying experimental conditions. Statistical analyses showed that the parameters pH and Br had significant effects on the formation of nine HAAs and TOX. This study also showed that brominated and mixed species of HAAs would be dominant in the presence of high bromide ion concentration which contributes a high percentage of the TOX. The results of this study could be used to set up a maximum contaminant level of TOX as a water quality standard for chlorination by-products.

  7. Prebiotic synthesis of adenine and amino acids under Europa-like conditions

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Brinton, K.; Bada, J. L.

    2000-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites, we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 years at -20 and -78 degrees C. In addition, the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20 degrees C. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be wider than previously thought.

  8. Prebiotic Synthesis of Adenine and Amino Acids Under Europa-like Conditions

    NASA Technical Reports Server (NTRS)

    Levy, Matthew; Miller, Stanley L.; Brinton, Karen; Bada, Jeffrey L.

    2003-01-01

    In order to simulate prebiotic synthetic processes on Europa and other ice-covered planets and satellites. we have investigated the prebiotic synthesis of organic compounds from dilute solutions of NH4CN frozen for 25 year at -20 and -78 C. In addition the aqueous products of spark discharge reactions from a reducing atmosphere were frozen for 5 years at -20%. We find that both adenine and guanine, as well as a simple set of amino acids dominated by glycine, are produced in substantial yields under these conditions. These results indicate that some of the key components necessary for the origin of life may have been available on Europa throughout its history and suggest that the circumstellar zone where life might arise may be m der than previously thought.

  9. Selected Gamma Aminobutyric Acid (GABA) Esters may Provide Analgesia for Some Central Pain Conditions

    PubMed Central

    Goldberg, Joel S.

    2010-01-01

    Central pain is an enigmatic, intractable condition, related to destruction of thalamic areas, resulting in likely loss of inhibitory synaptic transmission mediated by GABA. It is proposed that treatment of central pain, a localized process, may be treated by GABA supplementation, like Parkinson’s disease and depression. At physiologic pH, GABA exists as a zwitterion that is poorly permeable to the blood brain barrier (BBB). Because the pH of the cerebral spinal fluid (CSF) is acidic relative to the plasma, ion trapping may allow a GABA ester prodrug to accumulate and be hydrolyzed within the CSF. Previous investigations with ester local anesthetics may be applicable to some GABA esters since they are weak bases, hydrolyzed by esterases and cross the BBB. Potential non-toxic GABA esters are discussed. Many GABA esters were investigated in the 1980s and it is hoped that this paper may spark renewed interest in their development. PMID:20703328

  10. Sulfate-reducing bacteria mediate thionation of diphenylarsinic acid under anaerobic conditions.

    PubMed

    Guan, Ling; Shiiya, Ayaka; Hisatomi, Shihoko; Fujii, Kunihiko; Nonaka, Masanori; Harada, Naoki

    2015-02-01

    Diphenylarsinic acid (DPAA) is often found as a toxic intermediate metabolite of diphenylchloroarsine or diphenylcyanoarsine that were produced as chemical warfare agents and were buried in soil after the World Wars. In our previous study Guan et al. (J Hazard Mater 241-242:355-362, 2012), after application of sulfate and carbon sources, anaerobic transformation of DPAA in soil was enhanced with the production of diphenylthioarsinic acid (DPTAA) as a main metabolite. This study aimed to isolate and characterize anaerobic soil microorganisms responsible for the metabolism of DPAA. First, we obtained four microbial consortia capable of transforming DPAA to DPTAA at a high transformation rate of more than 80% after 4 weeks of incubation. Sequencing for the bacterial 16S rRNA gene clone libraries constructed from the consortia revealed that all the positive consortia contained Desulfotomaculum acetoxidans species. In contrast, the absence of dissimilatory sulfite reductase gene (dsrAB) which is unique to sulfate-reducing bacteria was confirmed in the negative consortia showing no DPAA reduction. Finally, strain DEA14 showing transformation of DPAA to DPTAA was isolated from one of the positive consortia. The isolate was assigned to D. acetoxidans based on the partial 16S rDNA sequence analysis. Thionation of DPAA was also carried out in a pure culture of a known sulfate-reducing bacterial strain, Desulfovibrio aerotolerans JCM 12613(T). These facts indicate that sulfate-reducing bacteria are microorganisms responsible for the transformation of DPAA to DPTAA under anaerobic conditions.

  11. Relevance of organic farming and effect of climatological conditions on the formation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.).

    PubMed

    Keukeleire, Jelle De; Janssens, Ina; Heyerick, Arne; Ghekiere, Greet; Cambie, Joris; Roldan-Ruiz, Isabel; Bockstaele, Erik Van; Keukeleire, Denis De

    2007-01-10

    The concentrations of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol were monitored in the hop varieties Admiral (A), Wye Challenger (WC), and First Gold (FG) during the harvest seasons of 2003 through 2005. Hops grown under an organic regimen were compared to plants grown conventionally in hop fields in close vicinity. The concentrations of the key compounds depended very much on climatological conditions showing, in general, highest levels in poorest weather conditions (2004). Of the three varieties studied, FG was the only one showing a clear trend for higher concentrations of secondary metabolites under organic growing conditions than under conventional farming conditions. Cultivation of A and WC seems to be very sensitive to climatic conditions and environmental stresses caused by pests and diseases, thereby leading to various results. WC proved to be a rich source of bioactive chalcones, particularly desmethylxanthohumol.

  12. Isolation of thermophilic L-lactic acid producing bacteria showing homo-fermentative manner under high aeration condition.

    PubMed

    Tongpim, Saowanit; Meidong, Ratchanu; Poudel, Pramod; Yoshino, Satoshi; Okugawa, Yuki; Tashiro, Yukihiro; Taniguchi, Masayuki; Sakai, Kenji

    2014-03-01

    By applying non-sterile open fermentation of food waste, various thermotolerant l-lactic acid-producing bacteria were isolated and identified. The predominant bacterial isolates showing higher accumulation of l-lactic acid belong to 3 groups of Bacillus coagulans, according to their 16S rRNA gene sequence similarities. B. coagulans strains M21 and M36 produced high amounts of l-lactic acid of high optical purity and lactic acid selectivity in model kitchen refuse medium and glucose-yeast extract-peptone medium. Other thermotolerant isolates resembling to Bacillus humi, B. ruris, B. subtilis, B. niacini and B. soli were also identified. These bacteria produced low amounts of l-lactic acid of more than 99% optical purity. All isolated strains showed the highest growth rate at temperatures around 55-60°C. They showed unique responses to various oxygen supply conditions. The majority of isolates produced l-lactic acid at a low overall oxygen transfer coefficient (KLa); however, acetic acid was produced instead of l-lactic acid at a high KLa. B. coagulans M21 was the only strain that produced high, consistent, and reproducible amounts of optically pure l-lactic acid (>99% optical purity) under high and low KLa conditions in a homo-fermentative manner.

  13. Chemometric analysis of the interactions among different parameters describing health conditions, breast cancer risk and fatty acids profile in serum of rats supplemented with conjugated linoleic acids.

    PubMed

    Białek, Agnieszka; Zagrodzki, Paweł; Tokarz, Andrzej

    2016-03-01

    We investigated how different doses of conjugated linoleic acids applied for various periods of time influence breast cancer risk and fatty acids profile in serum of rats treated or not with 7,12-dimethylbenz[a]anthracene (DMBA). We also search for interactions among parameters describing health conditions and cancer risk. Animals were divided into 18 groups with different diet modifications (vegetable oil, 1.0%, 2.0% additions of CLA) and different periods of supplementation. In groups treated with DMBA mammary adenocarcinomas appeared. Due to the complexity of experiment apart from statistical analysis a chemometric tool-Partial Least Square method was applied. Analysis of pairs of correlated parameters allowed to identify some regularities concerning the relationships between fatty acid profiles and clinical features of animals. Fatty acids profile was the result of prolonged exposure to high dose of CLA and DMBA administration. These two factors underlined the differences in fatty acids profiles among clusters of animals.

  14. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma.

    PubMed

    Lapenna, D; Ciofani, G; Pierdomenico, S D; Giamberardino, M A; Cuccurullo, F

    2001-08-01

    The thiobarbituric acid (TBA) reactivity of human plasma was studied to evaluate its adequacy in quantifying lipid peroxidation as an index of systemic oxidative stress. Two spectrophotometric TBA tests based on the use of either phosphoric acid (pH 2.0, method A) or trichloroacetic plus hydrochloric acid (pH 0.9, method B) were employed with and without sodium sulfate (SS) to inhibit sialic acid (SA) reactivity with TBA. To correct for background absorption, the absorbance values at 572 nm were subtracted from those at 532 nm, which represent the absorption maximum of the TBA:MDA adduct. Method B gave values of TBA-reactive substances (TBARS) 2-fold higher than those detected with method A. SS lowered TBARS by about 50% with both methods, indicating a significant involvement of SA in plasma TBA reactivity. Standard SA, at a physiologically relevant concentration of 1.5 mM, reacted with TBA, creating interference problems, which were substantially eliminated by SS plus correction for background absorbance. When method B was carried out in the lipid and protein fraction of plasma, SS inhibited by 65% TBARS formation only in the latter. Protein TBARS may be largely ascribed to SA-containing glycoproteins and, to a minor extent, protein-bound MDA. Indeed, EDTA did not affect protein TBARS assessed in the presence of SS. TBA reactivity of whole plasma and of its lipid fraction was instead inhibited by EDTA, suggesting that lipoperoxides (and possibly monofunctional lipoperoxidation aldehydes) are involved as MDA precursors in the TBA test. Pretreatment of plasma with KI, a specific reductant of hydroperoxides, decreased TBARS by about 27%. Moreover, aspirin administration to humans to inhibit prostaglandin endoperoxide generation reduced plasma TBARS by 40%. In conclusion, reaction conditions affect the relationship between TBA reactivity and lipid peroxidation in human plasma. After correction for the interfering effects of SA in the TBA test, 40% of plasma TBARS

  15. Gallstone formation in guinea pigs under different dietary conditions. Effect of vitamin C on bile acid pattern.

    PubMed

    Bergman, F; Curstedt, T; Eriksson, H; van der Linden, W; Sjövall, J

    1981-04-01

    Guinea pigs formed gallstones when fed chow supplemented with cholesterol and cholic acid. Although the stones contained little or no cholesterol the changes in biliary bile acid and lipid composition were similar to those observed in other rodents under conditions of cholesterol gallstone formation. Addition of cholestyramine to chow had a midly lithogenic effect. Hypovitaminosis C in animals given cholesterol and cholic acid resulted in an increase of the cholesterol content of the gallstones. The composition of biliary bile acids was markedly changed. Reductive formation of deoxycholic acid decreased and oxidative formation of ketonic bile acid increased. The results show that vitamin C may influence the redox state of the intestinal microorganisms microorganisms responsible for these conversions.

  16. Simulated Microgravity Combined with Polyglycolic Acid Scaffold Culture Conditions Improves the Function of Pancreatic Islets

    PubMed Central

    Song, Yimin; Wei, Zheng; Song, Chun; Xie, Shanshan; Feng, Jinfa; Fan, Jiehou; Zhang, Zengling; Shi, Yubo

    2013-01-01

    The in vitro culture of pancreatic islets reduces their immunogenicity and prolongs their availability for transplantation. Both simulated microgravity (sMG) and a polyglycolic acid scaffold (PGA) are believed to confer advantages to cell culture. Here, we evaluated the effects of sMG combined with a PGA on the viability, insulin-producing activity and morphological alterations of pancreatic islets. Under PGA-sMG conditions, the purity of the islets was ≥85%, and the islets had a higher survival rate and an increased ability to secrete insulin compared with islets cultured alone in the static, sMG, or PGA conditions. In addition, morphological analysis under scanning electron microscopy (SEM) revealed that the PGA-sMG treatment preserved the integral structure of the islets and facilitated islet adhesion to the scaffolds. These results suggest that PGA-sMG coculture has the potential to improve the viability and function of islets in vitro and provides a promising method for islet transplantation. PMID:24024182

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  18. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  19. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-02-23

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis.

  20. The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Han, Yuemei; Stroud, Craig A.; Liggio, John; Li, Shao-Meng

    2016-11-01

    Secondary organic aerosol (SOA) formation from photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied inorganic seed particle acidity levels at moderate relative humidity. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.2-7.6 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (28.6-36.3 %) was substantially higher under low-NOx conditions, but its dependency on particle acidity was insignificant. A relatively strong increase in SOA yield (up to 220 %) was observed in the first hour of α-pinene photooxidation under high-NOx conditions, suggesting that SOA formation was more effective for early α-pinene oxidation products in the presence of fresh acidic particles. The SOA yield decreased gradually with the increase in organic mass in the initial stage (approximately 0-1 h) under high-NOx conditions, which is likely due to the inaccessibility to the acidity over time with the coating of α-pinene SOA, assuming a slow particle-phase diffusion of organic molecules into the inorganic seeds. The formation of later-generation SOA was enhanced by particle acidity even under low-NOx conditions when introducing acidic seed particles after α-pinene photooxidation, suggesting a different acidity effect exists for α-pinene SOA derived from later oxidation stages. This effect could be important in the atmosphere under conditions where α-pinene oxidation products in the gas-phase originating in forested areas (with low NOx and SOx) are transported to regions abundant in acidic aerosols such as power plant plumes or urban regions. The fraction of oxygen-containing organic fragments (CxHyO1+ 33-35 % and CxHyO2+ 16-17 %) in the total organics and the O / C ratio (0.52-0.56) of α-pinene SOA were lower under high-NOx conditions than those under low-NOx conditions (39-40, 17-19, and

  1. Hydrolysis mechanism of anticancer drug lobaplatin in aqueous medium under neutral and acidic conditions: A DFT study

    NASA Astrophysics Data System (ADS)

    Reddy B., Venkata P.; Mukherjee, Subhajit; Mitra, Ishani; Mahata, Sujay; Linert, Wolfgang; Moi, Sankar Ch.

    2016-10-01

    We have studied the hydrolysis mechanism of lobaplatin in aqueous medium under neutral and acidic conditions using density functional theory combining with CPCM model. The stationary states located on potential energy surface were fully optimized and characterised. The rate limiting step in neutral conditions, ring opening reaction with an activation energy of 110.21 kJ mol-1. The completely hydrolysed complex is expected to be the reactive species towards the DNA purine bases. In acidic conditions, ligand detachment is the rate limiting step with an activation energy of 113.82 kJ mol-1. Consequently, monohydrated complex is expected to be the species reacting with DNA.

  2. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    PubMed

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.

  3. Characteristics of Hepatic Schwannoma Presenting as an Unusual Multi-cystic Mass on Gadoxetic Acid Disodium-enhanced MR Imaging.

    PubMed

    Haradome, Hiroki; Woo, Jun; Nakayama, Hisashi; Watanabe, Haruna N; Ogawa, Masahiro; Moriyama, Mitsuhiko; Sugitani, Masahiko; Takayama, Tadatoshi; Abe, Osamu

    2017-02-13

    Hepatic schwannoma is a very rare hepatic tumor, usually appearing as a hypervascular solid mass with or without various degrees of cystic changes; however, to the best of our knowledge, only the two cases of hepatic schwannoma showing a multi-cystic appearance have previously been reported. We report herein a benign hepatic schwannoma presenting as an unusually large multi-cystic mass. The gadoxetic acid disodium-enhanced magnetic resonance imaging features are described with the histopathologic correlation and briefly review the literature. The solid-like areas showing the early/progressive enhancement, reflecting remnants of the Antoni A/B portion, during the dynamic phases may be helpful imaging features for the differentiation of other multi-cystic hepatic lesions, but pathological evaluation remains essential for diagnosis.

  4. Novel Extracellular PHB Depolymerase from Streptomyces ascomycinicus: PHB Copolymers Degradation in Acidic Conditions

    PubMed Central

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224

  5. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    PubMed

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  6. Isolation and characterization of Halomonas sp. strain IMPC, a p-coumaric acid-metabolizing bacterium that decarboxylates other cinnamic acids under hypersaline conditions.

    PubMed

    Abdelkafi, Slim; Labat, Marc; Casalot, Laurence; Chamkha, Mohamed; Sayadi, Sami

    2006-02-01

    A moderately halophilic, mesophilic, Gram-negative, motile, nonsporulating bacterium, designated strain IMPC, was isolated from a table-olive fermentation rich in aromatic compounds, after enrichment on p-coumaric acid under halophilic conditions. Strain IMPC was able to degrade p-coumaric acid. p-hydroxybenzaldehyde and p-hydroxybenzoic acid were detected as breakdown products from p-coumaric acid. Protocatechuic acid was identified as the final aromatic product of p-coumaric acid catabolism before ring fission. Strain IMPC transformed various cinnamic acids with substituent H, OH, CH(3) or OCH(3) in the para- and/or meta-position of the aromatic ring to the corresponding benzoic acids, indicating a specific selection. A beta-oxidation pathway was proposed for these transformations. Phylogenetic analysis of the 16S rRNA gene revealed that this isolate was a member of the genus Halomonas. Strain IMPC was closely related to Halomonas elongata ATCC 33173(T)and Halomonas eurihalina ATCC 49336(T).

  7. Applying support vector machine on hybrid fNIRS/EEG signal to classify driver's conditions (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien; Ahn, Sangtae; Jang, Hyojung; Jun, Sung C.; Kim, Jae G.

    2016-03-01

    Driver's condition plays a critical role in driving safety. The fact that about 20 percent of automobile accidents occurred due to driver fatigue leads to a demand for developing a method to monitor driver's status. In this study, we acquired brain signals such as oxy- and deoxyhemoglobin and neuronal electrical activity by a hybrid fNIRS/EEG system. Experiments were conducted with 11 subjects under two conditions: Normal condition, when subjects had enough sleep, and sleep deprivation condition, when subject did not sleep previous night. During experiment, subject performed a driving task with a car simulation system for 30 minutes. After experiment, oxy-hemoglobin and deoxy-hemoglobin changes were derived from fNIRS data, while beta and alpha band relative power were calculated from EEG data. Decrement of oxy-hemoglobin, beta band power, and increment of alpha band power were found in sleep deprivation condition compare to normal condition. These features were then applied to classify two conditions by Fisher's linear discriminant analysis (FLDA). The ratio of alpha-beta relative power showed classification accuracy with a range between 62% and 99% depending on a subject. However, utilization of both EEG and fNIRS features increased accuracy in the range between 68% and 100%. The highest increase of accuracy is from 63% using EEG to 99% using both EEG and fNIRS features. In conclusion, the enhancement of classification accuracy is shown by adding a feature from fNIRS to the feature from EEG using FLDA which provides the need of developing a hybrid fNIRS/EEG system.

  8. Extended survival of several organisms and amino acids under simulated martian surface conditions

    NASA Astrophysics Data System (ADS)

    Johnson, A. P.; Pratt, L. M.; Vishnivetskaya, T.; Pfiffner, S.; Bryan, R. A.; Dadachova, E.; Whyte, L.; Radtke, K.; Chan, E.; Tronick, S.; Borgonie, G.; Mancinelli, R. L.; Rothschild, L. J.; Rogoff, D. A.; Horikawa, D. D.; Onstott, T. C.

    2011-02-01

    Recent orbital and landed missions have provided substantial evidence for ancient liquid water on the martian surface as well as evidence of more recent sedimentary deposits formed by water and/or ice. These observations raise serious questions regarding an independent origin and evolution of life on Mars. Future missions seek to identify signs of extinct martian biota in the form of biomarkers or morphological characteristics, but the inherent danger of spacecraft-borne terrestrial life makes the possibility of forward contamination a serious threat not only to the life detection experiments, but also to any extant martian ecosystem. A variety of cold and desiccation-tolerant organisms were exposed to 40 days of simulated martian surface conditions while embedded within several centimeters of regolith simulant in order to ascertain the plausibility of such organisms' survival as a function of environmental parameters and burial depth. Relevant amino acid biomarkers associated with terrestrial life were also analyzed in order to understand the feasibility of detecting chemical evidence for previous biological activity. Results indicate that stresses due to desiccation and oxidation were the primary deterrent to organism survival, and that the effects of UV-associated damage, diurnal temperature variations, and reactive atmospheric species were minimal. Organisms with resistance to desiccation and radiation environments showed increased levels of survival after the experiment compared to organisms characterized as psychrotolerant. Amino acid analysis indicated the presence of an oxidation mechanism that migrated downward through the samples during the course of the experiment and likely represents the formation of various oxidizing species at mineral surfaces as water vapor diffused through the regolith. Current sterilization protocols may specifically select for organisms best adapted to survival at the martian surface, namely species that show tolerance to radical

  9. Twenty-two survivors over the age of 1 year with full trisomy 18: presenting and current medical conditions.

    PubMed

    Bruns, Deborah; Campbell, Emily

    2014-03-01

    The purpose of the study is to provide data about 22 survivors over the age of 1 year with full trisomy 18 (12-59 months). Mothers completed the online, mixed method Tracking Rare Incidence Syndrome (TRIS) Survey provides data on birth information (e.g., gestational age, birth weight) and medical conditions identified at birth and at the time of survey completion. Data indicate similar birth characteristics to other studies and presence of syndrome related medical conditions including cardiac conditions, use of a variety of feeding methods, apnea, respiratory difficulties, and kidney issues. Associated interventions, sometimes considered "aggressive" or "intensive" treatments including cardiac surgeries were noted in the sample. Implications for treatment are provided and the need for additional research with this clinical subgroup is needed.

  10. Complex investigation of the effects of lambertianic acid amide in female mice under conditions of social discomfort.

    PubMed

    Avgustinovich, D F; Fomina, M K; Sorokina, I V; Tolstikova, T G

    2014-09-01

    The effects of chronic administration of a new substance lambertianic acid amide and previously synthesized methyl ester of this acid were compared in female mice living under conditions of social discomfort. For modeling social discomfort, female mouse was housed for 30 days in a cage with aggressive male mouse kept behind a transparent perforated partition and observed its confrontations with another male mouse daily placed to the cage. The new agent more effectively than lambertianic acid methyl ester improved communicativeness and motor activity of animals, reduced hypertrophy of the adrenal glands, and enhanced catalase activity in the blood. These changes suggest that lambertianic acid amide produces a pronounced stress-protective effect under conditions of social discomfort.

  11. Valproic acid inhibits excess dopamine release in response to a fear-conditioned stimulus in the basolateral complex of the amygdala of methamphetamine-sensitized rats.

    PubMed

    Miyagi, Junko; Oshibuchi, Hidehiro; Kasai, Akiko; Inada, Ken; Ishigooka, Jun

    2014-05-05

    Valproic acid, an established antiepileptic and antimanic drug, has recently emerged as a promising emotion-stabilizing agent for patients with psychosis. Although dopamine transmission in the amygdala plays a key role in emotional processing, there has been no direct evidence about how valproic acid acts on the dopaminergic system in the brain during emotional processing. In the present study, we tested the effect of valproic acid on a trait marker of vulnerability to emotional stress in psychosis, which is excess dopamine release in response to a fear-conditioned stimulus (CS) in the basolateral complex of the amygdala of methamphetamine-sensitized rats. Extracellular dopamine was collected from the amygdala of freely moving methamphetamine-sensitized rats by in vivo microdialysis and was measured using high-performance liquid chromatography. During microdialysis, valproic acid was intraperitoneally injected followed by CS exposure. Valproic acid treatment decreased baseline levels of dopamine and also attenuated the excess dopamine release in response to the CS in the amygdala of methamphetamine-sensitized rats. The results prove that valproic acid inhibits spontaneous dopamine release and also attenuates excess dopaminergic signaling in response to emotional stress in the amygdala. These findings suggest that the mechanisms of the emotion-stabilizing effect of valproic acid in psychosis involve modulation of dopaminergic transmission in emotional processing.

  12. Folding study of Venus reveals a strong ion dependence of its yellow fluorescence under mildly acidic conditions.

    PubMed

    Hsu, Shang-Te Danny; Blaser, Georg; Behrens, Caroline; Cabrita, Lisa D; Dobson, Christopher M; Jackson, Sophie E

    2010-02-12

    Venus is a yellow fluorescent protein that has been developed for its fast chromophore maturation rate and bright yellow fluorescence that is relatively insensitive to changes in pH and ion concentrations. Here, we present a detailed study of the stability and folding of Venus in the pH range from 6.0 to 8.0 using chemical denaturants and a variety of spectroscopic probes. By following hydrogen-deuterium exchange of (15)N-labeled Venus using NMR spectroscopy over 13 months, residue-specific free energies of unfolding of some highly protected amide groups have been determined. Exchange rates of less than one per year are observed for some amide groups. A super-stable core is identified for Venus and compared with that previously reported for green fluorescent protein. These results are discussed in terms of the stability and folding of fluorescent proteins. Under mildly acidic conditions, we show that Venus undergoes a drastic decrease in yellow fluorescence at relatively low concentrations of guanidinium chloride. A detailed study of this effect establishes that it is due to pH-dependent, nonspecific interactions of ions with the protein. In contrast to previous studies on enhanced green fluorescence protein variant S65T/T203Y, which showed a specific halide ion-binding site, NMR chemical shift mapping shows no evidence for specific ion binding. Instead, chemical shift perturbations are observed for many residues primarily located in both lids of the beta-barrel structure, which suggests that small scale structural rearrangements occur on increasing ionic strength under mildly acidic conditions and that these are propagated to the chromophore resulting in fluorescence quenching.

  13. Human bone marrow stem cells cultured under hypoxic conditions present altered characteristics and enhanced in vivo tissue regeneration.

    PubMed

    Lee, Jung-Seok; Park, Jung-Chul; Kim, Tae-Wan; Jung, Byung-Joo; Lee, Youngseok; Shim, Eun-Kyung; Park, Soyon; Choi, Eun-Young; Cho, Kyoo-Sung; Kim, Chang-Sung

    2015-09-01

    Human bone marrow mesenchymal stem cells (hBMSCs) were isolated from bone marrow of the vertebral body. The hBMSCs were cultured under either hypoxic (1% O2) or normoxic (21% O2; control) conditions and the characteristics as mesenchymal stem cells were compared. Results revealed that hypoxia reduced proliferative potential and colony-forming efficiency of hBMSCs, and significantly enhanced osteogenic and chondrogenic differentiation. The hBMSCs enhanced the regenerative potential of bone in vivo. In vitro synthesis of soluble and insoluble collagen was significantly increased in the hypoxic condition. In vivo collagen tissue regeneration was also enhanced under the hypoxic condition, with concomitant increased expressions of various subtypes of collagen and lysyl-oxidase family mRNA. MicroRNA assays revealed that miR-155-5p, which negatively regulates HIF-1α, was significantly highly expressed. These observations demonstrate that hBMSCs obtained from human vertebrae exhibit altered characteristics under hypoxic conditions, and each factor contributing to hBMSC-mediated tissue healing should be evaluated with the goal of allowing their clinical application.

  14. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  15. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  16. Biomineralization of Arsenate to Arsenic Sulfides is Greatly Enhanced at Mildly Acidic Conditions

    PubMed Central

    Rodriguez-Freire, Lucia; Sierra-Alvarez, Reyes; Root, Robert; Chorover, Jon; Field, James A.

    2014-01-01

    Arsenic (As) is an important water contaminant due to its high toxicity and widespread occurrence. Arsenic-sulfide minerals (ASM) are formed during microbial reduction of arsenate (AsV) and sulfate (SO42−). The objective of this research is to study the effect of the pH on the removal of As due to the formation of ASM in an iron-poor system. A series of batch experiments was used to study the reduction of SO42− and AsV by an anaerobic biofilm mixed culture in a range of pH conditions (6.1–7.2), using ethanol as the electron donor. Total soluble concentrations and speciation of S and As were monitored. Solid phase speciation of arsenic was characterized by x-ray adsorption spectroscopy (XAS). A marked decrease of the total aqueous concentrations of As and S was observed in the inoculated treatments amended with ethanol, but not in the non-inoculated controls, indicating that the As-removal was biologically mediated. The pH dramatically affected the extent and rate of As removal, as well as the stoichiometric composition of the precipitate. The amount of As removed was 2-fold higher and the rate of the As removal was up to 17-fold greater at pH 6.1 than at pH 7.2. Stoichiometric analysis and XAS results confirmed the precipitate was composed of a mixture of orpiment and realgar, and the proportion of orpiment in the sample increased with increasing pH. The results taken as a whole suggest that ASM formation is greatly enhanced at mildly acidic pH conditions. PMID:25222328

  17. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars

    NASA Astrophysics Data System (ADS)

    Fernández-Remolar, David C.; Preston, Louisa J.; Sánchez-Román, Mónica; Izawa, Matthew R. M.; Huang, L.; Southam, Gordon; Banerjee, Neil R.; Osinski, Gordon R.; Flemming, Roberta; Gómez-Ortíz, David; Prieto Ballesteros, Olga; Rodríguez, Nuria; Amils, Ricardo; Darby Dyar, M.

    2012-10-01

    Recent observations of carbonate minerals in ancient Martian rocks have been interpreted as evidence for the former presence of circumneutral solutions optimal for carbonate precipitation. Sampling from surface and subsurface regions of the low-pH system of Río Tinto has shown, unexpectedly, that carbonates can form under diverse macroscopic physicochemical conditions ranging from very low to neutral pH (1.5-7.0). A multi-technique approach demonstrates that carbonate minerals are closely associated with microbial activity. Carbonates occur in the form of micron-size carbonate precipitates under bacterial biofilms, mineralization of subsurface colonies, and possible biogenic microstructures including globules, platelets and dumbbell morphologies. We propose that carbonate precipitation in the low-pH environment of Río Tinto is a process enabled by microbially-mediated neutralization driven by the reduction of ferric iron coupled to the oxidation of biomolecules in microbially-maintained circumneutral oases, where the local pH (at the scale of cells or cell colonies) can be much different than in the macroscopic environment. Acidic conditions were likely predominant in vast regions of Mars over the last four billion years of planetary evolution. Ancient Martian microbial life inhabiting low-pH environments could have precipitated carbonates similar to those observed at Río Tinto. Preservation of carbonates at Río Tinto over geologically significant timescales suggests that similarly-formed carbonate minerals could also be preserved on Mars. Such carbonates could soon be observed by the Mars Science Laboratory, and by future missions to the red planet.

  18. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone.

  19. Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose-positive and cold-adapted Yarrowia lipolytica B9.

    PubMed

    Arslan, Nazli Pinar; Aydogan, Mehmet Nuri; Taskin, Mesut

    2016-08-10

    The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study.

  20. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2009-11-01

    Acid and heat inactivation in orange and apple juices of Salmonella enterica serovar Typhimurium Colección Española de Cultivos Tipo (i.e., Spanish Type Culture Collection) 443 (CECT 443) (Salmonella Typhimurium) and S. enterica serovar Senftenberg CECT 4384 (Salmonella Senftenberg) grown in buffered brain heart infusion (pH 7.0) and acidified brain heart infusion up to pH 4.5 with acetic, citric, lactic, and hydrochloric acids was evaluated. Acid adaptation induced an adaptive response that increased the subsequent resistance to extreme pH conditions (pH 2.5) and to heat, although the magnitude of these responses differed between the two isolates and fruit juices. The acid resistance in orange juice for acid-adapted cells (D-values of 28.3-34.5 min for Salmonella Senftenberg and 30.0-39.2 min for Salmonella Typhimurium) resulted to be about two to three times higher than that corresponding to non-acid-adapted cells. In apple juice, acid-adapted Salmonella Senftenberg cells survived better than those of Salmonella Typhimurium, obtaining mean D-values of 114.8 +/- 12.3 and 41.9 +/- 2.5 min, respectively. The thermotolerance of non-acid-adapted Salmonella Typhimurium in orange (D(58)-value: 0.028 min) and apple juices (D(58)-value: 0.10 min) was approximately double for acid-adapted cells. This cross-protection to heat was more strongly expressed in Salmonella Senftenberg. D(58)-values obtained for non-acid-adapted cells in orange (0.11 min) and apple juices (0.19 min) increased approximately 10 and 5 times, respectively, after their growth in acidified media. The conditions prevailing during bacterial growth and heat treatment did not significantly influence the z-values observed (6.0 +/- 0.3 degrees C for Salmonella Typhimurium and 7.0 +/- 0.3 degrees C for Salmonella Senftenberg). The enhanced acid resistance found for both isolates could enable them to survive for prolonged time periods in the gastrointestinal tract, increasing the risk of illness. Further, it

  1. Role of the tissue free amino acids in adaptation of medicinal leeches Hirudo medicinalis L., 1758 to extreme climatic conditions.

    PubMed

    Chernaya, L V; Kovalchuk, L A; Nokhrina, E S

    2016-01-01

    The first comparison of the spectra of free amino acids in tissues of the medicinal leeches H. medicinalis from different climatic and geographical Eurasian areas has been performed. Adaptation of H. medicinalis to extreme climatic conditions occurs via intensification of the amino acid metabolism resulting from a significant increase in the content of essential amino acids. Accumulation of arginine, histidine, and lysine (3.6-, 3.9-, and 2.0-fold increases, respectively) has proved to play a special protective role in adaptation of H. medicinalis to the low positive temperatures.

  2. Amyloid-β peptide (1-42) aggregation induced by copper ions under acidic conditions.

    PubMed

    Bin, Yannan; Li, Xia; He, Yonghui; Chen, Shu; Xiang, Juan

    2013-07-01

    It is well known that the aggregation of amyloid-β peptide (Aβ) induced by Cu²⁺ is related to incubation time, solution pH, and temperature. In this work, the aggregation of Aβ₁₋₄₂ in the presence of Cu²⁺ under acidic conditions was studied at different incubation time and temperature (e.g. 25 and 37°C). Incubation temperature, pH, and the presence of Cu²⁺ in Aβ solution were confirmed to alter the morphology of aggregation (fibrils or amorphous aggregates), and the morphology is pivotal for Aβ neurotoxicity and Alzheimer disease (AD) development. The results of atomic force microscopy (AFM) indicated that the formation of Aβ fibrous morphology is preferred at lower pH, but Cu²⁺ induced the formation of amorphous aggregates. The aggregation rate of Aβ was increased with the elevation of temperature. These results were further confirmed by fluorescence spectroscopy and circular dichroism spectroscopy and it was found that the formation of β-sheet structure was inhibited by Cu²⁺ binding to Aβ. The result was consistent with AFM observation and the fibrillation process was restrained. We believe that the local charge state in hydrophilic domain of Aβ may play a dominant role in the aggregate morphology due to the strong steric hindrance. This research will be valuable for understanding of Aβ toxicity in AD.

  3. Cloud point extraction of uranium using H₂DEH[MDP] in acidic conditions.

    PubMed

    Labrecque, Charles; Potvin, Sabrina; Whitty-Léveillé, Laurence; Larivière, Dominic

    2013-03-30

    A procedure has been developed for the cloud point extraction (CPE) of uranium (VI) using H2DEH[MDP] (P,P-di(2-ethylhexyl) methanediphosphonic acid) with inductively coupled plasma coupled to mass spectrometry (ICP-MS). The method is based on the modification of the cloud point temperature using cetyl trimethyl ammonium bromide (CTAB) and KI. Optimal conditions of extraction were found using a cross-optimization of every parameter (non-ionic and ionic surfactant concentrations, chelating agent concentration, pH and the extraction, and phase separation temperatures). Furthermore, the figures of merit of the methodology were assessed (limit of detection, limit of quantification, recovery, sensibility, and linear range) and are reported. Quantitative extraction (99 ± 0.5%) was obtained in drinking water samples over a wide range of uranium concentrations. The approach was also validated using drinking (SCP EP-L-3 and SCP EP-H-3), and wastewater (SCP EU-L-3) certified materials. Interferences from most critical anions and cations were evaluated to determine the reliability of the method. The proposed method showed robustness since its performance is maintained over a wide range of pH and metal ion concentrations.

  4. Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions.

    PubMed

    Kürten, Andreas; Jokinen, Tuija; Simon, Mario; Sipilä, Mikko; Sarnela, Nina; Junninen, Heikki; Adamov, Alexey; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Hutterli, Manuel; Kangasluoma, Juha; Kirkby, Jasper; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Mathot, Serge; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Riccobono, Francesco; Rissanen, Matti P; Rondo, Linda; Schobesberger, Siegfried; Seinfeld, John H; Steiner, Gerhard; Tomé, António; Tröstl, Jasmin; Winkler, Paul M; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Kenneth S; Kulmala, Markku; Worsnop, Douglas R; Curtius, Joachim

    2014-10-21

    For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

  5. Lithocholic acid: a new emergent protector of intestinal calcium absorption under oxidant conditions.

    PubMed

    Marchionatti, Ana M; Pérez, Adriana; Rivoira, María A; Rodríguez, Valeria A; Tolosa de Talamoni, Nori G

    2017-04-01

    LCA and 1,25(OH)2D3 are vitamin D receptor ligands with different binding affinity. The secosteroid stimulates intestinal Ca(2+) absorption. Whether LCA alters this process remains unknown. The aim of our work was to determine the effect of LCA on intestinal Ca(2+) absorption in the absence or presence of NaDOC, bile acid that inhibits the cation transport. The data show that LCA by itself did not alter intestinal Ca(2+) absorption, but prevented the inhibitory effect of NaDOC. The concomitant administration of LCA avoided the reduction of intestinal alkaline phosphatase activity caused by NaDOC. In addition, LCA blocked a decrease caused by NaDOC on gene and protein expression of molecules involved in the transcellular pathway of intestinal Ca(2+) absorption. The oxidative stress and apoptosis triggered by NaDOC were abrogated by LCA co-treatment. In conclusion, LCA placed in the intestinal lumen protects intestinal Ca(2+) absorption against the inhibitory effects caused by NaDOC. LCA avoids the reduction of the transcellular Ca(2+) movement, apparently by blocking the oxidative stress and apoptosis triggered by NaDOC, normalizing the gene and protein expression of molecules involved in Ca(2+) movement. Therefore, LCA might become a possible treatment to improve intestinal calcium absorption under oxidant conditions.

  6. A Comparison of Expedition Medical Condition List Treatment Directives with Integrated Medical Model Simulation Data Presentation and Briefing Report

    NASA Technical Reports Server (NTRS)

    Lewis, Robert

    2013-01-01

    This aerospace medicine clerkship project is under the direction of Dr. Sharmila Watkins and is in cooperation with Dr. Eric Kerstman and Dr. Ronak Shah. The questions of the research project are: 1. What are the main drivers of evacuation and loss of crew life (LOCL) on three Design Reference Missions (DRMs): Near Earth Asteroid (NEA), Lunar Sortie and Lunar Outpost using an inexhaustible International Space Station medical kit 2. What are the treatment designations for these driving medical conditions as listed in Expedition Medical Condition List (EMCL) 3. Do the drivers make sense in the context of the given Design Reference Mission (DRM) 4. Do any EMCL treatment designations need re-assessing.

  7. Sorption and coprecipitation of trace concentrations of thorium with various minerals under conditions simulating an acid uranium mill effluent environment

    USGS Publications Warehouse

    Landa, Edward R.; Le, Anh H.; Luck, Rudy L.; Yeich, Philip J.

    1995-01-01

    Sorption of thorium by pre-existing crystals of anglesite (PbSO4), apatite (Ca5(PO4)3(HO)), barite (BaSO4), bentonite (Na0.7Al3.3Mg0.7Si8O20(OH)4), celestite (SrSO4), fluorite (CaF2), galena (PbS), gypsum (CaSO4·2H2O), hematite (Fe2O3), jarosite (KFe3(SO4)2(OH)6), kaolinite (Al2O3·2SiO2·2H2O), quartz (SiO2) and sodium feldspar (NaAlSi3O8) was studied under conditions that simulate an acidic uranium mill effluent environment. Up to 100% removal of trace quantitiees of thorim (approx. 1.00 ppm in 0.01 N H2SO4) from solution occurred within 3 h with fluorite and within 48 h in the case of bentonite. Quartz, jarosite, hematite, sodium feldspar, gypsum and galena removed less than 15% of the thorium from solution. In the coprecipitation studies, barite, anglesite, gypsum and celestite were formed in the presence of thorium (approx. 1.00 ppm). Approximately all of the thorium present in solution coprecipitated with barite and celestite; 95% coprecipitated with anglesite and less than 5% with gypsum under similar conditions. When jarosite was precipitated in the presence of thorium, a significant amount of thorium (78%) was incorporated in the precipitate.

  8. Effect of scrubbing operating conditions on adipic acid degradation. Final report February-August 1980

    SciTech Connect

    Chang, J.C.S.

    1981-02-01

    The report gives results of adipic acid degradation tests at EPA's IERL-RTP limestone SO2 scrubber, to investigate the effects of operating variables on unaccountable adipic acid loss. It was found that: (1) adipic acid degradation could not be totally quenched by only lowering the pH below 5.0; (2) pH change did significantly affect unaccountable adipic acid loss (other factors may increase the adipic acid degradation rate at both high and low pH); (3) an appreciable amount of adipic acid loss was caused by coprecipitation with calcium sulfite; and (4) forced oxidation could aggravate the adipic acid degradation loss even at pH below 5.0. Adipic acid loss could be reduced: at high sulfite concentrations (the adipic acid degradation rate could be decreased by lowering the destructive free radical concentrations by high total sulfite); in the presence of manganous ion at low pH (the metal ion might act as an inhibitor to the oxidative degradation reaction at low pH); and with high natural oxidation (the adipic acid coprecipitation loss might be reduced with the high natural oxidation). Adipic acid degradation (loss) data were compared from four different test facilities. Most of the data also support these conclusions.

  9. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses

    PubMed Central

    Silva, Mariana; Silva, Zélia; Marques, Graça; Ferro, Tiago; Gonçalves, Márcia; Monteiro, Mauro; van Vliet, Sandra J.; Mohr, Elodie; Lino, Andreia C.; Fernandes, Alexandra R.; Lima, Flávia A.; van Kooyk, Yvette; Matos, Teresa; Tadokoro, Carlos E.; Videira, Paula A.

    2016-01-01

    Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280–288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy. PMID:27203391

  10. Sialic acid removal from dendritic cells improves antigen cross-presentation and boosts anti-tumor immune responses.

    PubMed

    Silva, Mariana; Silva, Zélia; Marques, Graça; Ferro, Tiago; Gonçalves, Márcia; Monteiro, Mauro; van Vliet, Sandra J; Mohr, Elodie; Lino, Andreia C; Fernandes, Alexandra R; Lima, Flávia A; van Kooyk, Yvette; Matos, Teresa; Tadokoro, Carlos E; Videira, Paula A

    2016-07-05

    Dendritic cells (DCs) hold promise for anti-cancer immunotherapy. However, clinically, their efficiency is limited and novel strategies to improve DC-mediated anti-tumor responses are needed. Human DCs display high content of sialic acids, which inhibits their maturation and co-stimulation capacity. Here, we aimed to understand whether exogenous desialylation of DCs improves their anti-tumor immunity. Compared to fully sialylated DCs, desialylated human DCs loaded with tumor-antigens showed enhanced ability to induce autologous T cells to proliferate, to secrete Th1 cytokines, and to specifically induce tumor cell apoptosis. Desialylated DCs showed an increased expression of MHC-I and -II, co-stimulatory molecules and an augmented secretion of IL-12. Desialylated HLA-A*02:01 DCs pulsed with gp100 peptides displayed enhanced peptide presentation through MHC-I, resulting in higher activation ofgp100280-288 specific CD8+ cytotoxic T cells. Desialylated murine DCs also exhibited increased MHC and co-stimulatory molecules and higher antigen cross-presentation via MHC-I. These DCs showed higher ability to activate antigen-specific CD4+ and CD8+ T cells, and to specifically induce tumor cell apoptosis. Collectively, our data demonstrates that desialylation improves DCs' ability to elicit T cell-mediated anti-tumor activity, due to increased MHC-I expression and higher antigen presentation via MHC-I. Sialidase treatment of DCs may represent a technology to improve the efficacy of antigen loaded-DC-based vaccines for anti-cancer immunotherapy.

  11. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    PubMed Central

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  12. Structural characterization of the degradation products of a minor natural sweet diterpene glycoside Rebaudioside M under acidic conditions.

    PubMed

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-14

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies.

  13. A comparison of spatially resolved and global mean reconstructions of continental denudation under ice-free and present conditions

    NASA Astrophysics Data System (ADS)

    Sloan, L. Cirbus; Bluth, Gregg J. S.; Filippelli, G. M.

    1997-01-01

    We assess the impact of continental-scale processes on global denudation through the use of spatially resolved information for both an ice-free paleoclimate and the present climate. Runoff from general circulation modeling cases representing the early Eocene is superimposed upon an Eocene paleogeologic reconstruction, and this information is combined with chemical denudation rates for silica (dissolved moles Si) and bicarbonate (dissolved moles HCO3-). Global fluxes of silica and bicarbonate to the global ocean are then calculated. A parallel procedure is carried out with present-day distributions of lithology and model-derived runoff. This work demonstrates that fluxes produced by a simple model such as the one used here are significantly different when calculated with spatially uniform runoff values versus those calculated with a spatially varying runoff distribution having the same global mean value. Use of a uniform runoff distribution produces denudation rates that are significantly higher than the global results derived from a spatially varying runoff distribution. We show that present-day fluxes of silica calculated by our model containing spatially varying runoff and lithology are similar to observations of current fluxes, suggesting that our model captures the first-order relationship accurately; however, the bicarbonate value compares less well to observations. Comparison of Eocene and present-day flux results shows that present-day fluxes of Si are greater than Eocene values, while calculated present-day HCO3- fluxes are greater than or equal to Eocene values. This result occurs despite the existence of greater global mean annual runoff for the Eocene cases and despite the existence of ice-covered areas (by definition, not contributing to chemical weathering in our model) in the present case. The increase in Si global denudation fluxes from the Eocene to the present are caused primarily by the large increase in exposed granitic, basaltic, and shale

  14. Bile Acid Malabsorption After Pelvic and Prostate Intensity Modulated Radiation Therapy: An Uncommon but Treatable Condition

    SciTech Connect

    Harris, Victoria; Benton, Barbara; Sohaib, Aslam; Dearnaley, David; Andreyev, H. Jervoise N.

    2012-12-01

    Purpose: Intensity modulated radiation therapy (IMRT) is a significant therapeutic advance in prostate cancer, allowing increased tumor dose delivery and increased sparing of normal tissues. IMRT planning uses strict dose constraints to nearby organs to limit toxicity. Bile acid malabsorption (BAM) is a treatable disorder of the terminal ileum (TI) that presents with symptoms similar to radiation therapy toxicity. It has not been described in patients receiving RT for prostate cancer in the contemporary era. We describe new-onset BAM in men after IMRT for prostate cancer. Methods and Materials: Diagnosis of new-onset BAM was established after typical symptoms developed, selenium-75 homocholic acid taurine (SeHCAT) scanning showed 7-day retention of <15%, and patients' symptoms unequivocally responded to a bile acid sequestrant. The TI was identified on the original radiation therapy plan, and the radiation dose delivered was calculated and compared with accepted dose-volume constraints. Results: Five of 423 men treated in a prospective series of high-dose prostate and pelvic IMRT were identified with new onset BAM (median age, 65 years old). All reported having normal bowel habits before RT. The volume of TI ranged from 26-141 cc. The radiation dose received by the TI varied between 11.4 Gy and 62.1 Gy (uncorrected). Three of 5 patients had TI treated in excess of 45 Gy (equivalent dose calculated in 2-Gy fractions, using an {alpha}/{beta} ratio of 3) with volumes ranging from 1.6 cc-49.0 cc. One patient had mild BAM (SeHCAT retention, 10%-15%), 2 had moderate BAM (SeHCAT retention, 5%-10%), and 2 had severe BAM (SeHCAT retention, <5%). The 3 patients whose TI received {>=}45 Gy developed moderate to severe BAM, whereas those whose TI received <45 Gy had only mild to moderate BAM. Conclusions: Radiation delivered to the TI during IMRT may cause BAM. Identification of the TI from unenhanced RT planning computed tomography scans is difficult and may impede accurate

  15. Core Fluxome and Metafluxome of Lactic Acid Bacteria under Simulated Cocoa Pulp Fermentation Conditions

    PubMed Central

    Adler, Philipp; Bolten, Christoph Josef; Dohnt, Katrin; Hansen, Carl Erik

    2013-01-01

    In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive 13C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel 13C studies with [13C6]glucose, [1,2-13C2]glucose, and [13C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity. PMID:23851099

  16. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed Central

    Castilla Casadiego, D. A.; Albis Arrieta, A. R.; Angulo Mercado, E. R.; Cervera Cahuana, S. J.; Baquero Noriega, K. S.; Suárez Escobar, A. F.; Morales Avendaño, E. D.

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained “Nutrifoliar,” a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using “Nutrifoliar” as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids. PMID:27376085

  17. Deuterium Enrichment of Amino and Hydroxy Acids Found in the Murchison Meteorite: Constraints on Parent Body Conditions

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The alpha-amino and alpha-hydroxy acids found in the Murchison carbonaceous chondrite are deuterium enriched. These compounds are thought to have originated from common deuterium enriched carbonyl precursors, by way of a Strecker synthesis which took place in a solution of HCN, NH3, and carbonyl compounds during the period of aqueous alteration of the meteorite parent body. However, the hydroxy acids found on Murchison are less deuterium enriched than the amino acids. With the objective of determining if the discrepancy in deuterium enrichment between the amino acids and the hydroxy acids found on Murchison is consistent with their formation in a Strecker synthesis, we have measured the deuterium content of alpha-amino and alpha-hydroxy acids produced in solutions of deuterated carbonyl compounds, KCN and NH4Cl, and also in mixtures of such solutions and Allende dust at 263 K and 295 K. Retention of the isotopic signature of the starting carbonyl by both alpha amino acids and alpha hydroxy acids is more dependent upon temperature, concentration and pH than upon the presence of meteorite dust in the solution. The constraints these observations place on Murchison parent body conditions will be discussed.

  18. Evaluation of Culture Conditions to Obtain Fatty Acids from Saline Microalgae Species: Dunaliella salina, Sinecosyfis sp., and Chroomonas sp.

    PubMed

    Castilla Casadiego, D A; Albis Arrieta, A R; Angulo Mercado, E R; Cervera Cahuana, S J; Baquero Noriega, K S; Suárez Escobar, A F; Morales Avendaño, E D

    2016-01-01

    The use of the saline microalgae, Dunaliella salina, Sinecosyfis sp., and Chroomonas sp., was explored as an alternative source for the production of fatty acids using fertilizer and glycerol as culture media. The nutrient medium used contained "Nutrifoliar," a commercial fertilizer, and/or glycerol, in natural sea water. The microalgae were placed in cultures with different conditions. The parameters that favored the largest production of fatty acids were 24 hours of agitation and illumination, 1620 L/day of air supply, 2.25 L of air/min, and a temperature of 32°C using "Nutrifoliar" as the culture media. Results indicated that, from 3 g of microalgae in wet base of Chroomonas sp., 54.43 mg of oil was produced. The chromatographic characterization of oil obtained revealed the presence of essential fatty acids such as 9,12,15-octadecatrienoic acid (omega-3) and 4,7,10-hexadecatrienoic acid (omega-6) from the species Dunaliella salina. On the other hand, 9,12-octadecadienoic acid (omega-6) and cis-11-eicosenoic acid (omega-9) were identified from the species Chroomonas sp. The temperature variations played an important role in the velocity of growth or the production of the algae biomass, the amount of oil, and the ability to produce fatty acids.

  19. Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ruichang; Zhang, Haibo; Tu, Chen; Hu, Xuefeng; Li, Lianzhen; Luo, Yongming; Christie, Peter

    2015-04-01

    The transport behavior of titanium dioxide nanoparticles (TiO2 NPs, 30 nm in diameter) was studied in well-defined porous media composed of clean quartz sand over a range of solution chemistry under acidic conditions. Transport of TiO2 NPs was dramatically enhanced by humic substances (HS) at acidic pH (4.0, 5.0 and 6.0), even at a low HS concentration of 0.5 mg L-1. Facilitated transport of TiO2 NPs was likely attributable to the increased stability of TiO2 NPs and repulsive interaction between TiO2 NPs and quartz sands due to the adsorbed HS. The mobility of TiO2 NPs was also increased with increasing pH from 4.0 to 6.0. Although transport of TiO2 NPs was insensitive to low ionic strength, it was significantly inhibited by high concentrations of NaCl and CaCl2. In addition, calculated Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy indicated that high energy barriers were responsible for the high mobility of TiO2 NPs, while the secondary energy minimum could play an important role in the retention of TiO2 NPs at 100 mmol L-1 NaCl. Straining and gravitational settlement of larger TiO2 NPs aggregates at 1 mg L-1 HS, pH 5.0, and 2 mmol L-1 CaCl2 could be responsible for the significant retention even in the presence of high energy barriers. Moreover, more favorable interaction between approaching TiO2 NPs and TiO2 NPs that had been already deposited on the collector resulted in a ripening-shape breakthrough curve at 2 mmol L-1 CaCl2. Overall, a combination of mechanisms including DLVO-type force, straining, and physical filtration was involved in the retention of TiO2 NPs over the range of solution chemistry examined in this study.

  20. Catchment scale modelling of changes in pesticide leaching under present and future climate conditions. Demonstrated for two cases in Denmark

    NASA Astrophysics Data System (ADS)

    van der Keur, P.; Henriksen, H.; Sonnenborg, T.; van Roosmalen, L.; Rosenbom, A. E.; Olesen, J. E.; Kjaer, J.; Jørgensen, L. N.; Christensen, O. B.

    2011-12-01

    A catchment scale model MACRO-MIKE SHE is applied for simulating changes in pesticide concentrations to the aquatic environment. The MACRO model is used to model the effect of changes in climate and pesticide management on pesticide leaching from the unsaturated zone and simulated percolation as well as solute flow is propagated to the MIKE SHE model. The intensity based bias correction method for converting from Regional Climate Modelling data to hydrological input data is the most appropriate method as it best reflects changes in rainfall intensity, and thus also in intensity for MACRO simulated percolation and solute flow. Results show that increased percolation simulated by the MACRO model and propagated to the MIKE SHE model nearly all ends up in increased drainage to the river. Further, pesticide solute entering the saturated zone (SZ) is mainly leaving SZ via drainage (85-94%), base flow (3.8-11.3%) and overland flow (0-3.1 %). Mean concentrations in groundwater (SZ) increase by 30-99% for one type of herbicide under future climatic conditions, whereas mean concentrations decrease for two other types by app. 93 and 91 % respectively. Future climatic conditions lead to higher concentrations in surface water for the first type of herbicides, but to decreased concentrations for the another type of herbicide and insecticide. It is overall concluded that an integrated catchment scale modeling approach is essential for pesticide fate simulation taking account of all possible hydrologic pathways.

  1. [Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].

    PubMed

    Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O

    2014-01-01

    The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.

  2. Behavioral and electrophysiological responses of Aedes albopictus to certain acids and alcohols present in human skin emanations.

    PubMed

    Guha, Lopamudra; Seenivasagan, T; Iqbal, S Thanvir; Agrawal, O P; Parashar, B D

    2014-10-01

    Human skin emanations attract hungry female mosquitoes toward their host for blood feeding. In this study, we report the flight orientation and electroantennogram response of Aedes albopictus females to certain unsaturated acids and alcohols found in human skin. In the Y-tube olfactometer, odors of lactic acid and 2-methyl-3-pentanol attracted 54-65% of Ae. albopictus females at all doses in a dose-dependent manner. However, at the highest dose (10(-2) g), the acids repelled 40-45% females. Attractancy (ca. 62-68%) at lower doses and repellency (ca. 30-45%) at higher doses were recorded for 3-methyl-3-pentanol and 1-octen-3-ol, while 5-hexen-1-ol, cis-2-hexen-1-ol, and trans 2-hexen-1-ol odor repelled ca. 55-65% of Ae. albopictus females at all doses. Antenna of female Ae. albopictus exhibited a dose-dependent EAG response up to 10(-3) g of L-lactic acid, trans-2-methyl-2-pentenoic acid, 2-octenoic acid, trans-2-hexen-1-ol and 1-octen-3-ol stimulations; however, the highest dose (10(-2) g) caused a little decline in the EAG response. EAG response of 9-10-fold was elicited by lactic acid, 2-octenoic acid, trans-2-hexenoic acid, and 3-methyl-3-pentanol, while cis-2-hexen-1-ol and trans-2-methyl pentenoic acid elicited 1-5-fold responses compared to solvent control. A blend of attractive compounds could be utilized in odor-baited trap for surveillance and repellent molecules with suitable formulation could be used to reduce the biting menace of mosquitoes.

  3. Study on the relationship between meteorological conditions and acid rain in mid-eastern Fujian.

    PubMed

    Lin, C C; Liu, J X; Cai, Y Y; Li, B L; Wang, Z L; Chen, B B

    2009-08-01

    Based on the acid rain observation data and the contemporaneous historical synoptic charts of Mid-Eastern Fujian during the period of 1991 to 2003, we analyzed the distribution characteristics of acid rain in different seasons, weather types, precipitation grades and wind directions. The results showed that the acid pollution in Mid-Eastern Fujian was still serious. In winter, the precipitation pH value was 4.79, and the acid rain frequency was 60.62% which was twice higher than that in summer. The pH value of warm shear-type precipitation at 850 hPa was 4.79. Nearly half of these precipitations had the problems of acid rain pollution. The acid rain frequency of the inverted trough type was only 26.11% which was the lowest one in all types. There was no marked difference of the acid rain distribution characteristics between ahead-of-trough and behind-the-trough. The precipitation pH values of the five grades were lower than 5.30 and the acid rain frequency changed as an inverted U shape with the increasing of the rainfall. The pH values of precipitations in the eight wind directions were generally below 5.20, and the acid rain frequencies were about 40%.

  4. Formation of primary production in the reservoirs of the Volga chain of hydroelectric stations under present conditions: Phytoplankton pigments

    SciTech Connect

    Mineeva, N.M.

    1995-11-01

    Data of field observations of 1989-1991 on the content of photosynthetic pigments in the reservoirs of the Volga chain of hydroelectric stations are given. The effect of biogenic elements on the development of the Volga River phytoplankton is discussed. The present state of the water bodies is assessed in terms of chlorophyll content.

  5. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect

    Churchfield, M. J.

    2013-06-01

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  6. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions.

    PubMed

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel; De Biase, Daniela; Occhialini, Alessandra

    2015-01-01

    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative.

  7. A conjugate Lewis base-Brønsted acid catalyst for the sulfenylation of nitrogen containing heterocycles under mild conditions.

    PubMed

    Nalbandian, Christopher J; Miller, Eric M; Toenjes, Sean T; Gustafson, Jeffery L

    2017-01-26

    Catalysts that contain a thiourea tethered to a carboxylic acid were found to affect the sulfenylation of indoles and other N-heterocycles on the hour time scale at room temperature. The mild nature of these conditions allowed for the incorporation of diverse functionalities into more complex heterocycles.

  8. Computational modeling of optogenetic neuronal excitation under complex illumination conditions using a Matlab-Neuron interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yona, Guy; Weissler, Yonatan; Meitav, Nizan; Guzi, Eliran; Rifold, Dafna D.; Kahn, Itamar; Shoham, Shy

    2016-03-01

    Optogenetics has in recent years become a central tool in neuroscience research. Creating a realistic model of optogenetic neuronal excitation is of crucial importance for controlling the activation levels of various neuronal populations in different depths, predicting experimental results and designing the optical systems. However, current approaches to modeling light propagation through rodents' brain tissue suffer from major shortcomings and comprehensive modeling of local illumination levels together with other important factors governing excitation (i.e., cellular morphology, channel dynamics and expression), are still lacking. To address this challenge we introduce a new simulation tool for optogenetic neuronal excitation under complex and realistic illumination conditions that implements a detailed physical model for light scattering (in MATLAB) together with neuron morphology and channelrhodopsin-2 model (in NEURON). These two disparate simulation environments were interconnected using a newly developed generic interface termed 'NeuroLab'. Applying this method, we show that in a layer-V cortical neuron, the relative contribution of the apical dendrites to neuronal excitation is considerably greater than that of the soma or basal dendrites, when illuminated from the surface.

  9. In vitro short-term bonding performance of zirconia treated with hot acid etching and primer conditioning etching and primer conditioning.

    PubMed

    Xie, Haifeng; Chen, Chen; Dai, Wenyong; Chen, Gang; Zhang, Feimin

    2013-01-01

    This study aimed to investigate and compare the resin bond strengths of zirconia conditioned as follows: alumina sandblasting; alumina sandblasting+application of 10-MDP-containing primer; alumina sandblasting+application of Z-Prime Plus or Metal/Zirconia Primer (new zirconia primers); tribochemical silica coating+silanization; hot acid etching in three different combinations [H2SO4/(NH4)2SO4, HF/HNO3, H2SO4/HF/HNO3]+application of 10-MDP-containing primer. Shear bond strengths (SBS) after water storage for 24 h and 40 days were measured to assess resin bonding performance. Surface and chemical properties of conditioned zirconia surfaces and primers were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and atomic force microscopy. Surface roughness ranked in descending order was: hot acid etching > tribochemical silica coating > alumina sandblasting. Combination of tribochemical silica coating and silanization showed the highest initial SBS (12.46±2.13 MPa) (P<0.01). Etching with H2SO4/(NH4)2SO4 (13.15±3.24 MPa) and HF/HNO3 (13.48±2.15 MPa) showed significantly better bond durability (P<0.01). Hot acid etching seemed to be a promising surface roughening treatment to improve resin-zirconia bonding.

  10. Effect of Different Nutritional Conditions on the Synthesis of Tricarboxylic Acid Cycle Enzymes

    PubMed Central

    Hanson, Richard S.; Cox, Donald P.

    1967-01-01

    The effect of various nutritional conditions on the levels of Krebs cycle enzymes in Bacillus subtilis, B. licheniformis, and Escherichia coli was determined. The addition of glutamate, α-ketoglutarate, or compounds capable of being catabolized to glutamate, to a minimal glucose medium resulted in complete repression of aconitase in B. subtilis and B. licheniformis. The synthesis of fumarase, succinic dehydrogenase, malic dehydrogenase, and isocitric dehydrogenase was not repressed by these compounds. It is postulated that glutamate or α-ketoglutarate is the true corepressor for the repression of aconitase. A rapidly catabolizable carbon source and α-ketoglutarate or glutamate must be simultaneously present for complete repression of the formation of aconitase. Conditions which repress the synthesis of aconitase in B. subtilis restrict the flow of carbon in the sequence of reactions leading to α-ketoglutarate but do not prevent glutamate oxidation in vivo. The data indicate that separate and independent mechanisms regulate the activity of the anabolic and catabolic reactions of the Krebs cycle in B. subtilis and B. licheniformis. The addition of glutamate to the minimal glucose medium results in the repression of aconitase, isocitric dehydrogenase, and fumarase, but not malic dehydrogenase in E. coli K-38. PMID:4960893

  11. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2011-10-01

    Lactobionic acid finds applications in the fields of pharmaceuticals, cosmetics and medicine. The production of lactobionic acid from whey by Pseudomonas taetrolens was studied in shake-flasks and in a bioreactor. Shake-flask experiments showed that lactobionic acid was a non-growth associated product. A two-stage pH-shift bioconversion strategy with a pH-uncontrolled above 6.5 during the growth phase and maintained at 6.5 during cumulative production was adopted in bioreactor batch cultures. An inoculation level of 30% promoted high cell culture densities that triggered lactobionic acid production at a rate of 1.12 g/Lh. This methodology displayed efficient bioconversion with cheese whey as an inexpensive substrate for lactobionic acid production.

  12. Direct fermentation of potato starch and potato residues to lactic acid by Geobacillus stearothermophilus under non-sterile conditions

    PubMed Central

    Smerilli, Marina; Neureiter, Markus; Wurz, Stefan; Haas, Cornelia; Frühauf, Sabine; Fuchs, Werner

    2015-01-01

    BACKGROUND Lactic acid is an important biorefinery platform chemical. The use of thermophilic amylolytic microorganisms to produce lactic acid by fermentation constitutes an efficient strategy to reduce operating costs, including raw materials and sterilization costs. RESULTS A process for the thermophilic production of lactic acid by Geobacillus stearothermophilus directly from potato starch was characterized and optimized. Geobacillus stearothermophilus DSM 494 was selected out of 12 strains screened for amylolytic activity and the ability to form lactic acid as the major product of the anaerobic metabolism. In total more than 30 batches at 3–l scale were run at 60 °C under non-sterile conditions. The process developed produced 37 g L−1 optically pure (98%) L-lactic acid in 20 h from 50 g L−1 raw potato starch. As co-metabolites smaller amounts (<7% w/v) of acetate, formate and ethanol were formed. Yields of lactic acid increased from 66% to 81% when potato residues from food processing were used as a starchy substrate in place of raw potato starch. CONCLUSIONS Potato starch and residues were successfully converted to lactic acid by G. stearothermophilus. The process described in this study provides major benefits in industrial applications and for the valorization of starch-rich waste streams. © 2015 The Authors.Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:25937690

  13. Assessing the impact of environmental forcing on the condition of anchovy larvae in the Cadiz Gulf using nucleic acid and fatty acid-derived indices

    NASA Astrophysics Data System (ADS)

    Teodósio, M. A.; Garrido, S.; Peters, J.; Leitão, F.; Ré, P.; Peliz, A.; Santos, A. M. P.

    2017-02-01

    Understanding the environmental processes affecting fish larvae survival is critical for population dynamics, conservation purposes and to ecosystem-based fishery management. Using anchovies (Engraulis encrasicolus) of the Cadiz Gulf as a study case and considering the "Ocean Triad" hypothesis, we investigate the larval ecophysiological status and potential survival in relation to oceanographic variables. Therefore, this study aims to describe the nutritional condition of anchovy larvae during spawning season (peak in summer) through nucleic acid- and fatty acid (FA)-derived indices and to analyze the effects of the major environmental parameters (Depth, Temperature, Salinity, Plankton biomass) on anchovy survival potential at early phases. Fish larvae were collected in August from 30 m to 400 m depth at 35 stations off the southern Iberian coast. A previous upwelling event influenced the oceanographic conditions of the more western stations off Cape São Vicente (CSV). Along the coast, the water became warmer from west to the east through Cape Santa Maria (CSM) ending at Guadiana estuary, where easterly winds originated the development of a counter current. The standardized RNA/DNA (sRD) of anchovy larvae decreased throughout larval ontogeny, reflecting a reduction of growth during the development. Essential FA concentrations also decreased, but docosahexaenoic acid (DHA) in particular was highly conserved even after the reduction of total FA concentration in anchovy larvae related to the onset of swimming abilities (post-flexion phase). The oceanographic conditions (west upwelling, east counter current, and stratification) led to a nearshore aggregation of plankton and anchovy larvae with good ecophysiological conditions in the central area of the southern coast, where an optimal range of temperature and chlorophyll, as an indirect food proxy for anchovy larval development, were registered. The study proves that the oceanographic conditions of the study area are

  14. Determination of the optimum conditions for boric acid extraction with carbon dioxide gas in aqueous media from colemanite containing arsenic

    SciTech Connect

    Ata, O.N.; Colak, S.; Copur, M.; Celik, C.

    2000-02-01

    The Taguchi method was used to determine optimum conditions for the boric acid extraction from colemanite ore containing As in aqueous media saturated by CO{sub 2} gas. After the parameters were determined to be efficient on the extraction efficiency, the experimental series with two steps were carried out. The chosen experimental parameters for the first series of experiments and their ranges were as follows: (1) reaction temperature, 25--70 C; (2) solid-to-liquid ratio (by weight), 0.091 to 0.333; (3) gas flow rate (in mL/min), 66.70--711; (4) mean particle size, {minus}100 to {minus}10 mesh; (5) stirring speed, 200--600 rpm; (6) reaction time, 10--90 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.091; gas flow rate, 711 (in mL/min); particle size, {minus}100 mesh; stirring speed, 500 rpm; reaction time, 90 min. Under these optimum conditions, the boric acid extraction efficiency from the colemanite containing As was approximately 54%. Chosen experimental parameters for the second series of experiments and their ranges were as follows: (1) reaction temperature, 60--80 C; (2) solid-to-liquid ratio (by weight), 0.1000 to 0.167; (3) gas pressure (in atm), 1.5; 2.7; (4) reaction time, 45--120 min. The optimum conditions were found to be as follows: reaction temperature, 70 C; solid-to-liquid ratio, 0.1; gas pressure, 2.7 atm; reaction time, 120 min. Under these optimum conditions the boric acid extraction efficiency from the colemanite ore was approximately 75%. Under these optimum conditions, the boric acid extraction efficiency from calcined colemanite ore was approximately 99.55%.

  15. Influence of concentration, time and method of application of citric acid and sodium citrate in root conditioning

    PubMed Central

    CAVASSIM, Rodrigo; LEITE, Fábio Renato Manzolli; ZANDIM, Daniela Leal; DANTAS, Andrea Abi Rached; RACHED, Ricardo Samih Georges Abi; SAMPAIO, José Eduardo Cezar

    2012-01-01

    Objective The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. Material and Methods A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Results Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Conclusion Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning. PMID:22858707

  16. Protein–Protein Interactions in Dilute to Concentrated Solutions: α-Chymotrypsinogen in Acidic Conditions

    PubMed Central

    2015-01-01

    Protein–protein interactions were investigated for α-chymotrypsinogen by static and dynamic light scattering (SLS and DLS, respectively), as well as small-angle neutron scattering (SANS), as a function of protein and salt concentration at acidic conditions. Net protein–protein interactions were probed via the Kirkwood–Buff integral G22 and the static structure factor S(q) from SLS and SANS data. G22 was obtained by regressing the Rayleigh ratio versus protein concentration with a local Taylor series approach, which does not require one to assume the underlying form or nature of intermolecular interactions. In addition, G22 and S(q) were further analyzed by traditional methods involving fits to effective interaction potentials. Although the fitted model parameters were not always physically realistic, the numerical values for G22 and S(q → 0) were in good agreement from SLS and SANS as a function of protein concentration. In the dilute regime, fitted G22 values agreed with those obtained via the osmotic second virial coefficient B22 and showed that electrostatic interactions are the dominant contribution for colloidal interactions in α-chymotrypsinogen solutions. However, as protein concentration increases, the strength of protein–protein interactions decreases, with a more pronounced decrease at low salt concentrations. The results are consistent with an effective “crowding” or excluded volume contribution to G22 due to the long-ranged electrostatic repulsions that are prominent even at the moderate range of protein concentrations used here (<40 g/L). These apparent crowding effects were confirmed and quantified by assessing the hydrodynamic factor H(q → 0), which is obtained by combining measurements of the collective diffusion coefficient from DLS data with measurements of S(q → 0). H(q → 0) was significantly less than that for a corresponding hard-sphere system and showed that hydrodynamic nonidealities can lead to qualitatively incorrect

  17. Distributional potential of the Triatoma brasiliensis species complex at present and under scenarios of future climate conditions

    PubMed Central

    2014-01-01

    Background The Triatoma brasiliensis complex is a monophyletic group, comprising three species, one of which includes two subspecific taxa, distributed across 12 Brazilian states, in the caatinga and cerrado biomes. Members of the complex are diverse in terms of epidemiological importance, morphology, biology, ecology, and genetics. Triatoma b. brasiliensis is the most disease-relevant member of the complex in terms of epidemiology, extensive distribution, broad feeding preferences, broad ecological distribution, and high rates of infection with Trypanosoma cruzi; consequently, it is considered the principal vector of Chagas disease in northeastern Brazil. Methods We used ecological niche models to estimate potential distributions of all members of the complex, and evaluated the potential for suitable adjacent areas to be colonized; we also present first evaluations of potential for climate change-mediated distributional shifts. Models were developed using the GARP and Maxent algorithms. Results Models for three members of the complex (T. b. brasiliensis, N = 332; T. b. macromelasoma, N = 35; and T. juazeirensis, N = 78) had significant distributional predictivity; however, models for T. sherlocki and T. melanica, both with very small sample sizes (N = 7), did not yield predictions that performed better than random. Model projections onto future-climate scenarios indicated little broad-scale potential for change in the potential distribution of the complex through 2050. Conclusions This study suggests that T. b. brasiliensis is the member of the complex with the greatest distributional potential to colonize new areas: overall; however, the distribution of the complex appears relatively stable. These analyses offer key information to guide proactive monitoring and remediation activities to reduce risk of Chagas disease transmission. PMID:24886587

  18. Effects of packaging and storage conditions on the quality of amoxicillin-clavulanic acid – an analysis of Cambodian samples

    PubMed Central

    2013-01-01

    Background The use of substandard and degraded medicines is a major public health problem in developing countries such as Cambodia. A collaborative study was conducted to evaluate the quality of amoxicillin–clavulanic acid preparations under tropical conditions in a developing country. Methods Amoxicillin-clavulanic acid tablets were obtained from outlets in Cambodia. Packaging condition, printed information, and other sources of information were examined. The samples were tested for quantity, content uniformity, and dissolution. Authenticity was verified with manufacturers and regulatory authorities. Results A total of 59 samples were collected from 48 medicine outlets. Most (93.2%) of the samples were of foreign origin. Using predetermined acceptance criteria, 12 samples (20.3%) were non-compliant. Eight (13.6%), 10 (16.9%), and 20 (33.9%) samples failed quantity, content uniformity, and dissolution tests, respectively. Samples that violated our observational acceptance criteria were significantly more likely to fail the quality tests (Fisher’s exact test, p < 0.05). Conclusions Improper packaging and storage conditions may reduce the quality of amoxicillin–clavulanic acid preparations at community pharmacies. Strict quality control measures are urgently needed to maintain the quality of amoxicillin–clavulanic acid in tropical countries. PMID:23773420

  19. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions

    PubMed Central

    2013-01-01

    We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature of 30°C, showed 32% and 19%, respectively, higher productivity of the organic acids lactate, succinate, and acetate compared to that at 30°C. However, α-amylase was not stably anchored and released into the medium from the cell surface during reactions at these higher temperatures, as demonstrated by the 61% and 85% decreases in activity, respectively, from baseline, compared to the only 8% decrease at 30°C. The AmyA-displaying C. glutamicum cells retained their starch-degrading capacity during five 10 h reaction cycles at 30°C, producing 107.8 g/l of total organic acids, including 88.9 g/l lactate and 14.0 g/l succinate. The applicability of cell surface-engineering technology for the production of organic acids from biomass by high cell-density cultures of C. glutamicum under anaerobic conditions was demonstrated. PMID:24342107

  20. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.

    PubMed

    Knuf, Christoph; Nookaew, Intawat; Brown, Stephen H; McCulloch, Michael; Berry, Alan; Nielsen, Jens

    2013-10-01

    Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter(-1), using peptone than the one of 22.27 ± 0.46 g liter(-1) obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes.

  1. On the growth of nitric and sulfuric acid aerosol particles under stratospheric conditions

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Turco, R. P.; Toon, O. B.

    1988-01-01

    A theory for the formation of frozen aerosol particles in the Antarctic stratosphere was developed and applied to the formation of polar stratospheric clouds. The theory suggests that the condensed ice particles are composed primarily of nitric acid and water, with small admixtures of sulfuric and hydrochloric acids in solid solution. The proposed particle formation mechanism is in agreement with the magnitude and seasonal behavior of the optical extinction observed in the winter polar stratosphere.

  2. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.

    PubMed

    Lima, Luanne Helena Augusto; das Graças de Almeida Felipe, Maria; Vitolo, Michele; Torres, Fernando Araripe Gonçalves

    2004-11-01

    The first two steps in xylose metabolism are catalyzed by NAD(P)H-dependent xylose reductase (XR) (EC 1.1.1.21) and NAD(P)-dependent xylitol dehydrogenase (XDH) (EC 1.1.1.9), which lead to xylose-->xylitol-->xylulose conversion. Xylitol has high commercial value, due to its sweetening and anticariogenic properties, as well as several clinical applications. The acid hydrolysis of sugarcane bagasse allows the separation of a xylose-rich hemicellulosic fraction that can be used as a substrate for Candida guilliermondii to produce xylitol. However, the hydrolysate contains acetic acid, an inhibitor of microbial metabolism. In this study, the effect of acetic acid on the activities of XR and XDH and on xylitol formation by C. guilliermondii were studied. For this purpose, fermentations were carried out in bagasse hydrolysate and in synthetic medium. The activities of XR and XDH were higher in the medium containing acetic acid than in control medium. Moreover, none of the fermentative parameters were significantly altered during cell culture. It was concluded that acetic acid does not interfere with xylitol formation since the increase in XR activity is proportional to XDH activity, leading to a greater production of xylitol and its subsequent conversion to xylulose.

  3. Homology-Based Modeling of Universal Stress Protein from Listeria innocua Up-Regulated under Acid Stress Conditions

    PubMed Central

    Tremonte, Patrizio; Succi, Mariantonietta; Coppola, Raffaele; Sorrentino, Elena; Tipaldi, Luca; Picariello, Gianluca; Pannella, Gianfranco; Fraternali, Franca

    2016-01-01

    An Universal Stress Protein (USP) expressed under acid stress condition by Listeria innocua ATCC 33090 was investigated. The USP was up-regulated not only in the stationary phase but also during the exponential growth phase. The three dimensional (3D) structure of USP was predicted using a combined proteomic and bioinformatics approach. Phylogenetic analysis showed that the USP from Listeria detected in our study was distant from the USPs of other bacteria (such as Pseudomonas spp., Escherichia coli, Salmonella spp.) and clustered in a separate and heterogeneous class including several USPs from Listeria spp. and Lactobacillus spp. An important information on the studied USP was obtained from the 3D-structure established through the homology modeling procedure. In detail, the Model_USP-691 suggested that the investigated USP had a homo-tetrameric quaternary structure. Each monomer presented an architecture analogous to the Rossmann-like α/β-fold with five parallel β-strands, and four α-helices. The analysis of monomer-monomer interfaces and quality of the structure alignments confirmed the model reliability. In fact, the structurally and sequentially conserved hydrophobic residues of the β-strand 5 (in particular the residues V146 and V148) were involved in the inter-chains contact. Moreover, the highly conserved residues I139 and H141 in the region α4 were involved in the dimer association and functioned as hot spots into monomer–monomer interface assembly. The hypothetical assembly of dimers was also supported by the large interface area and by the negative value of solvation free energy gain upon interface interaction. Finally, the structurally conserved ATP-binding motif G-2X-G-9X-G(S/T-N) suggested for a putative role of ATP in stabilizing the tetrameric assembly of the USP. Therefore, the results obtained from a multiple approach, consisting in the application of kinetic, proteomic, phylogenetic and modeling analyses, suggest that Listeria USP could

  4. Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating.

    PubMed

    Mitsumasu, Kanako; Liu, Ze-Shen; Tang, Yue-Qin; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2014-12-01

    Continuous fermentation using the industrial Saccharomyces cerevisiae diploid strain WW was carried out under acidic or high-temperature conditions to achieve acid- or thermo-tolerant mutants. Mutants isolated at pH 2.5 and 41°C showed improved growth and fermentation ability under acidic and elevated temperature conditions. Haploid strains WW17A1 and WW17A4 obtained from the mutated diploid strain WW17A showed better growth and 4.5-6.5% higher ethanol yields at pH 2.7 than the original strains. Haploid strain WW12T4 obtained from mutated diploid strain WW12T showed 1.25-1.50 times and 2.8-4.7 times higher total cell number and cell viability, respectively, than the original strains at 42°C. Strain AT, which had significantly improved acid- and thermo-tolerance, was developed by mating strain WW17A1 with WW12T4. Batch fermentation at 41°C and pH 3.5 showed that the ethanol concentration and yield achieved during fermentation by strain AT were 55.4 g/L and 72.5%, respectively, which were 10 g/L and 13.4% higher than that of the original strain WW. The present study demonstrates that continuous cultivation followed by haploidization and mating is a powerful approach for enhancing the tolerance of industrial strains.

  5. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

  6. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  7. Assessment of thermal load on transported goats administered with ascorbic acid during the hot-dry conditions

    NASA Astrophysics Data System (ADS)

    Minka, N. S.; Ayo, J. O.

    2012-03-01

    The major factor in the induction of physiological stress during road transportation of livestock is the complex fluctuations of the thermal transport microenvironment, encountered when animals are transported across different ecological zones. Recommended guidelines on optimum "on-board" conditions in which goats should be transported are lacking, and there are no acceptable ranges and limits for the thermal loads to which goats may be subjected during long-distance road transportation in hot-dry conditions. Panting score (PS), rectal temperature (RT), heart rate (HR) and respiratory rate (RR) were employed as reliable stress indices to assess the effects of different thermal loads, measured as temperature humidity index (THI), encountered in the vehicle during 12 h of road transportation of 40 goats, and to suggest the administration of 100 mg/kg body weight of ascorbic acid (AA) as an ameliorating agent. The results obtained showed that the PS, RT, HR and RR rose above normal reference values with increase in the THI and journey duration. The rise in PS value, which is a visual indicator of the severity of thermal load, was the most pronounced. The results suggest that values of THI in the vehicle up to 94.6 constitute no risk, while at of 100 it presents a moderate risk and above 100 may result in severe stress. The relationships between the thermal load and the physiological variables were positive and significant ( P < 0.05). They reflect the degree of stress imposed by each THI value during the transportation, and may be used as recommended ranges and limit thermal load values in transported goats. The results demonstrated that administration of 100 mg/kg body weight of AA before road transportation mitigated the risk of adverse effects of high THI values and other stress factors due to road transportation in goats.

  8. Silicon-based Lewis acid assisted cinchona alkaloid catalysis: highly enantioselective aza-Michael reaction under solvent-free conditions.

    PubMed

    Yang, Hua-Meng; Li, Li; Li, Fei; Jiang, Ke-Zhi; Shang, Jun-Yan; Lai, Guo-Qiao; Xu, Li-Wen

    2011-12-16

    The study showed that a combination of an achiral silicon-based Lewis acid and chiral Lewis base, such as iodotrimethylsilane (TMSI) and cinchonine, generated a highly enantioselective catalyst system under solvent-free conditions which gave aromatic β-amino ketones with up to >99% ee. Mechanistic studies demonstrate the enhanced asymmetric induction may be due to the combined and competitive activation of a carbonyl moiety of chalcone with cinchonine and the silicon-based Lewis acid in the aza-Michael reaction.

  9. Simultaneous production of nisin and lactic acid from cheese whey: optimization of fermentation conditions through statistically based experimental designs.

    PubMed

    Liu, Chuanbin; Liu, Yan; Liao, Wei; Wen, Zhiyou; Chen, Shulin

    2004-01-01

    A biorefinery process that utilizes cheese whey as substrate to simultaneously produce nisin, a natural food preservative, and lactic acid, a raw material for biopolymer production, was studied. The conditions for nisin biosynthesis and lactic acid coproduction by Lactococcus lactis subsp. lactis (ATCC 11454) in a whey-based medium were optimized using statistically based experimental designs. A Plackett-Burman design was applied to screen seven parameters for significant factors for the production of nisin and lactic acid. Nutrient supplements, including yeast extract, MgSO4, and KH2PO4, were found to be the significant factors affecting nisin and lactic acid formation. As a follow-up, a central-composite design was applied to optimize these factors. Second-order polynomial models were developed to quantify the relationship between nisin and lactic acid production and the variables. The optimal values of these variables were also determined. Finally, a verification experiment was performed to confirm the optimal values that were predicted by the models. The experimented results agreed well with the model prediction, giving a similar production of 19.3 g/L of lactic acid and 92.9 mg/L of nisin.

  10. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines

    PubMed Central

    Hirasawa, Kazuhiro; Moriya, Shota; Miyahara, Kana; Kazama, Hiromi; Hirota, Ayako; Takemura, Jun; Abe, Akihisa; Inazu, Masato; Hiramoto, Masaki; Tsukahara, Kiyoaki

    2016-01-01

    Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for “tumor-starving therapy”. PMID

  11. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    PubMed

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  12. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction

    PubMed Central

    Kaya, Merve; Sousa, António G.; Crépeau, Marie-Jeanne; Sørensen, Susanne O.; Ralet, Marie-Christine

    2014-01-01

    Background and Aims Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. Methods Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. Key Results Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. Conclusions Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains. PMID:25081519

  13. Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions

    NASA Astrophysics Data System (ADS)

    Brus, D.; Neitola, K.; Hyvärinen, A.-P.; Petäjä, T.; Vanhanen, J.; Sipilä, M.; Paasonen, P.; Kulmala, M.; Lihavainen, H.

    2011-06-01

    In this study the homogeneous nucleation rates in the system of sulfuric acid and water were measured by using a flow tube technique. The goal was to directly compare particle formation rates obtained from atmospheric measurements with nucleation rates of freshly nucleated particles measured with particle size magnifier (PSM) which has detection efficiency of unity for particles having mobility diameter of 1.5 nm. The gas phase sulfuric acid concentration in this study was measured with the chemical ionization mass spectrometer (CIMS), commonly used in field measurements. The wall losses of sulfuric acid were estimated from measured concentration profiles along the flow tube. The initial concentrations of sulfuric acid estimated from loss measurements ranged from 108 to 3 × 109 molecules cm-3. The nucleation rates obtained in this study cover about three orders of magnitude from 10-1 to 102 cm-3 s-1 for commercial ultrafine condensation particle counter (UCPC) TSI model 3025A and from 101 to 104 cm-3 s-1 for PSM. The nucleation rates and the slopes (dlnJ/dln [H2SO4]) show satisfactory agreement when compared to empirical kinetic and activation models and the latest atmospheric nucleation data. To the best of our knowledge, this is the first experimental work providing temperature dependent nucleation rate measurements using a high efficiency particle counter with a cut-off-size of 1.5 nm together with direct measurements of gas phase sulfuric acid concentration.

  14. Salivary thiocyanate/nitrite inhibits hydroxylation of 2-hydroxybenzoic acid induced by hydrogen peroxide/Fe(II) systems under acidic conditions: possibility of thiocyanate/nitrite-dependent scavenging of hydroxyl radical in the stomach.

    PubMed

    Takahama, Umeo; Oniki, Takayuki

    2004-11-18

    Formation of OH radicals in the stomach is possible by Fenton-type reactions, as gastric juice contains ascorbic acid (AA), iron ions and H2O2. An objective of the present study is to elucidate the effects of salivary SCN- and NO2- on the hydroxylation of salicylic acid which was induced by H2O2/Fe(II) and AA/H2O2/Fe(II) systems. Thiocyanate ion inhibited the hydroxylation of salicylic acid by the above systems in acidic buffer solutions and in acidified saliva. The inhibition by SCN- was deduced to be due to SCN- -dependent scavenging of OH radicals. Nitrite ion could enhance the SCN- -dependent inhibition of the hydroxylation induced by AA/H2O2/Fe(II) systems. The enhancement was suggested to be due to scavenging of OH radicals by NO which was formed by the reactions among AA, HNO2 and SCN- contained in the reaction mixture. The concentrations of SCN- and NO2-, which were effective for the inhibition, were in ranges of their normal salivary concentrations. These results suggest that salivary SCN- can cooperate with NO2- to protect stomach from OH radicals formed by AA/H2O2/Fe(II) systems under acidic conditions.

  15. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application.

  16. Distribution of Native Lactic Acid Bacteria in Wineries of Queretaro, Mexico and Their Resistance to Wine-Like Conditions.

    PubMed

    Miranda-Castilleja, Dalia E; Martínez-Peniche, Ramón Álvar; Aldrete-Tapia, J A; Soto-Muñoz, Lourdes; Iturriaga, Montserrat H; Pacheco-Aguilar, J R; Arvizu-Medrano, Sofía M

    2016-01-01

    Native lactic acid bacteria (LAB) are capable of growing during winemaking, thereby strongly affecting wine quality. The species of LAB present in musts, wines during malolactic fermentation (MLF), and barrels/filters were investigated in wineries from the emerging wine region of Queretaro, México using multiplex PCR and culture. The resistance to wine-like conditions (WLC): ethanol (10, 12, and 13%), SO2 (30 mg⋅l(-1)), and low pH (3.5) of native LAB strains was also studied. Five species were detected within 61 samples obtained: Oenococcus oeni, Lactobacillus plantarum, Pediococcus parvulus, Lactobacillus hilgardi, and Lactobacillus brevis. Four species (excepting L. brevis) were found in must; O. oeni and P. parvulus were ubiquitous in wine and L. plantarum and L. brevis were mainly present at the initial stage of MLF, while L. hilgardii was mostly detected at the advanced stage. Furthermore, some species detected in barrel/filter, prove them to be hazardous reservoirs. From 822 LAB isolates, only 119 resisted WLC with 10% ethanol; the number of strains able to grow in WLC with 13% ethanol decreased approximately by 50%, O. oeni being the most versatile species with 65% of resistant isolates, while Lactobacillus spp. and P. parvulus were the most strongly affected, especially those recovered from barrel/filter, with less than 10% of resistant isolates. This study evidences the presence of local strains able to be used as starter cultures, and also enabled the assessment of the risks derived from the presence of spoilage LAB strains resistant to WLC.

  17. Distribution of Native Lactic Acid Bacteria in Wineries of Queretaro, Mexico and Their Resistance to Wine-Like Conditions

    PubMed Central

    Miranda-Castilleja, Dalia E.; Martínez-Peniche, Ramón Álvar; Aldrete-Tapia, J. A.; Soto-Muñoz, Lourdes; Iturriaga, Montserrat H.; Pacheco-Aguilar, J. R.; Arvizu-Medrano, Sofía M.

    2016-01-01

    Native lactic acid bacteria (LAB) are capable of growing during winemaking, thereby strongly affecting wine quality. The species of LAB present in musts, wines during malolactic fermentation (MLF), and barrels/filters were investigated in wineries from the emerging wine region of Queretaro, México using multiplex PCR and culture. The resistance to wine-like conditions (WLC): ethanol (10, 12, and 13%), SO2 (30 mg⋅l-1), and low pH (3.5) of native LAB strains was also studied. Five species were detected within 61 samples obtained: Oenococcus oeni, Lactobacillus plantarum, Pediococcus parvulus, Lactobacillus hilgardi, and Lactobacillus brevis. Four species (excepting L. brevis) were found in must; O. oeni and P. parvulus were ubiquitous in wine and L. plantarum and L. brevis were mainly present at the initial stage of MLF, while L. hilgardii was mostly detected at the advanced stage. Furthermore, some species detected in barrel/filter, prove them to be hazardous reservoirs. From 822 LAB isolates, only 119 resisted WLC with 10% ethanol; the number of strains able to grow in WLC with 13% ethanol decreased approximately by 50%, O. oeni being the most versatile species with 65% of resistant isolates, while Lactobacillus spp. and P. parvulus were the most strongly affected, especially those recovered from barrel/filter, with less than 10% of resistant isolates. This study evidences the presence of local strains able to be used as starter cultures, and also enabled the assessment of the risks derived from the presence of spoilage LAB strains resistant to WLC. PMID:27877164

  18. Identification of Organic Sulfate Esters in d-Limonene Ozonolysis SOA Under Acidic Condition

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Mueller, C.; Boege, O.; Herrmann, H.

    2006-12-01

    Secondary organic aerosol (SOA) components from gas phase ozonolysis of d-limonene were investigated in a series of indoor chamber experiments. The compounds smaller than 300 Da were quantified using capillary electrophoresis coupled to electrospray ionisation ion trap mass spectrometry (CE/ESI-ITMS). HPLC coupled to an ESI-TOFMS and an ESI-ITMS was used for structural study of dimmers and oligomers. Only 10% of the produced SOA could be attributed to low molecular weight carboxylic acids (Mw<300). The oxidation products which have molecular weights over 300 were detected regardless of the seed particle acidity but the concentrations of these compounds were much higher for acidic seed particle experiments. Strong signals of the compounds with mass to charge ratios (m/z) 281, 465 and 481 were detected when sulphuric acid was used in the seed particles. These compounds showed a strong fragment of m/z 97 in MS2 or MS3 spectra indicating the presence of sulfate in the structures. HPLC/ESI-TOFMS analysis suggests the elemental compositions of C10H17O7S-, C20H33O10S- and C20H33O11S- for m/z 281, 465 and 481, respectively. Based on MS^{n} and TOFMS results, they are most likely organic sulfate esters, possibly formed by a heterogeneous acid catalyzed reaction of a limonene oxidation product and sulfuric acid in the particle phase. The concentrations of the organic sulfate ester were as high as 3.7 μgm-3 for m/z 281.

  19. Chemical composition and fatty acid content of some spices and herbs under Saudi Arabia conditions.

    PubMed

    Al-Jasass, Fahad Mohammed; Al-Jasser, Mohammed Saud

    2012-01-01

    Some Saudi herbs and spices were analyzed. The results indicated that mustard, black cumin, and cress seeds contain high amount of fat 38.45%, 31.95% and 23.19%, respectively, as compared to clove (16.63%), black pepper (5.34%) and fenugreek (4.51%) seeds. Cress, mustard, black cumin and black pepper contain higher protein contents ranging from 26.61 to 25.45%, as compared to fenugreek (12.91%) and clove (6.9%). Crude fiber and ash content ranged from 6.36 to 23.6% and from 3.57 to 7.1%, respectively. All seeds contain high levels of potassium (ranging from 383 to 823  mg/100 g), followed by calcium (ranging from 75 to 270  mg/100 g), Magnesium (ranged from 42 to 102  mg/100 g) and iron (ranged from 20.5 to 65  mg/100 g). However, zinc, manganese and copper were found at low levels. The major fatty acids in cress and mustard were linolenic acid (48.43%) and erucic acid (29.81%), respectively. The lenoleic acid was the major fatty acid in black cumin, fenugreek, black pepper and clove oils being 68.07%, 34.85%, 33.03% and 44.73%, respectively. Total unsaturated fatty acids were 83.24, 95.62, 86.46, 92.99, 81.34 and 87.82% for cress, mustard, black cumin, fenugreek, black pepper and clove, respectively. The differences in the results obtained are due to environmental factors, production areas, cultivars used to produce seeds and also due to the different methods used to prepare these local spices.

  20. Chemical Composition and Fatty Acid Content of Some Spices and Herbs under Saudi Arabia Conditions

    PubMed Central

    Al-Jasass, Fahad Mohammed; Al-Jasser, Mohammed Saud

    2012-01-01

    Some Saudi herbs and spices were analyzed. The results indicated that mustard, black cumin, and cress seeds contain high amount of fat 38.45%, 31.95% and 23.19%, respectively, as compared to clove (16.63%), black pepper (5.34%) and fenugreek (4.51%) seeds. Cress, mustard, black cumin and black pepper contain higher protein contents ranging from 26.61 to 25.45%, as compared to fenugreek (12.91%) and clove (6.9%). Crude fiber and ash content ranged from 6.36 to 23.6% and from 3.57 to 7.1%, respectively. All seeds contain high levels of potassium (ranging from 383 to 823 mg/100g), followed by calcium (ranging from 75 to 270 mg/100g), Magnesium (ranged from 42 to 102 mg/100g) and iron (ranged from 20.5 to 65 mg/100g). However, zinc, manganese and copper were found at low levels. The major fatty acids in cress and mustard were linolenic acid (48.43%) and erucic acid (29.81%), respectively. The lenoleic acid was the major fatty acid in black cumin, fenugreek, black pepper and clove oils being 68.07%, 34.85%, 33.03% and 44.73%, respectively. Total unsaturated fatty acids were 83.24, 95.62, 86.46, 92.99, 81.34 and 87.82% for cress, mustard, black cumin, fenugreek, black pepper and clove, respectively. The differences in the results obtained are due to environmental factors, production areas, cultivars used to produce seeds and also due to the different methods used to prepare these local spices. PMID:23319888

  1. Use of dimedone-based chemical probes for sulfenic acid detection evaluation of conditions affecting probe incorporation into redox-sensitive proteins.

    PubMed

    Klomsiri, Chananat; Nelson, Kimberly J; Bechtold, Erika; Soito, Laura; Johnson, Lynnette C; Lowther, W Todd; Ryu, Seong-Eon; King, S Bruce; Furdui, Cristina M; Poole, Leslie B

    2010-01-01

    Sulfenic acids, formed as transient intermediates during the reaction of cysteine residues with peroxides, play significant roles in enzyme catalysis and regulation, and are also involved in the redox regulation of transcription factors and other signaling proteins. Therefore, interest in the identification of protein sulfenic acids has grown substantially in the past few years. Dimedone, which specifically traps sulfenic acids, has provided the basis for the synthesis of a novel group of compounds that derivatize 1,3-cyclohexadione, a dimedone analogue, with reporter tags such as biotin for affinity capture and fluorescent labels for visual detection. These reagents allow identification of the cysteine sites and proteins that are sensitive to oxidation and permit identification of the cellular conditions under which such oxidations occur. We have shown that these compounds are reactive and specific toward sulfenic acids and that the labeled proteins can be detected at high sensitivity using gel analysis or mass spectrometry. Here, we further characterize these reagents, showing that the DCP-Bio1 incorporation rates into three sulfenic acid containing proteins, papaya papain, Escherichia coli fRMsr, and the Salmonella typhimurium peroxiredoxin AhpC, are significantly different and, in the case of fRMsr, are unaffected by changes in buffer pH from 5.5 and 8.0. We also provide protocols to label protein sulfenic acids in cellular proteins, either by in situ labeling of intact cells or by labeling at the time of lysis. We show that the addition of alkylating reagents and catalase to the lysis buffer is critical in preventing the formation of sulfenic acid subsequent to cell lysis. Data presented herein also indicate that the need to standardize, as much as possible, the protein and reagent concentrations during labeling. Finally, we introduce several new test or control proteins that can be used to evaluate labeling procedures and efficiencies.

  2. Molybdic acid ionisation under hydrothermal conditions to 300 °C

    NASA Astrophysics Data System (ADS)

    Minubayeva, Z.; Seward, T. M.

    2010-08-01

    This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H 2MoO 4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows. The following van't Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:

  3. The PROCESS experiment: amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit.

    PubMed

    Noblet, Audrey; Stalport, Fabien; Guan, Yuan Yong; Poch, Olivier; Coll, Patrice; Szopa, Cyril; Cloix, Mégane; Macari, Frédérique; Raulin, Francois; Chaput, Didier; Cottin, Hervé

    2012-05-01

    The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150 h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.

  4. Mutant characterization and in vivo conditional repression identify aromatic amino acid biosynthesis to be essential for Aspergillus fumigatus virulence

    PubMed Central

    Sasse, Anna; Hamer, Stefanie N; Amich, Jorge; Binder, Jasmin; Krappmann, Sven

    2016-01-01

    Pathogenicity of the saprobe Aspergillus fumigatus strictly depends on nutrient acquisition during infection, as fungal growth determines colonisation and invasion of a susceptible host. Primary metabolism has to be considered as a valid target for antimycotic therapy, based on the fact that several fungal anabolic pathways are not conserved in higher eukaryotes. To test whether fungal proliferation during invasive aspergillosis relies on endogenous biosynthesis of aromatic amino acids, defined auxotrophic mutants of A. fumigatus were generated and assessed for their infectious capacities in neutropenic mice and found to be strongly attenuated in virulence. Moreover, essentiality of the complete biosynthetic pathway could be demonstrated, corroborated by conditional gene expression in infected animals and inhibitor studies. This brief report not only validates the aromatic amino acid biosynthesis pathway of A. fumigatus to be a promising antifungal target but furthermore demonstrates feasibility of conditional gene expression in a murine infection model of aspergillosis. PMID:26605426

  5. Aluminium-phosphate-sulphate minerals as markers of sustained acidic conditions during the Permian-Triassic transition in E Iberia.

    NASA Astrophysics Data System (ADS)

    Borruel-Abadía, Violeta; Belén Galán-Abellán, Ana; Barrenechea, José F.; De la Horra, Raúl; Luque, Francisco Javier; Alonso-Azcárate, Jacinto; López-Gómez, José

    2016-04-01

    Strontium-rich hydrated Aluminium phosphate-sulphate (APS) minerals are markers of an acidic formation environment due to their precipitation at low pH conditions. However, their small size (0.5-6 μm), low concentrations, and optical properties represent the main problems to quantify these minerals. This study provides quantitative data on APS mineral concentrations for the Late Permian and Early-Middle Triassic in different continental sections of East Iberia. By quantifying APS minerals useful insight can be obtained into the environmental conditions that prevailed during the biotic crisis of the PTB and during the later recovery of life at the end of the Early Triassic. For that, a quantification method based on element mapping of randomly selected areas of thin sections on the electron microprobe is proposed, with relative errors ranging from 5.6% to 11.7%. The results are considered on a detailed petrographic, sedimentological, and palaeontological framework, and compared with other geochemical. Thus, in the first sedimentary record after the Permian-Triassic boundary (Olenekian), it has been possible to correlate relatively high concentration levels of APS minerals with the lack of signs of living organisms. Our findings suggest a long period of sustained acidic conditions followed by an environmental change that permitted the recovery of life, as reflected by lower APS mineral contents detected at the end of the Spathian and the first presence of bioturbation, paleosols, footprints, and plant remains. Early Anisian acidic episodes were much more sporadic than those during the Olenekian deposition, in which APS mineral concentrations were an order of magnitude higher. This fact would indicate punctual acidic conditions still during the beginning of the Anisian. Based on these results, this method is proposed as a tool for addressing environmental changes that took place during the Permian-Triassic transition in continental environments.

  6. Preliminary Results: Release Of Metals From Acid-Mine Drainage Contaminated Streambed Sediments Under Anaerobic Conditions

    EPA Science Inventory

    Many miles of streams in the western U.S. are contaminated with acid-mine drainage (AMD) from abandoned metal mines. Treatment of these streams may include removal of the existing sediments, with subsequent burial (e.g., in a repository). Burial of previously aerobic sediments ma...

  7. Stability-time profile of trichloroacetic acid at various concentrations and storage conditions.

    PubMed

    Spinowitz, A L; Rumsfield, J

    1989-09-01

    Trichloroacetic acid (TCA) is a deliquescent chemical widely used for a variety of procedures. Stability of various concentrations of TCA in both amber glass and plastic bottles stored under refrigeration and at room temperature was measured at several time points. Extended stability data suggest that TCA potency is stable for 23 weeks and would best be maintained in glass amber bottles stored under refrigeration.

  8. The Effects of Salicylic Acid on Juvenile Zebrafish Danio rerio Under Flow-Through Conditions.

    PubMed

    Zivna, Dana; Blahova, Jana; Siroka, Zuzana; Plhalova, Lucie; Marsalek, Petr; Doubkova, Veronika; Zelinska, Gabriela; Vecerek, Vladimir; Tichy, Frantisek; Sehonova, Pavla; Svobodova, Zdenka

    2016-09-01

    The aquatic environment is becoming increasingly contaminated with pharmaceuticals. Salicylic acid (SA), which can be used individually or appear as a degradation product of the widely used acetylsalicylic acid was chosen for testing. Juvenile zebrafish Danio rerio were subjected to OECD test No. 215 (fish, juvenile growth test) with salicylic acid concentrations of 0.004; 0.04; 0.4; 4 and 40 mg/L. Specific growth rate (SGR), histological changes, and parameters of oxidative stress were evaluated. SA had no effects on histological changes, SGR, glutathione reductase, and lipid peroxidation. Increased catalytic activity of GPx was found at 0.04 mg/L compared to control, increased catalytic activity of catalase was found at 0.04 and 4 mg/L compared to control, and increased catalytic activity of glutathione-S-transferase was found at 0.004 and 0.04 mg/L compared to control (P < 0.05). Juvenile zebrafish turned out to be relatively insensitive to both environmentally relevant (0.004 mg/L) and higher concentrations of salicylic acid.

  9. PRELIMINARY RESULTS: RELEASE OF METALS FROM ACID-MINE DRAINAGE CONTAMINATED STREAMBED SEDIMENTS UNDER ANOXIC CONDITIONS

    EPA Science Inventory

    Many miles of streams are contaminated with acid-mine drainage (AMD) from abandoned metal mines in the western U.S. Treatment of these streams may include dredging of the existing sediments, with subsequent burial. Burial of previously toxic sediments may result in release of met...

  10. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

    EPA Science Inventory

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...

  11. Preferential Enrichment of DL-Leucine Using Cocrystal Formation With Oxalic Acid Under Nonequilibrium Crystallization Conditions.

    PubMed

    Manoj, Kochunnoonny; Takahashi, Hiroki; Morita, Yoko; Gonnade, Rajesh G; Iwama, Sekai; Tsue, Hirohito; Tamura, Rui

    2015-07-01

    By utilizing the preferential enrichment (PE) technique, we achieved an improved enantiomeric resolution of DL-leucine (Leu) using a 1:1 cocrystal (DL-) of DL-Leu and oxalic acid. The crystal structure analysis of DL- indicated the occurrence of a novel type of phase transition and subsequent preferential redissolution of one enantiomer from the resulting crystals into solution.

  12. Branched-chain amino acid supplementation promotes aerobic growth of Salmonella Typhimurium under nitrosative stress conditions.

    PubMed

    Park, Yoon Mee; Lee, Hwa Jeong; Jeong, Jae-Ho; Kook, Joong-Ki; Choy, Hyon E; Hahn, Tae-Wook; Bang, Iel Soo

    2015-12-01

    Nitric oxide (NO) inactivates iron-sulfur enzymes in bacterial amino acid biosynthetic pathways, causing amino acid auxotrophy. We demonstrate that exogenous supplementation with branched-chain amino acids (BCAA) can restore the NO resistance of hmp mutant Salmonella Typhimurium lacking principal NO-metabolizing enzyme flavohemoglobin, and of mutants further lacking iron-sulfur enzymes dihydroxy-acid dehydratase (IlvD) and isopropylmalate isomerase (LeuCD) that are essential for BCAA biosynthesis, in an oxygen-dependent manner. BCAA supplementation did not affect the NO consumption rate of S. Typhimurium, suggesting the BCAA-promoted NO resistance independent of NO metabolism. BCAA supplementation also induced intracellular survival of ilvD and leuCD mutants at wild-type levels inside RAW 264.7 macrophages that produce constant amounts of NO regardless of varied supplemental BCAA concentrations. Our results suggest that the NO-induced BCAA auxotrophy of Salmonella, due to inactivation of iron-sulfur enzymes for BCAA biosynthesis, could be rescued by bacterial taking up exogenous BCAA available in oxic environments.

  13. K Basin Sludge Conditioning Testing: Nitric Acid Dissolution Testing of K East Canister Sludge

    SciTech Connect

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.: Schmidt, A.J.; Bredt, P.R.; Silvers, K.L.

    1999-04-01

    This report describes tests performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) as part of the overall activities for the development of the K Basin Sludge Treatment System. These tests were conducted to examine the dissolution behavior of a K East Basin canister sludge composite in nitric acid at the following concentrations: 2 M, 4 M, 6 M, 7.8 M and 10 M and temperatures of 25 C and boiling. Assuming that the sludge was 100% uranium metal, a 4X stoichiometric excess of nitric acid was used for all testing, except that conducted at 4 M. In the 4 M nitric acid dissolution test, 50% excess nitric acid was used resulting in a dissolver solution with a significantly higher solids loading. The boiling tests were conducted for 11 hr, the 25 C dissolution tests were conducted from 24 hr to 2 weeks. For the 25 C dissolution testing, the weight percent residual solids was determined, however, chemical and radiochemical analyses were not performed.

  14. Injury and death of various Salmonella serotypes due to acidic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acid injury of Salmonella could prevent detection of Salmonella in feed and feed-type samples. A previous study showed that after incubation in commonly used pre-enrichment media, mixed feeds and feed ingredients reached a pH (4.0 to 5.0) capable of injuring or killing Salmonella. Approximately 10...

  15. Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.

    PubMed Central

    Monserrate, E; Häggblom, M M

    1997-01-01

    The anaerobic biodegradation of monobrominated phenols and benzoic acids by microorganisms enriched from marine and estuarine sediments was determined in the presence of different electron acceptors [i.e., Fe(III), SO4(2-), or HCO3-]. Under all conditions tested, the bromophenol isomers were utilized without a lengthy lag period whereas the bromobenzoate isomers were utilized only after a lag period of 23 to 64 days. 2-Bromophenol was debrominated to phenol, with the subsequent utilization of phenol under all three reducing conditions. Debromination of 3-bromophenol and 4-bromophenol was also observed under sulfidogenic and methanogenic conditions but not under iron-reducing conditions. In the bromobenzoate-degrading cultures, no intermediates were observed under any of the conditions tested. Debromination rates were higher under methanogenic conditions than under sulfate-reducing or iron-reducing conditions. The stoichiometric reduction of sulfate or Fe(III) and the utilization of bromophenols and phenol indicated that biodegradation was coupled to sulfate or iron reduction, respectively. The production of phenol as a transient intermediate demonstrates that reductive dehalogenation is the initial step in the biodegradation of bromophenols under iron- and sulfate-reducing conditions. PMID:9480645

  16. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass.

    PubMed

    Jensen, Jill R; Morinelly, Juan E; Gossen, Kelsey R; Brodeur-Campbell, Michael J; Shonnard, David R

    2010-04-01

    The effects of dilute acid hydrolysis conditions were investigated on total sugar (glucose and xylose) yields after enzymatic hydrolysis with additional analyses on glucose and xylose monomer and oligomer yields from the individual hydrolysis steps for aspen (a hardwood), balsam (a softwood), and switchgrass (a herbaceous energy crop). The results of this study, in the form of measured versus theoretical yields and a severity analysis, show that for aspen and balsam, high dilute acid hydrolysis xylose yields were obtainable at all acid concentrations (0.25-0.75 wt.%) and temperatures (150-175 degrees C) studied as long as reaction time was optimized. Switchgrass shows a relatively stronger dependence on dilute acid hydrolysis acid concentration due to its higher neutralizing mineral content. Maximum total sugar (xylose and glucose; monomer plus oligomer) yields post-enzymatic hydrolysis for aspen, balsam, and switchgrass, were 88.3%, 21.2%, and 97.6%, respectively. In general, highest yields of total sugars (xylose and glucose; monomer plus oligomer) were achieved at combined severity parameter values (log CS) between 2.20 and 2.40 for the biomass species studied.

  17. 2-nitrobenzoate 2-nitroreductase (NbaA) switches its substrate specificity from 2-nitrobenzoic acid to 2,4-dinitrobenzoic acid under oxidizing conditions.

    PubMed

    Kim, Yong-Hak; Song, Woo-Seok; Go, Hayoung; Cha, Chang-Jun; Lee, Cheolju; Yu, Myeong-Hee; Lau, Peter C K; Lee, Kangseok

    2013-01-01

    2-Nitrobenzoate 2-nitroreductase (NbaA) of Pseudomonas fluorescens strain KU-7 is a unique enzyme, transforming 2-nitrobenzoic acid (2-NBA) and 2,4-dinitrobenzoic acid (2,4-DNBA) to the 2-hydroxylamine compounds. Sequence comparison reveals that NbaA contains a conserved cysteine residue at position 141 and two variable regions at amino acids 65 to 74 and 193 to 216. The truncated mutant Δ65-74 exhibited markedly reduced activity toward 2,4-DNBA, but its 2-NBA reduction activity was unaffected; however, both activities were abolished in the Δ193-216 mutant, suggesting that these regions are necessary for the catalysis and specificity of NbaA. NbaA showed different lag times for the reduction of 2-NBA and 2,4-DNBA with NADPH, and the reduction of 2,4-DNBA, but not 2-NBA, failed in the presence of 1 mM dithiothreitol or under anaerobic conditions, indicating oxidative modification of the enzyme for 2,4-DNBA. The enzyme was irreversibly inhibited by 5,5'-dithio-bis-(2-nitrobenzoic acid) and ZnCl(2), which bind to reactive thiol/thiolate groups, and was eventually inactivated during the formation of higher-order oligomers at high pH, high temperature, or in the presence of H(2)O(2). SDS-PAGE and mass spectrometry revealed the formation of intermolecular disulfide bonds by involvement of the two cysteines at positions 141 and 194. Site-directed mutagenesis indicated that the cysteines at positions 39, 103, 141, and 194 played a role in changing the enzyme activity and specificity toward 2-NBA and 2,4-DNBA. This study suggests that oxidative modifications of NbaA are responsible for the differential specificity for the two substrates and further enzyme inactivation through the formation of disulfide bonds under oxidizing conditions.

  18. Evidence for conjugated linoleic acid-induced embryonic mortality that is independent of egg storage conditions and changes in egg relative fatty acids.

    PubMed

    Leone, V A; Stransky, D L; Aydin, R; Cook, M E

    2009-09-01

    Three experiments were performed to determine the effect of conjugated linoleic acid (CLA) on embryonic development in the absence of vitelline membrane disruption. In experiment 1, when eggs from control and CLA (0.5%)-fed hens were stored at 21 or 15 degrees C for 48 h, mineral movement between the yolk and albumen was not observed (with the exception of Mg and Na). Also, it was found that CLA-induced changes in yolk fatty acid content (e.g., increased saturated fatty acids and CLA) had begun to change after 5 d of feeding hens CLA, and no differences were detected in fatty acid composition after 14 d. In experiment 2, the hatchability of eggs incubated directly after oviposition or stored 24 h at 21 or 15 degrees C was determined from hens fed control or 0.5% CLA diets. Regardless of storage conditions, CLA reduced hatchability. These data showed that CLA elicits negative effects on hatchability independent of vitelline membrane disruption or egg storage condition. In experiment 3, eggs were collected from hens fed 0 or 1% CLA daily for 3 wk, stored at 21 degrees C for 24 h, and incubated. Not only did CLA decrease hatchability, the data showed as the days of CLA feeding increased, the days of survival during incubation decreased. Average days of embryonic survival during incubation for the CLA group diminished to 18.0, 13.4, and 6.3 d for wk 1, 2, and 3 of CLA feeding, respectively, and control remained at 20.6, 20.8, and 19.8 for the 3 wk. These studies suggested that without the disruption of the vitelline membrane, hatchability and embryonic days of survival were significantly reduced by maternal CLA feeding in comparison to control-fed hens. Evidence that embryos die earlier the longer the hens are fed CLA, even though no additional changes in the fatty acid content of eggs were found, suggested that factors other than storage and egg yolk fatty acid composition played a role in CLA-induced embryonic mortality.

  19. General Medical Considerations for the Wilderness Adventurer: Medical Conditions That May Worsen With or Present Challenges to Coping With Wilderness Exposure.

    PubMed

    Cushing, Tracy A; Roberts, William O; Hackett, Peter; Dexter, William W; Brent, Jeff S; Young, Craig C; Fudge, Jessie R; Hawkins, Seth C; DeLoughery, Thomas G; Thomas, Benjamin J; Tabin, Geoffrey C; Jacoby, Leah E; Asplund, Chad A

    2015-09-01

    Participation in wilderness and adventure sports is on the rise, and as such, practitioners will see more athletes seeking clearance to participate in these events. The purpose of this article is to describe specific medical conditions that may worsen or present challenges to the athlete in a wilderness environment.

  20. General Medical Considerations for the Wilderness Adventurer: Medical Conditions That May Worsen With or Present Challenges to Coping With Wilderness Exposure.

    PubMed

    Cushing, Tracy A; Roberts, William O; Hackett, Peter; Dexter, William W; Brent, Jeff S; Young, Craig C; Fudge, Jessie R; Hawkins, Seth C; DeLoughery, Thomas G; Thomas, Benjamin J; Tabin, Geoffrey C; Jacoby, Leah E; Asplund, Chad A

    2015-12-01

    Participation in wilderness and adventure sports is on the rise, and as such, practitioners will see more athletes seeking clearance to participate in these events. The purpose of this article is to describe specific medical conditions that may worsen or present challenges to the athlete in a wilderness environment.

  1. The Postmeeting Publication of Material Presented at the February 1968 Semiannual Meeting of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers.

    ERIC Educational Resources Information Center

    Johns Hopkins Univ., Baltimore, MD. Center for Research in Scientific Communication.

    Reported is a study of the subsequent dissemination of information by authors who presented material at a meeting of the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE). The results of the survey include the following: 57 percent of the authors submitted the material to journals, and, although some papers were…

  2. Effect of processing conditions on phytic acid, calcium, iron, and zinc contents of lime-cooked maize.

    PubMed

    Bressani, Ricardo; Turcios, Juan Carlos; Colmenares de Ruiz, Ana Silvia; de Palomo, Patricia Palocios

    2004-03-10

    Tortillas are made by cooking maize in a lime solution during variable times and temperatures, steeping the grain for up to 12 h, washing and grinding it to a fine dough, and cooking portions as flat cakes for up to 6 min. The effects of the main processing steps on the chemical composition, nutritive value, and functional and physicochemical characteristics have been areas of research. The present work evaluates the effect of lime concentration (0, 1.2, 2.4, and 3.6%) and cooking times (45, 60, and 75 min) on phytic acid retention of whole maize, its endosperm, and germ, as well as on the content of calcium, iron, and zinc on the same samples. The effects of steeping time and temperature and steeping medium on the phytic acid of lime-cooked maize were also studied. Finally, phytic acid changes from raw maize to tortilla were also measured. The results indicated that lime concentration and cooking time reduce phytic acid content in whole grain (17.4%), in endosperm (45.8%), and in germ (17.0%). Statistical analyses suggested higher phytic acid loss with 1.2% lime and 75 min of cooking. Cooking with the lime solution is more effective in reducing phytic acid than cooking with water. Steeping maize in lime solution at 50 degrees C during 8 h reduced phytic acid an additional 8%. The total loss of phytic acid from maize to tortilla was 22%. Calcium content increased in whole maize, endosperm, and germ with lime concentration and cooking and steeping times. The increase was higher in the germ than in the endosperm. The level, however, can be controlled if steeping of the cooked grain is conducted in water. Iron and zinc contents were not affected by nixtamalization processing variables but were affected in steeping.

  3. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    PubMed

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process.

  4. Bacillus subtilis-specific poly-gamma-glutamic acid regulates development pathways of naive CD4(+) T cells through antigen-presenting cell-dependent and -independent mechanisms.

    PubMed

    Kim, Sunghoon; Yang, Jun Young; Lee, Kyuheon; Oh, Kyu Heon; Gi, Mia; Kim, Jung Mogg; Paik, Doo Jin; Hong, Seokmann; Youn, Jeehee

    2009-08-01

    Peripheral naive CD4(+) T cells selectively differentiate to type 1 T(h), type 2 T(h) and IL-17-producing T(h) (T(h)17) cells, depending on the priming conditions. Since these subsets develop antagonistically to each other to elicit subset-specific adaptive immune responses, balance between these subsets can regulate the susceptibility to diverse immune diseases. The present study was undertaken to determine whether poly-gamma-glutamic acid (gamma-PGA), an edible and safe exopolymer that is generated by microorganisms such as Bacillus subtilis, could modulate the development pathways of T(h) subsets. The presence of gamma-PGA during priming promoted the development of T(h)1 and T(h)17 cells but inhibited development of T(h)2 cells. gamma-PGA up-regulated the expression of T-bet and ROR-gammat, the master genes of T(h)1 and T(h)17 cells, respectively, whereas down-regulating the level of GATA-3, the master gene of T(h)2 cells. gamma-PGA induced the expression of IL-12p40, CD80 and CD86 in dendritic cells (DC) and macrophages in a Toll-like receptor-4-dependent manner, and the effect of gamma-PGA on T(h)1/T(h)2 development was dependent on the presence of antigen-presenting cells (APC). Furthermore, gamma-PGA-stimulated DC favored the polarization of naive CD4(+) T cells toward T(h)1 cells rather than T(h)2 cells. In contrast, gamma-PGA affected T(h)17 cell development, regardless of the presence or absence of APC. Thus, these data demonstrate that gamma-PGA has the potential to regulate the development pathways of naive CD4(+) T cells through APC-dependent and -independent mechanisms and to be applicable to treating T(h)2-dominated diseases.

  5. Photoinduced reduction of divalent mercury by quinones in the presence of formic acid under anaerobic conditions.

    PubMed

    Berkovic, Andrea M; Bertolotti, Sonia G; Villata, Laura S; Gonzalez, Mónica C; Pis Diez, Reinaldo; Mártire, Daniel O

    2012-11-01

    The laser flash photolysis technique (λ(exc)=355 nm) was used to investigate the mechanism of the HgCl(2) reduction mediated by CO(2)(-) radicals generated from quenching of the triplet states of 1,4-naphthoquinone (NQ) by formic acid. Kinetic simulations of the experimental signals support the proposed reaction mechanism. This system is of potential interest in the development of UV-A photoinduced photolytic procedures for the treatment of Hg(II) contaminated waters. The successful replacement of NQ with a commercial fulvic acid, as a model compound of dissolved organic matter, showed that the method is applicable to organic matter-containing waters without the addition of quinones.

  6. Synthesis of highly luminescent mercaptosuccinic acid-coated CdSe nanocrystals under atmospheric conditions.

    PubMed

    Dong, Meiting; Xu, Jingyi; Liu, Shuxian; Zhou, Ying; Huang, Chaobiao

    2014-11-01

    Here we report a facile one-pot method for the preparation of high-quality CdSe nanocrystals (NCs) in aqueous solution under an air atmosphere. Compared with the traditional use of NaHSe or H2 Se, the more stable sodium selenite is utilized as the Se source for preparing highly luminescent CdSe nanocrystals. By using mercaptosuccinic acid (MSA) as the capping agent and borate-citrate acid as the buffering solution, CdSe nanocrystals with high quantum yield (up to 70%) have been synthesized conveniently. The influence of different experimental parameters, such as the pH of the precursor solution, the molar ratio of Cd(2+) to Na2 SeO3 and Cd(2+) to MSA on the CdSe nanocrystals, has been systematically investigated. The prepared CdSe NCs were spherical with a size of ~ 5 nm.

  7. EXTENDED FEAR CONDITIONING REVEALS A ROLE FOR BOTH N-METHYL-d-ASPARTIC ACID AND NON-N-METHYL-d-ASPARTIC ACID RECEPTORS IN THE AMYGDALA IN THE ACQUISITION OF CONDITIONED FEAR

    PubMed Central

    PISTELL, P. J.; FALLS, W. A.

    2009-01-01

    Pavlovian conditioning is a useful tool for elucidating the neural mechanisms involved with learning and memory, especially in regard to the stimuli associated with aversive events. The amygdala has been repeatedly implicated as playing a significant role in the acquisition and expression of fear. If the amygdala is critical for the acquisition of fear, then it should contribute to this processes regardless of the parameters used to induce or evaluate conditioned fear. A series of experiments using reversible inactivation techniques evaluated the role of the amygdala in the acquisition of conditioned fear when training was conducted over several days in rats. Fear-potentiated startle was used to evaluate the acquisition of conditioned fear. Pretraining infusions of N-methyl-d-aspartic acid (NMDA) or non-NMDA receptor antagonists alone into the amygdala interfered with the acquisition of fear early in training, but not later. Pretraining infusions of a cocktail consisting of both an NMDA and non-NMDA antagonist interfered with the acquisition of conditioned fear across all days of training. Taken together these results suggest the amygdala may potentially be critical for the acquisition of conditioned fear regardless of the parameters utilized. PMID:18675886

  8. Selective Cleavage of the Aryl Ether Bonds in Lignin for Depolymerization by Acidic Lithium Bromide Molten Salt Hydrate under Mild Conditions.

    PubMed

    Yang, Xiaohui; Li, Ning; Lin, Xuliang; Pan, Xuejun; Zhou, Yonghong

    2016-11-09

    The present study demonstrates that the concentrated lithium bromide (LiBr) solution with acid as catalyst was able to selectively cleave the β-O-4 aryl ether bond and lead to lignin depolymerization under mild conditions (e.g., in 60% LiBr with 0.3 M HCl at 110 °C for 2 h). Four industrial lignins from different pulping and biorefining processes, including softwood kraft lignin (SKL), hardwood kraft lignin (HKL), softwood ethanol organosolv lignin (EOL), and acid corncob lignin (ACL), were treated in the LiBr solution. The molecular weight, functional group, and interunit linkages of the lignins were characterized using GPC, FTIR, and NMR. The results indicated that the β-O-4 aryl ether bonds of the lignins were selectively cleaved, and both LiBr and HCl played crucial roles in catalyzing the cleavage of the ether bonds.

  9. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species.

    PubMed

    Sitepu, Irnayuli R; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J Bruce; Gillies, Laura A; Almada, Luis A G; Boundy-Mills, Kyria L

    2013-09-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified.

  10. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeasts species

    PubMed Central

    Sitepu, Irnayuli R.; Sestric, Ryan; Ignatia, Laura; Levin, David; German, J. Bruce; Gillies, Laura A.; Almada, Luis A.G.; Boundy-Mills, Kyria L.

    2013-01-01

    Oleaginous yeasts have been studied for oleochemical production for over 80 years. Only a few species have been studied intensely. To expand the diversity of oleaginous yeasts available for lipid research, we surveyed a broad diversity of yeasts with indicators of oleaginicity including known oleaginous clades, and buoyancy. Sixty-nine strains representing 17 genera and 50 species were screened for lipid production. Yeasts belonged to Ascomycota families, Basidiomycota orders, and the yeast-like algal genus Prototheca. Total intracellular lipids and fatty acid composition were determined under different incubation times and nitrogen availability. Thirteen new oleaginous yeast species were discovered, representing multiple ascomycete and basidiomycete clades. Nitrogen starvation generally increased intracellular lipid content. The fatty acid profiles varied with the growth conditions regardless of taxonomic affiliation. The dominant fatty acids were oleic acid, palmitic acid, linoleic acid, and stearic acid. Yeasts and culture conditions that produced fatty acids appropriate for biodiesel were identified. PMID:23891835

  11. Influence of wine-like conditions on arginine utilization by lactic acid bacteria.

    PubMed

    Araque, Isabel; Reguant, Cristina; Rozès, Nicolas; Bordons, Albert

    2011-12-01

    Wine can contain trace amounts of ethyl carbamate (EC), a carcinogen formed when ethanol reacts with carbamyl compounds such as citrulline. EC is produced from arginine by lactic acid bacteria (LAB), e.g., Lactobacillus and Pediococcus. Although the amounts of EC in wine are usually negligible, over the last few years there has been a slight but steady increase, as climate change has increased temperatures and alcohol levels have become proportionately higher, both of which favor EC formation. In this study, resting cells of LAB were used to evaluate the effects of ethanol, glucose, malic acid, and low pH on the ability of non-oenococcal strains of these bacteria to degrade arginine and excrete citrulline. Malic acid was found to clearly inhibit arginine consumption in all strains. The relation between citrulline produced and arginine consumed was clearly higher in the presence of ethanol (10-12%) and at low pH (3.0), which is consistent with both the decreased amount of ornithine produced from arginine and the reduction in arginine degradation. In L. brevis and L. buchneri strains isolated from wine and beer, respectively, the synthesis of citrulline from arginine was highest.

  12. Whiteness improvement of citric acid crosslinked cotton fabrics: H2O2 bleaching under alkaline condition.

    PubMed

    Tang, Peixin; Ji, Bolin; Sun, Gang

    2016-08-20

    Polycarboxylic acids have been employed as formaldehyde-free crosslinking agents in anti-wrinkle treatment for cotton fabrics. Cotton fabrics treated by citric acid (CA) catalyzed with effective catalysts have shown satisfactory anti-wrinkle properties. Meanwhile, CA is a natural-based and environmental friendly compound. However, the yellowing of CA treated fabrics is a stumbling block for its practical application. Due to the fact that CA firstly forms aconitic acid (AA) before forming anhydrides, the cause of the yellowing, hydrogen peroxide (H2O2) bleaching was adopted to treat the CA treated fabrics in order to break the CC bond structure and reduce the yellow color but retaining the desired anti-wrinkle properties. Thermogravimetric analysis and Fourier transformed infrared spectroscopy were employed to investigate the reactions. The results revealed that the H2O2 bleaching can effectively improve the whiteness and also maintain a good anti-wrinkle performance of the CA treated fabrics under an appropriate bleaching temperature and time.

  13. Chlorophylls, proteins and fatty acids amounts of arthrospira platensis growing under saline conditions.

    PubMed

    Ayachi, Samah; El Abed, Amor; Dhifi, Wissal; Marzouk, Brahim

    2007-07-15

    Spirulina platensis (Arthrospira platensis) is a Tunisian strain isolated for the first time, in Tunisia, in Oued Essed (Sidi Bou Ali, in Sousse region). Evolution of biomass, proteins, chlorophylls and fatty acids (FA) has been followed during Spirulina growth. Experiments were carried out by varying sodium chloride concentrations in the culture medium in a range from 1 g L(-1) (natural environment) to 60 g L(-1). Results analysis showed an increase in chlorophyll amounts at 15 g L(-1) NaCl in 10 days old cultures but a decrease at high NaCl concentrations. Optimal proteins amounts was observed at 15 g L(-1) NaCl in young cultures (5 and 10 days). FA composition was modified by NaCl and depended on culture age. Cultures exposed to high salinity concentrations showed not only a decrease in growth rate but also a loss in total fatty acids TFA quantities. Samples cultured over 15 days at 30 g L(-1) NaCl rendered optimal quantities of lipids and gamma-linolenic acid.

  14. Degree of cure and fracture properties of experimental acid-resin modified composites under wet and dry conditions

    PubMed Central

    López-Suevos, Francisco; Dickens, Sabine H.

    2008-01-01

    Objective Evaluate the effects of core structure and storage conditions on the mechanical properties of acid-resin modified composites and a control material by three-point bending and conversion measurements 15 min and 24 h after curing. Methods The monomers pyromellitic dimethacrylate (PMDM), biphenyldicarboxylic-acid dimethacrylate (BPDM), (isopropylidene-diphenoxy)bis(phthalic-acid) dimethacrylate (IPDM), oxydiphthalic-acid dimethacrylate (ODPDM), and Bis-GMA were mixed with triethyleneglycol dimethacrylate (TEGDMA) in a 40/60 molar ratio, and photo-activated. Composite bars (Barium-oxide-glass/resin = 3/1 mass ratio, (2 × 2 × 25) mm, n = 5) were light-cured for 1 min per side. Flexural strength (FS), elastic modulus (E), and work-of-fracture (WoF) were determined in three-point bending after 15 min (stored dry); and after 24 h under dry and wet storage conditions at 37 °C. Corresponding degrees of conversion (DC) were evaluated by Fourier transform infrared spectroscopy. Data was statistically analyzed (2-way analysis of variance, ANOVA, Holm-Sidak, p < 0.05). Results Post-curing significantly increased FS, E and DC in nearly all cases. WoF did not change, or even decreased with time. For all properties ANOVA found significant differences and interactions of time and material. Wet storage reduced the moduli and the other properties measured with the exception of FS and WoF of ODPDM; DC only decreased in BPDM and IPDM composites. Significance Differences in core structure resulted in significantly different physical properties of the composites studied with two phenyl rings connected by one ether linkage as in ODPDM having superior FS, WoF and DC especially after 24 h under wet conditions. As expected, post-curing significantly contributed to the final mechanical properties of the composites, while wet storage generally reduced the mechanical properties. PMID:17980422

  15. Direct electric current treatment under physiologic saline conditions kills Staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid.

    PubMed

    Sandvik, Elizabeth L; McLeod, Bruce R; Parker, Albert E; Stewart, Philip S

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10(th) strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log(10) CFU/cm(2) were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm(2)) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm(2)) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications.

  16. Simultaneous quantification of iodine and high valent metals via ICP-MS under acidic conditions in complex matrices.

    PubMed

    Brix, Kristina; Hein, Christina; Sander, Jonas Michael; Kautenburger, Ralf

    2017-05-15

    The determination of iodine as a main fission product (especially the isotopes I-129 and I-131) of stored HLW in a disposal beside its distribution as a natural ingredient of many different products like milk, food and seawater is a matter of particular interest. The simultaneous ICP-MS determination of iodine as iodide together with other elements (especially higher valent metal ions) relevant for HLW is analytically very problematic. A reliable ICP-MS quantification of iodide must be performed at neutral or alkaline conditions in contrast to the analysis of metal ions which are determined in acidic pH ranges. Herein, we present a method to solve this problem by changing the iodine speciation resulting in an ICP-MS determination of iodide as iodate. The oxidation from iodide to iodate with sodium hypochlorite at room temperature is a fast and convenient method with flexible reaction time, from one hour up to three days, thus eliminating the disadvantages of quantifying iodine species via ICP-MS. In the analysed concentration range of iodine (0.1-100µgL(-1)) we obtain likely quantitative recovery rates for iodine between 91% and 102% as well as relatively low RSD values (0.3-4.0%). As an additional result, it is possible to measure different other element species in parallel together with the generated iodate, even high valent metals (europium and uranium beside caesium) at recovery rates in the same order of magnitude (93-104%). In addition, the oxidation process operates above pH 7 thus offering a wide pH range for sample preparation. Even analytes in complex matrices, like 5M saline (NaCl) solution or artificial cement pore water (ACW) can be quantified with this robust sample preparation method.

  17. Direct Electric Current Treatment under Physiologic Saline Conditions Kills Staphylococcus epidermidis Biofilms via Electrolytic Generation of Hypochlorous Acid

    PubMed Central

    Sandvik, Elizabeth L.; McLeod, Bruce R.; Parker, Albert E.; Stewart, Philip S.

    2013-01-01

    The purpose of this study was to investigate the mechanism by which a direct electrical current reduced the viability of Staphylococcus epidermidis biofilms in conjunction with ciprofloxacin at physiologic saline conditions meant to approximate those in an infected artificial joint. Biofilms grown in CDC biofilm reactors were exposed to current for 24 hours in 1/10th strength tryptic soy broth containing 9 g/L total NaCl. Dose-dependent log reductions up to 6.7 log10 CFU/cm2 were observed with the application of direct current at all four levels (0.7 to 1.8 mA/cm2) both in the presence and absence of ciprofloxacin. There were no significant differences in log reductions for wells with ciprofloxacin compared to those without at the same current levels. When current exposures were repeated without biofilm or organics in the medium, significant generation of free chlorine was measured. Free chlorine doses equivalent to the 24 hour endpoint concentration for each current level were shown to mimic killing achieved by current application. Current exposure (1.8 mA/cm2) in medium lacking chloride and amended with sulfate, nitrate, or phosphate as alternative electrolytes produced diminished kills of 3, 2, and 0 log reduction, respectively. Direct current also killed Pseudomonas aeruginosa biofilms when NaCl was present. Together these results indicate that electrolysis reactions generating hypochlorous acid from chloride are likely a main contributor to the efficacy of direct current application. A physiologically relevant NaCl concentration is thus a critical parameter in experimental design if direct current is to be investigated for in vivo medical applications. PMID:23390518

  18. [Metabolism of Yarrowia lipolytica grown on ethanol under conditions promoting the production of alpha-ketoglutaric and citric acids: a comparative study of the central metabolism enzymes].

    PubMed

    Il'chenko, A P; Cherniavskaia, O G; Shishkanova, N V; Finogenova, T V

    2002-01-01

    A comparative study of the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles in the mutant Yarrowia lipolytica strain N1 capable of producing alpha-ketoglutaric acid (KGA) and citric acid showed that almost all enzymes of the TCA cycle are more active under conditions promoting the production of KGA. The only exception was citrate synthase, whose activity was higher in yeast cells producing citric acid. The production of both acids was accompanied by suppression of the glyoxylate cycle enzymes. The activities of malate dehydrogenase, aconitase, NADP-dependent isocitrate dehydrogenase, and fumarase were higher in cells producing KGA than in cells producing citric acid.

  19. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    PubMed

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models.

  20. Renewal and spontaneous recovery, but not latent inhibition, are mediated by gamma-aminobutyric acid in appetitive conditioning.

    PubMed

    Delamater, Andrew R; Campese, Vincent; Westbrook, R Frederick

    2009-04-01

    Previous research has reported a role for the neurotransmitter gamma-aminobutyric acid (GABA) in the extinction and renewal of conditioned fear. Here, the authors examine whether GABA is involved in the acquisition, extinction, renewal, spontaneous recovery, and latent inhibition of appetitive conditioning. Using Long-Evans rats, systemic injection of the GABA A receptor inverse agonist FG 7142 was shown to eliminate ABA renewal (Experiment 1) and spontaneous recovery (Experiment 4) of appetitive responding by selectively reducing the recovery of extinguished magazine approach. Furthermore, treatment with FG 7142 had no effects on acquisition or single-session extinction (Experiment 3) or on the context-specific expression of latent inhibition (Experiment 2). These data suggest that ABA renewal and spontaneous recovery, but not latent inhibition or responding during acquisition and an initial extinction session, are mediated by GABAergic mechanisms in appetitive Pavlovian conditioning. They provide support for the view that renewal and spontaneous recovery share a common psychological mechanism.

  1. Transcriptome-based identification of new anti-anti-inflammatory and vasodilating properties of the n-3 fatty acid docosahexaenoic acid in vascular endothelial cell under proinflammatory conditions

    PubMed Central

    Gatta, Valentina; Scoditti, Egeria; Pellegrino, Mariangela; Carluccio, Maria Annunziata; Calabriso, Nadia; Buonomo, Tonia; Stuppia, Liborio; Storelli, Carlo; De Caterina, Raffaele

    2015-01-01

    Scope High intakes of n-3 fatty acids exert anti-inflammatory effects and cardiovascular protection, but the underlying molecular basis is incompletely defined. By genome-wide analysis we searched for novel effects of docosahexaenoic acid (DHA) on gene expression and pathways in human vascular endothelium under pro-inflammatory conditions. Methods and Results Human umbilical vein endothelial cells were treated with DHA and then stimulated with interleukin(IL)-1β. Total RNA was extracted, and gene expression examined by DNA microarray. DHA alone altered the expression of 188 genes, decreasing 92 and increasing 96. IL-1β changed the expression of 2031 genes, decreasing 997 and increasing 1034. Treatment with DHA before stimulation significantly affected the expression of 116 IL-1β-deregulated genes, counter-regulating the expression of 55 genes among those decreased and of 61 among those increased. Functional and network analyses identified immunological, inflammatory and metabolic pathways as the most affected. Newly identified DHA-regulated genes are involved in stemness, cellular growth, cardiovascular system function and cancer, and included cytochrome p450 4F2(CYP4F2), transforming growth factor(TGF)-β2, Cluster of Differentiation (CD)47, caspase recruitment domain(CARD)11 and phosphodiesterase(PDE)5α. Conclusions Endothelial exposure to DHA regulates novel genes and related pathways. Such unbiased identification should increase our understanding of mechanisms by which n-3 fatty acids affect human diseases. PMID:26114549

  2. Degradation Kinetics and Mechanism of Lithospermic Acid under Low Oxygen Condition Using Quantitative 1H NMR with HPLC-MS

    PubMed Central

    Pan, Jianyang; Gong, Xingchu; Qu, Haibin

    2016-01-01

    A novel quantitative 1H NMR (Q-NMR) combined with HPLC-MS method has been proposed for investigating the degradation process of traditional Chinese medicine (TCM) components. Through this method, in-situ monitoring of dynamics degradation process of lithospermic acid (LA), one of the popular polyphenolic acids in TCM, was realized under low oxygen condition. Additionally, this methodology was proved to be simple, rapid and specific. Degradation kinetic runs have been carried out to systematically investigate the effects of two key environmental factors, initial pH values and temperatures. Eight main degradation products of LA were detected, seven of which were tentatively structural elucidated with the help of both NMR and LC-MS in this work and salvianolic acid A (Sal A) was the primary degradation product of LA. A possible degradation pathway of LA was proposed, subsequently. The results showed that the degradation of LA followed pseudo-first-order kinetics. The apparent degradation kinetic constants increased as the initial pH value of the phosphate buffer increased. Under the given conditions, the rate constants of overall degradation as a function of temperature obeyed the Arrhenius equation. Our results proved that the Q-NMR combined with HPLC-MS method can be one of the most promising techniques for investigating degradation process of active components in TCM. PMID:27776128

  3. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  4. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  5. Nalidixic Acid-Resistant Salmonella enterica Serotype Typhi Presenting as a Primary Psoas Abscess: Case Report and Review of the Literature

    PubMed Central

    Shakespeare, William A.; Davie, Daniel; Tonnerre, Claude; Rubin, Michael A.; Strong, Michael; Petti, Cathy A.

    2005-01-01

    We report an unusual case of Salmonella enterica serotype Typhi presenting as a primary psoas abscess. The isolate tested susceptible to ciprofloxacin but resistant to nalidixic acid in vitro, a pattern associated with fluoroquinolone therapeutic failures. We review the literature for serovar Typhi psoas abscess in the absence of bacteremia and discuss the importance of identifying isolates with reduced susceptibility to fluoroquinolones. PMID:15695728

  6. Influence on Levels of Information as Presented by Different Technologies on Students' Understanding of Acid, Base, and pH Concepts.

    ERIC Educational Resources Information Center

    Nakhleh, Mary B.; Krajcik, Joseph S.

    1994-01-01

    Involves secondary students in a study designed to allow investigation into how different levels of information presented by various technologies (chemical indicators, pH meters, and microcomputer-based laboratories-MBLs) affected students' understanding of acid, base, and pH concepts. Results showed that students using MBLs exhibited a greater…

  7. The impact of extraction with a chelating agent under acidic conditions on the cell wall polymers of mango peel.

    PubMed

    Jamsazzadeh Kermani, Zahra; Shpigelman, Avi; Kyomugasho, Clare; Van Buggenhout, Sandy; Ramezani, Mohsen; Van Loey, Ann M; Hendrickx, Marc E

    2014-10-15

    The objective of this research was to evaluate whether mango peel is a potential source of functional cell wall polymers. To reach this objective, the native pectin polymers (NPP) extracted as alcohol insoluble residue from mango peel, were characterised in terms of uronic acid content, degree of methoxylation, neutral sugar content, and molar mass and compared to citric acid (pH 2.5, 2h at 80°C) extracted polymers, mimicking industrial pectin extraction conditions. Water-solubilised NPP were highly methoxylated having two populations with a Mw of 904 and 83kDa and a degree of methoxylation of 66%. Citric acid extraction with a yield higher than H2SO4 extraction resulted in a very branched pectin with an extremely high DM (83%) and a high molar mass. Comparing the Fourier Transform Infra-Red spectroscopy of extracted and native WSF showed that citric acid remained partially associated to the extracted pectin due to its chelating properties.

  8. Functional citric acid cycle in an arcA mutant of Escherichia coli during growth with nitrate under anoxic conditions.

    PubMed

    Prohl, C; Wackwitz, B; Vlad, D; Unden, G

    1998-07-01

    The operation of the citric acid cycle of Escherichia coli during nitrate respiration (anoxic conditions) was studied by measuring end products and enzyme activities. Excretion of products other than CO2, such as acetate or ethanol, was taken as an indication for a non-functional cycle. From glycerol, approximately 0.3 mol acetate was produced; the residual portion was completely oxidized, indicating the presence of a partially active citric acid cycle. In an arcA mutant devoid of the transcriptional regulator ArcA, glycerol was completely oxidized with nitrate as an electron acceptor, demonstrating derepression and function of the complete pathway. Glucose, on the other hand, was excreted mostly as acetate by the wild-type and by the arcA mutant. During growth on glucose, but not on glycerol, activities of succinate dehydrogenase and of 2-oxoglutarate dehydrogenase were missing nearly completely. Thus, the previously described strong repression of the citric acid cycle during nitrate respiration occurs only during growth on glucose and is the effect of anaerobic and, more important, of glucose repression. In Pseudomonas fluorescens (but not Pseudomonas stutzeri), a similar decrease of citric acid cycle function during anaerobic growth with nitrate was found, indicating a broad distribution of this regulatory principle.

  9. Conditions optimising on the yield of biomass, total lipid, and valuable fatty acids in two strains of Skeletonema menzelii.

    PubMed

    Jiang, Xiamin; Han, Qingxi; Gao, Xiuzhi; Gao, Guang

    2016-03-01

    Polyunsaturated fatty acids (PUFA) and eicosapentaenoic acid (EPA) are essential for the health of aquaculture organisms and human beings. A total of 9 species of diatoms were screened and two strains of Skeletonema menzelii were selected for further study due to their high growth rates, PUFA and EPA contents. The culture conditions for the yield of biomass, total lipid, EPA and PUFA were optimised. The quickest growth rates (0.28-0.41d(-1)) were achieved with moderate supplement of nitrogen, phosphorus, iron and silicon. The accumulation of total lipid (17.85-22.70% of dry weight) benefitted from deprivation of nitrogen, phosphorus and silicon, but a moderate iron supplement. Highest PUFA (38.26-50.48% of total fatty acids) or EPA (14.26-18.39% of total fatty acids) contents were observed under high nitrogen and phosphorus supplement, moderate available iron but deprivation of silicon. These findings make tangible contributions to culture S. menzelii for commercial production of PUFA or EPA.

  10. Effect of Phospholipid on Pyrite Oxidation and Microbial Communities under Simulated Acid Mine Drainage (AMD) Conditions.

    PubMed

    Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R

    2015-07-07

    The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid.

  11. Relative Importance of Nitrite Oxidation by Hypochlorous Acid under Chloramination Conditions

    EPA Science Inventory

    The importance of nitrite’s oxidation by tree chlorine under chloramination conditions was evaluated using batch kinetic experiments and a chloramine model implemented into the computer program AWUASIM. The experimental data was best represented with the inclusion of a reaction b...

  12. Photodegradation of Acid Violet 7 with AgBr-ZnO under highly alkaline conditions.

    PubMed

    Krishnakumar, B; Swaminathan, M

    2012-12-01

    The photocatalytic activity of AgBr-ZnO was investigated for the degradation of Acid Violet 7 (AV 7) in aqueous solution using UV-A light. AgBr-ZnO is found to be more efficient than commercial ZnO and prepared ZnO at pH 12 for the mineralization of AV 7. The effects of operational parameters such as the amount of photocatalyst, dye concentration, initial pH on photo mineralization have been analyzed. Expect oxone, other oxidants decrease the degradation efficiency. Addition of metal ions and anions decrease the degradation efficiency of AgBr-ZnO significantly. The mineralization of AV 7 has also been confirmed by COD measurements. The mechanism of degradation by AgBr-ZnO is proposed to explain its higher activity under UV light. The catalyst is found to be reusable.

  13. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions

    PubMed Central

    Larsen, Thomas; Sabree, Zakee

    2016-01-01

    Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host’s demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ13CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ13C) between cockroach (δ13CCockroach EAA) and dietary (δ13CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using 13C-fingerprinting with dietary and representative bacterial and fungal δ13CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency. PMID:27231663

  14. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions.

    PubMed

    Ayayee, Paul A; Larsen, Thomas; Sabree, Zakee

    2016-01-01

    Insect gut microbes have been shown to provide nutrients such as essential amino acids (EAAs) to their hosts. How this symbiotic nutrient provisioning tracks with the host's demand is not well understood. In this study, we investigated microbial essential amino acid (EAA) provisioning in omnivorous American cockroaches (Periplaneta americana), fed low-quality (LQD) and comparatively higher-quality dog food (DF) diets using carbon stable isotope ratios of EAAs (δ (13)CEAA). We assessed non-dietary EAA input, quantified as isotopic offsets (Δ(13)C) between cockroach (δ (13)CCockroach EAA) and dietary (δ (13)CDietary EAA) EAAs, and subsequently determined biosynthetic origins of non-dietary EAAs in cockroaches using (13)C-fingerprinting with dietary and representative bacterial and fungal δ (13)CEAA. Investigation of biosynthetic origins of de novo non-dietary EAAs indicated bacterial origins of EAA in cockroach appendage samples, and a mixture of fungal and bacterial EAA origins in gut filtrate samples for both LQD and DF-fed groups. We attribute the bacteria-derived EAAs in cockroach appendages to provisioning by the fat body residing obligate endosymbiont, Blattabacterium and gut-residing bacteria. The mixed signatures of gut filtrate samples are attributed to the presence of unassimilated dietary, as well as gut microbial (bacterial and fungal) EAAs. This study highlights the potential impacts of dietary quality on symbiotic EAA provisioning and the need for further studies investigating the interplay between host EAA demands, host dietary quality and symbiotic EAA provisioning in response to dietary sufficiency or deficiency.

  15. Clinical vampirism. A presentation of 3 cases and a re-evaluation of Haigh, the 'acid-bath murderer'.

    PubMed

    Hemphill, R E; Zabow, T

    1983-02-19

    Clinical vampirism is named after the mythical vampire, and is a recognizable, although rare, clinical entity characterized by periodic compulsive blood-drinking, affinity with the dead and uncertain identity. It is hypothetically the expression of an inherited archaic myth, the act of taking blood being a ritual that gives temporary relief. From ancient times vampirists have given substance to belief in the existence of supernatural vampires. Four vampirists, including Haigh, the 'acid-bath murderer', are described. From childhood they cut themselves, drank their own, exogenous human or animal blood to relieve a craving, dreamed of blood-shed, associated with the dead, and had a changing identity. They were intelligent, with no family mental or social pathology. Some self-cutters are auto-vampirists; females are not likely to assault others for blood, but males are potentially dangerous. Vampirism may be a cause of unpredictable repeated assault and murder, and should be looked for in violent criminals who are self-mutilators. No specific treatment is known.

  16. Conditions influencing the synthesis of acid protease by Mucor pusillus Lindt.

    PubMed

    Somkuti, G A; Babel, F J

    1967-11-01

    Protease synthesis by Mucor pusillus Lindt, in a wheat bran medium under submerged conditions, was influenced by substrate concentration, initial pH of the medium, and temperature of incubation. A 4% wheat bran (dry weight) concentration was satisfactory for enzyme production. The initial pH of the medium had a substantial effect on enzyme synthesis; adjustment of the enzyme production medium to pH 5.0 prior to sterilization was desirable. Incubation at 35 C resulted in the best enzyme yields. Under optimal conditions of enzyme production, maximal activity was detected after 5 days of incubation. The enrichment of the medium with glucose increased the yield of mycelia but lowered the amount of enzyme produced.

  17. Stability of Bovine viral diarrhea virus 1 nucleic acid in fetal bovine samples stored under different conditions.

    PubMed

    Ridpath, Julia F; Neill, John D; Chiang, Yu-Wei; Waldbillig, Jill

    2014-01-01

    Infection of pregnant cattle with both species of Bovine viral diarrhea virus (BVDV) can result in reproductive disease that includes fetal reabsorption, mummification, abortion, stillbirths, congenital defects affecting structural, neural, reproductive, and immune systems, and the birth of calves persistently infected with BVDV. Accurate diagnosis of BVDV-associated reproductive disease is important to control BVDV at the production unit level and assessment of the cost of BVDV infections in support of BVDV control programs. The purpose of the current study was to examine the stability of viral nucleic acid in fetal tissues exposed to different conditions, as measured by detection by polymerase chain reaction. Five different types of fetal tissue, including brain, skin and muscle, ear, and 2 different pooled organ samples, were subjected to conditions that mimicked those that might exist for samples collected after abortions in production settings or possible storage conditions after collection and prior to testing. In addition, tissues were archived for 36 months at -20°C and then retested, to mimic conditions that might occur in the case of retrospective surveillance studies. Brain tissue showed the highest stability under the conditions tested. The impact of fecal contamination was increased following archiving in all tissue types suggesting that, for long-term storage, effort should be made to reduce environmental contaminants before archiving.

  18. Retinoic acid combined with spermatogonial stem cell conditions facilitate the generation of mouse germ-like cells.

    PubMed

    Dong, Guoyi; Shang, Zhouchun; Liu, Longqi; Liu, Chuanyu; Ge, Yuping; Wang, Quanlei; Wu, Liang; Chen, Fang; Li, Baolin; Liu, Xin; Xu, Xun; Yang, Huanming; DU, Yutao; Jiang, Hui

    2017-03-17

    Spermatogenic lineage has been directly generated in spermatogonial stem cell (SSC) conditions from human pluripotent stem cells (PSCs). However, it remains unknown whether mouse ESCs can directly differentiate into advanced male germ cell lineage in the same conditions. Here, we showed that rather low efficiency of germ-like cell generation from mouse ESCs in SSC conditions. Interestingly, addition of retinoic acid (RA) into SSC conditions enabled efficient differentiation of mouse ESCs into germ-like cells, as shown by activating the expression of spermatogenesis-associated genes during differentiation process, such as Mvh , Dazl , Prdm14 , Stella , Scp1 , Scp3 , Stra8 and Rec8 In contrast, for cells cultured in control medium, the activation of these above genes barely occurred. In addition, RA with SSC conditions yielded colonies of Acrosin expressing cells and the positive ratio reached a peak at day 6. Our work thus establishes a simple and cost efficient approach for male germ-like cell differentiation from mouse pluripotent stem cells and may propose a useful strategy for studying spermatogenesis in vitro.

  19. Effects of a New Glutamic Acid Derivative on Myocardial Contractility of Stressed Animals under Conditions of Nitric Oxide Synthesis Blockade.

    PubMed

    Tyurenkov, I N; Perfilova, V N; Sadikova, N V; Berestovitskaya, V M; Vasil'eva, O S

    2015-07-01

    Glufimet (glutamic acid derivative) in a dose of 28.7 mg/kg limited the reduction of the cardiac functional reserve in animals subjected to 24-h stress under conditions of nonselective NO synthase blockade with L-NAME (10 mg/kg). Adrenoreactivity and increased afterload tests showed that the increment of myocardial contraction/relaxation rates, left-ventricular pressure, and HR were significantly higher in glufimet-treated stressed animals with NO synthesis blockade than in animals which received no glufimet. The efficiency of glufimet was higher than that of phenibut (the reference drug).

  20. Impaired swim bladder inflation in early-life stage fathead minnows exposed to a deiodinase inhibitor, iopanoic acid (presentation)

    EPA Science Inventory

    The present study investigated whether inhibition of deiodinase, the enzyme which converts thyroxine (T4) to the more biologically-active form, 3,5,3'-triiodothyronine (T3), would impact inflation of the posterior and/or anterior chamber of the swim bladder, processes previously ...

  1. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

    NASA Astrophysics Data System (ADS)

    Vogel, N.; Cantin, N. E.; Strahl, J.; Kaniewska, P.; Bay, L.; Wild, C.; Uthicke, S.

    2016-06-01

    Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (-1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change

  2. Effect of Accessions and Environment Conditions on Coumarin, O-Coumaric and Kaurenoic Acids Levels of Mikania laevigata.

    PubMed

    Agostini-Costa, Tânia da Silveira; Gomes, Ismael Silva; Fonseca, Maira Christina Marques; Alonso, Araci Molnar; Pereira, Rita de Cassia Alves; Montanari Junior, Ilio; da Silva, Joseane Padilha; Pereira, Ana Maria Soares; da Silva, Dijalma Barbosa; Vieira, Roberto Fontes; Vaz, Ana Paula Artimonte

    2016-11-01

    Coumarin, o-coumaric, and kaurenoic acid are bioactive compounds usually found in the leaves of Mikania laevigata. Genetic and environmental variations in the secondary metabolites of plants may have implications for their biological effects. Three different accessions of M. laevigata cultivated in four sites between the Equator and the Tropic of Capricorn in Brazil were evaluated aiming to present potential raw materials and discuss relationships among these three bioactive compounds. The results revealed effects of plant accessions and environmental factors and suggested two contrasting chemical phenotypes of M. laevigata. The first phenotype presented the highest levels of kaurenoic acid (2283 ± 316 mg/100 g) besides lower levels of coumarin (716 ± 61 mg/100 g), which was also stimulated by the environment and mild climate at the site nearest to the Tropic of Capricorn. The other phenotype presented the lowest levels of kaurenoic acid (137 ± 17 mg/100 g) besides higher levels of coumarin (1362 ± 108 mg/100 g), which was also stimulated by the environment and tropical climate at the site nearest to the Equatorial beach.

  3. Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using crassulacean acid metabolism (CAM) in arid conditions.

    PubMed

    Davis, Sarah C; LeBauer, David S; Long, Stephen P

    2014-07-01

    There has been little attention paid to crassulacean acid metabolism (CAM) as a mechanism for bioenergy crop tolerance to water limitation, in part, because potential yields of CAM plants have been assumed to be lower than those of most commonly studied bioenergy crops. The photochemical efficiency, water-use efficiency (WUE), biomass production, and fuel yield potentials of CAM, C3, and C4 plants that are considered or already in use for bioenergy are reviewed here. The theoretical photosynthetic efficiency of CAM plants can be similar to or greater than other photosynthetic pathways. In arid conditions, the greater WUE of CAM species results in theoretical biomass yield potentials that are 147% greater than C4 species. The realized yields of CAM plants are similar to the theoretical yields that account for water-limiting conditions. CAM plants can potentially be viable commercial bioenergy crops, but additional direct yield measurements from field trials of CAM species are still needed.

  4. Enantioselective Alkylation of Amino Acid Derivatives Promoted by Cyclic Peptoids under Phase-Transfer Conditions.

    PubMed

    Schettini, Rosaria; De Riccardis, Francesco; Della Sala, Giorgio; Izzo, Irene

    2016-03-18

    The effects of substituents and cavity size on catalytic efficiency of proline-rich cyclopeptoids under phase-transfer conditions were studied. High affinity constants (Ka) for the sodium and potassium cations, comparable to those reported for crown ethers, were observed for an alternated N-benzylglycine/L-proline hexameric cyclopeptoid. This compound was found to catalyze the alkylation of N-(diphenylmethylene)glycine cumyl ester in values of enantioselectivities comparable with those reported for the Cinchona alkaloid ammonium salts derivatives (83-96% ee), and with lower catalyst loading (1-2.5% mol), in the presence of a broad range of benzyl, allyl and alkyl halides.

  5. Quantitative evaluation of noncovalent interactions between polyphosphate and dissolved humic acids in aqueous conditions.

    PubMed

    Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2015-12-01

    As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P.

  6. Toxic effects of Al-based coagulants on Brassica chinensis and Raphanus sativus growing in acid and neutral conditions.

    PubMed

    Zhang, Kaisong; Zhou, Qixing

    2005-04-01

    The ecotoxicological effects of aluminum (Al)-based coagulants are of concern because of their wide-ranging applications in wastewater treatment and water purification. As important Al-based coagulants, AlCl(3) and PAC (polyaluminum-chloride) were selected as examples to examine the toxic effects on representative vegetables including the cabbage Brassica chinensis and the radish Raphanus sativus over a range of exposure concentrations in neutral (pH 7.00) and acidic (pH 4.00) conditions, using seed germination and root elongation in the early-growth stage as indicators of toxicity. The results showed that root elongation of the two vegetables was a more sensitive indicator than was seed germination for evaluating the toxicity of Al. As a single influencing factor, H(+) had no significant direct effects on root elongation of Brassica chinensis and Raphanus sativus under the experimental conditions. The toxicity of Al played the main role in inhibiting root elongation and seed germination and was strongly related to changes in pH. There was a markedly positive relationship between the inhibitory rate of root elongation, seed germination, and the concentration of Al at pH 4.00 (p < 0.01). The toxic effect of AlCl(3) on Brassica chinensis was less with a neutral pH than at pH 4.00, but Raphanus sativus was more susceptible to AlCl(3) toxicity at a neutral pH than at pH 4.00. Both Raphanus sativus and Brassica chinensis had a more toxic response to a low concentration (<64 mg . L(-1)) of PAC in a neutral condition than in an acidic condition. Undoubtedly, the Al toxicity caused by Al-based coagulants at a neutral pH is relevant when treatment solids are used in agriculture.

  7. Impact of halides on the simultaneous separation of aromatic amines and their acidic metabolites by capillary electrophoresis with laser-induced native fluorescence detection under acidic conditions.

    PubMed

    Hsieh, Ming-Mu; Chang, Huan-Tsung

    2006-01-13

    This paper describes a simple, sensitive, efficient, and rapid method for simultaneous analysis of biologically active amines and acids by capillary electrophoresis in conjunction with laser-induced native fluorescence detection (CE-LINF) using a diode pumped solid state nanolaser at 266 nm. In order to optimize resolution of the amines that were prepared in 10.0 mM formate-Tris (FT) solutions, 10.0 mM FT solutions with and without containing halides were used to fill the capillary and reservoirs, respectively. The electrophoretic mobilities of tryptamine (TA) and serotonin (5-HT) at pH 4.0 decrease with the increase in halide concentration (0-10.0 mM). Taken together with a great effect of iodide than other halides, we suggest that the formation of ion pairs is a main contributor for altering the migration of the amines. In order to simultaneously analyze the amines and their metabolites (acids) at low pH, a high bulk EOF is required. The analysis of 10 anlytes including amines and acids was completed within 12 min by CE-LINF using a capillary treated with 0.5M NaOH and then filled with 10.0 mM FT solutions (pH 4.0) containing 10.0 mM KCl prior to analysis. The limits of detection for TA and 5-hydroxyindole-3-acetic acid (5-HIAA) are 0.12 and 6.0 nM, respectively. The present method has been further validated by analyzing urine samples, with an RSD less than 3.1% (migration times) and 3.9% (concentration).

  8. Crystallization of calcium sulfate dihydrate under simulated conditions of phosphoric acid production in the presence of aluminum and magnesium ions

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Mahmoud, M. H. H.; Ibrahim, I. A.; Abdel-Aal, E. A.

    2004-06-01

    The effect of Al 3+ and Mg 2+ ions, as additives, on the crystallization of gypsum was studied under simulated conditions of the phosphoric acid production. Calcium hydrogen phosphate and sulfuric acid were mixed with dilute phosphoric acid at 80°C, and the turbidity of the reaction mixture was measured at different time periods to calculate the induction time of gypsum crystals formation. Addition of Al 3+ ions up to 2% decreased the induction time and increased the growth efficiency while addition of Mg 2+ increased the induction time and decreased the growth efficiency compared with in absence of additives. Interestingly, the crystals mean and median diameters were found to increase in the presence of Al 3+ and decrease in the presence of Mg 2+. The surface energy increased with Al 3+ and decreased with Mg 2+ compared to the baseline (without additives). Gypsum morphology changed from needle-like type in absence of additives to thick-rhombic in the presence of Al 3+ ions.

  9. Structural, morphological and catalytic characterization of neutral Ag salt of 12-tungstophosphoric acid: Influence of preparation conditions

    NASA Astrophysics Data System (ADS)

    Holclajtner-Antunović, Ivanka; Bajuk-Bogdanović, Danica; Popa, Alexandru; Nedić Vasiljević, Bojana; Krstić, Jugoslav; Mentus, Slavko; Uskoković-Marković, Snežana

    2015-02-01

    The objective of this study is the structural and morphological characterization of the Ag3PW12O40 salts (AgWPA) of 12-tungstophosphoric acid (WPA) obtained under different preparation conditions and testing of their acid catalytic activity in dehydration of ethanol. The structure, morphology and physicochemical characteristics were determined by Fourier transform infrared (FT-IR) and Raman spectroscopy, X-ray diffraction (XRD), nitrogen physisorption at -196 °C, scanning electron microscopy (SEM) and differential thermal (DTA) and thermogravimetric analysis (TGA). It is shown that the preparation process has a significant influence on the morphological properties of the obtained materials which may be explained by the supposed mechanism of the formation of nanocrystallite‧s aggregates with more or less epitaxial connection. Neutral AgWPA obtained by filtration from supernatant forms porous aggregates of a symmetric dodecahedral shape, having average sizes about 2 μm. This sample shows higher specific area in comparison with the salt obtained by evaporation due to the higher micropore volume, while mesopore volumes are the same for both salts. Thus conversion of ethanol and selectivities of the main products, ethylene and diethyl ether, are almost the same and constant for both prepared salts, while their values are changed over the reaction time for the parent WPA acid.

  10. Clay mineralogical evolution as a function of acidic leaching conditions: implications for alteration pathways on Mars' surface

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Cuadros, Javier; Nieto, Jose Miguel; Bishop, Janice; Vega, Raquel; Michalski, Joe

    2015-04-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages suggesting processes for which Earth analogues exist. One of these cases is represented by aluminous clay-sulphate assemblages, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration.The oxidation of an extensive pyrite-rich orebody provided extreme to mild acidic fluxes that leached the surrounding rocks for over 20 million years (1). Samples from several locations in the Riotinto area show a range of clay products: vermiculite, smectite, possibly halloysite, and kaolinite with a wide range of crystal order. Jarosite and iron oxides appear in the most intensely leached areas. The different alteration products are due to the nature of the original rocks and the conditions in which low-pH leaching took place. Both mineral assemblages and spectral features of clay minerals from Riotinto can be used to interpret acidic alteration on Mars' surface. (1) Essalhi et al., 2011. Mineralium Deposita 46, 981-999.

  11. K Basin Sludge Conditioning Process Testing Project Results from Test 4, ''Acid Digestion of Mixed-Bed Ion Exchange Resin''

    SciTech Connect

    Pool, K.H.; Delegard, C.H.; Schmidt, A.J.; Thornton, B.M.; Silvers, K.L.

    1999-04-02

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). The Hanford Spent Nuclear Fuel (HSNF) project has conducted a number of evaluations to examine technology and processing alternatives to pretreat K Basin sludge to meet storage and disposal requirements. From these evaluations, chemical pretreatment has been selected to address criticality issues, reactivity, and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Chemical pretreatment, referred to as the K Basin sludge conditioning process, includes nitric acid dissolution of the sludge (with removal of acid insoluble solids), neutrons absorber addition, neutralization, and reprecipitation. Laboratory testing is being conducted by the Pacific Northwest National Laboratory (PNNL) to provide data necessary to develop the sludge conditioning process.

  12. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions.

    PubMed

    Petrini, J; Iung, L H S; Rodriguez, M A P; Salvian, M; Pértille, F; Rovadoscki, G A; Cassoli, L D; Coutinho, L L; Machado, P F; Wiggans, G R; Mourão, G B

    2016-10-01

    Information about genetic parameters is essential for selection decisions and genetic evaluation. These estimates are population specific; however, there are few studies with dairy cattle populations reared under tropical and sub-tropical conditions. Thus, the aim was to obtain estimates of heritability and genetic correlations for milk yield and quality traits using pedigree and genomic information from a Holstein population maintained in a tropical environment. Phenotypic records (n = 36 457) of 4203 cows as well as the genotypes for 57 368 single nucleotide polymorphisms from 755 of these cows were used. Covariance components were estimated using the restricted maximum likelihood method under a mixed animal model, considering a pedigree-based relationship matrix or a combined pedigree-genomic matrix. High heritabilities (around 0.30) were estimated for lactose and protein content in milk whereas moderate values (between 0.19 and 0.26) were obtained for percentages of fat, saturated fatty acids and palmitic acid in milk. Genetic correlations ranging from -0.38 to -0.13 were determined between milk yield and composition traits. The smaller estimates compared to other similar studies can be due to poor environmental conditions, which may reduce genetic variability. These results highlight the importance in using genetic parameters estimated in the population under evaluation for selection decisions.

  13. Interaction of valproic acid and amitriptyline: analysis of therapeutic drug monitoring data under naturalistic conditions.

    PubMed

    Unterecker, Stefan; Burger, Rainer; Hohage, Amelie; Deckert, Jürgen; Pfuhlmann, Bruno

    2013-08-01

    Amitriptyline (AMI) and valproic acid (VPA) are common psychotropic drugs which are frequently used in psychiatry and also administered in neurology or anesthesia in the absence of a psychiatric indication. On the basis of the case of a 73-year-old man with therapy-resistant major depressive episode who experienced anticholinergic delirium after adding VPA to AMI, we retrospectively analyzed therapeutic drug monitoring data of the years 2008 to 2010. We assessed cases receiving a combination of AMI and VPA, and obtained a control sample of AMI patients without VPA which were matched for sex, age, daily dose, and comedication. Both samples were compared regarding the serum levels of AMI and nortriptyline (NOR) as well as the ratio of NOR and AMI with the Mann-Whitney U test. The combination of AMI and VPA led to a remarkable increase of AMI and NOR serum levels. When comparing 33 patients who received comedication with VPA versus 33 matched controls, the total concentration by combining mean AMI and NOR serum levels (237.1 [119.9] vs 126.4 [52.8] ng/mL) and NOR/AMI ratio (1.300 [0.905] vs 0.865 [0.455]) was significantly higher. Both AMI and VPA are widely prescribed drugs. A combination of both is common for psychiatric or neurologic patients. A cautious dosing of AMI with VPA comedication is advisable, and therapeutic drug monitoring should be performed because this combination may lead to a remarkable increase of AMI and NOR serum levels.

  14. Ferrate promoted oxidative cleavage of sulfonamides: Kinetics and product formation under acidic conditions

    EPA Science Inventory

    Sulfonamide-based antibiotics are often detected in surface waters and secondary wastewater effluents and pose an eminent threat for the development of antibiotic resistance bacteria and genes in aquatic environment. This paper presents the kinetics and stoichiometry of the oxid...

  15. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions.

    PubMed

    Gruhn, Marvin; Frigon, Jean-Claude; Guiot, Serge R

    2016-01-01

    This study compared the acidogenic fermentation of Scenedesmus sp.-AMDD at laboratory-scale, under mesophilic (35°C) and thermophilic conditions (55°C). Preliminary batch tests were performed to evaluate best conditions for volatile fatty acid (VFA) production from microalgal biomass, with respect to the inoculum, pH and nutrients. The use of bovine manure as inoculum, the operating pH of 4.5 and the addition of a nutrient mix, resulted in a high VFA production of up to 222mgg(-1) total volatile solid (TVS), with a butyrate share of 27%. Both digesters displayed similar hydrolytic activity with 0.38±0.02 and 0.42±0.03 g soluble chemical oxygen demand (COD)g(-1) TVS for the digesters operated at 35 and 55°C, respectively. Mesophilic conditions were more favorable for VFA production, which reached 171±5, compared to 88±12 mg soluble CODg(-1) TVS added under thermophilic conditions (94% more). It was shown that in both digesters, butyrate was the predominant VFA.

  16. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain▿

    PubMed Central

    Zelle, Rintze M.; de Hulster, Erik; Kloezen, Wendy; Pronk, Jack T.; van Maris, Antonius J. A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments. PMID:20008165

  17. Molecular and Physiological Analysis of Al3+ and H+ Rhizotoxicities at Moderately Acidic Conditions1[W][OPEN

    PubMed Central

    Kobayashi, Yasufumi; Kobayashi, Yuriko; Watanabe, Toshihiro; Shaff, Jon E.; Ohta, Hiroyuki; Kochian, Leon V.; Wagatsuma, Tadao; Kinraide, Thomas B.; Koyama, Hiroyuki

    2013-01-01

    Al3+ and H+ toxicities predicted to occur at moderately acidic conditions (pH [water] = 5–5.5) in low-Ca soils were characterized by the combined approaches of computational modeling of electrostatic interactions of ions at the root plasma membrane (PM) surface and molecular/physiological analyses in Arabidopsis (Arabidopsis thaliana). Root growth inhibition in known hypersensitive mutants was correlated with computed {Al3+} at the PM surface ({Al3+}PM); inhibition was alleviated by increased Ca, which also reduced {Al3+}PM and correlated with cellular Al responses based on expression analysis of genes that are markers for Al stress. The Al-inducible Al tolerance genes ALUMINUM-ACTIVATED MALATE TRANSPORTER1 and ALUMINUM SENSITIVE3 were induced by levels of {Al3+}PM too low to inhibit root growth in tolerant genotypes, indicating that protective responses are triggered when {Al3+}PM was below levels that can initiate injury. Modeling of the H+ sensitivity of the SENSITIVE TO PROTON RHIZOTOXICITY1 knockout mutant identified a Ca alleviation mechanism of H+ rhizotoxicity, possibly involving stabilization of the cell wall. The phosphatidate phosphohydrolase1 (pah1) pah2 double mutant showed enhanced Al susceptibility under low-P conditions, where greater levels of negatively charged phospholipids in the PM occur, which increases {Al3+}PM through increased PM surface negativity compared with wild-type plants. Finally, we found that the nonalkalinizing Ca fertilizer gypsum improved the tolerance of the sensitive genotypes in moderately acidic soils. These findings fit our modeling predictions that root toxicity to Al3+ and H+ in moderately acidic soils involves interactions between both toxic ions in relation to Ca alleviation. PMID:23839867

  18. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  19. Formation of Complex Amino Acid Precursors in Simulated Primitive Atmosphere and Their Alteration under Simulated Submarine Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka

    Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y

  20. Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10.

    PubMed

    Chaung, Kai-Chuang; Chu, Chun-Yao; Su, Yu-Ming; Chen, Yi-Min

    2012-08-10

    This study explored the influence of various culture conditions on the biomass, lipid content, production of docosahexaenoic acid (DHA), and fatty acid composition of Aurantiochytrium mangrovei strain BL10. The variables examined in this study include the species and concentration of salt, the concentrations of the two substrates glucose and yeast extract, the level of dissolved oxygen, the cerulenin treatment, and the stages of BL10 growth. Our results demonstrate that BL10 culture produces maximum biomass when salinity levels are between 0.2 and 3.0%. Decreasing salinity to 0.1% resulted in a considerable decrease in the biomass, lipid content, DHA production, and DHA to palmitic acid (PA) (DHA/PA) ratio, signifying deterioration in the quality of the oil produced. The addition of 0.9% sodium sulfate to replenish salinity from 0.1% to 1.0% successfully recovered biomass, lipid content and DHA production levels; however, this also led to a decrease in DHA/PA ratio. An increase in oxygen and cerulenin levels resulted in a concomitant decrease in the DHA to docosapentaenoic acid (DPA) (DHA/DPA) ratio in BL10 oil. Furthermore, the DHA/DPA and DHA/PA ratios varied considerably before and after the termination of cell division, which occurred around the 24 hour mark. These results could serve as a foundation for elucidating the biochemistry underlying the accumulation of lipids, and a definition of the extrinsic (environmental or nutritional) and intrinsic (cell growth stage) factors that influence lipid quality and the production of DHA by BL10.

  1. Effects of varying nitrogen sources on amino acid synthesis costs in Arabidopsis thaliana under different light and carbon-source conditions.

    PubMed

    Arnold, Anne; Sajitz-Hermstein, Max; Nikoloski, Zoran

    2015-01-01

    Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization.

  2. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  3. Omental infarction and its mimics: imaging features of acute abdominal conditions presenting with fat stranding greater than the degree of bowel wall thickening.

    PubMed

    Tonerini, Michele; Calcagni, Francesca; Lorenzi, Silvia; Scalise, Paola; Grigolini, Alessandro; Bemi, Pietro

    2015-08-01

    The segmental omental infarction is a rare self-limited disorder presenting with aspecific clinical symptoms that may mimic several acute abdominal conditions. Therefore, a correct noninvasive diagnosis is important because treatment approaches range from monitoring to surgery. As omental infarction results in an important fat stranding that is much greater than the degree of bowel wall thickening, it suggests a narrower differential diagnosis: appendicitis, diverticulitis, epiploic appendagitis, and mesenteric panniculitis. In this pictorial essay, we point out the importance of imaging in identifying this typical sign allowing alternate diagnoses such as segmental omental infarction that can be conservatively managed.

  4. The non-oxidative degradation of ascorbic acid at physiological conditions.

    PubMed

    Simpson, G L; Ortwerth, B J

    2000-04-15

    The degradation of L-ascorbate (AsA) and its primary oxidation products, L-dehydroascorbate (DHA) and 2,3-L-diketogulonate (2, 3-DKG) were studied under physiological conditions. Analysis determined that L-erythrulose (ERU) and oxalate were the primary degradation products of ASA regardless of which compound was used as the starting material. The identification of ERU was determined by proton decoupled (13)C-nuclear magnetic resonance spectroscopy, and was quantified by high performance liquid chromatography, and enzymatic analysis. The molar yield of ERU from 2,3-DKG at pH 7.0 37 degrees C and limiting O(2)97%. This novel ketose product of AsA degradation, was additionally qualitatively identified by gas-liquid chromatography, and by thin layer chromatography. ERU is an extremely reactive ketose, which rapidly glycates and crosslinks proteins, and therefore may mediate the AsA-dependent modification of protein (ascorbylation) seen in vitro, and also proposed to occur in vivo in human lens during diabetic and age-onset cataract formation.

  5. Effects of genotype, latitude, and weather conditions on the composition of sugars, sugar alcohols, fruit acids, and ascorbic acid in sea buckthorn (Hippophaë rhamnoides ssp. mongolica) berry juice.

    PubMed

    Zheng, Jie; Yang, Baoru; Trépanier, Martin; Kallio, Heikki

    2012-03-28

    Sea buckthorn berries (Hippophaë rhamnoides ssp. mongolica) of nine varieties were collected from three growth locations in five inconsecutive years (n = 152) to study the compositional differences of sugars, sugar alcohols, fruit acids, and ascorbic acid in berries of different genotypes. Fructose and glucose (major sugars) were highest in Chuiskaya and Vitaminaya among the varieties studied, respectively. Malic acid and quinic acid (major acids) were highest in Pertsik and Vitaminaya, respectively. Ascorbic acid was highest in Oranzhevaya and lowest in Vitaminaya. Berry samples of nine varieties collected from two growth locations in five years (n = 124) were combined to study the effects of latitude and weather conditions on the composition of H. rhamnoides ssp. mongolica. Sea buckthorn berries grown at lower latitude had higher levels of total sugar and sugar/acid ratio and a lower level of total acid and were supposed to have better sensory properties than those grown at higher latitude. Glucose, quinic acid, and ascorbic acid were hardly influenced by weather conditions. The other components showed various correlations with temperature, radiation, precipitation, and humidity variables. In addition, fructose, sucrose, and myo-inositol correlated positively with each other and showed negative correlation with malic acid on the basis of all the samples studied (n = 152).

  6. Definitions of critical environmental conditions for selected Chesapeake Bay finfishes exposed to acidic episodes in spawning and nursery habitats. Final report

    SciTech Connect

    Klauda, R.J.

    1989-10-01

    Definitions of critical environmental conditions associated with acidic episodes are defined for yellow perch, alewife, blueback herring, American shad, and white perch, based on a review of field and laboratory data. These species are an important biological resource in the mid-Atlantic Coastal Plain. Values for blueback herring and alewife reproduction are an acid pulse between pH 5.5 and 6.2 with dissolved Ca at least 2 mg/l, with total monomeric Al levels between 15 and 137 microgram/l. Critical acidic conditions for American shad reproduction are an acid pulse between pH 5.7 and 6.7, dissolved Ca at least 2 micrograms/l, and total monomeric Al levels between 0 and 137 micrograms/l. Using data from the congeneric striped bass as a proxy, critical acidic conditions for white perch are an acid pulse between pH 6.5 and 6.7, total monomeric Al concentration of 25 microgram/l persisting for 7 days, and dissolved Ca at least 2 microgram/l. Based on a combination of life stage exposure and tolerance to acidic conditions the species can be ranked from high to low potential with regard to risks posed by acidic episodes on their early life stages: white perch, alewife/blueback herring, American shad, yellow perch.

  7. Effect of feeding fresh or conditioned red clover on milk fatty acids and nitrogen utilization in lactating dairy cows.

    PubMed

    Lee, M R F; Theobald, V J; Tweed, J K S; Winters, A L; Scollan, N D

    2009-03-01

    Polyphenol oxidase (PPO) in conditioned red clover (ensiled or cut and crushed) reduces both proteolysis and lipolysis in the herbage, which has led to increases in N use efficiency and polyunsaturated fatty acid (PUFA) content of milk when offered to dairy cows. In damaged plant cells, PPO is activated and binds protein through the formation of protein-bound phenols. This study investigated a) whether freshly cut red clover could increase N use efficiency and milk PUFA concentrations in dairy cows or whether PPO enzymes require prior activation before feeding to elicit a response, and b) apparent whole-tract amino acid digestibility to help determine the effect of PPO on amino acid utilization. Six multiparous Holstein x Friesian dairy cows in mid-lactation were allocated at random to 1 of 3 dietary treatments in a 3 x 3 Latin square: a control treatment of grass (low PPO, G); red clover (high PPO, RC), and conditioned red clover (high fully activated PPO, CRC). The CRC herbage was cut and chopped in the field and then transported with the G and RC herbages to the animal house. Each period consisted of a 2-wk adaptation to diet and a week of measuring dietary effects (N balance and milk collection). The PPO activity was greatest in the RC treatment as fed, whereas activation of latent PPO enzyme and protein-bound phenol levels were greatest in the CRC diet. Dry matter and total fatty acid intakes were comparable across treatments (18.8 kg/d and 550 g/d, respectively). Milk yields and total fatty acid content were similar across treatments (32.6 kg/d and 34.8 mg/mL, respectively). Cows offered either RC or CRC had greater levels of protein, C18 PUFA and total long-chain PUFA in their milk than animals offered grass with no difference between RC and CRC. Nitrogen intakes, and output in milk, urine, and feces were greater in cows offered the 2 red clover treatments than G, with no difference between RC and CRC. However, there were no differences in N use efficiency

  8. [Hygienic features of working conditions and their impact on the health of women engaged in the present-day manufacture of paper wallpaper].

    PubMed

    Pichugina, N N

    2011-01-01

    The purpose of the investigation was to comprehensively assess working conditions and their impact on the health of female workers engaged in the manufacture of present-day paper wallpaper. A complex of sanitary-and-hygienic, clinical-and-physiological, sociomedical, and statistical studies was used to tackle the tasks set in the investigation. Stage 1 made a sanitary-and-hygienic assessment of industrial factors (microclimate, noise, vibration, the content of toxicants and dust) in the workplaces of female workers from the papering shops using an Elita rolling automatic machine. The following stage analyzed morbidity among the workers and identified a number of functional parameters. A combination of poor factors characterizing their parameters and exceeding the sanitary standards influenced on the workers engaged in the manufacture of paper wallpaper. The leading harmful industrial factors are heating microclimate, production noise, and the working air level of harmful chemical substances in the working air. The production process under such microclimatic conditions causes the body's thermal changes characterized by the senses of total warm discomfort and the tension of thermoregulatory mechanisms, as confirmed by weighed mean skin temperature studies and decreased working capacity. The working conditions in the manufacture of wallpaper products are shown to result in an increase in female morbidity.

  9. Effect of ascorbic acid (vitamin C) on the ESR spectra of the red and black hair: pheomelanin free radicals are not always present in red hair.

    PubMed

    Chikvaidze, Eduard; Topeshashvili, Maia

    2015-12-01

    Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology.

  10. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains.

    PubMed

    Zajšek, Katja; Goršek, Andreja; Kolar, Mitja

    2013-08-15

    The influence of fermentation temperature, agitation rate, and additions of carbon sources, nitrogen sources, vitamins and minerals on production of kefiran by kefir grains lactic acid bacteria was studied in a series of experiments. The main aim of the work was to increase the exopolysaccharide (EPS) production where customised milk was used as fermentation medium. It was proved that the controlling of culturing conditions and the modifying of fermentation medium conditions (i.e., carbon, nitrogen, mineral sources and vitamins) can dramatically enhance the production of the EPS. The temperature and agitation rate were critical for kefiran production during the 24 h cultivation of grains; our optimised conditions being 25°C and 80 rpm, respectively. In addition, when optimising the effects of additional nutrition, it was found that 5% (w/v) lactose, 0.1% (w/v) thiamine, and 0.1% (w/v) FeCl3 led to the maximal production of EPS. The results indicate that nutrients can be utilised to improve the production of EPS and that good kefir grains growth does not appear to be a determining factor for a high production yield of EPS.

  11. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.

    PubMed

    Hu, Yandi; Ray, Jessica R; Jun, Young-Shin

    2011-07-15

    To ensure safe and efficient geologic CO(2) sequestration (GCS), it is crucial to have a better understanding of CO(2)-brine-rock interactions under GCS conditions. In this work, using biotite (K(Mg,Fe)(3)AlSi(3)O(10)(OH,F)(2)) as a model clay mineral, brine-biotite interactions were studied under conditions relevant to GCS sites (95 °C, 102 atm CO(2), and 1 M NaCl solution). After reaction for 3-17 h, fast growth of fibrous illite on flat basal planes of biotite was observed. After 22-70 h reaction, the biotite basal surface cracked, resulting in illite detaching from the surface. Later on (96-120 h), the cracked surface layer was released into solution, thus the inner layer was exposed as a renewed flat basal surface. The cracking and detachment of the biotite surface layer increased the surface area in contact with solution and accelerated biotite dissolution. On biotite edge surfaces, Al-substituted goethite and kaolinite precipitated. In control experiments with water under the same temperature and pressure, neither macroscopic fibrous illite nor cracks were observed. This work provides unique information on biotite-brine interaction under acidic hydrothermal conditions.

  12. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions.

    PubMed

    Torres-Moreno, M; Torrescasana, E; Salas-Salvadó, J; Blanch, C

    2015-01-01

    Nutritional composition and fatty acids (FA) profile were determined in cocoa and chocolates of different geographical origin and subject to different processing conditions. Cocoa butter was the major nutrient in cocoa beans and carbohydrates were the most important in chocolates. Cocoa composition and FA profile varied depending on geographical origin whilst in chocolates only carbohydrates and fat content varied significantly due to the effect of origin and no significant effect was observed for processing conditions. Both for cocoa and chocolates differences in FA profile were mainly explained as an effect of the geographical origin, and were not due to processing conditions in chocolate. For cocoa, differences in FA profile were found in C12:0, C14:0, C16:0, C16:1, C17:0, C17:1 and C18:0 whilst for chocolates only differences were found in C16:0, C18:0, C18:1 and C18:2. For all samples, C16:0, C18:0, C18:1 and C18:2 were quantitatively the most important FA. Ecuadorian chocolate showed a healthier FA profile having higher amounts of unsaturated FA and lower amounts of saturated FA than Ghanaian chocolate.

  13. Effect of poly(aspartic acid) on calcium phosphate removal from stainless steel tubing under turbulent flow conditions

    NASA Astrophysics Data System (ADS)

    Littlejohn, Felicia

    Calcium phosphate deposition causes cleaning problems in a number of situations including water treatment, dairy processing, and dental applications. This problem is exacerbated by the limited choices of cleaning chemicals that meet environmental regulations. To promote the development of biodegradable, non-toxic alternatives, this research examines the removal of calcium phosphate deposits consisting of brushite (dicalcium phosphate dihydrate; DCPD) and a mixture of hydroxyapatite (HAP) and DCPD from stainless steel in the presence of poly(aspartic acid) and its sodium salt (PASP). The effects of solvent pH, PASP concentration, and flow rate on the calcium phosphate removal rates are measured from stainless steel tubing under turbulent flow conditions using a solid scintillation detection technique. A mechanistic evaluation of the cleaning data in the absence of PASP indicates that DCPD removal is dominated by shear while HAP/DCPD deposit removal is limited by a combination of mass transfer and interfacial processes. Although the removal mechanisms differ, the results conclusively show that PASP promotes calcium phosphate removal under conditions that favor calcium sequestration in both cases. An in-depth study of DCPD removal in the presence of PASP reveals that this additive is most effective under conditions where calcium sequestration and phosphate protonation occur simultaneously.

  14. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomila L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions

    PubMed Central

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-01-01

    The chamazulene and α-(−)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(−)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011–2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L−1), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(−)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L−1 SA for the Bona cultivar under heat stress conditions, whereas the highest α-(−)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L−1 SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and

  15. Increase of Chamazulene and α-Bisabolol Contents of the Essential Oil of German Chamomile (Matricaria chamomilla L.) Using Salicylic Acid Treatments under Normal and Heat Stress Conditions.

    PubMed

    Ghasemi, Mojtaba; Babaeian Jelodar, Nadali; Modarresi, Mohammad; Bagheri, Nadali; Jamali, Abbas

    2016-08-27

    The chamazulene and α-(-)-bisabolol contents and quality of the chamomile oil are affected by genetic background and environmental conditions. Salicylic acid (SA), as a signaling molecule, plays a significant role in the plant physiological processes. The aim of this study was to evaluate the chemical profile, quantity, and improve the essential oil quality as a consequence of the increase of chamazulene and α-(-)-bisabol using salicylic acid under normal and heat stress conditions by the gas chromatography-mass spectrometry (GC-MS) technique. The factorial experiments were carried out during the 2011-2012 hot season using a randomized complete block design with three replications. The factors include four salicylic acid concentrations (0 (control), 10, 25 and 100 mg·L(-1)), and three chamomile cultivars (Bushehr, Bona, Bodegold) were sown on two different planting dates under field conditions. Fourteen compounds were identified from the extracted oil of the samples treated with salicylic acid under normal and heat stress conditions. The major identified oil compositions from chamomile cultivars treated with salicylic acid were chamazulene, α-(-)-bisabolol, bisabolone oxide, β-farnesene, en-yn-dicycloether, and bisabolol oxide A and B. Analysis of variance showed that the simple effects (environmental conditions, cultivar and salicylic acid) and their interaction were significant on all identified compounds, but the environmental conditions had no significant effect on bisabolol oxide A. The greatest amount of chamazulene obtained was 6.66% at the concentration of 10 mg·L(-1) SA for the Bona cultivar under heat stress conditions, whereas the highest α-(-)-bisabolol amount attained was 3.41% at the concentration of 100 mg·L(-1) SA for the Bona cultivar under normal conditions. The results demonstrated that the application of exogenous salicylic acid increases the quantity and essential oil quality as a consequence of the increase of chamazulene and

  16. Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus.

    PubMed

    Vatsyayan, Preety; Goswami, Pranab

    2011-02-01

    The stability (half-life, t(½)) of the large catalase (CAT) isolated from Aspergillus terreus was decreased under acidic conditions (maximum t(½) approximately 8.5 months at pH ≤ 6) versus alkaline conditions (t(½) approximately 15 months at pH 8-12). Acidic conditions induce the dissociation of haem from CAT, as revealed from a reduction in the Soret peak intensity at 405 nm and an increase in the peak current at Fe(3+)/Fe(2+) redox potentials. This increase in current is attributed to the facile electron transfer from the free haem generated on the electrode surface as a result of its disintegration from the insulating protein matrix. The haem isolated from CAT at acidic condition was reconstituted with apo-CAT at alkaline denaturing conditions to regenerate the CAT activity.

  17. CoxC encased in carbon nanotubes: an efficient oxygen reduction catalyst under both acidic and alkaline conditions.

    PubMed

    Chen, Lisong; Cui, Xiangzhi; Wang, Qingsong; Zhang, Xiaohua; Wan, Gang; Cui, Fangming; Wei, Chenyang; Shi, Jianlin

    2015-12-21

    The design of a non-precious metal oxygen reduction reaction (ORR) catalyst of high activity and long durability in acidic electrolyte is of great importance for the development and commercialization of low-temperature fuel cells, which remains a great challenge to date. Here, we demonstrate a facile, scalable protocol for the controlled synthesis of CoxC encapsulated in carbon nanotubes as a novel kind of efficient electrochemical oxygen reduction reaction (ORR) catalyst. The synthesized CoxC/carbon nanotube features a high BET surface area, large pore volume and high graphitic content, which greatly favors enhanced ORR properties. The resultant composite electro-catalyst shows high ORR activity which is comparable with that of 20 wt% Pt/C in 0.1 M KOH electrolyte. More importantly, it also exhibits a high ORR activity in 0.1 M HClO4 with a near-complete 4e pathway. More attractively, compared to the most investigated FexC, CoxC as the proposed main catalytically active center shows much enhanced activity in acidic electrolyte, which will pave the way towards the rational design of an advanced electro-catalyst for an efficient ORR process especially under acidic conditions. Moreover, a fuel cell using the synthesized CoxC/carbon nanotube as a cathode catalyst showed a large open-circuit potential, high output power density and long durability, which make it a promising alternative to Pt/C as a non-precious metal ORR catalyst in proton exchange membrane fuel cells.

  18. Malonic acid concentration as a control parameter in the kinetic analysis of the Belousov-Zhabotinsky reaction under batch conditions.

    PubMed

    Blagojević, Slavica M; Anić, Slobodan R; Cupić, Zeljko D; Pejić, Natasa D; Kolar-Anić, Ljiljana Z

    2008-11-28

    The influence of the initial malonic acid concentration [MA]0 (8.00 x 10(-3) < or = [MA]0 < or = 4.30 x 10(-2) mol dm(-3)) in the presence of bromate (6.20 x 10(-2) mol dm(-3)), bromide (1.50 x 10(-5) mol dm(-3)), sulfuric acid (1.00 mol dm(-3)) and cerium sulfate (2.50 x 10(-3) mol dm(-3)) on the dynamics and the kinetics of the Belousov-Zhabotinsky (BZ) reactions was examined under batch conditions at 30.0 degrees C. The kinetics of the BZ reaction was analyzed by the earlier proposed method convenient for the examinations of the oscillatory reactions. In the defined region of parameters where oscillograms with only large-amplitude relaxation oscillations appeared, the pseudo-first order of the overall malonic acid decomposition with a corresponding rate constant of 2.14 x 10(-2) min(-1) was established. The numerical results on the dynamics and kinetics of the BZ reaction, carried out by the known skeleton model including the Br2O species, were in good agreement with the experimental ones. The already found saddle node infinite period (SNIPER) bifurcation point in transition from a stable quasi-steady state to periodic orbits and vice versa is confirmed by both experimental and numerical investigations of the system under consideration. Namely, the large-amplitude relaxation oscillations with increasing periods between oscillations in approaching the bifurcation points at the beginning and the end of the oscillatory domain, together with excitability of the stable quasi-steady states in their vicinity are obtained.

  19. Studies on electrolyte formulations to improve life of lead acid batteries working under partial state of charge conditions

    NASA Astrophysics Data System (ADS)

    Hernández, J. C.; Soria, M. L.; González, M.; García-Quismondo, E.; Muñoz, A.; Trinidad, F.

    For decades, valve regulated lead acid batteries with gel electrolyte have proved their excellent performance in deep cycling applications. However, their higher cost, when compared with flooded batteries, has limited their use in cost sensitive applications, such as automotive or PV installations. The use of flooded batteries in deep or partial state of charge working conditions leads to limited life due to premature capacity loss provoked by electrolyte stratification. Different electrolyte formulations have been tested, in order to achieve the best compromise between cost and life performance. Work carried out included electrochemical studies in order to determine the electrolyte stability and diffusional properties, and kinetic studies to check the processability of the electrolyte formulation. Finally, several 12 V batteries have been assembled and tested according to different ageing profiles.

  20. Acetylation of bacterial cellulose catalyzed by citric acid: Use of reaction conditions for tailoring the esterification extent.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Gómez Hoyos, Catalina; Arroyo, Silvana; Cerrutti, Patricia; Foresti, María Laura

    2016-11-20

    Bacterial cellulose (BC) nanoribbons were partially acetylated by a simple direct solvent-free route catalyzed by citric acid. The assay of reaction conditions within chosen intervals (i.e. esterification time (0.5-7h), catalyst content (0.08-1.01mmol/mmol AGU), and temperature (90-140°C)), illustrated the flexibility of the methodology proposed, with reaction variables which can be conveniently manipulated to acetylate BC to the required degree of substitution (DS) within the 0.20-0.73 interval. Within this DS interval, characterization results indicated a surface-only process in which acetylated bacterial cellulose with tunable DS, preserved fibrous structure and increased hydrophobicity could be easily obtained. The feasibility of reusing the catalyst/excess acylant in view of potential scale-up was also illustrated.

  1. Histidine-functionalized water-soluble nanoparticles for biomimetic nucleophilic/general-base catalysis under acidic conditions.

    PubMed

    Chadha, Geetika; Zhao, Yan

    2013-10-21

    Cross-linking the micelles of 4-dodecyloxybenzyltripropargylammonium bromide by 1,4-diazidobutane-2,3-diol in the presence of azide-functionalized imidazole derivatives yielded surface-cross-linked micelles (SCMs) with imidazole groups on the surface. The resulting water-soluble nanoparticles were found, by fluorescence spectroscopy, to contain hydrophobic binding sites. The imidazole groups promoted the photo-deprotonation of 2-naphthol at pH 6 and catalyzed the hydrolysis of p-nitrophenylacetate (PNPA) in aqueous solution at pH ≥ 4. Although the overall hydrolysis rate slowed down with decreasing solution pH, the catalytic effect of the imidazole became stronger because the reactions catalyzed by unfunctionalized SCMs slowed down much more. The unusual ability of the imidazole–SCMs to catalyze the hydrolysis of PNPA under acidic conditions was attributed to the local hydrophobicity and the positive nature of the SCMs.

  2. The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods.

    PubMed

    Moreira-Vilar, Flavia Carolina; Siqueira-Soares, Rita de Cássia; Finger-Teixeira, Aline; de Oliveira, Dyoni Matias; Ferro, Ana Paula; da Rocha, George Jackson; Ferrarese, Maria de Lourdes L; dos Santos, Wanderley Dantas; Ferrarese-Filho, Osvaldo

    2014-01-01

    We compared the amount of lignin as determined by the three most traditional methods for lignin measurement in three tissues (sugarcane bagasse, soybean roots and soybean seed coat) contrasting for lignin amount and composition. Although all methods presented high reproducibility, major inconsistencies among them were found. The amount of lignin determined by thioglycolic acid method was severely lower than that provided by the other methods (up to 95%) in all tissues analyzed. Klason method was quite similar to acetyl bromide in tissues containing higher amounts of lignin, but presented lower recovery of lignin in the less lignified tissue. To investigate the causes of the inconsistencies observed, we determined the monomer composition of all plant materials, but found no correlation. We found that the low recovery of lignin presented by the thioglycolic acid method were due losses of lignin in the residues disposed throughout the procedures. The production of furfurals by acetyl bromide method does not explain the differences observed. The acetyl bromide method is the simplest and fastest among the methods evaluated presenting similar or best recovery of lignin in all the tissues assessed.

  3. Specific and non-specific immunity of piglets from sows fed diets containing specific fatty acids in field conditions.

    PubMed

    Benzoni, G; Foresti, F; Archetti, I L; Coceva, G; Guyonvarch, A; Alborali, L

    2013-10-01

    The transfer of passive immunity from sows to piglets is important and it is the first immune protection of the new born piglet. Improving sows immunity by adding immuno-stimulating product in sows diet can positively affect colostrum composition and transfer of immune molecules to piglets. The aim of the current study is to evaluate the benefit of a different solution, made of specific fatty acids from marine origin that have been used in human medicine for decades, for sows and piglets. Two trials were conducted in commercial farm, involving 240 sows at different periods of the year. Sows were divided in a control group, without supplementation, and a test group, supplemented with the feed additive from the 90th day of gestation to weaning. Sows body condition, piglets viability and growth were recorded. Milk immunoglobulin content was measured, as well as Aujeszky antibodies in sows and piglets blood as marker of specific immunity, and blood bactericidal activity, complement activity and lysozyme as markers of non specific immunity. No effect of the product was observed on piglets zootechnical criteria and specific immunity parameters but significant improvement of piglet non specific immunity, was observed. No difference was observed neither in the piglets blood PRRSV and PCV2 antibodies and viruses nor in Aujeszky antibodies. Blood complement activity seems to be an accurate indicator of immuno-stimulating additive efficiency. Giving alkyl-glycerol fatty acids to sows in late gestation and lactation can improve the passive immunity transfer to piglets.

  4. Glutamic acid decarboxylase 65: a link between GABAergic synaptic plasticity in the lateral amygdala and conditioned fear generalization.

    PubMed

    Lange, Maren D; Jüngling, Kay; Paulukat, Linda; Vieler, Marc; Gaburro, Stefano; Sosulina, Ludmila; Blaesse, Peter; Sreepathi, Hari K; Ferraguti, Francesco; Pape, Hans-Christian

    2014-08-01

    An imbalance of the gamma-aminobutyric acid (GABA) system is considered a major neurobiological pathomechanism of anxiety, and the amygdala is a key brain region involved. Reduced GABA levels have been found in anxiety patients, and genetic variations of glutamic acid decarboxylase (GAD), the rate-limiting enzyme of GABA synthesis, have been associated with anxiety phenotypes in both humans and mice. These findings prompted us to hypothesize that a deficiency of GAD65, the GAD isoform controlling the availability of GABA as a transmitter, affects synaptic transmission and plasticity in the lateral amygdala (LA), and thereby interferes with fear responsiveness. Results indicate that genetically determined GAD65 deficiency in mice is associated with (1) increased synaptic length and release at GABAergic connections, (2) impaired efficacy of GABAergic synaptic transmission and plasticity, and (3) reduced spillover of GABA to presynaptic GABAB receptors, resulting in a loss of the associative nature of long-term synaptic plasticity at cortical inputs to LA principal neurons. (4) In addition, training with high shock intensities in wild-type mice mimicked the phenotype of GAD65 deficiency at both the behavioral and synaptic level, indicated by generalization of conditioned fear and a loss of the associative nature of synaptic plasticity in the LA. In conclusion, GAD65 is required for efficient GABAergic synaptic transmission and plasticity, and for maintaining extracellular GABA at a level needed for associative plasticity at cortical inputs in the LA, which, if disturbed, results in an impairment of the cue specificity of conditioned fear responses typifying anxiety disorders.

  5. Effects of processing conditions on structural and functional parameters of whipped dairy emulsions containing various fatty acid compositions.

    PubMed

    Bazmi, A; Relkin, P

    2009-08-01

    An understanding of the effects of processing parameters can be applied to formulate emulsions with higher unsaturated fatty acid content. Emulsions using the typical ice cream formulation were produced by anhydrous milk fat alone or in a mixture with either olein or stearin at a 2:1 weight ratio. Effects of both pasteurization holding time (40 or 120 s at 80 degrees C) and aging time (ranging from 2 to 24 h) on the structural and whipping properties of the emulsions were studied. Effects of these processing conditions on emulsion structural characteristics were determined using laser light-scattering measurements, rheological properties, microscopic observations, and image analyses of the whipped emulsions. Furthermore, foaming properties of these emulsions were compared and discussed with regard to effects of both processing and composition on properties of the emulsions, such as thixotropy and sensitivity to shearing. We observed changes in fat globules when different pasteurization holding times were applied, but no changes in either apparent viscosity values or sensitivity to shearing were traceable. However, enrichment of milk fat with the olein fraction increased the whipping ability of the emulsions, as evaluated in terms of overrun and the homogeneity of air bubbles, whatever the aging time. The lowest monodispersity of air bubbles was observed in the formulation rich in stearin. After 24 h of aging, this formulation showed the same overrun as the emulsion made with anhydrous milk fat. Increasing the aging time decreased the overrun by approximately 30%, and increasing the pasteurization holding times decreased it by approximately 20%. In general, in our conditions, increasing the aging time and unsaturated fatty acid content reduced changes in the dynamic rheological and structural properties observed just after production of the emulsions, whatever the pasteurization holding time or fat composition applied.

  6. Regional climate response to land surface changes after harvest in the North China Plain under present and possible future climate conditions

    NASA Astrophysics Data System (ADS)

    Cho, Mee-Hyun; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Lim, Gyu-Ho

    2014-04-01

    In this study, we investigated the impacts of land use alterations from harvesting practices on the regional surface climate over the North China Plain. The surface climate responses after harvest in June in regions where double-cropping is practiced were evaluated using observations and model simulations with the global climate model HadGEM2-Atmosphere. Responses were modeled under both present and possible future climate conditions. In the model, double-cropping was represented using the monthly varying fraction of vegetation. This contributed to an improvement in the model simulation over East Asia. Modeling results showed that the land surface was warmer and drier after harvest, and these simulation results were consistent with observations. The bare soil surface after harvest in June had biophysical impacts on the surface climate that were mediated by decreasing evapotranspiration and latent heat flux effects, which increased surface air temperatures and decreased surface humidity. An increase in shortwave radiation also contributed to the rise in temperatures. Under two Representative Concentration Pathways (RCP) scenarios for possible future climate conditions, land conversion induced additional warming in addition to greenhouse gases induced global warming. The RCP 8.5 and RCP 2.6 scenarios demonstrated a warming of 1.0°C and 1.4°C due to harvesting practices in June, respectively. The response magnitude was affected by the climate conditions in each RCP. Our results suggest that potential impacts of harvest on the local climate need to be considered in future projections of CO2-induced warming on a regional scale.

  7. Heavy-atom Database System: a tool for the preparation of heavy-atom derivatives of protein crystals based on amino-acid sequence and crystallization conditions.

    PubMed

    Sugahara, Michihiro; Asada, Yukuhiko; Ayama, Haruhiko; Ukawa, Hisashi; Taka, Hideyuki; Kunishima, Naoki

    2005-09-01

    Heavy-atom Database System (HATODAS) is a WWW-based tool designed to assist the heavy-atom derivatization of proteins. The conventional procedure for the preparation of derivatives is usually a time-consuming 'trial-and-error' process. The present program provides a solution for this problem using a database of known heavy-atom derivatives. A database search suggests potential heavy-atom reagents for any target protein based on its amino-acid sequence and crystallization conditions. A mining of the database identified 93 preferred motifs for heavy-atom binding. The motifs are observed frequently at the actual heavy-atom-binding sites encountered in the process of structure determination.

  8. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography.

    PubMed

    Gika, Helen; Theodoridis, Georgios; Mattivi, Fulvio; Vrhovsek, Urska; Pappa-Louisi, Adriani

    2012-02-01

    The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed-phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous-organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications.

  9. Effects of starch on nitrous acid-induced oxidation of kaempferol and inhibition of α-amylase-catalysed digestion of starch by kaempferol under conditions simulating the stomach and the intestine.

    PubMed

    Takahama, Umeo; Hirota, Sachiko

    2013-11-01

    Kaempferol glycosides can be hydrolyzed to their aglycone kaempferol during cooking under acidic conditions and in the oral cavity and the intestine by glycosidases. Kaempferol was oxidised by nitrite under acidic conditions (pH 2.0) to produce nitric oxide (NO), and the nitrite-induced oxidation of kaempferol was enhanced and inhibited by 10 and 100mg of starch ml(-1), respectively. The opposite effects of starch were discussed by considering the binding of kaempferol to starch and starch-dependent inhibition of the accessibility of nitrous acid to kaempferol. Kaempferol inhibited α-amylase-catalysed starch digestion by forming starch/kaempferol complexes, and the inhibitory effects increased in the order of amylopectinpresent study, dual-function of kaempferol became apparent in the digestive tract.

  10. Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions

    NASA Astrophysics Data System (ADS)

    Ivanovic, Ruza; Gregoire, Lauren; Kageyama, Masa; Roche, Didier; Valdes, Paul; Burke, Andrea; Drummond, Rosemarie; Peltier, W. Richard; Tarasov, Lev

    2016-04-01

    The last deglaciation, which marked the transition between the last glacial and present interglacial periods, was punctuated by a series of rapid (centennial and decadal) climate changes. Numerical climate models are useful for investigating mechanisms that underpin the events, especially now that some of the complex models can be run for multiple millennia. We have set up a Paleoclimate Modelling Intercomparison Project (PMIP) working group to coordinate efforts to run transient simulations of the last deglaciation, and to facilitate the dissemination of expertise between modellers and those engaged with reconstructing the climate of the last 21 thousand years. Here, we present the design of a coordinated Core simulation over the period 21-9 thousand years before present (ka) with time varying orbital forcing, greenhouse gases, ice sheets, and other geographical changes. A choice of two ice sheet reconstructions is given. Additional focussed simulations will also be coordinated on an ad-hoc basis by the working group, for example to investigate the effect of ice sheet and iceberg meltwater, and the uncertainty in other forcings. Some of these focussed simulations will concentrate on shorter durations around specific events to allow the more computationally expensive models to take part. Ivanovic, R. F., Gregoire, L. J., Kageyama, M., Roche, D. M., Valdes, P. J., Burke, A., Drummond, R., Peltier, W. R., and Tarasov, L.: Transient climate simulations of the deglaciation 21-9 thousand years before present; PMIP4 Core experiment design and boundary conditions, Geosci. Model Dev. Discuss., 8, 9045-9102, doi:10.5194/gmdd-8-9045-2015, 2015.

  11. Insights into the protective role of solid lipid nanoparticles on rosmarinic acid bioactivity during exposure to simulated gastrointestinal conditions.

    PubMed

    Madureira, Ana Raquel; Campos, Débora A; Oliveira, Ana; Sarmento, Bruno; Pintado, Maria Manuela; Gomes, Ana Maria

    2016-03-01

    The evaluation of the digestion effects on bioactive solid lipid nanoparticles (SLN) was performed. For this purpose, witepsol and carnauba SLN loaded with rosmarinic acid (RA) were exposed to the simulated gastrointestinal tract (GIT) conditions prevailing in stomach and small intestine. The simulation of intestinal epithelium was made with a dialysis bag and intestinal cell culture lines. Changes on SLN physical properties, RA release and absorption profiles were followed at each step. Combination of digestion pH and enzymes showed a significant effect upon SLN physical properties. Zeta potential values increased at stomach conditions and decreased at small intestine simulation. Also, at intestine, SLN increased their sizes and released 40-60% of RA, maintaining its initial antioxidant activity values. Sustained release of 40% of RA from SLN was also observed in dialysis tube. At CaCo-2 cell line, both types of SLN showed similar absorbed RA % (ca. 30%). Nevertheless, in CaCo-2/HT29x mix cell lines, for carnauba SLN a lower adsorption RA % was observed than for witepsol SLN. Solid lipid nanoparticles protected RA bioactivity (in terms of antioxidant activity) until reaching the intestine. A controlled release of RA from SLN was achieved and a significant absorption was observed at intestinal cells. Overall, SLN produced with witepsol showed a higher stability than carnauba SLN.

  12. Coagulation removal of humic acid-stabilized carbon nanotubes from water by PACl: influences of hydraulic condition and water chemistry.

    PubMed

    Ma, Si; Liu, Changli; Yang, Kun; Lin, Daohui

    2012-11-15

    Discharged carbon nanotubes (CNTs) can adsorb the widely-distributed humic acid (HA) in aquatic environments and thus be stabilized. HA-stabilized CNTs can find their way into and challenge the potable water treatment system. This study investigated the efficiency of coagulation and sedimentation techniques in the removal of the HA-stabilized multi-walled carbon nanotubes (MWCNTs) using polyaluminum chloride (PACl) as a coagulant, with a focus on the effects of hydraulic conditions and water chemistry. Stirring speeds in the mixing and reacting stages were gradually changed to examine the effect of the hydraulic conditions on the removal rate. The stirring speed in the reacting stage affected floc formation and thereby had a greater impact on the removal rate than the stirring speed in the mixing stage. Water chemistry factors such as pH and ionic strength had a significant effect on the stability of MWCNT suspension and the removal efficiency. Low pH (4-7) was favorable for saving the coagulant and maintaining high removal efficiency. High ionic strength facilitated the destabilization of the HA-stabilized MWCNTs and thereby lowered the required PACl dosage for the coagulation. However, excessively high ionic strength (higher than the critical coagulation concentration) decreased the maximum removal rate, probably by inhibiting ionic activity of PACl hydrolyzate in water. These results are expected to shed light on the potential improvement of coagulation removal of aqueous stabilized MWCNTs in water treatment systems.

  13. Cultural conditions required for the induction of an adaptive acid-tolerance response (ATR) in Sinorhizobium meliloti and the question as to whether or not the ATR helps rhizobia improve their symbiosis with alfalfa at low pH.

    PubMed

    Draghi, Walter O; Del Papa, María Florencia; Pistorio, Mariano; Lozano, Mauricio; de Los Angeles Giusti, María; Torres Tejerizo, Gonzalo A; Jofré, Edgardo; Boiardi, José Luis; Lagares, Antonio

    2010-01-01

    Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing symbioses. The agricultural relevance of these associations, the worldwide distribution of acid soils, and the remarkable acid sensitivity of the microsymbiont have all stimulated research on the responses of the symbionts to acid environments. We show here that an adaptive acid-tolerance response (ATR) can be induced in S. meliloti, as shown previously for Sinorhizobium medicae, when the bacteria are grown in batch cultures at the slightly acid pH of 6.1. In marked contrast, no increased tolerance to hydrogen ions is obtained if rhizobia are grown in a chemostat under continuous cultivation at the same pH. The adaptive ATR appears as a complex process triggered by an increased hydrogen-ion concentration, but operative only if other--as yet unknown--concomitant factors that depend on the culture conditions are present (although not provided under continuous cultivation). Although the stability of the ATR and its influence on acid tolerance has been characterized in rhizobia, no data have been available on the effect of the adapted state on symbiosis. Coinoculation experiments showed that acid-adapted indicator rhizobia (ATR+) were present in >90% of the nodules when nodulation was performed at pH 5.6, representing a >30% increase in occupancy compared with a control test. We show that the ATR represents a clear advantage in competing for nodulation at low pH. It is not yet clear whether such an effect results from an improved performance in the acid environment during preinfection, an enhanced ability to initiate infections, or both conditions. The practical use of ATR+ rhizobia will depend on validation experiments with soil microcosms and on field testing, as well as on the possibility of preserving the physiology of ATR+ bacteria in inoculant formulations.

  14. Sodium-bicarbonate cotransporter NBCn1 in the kidney medullary thick ascending limb cell line is upregulated under acidic conditions and enhances ammonium transport.

    PubMed

    Lee, Soojung; Lee, Hye Jeong; Yang, Han Soo; Thornell, Ian M; Bevensee, Mark O; Choi, Inyeong

    2010-09-01

    In this study, we examined the effect of bicarbonate transporters on ammonium/ammonia uptake in the medullary thick ascending limb cell line ST-1. Cells were treated with 1 mm ouabain and 0.2 mM bumetanide to minimize carrier-mediated NH(4)(+) transport, and the intracellular accumulation of (14)C-methylammonium/methylammonia ((14)C-MA) was determined. In CO(2)/HCO(3)(-)-free solution, cells at normal pH briefly accumulated (14)C-MA over 7 min and reached a plateau. In CO(2)/HCO(3)(-) solution, however, cells markedly accumulated (14)C-MA over the experimental period of 30 min. This CO(2)/HCO(3)(-)-dependent accumulation was reduced by the bicarbonate transporter blocker, 4,4-diisothiocyanatostilbene-2,2-disulfonate (DIDS; 0.5 mM). Replacing Cl(-) with gluconate reduced the accumulation, but the reduction was more substantial in the presence of DIDS. Incubation of cells at pH 6.8 (adjusted with NaHCO(3) in 5% CO(2)) for 24 h lowered the mean steady-state intracellular pH to 6.96, significantly lower than 7.28 for control cells. The presence of DIDS reduced (14)C-MA accumulation in control conditions but had no effect after acidic incubation. Immunoblotting showed that NBCn1 was upregulated after acidic incubation and in NH(4)Cl-containing media. The Cl(-)-HCO(3)(-) exchanger AE2 was present, but its expression remained unaffected by acidic incubation. Expressed in Xenopus oocytes, NBCn1 increased carrier-mediated (14)C-MA transport, which was abolished by replacing Na(+). Two-electrode voltage clamp of oocytes exhibited negligible current after NH(4)Cl application. These results suggest that DIDS-sensitive HCO(3)(-) extrusion normally governs NH(4)(+)/NH(3) uptake in the medullary thick ascending limb cells. We propose that, in acidic conditions, DIDS-sensitive HCO(3)(-) extrusion is inactivated, while NBCn1 is upregulated to stimulate NH(4)(+) transport.

  15. Characteristic of blocking events over Siberia for the present and future climate conditions, and the implications for the regional climate in South China

    NASA Astrophysics Data System (ADS)

    Cheung, H.; Zhou, W.

    2010-12-01

    Blocking activity over Siberia is a crucial factor for initiating and maintaining severe cold events in East Asia, but limited studies have provided a detailed analysis on the impact of its changing characteristics on the regional climate, especially in South China. By using 60-year NCEP-NCAR Reanalysis Datasets (1950/51-2009/10), where a winter season is defined as the 151/152 day period from Nov 1 to Mar 31, distinct characteristics of the blocking events and their downstream impacts for the present climate conditions can be assessed thoroughly. It is found that the blocking events persisting east of the Ural Mountains are generally followed by a cold air outbreak sweeping across various parts in East Asia. Specifically, the intense blocking events usually have large extension and they potentially result in persistent cold weather within the region. On the other hand, the blocking events west of the Ural Mountains are found to exert an impact only if it is of long duration and high intensity. The cold air pathways may be dependent on the geographic location of the blocking anticyclone. The active blocking season over the Urals is probably associated with more intense cold events extending southward and eastward to a great extent. On the contrary, the cold events in the winters of high blocking activity east and west of the Urals are often confined to the northern region. The preferred blocking location may be related to the wavetrain signal propagating eastward from the North Atlantic Ocean. Long-term variability of blocking activities shows a remarkable decreasing and weakening trend. This is perhaps reflected by a similar trend of the cold events in East Asia. Energetic and dynamical factors that are favorable and unfavorable for a specific blocking character will be explored. The explanation is accompanied with the simulation results of future climate conditions using the IPCC AR4 model outputs. The analysis is particularly valuable for enhancing the

  16. Climatic controls on biophysical interactions in the Black Sea under present day conditions and a potential future (A1B) climate scenario

    NASA Astrophysics Data System (ADS)

    Cannaby, Heather; Fach, Bettina A.; Arkin, Sinan S.; Salihoglu, Baris

    2015-01-01

    A dynamical downscaling approach has been applied to investigate climatic controls on biophysical interactions and lower trophic level dynamics in the Black Sea. Simulations were performed under present day conditions (1980-1999) and a potential future (2080-2099) climate scenario, based on the Intergovernmental Panel for Climate Change A1B greenhouse gas emission scenario. Simulations project a 3.7 °C increase in SST, a 25% increase in the stability of the seasonal thermocline and a 37 day increase in the duration of seasonal stratification. Increased winter temperatures inhibited the formation of Cold Intermediate Layer (CIL) waters resulting in near complete erosion of the CIL, with implications for the ventilation of intermediate water masses and the subduction of riverine nutrients. A 4% increase in nitrate availability within the upper 30 m of the water column reflected an increase in the retention time of river water within the surface mixed-layer. Changes in thermohaline structure, combined with a 27% reduction in positive wind stress curl, forced a distinct change in the structure of the basin-scale circulation. The predominantly cyclonic circulation characteristic of contemporary conditions was reversed within the southern and eastern regions of the basin, where under A1B climatic conditions, anticyclonic circulation prevailed. The change in circulation structure significantly altered the horizontal advection and dispersion of high nutrient river waters originating on the NW self. Net primary production increased by 5% on average, with much spatial variability in the response, linked to advective processes. Phytoplankton biomass also increased by 5% and the higher nutrient environment of the future scenario caused a shift in species composition in favour of larger phytoplankton. No significant change in zooplankton biomass was projected. These results constitute one of many possible future scenarios for the Black Sea, being dependent on the modelling

  17. The Effect of Ursolic Acid on Leishmania (Leishmania) amazonensis Is Related to Programed Cell Death and Presents Therapeutic Potential in Experimental Cutaneous Leishmaniasis

    PubMed Central

    Yamamoto, Eduardo S.; Campos, Bruno L. S.; Jesus, Jéssica A.; Laurenti, Márcia D.; Ribeiro, Susan P.; Kallás, Esper G.; Rafael-Fernandes, Mariana; Santos-Gomes, Gabriela; Silva, Marcelo S.; Sessa, Deborah P.; Lago, João H. G.; Levy, Débora; Passero, Luiz F. D.

    2015-01-01

    Among neglected tropical diseases, leishmaniasis is one of the most important ones, affecting more than 12 million people worldwide. The available treatments are not well tolerated, and present diverse side effects, justifying the search for new therapeutic compounds. In the present study, the activity of ursolic acid (UA) and oleanolic acid (OA) were assayed in experimental cutaneous leishmaniasis (in vitro and in vivo). Promastigote forms of L. amazonensis were incubated with OA and UA for 24h, and effective concentration 50% (EC50) was estimated. Ultraestructural alterations in Leishmania amazonensis promastigotes after UA treatment were evaluated by transmission electron microscopy, and the possible mode of action was assayed through Annexin V and propidium iodide staining, caspase 3/7 activity, DNA fragmentation and transmembrane mitochondrial potential. The UA potential was evaluated in intracellular amastigotes, and its therapeutic potential was evaluated in L. amazonensis infected BALB/c mice. UA eliminated L. amazonensis promastigotes with an EC50 of 6.4 μg/mL, comparable with miltefosine, while OA presented only a marginal effect on promastigote forms at 100 μg/mL. The possible mechanism by which promastigotes were eliminated by UA was programmed cell death, independent of caspase 3/7, but it was highly dependent on mitochondria activity. UA was not toxic for peritoneal macrophages from BALB/c mice, and it was able to eliminate intracellular amastigotes, associated with nitric oxide (NO) production. OA did not eliminate amastigotes nor trigger NO. L. amazonensis infected BALB/c mice submitted to UA treatment presented lesser lesion size and parasitism compared to control. This study showed, for the first time, that UA eliminate promastigote forms through a mechanism associated with programed cell death, and importantly, was effective in vivo. Therefore, UA can be considered an interesting candidate for future tests as a prototype drug for the treatment

  18. Disruption of HLA class II antigen presentation in Burkitt lymphoma: implication of a 47,000 MW acid labile protein in CD4+ T-cell recognition.

    PubMed

    God, Jason M; Zhao, Dan; Cameron, Christine A; Amria, Shereen; Bethard, Jennifer R; Haque, Azizul

    2014-07-01

    While Burkitt lymphoma (BL) has a well-known defect in HLA class I-mediated antigen presentation, the exact role of BL-associated HLA class II in generating a poor CD4(+) T-cell response remains unresolved. Here, we found that BL cells are deficient in their ability to optimally stimulate CD4(+) T cells via the HLA class II pathway. This defect in CD4(+) T-cell recognition was not associated with low levels of co-stimulatory molecules on BL cells, as addition of external co-stimulation failed to elicit CD4(+) T-cell activation by BL. Further, the defect was not caused by faulty antigen/class II interaction, because antigenic peptides bound with measurable affinity to BL-associated class II molecules. Interestingly, functional class II-peptide complexes were formed at acidic pH 5·5, which restored immune recognition. Acidic buffer (pH 5·5) eluate from BL cells contained molecules that impaired class II-mediated antigen presentation and CD4(+) T-cell recognition. Biochemical analysis showed that these molecules were greater than 30,000 molecular weight in size, and proteinaceous in nature. In addition, BL was found to have decreased expression of a 47,000 molecular weight enolase-like molecule that enhances class II-mediated antigen presentation in B cells, macrophages and dendritic cells, but not in BL cells. These findings demonstrate that BL likely has multiple defects in HLA class II-mediated antigen presentation and immune recognition, which may be exploited for future immunotherapies.

  19. Using Mesoscale Weather Model Output as Boundary Conditions for Atmospheric Large-Eddy Simulations and Wind-Plant Aerodynamic Simulations (Presentation)

    SciTech Connect

    Churchfield, M. J.; Michalakes, J.; Vanderwende, B.; Lee, S.; Sprague, M. A.; Lundquist, J. K.; Moriarty, P. J.

    2013-10-01

    Wind plant aerodynamics are directly affected by the microscale weather, which is directly influenced by the mesoscale weather. Microscale weather refers to processes that occur within the atmospheric boundary layer with the largest scales being a few hundred meters to a few kilometers depending on the atmospheric stability of the boundary layer. Mesoscale weather refers to large weather patterns, such as weather fronts, with the largest scales being hundreds of kilometers wide. Sometimes microscale simulations that capture mesoscale-driven variations (changes in wind speed and direction over time or across the spatial extent of a wind plant) are important in wind plant analysis. In this paper, we present our preliminary work in coupling a mesoscale weather model with a microscale atmospheric large-eddy simulation model. The coupling is one-way beginning with the weather model and ending with a computational fluid dynamics solver using the weather model in coarse large-eddy simulation mode as an intermediary. We simulate one hour of daytime moderately convective microscale development driven by the mesoscale data, which are applied as initial and boundary conditions to the microscale domain, at a site in Iowa. We analyze the time and distance necessary for the smallest resolvable microscales to develop.

  20. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid.

  1. Microwave-Assisted Condensation Reactions of Acetophenone Derivatives and Activated Methylene Compounds with Aldehydes Catalyzed by Boric Acid under Solvent-Free Conditions.

    PubMed

    Brun, Elodie; Safer, Abdelmounaim; Carreaux, François; Bourahla, Khadidja; L'helgoua'ch, Jean-Martial; Bazureau, Jean-Pierre; Villalgordo, Jose Manuel

    2015-06-23

    We here disclosed a new protocol for the condensation of acetophenone derivatives and active methylene compounds with aldehydes in the presence of boric acid under microwave conditions. Implementation of the reaction is simple, healthy and environmentally friendly owing to the use of a non-toxic catalyst coupled to a solvent-free procedure. A large variety of known or novel compounds have thus been prepared, including with substrates bearing acid or base-sensitive functional groups.

  2. Impact of oxalate desensitizer combined with ethylene-diamine tetra acetic acid-conditioning on dentin bond strength of one-bottle adhesives during dry bonding

    PubMed Central

    Shafiei, Fereshteh; Doozandeh, Maryam

    2013-01-01

    Background: Elimination of water entrapment in hybrid layer during bonding procedure would increase bonding durability. Aims: This study evaluated the effect of oxalate desensitizer (OX) pretreatment on bond strength of three one-bottle adhesives to ethylene-diamine tetra acetic acid (EDTA)-conditioned dentin under dry bonding. Materials and Methods: Three adhesive systems, One-Step Plus (OS), Optibond Solo Plus (OP) and Adper Single Bond (SB) were bonded on dentin surfaces under four bonding conditions: (1) Wet-bonding on acid-etched dentin, (2) wet bonding on EDTA-conditioned dentin, (3) dry bonding on EDTA-conditioned dentin, (4) dry bonding associated with OX on the EDTA-conditioned dentin. After storage and thermo cycling, shear bond strength test was performed. Data were analyzed using two-way analysis of variance and Tukey tests. Results: Wet bonding with EDTA or acid etching showed similar bond strength for test adhesives. Dry bonding with EDTA significantly decreased the bond strength of OS, but it had no effect on the bonding of OP and SB. OX application in the forth bonding condition, in comparison with the third condition, had a negative effect on the bond strength of OP, but not influence on OS and SB. Conclusions: The use of an OX on EDTA-conditioned dentin compromised the bonding efficacy of OS and OP under dry bonding but compatible for SB. PMID:23833461

  3. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    PubMed Central

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028