Sample records for acidic degradation products

  1. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues

    NASA Astrophysics Data System (ADS)

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.

  2. Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.

    PubMed

    Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter

    2016-09-01

    GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.

  3. Degradation study of carnosic acid, carnosol, rosmarinic acid, and rosemary extract (Rosmarinus officinalis L.) assessed using HPLC.

    PubMed

    Zhang, Ying; Smuts, Jonathan P; Dodbiba, Edra; Rangarajan, Rekha; Lang, John C; Armstrong, Daniel W

    2012-09-12

    Rosemary, whose major caffeoyl-derived and diterpenoid ingredients are rosmarinic acid, carnosol, and carnosic acid, is an important source of natural antioxidants and is being recognized increasingly as a useful preservative, protectant, and even as a potential medicinal agent. Understanding the stability of these components and their mode of interaction in mixtures is important if they are to be utilized to greatest effect. A study of the degradation of rosmarinic acid, carnosol, carnosic acid, and a mixture of the three was conducted in ethanolic solutions at different temperatures and light exposure. As expected, degradation increased with temperature. Some unique degradation products were formed with exposure to light. Several degradation products were reported for the first time. The degradation products were identified by HPLC/MS/MS, UV, and NMR. The degradation of rosemary extract in fish oil also was investigated, and much slower rates of degradation were observed for carnosic acid. In the mixture of the three antioxidants, carnosic acid serves to maintain levels of carnosol, though it does so at least in part at the cost of its own degradation.

  4. Validated stability-indicating spectrophotometric methods for the determination of cefixime trihydrate in the presence of its acid and alkali degradation products.

    PubMed

    Mostafa, Nadia M; Abdel-Fattah, Laila; Weshahy, Soheir A; Hassan, Nagiba Y; Boltia, Shereen A

    2015-01-01

    Five simple, accurate, precise, and economical spectrophotometric methods have been developed for the determination of cefixime trihydrate (CFX) in the presence of its acid and alkali degradation products without prior separation. In the first method, second derivative (2D) and first derivative (1D) spectrophotometry was applied to the absorption spectra of CFX and its acid (2D) or alkali (1D) degradation products by measuring the amplitude at 289 and 308 nm, respectively. The second method was a first derivative (1DD) ratio spectrophotometric method where the peak amplitudes were measured at 311 nm in presence of the acid degradation product, and 273 and 306 nm in presence of its alkali degradation product. The third method was ratio subtraction spectrophotometry where the drug is determined at 286 nm in laboratory-prepared mixtures of CFX and its acid or alkali degradation product. The fourth method was based on dual wavelength analysis; two wavelengths were selected at which the absorbances of one component were the same, so wavelengths 209 and 252 nm were used to determine CFX in presence of its acid degradation product and 310 and 321 nm in presence of its alkali degradation product. The fifth method was bivariate spectrophotometric calibration based on four linear regression equations obtained at the wavelengths 231 and 290 nm, and 231 and 285 nm for the binary mixture of CFX with either its acid or alkali degradation product, respectively. The developed methods were successfully applied to the analysis of CFX in laboratory-prepared mixtures and pharmaceutical formulations with good recoveries, and their validation was carried out following the International Conference on Harmonization guidelines. The results obtained were statistically compared with each other and showed no significant difference with respect to accuracy and precision.

  5. Raman spectroscopy and capillary zone electrophoresis for the analysis of degradation processes in commercial effervescent tablets containing acetylsalicylic acid and ascorbic acid.

    PubMed

    Neuberger, Sabine; Jooß, Kevin; Flottmann, Dirk; Scriba, Gerhard; Neusüß, Christian

    2017-02-05

    In order to ensure the stability of pharmaceutical products appropriate manufacturing and storage conditions are required. In general, the degradation of active pharmaceutical ingredients (APIs) and subsequent formation of degradation products affect the pharmaceutical quality. Thus, a fast and effective detection and characterization of these substances is mandatory. Here, the applicability of Raman spectroscopy and CZE for the characterization of the degradation of effervescent tablets containing acetylsalicylic acid (ASA) and ascorbic acid (AA) was evaluated. Therefore, a degradation study was performed analyzing tablets from two different manufacturers at varying conditions (relative humidity (RH) 33%, 52% and 75% at 30°C). Raman spectroscopy combined with principal component analysis could be successfully applied for the fast and easy discrimination of non-degraded and degraded effervescent tablets after a storage period of approximately 24h (RH 52%). Nevertheless, a clear identification or quantification of APIs and degradation products within the analyzed tablets was not possible, i.a. due to missing reference materials. CZE-UV enabled the quantification of the APIs (ASA, AA) and related degradation products (salicylic acid (SA); semi-quantitative also mono- and diacetylated AA) within the complex tablet mixtures. The higher the RH, the faster the degradation of ASA and AA as well as the formation of the degradation products. Mono- and diacetylated AA are major primary degradation products of AA for the applied effervescent tablets. A significant degradation of the APIs was detected earlier by CZE (6-12h, RH 52%) than by Raman spectroscopy. Summarized, Raman spectroscopy is well-suited as quick test to detect degradation of these tablets and CZE can be utilized for further detailed characterization and quantification of specific APIs and related degradation products. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Screening of nerve agent degradation products by MALDI-TOFMS.

    PubMed

    Shu, You-Ren; Su, An-Kai; Liu, Ju-Tsung; Lin, Cheng-Huang

    2006-07-01

    A novel method for the rapid screening of degradation products derived from nerve agents by matrix-assisted laser desorption ionization time-of-flight mass spectrometry is described. Five standard products were selected as model compounds, including isopropyl methylphosphonic acid (IMPA), pinacolyl methylphosphonic acid (PMPA), ethyl methylphosphonic acid (EMPA), isobutyl methylphosphonic acid (i-BuMPA), and cyclohexyl methylphosphonic acid (CHMPA), which are degradation products of Sarin (GB), Soman (GD), VX, Russian VX (RVX), and GF, respectively. For comparison, CHCA (alpha-cyano-4-hydroxycinnamic acid) and DCCA (7-(diethylamino)coumarin-3-carboxylic acid) were used as the MALDI-matrix when the third harmonic generation (355 nm) of a Nd:YAG laser and a hydrogen Raman laser (multifrequency laser) were used, respectively. The method permitted the five nerve agent degradation products to be screened rapidly and successfully, suggesting that it has the potential for use as a routine monitoring tool.

  7. Interactions between F-111 Fuselage Fuel Tank Sealants. Part I. Characterisation of Polyester Sealants and their Hydrolytic Degradation Products,

    DTIC Science & Technology

    1983-12-01

    maleic acid , adipic acid , azelaic acid and suberic acid . To ensure complete esterification during the exhaustive degradation reactions, an...spectroscopic techniques. Major components were shown to be sebacic acid and neopentyl glycol. The most significant difference between the two polyester...and acid equivalent weights of the prepolymers, their hydrolysis products and hydrolysed cured sealants were determined to assess extent of degradation

  8. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.

    PubMed

    Richardson, Douglas D; Caruso, Joseph A

    2007-06-01

    Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC-ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC-time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC-ICPMS.

  9. Degradable polyphosphazene/poly(alpha-hydroxyester) blends: degradation studies.

    PubMed

    Ambrosio, Archel M A; Allcock, Harry R; Katti, Dhirendra S; Laurencin, Cato T

    2002-04-01

    Biomaterials based on the polymers of lactic acid and glycolic acid and their copolymers are used or studied extensively as implantable devices for drug delivery, tissue engineering and other biomedical applications. Although these polymers have shown good biocompatibility, concerns have been raised regarding their acidic degradation products, which have important implications for long-term implantable systems. Therefore, we have designed a novel biodegradable polyphosphazene/poly(alpha-hydroxyester) blend whose degradation products are less acidic than those of the poly(alpha-hydroxyester) alone. In this study, the degradation characteristics of a blend of poly(lactide-co-glycolide) (50:50 PLAGA) and poly[(50% ethyl glycinato)(50% p-methylphenoxy) phosphazene] (PPHOS-EG50) were qualitatively and quantitatively determined with comparisons made to the parent polymers. Circular matrices (14mm diameter) of the PLAGA, PPHOS-EG50 and PLAGA-PPHOS-EG50 blend were degraded in non-buffered solutions (pH 7.4). The degraded polymers were characterized for percentage mass loss and molecular weight and the degradation medium was characterized for acid released in non-buffered solutions. The amounts of neutralizing base necessary to bring about neutral pH were measured for each polymer or polymer blend during degradation. The poly(phosphazene)/poly(lactide-co-glycolide) blend required significantly less neutralizing base in order to bring about neutral solution pH during the degradation period studied. The results indicated that the blend degraded at a rate intermediate to that of the parent polymers and that the degradation products of the polyphosphazene neutralized the acidic degradation products of PLAGA. Thus, results from these in vitro degradation studies suggest that the PLAGA-PPHOS-EG50 blend may provide a viable improvement to biomaterials based on acid-releasing organic polymers.

  10. Degradation of caffeic acid in subcritical water and online HPLC-DPPH assay of degradation products.

    PubMed

    Khuwijitjaru, Pramote; Suaylam, Boonyanuch; Adachi, Shuji

    2014-02-26

    Caffeic acid was subjected to degradation under subcritical water conditions within 160-240 °C and at a constant pressure of 5 MPa in a continuous tubular reactor. Caffeic acid degraded quickly at these temperatures; the main products identified by liquid chromatography-diode array detection/mass spectrometry were hydroxytyrosol, protocatechuic aldehyde, and 4-vinylcatechol. The reaction rates for the degradation of caffeic acid and the formation of products were evaluated. Online high-performance liquid chromatography/2,2-diphenyl-1-picryhydrazyl assay was used to determine the antioxidant activity of each product in the solution. It was found that the overall antioxidant activity of the treated solution did not change during the degradation process. This study showed a potential of formation of antioxidants from natural phenolic compounds under these subcritical water conditions, and this may lead to a discovering of novel antioxidants compounds during the extraction by this technique.

  11. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less

  12. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.I.

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less

  13. Vitamin C degradation products and pathways in the human lens.

    PubMed

    Nemet, Ina; Monnier, Vincent M

    2011-10-28

    Vitamin C and its degradation products participate in chemical modifications of proteins in vivo through non-enzymatic glycation (Maillard reaction) and formation of different products called advanced glycation end products. Vitamin C levels are particularly high in selected tissues, such as lens, brain and adrenal gland, and its degradation products can inflict substantial protein damage via formation of advanced glycation end products. However, the pathways of in vivo vitamin C degradation are poorly understood. Here we have determined the levels of vitamin C oxidation and degradation products dehydroascorbic acid, 2,3-diketogulonic acid, 3-deoxythreosone, xylosone, and threosone in the human lens using o-phenylenediamine to trap both free and protein-bound adducts. In the protein-free fraction and water-soluble proteins (WSP), all five listed degradation products were identified. Dehydroascorbic acid, 2,3-diketogulonic acid, and 3-deoxythreosone were the major products in the protein-free fraction, whereas in the WSP, 3-deoxythreosone was the most abundant measured dicarbonyl. In addition, 3-deoxythreosone in WSP showed positive linear correlation with age (p < 0.05). In water-insoluble proteins, only 3-deoxythreosone and threosone were detected, whereby the level of 3-deoxythreosone was ∼20 times higher than the level of threosone. The identification of 3-deoxythreosone as the major degradation product bound to human lens proteins provides in vivo evidence for the non-oxidative pathway of dehydroascorbate degradation into erythrulose as a major pathway for vitamin C degradation in vivo.

  14. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    NASA Astrophysics Data System (ADS)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  15. Validated stability-indicating spectrophotometric methods for the determination of Silodosin in the presence of its degradation products.

    PubMed

    Boltia, Shereen A; Abdelkawy, Mohammed; Mohammed, Taghreed A; Mostafa, Nahla N

    2018-09-05

    Five simple, rapid, accurate, and precise spectrophotometric methods are developed for the determination of Silodosin (SLD) in the presence of its acid induced and oxidative induced degradation products. Method A is based on dual wavelength (DW) method; two wavelengths are selected at which the absorbance of the oxidative induced degradation product is the same, so wavelengths 352 and 377 nm are used to determine SLD in the presence of its oxidative induced degradation product. Method B depends on induced dual wavelength theory (IDW), which is based on selecting two wavelengths on the zero-order spectrum of SLD where the difference in absorbance between them for the spectrum of acid induced degradation products is not equal to zero so through multiplying by the equality factor, the absorption difference is made to be zero for the acid induced degradation product while it is still significant for SLD. Method C is first derivative ( 1 D) spectrophotometry of SLD and its degradation products. Peak amplitudes are measured at 317 and 357 nm. Method D is ratio difference spectrophotometry (RD) where the drug is determined by the difference in amplitude between two selected wavelengths, at 350 and 277 nm for the ratio spectrum of SLD and its acid induced degradation products while for the ratio spectrum of SLD and its oxidative induced degradation products the difference in amplitude is measured at 345 and 292 nm. Method E depends on measuring peak amplitudes of the first derivative of the ratio ( 1 DD) where peak amplitudes are measured at 330 nm in the presence of the acid induced degradation product and measured by peak to peak technique at 326 and 369 nm in the presence of the oxidative induced degradation product. The proposed methods are validated according to ICH recommendations. The calibration curves for all the proposed methods are linear over a concentration range of 5-70 μg/mL. The selectivity of the proposed methods was tested using different laboratory prepared mixtures of SLD with either its acid induced or oxidative induced degradation products showing specificity of SLD with accepted recovery values. The proposed methods have been successfully applied to the analysis of SLD in pharmaceutical dosage forms without interference from additives. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Anthracycline antibiotics derivate mitoxantrone-Destructive sorption and photocatalytic degradation.

    PubMed

    Štenglová-Netíková, Irena R; Petruželka, Luboš; Šťastný, Martin; Štengl, Václav

    2018-01-01

    Nanostructured titanium(IV) oxide was used for the destructive adsorption and photocatalytic degradation of mitoxantrone (MTX), a cytostatic drug from the group of anthracycline antibiotics. During adsorption on a titania dioxide surface, four degradation products of MTX, mitoxantrone dicarboxylic acid, 1,4-dihydroxy-5-((2-((2-hydroxyethyl)amino)ethyl)amino)-8-((2-(methylamino)ethyl)amino)anthracene-9,10-dione, 1,4-dihydroxy-5,8-diiminoanthracene-9,10(5H,8H)-dione and 1,4-dihydroxy-5-imino-8-(methyleneamino)anthracene-9,10(5H,8H)-dione, were identified. In the case of photocatalytic degradation, only one degradation product after 15 min at m/z 472 was identified. This degradation product corresponded to mitoxantrone dicarboxylic acid, and complete mineralization was attained in one hour. Destructive adsorbent manganese(IV) oxide, MnO2, was used only for the destructive adsorption of MTX. Destructive adsorption occurred only for one degradation product, mitoxantrone dicarboxylic acid, against anatase TiO2.

  17. First derivative spectrophotometric and LC determination of benoxinate hydrochloride and its degradation products.

    PubMed

    El-Gindy, A

    2000-03-01

    Two methods are presented for the determination of benoxinate HCI and its acid and alkali-induced degradation products using first derivative (1D) spectrophotometry with zero-crossing measurements and liquid chromatography. Benoxinate HCl was determined by measurement of its first derivative amplitude in mcllvaine's-citric acid phosphate buffer pH 7.0 at 268.4 and 272.4 nm in the presence of its alkali- and acid-induced degradation products, respectively. The acid- and alkali-induced, degradation products were determined by measurement of their first derivative amplitude in the same solvent at 307.5 nm. The LC method depends upon using a mu bondapak CN column with a mobile phase consisting of acetonitrile-water triethylamine (60:40:0.01, v/v) and adjusted to apparent pH 7. Quantitation was achieved with UV detection at 310 nm based on peak area. The proposed methods were utilized to investigate the kinetics of the acidic and alkaline degradation processes at different temperatures. The pH-rate profile of degradation of benoxinate HCl in Britton-Robinson buffer solutions was studied.

  18. [Microbial degradation of 3-phenoxybenzoic acid--A review].

    PubMed

    Deng, Weiqin; Liu, Shuliang; Yao, Kai

    2015-09-04

    3-phenoxybenzoic acid (3-PBA) with estrogen toxicity is one of the intermediate products of most pyrethroid pesticides. 3-PBA is difficult to degrade in the natural environment, and threatens food safety and human health. Microbial degradation of pyrethroids and their intermediate product (3-PBA) has become a hot topic in recent years. Here, we reviewed microbial species, degrading enzymes and degradation genes, degradation pathways of 3-PBA degrading and the application of 3-PBA degradation strains. This article provides references for the study of 3-PBA degradation by microorganisms.

  19. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    NASA Astrophysics Data System (ADS)

    Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael

    2003-12-01

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.

  20. Degradation of tannic acid by cold-adapted Klebsiella sp NACASA1 and phytotoxicity assessment of tannic acid and its degradation products.

    PubMed

    Jadhav, Umesh; Kadu, Sudhir; Thokal, Nilesh; Padul, Manohar; Dawkar, Vishal; Chougale, Ashok; Salve, Abhay; Patil, Manoj

    2011-08-01

    The focus of the present study is to know the potential of bacterial isolate for tannic acid degradation at low temperature. Also, we tried to evaluate the suitability of phytotoxicity testing protocol for the determination of tannic acid toxicity. Screening for tannic acid degrading bacterial strains was carried out by using microbial isolation techniques. The 16S rDNA amplicon of the isolate was used to identify the isolate. The effect of different concentrations of tannic acid and its degradation products on germination of Vigna unguiculata was evaluated. The study was carried out to determine total sugar and starch content of the used seeds and even to check the presence of α-amylase activity during seed germination. The isolated bacterium was identified as Klebsiella sp NACASA1 and it showed degradation of tannic acid in 40 (±0.85***) h at 15°C and pH 7.0. A gradual decrease in root/shoot length was observed with increasing concentration of tannic acid. There was 95.11 (±0.24**)% inhibition in α-amylase activity at 20,000 ppm tannic acid, as compared to control. No such effects were observed on germination, root-shoot length, and α-amylase activity with tannic acid degradation products. The results obtained confirmed that tannic acid may act as a toxic agent in plant cells. The simple biodegradation process presented in this study was found to be effective in reducing toxicity of tannic acid. Also, it reveals the potential of soil bacterium to degrade tannic acid at low temperature.

  1. Liquid chromatography/tandem mass spectrometry study of forced degradation of azilsartan medoxomil potassium.

    PubMed

    Swain, Debasish; Patel, Prinesh N; Palaniappan, Ilayaraja; Sahu, Gayatri; Samanthula, Gananadhamu

    2015-08-15

    Azilsartan medoxomil potassium (AZM) is a new antihypertensive drug introduced in the year 2011. The presence of degradation products not only affects the quality, but also the safety aspects of the drug. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate and identify the degradation products of azilsartan medoxomil potassium. AZM was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC(®) C18 CSH column with mobile phase consisting of 0.02% trifluoroacetic acid and acetonitrile using a gradient method. Identification and characterization of the degradation products was carried out using LC/electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOFMS). A total of five degradation products (DP 1 to DP 5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and accurate mass data. A common degradation product (DP 4) was observed under all the degradation conditions. DP 1, DP 2 and DP 5 were observed under acid hydrolytic conditions whereas DP 3 was observed under alkaline conditions. AZM was found to degrade under hydrolytic, oxidative and photolytic stress conditions. The structures of all the degradation products were proposed. The degradation pathway for the formation of degradation products was also hypothesized. A selective method was developed to quantify the drug in the presence of degradation products which is useful to monitor the quality of AZM. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Forced degradation, LC-UV, MS(n) and LC-MS-TOF studies on azilsartan: Identification of a known and three new degradation impurities.

    PubMed

    Kaushik, Dhiraj; Kaur, Jasmeen; Paul Kaur, Vaneet; Saini, Balraj; Bansal, Yogita; Bansal, Gulshan

    2016-02-20

    In the present study, Azilsartan (AZL) was subjected to ICH recommended forced degradation conditions of hydrolysis, oxidation, dry heat and photolysis. The drug degraded to four degradation products (I-IV) under acidic, alkaline and water hydrolysis and photolysis. All the four degradation products were resolved in a single run on a C-18 column (250mm×4.6mm; 5μ) with isocratic elution using mobile phase composed of ammonium formate (20mM, pH 3.0), methanol and acetonitrile (40:5:40% v/v), at a flow rate of 0.8mlmin(-1) at ambient temperature. The products were characterized through +ESI-MS(n) spectra of AZL and LC-MS-TOF studies as 2-ethoxy-3H-benzo-imidazole-4-carboxylic acid (I), 2-hydroxy-3-[2'-(5-oxo-4,5-dihydro-[1,2,4]oxadiazol-4-ylmethyl]-3H-benzoimidazole-4-carboxylic acid (II, deethylated AZL), 3-[2'-(1H-diazirin-3-yl)-biphenyl]-4-ylmethyl]-2-ethoxy-3H-benzoimidazole-4-carboxylic acid (III), and 3-[4'-(2-ethoxy-benzo-imidazol-1-ylmethyl)-biphenyl-2-yl]-4H-[1,2,4]oxadiazol-5-one (IV, decarboxylated AZL). Product I was found to be a known process related impurity whereas the products II-IV were identified as new degradation impurities. The most probable mechanisms for formation of these degradation products were proposed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Reactions of clofibric acid with oxidative and reductive radicals-Products, mechanisms, efficiency and toxic effects

    NASA Astrophysics Data System (ADS)

    Csay, Tamás; Rácz, Gergely; Salik, Ádám; Takács, Erzsébet; Wojnárovits, László

    2014-09-01

    The degradation of clofibric acid induced by hydroxyl radical, hydrated electron and O2-•/HO2• reactive species was studied in aqueous solutions. Clofibric acid was decomposed more effectively by hydroxyl radical than by hydrated electron or O2-•/HO2•. Various hydroxylated, dechlorinated and fragmentation products have been identified and quantified. A new LC-MS method was developed based on 18O isotope labeling to follow the formation of hydroxylated derivatives of clofibric acid. Possible degradation pathways have been proposed. The overall degradation was monitored by determination of sum parameters like COD, TOC and AOX. It was found that the organic chlorine degrades very effectively prior to complete mineralization. After the treatment no toxic effect was found according to Vibrio fischeri tests. However, at early stages some of the reaction products were more harmful than clofibric acid.

  4. Preparation and characterization of two new forced degradation products of letrozole and development of a stability-indicating RP-LC method for its determination.

    PubMed

    Elkady, Ehab Farouk; Fouad, Marwa Ahmed

    2015-11-01

    Two new hydrolytic products of letrozole were identified and proved to be true degradation products obtained by alkaline and acidic degradation of the drug. The acid and amide forms of the nitrile groups of letrozole were prepared and identified by IR and mass spectroscopic techniques. Subsequently, a simple, precise and selective stability-indicating RPLC method was developed and validated for the determination of letrozole in the presence of its degradation products. Letrozole was subjected to alkali and acid hydrolysis, oxidation, thermal degradation and photo-degradation. The degradation products were well isolated from letrozole. The chromatographic method was achieved using gradient elution of the drug and its degradation products on a reversed phase Zorbax Eclipse C18 column (100mm x 4.6mm, 3.5 μm) using a mobile phase consisting of 0.01M KH₂PO₄and methanol at a flow rate of 1 mL min⁻¹. Quantitation was achieved with UV detection at 230 nm. Linearity, accuracy and precision were found to be acceptable over the concentration range of 0.01-80 μgmL⁻¹. The proposed method was successfully applied to the determination of letrozole in bulk, plasma and in its pharmaceutical preparation.

  5. Characterization of degradation products of silodosin under stress conditions by liquid chromatography/Fourier transform mass spectrometry.

    PubMed

    Pandeti, Sukanya; Narender, Tadigoppula; Prabhakar, Sripadi; Reddy, Thota Jagadeswar

    2017-03-30

    Silodosin (SDN) is a novel α 1 -adrenoceptor antagonist in the treatment of benign prostatic hyperplasia (BPH). The presence of degradation products in a drug affects not only the quality, but also the safety and efficacy of drug formulation. Thus, it is essential to develop an efficient analytical method which could be useful to selectively separate, identify and characterise of all possible degradation products of SDN which is mandatory in drug development processes. SDN was subjected to forced degradation under hydrolytic (acid, base and neutral), oxidative, photolytic and thermal stress conditions. Separation of the drug and degradation products was achieved by a liquid chromatography (LC) method using an Acquity UPLC® BEH C18 (2.1 × 100 mm, 1.7 μm; Waters) column with mobile phase consisting of 0.1% formic acid (FA) in water (A) and 0.1% FA in acetonitrile (ACN) and methanol (MeOH) (1:1) (B) as organic modifier at a flow rate of 0.15 mL min -1 in gradient elution mode. Identification and characterization of the degradation products was performed by mass spectrometry methods using an LTQ-Orbitrap mass spectrometer. A total of five degradation products (DP1 to DP5) were formed under various stress conditions and their structures were proposed with the help of tandem mass spectrometry (MS/MS) experiments and high-resolution mass spectral data. A common degradation product (DP1) was observed under acidic and basic degradation conditions. DP2 was observed under acidic, DP4 and DP5 were observed under basic hydrolytic conditions, whereas DP3 was observed under oxidative conditions. SDN was found to be labile under hydrolytic and oxidative conditions. The structures of all the degradation products were proposed. The most rational mechanisms for the formation of the degradation products under different stress conditions have been established. The proposed method can be effectively used to carry out the determination and detection of SDN and its degradation products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. The sources, fate, and toxicity of chemical warfare agent degradation products.

    PubMed Central

    Munro, N B; Talmage, S S; Griffin, G D; Waters, L C; Watson, A P; King, J F; Hauschild, V

    1999-01-01

    We include in this review an assessment of the formation, environmental fate, and mammalian and ecotoxicity of CW agent degradation products relevant to environmental and occupational health. These parent CW agents include several vesicants: sulfur mustards [undistilled sulfur mustard (H), sulfur mustard (HD), and an HD/agent T mixture (HT)]; nitrogen mustards [ethylbis(2-chloroethyl)amine (HN1), methylbis(2-chloroethyl)amine (HN2), tris(2-chloroethyl)amine (HN3)], and Lewisite; four nerve agents (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), tabun (GA), sarin (GB), and soman (GD)); and the blood agent cyanogen chloride. The degradation processes considered here include hydrolysis, microbial degradation, oxidation, and photolysis. We also briefly address decontamination but not combustion processes. Because CW agents are generally not considered very persistent, certain degradation products of significant persistence, even those that are not particularly toxic, may indicate previous CW agent presence or that degradation has occurred. Of those products for which there are data on both environmental fate and toxicity, only a few are both environmentally persistent and highly toxic. Major degradation products estimated to be of significant persistence (weeks to years) include thiodiglycol for HD; Lewisite oxide for Lewisite; and ethyl methyl phosphonic acid, methyl phosphonic acid, and possibly S-(2-diisopropylaminoethyl) methylphosphonothioic acid (EA 2192) for VX. Methyl phosphonic acid is also the ultimate hydrolysis product of both GB and GD. The GB product, isopropyl methylphosphonic acid, and a closely related contaminant of GB, diisopropyl methylphosphonate, are also persistent. Of all of these compounds, only Lewisite oxide and EA 2192 possess high mammalian toxicity. Unlike other CW agents, sulfur mustard agents (e.g., HD) are somewhat persistent; therefore, sites or conditions involving potential HD contamination should include an evaluation of both the agent and thiodiglycol. Images Figure 1 Figure 3 Figure 5 PMID:10585900

  7. Investigating the chlorination of acidic pharmaceuticals and by-product formation aided by an experimental design methodology.

    PubMed

    Quintana, José Benito; Rodil, Rosario; López-Mahía, Purificación; Muniategui-Lorenzo, Soledad; Prada-Rodríguez, Darío

    2010-01-01

    The degradation of seven acidic drugs and two metabolites during chlorination was investigated by liquid chromatography-mass spectrometry (LC-MS). A triple-quadrupole (QqQ) system was used to follow the time course of the pharmaceuticals and by-products, while a quadrupole time-of-flight (Q-TOF) system was also used for the identification of the by-products. Under strong chlorination conditions (10mg/L Cl(2), 24h), only four of the target compounds were significantly degraded: salicylic acid, naproxen, diclofenac and indomethacine. The degradation kinetics of these four compounds were investigated at different concentrations of chlorine, bromide and pH by means of a Box-Behnken experimental design. Depending on these factors, measured pseudo-first order half-lives were in the ranges: 23-573h for salicylic acid, 13-446min for naproxen, 5-328min for diclofenac and 0.4-13.4min for indomethacine. Also, it was observed that chlorine concentration was the overall most significant factor, followed by the bromide concentration (except for indomethacine), resulting in increased degradation kinetics as they are increased. The degradation path of salicylic acid, naproxen and diclofenac consisted of aromatic substitution of one or two hydrogens by chlorine and/or bromide. Moreover, for diclofenac, two other by-products corresponding to a decarboxylation/hydroxylation pathway from the monohalogenated products were also identified. On the other hand, indomethacine degradation did not lead to halogenation products but to oxidation ones. The investigation of these by-products in real samples by LC-MS/MS (QqQ) showed that the halogenated derivates of salicylic acid occurred in all the drinking water and wastewater samples analysed.

  8. Biodegradation of 5-chloro-2-picolinic acid by novel identified co-metabolizing degrader Achromobacter sp. f1.

    PubMed

    Wu, Zhi-Guo; Wang, Fang; Ning, Li-Qun; Stedtfeld, Robert D; Yang, Zong-Zheng; Cao, Jing-Guo; Sheng, Hong-Jie; Jiang, Xin

    2017-06-01

    Several bacteria have been isolated to degrade 4-chloronitrobenzene. Degradation of 4-chloronitrobenzene by Cupriavidus sp. D4 produces 5-chloro-2-picolinic acid as a dead-end by-product, a potential pollutant. To date, no bacterium that degrades 5-chloro-2-picolinic acid has been reported. Strain f1, isolated from a soil polluted by 4-chloronitrobenzene, was able to co-metabolize 5-chloro-2-picolinic acid in the presence of ethanol or other appropriate carbon sources. The strain was identified as Achromobacter sp. based on its physiological, biochemical characteristics, and 16S rRNA gene sequence analysis. The organism completely degraded 50, 100 and 200 mg L -1 of 5-chloro-2-picolinic acid within 48, 60, and 72 h, respectively. During the degradation of 5-chloro-2-picolinic acid, Cl - was released. The initial metabolic product of 5-chloro-2-picolinic acid was identified as 6-hydroxy-5-chloro-2-picolinic acid by LC-MS and NMR. Using a mixed culture of Achromobacter sp. f1 and Cupriavidus sp. D4 for degradation of 4-chloronitrobenzen, 5-chloro-2-picolinic acid did not accumulate. Results infer that Achromobacter sp. f1 can be used for complete biodegradation of 4-chloronitrobenzene in remedial applications.

  9. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Production of Insecticide Degradates in Juices: Implications for Risk Assessment.

    PubMed

    Radford, Samantha A; Panuwet, Parinya; Hunter, Ronald E; Barr, Dana Boyd; Ryan, P Barry

    2016-06-08

    This study was designed to observe the production of degradates of two organophosphorus insecticides and one pyrethroid insecticide in beverages. Purified water, white grape juice, apple juice, and red grape juice were fortified with 500 ng/g malathion, chlorpyrifos, and permethrin, and aliquots were extracted for malathion dicarboxylic acid (MDA), 3,5,6-trichloro-2-pyridinol (TCPy), and 3-phenoxybenzoic acid (3-PBA) several times over a 15 day period of being stored in the dark at 2.5 °C. Overall, first-order kinetics were observed for production of MDA, and statistically significant production of TCPy was also observed. Statistically significant production of 3-phenoxybenzoic acid was not observed. Results indicate that insecticides degrade in food and beverages, and this degradation may lead to preexisting insecticide metabolites in the beverages. Therefore, it is suggested that caution should be exercised when using urinary insecticide metabolites to assess exposure and risk.

  11. D-Galacturonic acid as a highly reactive compound in nonenzymatic browning. 1. Formation of browning active degradation products.

    PubMed

    Bornik, Maria-Anna; Kroh, Lothar W

    2013-04-10

    Thermal treatment of an aqueous solution of D-galacturonic acid at pH 3, 5, and 8 led to rapid browning of the solution and to the formation of carbocyclic compounds such as reductic acid (2,3-dihydroxy-2-cyclopenten-1-one), DHCP (4,5-dihydroxy-2-cyclopenten-1-one), and furan-2-carbaldehyde, as degradation products in weak acidic solution. Studies on their formation revealed 2-ketoglutaraldehyde as their common key intermediate. Norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) is a typical alkaline degradation product and formed after isomerization. Further model studies revealed reductic acid as an important and more browning active compound than furan-2-carbaldehyde, which led to a red color of the model solution. This red-brown color is also characteristic of thermally treated uronic acid solutions.

  12. Mono- and diesters from o-phthalic acid in leachates from different European landfills.

    PubMed

    Jonsson, Susanne; Ejlertsson, Jörgen; Ledin, Anna; Mersiowsky, Ivo; Svensson, Bo H

    2003-02-01

    Leachates from 17 different landfills in Europe were analysed with respect to phthalates, i.e. phthalic acid diesters (PAEs) and their degradation products phthalic acid monoesters (PMEs) and ortho-phthalic acid (PA). Diesters are ubiquitous and the human possible exposure and potential to human health and environment has put them in focus. The aim of this study was to elucidate whether monoesters and phthalic acid could be traced in landfill leachates and in what concentrations they may be found. The results showed that phthalates were present in the majority of the leachates investigated. The monoesters appeared from 1 to 20 microg/L and phthalic acid 2-880 microg/L (one divergent value of 19 mg phthalic acid/L). Their parental diesters were observed from 1 to 460 microg/L. These observed occurrences of degradation products, of all diesters studied, support that they are degraded under the landfill conditions covered by this study. Thus, we have presented strong evidences to conclude that microorganisms in landfills degrade diesters released from formulations in a variety of products, including polyvinyl chloride (PVC) species.

  13. Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid.

    PubMed

    Xie, Xing-Guang; Huang, Chun-Yan; Fu, Wan-Qiu; Dai, Chuan-Chao

    2016-03-01

    The biodegradation potential of sinapic acid, one of the most representative methoxy phenolic pollutants presented in industrial wastewater, was first studied using an endophytic fungus called Phomopsis liquidambari. This strain can effectively degrade sinapic acid in flasks and in soil and the possible biodegradation pathway was first systematically proposed on the basis of the metabolite production patterns and the identification of the metabolites by GC-MS and HPLC-MS. Sinapic acid was first transformed to 2,6-dimethoxy-4-vinylphenol that was further degraded via 4-hydroxy-3,5-dimethoxybenzaldehyde, syringic acid, gallic acid, and citric acid which involved in the continuous catalysis by phenolic acid decarboxylase, laccase, and gallic acid dioxygenase. Moreover, their activities and gene expression levels exhibited a 'cascade induction' response with the changes in metabolic product concentrations and the generation of fungal laccase significantly improved the degradation process. This study is the first report of an endophytic fungus that has great potential to degrade xenobiotic sinapic acid, and also provide a basis for practical application of endophytic fungus in the bioremediation of sinapic acid-contaminated industrial wastewater and soils. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  14. Solid state compatibility study and characterization of a novel degradation product of tacrolimus in formulation.

    PubMed

    Rozman Peterka, Tanja; Grahek, Rok; Hren, Jure; Bastarda, Andrej; Bergles, Jure; Urleb, Uroš

    2015-06-10

    Tacrolimus is macrolide drug that is widely used as a potent immunosuppressant. In the present work compatibility testing was conducted on physical mixtures of tacrolimus with excipients and on compatibility mixtures prepared by the simulation of manufacturing process used for the final drug product preparation. Increase in one major degradation product was detected in the presence of magnesium stearate based upon UHPLC analysis. The degradation product was isolated by preparative HPLC and its structure was elucidated by NMR and MS studies. Mechanism of the formation of this degradation product is proposed based on complementary degradation studies in a solution and structural elucidation data. The structure was proven to be alpha-hydroxy acid which is formed from the parent tacrolimus molecule through a benzilic acid type rearrangement reaction in the presence of divalent metallic cations. Degradation is facilitated at higher pH values. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials--determination of intermediates and reaction pathways.

    PubMed

    Doll, Tusnelda E; Frimmel, Fritz H

    2004-02-01

    The light-induced degradation of clofibric acid, carbamazepine, iomeprol and iopromide under simulated solar irradiation has been investigated in aqueous solutions suspended with different TiO2 materials (P25 and Hombikat UV100). Kinetic studies showed that P25 had a better photocatalytic activity for clofibric acid and carbamazepine than Hombikat UV100. For photocatalytic degradation of iomeprol Hombikat UV100 was more suitable than P25. The results can be explained by the higher adsorption capacity of Hombikat UV100 for iomeprol. The study also focuses on the identification and quantification of possible degradation products. The degradation process was monitored by determination of sum parameters and inorganic ions. In case of clofibric acid various aromatic and aliphatic degradation products have been identified and quantified. A possible multi-step degradation scheme for clofibric acid is proposed. This study proves the high potential of the photocatalytic oxidation process to transform and mineralize environmentally relevant pharmaceuticals and contrast media in water.

  16. Eicosapentaenoic acid and docosahexaenoic acid increase the degradation of amyloid-β by affecting insulin-degrading enzyme.

    PubMed

    Grimm, Marcus O W; Mett, Janine; Stahlmann, Christoph P; Haupenthal, Viola J; Blümel, Tamara; Stötzel, Hannah; Grimm, Heike S; Hartmann, Tobias

    2016-12-01

    Omega-3 polyunsaturated fatty acids (PUFAs) have been proposed to be highly beneficial in Alzheimer's disease (AD). AD pathology is closely linked to an overproduction and accumulation of amyloid-β (Aβ) peptides as extracellular senile plaques in the brain. Total Aβ levels are not only dependent on its production by proteolytic processing of the amyloid precursor protein (APP), but also on Aβ-clearance mechanisms, including Aβ-degrading enzymes. Here we show that the omega-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increase Aβ-degradation by affecting insulin-degrading enzyme (IDE), the major Aβ-degrading enzyme secreted into the extracellular space of neuronal and microglial cells. The identification of the molecular mechanisms revealed that EPA directly increases IDE enzyme activity and elevates gene expression of IDE. DHA also directly stimulates IDE enzyme activity and affects IDE sorting by increasing exosome release of IDE, resulting in enhanced Aβ-degradation in the extracellular milieu. Apart from the known positive effect of DHA in reducing Aβ production, EPA and DHA might ameliorate AD pathology by increasing Aβ turnover.

  17. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone.

  18. A study of the degradation of organophosphorus pesticides in river waters and the identification of their degradation products by chromatography coupled with mass spectrometry.

    PubMed

    Zhao, Xueheng; Hwang, Huey-Min

    2009-05-01

    The degradation of selected organophosphorus pesticides (OPs), i.e., malathion and parathion, in river water, has been studied with solar simulator irradiation. The degradation of OPs and formation of degradation products were determined by chromatography coupled with mass spectrometry analysis. The effect of a photosensitizer, i.e., riboflavin, on the photolysis of OPs in a river-water environment was examined. There was no significant increase in the degradation rate in the presence of the photosensitizer. Degradation products of the OPs were identified with gas chromatography coupled with mass spectrometry (GC-MS) after derivatization by pentafluorobenzyl bromide (PFBB) and with high-performance liquid chromatography-mass spectrometry (HPLC-MS) with electrospray (ESI) or atomospheric pressure chemical ionization (APCI). Malaoxon, paraoxon, 4-nitrophenol, aminoparathion, O,O-dimethylthiophosphoric acid, and O,O-dimethyldithiophosphoric acid, have been separated and identified as the degradation products of malathion and parathion after photolysis in river water. Based on the identified transformation products, a rational degradation pathway in river water for both OPs is proposed. The identities of these products can be used to evaluate the toxic effects of the OPs and their transformation products on natural environments.

  19. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water.

    PubMed

    Zhu, Junjun; Shi, Linli; Zhang, Lingling; Xu, Yong; Yong, Qiang; Ouyang, Jia; Yu, Shiyuan

    2016-10-01

    The difference in the enzymatic hydrolysis yield of acid-catalyzed steam-exploded corn stover (ASC) before and after washing with water reached approximately 15 % under the same conditions. The reasons for the difference in the yield between ASC and washed ASC (wASC) were determined through the analysis of the composition of ASC prehydrolyzate and sugar concentration of enzymatic hydrolyzate. Salts produced by neutralization (CaSO4, Na2SO4, K2SO4, and (NH4)2SO4), sugars (polysaccharides, oligosaccharides, and monosaccharides), sugar-degradation products (weak acids and furans), and lignin-degradation products (ethyl acetate extracts and nine main lignin-degradation products) were back-added to wASC. Results showed that these products, except furans, exerted negative effect on enzymatic hydrolysis. According to the characteristics of acid-catalyzed steam explosion pretreatment, the five sugar-degradation products' mixture and salts [Na2SO4, (NH4)2SO4] showed minimal negative inhibition effect on enzymatic hydrolysis. By contrast, furans demonstrated a promotion effect. Moreover, soluble sugars, such as 13 g/L xylose (decreased by 6.38 %), 5 g/L cellobiose (5.36 %), 10 g/L glucose (3.67 %), as well as lignin-degradation products, and ethyl acetate extracts (4.87 %), exhibited evident inhibition effect on enzymatic hydrolysis. Therefore, removal of soluble sugars and lignin-degradation products could effectively promote the enzymatic hydrolysis performance.

  20. Ultra-high-performance liquid chromatography/tandem high-resolution mass spectrometry analysis of sixteen red beverages containing carminic acid: identification of degradation products by using principal component analysis/discriminant analysis.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Marengo, Emilio

    2015-01-15

    The study investigates the sunlight photodegradation process of carminic acid, a natural red colourant used in beverages. For this purpose, both carminic acid aqueous standard solutions and sixteen different commercial beverages, ten containing carminic acid and six containing E120 dye, were subjected to photoirradiation. The results show different patterns of degradation, not only between the standard solutions and the beverages, but also from beverage to beverage. Due to the different beverage recipes, unpredictable reactions take place between the dye and the other ingredients. To identify the dye degradation products in a very complex scenario, a methodology was used, based on the combined use of principal component analysis with discriminant analysis and ultra-high-performance liquid chromatography coupled with tandem high resolution mass spectrometry. The methodology is unaffected by beverage composition and allows the degradation products of carminic acid dye to be identified for each beverage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impact of CO2-solvent separators on the degradation of benzyl-2,3-dihydroxypiperidine-1-carboxylate during preparative supercritical fluid chromatographic (SFC) purification.

    PubMed

    Asokan, Kathiravan; Naidu, Harshavardhan; Madam, Ratalababu; Shaikh, Khaja Mohiuddin; Reddy, Manjunath; Kumar, Hemantha; Shirude, Pravin S; Rajendran, Muruganantham; Sarabu, Ramakanth; Wu, Dauh-Rurng; Bajpai, Lakshmikant; Zhang, Yingru

    2017-12-29

    During a preparative separation of the cis enantiomeric pair of benzyl-2,3-dihydroxypiperidine-1-carboxylate using supercritical-fluid chromatography (SFC) with methanol modifier, significant degradation of the products in the collected fractions was observed when a Waters SFC-350 ® (Milford, MA, USA) was used, but same was not observed when a Waters SFC-80q ® (Milford, MA, USA) was used. Through a systematic investigation, we discovered that the compound degraded over time under an acidic condition created by the formation of methyl carbonic acid from methanol and CO 2. The extent of the product degradation was dependent on the time and the concentration of CO 2 remained in the product fraction, which was governed by the efficiency of CO 2 -methanol separation during the fraction collection. Hence, we demonstrated that the different designs of CO 2 -solvent separator (high pressurized cyclone in Waters SFC-350 ® and low-pressurized vortexing separator in Waters SFC-80q ®® ) had a significant impact on the degradation of an acid-sensitive compound. The acidity caused by CO 2 in methanol was supported by diminished degradation after a nitrogen purging or after neutralizing the collected fractions with a base. Three different solutions to overcome the degradation problem of the acid sensitive compounds using SFC-350 ® with the high pressurized separator were investigated and demonstrated. The degraded products were isolated as four enantiomers and their relative stereochemistry were established based on 2D NMR data along with the plausible mechanism of degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling

    DOE PAGES

    Galan, Hitos; Zarzana, Christopher A.; Wilden, Andreas; ...

    2015-09-15

    The stability against gamma radiation of MeTODGA (methyl tetraoctyldiglycolamide) and Me2TODGA (dimethyl tetraoctyldiglycolamide), derivatives from the well-known extractant TODGA (N,N,N',N';-tetraoctyldiglycolamide), were studied and compared. Solutions of MeTODGA and Me2TODGA in alkane diluents were subjected to 60Co γ-irradiation in the presence and absence of nitric acid and analyzed using LC-MS to determine their rates of radiolytic concentration decrease, as well as to identify radiolysis products. The results of product identification from three different laboratories are compared and found to be in good agreement. The diglycolamide (DGA) concentrations decreased exponentially with increasing absorbed dose. The MeTODGA degradation rate constants (dose constants) weremore » uninfluenced by the presence of nitric acid, but the acid increased the rate of degradation for Me2TODGA. The degradation products formed by irradiation are also initially produced in greater amounts in acid-contacted solution, but products may also be degraded by continued radiolysis. As a result, the identified radiolysis products suggest that the weakest bonds are those in the diglycolamide center of these molecules.« less

  3. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties.

  4. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.

    PubMed

    Hong, Chang-Young; Park, Se-Yeong; Kim, Seon-Hong; Lee, Su-Yeon; Choi, Won-Sil; Choi, In-Gyu

    2016-10-01

    This study was carried out to better understand the characteristic modification mechanisms of monolignols by enzyme system of Abortiporus biennis and to induce the degradation of monolignols. Degradation and polymerization of monolignols were simultaneously induced by A. biennis. Whole cells of A. biennis degraded coniferyl alcohol to vanillin and coniferyl aldehyde, and degraded sinapyl alcohol to 2,6-dimethoxybenzene- 1,4-diol, with the production of dimers. The molecular weight of monolignols treated with A. biennis increased drastically. The activities of lignin degrading enzymes were monitored for 24 h to determine whether there was any correlation between monolignol biomodification and ligninolytic enzymes. We concluded that complex enzyme systems were involved in the degradation and polymerization of monolignols. To degrade monolignols, ascorbic acid was added to the culture medium as a reducing agent. In the presence of ascorbic acid, the molecular weight was less increased in the case of coniferyl alcohol, while that of sinapyl alcohol was similar to that of the control. Furthermore, the addition of ascorbic acid led to the production of various degraded compounds: syringaldehyde and acid compounds. Accordingly, these results demonstrated that ascorbic acid prevented the rapid polymerization of monolignols, thus stabilizing radicals generated by enzymes of A. biennis. Thereafter, A. biennis catalyzed the oxidation of stable monolignols. As a result, ascorbic acid facilitated predominantly monolignols degradation by A. biennis through the stabilization of radicals. These findings showed outstanding ability of A. biennis to modify the lignin compounds rapidly and usefully.

  5. Acid-degradable polyurethane particles for protein-based vaccines

    PubMed Central

    Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.

    2009-01-01

    Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254

  6. Gibberellic acid promoting phytic acid degradation in germinating soybean under calcium lactate treatment.

    PubMed

    Hui, Qianru; Wang, Mian; Wang, Pei; Ma, Ya; Gu, Zhenxin; Yang, Runqiang

    2018-01-01

    Phytic acid as a phosphorus storage vault provides phosphorus for plant development. It is an anti-nutritional factor for humans and some animals. However, its degradation products lower inositol phosphates have positive effects on human health. In this study, the effect of gibberellic acid (GA) on phytic acid degradation under calcium lactate (Ca) existence was investigated. The results showed that Ca + GA treatment promoted the growth status, hormone metabolism and phytic acid degradation in germinating soybean. At the same time, the availability of phosphorus, the activity of phytic acid degradation-associated enzyme and phosphoinositide-specific phospholipase C (PI-PLC) increased. However, the relative genes expression of phytic acid degradation-associated enzymes did not vary in accordance with their enzymes activity. The results revealed that GA could mediate the transport and function of calcium and a series of physiological and biochemical changes to regulate phytic acid degradation of soybean sprouts. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, J.; Smith, R.C.

    Uric acid has been proposed to be an important antioxidant and free radical scavenger in humans. Of the purine and pyrimidine compounds examined in this study, uric acid showed the greatest susceptibility to ozone-induced degradation. The parent compounds, purine and pyrimidine, were more resistant to ozonation than were the nucleobases. When the degradation of OH-substituted purines was examined, it was found that the more OH groups on the purine ring, the more readily the purine was degraded. Urea and allantoin were identified as degradation products of uric acid. The relative rates of nucleobase degradation in the presence and absence ofmore » uric acid were compared. Uric acid protected thymine, guanine, and uracil from degradation by ozone. In this system uric acid was found to protect the nucleobases as effectively as reduced glutathione.« less

  8. Evaluation of degradation of antibiotic tetracycline in pig manure by electron beam irradiation.

    PubMed

    Cho, Jae-Young

    2010-04-01

    This study was carried out to evaluate the degradation efficiency and intermediate products of the tetracycline from artificially contaminated pig manure using of electron beam irradiation as a function of the absorbed dose. The degradation efficiency of tetracycline was 42.77% at 1 kGy, 64.20% at 3 kGy, 77.83% at 5 kGy, and 90.50% at 10 kGy. The initial concentration of tetracycline (300 mg kg(-1)) in pig manure decreased significantly to 24.2 +/- 5.3 mg kg(-1) after electron beam irradiation at 10 kGy. The radiolytic degradation products of tetracycline were 1,4-benzenedicarboxylic acid, hexadecanoic acid, 9-octadecenamide, 11-octadecenamide, and octadecanoic acid.

  9. Identification of Unsaturated and 2H Polyfluorocarboxylate Homologous Series and Their Detection in Environmental Samples and as Polymer Degradation Products

    EPA Science Inventory

    A pair of homologous series of polyfluorinated degradation products have been identified, both having structures similar to perfluorocarboxylic acids but (i) having a H substitution for F on the α carbon for 2H polyfluorocarboxylic acids (2HPFCAs) and (ii) bearing a double ...

  10. Exploring the Degradation of Gallotannins Catalyzed by Tannase Produced by Aspergillus niger GH1 for Ellagic Acid Production in Submerged and Solid-State Fermentation.

    PubMed

    Chávez-González, Mónica L; Guyot, Sylvain; Rodríguez-Herrera, Raul; Prado-Barragán, Arely; Aguilar, Cristóbal N

    2018-06-01

    Due to great interest on producing bioactive compounds for functional foods and biopharmaceuticals, it is important to explore the microbial degradation of potential sources of target biomolecules. Gallotannins are polyphenols present in nature, an example of them is tannic acid which is susceptible to enzymatic hydrolysis. This hydrolysis is performed by tannase or tannin acyl hydrolase, releasing in this way, biomolecules with high-added value. In the present study, chemical profiles obtained after fungal degradation of tannic acid under two bioprocesses (submerged fermentation (SmF) and solid state fermentation (SSF)) were determined. In both fermentation systems (SmF and SSF), Aspergillus niger GH1 strain and tannic acid as a sole carbon source and inducer were used (the presence of tannic acid promotes production of enzyme tannase). In case of SSF, polyurethane foam (PUF) was used like as support of fermentation; culture medium only was used in case of submerged fermentation. Fermentation processes were monitored during 72 h; samples were taken kinetically every 8 h; and all extracts obtained were partially purified to obtain polyphenolic fraction and then were analyzed by liquid chromatography-mass spectrometry (LC-MS). Molecules like gallic acid and n-galloyl glucose were identified as intermediates in degradation of tannic acid; during SSF was identified ellagic acid production. The results obtained in this study will contribute to biotechnological production of ellagic acid.

  11. Degradation of malathion by salt-marsh microorganisms.

    PubMed Central

    Bourquin, A W

    1977-01-01

    Numerous bacteria from a salt-marsh environment are capable of degrading malathion, an organophosphate insecticide, when supplied with additional nutrients as energy and carbon sources. Seven isolates exhibited ability (48 to 90%) to degrade malathion as a sole carbon source. Gas and thin-layer chromatography and infrared spectroscopy confirmed malathion to be degraded via malathion-monocarboxylic acid to the dicarboxylic acid and then to various phosphothionates. These techniques also identified desmethyl-malathion, phosphorthionates, and four-carbon dicarboxylic acids as degradation products formed as a result of phosphatase activity. PMID:192147

  12. Development and Validation of a Stability-Indicating Assay of Etofenamate by RP-HPLC and Characterization of Degradation Products

    PubMed Central

    Peraman, Ramalingam; Nayakanti, Devanna; Dugga, Hari Hara Theja; Kodikonda, Sudhakara

    2013-01-01

    A validated stability-indicating RP-HPLC method for etofenamate (ETF) was developed by separating its degradation products on a C18 (250 mm × 4.6 mm 5 μm) Qualisil BDS column using a phosphate buffer (pH-adjusted to 6.0 with orthophosphoric acid) and methanol in the ratio of 20:80 % v/v as the mobile phase at a flow rate of 1.0 mL/min. The column effluents were monitored by a photodiode array detector set at 286 nm. The method was validated in terms of specificity, linearity, accuracy, precision, detection limit, quantification limit, and robustness. Forced degradation of etofenamate was carried out under acidic, basic, thermal, photo, and peroxide conditions and the major degradation products of acidic and basic degradation were isolated and characterized by 1H-NMR, 13C-NMR, and mass spectral studies. The mass balance of the method varied between 92–99%. PMID:24482770

  13. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto

    PubMed Central

    Kulik, Tomasz; Stuper-Szablewska, Kinga; Bilska, Katarzyna; Buśko, Maciej; Ostrowska-Kołodziejczak, Anna; Załuski, Dariusz; Perkowski, Juliusz

    2017-01-01

    Plant-derived compounds limiting mycotoxin contamination are currently of major interest in food and feed production. However, their potential application requires an evaluation of their effects on fungal secondary metabolism and membrane effects. In this study, different strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to trans-cinnamic and chlorogenic acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either to their conversion or degradation. trans-Cinnamic acid was converted to caffeic and ferulic acids, while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to protocatechuic acid. Fungal-derived trans-cinnamic acid, as the first intermediate of the shikimate pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of the conversion of trans-cinnamic acid. Exogenous trans-cinnamic and chlorogenic acid displayed the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids showed different effects on ergosterol biosynthesis by fungi. It was found that the production of this membrane sterol was stimulated by trans-cinnamic acid, while chlorogenic acid negatively impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic acids by Fusaria for the first time. PMID:28640190

  14. trans-Cinnamic and Chlorogenic Acids Affect the Secondary Metabolic Profiles and Ergosterol Biosynthesis by Fusarium culmorum and F. graminearum Sensu Stricto.

    PubMed

    Kulik, Tomasz; Stuper-Szablewska, Kinga; Bilska, Katarzyna; Buśko, Maciej; Ostrowska-Kołodziejczak, Anna; Załuski, Dariusz; Perkowski, Juliusz

    2017-06-22

    Plant-derived compounds limiting mycotoxin contamination are currently of major interest in food and feed production. However, their potential application requires an evaluation of their effects on fungal secondary metabolism and membrane effects. In this study, different strains of Fusarium culmorum and F. graminearum sensu stricto were exposed to trans -cinnamic and chlorogenic acids on solid YES media. Fusaria produced phenolic acids, whose accumulation was lowered by exogenous phenolic compounds. In addition, fungi reduced exogenous phenolic acids, leading either to their conversion or degradation. trans -Cinnamic acid was converted to caffeic and ferulic acids, while chlorogenic acid was degraded to caffeic acid. The latter underwent further degradation to protocatechuic acid. Fungal-derived trans -cinnamic acid, as the first intermediate of the shikimate pathway, increased after chlorogenic acid treatment, presumably due to the further inhibition of the conversion of trans -cinnamic acid. Exogenous trans -cinnamic and chlorogenic acid displayed the inhibition of mycotoxin production by Fusaria, which appeared to be largely dependent on the phenolic compound and its concentration and the assayed strain. Exogenous phenolic acids showed different effects on ergosterol biosynthesis by fungi. It was found that the production of this membrane sterol was stimulated by trans -cinnamic acid, while chlorogenic acid negatively impacted ergosterol biosynthesis, suggesting that phenolic acids with stronger antifungal activities may upregulate ergosterol biosynthesis by Fusaria. This paper reports on the production of phenolic acids by Fusaria for the first time.

  15. The bioactivity of dietary anthocyanins is likely to be mediated by their degradation products.

    PubMed

    Kay, Colin D; Kroon, Paul A; Cassidy, Aedin

    2009-05-01

    To date the in vitro mechanistic bioactivity of anthocyanins has been exclusively explored using aglycones and glycoside conjugates, despite a lack of evidence establishing these as the biologically available forms. We conducted intestinal epithelial cell (Caco-2 cells) culture experiments, which indicated that after a 4 h incubation of anthocyanins in cell-free culture media (DMEM), 57% of the initial cyanidin-3-glucoside (C3G) and 96% of cyanidin had degraded. The level of degradation was not statistically different from that of cultured cell incubations, suggesting that degradation was spontaneous. Degradation products were identified as protocatechuic acid (PCA) and phloroglucinaldehyde (PGA), and were confirmed in two other buffer matrices (phosphate and Hank's buffers). In cultured cell media the degradation products PCA and PGA were metabolised to glucuronide and sulphate conjugates, as indicated by both enzyme hydrolysis (sulphatase and glucuronidase treatments) and MS (PCA and PGA m/z = 155; sulphate = 235; glucuronide = 331). These data suggest a significant proportion of intestinal metabolites of anthocyanins are likely to be conjugates of their degradation products. Future efforts to establish the biological activities of anthocyanins should therefore include the investigation of phenolic acid and aldehyde products of degradation, along with their respective metabolites.

  16. Bioavailable Concentrations of Delphinidin and Its Metabolite, Gallic Acid, Induce Antioxidant Protection Associated with Increased Intracellular Glutathione in Cultured Endothelial Cells

    PubMed Central

    Goszcz, Katarzyna; Deakin, Sherine J.; Duthie, Garry G.; Stewart, Derek

    2017-01-01

    Despite limited bioavailability and rapid degradation, dietary anthocyanins are antioxidants with cardiovascular benefits. This study tested the hypothesis that the antioxidant protection conferred by the anthocyanin, delphinidin, is mediated by modulation of endogenous antioxidant defences, driven by its degradation product, gallic acid. Delphinidin was found to degrade rapidly (t1/2 ~ 30 min), generating gallic acid as a major degradation product. Both delphinidin and gallic acid generated oxygen-centred radicals at high (100 μM) concentrations in vitro. In a cultured human umbilical vein endothelial cell model of oxidative stress, the antioxidant protective effects of both delphinidin and gallic acid displayed a hormesic profile; 100 μM concentrations of both were cytotoxic, but relatively low concentrations (100 nM–1 μM) protected the cells and were associated with increased intracellular glutathione. We conclude that delphinidin is intrinsically unstable and unlikely to confer any direct antioxidant activity in vivo yet it offered antioxidant protection to cells at low concentrations. This paradox might be explained by the ability of the degradation product, gallic acid, to confer benefit. The findings are important in understanding the mode of protection conferred by anthocyanins and reinforce the necessity to conduct in vitro experiments at biologically relevant concentrations. PMID:29081896

  17. Awakening sleeping beauty: production of propionic acid in Escherichia coli through the sbm operon requires the activity of a methylmalonyl-CoA epimerase.

    PubMed

    Gonzalez-Garcia, Ricardo Axayacatl; McCubbin, Tim; Wille, Annalena; Plan, Manuel; Nielsen, Lars Keld; Marcellin, Esteban

    2017-07-17

    Propionic acid is used primarily as a food preservative with smaller applications as a chemical building block for the production of many products including fabrics, cosmetics, drugs, and plastics. Biological production using propionibacteria would be competitive against chemical production through hydrocarboxylation of ethylene if native producers could be engineered to reach near-theoretical yield and good productivity. Unfortunately, engineering propionibacteria has proven very challenging. It has been suggested that activation of the sleeping beauty operon in Escherichia coli is sufficient to achieve propionic acid production. Optimising E. coli production should be much easier than engineering propionibacteria if tolerance issues can be addressed. Propionic acid is produced in E. coli via the sleeping beauty mutase operon under anaerobic conditions in rich medium via amino acid degradation. We observed that the sbm operon enhances amino acids degradation to propionic acid and allows E. coli to degrade isoleucine. However, we show here that the operon lacks an epimerase reaction that enables propionic acid production in minimal medium containing glucose as the sole carbon source. Production from glucose can be restored by engineering the system with a methylmalonyl-CoA epimerase from Propionibacterium acidipropionici (0.23 ± 0.02 mM). 1-Propanol production was also detected from the promiscuous activity of the native alcohol dehydrogenase (AdhE). We also show that aerobic conditions are favourable for propionic acid production. Finally, we increase titre 65 times using a combination of promoter engineering and process optimisation. The native sbm operon encodes an incomplete pathway. Production of propionic acid from glucose as sole carbon source is possible when the pathway is complemented with a methylmalonyl-CoA epimerase. Although propionic acid via the restored succinate dissimilation pathway is considered a fermentative process, the engineered pathway was shown to be functional under anaerobic and aerobic conditions.

  18. [Inhibition of Linseed Oil Autooxidation by Essential Oils and Extracts from Spice Plants].

    PubMed

    Misharina, T A; Alinkina, E S; Terenina, M B; Krikunova, N I; Kiseleva, V I; Medvedeva, I B; Semenova, M G

    2015-01-01

    Clove bud essential oil, extracts from ginger, pimento and black pepper, or ascorbyl palmytate were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids in linseed oil. Different methods were used to estimate antioxidant efficiency. These methods are based on the following parameters: peroxide values; peroxide concentration; content of degradation products of unsaturated fatty acid peroxides, which acted with thiobarbituric acid; diene conjugate content; the content of volatile compounds that formed as products of unsaturated fatty acid peroxide degradation; and the composition of methyl esters of fatty acids in samples of oxidized linseed oil.

  19. [Lactic acid bacteria proteinase and quality of fermented dairy products--A review].

    PubMed

    Zhang, Shuang; Zhang, Lanwei; Han, Xue

    2015-12-04

    Lactic acid bacteria (LAB) could synthesize cell envelope proteinase with weak activity, which primarily degrades casein. In addition to its crucial role in the rapid growth of LAB in milk, LAB proteinases are also of industrial importance due to their contribution to the formation of texture and flavor of many fermented dairy products. The proteolytic system, properties of proteinase, the degradation product of casein and its effect on the quality of fermented dairy products were reviewed in this manuscript.

  20. Spectrofluorometry, thin layer chromatography, and column high-performance liquid chromatography determination of rabeprazole sodium in the presence of its acidic and oxidized degradation products.

    PubMed

    Osman, Afaf Osman; Osman, Afaf; Osman, Mohamed

    2009-01-01

    The objective of this study is to develop validated stability-indicating spectrofluorometric, TLC-densitometric, and HPLC methods for the determination of rabeprazole sodium and its degradation products. The first method was based on measuring the fluorescence intensity of the drug at 416 and 311 nm for the emission and at 320 and 274 nm for the excitation for acid and oxidized solutions, respectively. The second method was based on the separation of the drug from its acidic and oxidized degradation products followed by densitometric measurement of the intact drug spot at 284 nm. The separation was carried out on Fluka TLC sheets of silica gel 60 F254 using isopropyl alcohol--30% ammonia (80 + 2, v/v) mobile phase. The third method was based on HPLC separation of rabeprazole sodium from its acidic and oxidized degradation products on a reversed-phase Waters Nova-Pak C18 column using 0.05 M potassium dihydrogen phosphate-methanol-acetonitrile (5 + 3 + 2, v/v/v) pH 7 +/- 0.2 mobile phase. The proposed procedures were successfully applied for the determination of rabeprazole sodium in pure form, laboratory-prepared mixtures, tablet, and expired batch. The obtained results were statistically compared with those of a reported method and validated according to United States Pharmacopeia guidelines. Two main acidic degradation products of the drug were separated and subjected to IR spectrometry and MS to confirm their structures, and the schemes for their formation were elucidated.

  1. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    PubMed

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  2. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    NASA Astrophysics Data System (ADS)

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  3. Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari.

    PubMed

    Xie, Xing-Guang; Dai, Chuan-Chao

    2015-03-01

    Biodegradation of ferulic acid, by an endophytic fungus called Phomopsis liquidambari was investigated in this study. This strain can use ferulic acid as the sole carbon for growth. Both in mineral salt medium and in soil, more than 97% of added ferulic acid was degraded within 48 h. The metabolites were identified and quantified using GC-MS and HPLC-MS. Ferulic acid was first decarboxylated to 4-vinyl guaiacol and then oxidized to vanillin and vanillic acid, followed by demethylation to protocatechuic acid, which was further degraded through the β-ketoadipate pathway. During degradation, ferulic acid decarboxylase, laccase and protocatechuate 3,4-dioxygenase activities and their gene transcription levels were significantly affected by the variation of substrate and product concentrations. Moreover, ferulic acid degradation was determined to some extent by P. liquidambari laccase. This study is the first report of an endophytic fungus that has a great potential for practical application in ferulic acid-contaminated environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Laccase enzyme detoxifies hydrolysates and improves biogas production from hemp straw and miscanthus.

    PubMed

    Schroyen, Michel; Van Hulle, Stijn W H; Holemans, Sander; Vervaeren, Han; Raes, Katleen

    2017-11-01

    The impact of various phenolic compounds, vanillic acid, ferulic acid, p-coumaric acid and 4-hydroxybenzoic acid on anaerobic digestion of lignocellulosic biomass (hemp straw and miscanthus) was studied. Such phenolic compounds have been known to inhibit biogas production during anaerobic digestion. The different phenolic compounds were added in various concentrations: 0, 100, 500, 1000 and 2000mg/L. A difference in inhibition of biomethane production between the phenolic compounds was noted. Hydrolysis rate, during anaerobic digestion of miscanthus was inhibited up to 50% by vanillic acid, while vanillic acid had no influence on the initial rate of biogas production during the anaerobic digestion of hemp straw. Miscanthus has a higher lignin concentration (12-30g/100gDM) making it less accessible for degradation, and in combination with phenolic compounds released after harsh pretreatments, it can cause severe inhibition levels during the anaerobic digestion, lowering biogas production. To counter the inhibition, lignin degrading enzymes can be used to remove or degrade the inhibitory phenolic compounds. The interaction of laccase and versatile peroxidase individually with the different phenolic compounds was studied to have insight in the polymerization of inhibitory compounds or breakdown of lignocellulose. Hemp straw and miscanthus were incubated with 0, 100 and 500mg/L of the different phenolic compounds for 0, 6 and 24h and pretreated with the lignin degrading enzymes. A laccase pretreatment successfully detoxified the substrate, while versatile peroxidase however was inhibited by 100mg/L of each of the individual phenolic compounds. Finally a combination of enzymatic detoxification and subsequent biogas production showed that a decrease in phenolic compounds by laccase treatment can considerably lower the inhibition levels of the biogas production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. METHOD 535: MEASUREMENT OF CHLOROACETANILIDE AND CHLOROACETAMIDE HERBICIDE DEGRADATES IN DRINKING WATER BY SOLID PHASE EXTRACTION AND LIQUID CHROMATOGRAPHY/TANDEM MASS SPECTROMETRY (LC/MS/MS)

    EPA Science Inventory

    Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. The substitution of the sulfonic acid or the carbonic acid for the chlorine atom great...

  6. Separation and detection of VX and its methylphosphonic acid degradation products on a microchip using indirect laser-induced fluorescence.

    PubMed

    Heleg-Shabtai, Vered; Gratziany, Natzach; Liron, Zvi

    2006-05-01

    The application of indirect LIF (IDLIF) technique for on-chip electrophoretic separation and detection of the nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX) and its major phosphonic degradation products, ethyl methylphosphonic acid (EMPA) and methylphosphonic acid (MPA) was demonstrated. Separation and detection of MPA degradation products of VX and the nerve agent isopropyl methylphosphonofluoridate (GB) are presented. The negatively charged dye eosin was found to be a good fluorescent marker for both the negatively charged phosphonic acids and the positively charged VX, and was chosen as the IDLIF visualization fluorescent dye. Separation and detection of VX, EMPA, and MPA in a simple-cross microchip were completed within less than a minute, and consumed only a 50 pL sample volume. A characteristic system peak that appeared in all IDLIF electropherograms served as an internal standard that increased the reliability of peak identification. The negative peak of both VX and the MPAs is in agreement with indirect detection theory and with previous reports in the literature. The LOD of VX and EMPA by IDLIF was 30 and 37 microM, respectively. Despite the fact that the detection sensitivity is relatively low, the rapid simultaneous on-chip analysis of both VX and its degradation products as well as the separation and detection of the MPA degradation products of both VX and GB, increases detection reliability and may present a choice when sensitivity is not critical compared with speed and simplicity of the assay.

  7. Thermal and catalytic degradation of high and low density polyethylene into fuel oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uddin, Azhar; Koizumi, Kazuo; Sakata, Yusaku

    1996-12-31

    The degradation of four different types of polyethylene (PE) namely high density PE (HDPE), low density PE (LDPE), linear low density PE (LLDPE), and cross-linked PE (XLPE) was carried out at 430 {degrees}C by batch operation using silica-alumina as a solid acid catalyst and thermally without any catalyst. For thermal degradation, both HDPE and XLPE produced significant amount of wax-like compounds and the yield of liquid products were lower than that of LDPE and LLDPE. LDPE and LLDPE also produced small amount of wax-like compounds. Thus the structure of the degrading polymers influenced the product yields. The liquid products frommore » thermal degradation were broadly distributed in the carbon fraction of n-C{sub 5} to n-C{sub 25} (boiling point range, 36-405 C). With silica-alumina, the polyethylenes were converted to liquid products with high yields (77-83 wt%) and without any wax production. The liquid products were distributed in the range of n-C{sub 5} to n-C{sub 20} (Mostly C{sub 5}-C{sub 12}). Solid acid catalyst indiscriminately degraded the various types of polyethylene into light fuel oil. 5 refs., 4 figs., 1 tab.« less

  8. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques.

    PubMed

    Kaushik, Dheeraj; Bansal, Gulshan

    2015-10-01

    Forced degradation study on doxorubicin (DOX) was carried out under hydrolytic condition in acidic, alkaline and neutral media at varied temperatures, as well as under peroxide, thermal and photolytic conditions in accordance with International Conference on Harmonization (ICH) guidelines Q1(R2). It was found extremely unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80 °C, and to oxidation at room temperature. It degraded to four products (O-I-O-IV) in oxidative condition, and to single product (A-I) in acid hydrolytic condition. These products were resolved on a C 8 (150 mm×4.6 mm, 5 µm) column with isocratic elution using mobile phase consisting of HCOONH 4 (10 mM, pH 2.5), acetonitrile and methanol (65:15:20, v/v/v). Liquid chromatography-photodiode array (LC-PDA) technique was used to ascertain the purity of the products noted in LC-UV chromatogram. For their characterization, a six stage mass fragmentation (MS 6 ) pattern of DOX was outlined through mass spectral studies in positive mode of electrospray ionization (+ESI) as well as through accurate mass spectral data of DOX and the products generated through liquid chromatography-time of flight mass spectrometry (LC-MS-TOF) on degraded drug solutions. Based on it, O-I-O-IV were characterized as 3-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 1-hydroxy-9-desacetyldoxorubicin-9-hydroperoxide, 9-desacetyldoxorubicin-9-hydroperoxide and 9-desacetyldoxorubicin, respectively, whereas A-I was characterized as deglucosaminyl doxorubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of doxorubicin were outlined and discussed.

  9. Fungal pretreatment of sweet sorghum bagasse with supplements: improvement in lignin degradation, selectivity and enzymatic saccharification.

    PubMed

    Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh

    2017-06-01

    Sweet sorghum bagasse (SSB) from food processing and agricultural industry has attracted the attention for uses in production of biofuel, enzymes and other products. The alteration in lignocellulolytic enzymes by use of supplements in fungal pretreatment of SSB to achieve higher lignin degradation, selectivity value and enzymatic hydrolysis to fermentable sugar was studied. Fungal strain Coriolus versicolor was selected for pretreatment due to high ligninolytic and low cellulolytic enzyme production resulting in high lignin degradation and selectivity value. SSB was pretreated with supplements of veratryl alcohol, syringic acid, catechol, gallic acid, vanillin, guaiacol, CuSO 4 and MnSO 4 . The best results were obtained with CuSO 4 , gallic acid and syringic acid supplements. CuSO 4 increased the activities of laccase (4.9-fold) and polyphenol oxidase (1.9-fold); gallic acid increased laccase (3.5-fold) and manganese peroxidase (2.5-fold); and syringic acid increased laccase (5.6-fold), lignin peroxidase (13-fold) and arylalcohol oxidase (2.8-fold) resulting in enhanced lignin degradations and selectivity values than the control. Reduced cellulolytic enzyme activities resulted in high cellulose recovery. Enzymatic hydrolysis of pretreated SSB yielded higher sugar due to degradation of lignin and reduced the crystallinity of cellulose. The study showed that supplements could be used to improve the pretreatment process. The results were confirmed by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and thermogravimetric/differential thermogravimetric analysis of SSB.

  10. The degradation of the antitumor agent gemcitabine hydrochloride in an acidic aqueous solution at pH 3.2 and identification of degradation products.

    PubMed

    Jansen, P J; Akers, M J; Amos, R M; Baertschi, S W; Cooke, G G; Dorman, D E; Kemp, C A; Maple, S R; McCune, K A

    2000-07-01

    A study of the degradation kinetics of gemcitabine hydrochloride (2'-deoxy-2',2'-difluorocytidine) in aqueous solution at pH 3.2 was conducted. The degradation of gemcitabine followed pseudo first-order kinetics, and rate constants were determined at four different temperatures. These rates were used to construct an Arrhenius plot from which degradation rates at lower temperatures were extrapolated and activation energy calculated. Four major degradation products were identified. Only one of these degradation products, the uridine analogue of gemcitabine, was a known degradation product of gemcitabine and was identified by comparison with synthesized material. The other three degradation products were isolated and characterized by spectroscopic techniques. Two of these products were determined to be the diastereomeric 6-hydroxy-5, 6-dihydro-2'-deoxy-2',2'-difluorouridines, and the other product was determined to be O(6),5'-cyclo-5,6-dihydro-2'-deoxy-2', 2'-difluorouridine. The mechanisms of formation of these degradation products are discussed.

  11. Determination of fluorotelomer alcohols and their degradation products in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Hongna; Wen, Bei; Hu, Xiaoyu; Wu, Yali; Luo, Lei; Chen, Zien; Zhang, Shuzhen

    2015-07-24

    Degradation of fluorotelomer alcohols (FTOHs) was recognized as an additional source of perfluorocarboxylic acids (PFCAs). Quantification of FTOHs and their degradation products can help shed light on the sources and fates of PFCAs in the environment. In this study, an analytical method was developed for the determination of 6:2 and 8:2 FTOHs, and their degradation products of poly- and perfluorinated acids, including fluorotelomer saturated and unsaturated carboxylic acids (FTCAs and FTUCAs), secondary polyfluorinated alcohols and PFCAs in biosolids-amended soils and plants using ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The extract efficiencies of different methods including ethyl acetate and methanol (MeOH) for FTOHs and acetonitrile, MeOH, methyl tert-butyl ether (MTBE), NaOH-MeOH and NaOH-MTBE for poly- and perfluorinated acids were tested. The results showed that 6:2 and 8:2 FTOHs and their degradation products could be simultaneously and satisfactorily extracted by MeOH, cleaned up by Envi-Carb graphitized carbon and solid phase extraction, respectively, and determined by UPLC-MS/MS separately. NaOH in the extractant caused the conversion of 6:2 FTCA and 8:2 FTCA into the corresponding FTUCAs. The selected methods have matrix recoveries ranged from 52% to 102%, and detection limits of 0.01-0.46ng/g dry weight for FTOHs and their degradation products in soil and plant. The optimized method was applied successfully to quantify FTOHs and their degradation products in two biosolids-amended soils and plants. The total concentrations of FTOHs in the soils were 44.1±5.8 and 82.6±7.1ng/g, and in plants tissues 3.58±0.25 and 8.33±0.66ng/g. The total concentrations of poly- and perfluorinated acids in the soils were 168.0±13.2 and 349.6±11.2ng/g, and in plants tissues 78.0±6.4 and 75.5±5.3ng/g. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Production of 5'-phosphodiesterase by Catharanthus roseus cells promoted by heat-degraded products generated from uronic acid.

    PubMed

    Akimoto-Tomiyama, Chiharu; Aoyagi, Hideki; Ozawa, Tetsuo; Tanaka, Hideo

    2002-01-01

    Polyalginate was autoclaved at 121 degrees C for 20 min and its molecular weight distribution was analyzed. The autoclaved alginate yielded alginate polymer, oligomer and heat degraded products (HDPs). Each of the separated substances promoted 5'-phosphodiesterase (5'-PDase) production in suspension culture of Catharanthus roseus cells. HDPs could also be generated from other uronic acids (galacturonic acid and glucuronic acid) by autoclave treatment. The most effective substance in the HDPs was isolated and characterized as trans-4,5-dihydroxy-2-cyclopenten-1-one (DHCP). The optimal conditions for DHCP production were also established (autoclaving 1 mg/ml monogalacturonic acid [pH 2] at 121 degrees C for 2 h). A combination of oligo-alginate (below 4 kDa) and HDPs significantly promoted the production of 5'-PDase in C. roseus. Based on the above results, a novel alginate complex that gave a 44-fold increase in 5'-PDase production by C. roseus was developed.

  13. New Findings on Aromatic Compounds' Degradation and Their Metabolic Pathways, the Biosurfactant Production and Motility of the Halophilic Bacterium Halomonas sp. KHS3.

    PubMed

    Corti Monzón, Georgina; Nisenbaum, Melina; Herrera Seitz, M Karina; Murialdo, Silvia E

    2018-04-24

    The study of the aromatic compounds' degrading ability by halophilic bacteria became an interesting research topic, because of the increasing use of halophiles in bioremediation of saline habitats and effluents. In this work, we focused on the study of aromatic compounds' degradation potential of Halomonas sp. KHS3, a moderately halophilic bacterium isolated from hydrocarbon-contaminated seawater of the Mar del Plata harbour. We demonstrated that H. sp. KHS3 is able to grow using different monoaromatic (salicylic acid, benzoic acid, 4-hydroxybenzoic acid, phthalate) and polyaromatic (naphthalene, fluorene, and phenanthrene) substrates. The ability to degrade benzoic acid and 4-hydroxybenzoic acid was analytically corroborated, and Monod kinetic parameters and yield coefficients for degradation were estimated. Strategies that may enhance substrate bioavailability such as surfactant production and chemotactic responses toward aromatic compounds were confirmed. Genomic sequence analysis of this strain allowed us to identify several genes putatively related to the metabolism of aromatic compounds, being the catechol and protocatechuate branches of β-ketoadipate pathway completely represented. These features suggest that the broad-spectrum xenobiotic degrader H. sp. KHS3 could be employed as a useful biotechnological tool for the cleanup of aromatic compounds-polluted saline habitats or effluents.

  14. High Modulus Biodegradable Polyurethanes for Vascular Stents: Evaluation of Accelerated in vitro Degradation and Cell Viability of Degradation Products

    PubMed Central

    Sgarioto, Melissa; Adhikari, Raju; Gunatillake, Pathiraja A.; Moore, Tim; Patterson, John; Nagel, Marie-Danielle; Malherbe, François

    2015-01-01

    We have recently reported the mechanical properties and hydrolytic degradation behavior of a series of NovoSorb™ biodegradable polyurethanes (PUs) prepared by varying the hard segment (HS) weight percentage from 60 to 100. In this study, the in vitro degradation behavior of these PUs with and without extracellular matrix (ECM) coating was investigated under accelerated hydrolytic degradation (phosphate buffer saline; PBS/70°C) conditions. The mass loss at different time intervals and the effect of aqueous degradation products on the viability and growth of human umbilical vein endothelial cells (HUVEC) were examined. The results showed that PUs with HS 80% and below completely disintegrated leaving no visual polymer residue at 18 weeks and the degradation medium turned acidic due to the accumulation of products from the soft segment (SS) degradation. As expected the PU with the lowest HS was the fastest to degrade. The accumulated degradation products, when tested undiluted, showed viability of about 40% for HUVEC cells. However, the viability was over 80% when the solution was diluted to 50% and below. The growth of HUVEC cells is similar to but not identical to that observed with tissue culture polystyrene standard (TCPS). The results from this in vitro study suggested that the PUs in the series degraded primarily due to the SS degradation and the cell viability of the accumulated acidic degradation products showed poor viability to HUVEC cells when tested undiluted, however particles released to the degradation medium showed cell viability over 80%. PMID:26000274

  15. Effect of Docosahexaenoic Acid Ingestion on Temporal Change in Urinary Excretion of Mercapturic Acid in ODS Rats.

    PubMed

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2007-11-01

    We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of alpha-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids.

  16. Effect of Docosahexaenoic Acid Ingestion on Temporal Change in Urinary Excretion of Mercapturic Acid in ODS Rats

    PubMed Central

    Sekine, Seiji; Kubo, Kazuhiro; Tadokoro, Tadahiro; Saito, Morio

    2007-01-01

    We hypothesized a suppressive mechanism for docosahexaenoic acid (22:6n-3; DHA)-induced tissue lipid peroxidation in which the degradation products, especially aldehydic compounds, are conjugated with glutathione through catalysis by glutathione S-transferases, and then excreted into urine as mercapturic acids. In the present study, ascorbic acid-requiring ODS rats were fed a diet containing DHA (3.6% of total energy) for 31 days. Lipid peroxides including degradation products and their scavengers in the liver and kidney were determined, and the temporal change in the urinary excretion of mercapturic acids was also measured. The activity of aldehyde dehydrogenase, which catalyzes the oxidation and detoxification of aldehydes, tended to be higher in the liver of DHA-fed rats. The levels of lipid peroxides as measured by thiobarbituric acid-reactive substances and aldehydic compounds were higher and that of α-tocopherol was lower in the liver, and the pattern of temporal changes in the urinary excretion of mercapturic acids was also different between the n-6 linoleic acid and DHA-fed rats. Accordingly, we presume from these results that after dietary DHA-induced lipid peroxidation, a proportion of the lipid peroxidation-derived aldehydic degradation products is excreted into urine as mercapturic acids. PMID:18299714

  17. Degradation kinetics of the antioxidant additive ascorbic acid in packed table olives during storage at different temperatures.

    PubMed

    Montaño, A; Casado, F J; Rejano, L; Sanchez, A H; de Castro, A

    2006-03-22

    The kinetics of ascorbic acid (AA) loss during storage of packed table olives with two different levels of added AA was investigated. Three selected storage temperatures were assayed: 10 degrees C, ambient (20-24 degrees C), and 40 degrees C. The study was carried out in both pasteurized and unpasteurized product. The effect of pasteurization treatment alone on added AA was not significant. In the pasteurized product, in general AA degraded following a first-order kinetics. The activation energy calculated by using the Arrhenius model averaged 9 kcal/mol. For each storage temperature, the increase in initial AA concentration significantly decreased the AA degradation rate. In the unpasteurized product, AA was not detected after 20 days in samples stored at room temperature and AA degradation followed zero-order kinetics at 10 degrees C, whereas at 40 degrees C a second-order reaction showed the best fit. In both pasteurized and unpasteurized product, the low level of initial dehydroascorbic acid disappeared during storage. Furfural appeared to be formed during storage, mainly at 40 degrees C, following zero-order kinetics.

  18. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.

    PubMed

    Ko, Jae-Jung; Shimizu, Yoshihisa; Ikeda, Kazuhiro; Kim, Seog-Ku; Park, Chul-Hwi; Matsui, Saburo

    2009-02-01

    This study is designed to investigate the biodegradation of high molecular weight (HMW) lignin under sulfate reducing conditions. With a continuously mesophilic operated reactor in the presence of co-substrates of cellulose, the changes in HMW lignin concentration and chemical structure were analyzed. The acid precipitable polymeric lignin (APPL) and lignin monomers, which are known as degradation by-products, were isolated and detected. The results showed that HMW lignin decreased and showed a maximum degradation capacity of 3.49 mg/l/day. APPL was confirmed as a polymeric degradation by-product and was accumulated in accordance with HMW lignin reduction. We also observed non-linear accumulation of aromatic lignin monomers such as hydrocinnamic acid. Through our experimental results, it was determined that HMW lignin, when provided with a co-substrate of cellulose, is biodegraded through production of APPL and aromatic monomers under anaerobic sulfate reducing conditions with a co-substrate of cellulose.

  19. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product

    NASA Astrophysics Data System (ADS)

    Tantawy, Mahmoud A.; El-Ragehy, Nariman A.; Hassan, Nagiba Y.; Abdelkawy, Mohamed

    2016-04-01

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D1), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form.

  20. Stability-indicating spectrophotometric methods for determination of the anticoagulant drug apixaban in the presence of its hydrolytic degradation product.

    PubMed

    Tantawy, Mahmoud A; El-Ragehy, Nariman A; Hassan, Nagiba Y; Abdelkawy, Mohamed

    2016-04-15

    Apixaban (a novel anticoagulant agent) was subjected to a stress stability study including acid, alkali, oxidative, photolytic, and thermal degradation. The drug was found to be only liable to acidic and alkaline hydrolysis. The degradation product was then isolated and identified by IR and GC-mass spectrometry. Four spectrophotometric methods, namely; first derivative (D(1)), derivative ratio (DR), ratio difference (RD) and mean centering of ratio spectra (MCR), have been suggested for the determination of apixaban in presence of its hydrolytic degradation product. The proposed methods do not require any preliminary separation step. The accuracy, precision and linearity ranges of the proposed methods were determined, and the methods were validated as per ICH guidelines and the specificity was assessed by analyzing synthetic mixtures containing different percentages of the degradation product with the drug. The developed methods were successfully applied for the determination of apixaban in bulk powder and its tablet dosage form. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Products of hexachlorocyclopentadiene (C-56) in aqueous solution

    USGS Publications Warehouse

    Chou, S.-F.J.; Griffin, R.A.; Chou, I.-Ming; Larson, R.A.

    1987-01-01

    The photodegradation and degradation products of hexachlorocyclopentadiene (C-56) in aqueous solutions were studied in the laboratory. In each case, the half-life of C-56 was less than 4 min when exposed to sunlight. At least eight degradation products were positively or tentatively identified: 2,3,4,4,5-Pentachloro-2-cyclopentenone, hexachloro-2-cyclopentenone and hexachloro-3-cyclopentenone were the primary photodegradation products, and pentachlorocis-2,4-pentadienoic acid, Z- and E-pentachlorobutadiene and tetrachlorobutyne were the secondary degradation products. Dissociation of the primary photolysis products may proceed through corresponding pentadienoic acids to form smaller molecular weight compounds such as pentachlorobutadiene isomers and tetrachlorobutyne. In addition, dimerization of 2,3,4,4,5-pentachloro-2-cyclopentenone to form higher molecular weight compounds such as hexachloroindenone may present a minor route of degradation. The results also indicate that C-56 is highly photoreactive and suggest a possible pathway for the compound's transformation in the environment when exposed to sunlight. ?? 1987.

  2. Degradation of emerging contaminants from water under natural sunlight: The effect of season, pH, humic acids and nitrate and identification of photodegradation by-products.

    PubMed

    Koumaki, Elena; Mamais, Daniel; Noutsopoulos, Constantinos; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S; Eftaxias, Alexander; Stratogianni, Georgia

    2015-11-01

    Both photodegradation and hydrolysis of non-steroidal anti-inflammatory drugs (NSAIDs) and endocrine disrupting chemicals (EDCs) were investigated in order to evaluate their photochemical fate in aquatic environment and to assess the effect of season and specific characteristics of water (pH, humic acids and nitrate concentration) on the removal of target EDCs and NSAIDs through photodegradation. An additional objective was the identification of the photodegradation by-products of specific NSAIDs and their dependence on irradiation time. Selected compounds' transformation was investigated under natural sunlight radiation while control experiments were conducted in the dark. As expected, most of compounds' degradation rate decreased with decreasing light intensity between two different experimental periods. Most of the tested compounds exhibited different rates of degradation during direct and indirect photolysis. The degradation rate of the selected compounds increased in the presence of NO3(-) and the photodegradation rate was higher for some compounds in alkaline than in acidic solution. The effect of humic acids' presence in the water depends on the absorbance spectrum of the compound and the produced photosensitizers. More specifically, humic acids act as inner filter toward most of the selected NSAIDs and as photosensitizers toward most of the EDCs. The results of the irradiation experiments in the presence of both humic acids and NO3(-), indicate that the direct photolysis is much more efficient than indirect photochemical processes. Finally, several degradation by-products of ketoprofen and diclofenac were identified in the samples, exposed to sunlight. The dependence of these by-products on radiation time is also demonstrated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of oxygen and redox oscillation on degradation of cell-associated lipids in surficial marine sediments

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Y. i.; Aller, Robert C.; Lee, Cindy; Wakeham, Stuart G.

    2002-06-01

    Degradation patterns of sedimentary algal lipids were tracked with time under variable redox treatments designed to mimic conditions in organic-rich, bioturbated deposits. Uniformly 13C-labeled algae were mixed with Long Island Sound surface muddy sediments and exposed to different redox regimes, including continuously oxic and anoxic, and oscillated oxic: anoxic conditions. Concentrations of several 13C-labeled algal fatty acids (16:1, 16:0 and 18:1), phytol and an alkene were measured serially. Results showed a large difference (∼10×) in first-order degradation rate constants of cell-associated lipids between continuously oxic and anoxic conditions. Exposure to oxic conditions increased the degradation of cell-associated lipids, and degradation rate constants were positive functions (linear or nonlinear) of the fraction of time sediments were oxic. Production of two new 13C-labeled compounds (iso-15:0 fatty acid and hexadecanol) further indicated that redox conditions and oxic: anoxic oscillations strongly affect microbial degradation of algal lipids and net synthesis of bacterial biomass. Production of 13C-labeled iso-15:0 fatty acid (a bacterial biomarker) was inversely proportional to the fraction of time sediments were oxic, rapidly decreasing after 10 days of incubation under oxic and frequently oscillated conditions. Turnover of bacterial biomass was faster under continuously or occasionally oxic conditions than under continuously anoxic conditions. 13C-labeled hexadecanol, an intermediate degradation product, accumulated under anoxic conditions but not under oxic or periodically oxic conditions. The frequency of oxic: anoxic oscillation clearly alters both the rate and pathways of lipid degradation in surficial sediments. Terminal degradation efficiency and lipid products from degradation of algal material depend on specific patterns of redox fluctuations.

  4. High-efficiency removal of phytic acid in soy meal using two-stage temperature-induced Aspergillus oryzae solid-state fermentation.

    PubMed

    Chen, Liyan; Vadlani, Praveen V; Madl, Ronald L

    2014-01-15

    Phytic acid of soy meal (SM) could influence protein and important mineral digestion of monogastric animals. Aspergillus oryzae (ATCC 9362) solid-state fermentation was applied to degrade phytic acid in SM. Two-stage temperature fermentation protocol was investigated to increase the degradation rate. The first stage was to maximize phytase production and the second stage was to realize the maximum enzymatic degradation. In the first stage, a combination of 41% moisture, a temperature of 37 °C and inoculum size of 1.7 mL in 5 g substrate (dry matter basis) favored maximum phytase production, yielding phytase activity of 58.7 U, optimized via central composite design. By the end of second-stage fermentation, 57% phytic acid was degraded from SM fermented at 50 °C, compared with 39% of that fermented at 37 °C. The nutritional profile of fermented SM was also studied. Oligosaccharides were totally removed after fermentation and 67% of total non-reducing polysaccharides were decreased. Protein content increased by 9.5%. Two-stage temperature protocol achieved better phytic acid degradation during A. oryzae solid state fermentation. The fermented SM has lower antinutritional factors (phytic acid, oligosaccharides and non-reducing polysaccharides) and higher nutritional value for animal feed. © 2013 Society of Chemical Industry.

  5. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations

    PubMed Central

    2014-01-01

    Background Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Methods Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. Results The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. Conclusions For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates. PMID:24401763

  6. Transformation efficiency and formation of transformation products during photochemical degradation of TCE and PCE at micromolar concentrations.

    PubMed

    Dobaradaran, Sina; Lutze, Holger; Mahvi, Amir Hossein; Schmidt, Torsten C

    2014-01-08

    Trichloroethene and tetrachloroethene are the most common pollutants in groundwater and two of the priority pollutants listed by the U.S. Environmental Protection Agency. In previous studies on TCE and PCE photolysis and photochemical degradation, concentration ranges exceeding environmental levels by far with millimolar concentrations of TCE and PCE have been used, and it is not clear if the obtained results can be used to explain the degradation of these contaminants at more realistic environmental concentration levels. Experiments with micromolar concentrations of TCE and PCE in aqueous solution using direct photolysis and UV/H2O2 have been conducted and product formation as well as transformation efficiency have been investigated. SPME/GC/MS, HPLC/UV and ion chromatography with conductivity detection have been used to determine intermediates of degradation. The results showed that chloride was a major end product in both TCE and PCE photodegradation. Several intermediates such as formic acid, dichloroacetic acid, dichloroacetaldehyede, chloroform, formaldehyde and glyoxylic acid were formed during both, UV and UV/H2O2 treatment of TCE. However chloroacetaldehyde and chloroacetic acid were only detected during direct UV photolysis of TCE and oxalic acid was only formed during the UV/H2O2 process. For PCE photodegradation, formic acid, di- and trichloroacetic acids were detected in both UV and UV/H2O2 systems, but formaldehyde and glyoxylic acid were only detected during direct UV photolysis. For water treatment UV/H2O2 seems to be favorable over direct UV photolysis because of its higher degradation efficiency and lower risk for the formation of harmful intermediates.

  7. Anaerobic degradation of inedible crop residues produced in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Schwingel, W. R.; Sager, J. C.

    1996-01-01

    An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.

  8. Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022.

    PubMed

    Hadibarata, Tony; Kristanti, Risky Ayu

    2013-04-01

    Armillaria sp. F022 is a white-rot fungus isolated from a tropical rain forest in Indonesia that is capable of utilizing pyrene as a source of carbon and energy. Enzymes production during the degradation process by Armillaria sp. F022 was certainly related to the increase in biomass. In the first week after incubation, the growth rate rapidly increased, but enzyme production decreased. After 7 days of incubation, rapid growth was observed, whereas, the enzymes were produced only after a good amount of biomass was generated. About 63 % of pyrene underwent biodegradation when incubated with this fungus in a liquid medium on a rotary shaker (120 rpm, 25 °C) for 30 days; during this period, pyrene was transformed to five stable metabolic products. These metabolites were extracted in ethyl acetate, isolated by column chromatography, and then identified using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS). 1-Hydroxypyrene was directly identified by GC-MS, while 4-phenanthroic acid, 1-hydroxy-2-naphthoic acid, phthalic acid, and protocatechuic acid were identified to be present in their derivatized forms (methylated forms and silylated forms). Protocatechuic acid was the end product of pyrene degradation by Armillaria sp. F022. Dynamic profiles of two key enzymes, namely laccase and 1,2-dioxygenase, were revealed during the degradation process, and the results indicated the presence of a complicated mechanism in the regulation of pyrene-degrading enzymes. In conclusion, Armillaria sp. F022 is a white-rot fungus with potential for application in the degradation of polycyclic aromatic hydrocarbons such as pyrene in the environment.

  9. Sunflower Oil and Nannochloropsis oculata Microalgae as Sources of Unsaturated Fatty Acids for Mitigation of Methane Production and Enhancing Diets' Nutritive Value.

    PubMed

    Gomaa, Ali S; Kholif, Ahmed E; Kholif, Abdelkader M; Salama, Reda; El-Alamy, Hamza A; Olafadehan, Olurotimi A

    2018-02-28

    The objective of this assay was to investigate the effect of adding sunflower oil, Nannochloropsis oculata microalgae and their mixture at 0, 1, 2, 3, 4, and 5% to three total mixed rations (TMRs) with different concentrate:forage ratios (40C:60F, 50C:50F, and 60C:40F) on in vitro gas production (GP), methane (CH 4 ) production, and nutrient degradability. Asymptotic GP, GP rate, CH 4 concentration/g acid detergent fiber (ADF), dry matter (DM) degradability (DMD), short chain fatty acids (SCFAs), and ruminal bacteria population increased, but neutral detergent fiber (NDF) degradability (NDFD), ADF degradability (ADFD), and protozoa count decreased with increasing concentrate level in the TMR. Methane production/g DM and NDF was higher for 50C:50F TMR. Sunflower oil reduced asymptotic GP, lag time, CH 4 production/g ADF, ammonia-N (NH 3 -N), and SCFA. Compared to the control treatments, additives decreased GP rate, while sunflower oil/N. oculata mixture increased DMD and NDFD. All additives at 5% increased GP rate and lag time and decreased CH 4 production/g DM, ADF, and NDF, ruminal NH 3 -N, and protozoa count. All additives at 2% increased DMD, NDFD and ADFD, SCFA, and bacteria population. Supplementation of TMR, containing different concentrate:forage ratios, with sunflower oil, N. oculata, and sunflower oil/N. oculata mixture at different doses modified in vitro GP, CH 4 production, and nutrient degradability.

  10. Growth medium sterilization using decomposition of peracetic acid for more cost-efficient production of omega-3 fatty acids by Aurantiochytrium.

    PubMed

    Cho, Chang-Ho; Shin, Won-Sub; Woo, Do-Wook; Kwon, Jong-Hee

    2018-06-01

    Aurantiochytrium can produce significant amounts of omega-3 fatty acids, specifically docosahexaenoic acid and docosapentaenoic acid. Use of a glucose-based medium for heterotrophic growth is needed to achieve a high growth rate and production of abundant lipids. However, heat sterilization for reliable cultivation is not appropriate to heat-sensitive materials and causes a conversion of glucose via browning (Maillard) reactions. Thus, the present study investigated the use of a direct degradation of Peracetic acid (PAA) for omega-3 production by Aurantiochytrium. Polymer-based bioreactor and glucose-containing media were chemically co-sterilized by 0.04% PAA and neutralized through a reaction with ferric ion (III) in HEPES buffer. Mono-cultivation was achieved without the need for washing steps and filtration, thereby avoiding the heat-induced degradation and dehydration of glucose. Use of chemically sterilized and neutralized medium, rather than heat-sterilized medium, led to a twofold faster growth rate and greater productivity of omega-3 fatty acids.

  11. Identification of four new degradation products of epirubicin through forced degradation, LC-UV, MSn and LC-MS-TOF studies.

    PubMed

    Kaushik, Dheeraj; Saini, Balraj; Bansal, Gulshan

    2015-01-01

    Epirubicin (EPI) was subjected to International Conference on Harmonization recommended forced degradation under the conditions of hydrolysis, oxidation, dry heat and photolysis to characterize its possible impurities and/or degradation products. The drug was found highly unstable to alkaline hydrolysis even at room temperature, unstable to acid hydrolysis at 80°C and to oxidation at room temperature. The hydrolytic and oxidative degradation products were resolved on an Agilent RP8 (150 mm × 4.6 mm; 5 µm) column with isocratic elution using mobile phase composed of ammonium formate (10 mM, pH 3.0), acetonitrile and methanol. The drug degraded to four oxidative products (O-I, O-II, O-III and O-IV) and to one acid hydrolyzed product (A-I). Purity of each peak in liquid chromatography-ultraviolet (LC-UV) chromatogram was ascertained through photodiode array (LC-PDA) analysis. The products were characterized through electrospray ionization-mass spectrometry (+ESI-MS(n)) studies on EPI and liquid chromatography-time of flight mass spectrometry (LC-MS-TOF) studies on degraded drug solutions. The products, O-I-O-IV, were characterized as 2-hydroxy-8-desacetylepirubicin-8-hydroperoxide, 4-hydroxy-8-desacetylepirubicin-8-hydroperoxide, 8-desacetylepirubicin-8-hydroperoxide and 8-desacetylepirubicin, respectively, and product A-I was characterized as deglucosaminylepirubicin. While A-I was found to be a pharmacopoeial impurity, all oxidative products were found to be new degradation impurities. The mechanisms and pathways of degradation of EPI were discussed and outlined. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effect of hydrodynamic mixing conditions on wet oxidation reactions in a stirred vessel reactor.

    PubMed

    Baroutian, Saeid; Syed, Abdul Moiz; Munir, M T; Gapes, Daniel J; Young, Brent R

    2018-05-08

    The aim of this study was to investigate the impact of mixing intensity and mixing flow patterns on solid waste degradation, and production of valuable intermediate by-products such as acetic acid. Total suspended solids generally decreased, soluble chemical oxygen demand, dissolved organic carbon, and acetic acid concentration generally increased with the progress of the reaction and increase in the mixing intensity. The results showed that axial-radial flow pattern (using pitch blade impeller) and medium impeller speed (500 rpm) resulted in a higher degree of solid degradation and production of acetic acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Development and Validation of an RP-HPLC Method for the Determination of Vinpocetine and Folic Acid in the Presence of a Vinpocetine Alkaline Degradation Product in Bulk and in Capsule Form.

    PubMed

    Elkady, Ehab F; Tammam, Marwa H; Mohamed, Ayman A

    2017-05-01

    An alkaline-forced degradation hydrolytic product of vinpocetine was prepared and characterized by 1H-NMR, FTIR spectroscopy, and MS. Subsequently, a simple, selective, and validated reversed-phase HPLC method was developed for the simultaneous estimation of vinpocetine and folic acid in the presence of a vinpocetine alkaline degradation product. Chromatographic separation was achieved using an isocratic mobile phase consisting of acetonitrile-0.02 M KH2PO4 [containing 0.2% (v/v) triethylamine and adjusted to pH 6 with orthophosphoric acid; (80 + 20, v/v)] at a flow rate of 0.9 mL/min at ambient temperature on a Eurospher II C18 (250 × 4.6 mm, 5 μm) column, with UV detection at 280 nm for folic acid and 230 nm for vinpocetine and its alkaline hydrolytic product. Linearity, accuracy, and precision were found to be acceptable over a concentration range of 12.5-200 μg/mL for vinpocetine and 1-16 μg/mL for folic acid. The proposed method was successfully applied for the determination of both drugs and a vinpocetine hydrolysis product in a laboratory-prepared mixture and in a capsule containing both drugs.

  14. Development and application of a validated stability-indicating high-performance liquid chromatographic method using photodiode array detection for simultaneous determination of granisetron, methylparaben, propylparaben, sodium benzoate, and their main degradation products in oral pharmaceutical preparations.

    PubMed

    Hewala, Ismail; El-Fatatry, Hamed; Emam, Ehab; Mabrouk, Mokhtar

    2011-01-01

    A simple, rapid, and sensitive RP-HPLC method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron), sodium benzoate, methylparaben, propylparaben, and 4-hydroxybenzoic acid (the main degradation product of parabens) in granisetron oral drops and solutions. The separation of the compounds was achieved within 8 min on a SymmetryShield RP18 column (100 x 4.6 mm id, 3.5 microm particle size) using the mobile phase acetonitrile--0.05 M KH2PO4 buffered to pH 3 using H3PO4 (3+7, v/v). The photodiode array detector was used to test the purity of the peaks, and the chromatograms were extracted at 240 nm. The method was validated, and validation acceptance criteria were met in all cases. The robust method was successfully applied to the determination of granisetron and preservatives, as well as their degradation products in different batches of granisetron oral drops and solutions. The method proved to be sensitive for determination down to 0.04% (w/w) of granisetron degradation product relative to granisetron and 0.03% (w/w) 4-hydroxybenzoic acid relative to total parabens.

  15. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8].

    PubMed

    Li, Hong-ya; Li, Shu-na; Wang, Shu-xiang; Wang, Quan; Xue, Yin-yin; Zhu, Bao-cheng

    2015-05-01

    Microbial degradation of lignocellulose is one of the key problems that need to be solved urgently in the process of utilizing biomass resource. Bacillus amyloliquefaciens MN-8 is our previously isolated bacterium capable of degrading lignin. To determine the capability of strain MN-8 to degrade lignocellulose of corn straw, B. amyloliquefaciens MN-8 was inoculated and fermented with solid-state corn straw powder-MSM culture medium. The changes in the enzyme activity and degradation products of lignocellulose were monitored in the process of fermentation using the FTIR and GC/MS. The results showed that B. amyloliquefaciens MN-8 could produce lignin peroxidase, manganese peroxidase, cellulase and hemicellulase enzymes. The activities of all these enzymes reached the peak after being incubated for 10-16 days, and the highest enzyme activities were 55.0, 16.7, 45.4 and 60.5 U · g(-1), respectively. After 24 d of incubation, the degradation percentages of lignin, cellulose and hemicellulose were up to 42.9%, 40.6% and 27.1%, respectively. The spectroscopic data by FTIR indicated that the intensities of characteristic absorption peaks of lignin, cellulose and hemicellulose of the corn straw were decreased, indicating that the lignocellulose was degraded partly after being fermented by B. amyloliquefaciens MN-8. GC/MS analysis also demonstrated that strain MN-8 could degrade lignocellulose efficiently. It could depolymerize lignin into some monomeric compounds with retention of phenylpropane structure unit, such as amphetamine, benzene acetone and benzene propanoic acids, by the rupture of β-O-4 bond connected between lignin monomer, and it further oxidized some monomer compounds into Cα carbonyl compounds, such as 2-amino-1-benzeneacetone and 4-hydroxy-3,5-dimethoxy-acetophenone. The GC/MS analysis of the degradation products of cellulose and hemicellulose showed that there were not only monosaccharide compounds, such as glucose, mannose and galactose, but also some glycolysis products including formic acid, acetic acid, propionic acid, 1,1-ethanediol and 3-hydroxy butyric acid. Our results demonstrated that B. amyloliquefaciens MN-8 is capable of degrading lignocelluse of the corn straw effectively and the degradation capacity depends on the lignocellulase activity.

  16. Nano cube of CaSnO3: Facile and green co-precipitation synthesis, characterization and photocatalytic degradation of dye

    NASA Astrophysics Data System (ADS)

    Moshtaghi, Saeed; Gholamrezaei, Sousan; Salavati Niasari, Masoud

    2017-04-01

    In this work, nanocubes of CaSnO3 have been prepared by a simple and green co-precipitation method. In this technique, for preparation of calcium stannate, we have used from a complex structure of calcium as a new precursor and the synthesis of CaSnO3 have been done in water as a green solvent. Using of complexing precursors were created a congestion in reaction medium. Different conditions have been studied in synthetic approaches and optimized the effect of different parameters on the morphology of product such as precipitation agent (alkaline), pH, temperature, the rate of stirrer, surfactants and the mole ratio of surfactants for preparation product and obtain the best product in terms of quality and morphology. By using of this CaSnO3, two types of azo dyes (acid blue 92 and acid brown 14) have been degraded at presence of ultraviolet light from aqueous solution. Results display that the powder shows appropriate catalytic behavior for degradation of dyes (77% acid brown 14 and 67% acid black 92). Therefore these nano-cube structures have been used as photocatalysts in presence of UV light for degradation of azo dyes.

  17. Aiming for the complete utilization of sugar-beet pulp: Examination of the effects of mild acid and hydrothermal pretreatment followed by enzymatic digestion

    PubMed Central

    2011-01-01

    Background Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products. Methods We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP). Results We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation. Conclusions In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose. PMID:21627804

  18. Effect of Boric Acid on Volatile Products of Thermooxidative Degradation of Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Bukhareva, P. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The polymeric materials are characterized by high flammability. The use of flame retardants in order to reduce the flammability of polymers can lead to the formation of toxic gaseous products under fire conditions. In this work we studied the effect of boric acid on the volatile products of thermooxidative degradation of epoxy polymers. The comparative investigations were carried out on the samples of the unfilled epoxy resin and epoxy resin filled with a boric acid at percentage 10 wt. %. The analysis of the volatile decomposition products and thermal stability of the samples under heating in an oxidizing medium was performed using a thermal mass-spectrometric analysis. It is found that the incorporation of boric acid into the polymer matrix increases the thermal stability of epoxy composites and leads to a reduction in the 2-2.7 times of toxic gaseous products

  19. Degradation rates of glycerol polyesters at acidic and basic conditions

    USDA-ARS?s Scientific Manuscript database

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  20. Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria.

    PubMed Central

    Chen, W; Supanwong, K; Ohmiya, K; Shimizu, S; Kawakami, H

    1985-01-01

    Veratrylglycerol-beta-guaiacyl ether (0.2 g/liter), a lignin model compound, was found to be degraded by mixed rumen bacteria in a yeast extract medium under strictly anaerobic conditions to the extent of 19% within 24 h. Guaiacoxyacetic acid, 2-(o-methoxyphenoxy)ethanol, vanillic acid, and vanillin were detected as degradation products of veratrylglycerol-beta-guaiacyl ether by thin-layer chromatography, gas chromatography, and gas chromatography-mass spectrometry. Guaiacoxyacetic acid (0.25 g/liter), when added into the medium as a substrate, was entirely degraded within 36 h, resulting in the formation of phenoxyacetic acid, guaiacol, and phenol. These results suggest that the beta-arylether bond, an important intermonomer linkage in lignin, can be cleaved completely by these rumen anaerobes. PMID:3841472

  1. Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways.

    PubMed

    Ju, Yongming; Yang, Shaogui; Ding, Youchao; Sun, Cheng; Zhang, Aiqian; Wang, Lianhong

    2008-11-06

    Microwave-assisted photocatalytic (MPC) degradation of malachite green (MG) in aqueous TiO2 suspensions was investigated. A 20 mg/L sample of MG was rapidly and completely decomposed in 3 min with the corresponding TOC removal efficiency of about 85%. To gain insight into the degradation mechanism, both GC-MS and LC-ESI-MS/MS techniques were employed to identify the major intermediates of MG degradation, including N-demethylation intermediates [(p-dimethylaminophenyl)(p-methylaminophenyl)phenylmethylium (DM-PM), (p-methylaminophenyl)(p-methylaminophenyl)phenylmethylium (MM-PM), (p-methylaminophenyl)(p-aminophenyl)phenylmethylium (M-PM)]; a decomposition compound of the conjugated structure (4-dimethylaminobenzophenone (DLBP)); products resulting from the adduct reaction of hydroxyl radical; products of benzene removal; and other open-ring intermediates such as phenol, terephthalic acid, adipic acid, benzoic acid, etc. The possible degradation mechanism of MG included five processes: the N-demethylation process, adduct products of the hydroxyl radical, the breakdown of chromophores such as destruction of the conjugated structure intermediate, removal of benzene, and an open-ring reaction. To the best of our knowledge, it is the first time the whole MG photodegradation processes have been reported.

  2. Fermentation Products of Solvent Tolerant Marine Bacterium Moraxella spp. MB1 and Its Biotechnological Applications in Salicylic Acid Bioconversion

    PubMed Central

    Wahidullah, Solimabi; Naik, Deepak N.; Devi, Prabha

    2013-01-01

    As part of a proactive approach to environmental protection, emerging issues with potential impact on the environment is the subject of ongoing investigation. One emerging area of environmental research concerns pharmaceuticals like salicylic acid, which is the main metabolite of various analgesics including aspirin. It is a common component of sewage effluent and also an intermediate in the degradation pathway of various aromatic compounds which are introduced in the marine environment as pollutants. In this study, biotransformation products of salicylic acid by seaweed, Bryopsis plumosa, associated marine bacterium, Moraxella spp. MB1, have been investigated. Phenol, conjugates of phenol and hydroxy cinnamic acid derivatives (coumaroyl, caffeoyl, feruloyl and trihydroxy cinnamyl) with salicylic acid (3–8) were identified as the bioconversion products by electrospray ionization mass spectrometry. These results show that the microorganism do not degrade phenolic acid but catalyses oxygen dependent transformations without ring cleavage. The degradation of salicylic acid is known to proceed either via gentisic acid pathway or catechol pathway but this is the first report of biotransformation of salicylic acid into cinnamates, without ring cleavage. Besides cinnamic acid derivatives (9–12), metabolites produced by the bacterium include antimicrobial indole (13) and β-carbolines, norharman (14), harman (15) and methyl derivative (16), which are beneficial to the host and the environment. PMID:24391802

  3. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products—A gamma radiolysis study

    NASA Astrophysics Data System (ADS)

    Krimmel, Birgit; Swoboda, Friederike; Solar, Sonja; Reznicek, Gottfried

    2010-12-01

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH 3 by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  4. Selective determination of ertapenem in the presence of its degradation product

    NASA Astrophysics Data System (ADS)

    Hassan, Nagiba Y.; Abdel-Moety, Ezzat M.; Elragehy, Nariman A.; Rezk, Mamdouh R.

    2009-06-01

    Stability-indicative determination of ertapenem (ERTM) in the presence of its β-lactam open-ring degradation product, which is also the metabolite, is investigated. The degradation product has been isolated, via acid-degradation, characterized and elucidated. Selective quantification of ERTM, singly in bulk form, pharmaceutical formulations and/or in the presence of its major degradant is demonstrated. The indication of stability has been undertaken under conditions likely to be expected at normal storage conditions. Among the spectrophotometric methods adopted for quantification are first derivative ( 1D), first derivative of ratio spectra ( 1DD) and bivariate analysis.

  5. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli.

    PubMed

    Lin, Yuheng; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2014-05-01

    cis,cis-Muconic acid (MA) and salicylic acid (SA) are naturally-occurring organic acids having great commercial value. MA is a potential platform chemical for the manufacture of several widely-used consumer plastics; while SA is mainly used for producing pharmaceuticals (for example, aspirin and lamivudine) and skincare and haircare products. At present, MA and SA are commercially produced by organic chemical synthesis using petro-derived aromatic chemicals, such as benzene, as starting materials, which is not environmentally friendly. Here, we report a novel approach for efficient microbial production of MA via extending shikimate pathway by introducing the hybrid of an SA biosynthetic pathway with its partial degradation pathway. First, we engineered a well-developed phenylalanine producing Escherichia coli strain into an SA overproducer by introducing isochorismate synthase and isochorismate pyruvate lyase. The engineered strain is able to produce 1.2g/L of SA from simple carbon sources, which is the highest titer reported so far. Further, the partial SA degradation pathway involving salicylate 1-monoxygenase and catechol 1,2-dioxygenase is established to achieve the conversion of SA to MA. Finally, a de novo MA biosynthetic pathway is assembled by integrating the established SA biosynthesis and degradation modules. Modular optimization enables the production of up to 1.5g/L MA within 48h in shake flasks. This study not only establishes an efficient microbial platform for the production of SA and MA, but also demonstrates a generalizable pathway design strategy for the de novo biosynthesis of valuable degradation metabolites. Copyright © 2014. Published by Elsevier Inc.

  6. Decades-Scale Degradation of Commercial, Side-Chain, Fluorotelomer-Based Polymers in Soils and Water

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are a primary product of the jluorotelomer industry, yet the role of commercial FTPs in degrading to form perjluorocarboxylic acids (P FCAs), including perjluorooctanoic acid, and P FCA precursors, remains ill-defined. Here we report on a 376-d...

  7. Advanced oxidation chemistry of paracetamol. UV/H(2)O(2)-induced hydroxylation/degradation pathways and (15)N-aided inventory of nitrogenous breakdown products.

    PubMed

    Vogna, Davide; Marotta, Raffaele; Napolitano, Alessandra; D'Ischia, Marco

    2002-08-23

    The advanced oxidation chemistry of the antipyretic drug paracetamol (1) with the UV/H(2)O(2) system was investigated by an integrated methodology based on (15)N-labeling and GC-MS, HPLC, and 2D (1)H, (13)C, and (15)N NMR analysis. Main degradation pathways derived from three hydroxylation steps, leading to 1,4-hydroquinone/1,4-benzoquinone, 4-acetylaminocatechol and, to a much lesser extent, 4-acetylaminoresorcine. Oxidation of the primary aromatic intermediates, viz. 4-acetylaminocatechol, 1,4-hydroquinone, 1,4-benzoquinone, and 1,2,4-benzenetriol, resulted in a series of nitrogenous and non-nitrogenous degradation products. The former included N-acetylglyoxylamide, acetylaminomalonic acid, acetylaminohydroxymalonic acid, acetylaminomaleic acid, diastereoisomeric 2-acetylamino-3-hydroxybutanedioic acids, 2-acetylaminobutenedioic acid, 3-acetylamino-4-hydroxy-2-pentenedioic acid, and 2,4-dihydroxy-3-acetylamino-2-pentenedioic acid, as well as two muconic and hydroxymuconic acid derivatives. (15)N NMR spectra revealed the accumulation since the early stages of substantial amounts of acetamide and oxalic acid monoamide. These results provide the first insight into the advanced oxidation chemistry of a 4-aminophenol derivative by the UV/H(2)O(2) system, and highlight the investigative potential of integrated GC-MS/NMR methodologies based on (15)N-labeling to track degradation pathways of nitrogenous species.

  8. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?

    PubMed

    Trigo, C; Ball, A S

    1994-11-01

    Three actinomycetes (Streptomyces sp. EC22, Streptomyces viridosporus T7A and Thermomonospora fusca BD25) were assessed for their ability to degrade ball-milled wheat straw. All gave maximum levels of solubilized lignocellulose products (APPL) at the beginning of the stationary phase of growth (72-96 h). Low-molecular-mass aromatic compounds extracted from the APPL were analysed by reverse-phase and gas chromatography. Although the number of chromatographic peaks detected made identification of the products difficult, p-coumaric acid (4-hydroxycinnamic acid), protocatechuic acid (3,4-dihydroxybenzoic acid), gallic acid (3,4,5-trihydroxybenzoic acid), gallic acid methyl ester (methyl-3,4,5-trihydroxybenzoate) and 4-methoxyphenol were recognized. The infrared spectra of the three strains were similar to the spectra of humic acids, with all APPL extracts showing carbonyl, amino, carboxyl, aliphatic and aromatic group vibrations. Also detected were peptide linkages of proteins. The results suggest a role for actinomycetes in the formation of humic substances in soils and composts.

  10. Genome Sequence Analysis of the Naphthenic Acid Degrading and Metal Resistant Bacterium Cupriavidus gilardii CR3

    PubMed Central

    Xiao, Jingfa; Hao, Lirui; Crowley, David E.; Zhang, Zhewen; Yu, Jun; Huang, Ning; Huo, Mingxin; Wu, Jiayan

    2015-01-01

    Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals. PMID:26301592

  11. Persistence assessment of cyclohexyl- and norbornyl-derived ketones and their degradation products in different OECD screening tests.

    PubMed

    Seyfried, M; van Ginkel, C G; Boschung, A; Miffon, F; Fantini, P; Tissot, E; Baroux, L; Merle, P; Chaintreau, A

    2015-07-01

    The persistence of synthetic cyclohexyl- and norbornyl-derived ketones was assessed by using OECD 301F and 301D biodegradation tests. While cyclohexyl-derived ketones either reached or came close to the pass level (60%) after 60 d, the corresponding norbornyl derivatives yielded significantly less biodegradation (<40%). By analyzing extracts at 60 d, the key degradation products of four norbornyl derivatives were identified. Consistently, 2-bicyclo[2.2.1]heptane carboxylic acid was found as a principal degradation product with minor quantities of bicyclo[2.2.1]heptan-2-one and 2-bicyclo[2.2.1]heptane acetic acid. When the three degradation products were re-synthesized and tested individually for biodegradability, the former two were found to be ultimately biodegradable after 60 d in OECD 301D tests, thus proving non-persistence. Similarly, 2-bicyclo[2.2.1]heptane acetic acid was found to be degraded significantly, albeit with long lag phases exceeding 60 d in the case of freshwater inoculum, then ultimately reaching the pass level. On the other hand, norbornyl ketones were still only partially biodegradable in the same test. We conclude that despite the potential for ultimate biodegradation of norbornyl-derived ketones, current screening tests yield an incomplete picture of their biodegradability, particularly when applying strict OECD criteria. The appearance of long lag phases when re-testing norbornyl ketone degradation products underlines the importance of extending tests to well beyond 28 and even 60 d in the case of freshwater inocula. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Novel chromatographic separation and carbon solid-phase extraction of acetanilide herbicide degradation products.

    PubMed

    Shoemaker, Jody A

    2002-01-01

    One acetamide and 5 acetanilide herbicides are currently registered for use in the United States. Over the past several years, ethanesulfonic acid (ESA) and oxanilic acid (OA) degradation products of these acetanilide/acetamide herbicides have been found in U.S. ground waters and surface waters. Alachlor ESA and other acetanilide degradation products are listed on the U.S. Environmental Protection Agency's (EPA) 1998 Drinking Water Contaminant Candidate List. Consequently, EPA is interested in obtaining national occurrence data for these contaminants in drinking water. EPA currently does not have a method for determining these acetanilide degradation products in drinking water; therefore, a research method is being developed using liquid chromatography/negative ion electrospray/mass spectrometry with solid-phase extraction (SPE). A novel chromatographic separation of the acetochlor/alachlor ESA and OA structural isomers was developed which uses an ammonium acetate-methanol gradient combined with heating the analytical column to 70 degrees C. Twelve acetanilide degradates were extracted by SPE from 100 mL water samples using carbon cartridges with mean recoveries >90% and relative standard deviations < or =16%.

  13. Possible carotenoid-derived structures in fossil kerogens

    NASA Astrophysics Data System (ADS)

    Machihara, Tsutomu; Ishiwatari, Ryoshi

    1987-02-01

    The unique KMnO 4 degradation products of β-carotene, previously identified as 2,2-dimethyl succinic acid (C 6) and 2,2-dimethyl glutaric acid (C 7) have been found in the oxidation products of Green River shale (Eocene, 52 × 10 6yr) and Tasmanian Tasmanite (Permian, 220-274 × 10 6yr) kerogens. These two compounds were also detected in KMnO 4 degradation products of young kerogens from lacustrine and marine sediments. The results indicate that kerogens incorporated carotenoids (possibly β-carotene) at the time of kerogen formation in surface sediments. Both acids are useful markers to obtain information on biological precursors contributing to the formation of fossil kerogens.

  14. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma.

    PubMed

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-08-15

    The remediation of pentachlorophenol (PCP) contaminated soil using pulsed corona discharge plasma was reported in this study. The effect of practical run parameters such as peak pulse voltage, pulse frequency, gas atmospheres (air, O(2), Ar and N(2)), air flow rate and pollution time on PCP degradation was investigated, and the intermediate products were also studied. The results indicated that PCP degradation efficiency increased with an increase in peak pulse voltage or pulse frequency, due to the enhancement of energy input. There existed a maximal PCP degradation efficiency with the change of air flow rate. PCP degradation efficiencies under oxygen and air atmospheres were achieved 92% and 77% after 45 min of discharge treatment at 14.0 kV, respectively, which were only 19% and 8% under argon and nitrogen atmospheres, respectively. O(3) played an important role in PCP degradation. However, other processes also contributed to PCP degradation, such as N, N(2)(+), N(+) and OH. The pollution time evidenced slight influence on PCP degradation. The main intermediate products produced during the treatment process were identified as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid and oxalic acid by HPLC/MS and ion chromatography. This study is expected to provide reference for the application of pulsed corona discharge in soil remediation. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR)more » spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less

  16. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopymore » (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.« less

  17. Fe2+ enhancing sulfamethazine degradation in aqueous solution by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Liu, Yuankun; Hu, Jun; Wang, Jianlong

    2014-03-01

    The radiation-induced degradation of sulfamethazine (SMT) was carried out by gamma irradiation. SMT with initial concentration of 20 mg/L was irradiated in the presence of 0, 0.1, 0.2, 0.4 and 0.6 mM extra Fe2+. The results showed that ferrous ion (Fe2+) could enhance the degradation of SMT by gamma irradiation in aqueous solution. SMT could be almost completely removed at 1 kGy without extra Fe2+, however, TOC removal efficiency was less than 10%. Several intermediate products, such as 4,6-dimethylpyrimidin-2-amine, 4-aminobenzenesulfonic acid, 4-nitrophenol 4-nitrobenzenesulfonic acid, 2-amino-6-methylpyrimidine-4-carboxylic acid, and 4-amino-N-carbamimidoyl-benzenesulfonamide and formic acid, acetic acid, and sulfate were identified. Possible pathway of SMT degradation in aqueous solution was tentatively proposed.

  18. Identification of the specified impurities of silver sulfadiazine using a screening of degradation products in different stress physico-chemical media.

    PubMed

    Cioroiu, Bogdan I; Lazar, Mihai I; Bello-López, Miguel A; Fernandez-Torres, Rut

    2013-11-15

    Determination of silver sulfadiazine degradation products in several stress media was carried out by high pressure liquid chromatography (HPLC) with diode array detector (DAD) and hybrid mass spectrometer triple quadrupole-linear trap. The optimal chromatographic method used a Hypercarb column with a stationary phase 100% carbon, a mobile phase composed by a mixture 45:55 formic acid 1% solution and acetonitrile and detection at 275 nm. Structure elucidation was carried out on the mass spectrometry system using same chromatographic conditions and based on MS/MS techniques. Under these conditions up to 9 possible impurities were demonstrated to be degradation products respecting silver sulfadiazine evolution under different stress conditions: temperature, acid, basic, oxidation, reduction and catalyzed photodegradation. Sulfacetamide, sulfanilic acid (4-aminobenzenesulfonic acid), aniline, pyrimidin-2-amine, 4-aminobenzenesulfonamide, 4-methylidenesulfanilaniline, 4-aminophenol, 4-amino-n-methyl benzenesulfonamide and benzenesulfonic acid were identified by mass spectrometry in order to cover the possible degradation paths of silver sulfadiazine. Kinetics were also evaluated to obtain the prediction of shelf life of the substance. The linearity domain for the method was between 0.0005 mg/ml and 0.25mg/ml for each compound. Recovery factors in accuracy determination were between 95 and 105% relative to target concentrations of silver sulfadiazine and the quantitation limit was 0.00025 mg/ml. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Two Synthetic Methods for Preparation of Chiral Stationary Phases Using Crystalline Degradation Products of Vancomycin: Column Performance for Enantioseparation of Acidic and Basic Drugs.

    PubMed

    Abdollahpour, Assem; Heydari, Rouhollah; Shamsipur, Mojtaba

    2017-07-01

    Two chiral stationary phases (CSPs) based on crystalline degradation products (CDPs) of vancomycin by using different synthetic methods were prepared and compared. Crystalline degradation products of vancomycin were produced by hydrolytic loss of ammonia from vancomycin molecules. Performances of two chiral columns prepared with these degradation products were investigated using several acidic and basic drugs as model analytes. Retention and resolution of these analytes on the prepared columns, as two main parameters, in enantioseparation were studied. The results demonstrated that the stationary phase preparation procedure has a significant effect on the column performance. The resolving powers of prepared columns for enantiomers resolution were changed with the variation in vancomycin-CDP coverage on the silica support. Elemental analysis was used to monitor the surface coverage of silica support by vancomycin-CDP. The results showed that both columns can be successfully applied to chiral separation studies.

  20. DEGRADATION OF ERGOTHIONEINE BY CELL-FREE EXTRACTS OF ALCALIGENES FAECALIS II.

    PubMed Central

    Booth, James S.; Appleman, Milo D.

    1963-01-01

    Booth, James S. (University of Southern California, Los Angeles) and Milo D. Appleman. Degradation of ergothioneine by cell-free extracts of Alcaligenes faecalis. II. Production of glutamic acid. J. Bacteriol. 85:654–657. 1963.—On the basis of oxidation and paper chromatographic procedures, glutamic acid was identified as the end product of ergothioneine degradation by cell-free extracts of Alcaligenes faecalis. Hydrogen sulfide and ammonia yields were determined. Several differences between the metabolism of whole cells and cell-free extracts were noted. Cleavage of the imidazole ring by cell-free extracts appeared to be hydrolytic rather than oxidative. PMID:14042946

  1. Biotransformation and Detoxification of Xylidine Orange Dye Using Immobilized Cells of Marine-Derived Lysinibacillus sphaericus D3

    PubMed Central

    Devi, Prabha; Wahidullah, Solimabi; Sheikh, Farhan; Pereira, Rochelle; Narkhede, Niteen; Amonkar, Divya; Tilvi, Supriya; Meena, Ram Murthy

    2017-01-01

    Lysinibacillus sphaericus D3 cell-immobilized beads in natural gel sodium alginate decolorized the xylidine orange dye 1-(dimethylphenylazo)-2-naphthol-6-sulfonic acid sodium salt in the laboratory. Optimal conditions were selected for decolorization and the products formed were evaluated for toxicity by disc diffusion assay against common marine bacteria which revealed the non-toxic nature of the dye-degraded products. Decolorization of the brightly colored dye to colorless products was measured on an Ultra Violet-Vis spectrophotometer and its biodegradation products monitored on Thin Layer Chromatographic plate and High Performance Liquid Chromatography (HPLC). Finally, the metabolites formed in the decolorized medium were characterized by mass spectrometry. This analysis confirms the conversion of the parent molecule into lower molecular weight aromatic phenols and sulfonic acids as the final products of biotransformation. Based on the results, the probable degradation products of xylidine orange were naphthol, naphthylamine-6-sulfonic acid, 2-6-dihydroxynaphthalene, and bis-dinaphthylether. Thus, it may be concluded that the degradation pathway of the dye involved (a) reduction of its azo group by azoreductase enzyme (b) dimerization of the hydrazo compound followed by (c) degradation of monohydrazo as well as dimeric metabolites into low molecular weight aromatics. Finally, it may be worth exploring the possibility of commercially utilizing L. sphaericus D3 for industrial applications for treating large-scale dye waste water. PMID:28208715

  2. The effect of pH control and 'hydraulic flush' on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate.

    PubMed

    Cysneiros, Denise; Banks, Charles J; Heaven, Sonia; Karatzas, Kimon-Andreas G

    2012-11-01

    The effect of hydraulic flush and pH control on hydrolysis, Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors was investigated for the first time. Six reactors were operated under different regimes for two consecutive batches of 28days each. Buffering at pH ∼6.5 improved hydrolysis (Volatile Solid (VS) degradation) and VFA production by ∼50%. Butyric and acetic acid were dominant when reactors were buffered, while only butyric acid was produced at low pH. Hydraulic flush enhanced VS degradation and VFA production by ∼15% and ∼32%, respectively. Most Probable Number (MPN) of cellulolytic microorganisms indicated a wash out when hydraulic flush was applied, but pH control helped to counteract this. The highest VS degradation (∼89%), VFA yield (0.84kgCODkg(-1)VS(added)) and theoretical methane potential (0.37m(3)CH(4)kg(-1)VS(added)) were obtained when pH control and hydraulic flush were applied, and therefore, these conditions are recommended. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid.

    PubMed

    Thamhesl, Michaela; Apfelthaler, Elisabeth; Schwartz-Zimmermann, Heidi Elisabeth; Kunz-Vekiru, Elisavet; Krska, Rudolf; Kneifel, Wolfgang; Schatzmayr, Gerd; Moll, Wulf-Dieter

    2015-03-28

    Ergopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry. We isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions. Degradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.

  4. Forced degradation studies of lansoprazole using LC-ESI HRMS and 1 H-NMR experiments: in vitro toxicity evaluation of major degradation products.

    PubMed

    Shankar, G; Borkar, R M; Suresh, U; Guntuku, L; Naidu, V G M; Nagesh, N; Srinivas, R

    2017-07-01

    Regulatory agencies from all over the world have set up stringent guidelines with regard to drug degradation products due to their toxic effects or carcinogenicity. Lansoprazole, a proton-pump inhibitor, was subjected to forced degradation studies as per ICH guidelines Q1A (R2). The drug was found to degrade under acidic, basic, neutral hydrolysis and oxidative stress conditions, whereas it was found to be stable under thermal and photolytic conditions. The chromatographic separation of the drug and its degradation products were achieved on a Hiber Purospher, C18 (250 × 4.6 mm, 5 μ) column using 10 mM ammonium acetate and acetonitrile as a mobile phase in a gradient elution mode at a flow rate of 1.0 ml/min. The eight degradation products (DP1-8) were identified and characterized by UPLC/ESI/HRMS with in-source CID experiments combined with accurate mass measurements. DP-1, DP-2 and DP-3 were formed in acidic, DP-4 in basic, DP-5 in neutral and DP-1, DP-6, DP-7 and DP-8 were in oxidation stress condition Among eight degradation products, five were hitherto unknown degradation products. In addition, one of the major degradation products, DP-2, was isolated by using semi preparative HPLC and other two, DP-6 and DP-7 were synthesized. The cytotoxic effect of these degradation products (DP-2, DP-6 and DP-7) were tested on normal human cells such as HEK 293 (embryonic kidney cells) and RWPE-1(normal prostate epithelial cells) by MTT assay. From the results of cytotoxicity, it was found that lansoprazole as well as its degradation products (DP-2, DP-6 and DP-7) were nontoxic up to 50-μM concentrations, and the latter showed slightly higher cytotoxicity when compared with that of lansoprazole. DNA binding studies using spectroscopic techniques indicate that DP-2, DP-6 and DP-7 molecules interact with ctDNA and may bind to its surface. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Effects of emulsified octadecanic acids on gas production and cellulolysis by the rumen anaerobic fungus, Piromyces communis M014.

    PubMed

    Kim, Chang-H; Lee, Shin J; Ha, Jong K; Kim, Wan Y; Lee, Sung S

    2008-02-01

    Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was.

  6. Catalytic Photodegradation of p-aminobenzoic Acid on TiO 2 Nanowires with High Surface Area.

    DOE PAGES

    Soto, Loraine; Rodríguez, Tracey; Márquez, Francisco

    2014-06-10

    Pharmaceutical personal care products (PPCP’s) production and consumption have increased exponentially in recent years due to medicine and technology advances related to the development of dangerous skin diseases such as cancer. These PPCP’s usually are found in wastewaters and their removal represents a very important environmental issue. With the aim of studying the possible degradation of these compounds, we have synthesized TiO 2 nanowires (rutile phase) that have been fully characterized by BET measurements, XRD and SEM and used in the photodegradation reaction of p-aminobenzoic acid (PABA). Furthermore, we studied the photocatalytic degradation of PABA under different experimental conditions (i.e.more » catalyst loading). The photocatalytic reaction was monitored as a function of time by UV-Vis spectroscopy. The highest degradation rate occurred with 1.0 g L-1 of catalyst while the reaction does not proceed without radiation or in absence of the catalyst. Our present work demonstrates that p-aminobenzoic acid could be successfully degraded in a relatively short time period with high degradation percentages.« less

  7. Catalytic Photodegradation of p-aminobenzoic Acid on TiO 2 Nanowires with High Surface Area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto, Loraine; Rodríguez, Tracey; Márquez, Francisco

    Pharmaceutical personal care products (PPCP’s) production and consumption have increased exponentially in recent years due to medicine and technology advances related to the development of dangerous skin diseases such as cancer. These PPCP’s usually are found in wastewaters and their removal represents a very important environmental issue. With the aim of studying the possible degradation of these compounds, we have synthesized TiO 2 nanowires (rutile phase) that have been fully characterized by BET measurements, XRD and SEM and used in the photodegradation reaction of p-aminobenzoic acid (PABA). Furthermore, we studied the photocatalytic degradation of PABA under different experimental conditions (i.e.more » catalyst loading). The photocatalytic reaction was monitored as a function of time by UV-Vis spectroscopy. The highest degradation rate occurred with 1.0 g L-1 of catalyst while the reaction does not proceed without radiation or in absence of the catalyst. Our present work demonstrates that p-aminobenzoic acid could be successfully degraded in a relatively short time period with high degradation percentages.« less

  8. Impact of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Reaction Activity for Platinum Electrocatalysts

    DOE PAGES

    Christ, J. M.; Neyerlin, K. C.; Wang, H.; ...

    2014-10-30

    The impact of model membrane degradation compounds on the relevant electrochemical parameters for the oxygen reduction reaction (i.e. electrochemical surface area and catalytic activity), was studied for both polycrystalline Pt and carbon supported Pt electrocatalysts. Model compounds, representing previously published, experimentally determined polymer electrolyte membrane degradation products, were in the form of perfluorinated organic acids that contained combinations of carboxylic and/or sulfonic acid functionality. Perfluorinated carboxylic acids of carbon chain length C1 – C6 were found to have an impact on electrochemical surface area (ECA). The longest chain length acid also hindered the observed oxygen reduction reaction (ORR) performance, resultingmore » in a 17% loss in kinetic current (determined at 0.9 V). Model compounds containing sulfonic acid functional groups alone did not show an effect on Pt ECA or ORR activity. Lastly, greater than a 44% loss in ORR activity at 0.9V was observed for diacid model compounds DA-Naf (perfluoro(2-methyl-3-oxa-5-sulfonic pentanoic) acid) and DA-3M (perfluoro(4-sulfonic butanoic) acid), which contained both sulfonic and carboxylic acid functionalities.« less

  9. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of aliphatic acids has been identified in the wood hydrolyzate studied. They are potential fermentation inhibitors probably similar to acetic acid. Ethyl acetate extraction has also been demonstrated to be a possible method to remove fermentation inhibitors from hydrolyzates. (Abstract shortened by UMI.)

  10. [Anaerobic biodegradation of phthalic acid esters (Paes) in municipal sludge].

    PubMed

    Liang, Zhi-Feng; Zhou, Wen; Lin, Qing-Qi; Yang, Xiu-Hong; Wang, Shi-Zhong; Cai, Xin-De; Qiu, Rong-Liang

    2014-04-01

    Phthalic acid esters (PAEs), a class of organic pollutants with potent endocrine-disrupting properties, are widely present in municipal sludge. Study of PAEs biodegradation under different anaerobic biological treatment processes of sludge is, therefore, essential for a safe use of sludge in agricultural practice. In this study, we selected two major sludge PAEs, i.e. di-n-butyl phthalate (DBP) and di-(2-enthylhexyl) phthalate (DEHP), to investigate their biodegradation behaviors in an anaerobic sludge digestion system and a fermentative hydrogen production system. The possible factors influencing PAEs biodegradation in relation to changes of sludge properties were also discussed. The results showed that the biodegradation of DBP reached 99.6% within 6 days, while that of DEHP was 46.1% during a 14-day incubation period in the anaerobic digestion system. By comparison, only 19.5% of DBP was degraded within 14 days in the fermentative hydrogen production system, while no degradation was detected for DEHP. The strong inhibition of the degradation of both PAEs in the fermentative hydrogen production system was ascribed to the decreases in microbial biomass and ratios of gram-positive bacteria/gram-negative bacteria and fungi/ bacteria, and the increase of concentrations of volatile fatty acids (e. g. acetic acid, propionic acid and butyric acid) during the fermentative hydrogen-producing process.

  11. Liquid Chromatography with Post-Column Reagent Addition of Ammonia in Methanol Coupled to Negative Ion Electrospray Ionization Tandem Mass Spectrometry for Determination of Phenoxyacid Herbicides and their Degradation Products in Surface Water

    PubMed Central

    Raina, Renata; Etter, Michele L.

    2010-01-01

    A new liquid chromatography (LC)-negative ion electrospray ionization (ESI−)–tandem mass spectrometry (MS/MS) method with post-column addition of ammonia in methanol has been developed for the analysis of acid herbicides: 2,4-dichlorophenoxy acetic acid, 4-chloro-o-tolyloxyacetic acid, 2-(2-methyl-4-chlorophenoxy)butyric acid, mecoprop, dichlorprop, 4-(2,4-dichlorophenoxy) butyric acid, 2,4,5-trichlorophenoxy propionic acid, dicamba and bromoxynil, along with their degradation products: 4-chloro-2-methylphenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol and 3,5-dibromo-4-hydroxybenzoic acid. The samples were extracted from the surface water matrix using solid-phase extraction (SPE) with a polymeric sorbent and analyzed with LC ESI− with selected reaction monitoring (SRM) using a three-point confirmation approach. Chromatography was performed on a Zorbax Eclipse XDB-C18 (50 × 4.6 mm i.d., 1.8 μm) with a gradient elution using water-methanol with 2 mM ammonium acetate mobile phase at a flow rate of 0.15 mL/min. Ammonia in methanol (0.8 M) was added post-column at a flow rate of 0.05 mL/min to enhance ionization of the degradation products in the MS source. One SRM transition was used for quantitative analysis while the second SRM along with the ratio of SRM1/SRM2 within the relative standard deviation determined by standards for each individual pesticide and retention time match were used for confirmation. The standard deviation of ratio of SRM1/SRM2 obtained from standards run on the day of analysis for different phenoxyacid herbicides ranged from 3.9 to 18.5%. Limits of detection (LOD) were between 1 and 15 ng L−1 and method detection limits (MDL) with strict criteria requiring <25% deviation of peak area from best-fit line for both SRM1 and SRM2 ranged from 5 to 10 ng L−1 for acid ingredients (except dicamba at 30 ng L−1) and from 2 to 30 ng L−1 for degradation products. The SPE-LC-ESI− MS/MS method permitted low nanogram-per-liter determination of pesticides and degradation products for surface water samples. PMID:20212919

  12. Production and transformation of dissolved neutral sugars and amino acids by bacteria in seawater

    NASA Astrophysics Data System (ADS)

    Jørgensen, L.; Lechtenfeld, O. J.; Benner, R.; Middelboe, M.; Stedmon, C. A.

    2014-10-01

    Dissolved organic matter (DOM) in the ocean consists of a heterogeneous mixture of molecules, most of which are of unknown origin. Neutral sugars and amino acids are among the few recognizable biomolecules in DOM, and the molecular composition of these biomolecules is shaped primarily by biological production and degradation processes. This study provides insight into the bioavailability of biomolecules as well as the chemical composition of DOM produced by bacteria. The molecular compositions of combined neutral sugars and amino acids were investigated in DOM produced by bacteria and in DOM remaining after 32 days of bacterial degradation. Results from bioassay incubations with natural seawater (sampled from water masses originating from the surface waters of the Arctic Ocean and the North Atlantic Ocean) and artificial seawater indicate that the molecular compositions following bacterial degradation are not strongly influenced by the initial substrate or bacterial community. The molecular composition of neutral sugars released by bacteria was characterized by a high glucose content (47 mol %) and heterogeneous contributions from other neutral sugars (3-14 mol %). DOM remaining after bacterial degradation was characterized by a high galactose content (33 mol %), followed by glucose (22 mol %) and the remaining neutral sugars (7-11 mol %). The ratio of D-amino acids to L-amino acids increased during the experiments as a response to bacterial degradation, and after 32 days, the D/L ratios of aspartic acid, glutamic acid, serine and alanine reached around 0.79, 0.32, 0.30 and 0.51 in all treatments, respectively. The striking similarity in neutral sugar and amino acid compositions between natural (representing marine semi-labile and refractory DOM) and artificial (representing bacterially produced DOM) seawater samples, suggests that microbes transform bioavailable neutral sugars and amino acids into a common, more persistent form.

  13. Possible carotenoid-derived structures in fossil kerogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machihara, T.; Ishiwatari, R.

    The unique KMnO/sub 4/ degradation products of ..beta..-carotene, previously identified as 2,2-dimethyl succinic acid (C/sub 6/) and 2,2-dimethyl glutaric acid (C/sub 7/) have been found in the oxidation products of Green River shale (Eocene, 52 x 10/sup 6/ yr) and Tasmanian Tasmanite (Permian, 220-274 x 10/sup 6/ yr) kerogens. These two compounds were also detected in KMnO/sub 4/ degradation products of young kerogens from lacustrine and marine sediments. The results indicate that kerogens incorporated carotenoids (possibly ..beta..-carotene) at the time of kerogen formation in surface sediments. Both acids are useful markers to obtain information on biological precursors contributing to themore » formation of fossil kerogens.« less

  14. Composition analysis and application of degradation products of whole feathers through a large scale of fermentation.

    PubMed

    Cao, Zhang-Jun; Lu, Dan; Luo, Lai-Sheng; Deng, Yun-Xia; Bian, Yong-Gang; Zhang, Xing-Qun; Zhou, Mei-Hua

    2011-08-01

    Feathers are one of the most abundant bioresources. They are discarded as waste in most cases and could cause environmental pollution. On the other hand, keratin constituted by amino acids is the main component of feathers. In this article, we reported on biorefined feathers and integrants and application of degraded products. The fermentation of whole chicken feathers with Stenotrophomonas maltophilia DHHJ in a scale-up of a 5-L bioreactor was investigated in this article. The fermentation process was controlled at 0.08 MPa pressure, 2.5 L/min airflow, and 300 rpm as 100% oxygen saturation level, 40°C, and pH 7.8. Feathers were almost completely degraded in the tested fermentation reaction with the following conditions: 80 g of whole feathers in 3 L fermentation broth for 72 h, seed age of 16 h, 100 mL inoculation amount, and 50% oxygen saturation level. The degraded products contain 397.1 mg/L soluble protein that has mass weight ranging from 10 to 160 kD, 336.9 mg/L amino acids, and many kinds of metal ions. The fermentation broth was evaluated as leaf fertilizer and found to increase plant growth to 82% or 66% for two- or fourfold dilutions, respectively. In addition, in a hair care assay, the broth showed a hair protective function by increasing weight, flexibility, and strength of the treated hair. The whole feathers were degraded completely by S. maltophilia DHHJ. The degraded product includes many factors to life, such as peptides, amino acids, and mineral elements. It could be applied as leaf fertilizer and hair care product.

  15. Rate of antioxidant degradation and color variations in dehydrated apples as related to water activity.

    PubMed

    Lavelli, Vera; Vantaggi, Claudia

    2009-06-10

    Dehydrated apples were studied to evaluate the effects of water activity on the stability of their antioxidants and color. Apples were freeze-dried, ground, then equilibrated, and stored at eight water activity levels, ranging from 0.058 to 0.747, at 40 degrees C. Their contents of hydroxycinnamic acids, dihydrochalcones, catechin, epicatechin, polymeric flavan-3-ols, and hydroxymethylfurfural, their antioxidant activity values, and their Hunter colorimetric parameters were analyzed at different storage times. Antioxidant degradation followed pseudo-first-order kinetics and was accelerated by increasing the water activity. The order of antioxidant stability in the products at water activity levels below 0.316 was catechin, epicatechin, and ascorbic acid < total procyanidins < dihydrochalcones and p-coumaric acid < chlorogenic acid; however, in the products at water activity levels above 0.316, the degradation of all antioxidants was very fast. The hydroxymethylfurfural formation rate increased exponentially during storage, especially at high water activity levels. The antioxidant activity of the dehydrated apples decreased during storage, consistent with antioxidant loss. The variations of the colorimetric parameters, namely, lightness (L*), redness (a*), and yellowness (b*), followed pseudo-zero-order kinetics and were accelerated by increasing water activity. All analytical indices indicated that the dehydrated apples were stable at water activity levels below 0.316, with the degradation rate accelerating upon exposure to higher relative humidities. Above 0.316, a small increase in water activity of the product would sharply increase the degradation rate constants for both antioxidant and color variations.

  16. Role of Brønsted acid in selective production of furfural in biomass pyrolysis.

    PubMed

    Zhang, Haiyan; Liu, Xuejun; Lu, Meizhen; Hu, Xinyue; Lu, Leigang; Tian, Xiaoning; Ji, Jianbing

    2014-10-01

    In this work, the role of Brønsted acid for furfural production in biomass pyrolysis on supported sulfates catalysts was investigated. The introduction of Brønsted acid was shown to improve the degradation of polysaccharides to intermediates for furfural, which did not work well when only Lewis acids were used in the process. Experimental results showed that CuSO4/HZSM-5 catalyst exhibited the best performance for furfural (28% yield), which was much higher than individual HZSM-5 (5%) and CuSO4 (6%). The optimum reaction conditions called for the mass ratio of CuSO4/HZSM-5 to be 0.4 and the catalyst/biomass mass ratio to be 0.5. The recycled catalyst exhibited low productivity (9%). Analysis of the catalysts by Py-IR revealed that the CuSO4/HZSM-5 owned a stronger Brønsted acid intensity than HZSM-5 or the recycled CuSO4/HZSM-5. Therefore, the existence of Brønsted acid is necessary to achieve a more productive degradation of biomass for furfural. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Isolation and Characterization of Thermophilic Bacilli Degrading Cinnamic, 4-Coumaric, and Ferulic Acids

    PubMed Central

    Peng, Xue; Misawa, Norihiko; Harayama, Shigeaki

    2003-01-01

    Thirty-four thermophilic Bacillus sp. strains were isolated from decayed wood bark and a hot spring water sample based on their ability to degrade vanillic acid under thermophilic conditions. It was found that these bacteria were able to degrade a wide range of aromatic acids such as cinnamic, 4-coumaric, 3-phenylpropionic, 3-(p-hydroxyphenyl)propionic, ferulic, benzoic, and 4-hydroxybenzoic acids. The metabolic pathways for the degradation of these aromatic acids at 60°C were examined by using one of the isolates, strain B1. Benzoic and 4-hydroxybenzoic acids were detected as breakdown products from cinnamic and 4-coumaric acids, respectively. The β-oxidative mechanism was proposed to be responsible for these conversions. The degradation of benzoic and 4-hydroxybenzoic acids was determined to proceed through catechol and gentisic acid, respectively, for their ring fission. It is likely that a non-β-oxidative mechanism is the case in the ferulic acid catabolism, which involved 4-hydroxy-3-methoxyphenyl-β-hydroxypropionic acid, vanillin, and vanillic acid as the intermediates. Other strains examined, which are V0, D1, E1, G2, ZI3, and H4, were found to have the same pathways as those of strain B1, except that strains V0, D1, and H4 had the ability to transform 3-hydroxybenzoic acid to gentisic acid, which strain B1 could not do. PMID:12620824

  18. A test house study of pesticides and pesticide degradation products following an indoor application.

    PubMed

    Starr, J M; Gemma, A A; Graham, S E; Stout, D M

    2014-08-01

    Preexisting pesticide degradates are a concern for pesticide biomonitoring studies as exposure to them may result in overestimation of pesticide exposure. The purpose of this research was to determine whether there was significant formation and movement, of pesticide degradates over a 5-week period in a controlled indoor setting after insecticide application. Movement of the pesticides during the study was also evaluated. In a simulated crack and crevice application, commercially available formulations of fipronil, propoxur, cis/trans-permethrin, and cypermethrin were applied to a series of wooden slats affixed to the wall in one room of an unoccupied test house. Floor surface samples were collected through 35 days post-application. Concentrations of the pesticides and the following degradates were determined: 2-iso-propoxyphenol, cis/trans 3-(2,2-dichlorovinyl)-3-3-dimethyl-(1-cyclopropane) carboxylic acid, 3-phenoxybenzoic acid, fipronil sulfone, fipronil sulfide, and fipronil desulfinyl. Deltamethrin, which had never been applied, and chlorpyrifos, which had been applied several years earlier, and their degradation products, cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid, and, 3,5,6-trichloro-2-pyridinol, respectively, were also measured. Propoxur was the only insecticide with mass movement away from the application site. There was no measurable formation or movement of the degradates. However, all degradates were present at low levels in the formulated product. These results indicate longitudinal repetitive sampling of indoor degradate levels during short-term studies, is unnecessary. Exposure to preexisting pesticide degradates may inflate estimates of exposure in biomonitoring studies where these compounds are used as biomarkers. To date, there is no published information on formation of pesticide degradates following an indoor application. We found that the study pesticides have low rates of degradation and are unlikely to be a significant factor affecting results of short-term (weeks) biomonitoring studies. Therefore, relatively few indoor samples are needed to estimate background levels of degradation products resulting from a recent pesticide application. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  19. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water worldwide, have been classified as endocrine disruptors and human carcinogens. We contribute new knowledge on the major estrogen biodegradation pathway and estrogen degraders in wastewater treatment plants. This study considerably advances the understanding of environmental estrogen biodegradation, which is instrumental for the efficient elimination of these hazardous pollutants. Moreover, this study substantially improves the understanding of microbial estrogen degradation in the environment. Copyright © 2018 American Society for Microbiology.

  20. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate.

    PubMed

    Truffault, Vincent; Fry, Stephen C; Stevens, Rebecca G; Gautier, Hélène

    2017-03-01

    Ascorbate content in plants is controlled by its synthesis from carbohydrates, recycling of the oxidized forms and degradation. Of these pathways, ascorbate degradation is the least studied and represents a lack of knowledge that could impair improvement of ascorbate content in fruits and vegetables as degradation is non-reversible and leads to a depletion of the ascorbate pool. The present study revealed the nature of degradation products using [ 14 C]ascorbate labelling in tomato, a model plant for fleshy fruits; oxalate and threonate are accumulated in leaves, as is oxalyl threonate. Carboxypentonates coming from diketogulonate degradation were detected in relatively insoluble (cell wall-rich) leaf material. No [ 14 C]tartaric acid was found in tomato leaves. Ascorbate degradation was stimulated by darkness, and the degradation rate was evaluated at 63% of the ascorbate pool per day, a percentage that was constant and independent of the initial ascorbate or dehydroascorbic acid concentration over periods of 24 h or more. Furthermore, degradation could be partially affected by the ascorbate recycling pathway, as lines under-expressing monodehydroascorbate reductase showed a slight decrease in degradation product accumulation. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  1. Stability-indicating UPLC method for determination of Valsartan and their degradation products in active pharmaceutical ingredient and pharmaceutical dosage forms.

    PubMed

    Krishnaiah, Ch; Reddy, A Raghupathi; Kumar, Ramesh; Mukkanti, K

    2010-11-02

    A simple, precise, accurate stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the quantitative determination of purity of Valsartan drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. The method was developed using Waters Aquity BEH C18 (100 mm x 2.1 mm, 1.7 microm) column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 225 nm, the run time was within 9.5 min, which Valsartan and its seven impurities were well separated. Valsartan was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Valsartan was found to degrade significantly in acid and oxidative stress conditions and stable in base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of Valsartan in pharmaceutical dosage forms.

  2. Different Spectrophotometric Methods for Simultaneous Determination of Trelagliptin and Its Acid Degradation Product

    PubMed Central

    Hassan, Mostafa A.; Zaghary, Wafaa A.

    2018-01-01

    New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm–260.4 nm, amplitudes at 260.4 nm–274.0 nm, and mean-centered values at 287.6 nm–257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5–50 μg/mL and 2.5–25 μg/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD. PMID:29629213

  3. Different Spectrophotometric Methods for Simultaneous Determination of Trelagliptin and Its Acid Degradation Product.

    PubMed

    Mowaka, Shereen; Ayoub, Bassam M; Hassan, Mostafa A; Zaghary, Wafaa A

    2018-01-01

    New spectrophotometric and chemometric methods were carried out for the simultaneous assay of trelagliptin (TRG) and its acid degradation product (TAD) and applied successfully as a stability indicating assay to recently approved Zafatek® tablets. TAD was monitored using TLC to ensure complete degradation. Furthermore, HPLC was used to confirm dealing with one major acid degradation product. The proposed methods were developed by manipulating zero-order, first-derivative, and ratio spectra of TRG and TAD using simultaneous equation, first-derivative, and mean-centering methods, respectively. Using Spectra Manager II and Minitab v.14 software, the absorbance at 274 nm-260.4 nm, amplitudes at 260.4 nm-274.0 nm, and mean-centered values at 287.6 nm-257.2 nm were measured against methanol as a blank for TRG and TAD, respectively. Linearity and the other validation parameters were acceptable at concentration ranges of 5-50  μ g/mL and 2.5-25  μ g/mL for TRG and TAD, respectively. Using one-way analysis of variance (ANOVA), the optimized methods were compared and proved to be accurate for the simultaneous assay of TRG and TAD.

  4. Carbon Source-Dependent Inducible Metabolism of Veratryl Alcohol and Ferulic Acid in Pseudomonas putida CSV86

    PubMed Central

    Mohan, Karishma

    2017-01-01

    ABSTRACT Pseudomonas putida CSV86 degrades lignin-derived metabolic intermediates, viz., veratryl alcohol, ferulic acid, vanillin, and vanillic acid, as the sole sources of carbon and energy. Strain CSV86 also degraded lignin sulfonate. Cell respiration, enzyme activity, biotransformation, and high-pressure liquid chromatography (HPLC) analyses suggest that veratryl alcohol and ferulic acid are metabolized to vanillic acid by two distinct carbon source-dependent inducible pathways. Vanillic acid was further metabolized to protocatechuic acid and entered the central carbon pathway via the β-ketoadipate route after ortho ring cleavage. Genes encoding putative enzymes involved in the degradation were found to be present at fer, ver, and van loci. The transcriptional analysis suggests a carbon source-dependent cotranscription of these loci, substantiating the metabolic studies. Biochemical and quantitative real-time (qRT)-PCR studies revealed the presence of two distinct O-demethylases, viz., VerAB and VanAB, involved in the oxidative demethylation of veratric acid and vanillic acid, respectively. This report describes the various steps involved in metabolizing lignin-derived aromatic compounds at the biochemical level and identifies the genes involved in degrading veratric acid and the arrangement of phenylpropanoid metabolic genes as three distinct inducible transcription units/operons. This study provides insight into the bacterial degradation of lignin-derived aromatics and the potential of P. putida CSV86 as a suitable candidate for producing valuable products. IMPORTANCE Pseudomonas putida CSV86 metabolizes lignin and its metabolic intermediates as a carbon source. Strain CSV86 displays a unique property of preferential utilization of aromatics, including for phenylpropanoids over glucose. This report unravels veratryl alcohol metabolism and genes encoding veratric acid O-demethylase, hitherto unknown in pseudomonads, thereby providing new insight into the metabolic pathway and gene pool for lignin degradation in bacteria. The biochemical and genetic characterization of phenylpropanoid metabolism makes it a prospective system for its application in producing valuable products, such as vanillin and vanillic acid, from lignocellulose. This study supports the immense potential of P. putida CSV86 as a suitable candidate for bioremediation and biorefinery. PMID:28188206

  5. Phenols as chemical fossils in coals. [Book chapter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bimer, J.; Given, P.H.; Raj, S.

    It is generally considered that vitrinite, the principal maceral in most coals, represents coalified, partly decayed wood. Hence lignin should be one of the important precursors to the vitrinites in coals. Accordingly, it would be interesting to know whether any chemical fossils related to lignin could be found in coals. The purpose of this paper is to report what we believe to be a successful search for such fossils. The experimental approach exploited a degradation reaction developed in a study of soil humic acids by Burges et al. This reaction involves a reductive degradation with sodium amalgam and hot water.more » Thin layer chromatography of the ether soluble part of the product (yield, about 20%) showed the presence of a number of phenols and phenolic acids, most of whose structures bore obvious relationships to known microbial and chemical degradation products of lignin but some to the A ring of flavonoids. Humic acids can be extracted from peats and lignites but not from bituminous coals. However, oxidation of bituminous coals with aqueous performic acid generates in high yield (80 to 110% by weight) materials that closely resemble humic acids. The Burges reductive degradation was applied to humic acids extracted from some peats and lignites, and produced by oxidation of a number of bituminous coals. A number of identifications of products were made originally by gas chromatography with co-injection of standards. In this preliminary publication the experimental procedures are described and a sufficient selection of the data are given to show what was found by co-injection and later confirmed by mass spectrometry.« less

  6. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS.

    PubMed

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A M; Vishwanath, K; Jadhav, R K

    2011-05-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itopride degraded in acid, alkali and oxidative stress conditions. The stability indicating method was developed and validated. The degradation pathway of the drug to products II-VIII is proposed.

  7. Identification of Forced Degradation Products of Itopride by LC-PDA and LC-MS

    PubMed Central

    Joshi, Payal; Bhoir, Suvarna; Bhagwat, A. M.; Vishwanath, K.; Jadhav, R. K.

    2011-01-01

    Degradation products of itopride formed under different forced conditions have been identified using LC-PDA and LC-MS techniques. Itopride was subjected to forced degradation under the conditions of hydrolysis, photolysis, oxidation, dry and wet heat, in accordance with the International Conference on Harmonization. The stress solutions were chromatographed on reversed phase C18 (250×4.6 mm, 5 μm) column with a mobile phase methanol:water (55:45, v/v) at a detection wavelength of 215 nm. Itopride degraded in acid, alkali and oxidative stress conditions. The stability indicating method was developed and validated. The degradation pathway of the drug to products II-VIII is proposed. PMID:22457552

  8. Bioprocessing of wheat and paddy straw for their nutritional up-gradation.

    PubMed

    Sharma, Rakesh Kumar; Arora, Daljit Singh

    2014-07-01

    Solid-state bioprocessing of agricultural residues seems to be an emerging and effective method for the production of high quality animal feed. Seven strains of white-rot fungi were selected to degrade wheat and paddy straw (PS) under solid-state conditions. Degradation of different components, i.e., hemicellulose, cellulose and lignin was evaluated along with nutritional parameters including; in vitro digestibility, crude protein, amino acids, total phenolic contents (TPC) etc. Effect of nitrogen-rich supplements on degradation of lignocellulosics was evaluated using two best selected fungal strains (Phlebia brevispora and Phlebia floridensis). The best selected conditions were used to upscale the process up to 200 g batches of wheat and PS. Lignin was selectively degraded up to 30 % with a limited loss of 11-12 % in total organic matter. Finally, the degraded agro-residues demonstrated 50-62 % enhancement in their digestibility. Two-threefold enhancement in other nutritional quality (amino acids, TPCs and antioxidant activity) fortifies the process. Thus the method is quite helpful to design an effective solid-state fermentation system to improve the nutritive quality of agricultural residues by simultaneous production of lignocellulolytic enzyme production and antioxidants.

  9. Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation

    NASA Astrophysics Data System (ADS)

    Madureira, Joana; Ceriani, Elisa; Pinhão, Nuno; Marotta, Ester; Melo, Rita; Cabo Verde, Sandra; Paradisi, Cristina; Margaça, Fernanda M. A.

    2017-11-01

    In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a $^{60}$Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO$_2$ was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments.

  10. Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation.

    PubMed

    Madureira, Joana; Ceriani, Elisa; Pinhão, Nuno; Marotta, Ester; Melo, Rita; Cabo Verde, Sandra; Paradisi, Cristina; Margaça, Fernanda M A

    2017-11-01

    In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a 60 Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO 2 was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Efficient degradation of Azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions.

    PubMed

    He, Xiao-Ling; Song, Chao; Li, Yuan-Yuan; Wang, Ning; Xu, Lei; Han, Xin; Wei, Dong-Sheng

    2018-04-15

    A fast-growing fungus with remarkable ability to degrade several azo dyes under non-sterile conditions was isolated and identified. This fungus was identified as Trichoderma tomentosum. Textile effluent of ten-fold dilution could be decolorized by 94.9% within 72h before optimization. Acid Red 3R model wastewater with a concentration of 85.5mgL -1 could be decolorized by 99.2% within the same time after optimization. High-level of manganese peroxidase and low-level of lignin peroxidase activities were detected during the process of decolorization from the culture supernatant, indicating the possible involvement of two enzymes in azo dye decolorization. No aromatic amine products were detected from the degradation products of Acid Red 3R by gas chromatography-mass spectrometry (GC/MS) analysis, indicating the possible involvement of a special symmetrical oxidative degradation pathway. Phytotoxicity assay confirmed the lower toxicity toward the test plant seeds of the degradation products when compared to the original dye. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Production of PFOS from aerobic soil biotransformation of two perfluoroalkyl sulfonamide derivatives.

    PubMed

    Mejia Avendaño, Sandra; Liu, Jinxia

    2015-01-01

    The continuous production and use in certain parts of the world of perfluoroalkyl sulfonamide derivatives that can degrade to perfluorooctane sulfonic acid (PFOS) has called for better understanding of the environmental fate of these PFOS precursors. Aerobic soil biotransformation of N-ethyl perfluorooctane sulfonamide (EtFOSA, also known as Sulfluramid) was quantitatively investigated in semi-closed soil microcosms over 182 d for the first time. The apparent soil half-life of EtFOSA was 13.9±2.1 d and the yield to PFOS by the end of incubation was 4.0 mol%. A positive identification of a previously suspected degradation product, EtFOSA alcohol, provided strong evidence to determine degradation pathways. The lower mass balance in sterile soil than live soil suggested likely strong irreversible sorption of EtFOSA to the test soil. The aerobic soil biotransformation of a technical grade N-ethyl perfluorooctane sulfonamidoethanol (EtFOSE) was semi-quantitatively examined, and the degradation pathways largely followed those in activated sludge and marine sediments. Aside from PFOS, major degradation products included N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA), perfluorooctane sulfonamide (FOSA) and perfluorooctane sulfonamide acetic acid (FOSAA). This study confirms that aerobic soil biotransformation of EtFOSE and EtFOSA contributes significantly to the PFOS observed in soil environment, as well as to several highly persistent sulfonamide derivatives frequently detected in biosolid-amended soils and landfill leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Molecular weight analyses and enzymatic degradation profiles of the soft-tissue fillers Belotero Balance, Restylane, and Juvéderm Ultra.

    PubMed

    Flynn, Timothy Corcoran; Thompson, David H; Hyun, Seok-Hee

    2013-10-01

    In this study, the authors sought to determine the molecular weight distribution of three hyaluronic acids-Belotero Balance, Restylane, and Juvéderm Ultra-and their rates of degradation following exposure to hyaluronidase. Lot consistency of Belotero Balance also was analyzed. Three lots of Belotero Balance were analyzed using liquid chromatography techniques. The product was found to have high-molecular-weight and low-molecular-weight species. One lot of Belotero Balance was compared to one lot each of Juvéderm Ultra and Restylane. Molecular weights of the species were analyzed. The hyaluronic acids were exposed to ovine testicular hyaluronidase at six time points-baseline and 0.5, 1, 2, 6, and 24 hours-to determine degradation rates. Belotero Balance lots were remarkably consistent. Belotero Balance had the largest high-molecular-weight species, followed by Juvéderm Ultra and Restylane (p < 0.001). Low-molecular-weight differences among all three hyaluronic acids were not statistically significant. Percentages of high-molecular-weight polymer differ among the three materials, with Belotero Balance having the highest fraction of high-molecular-weight polymer. Degradation of the high-molecular-weight species over time showed different molecular weights of the high-molecular-weight fraction. Rates of degradation of the hyaluronic acids following exposure to ovine testicular hyaluronidase were similar. All hyaluronic acids were fully degraded at 24 hours. Fractions of high-molecular-weight polymer differ across the hyaluronic acids tested. The low-molecular-weight differences are not statistically significant. The high-molecular-weight products have different molecular weights at the 0.5- and 2-hour time points when exposed to ovine testicular hyaluronidase and are not statistically different at 24 hours.

  14. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus.

    PubMed

    Chen, Mei; Huang, Xuenian; Zhong, Chengwei; Li, Jianjun; Lu, Xuefeng

    2016-09-01

    Itaconic acid, one of the most promising and flexible bio-based chemicals, is mainly produced by Aspergillus terreus. Previous studies to improve itaconic acid production in A. terreus through metabolic engineering were mainly focused on its biosynthesis pathway, while the itaconic acid-degrading pathway has largely been ignored. In this study, we used transcriptomic, proteomic, bioinformatic, and in vitro enzymatic analyses to identify three key enzymes, itaconyl-CoA transferase (IctA), itaconyl-CoA hydratase (IchA), and citramalyl-CoA lyase (CclA), that are involved in the catabolic pathway of itaconic acid in A. terreus. In the itaconic acid catabolic pathway in A. terreus, itaconic acid is first converted by IctA into itaconyl-CoA with succinyl-CoA as the CoA donor, and then itaconyl-CoA is hydrated into citramalyl-CoA by IchA. Finally, citramalyl-CoA is cleaved into acetyl-CoA and pyruvate by CclA. Moreover, IctA can also catalyze the reaction between citramalyl-CoA and succinate to generate succinyl-CoA and citramalate. These results, for the first time, identify the three key enzymes, IctA, IchA, and CclA, involved in the itaconic acid degrading pathway in itaconic acid producing A. terreus. The results will facilitate the improvement of itaconic acid production by metabolically engineering the catabolic pathway of itaconic acid in A. terreus.

  15. REDUCTIVE ACTIVATION OF DIOXYGEN FOR DEGRADATION OF METHYL TERT-BUTYL ETHER BY BIFUNCTION

    EPA Science Inventory

    Bifunctional aluminum is prepared by sulfating aluminum metal with sulfuric acid. The use of bifunctional aluminum to degrade methyl tert-butyl ether (MTBE) in the presence of dioxygen has been examined using batch systems. Primary degradation products were tert-butyl alcohol, ...

  16. Biodegradation of dichlorodiphenyltrichloroethane: intermediates in dichlorodiphenylacetic acid metabolism by aerobacter aerogenes

    USGS Publications Warehouse

    Wedemeyer, Gary

    1967-01-01

    The final product of dichlorodiphenyltrichloroethane (DDT) degradation by vertebrates is commonly considered to be dichlorodiphenylacetic acid, DDA. Recently, certain organisms have been found to degrade further DDA to dichlorobenzophenone (DBP), but the possibility that such degradation was due to microbial action could not be excluded. Significantly, dichlorobenzhydrol (DBH), dichlorophenylmethane (DPM), and dichlorodiphenylethylene (DDE) have been tentatively identified in rats fed DDA. Since DDA as well as DDT is degraded by the ubiquitous microorganism Aerobacter aerogenes, it seemed reasonable that the intestinal microflora might be involved in DBP formation, DPM and DBH being intermediates in its pathway from DDA. Since DDA is a (3,y-unsaturated acid, ketone formation via an alkene and an alcohol would be expected.

  17. Production of low-molecular weight soluble yeast β-glucan by an acid degradation method.

    PubMed

    Ishimoto, Yuina; Ishibashi, Ken-Ichi; Yamanaka, Daisuke; Adachi, Yoshiyuki; Kanzaki, Ken; Iwakura, Yoichiro; Ohno, Naohito

    2018-02-01

    β-glucan is widely distributed in nature as water soluble and insoluble forms. Both forms of β-glucan are utilized in several fields, especially for functional foods. Yeast β-glucan is a medically important insoluble particle. Solubilization of yeast β-glucan may be valuable for improving functional foods and in medicinal industries. In the present study, we applied an acid degradation method to solubilize yeast β-glucan and found that β-glucan was effectively solubilized to low-molecular weight β-glucans by 45% sulfuric acid treatment at 20°C. The acid-degraded soluble yeast β-glucan (ad-sBBG) was further fractionated into a higher-molecular weight fraction (ad-sBBG-high) and a lower-molecular weight fraction (ad-sBBG-low). Since ad-sBBG-high contained mannan, while ad-sBBG-low contained it only scarcely, it was possible to prepare low-molecular weight soluble β-glucan with higher purity. In addition, ad-sBBG-low bound to dectin-1, which is an innate immunity receptor of β-glucan, and showed antagonistic activity against reactive oxygen production and cytokine synthesis by macrophages. Thus, this acid degradation method is an important procedure for generating immune-modulating, low-molecular weight, soluble yeast β-glucan. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Characterization of the Complete Uric Acid Degradation Pathway in the Fungal Pathogen Cryptococcus neoformans

    PubMed Central

    Lee, I. Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H. N.; Blundell, Ross; Lui, Edmund Y. L.; Morrow, Carl A.; Fraser, James A.

    2013-01-01

    Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed. PMID:23667704

  19. Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans.

    PubMed

    Lee, I Russel; Yang, Liting; Sebetso, Gaseene; Allen, Rebecca; Doan, Thi H N; Blundell, Ross; Lui, Edmund Y L; Morrow, Carl A; Fraser, James A

    2013-01-01

    Degradation of purines to uric acid is generally conserved among organisms, however, the end product of uric acid degradation varies from species to species depending on the presence of active catabolic enzymes. In humans, most higher primates and birds, the urate oxidase gene is non-functional and hence uric acid is not further broken down. Uric acid in human blood plasma serves as an antioxidant and an immune enhancer; conversely, excessive amounts cause the common affliction gout. In contrast, uric acid is completely degraded to ammonia in most fungi. Currently, relatively little is known about uric acid catabolism in the fungal pathogen Cryptococcus neoformans even though this yeast is commonly isolated from uric acid-rich pigeon guano. In addition, uric acid utilization enhances the production of the cryptococcal virulence factors capsule and urease, and may potentially modulate the host immune response during infection. Based on these important observations, we employed both Agrobacterium-mediated insertional mutagenesis and bioinformatics to predict all the uric acid catabolic enzyme-encoding genes in the H99 genome. The candidate C. neoformans uric acid catabolic genes identified were named: URO1 (urate oxidase), URO2 (HIU hydrolase), URO3 (OHCU decarboxylase), DAL1 (allantoinase), DAL2,3,3 (allantoicase-ureidoglycolate hydrolase fusion protein), and URE1 (urease). All six ORFs were then deleted via homologous recombination; assaying of the deletion mutants' ability to assimilate uric acid and its pathway intermediates as the sole nitrogen source validated their enzymatic functions. While Uro1, Uro2, Uro3, Dal1 and Dal2,3,3 were demonstrated to be dispensable for virulence, the significance of using a modified animal model system of cryptococcosis for improved mimicking of human pathogenicity is discussed.

  20. Utility of surface enhanced Raman spectroscopy (SERS) for elucidation and simultaneous determination of some penicillins and penicilloic acid using hydroxylamine silver nanoparticles.

    PubMed

    El-Zahry, Marwa R; Refaat, Ibrahim H; Mohamed, Horria A; Rosenberg, Erwin; Lendl, Bernhard

    2015-11-01

    Elucidation and quantitative determination of some of commonly used penicillins (ampicillin, penicillin G and carbenicillin) in the presence of their main degradation product (penicilloic acid) were developed. Forced acidic and basic degradation processes were applied at different time intervals. The formed degradation products were elucidated and quantified using surface enhanced Raman spectroscopy (SERS). Silver nanoparticles (AgNPs) prepared by reduction of silver nitrate using hydroxylamine-HCl in alkaline medium were used as SERS substrate. The results obtained in SERS were confirmed by the application of LC/MS method. The concentration range was 100-600 ng/ml in case of the studied penicillins and 100-700 ng/ml in case of penicilloic acid. An excellent correlation coefficient was found in case of ampicillin (r=0.9993) and in the case of penicilloic acid (r=0.9997). Validation procedures were carried out including precision, robustness and accuracy by comparing F- and t-values of both the proposed and reported methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse.

    PubMed

    Mishra, Vartika; Jana, Asim K; Jana, Mithu Maiti; Gupta, Antriksh

    2017-07-01

    The objective of this work was to study the increase in multiple lignolytic enzyme productions through the use of supplements in combination in pretreatment of sweet sorghum bagasse (SSB) by Coriolus versicolor such that enzymes act synergistically to maximize the lignin degradation and selectivity. Enzyme activities were enhanced by metallic salts and phenolic compound supplements in SSF. Supplement of syringic acid increased the activities of LiP, AAO and laccase; gallic acid increased MnP; CuSO 4 increased laccase and PPO to improve the lignin degradations and selectivity individually, higher than control. Combination of supplements optimized by RSM increased the production of laccase, LiP, MnP, PPO and AAO by 17.2, 45.5, 3.5, 2.4 and 3.6 folds respectively for synergistic action leading to highest lignin degradation (2.3 folds) and selectivity (7.1 folds). Enzymatic hydrolysis of pretreated SSB yielded ∼2.43 times fermentable sugar. This technique could be widely applied for pretreatment and enzyme productions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  3. HPLC & NMR-based forced degradation studies of ifosfamide: The potential of NMR in stability studies.

    PubMed

    Salman, D; Peron, J-M R; Goronga, T; Barton, S; Swinden, J; Nabhani-Gebara, S

    2016-03-01

    The aim of this study is to conduct a forced degradation study on ifosfamide under several stress conditions to investigate the robustness of the developed HPLC method. It also aims to provide further insight into the stability of ifosfamide and its degradation profile using both HPLC and NMR. Ifosfamide solutions (20mg/mL; n=15, 20mL) were stressed in triplicate by heating (70°C), under acidic (pH 1 & 4) and alkaline (pH 10 & 12) conditions. Samples were analysed periodically using HPLC and FT-NMR. Ifosfamide was most stable under weakly acidic conditions (pH 4). NMR results suggested that the mechanism of ifosfamide degradation involves the cleavage of the PN bond. For all stress conditions, HPLC was not able to detect ifosfamide degradation products that were detected by NMR. These results suggest that the developed HPLC method for ifosfamide did not detect the degradation products shown by NMR. It is possible that degradation products co-elute with ifosfamide, do not elute altogether or are not amenable to the detection method employed. Therefore, investigation of ifosfamide stability requires additional techniques that do not suffer from the aforementioned shortcomings. Copyright © 2015 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  4. Biofilm Formation by a Metabolically Versatile Bacterium

    DTIC Science & Technology

    2005-10-02

    Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential to be developed as a biocatalyst for the production of hydrogen, a...A for none) Samanta, S. K and C. S. Harwood. 2005. Use of the Rhodopseudomonas palustris genome to identify a single amino acid that contributes to...operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology 151

  5. Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger.

    PubMed

    Kishore, G; Sugumaran, M; Vaidyanathan, C S

    1976-10-01

    A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate.

  6. Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger.

    PubMed Central

    Kishore, G; Sugumaran, M; Vaidyanathan, C S

    1976-01-01

    A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate. PMID:10273

  7. Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study.

    PubMed

    Fuentes, Iliana; Rodríguez, Julia L; Poznyak, Tatyana; Chairez, Isaac

    2014-11-01

    Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.

  8. Effects of radiation, acid, and base on the extractant dihexyl-(diethylcarbamoyl)methyl) phosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahner, C.T.; Shoun, R.R.; McDowell, W.J.

    1981-11-01

    The effects of exposure to gamma radiation (/sup 60/Co) and of contact with acidic and basic aqueous solutions on dihexyl((diethylcarbamoyl)methyl)phosphonate (DHDECMP) were studied. Gamma radiation decomposes DHDECMP into a variety of products. The most troublesome of those are the acidic compounds that cause problems in stripping the actinides and lanthanides from the extractant at low acid concentrations. The rate of degradation of DHDECMP by radiation is about the same or only slightly higher than that of tri-n-butyl phosphate (TBP). It is relatively easy to remove the radiation-produced impurities by equilibration (scrubbing) with sodium carbonate or sodium hydroxide or by columnmore » chromatographic methods. The hydrolysis of DHDECMP in contact with aqueous solutions containing less than 3 M HNO/sub 3/ is not more severe than that of TBP under the same conditions but is significant above that acid concentration. Hydrolysis of DHDECMP in contact with aqueous sodium hydroxide solution does occur, but it should not pose an important problem with the short contact times such as those anticipated for the removal of the radiation-induced degradation products by caustic scrubbing. Results of various chromatographic tests to characterize the degradation products of DHDECMP are also given.« less

  9. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction.

    PubMed

    Jokić, Stela; Gagić, Tanja; Knez, Željko; Šubarić, Drago; Škerget, Mojca

    2018-06-11

    Large amounts of residues are produced in the food industries. The waste shells from cocoa processing are usually burnt for fuel or used as a mulch in gardens to add nutrients to soil and to suppress weeds. The objectives of this work were: (a) to separate valuable compounds from cocoa shell by applying sustainable green separation process—subcritical water extraction (SWE); (b) identification and quantification of active compounds, sugars and sugar degradation products in obtained extracts using HPLC; (c) characterization of the antioxidant activity of extracts; (d) optimization of separation process using response surface methodology (RSM). Depending on applied extraction conditions, different concentration of theobromine, caffeine, theophylline, epicatechin, catechin, chlorogenic acid and gallic acid were determined in the extracts obtained by subcritical water. Furthermore, mannose, glucose, xylose, arabinose, rhamnose and fucose were detected as well as their important degradation products such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid, lactic acid and formic acid.

  10. Hydrogen production using amino acids obtained by protein degradation in waste biomass by combined dark- and photo-fermentation.

    PubMed

    Cheng, Jun; Ding, Lingkan; Xia, Ao; Lin, Richen; Li, Yuyou; Zhou, Junhu; Cen, Kefa

    2015-03-01

    The biological hydrogen production from amino acids obtained by protein degradation was comprehensively investigated to increase heating value conversion efficiency. The five amino acids (i.e., alanine, serine, aspartic acid, arginine, and leucine) produced limited hydrogen (0.2-16.2 mL/g) but abundant soluble metabolic products (40.1-84.0 mM) during dark-fermentation. The carbon conversion efficiencies of alanine (85.3%) and serine (94.1%) during dark-fermentation were significantly higher than those of other amino acids. Residual dark-fermentation solutions treated with zeolite for NH4(+) removal were inoculated with photosynthetic bacteria to further produce hydrogen during photo-fermentation. The hydrogen yields of alanine and serine through combined dark- and photo-fermentation were 418.6 and 270.2 mL/g, respectively. The heating value conversion efficiency of alanine to hydrogen was 25.1%, which was higher than that of serine (21.2%). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Biodegradation of kraft lignin by a newly isolated anaerobic bacterial strain, Acetoanaerobium sp. WJDL-Y2.

    PubMed

    Duan, J; Huo, X; Du, W J; Liang, J D; Wang, D Q; Yang, S C

    2016-01-01

    An anaerobic kraft lignin (KL)-degrading bacterial strain was isolated from sludge of a pulp and paper mill. It was characterized as Acetoanaerobium sp. WJDL-Y2 by 16S rRNA gene sequencing. The maximum KL degradation capability of strain Y2 was determined to be 24·9% on a COD basis under an optimal condition with temperature of 31·5°C, initial pH of 6·8 and KL to nitrogen (as NH4 Cl) ratio of 6·5 by mass. Growth kinetic studies showed that the KL tolerance of strain Y2 was relatively high (Ki  = 8120·45 mg l(-1) ). Analysing KL degradation products by GC-MS revealed the formation of low-molecular-weight aromatic compounds (LMWACs), including benzene-propanoic acid, syringic acid and ferulic acid. This indicates that strain Y2 can oxidize lignin structure's p-hydroxyphenyl (H) units, guaiacyl (G) units and syringyl (S). In addition, the inoculated sample also contained low-molecular acid compounds, such as hexanoic acid, adipic acid and 2-hydroxybutyric acid, further validating strain Y2's ability to degrade KL. Kraft lignin containing effluents discharged from pulp and paper industries causes serious environmental pollution in developing countries. Due to the immense environmental adaptability and biochemical versatility, bacterial ligninolytic potential deserve to be studied for application in effluent treatment of pulp and paper industry. In this study, an anaerobic lignin-degrading bacterium, Acetoanaerobium sp. WJDL-Y2 (accession no. KF176997),was isolated from the sludge of a pulp and paper mill. Strain Y2 can play an important role in treating pulp and paper wastewater, as well as breaking down materials for biofuel and chemical production. © 2015 The Society for Applied Microbiology.

  12. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    PubMed

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. [Characterization of a thermophilic Geobacillus strain DM-2 degrading hydrocarbons].

    PubMed

    Liu, Qing-kun; Wang, Jun; Li, Guo-qiang; Ma, Ting; Liang, Feng-lai; Liu, Ru-lin

    2008-12-01

    A thermophilic Geobacillus strain DM-2 from a deep-subsurface oil reservoir was investigated on its capability of degrading crude oil under various conditions as well as its characters on degrading hydrocarbons in optimal conditions. The results showed that Geobacillus strain DM-2 was able to degrade crude oil under anoxic wide-range conditions with pH ranging from 4.0 to 10.0, high temperature in the range of 45-70 degrees C and saline concentration ranging from 0.2% to 3.0%. Furthermore, the optimal temperature and pH value for utilizing hydrocarbons by the strain were 60 degrees C and 7.0, respectively. Under such optimal conditions, the strain utilized liquid paraffine emulsified by itself as its carbon source for growth; further analysis by gas chromatography (GC) and infrared absorption spectroscopy demonstrated that it was able to degrade n-alkanes (C14-C30), branched-chain alkanes and aromatic hydrocarbons in crude oil and could also utilize long-chain n-alkanes from C16 to C36, among of which the degradation efficiency of C28 was the highest, up to 88.95%. One metabolite of the strain oxidizing alkanes is fatty acid.While utilizing C16 as carbon source for 5 d, only one fatty acid-acetic acid was detected by HPLC and MS as the product, with the amount of 0.312 g/L, which indicated that it degraded n-alkanes with pathway of inferior terminal oxidation,and then followed by a beta-oxidation pathway. Due to its characters of efficient emulsification, high-performance degradation of hydrocarbons and fatty-acid production under high temperature and anoxic condition, the strain DM-2 may be potentially applied to oil-waste treatment and microbial enhanced heavy oil recovery in extreme conditions.

  14. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design.

    PubMed

    Zhang, Xiaolei; Wu, Yan; Pan, Zongyou; Sun, Heng; Wang, Junjuan; Yu, Dongsheng; Zhu, Shouan; Dai, Jun; Chen, Yishan; Tian, Naifeng; Heng, Boon Chin; Coen, Noelle D; Xu, Huazi; Ouyang, Hongwei

    2016-09-15

    Poly (lactic-co-glycolic acid) (PLGA) and poly-l-lactate acid (PLLA) are biodegradable polymers widely utilized as scaffold materials for cartilage tissue engineering. Their acid degradation products have been widely recognized as being detrimental to cell function. However, the biological effects of lactate, rather than lactic acid, on chondrocytes have never been investigated. This is the major focus of this study. The amounts of lactate and the pH value (acid) of the PLGA and PLLA degradation medium were measured. The effects of PLGA and PLLA degradation medium, as well as different lactate concentrations and timing of exposure on chondrocytes proliferation and cartilage-specific matrix synthesis were investigated by various techniques including global gene expression profiling and gene knockdown experiments. It was shown that PLGA and PLLA degradation medium differentially regulated chondrocyte proliferation and matrix synthesis. Acidic pH caused by lactate inhibited chondrocyte proliferation and matrix synthesis. The effect of lactate on chondrocyte matrix synthesis was both time and dose dependent. A lactate concentration of 100mM and exposure duration of 8h significantly enhanced matrix synthesis. Lactate could also inhibit expression of cartilage matrix degradation genes in osteoarthritic chondrocytes, such as the major aggrecanase ADAMTS5, whilst promoting matrix synthesis simultaneously. Pulsed addition of lactate was shown to be more efficient in promoting COL2A1 expression. Global gene expression data and gene knock down experiments demonstrated that lactate promote matrix synthesis through up-regulation of HIF1A. These observed differential biological effects of lactate on chondrocytes would have implications for the future design of polymeric cartilage scaffolds. Lactic acid is a widely used substrate for polymers synthesis, PLGA and PLLA in particular. Although physical and biological modifications have been made on these polymers to make them be better cartilage scaffolds, little concern has been given on the biological effect of lactic acid, the main degradation product of these polymers, on chondrocytes. Our finding illustrates the differential biological function of lactate and acid on chondrocytes matrix synthesis. These results can facilitate future design of lactate polymers-based cartilage scaffolds. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. 76 FR 11965 - Peroxyacetic Acid; Amendment to an Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... of PAA PAA degrades rapidly to AA and HP, and HP further degrades to water and oxygen; therefore, the final degradation products of PAA are AA, water, and oxygen. As stated in Unit II., section 408(a)(3... concluded that, since HP itself degrades rapidly into oxygen and water, residues of a solution that contains...

  16. Gene Encoding the Hydrolase for the Product of the meta-Cleavage Reaction in Testosterone Degradation by Comamonas testosteroni

    PubMed Central

    Horinouchi, Masae; Hayashi, Toshiaki; Koshino, Hiroyuki; Yamamoto, Takako; Kudo, Toshiaki

    2003-01-01

    In a previous study we isolated the meta-cleavage enzyme gene, tesB, that encodes an enzyme that carries out a meta-cleavage reaction in the breakdown of testosterone by Comamonas testeroni TA441 (M. Horinouchi et al., Microbiology 147:3367-3375, 2001). Here we report the isolation of a gene, tesD, that encodes a hydrolase which acts on the product of the meta-cleavage reaction. We isolated tesD by using a Tn5 mutant of TA441 that showed limited growth on testosterone. TesD exhibited ca. 40% identity in amino acid sequence with BphDs, known hydrolases of biphenyl degradation in Pseudomonas spp. The TesD-disrupted mutant showed limited growth on testosterone, and the culture shows an intense yellow color. High-pressure liquid chromatography analysis of the culture of TesD-disrupted mutant incubated with testosterone detected five major intermediate compounds, one of which, showing yellow color under neutral conditions, was considered to be the product of the meta-cleavage reaction. The methylation product was analyzed and identified as methyl-4,5-9,10-diseco-3-methoxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oate, indicating that the substrate of TesD in testosterone degradation is 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid. 4,5-9,10-Diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid was transformed by Escherichia coli-expressed TesD. Downstream of tesD, we identified tesE, F, and G, which encode for enzymes that degrade one of the products of 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-dien-4-oic acid converted by TesD. PMID:12676694

  17. Quantitative proteomic analyses of the microbial degradation of estrone under various background nitrogen and carbon conditions.

    PubMed

    Du, Zhe; Chen, Yinguang; Li, Xu

    2017-10-15

    Microbial degradation of estrogenic compounds can be affected by the nitrogen source and background carbon in the environment. However, the underlying mechanisms are not well understood. The objective of this study was to elucidate the molecular mechanisms of estrone (E1) biodegradation at the protein level under various background nitrogen (nitrate or ammonium) and carbon conditions (no background carbon, acetic acid, or humic acid as background carbon) by a newly isolated bacterial strain. The E1 degrading bacterial strain, Hydrogenophaga atypica ZD1, was isolated from river sediments and its proteome was characterized under various experimental conditions using quantitative proteomics. Results show that the E1 degradation rate was faster when ammonium was used as the nitrogen source than with nitrate. The degradation rate was also faster when either acetic acid or humic acid was present in the background. Proteomics analyses suggested that the E1 biodegradation products enter the tyrosine metabolism pathway. Compared to nitrate, ammonium likely promoted E1 degradation by increasing the activities of the branched-chain-amino-acid aminotransferase (IlvE) and enzymes involved in the glutamine synthetase-glutamine oxoglutarate aminotransferase (GS-GOGAT) pathway. The increased E1 degradation rate with acetic acid or humic acid in the background can also be attributed to the up-regulation of IlvE. Results from this study can help predict and explain E1 biodegradation kinetics under various environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Inhibition of Xenobiotic-Degrading Hydrolases by Organophosphinates

    DTIC Science & Technology

    1985-07-01

    transient increase in the salicylic acid hydrolysis product was observed. Pretreatment with 4-nitrophenyl methyl(phenyl)phosphinate had no significant...h. Hydroly- sis of aspirin was not reduced in pretreated mice, although a transient increase in the salicylic acid hydrolysis product was observed...26 Figure 1. Pathways of aspirin metabolism in mammals: CE is carboxylester hydrolase, SA is salicylic acid, SU is salicyluric

  19. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  20. Kinetics and methane gas yields of selected C1 to C5 organic acids in anaerobic digestion.

    PubMed

    Yang, Yu; Chen, Qian; Guo, Jialiang; Hu, Zhiqiang

    2015-12-15

    Volatile fatty acids (VFAs) and other short-chain organic acids such as lactic and pyruvic acids are intermediates in anaerobic organic degradation. In this study, anaerobic degradation of seven organic acids in salt form was investigated, including formate (C1), acetate (C2), propionate (C3), pyruvate (C3), lactate (C3), butyrate (C4), and valerate (C5). Microbial growth kinetics on these organic acids were determined individually at 37 °C through batch anaerobic digestion tests by varying substrate concentrations from 250 to 4000 mg COD/L. The cumulative methane generation volume was determined real-time by respirometry coupled with gas chromatographic analysis while methane yield and related kinetics were calculated. The methane gas yields (fe, mg CH4 COD/mg substrate COD) from anaerobic degradation of formate, acetate, propionate, pyruvate, lactate, butyrate, and valerate were 0.44 ± 0.27, 0.58 ± 0.05, 0.53 ± 0.18, 0.24 ± 0.05, 0.17 ± 0.05, 0.43 ± 0.15, 0.49 ± 0.11, respectively. Anaerobic degradation of formate showed self-substrate inhibition at the concentrations above 3250 mg COD/L. Acetate, propionate, pyruvate, butyrate, lactate, and valerate did not inhibit methane production at the highest concentrations tested (i.e., 4000 mg COD/L). Microbes growing on acetate had the highest overall specific growth rate (0.30 d(-1)) in methane production. For comparison, the specific microbial growth rates on formate, propionate, pyruvate, butyrate, lactate, and valerate for methane production were 0.10, 0.06, 0.08, 0.07, 0.05, 0.15 d(-1), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  2. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    NASA Astrophysics Data System (ADS)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  3. Untargeted Metabolic Profiling of Winery-Derived Biomass Waste Degradation by Penicillium chrysogenum.

    PubMed

    Karpe, Avinash V; Beale, David J; Godhani, Nainesh B; Morrison, Paul D; Harding, Ian H; Palombo, Enzo A

    2015-12-16

    Winery-derived biomass waste was degraded by Penicillium chrysogenum under solid state fermentation over 8 days in a (2)H2O-supplemented medium. Multivariate statistical analysis of the gas chromatography-mass spectrometry (GC-MS) data resulted in the identification of 94 significant metabolites, within 28 different metabolic pathways. The majority of biomass sugars were utilized by day 4 to yield products such as sugars, fatty acids, isoprenoids, and amino acids. The fungus was observed to metabolize xylose to xylitol, an intermediate of ethanol production. However, enzyme inhibition and autolysis were observed from day 6, indicating 5 days as the optimal time for fermentation. P. chrysogenum displayed metabolism of pentoses (to alcohols) and degraded tannins and lignins, properties that are lacking in other biomass-degrading ascomycetes. Rapid fermentation (3-5 days) may not only increase the pentose metabolizing efficiency but also increase the yield of medicinally important metabolites, such as syringate.

  4. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid.

    PubMed

    Yang, Huijia; Zhou, Minghua; Yang, Weilu; Ren, Gengbo; Ma, Liang

    2018-05-04

    H 2 O 2 production plays an important role in electro-Fenton process for pharmaceutical and personal care products (PPCPs) degradation. In this work, carbon nanotube (CNT) was attempted to make a gas diffusion electrode (GDE) by rolling method to achieve a high H 2 O 2 production and current efficiency, and it was further used as electro-Fenton cathode for the degradation of acetylsalicylic acid (ASA) as one kind of PPCPs. The optimal amount of catalyst layer was 0.15 g CNT and 93.75 μL PTFE, obtaining the production of H 2 O 2 of 805 mg L -1 in 0.05 mM Na 2 SO 4 solution at 100 mA after 180 min. The degradation of ASA by electro-Fenton on such a CNT-GDE cathode was studied, and some important parameters such as current, pH as well as the dosage of Fe 2+ were optimized. The degradation ratio of ASA could achieve almost 100% after 10 min and the TOC removal ratio was 62% at 1 h under the condition of 100 mA and pH 3, showing a great potential for the treatment of PPCPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Potential Explosive Hazards from Hydrogen Sulfide Production in Ship Ballast and Sewage Tanks.

    DTIC Science & Technology

    1998-12-01

    support growth. Anaerobic degradation of the organic components of sewage follows a number of stages. Firstly, the proteins, polysaccharides and fats...present are converted to long chain fatty acids, peptides, amino acids, glycerol and monosaccharide . The second stage involves the production of a

  6. NOVEL CHROMATOGRAPHIC SEPARATION AND CARBON SOLID PHASE EXTRACTION OF ACETANILIDE HERBICIDE DEGRADATION PRODUCTS

    EPA Science Inventory

    Six acetanilide herbicides are currently registered for use in the U.S. Over the past several years, ethanesufonic acid (ESA) and oxanilic acid (OA) degradatoin products of these acetanilide herbicides have been found in U.S. ground waters and surface waters. "Alachlor ESA and ...

  7. MS2/TOF and LC-MS/TOF studies on toremifene to characterize its forced degradation products.

    PubMed

    Bansal, Gulshan; Maddhesia, Pawan K; Bansal, Yogita

    2011-12-21

    The present study was designed to characterize the possible degradation products of toremifene under varied conditions as prescribed by ICH guidelines Q1A(R2). The forced degradation studies were conducted on toremifene citrate under the conditions of hydrolysis (acidic, basic and neutral), photolysis, oxidation and dry heat. The drug was found unstable to photolysis and hydrolysis in water and acidic media but stable to alkaline hydrolysis, peroxide oxidation and thermal degradation. In total fifteen degradation products (I-XV) were formed, which were resolved from each other and the drug on a C-18 column employing an isocratic elution method. A complete mass fragmentation pattern of the drug was established with the help of LC/ESI-MS/TOF to assist characterization of the degradation products. Of the fifteen products, six products III, IV, VII, VIII, XIV and XV were detected in LC-MS. The molecular masses of III, IV, VII and VIII were found to be the same i.e., 387, while those of XIV and XV were 389 and 403, respectively. Structures of these products were elucidated through comparison of their mass fragmentation patterns with the drug, which were proposed on the basis of accurate masses of the parent and fragment ions. These were characterized as (Z)-2-(2-(dimethylamino)ethyl)-4-(4-hydroxy-1,2-diphenylbut-1-enyl)phenol (III), (E)-2-(2-(dimethylamino)ethyl)-4-(4-hydroxy-1,2-diphenylbut-1-enyl)phenol (IV), (E)-4-(4-(2-(dimethylamino)ethoxy)phenyl)-3,4-diphenylbut-3-en-1-ol (VII), (Z)-4-(4-(2-(dimethylamino)ethoxy)phenyl)-3,4-diphenylbut-3-en-1-ol (VIII), 2-(4-(10-(2-chloroethyl)phenanthren-9-yl)phenoxy)-N-methylethanamine (XIV), and 2-(4-(10-(2-chloroethyl)phenanthren-9-yl)phenoxy)-N,N-dimethylethanamine (XV). Finally, a most plausible mechanistic explanation for degradation of the drug in different chemical environments is also proposed. The results of the study disclose six new degradation related impurities of the drug.

  8. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid

    PubMed Central

    ZHANG, Xiang; GU, Xiaogang; LU, Shuguang; MIAO, Zhouwei; XU, Minhui; FU, Xiaori; DANISH, Muhammad; Brusseau, Mark L.; QIU, Zhaofu; SUI, Qian

    2017-01-01

    Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO• and O2−• in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly o direct oxidation by HO•, while O2−• strengthened the generation of HO• by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl−, HCO3−, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl− production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater. PMID:28959499

  9. [Mitigative effect of micribial degradation on autotoxicity of Panax ginseng].

    PubMed

    Li, Yong; Long, Qi-Liang; Ding, Wan-Long; Zhao, Dong-Yue

    2014-08-01

    Continuously cropping obstacle restricts ginseng production and rational use of land resource severely, and autotoxicity is one of the most important factors. In our previous work, ginseng autotoxin degrading bacteria were isolated, in the present re- search, plate culturing method and traditional physiological and biochemical method were used to analyze biological indices and protective enzyme activities, in order to elucidate the mitigative effect of autotoxin degrading bacteria on autotoxicity of P. ginseng. Results indicated that, except for palmitic acid, autotoxicity of benzonic acid, diisobutyl phthalate, diisobutyl succinate, and 2,2-bis (4- hydroxyphenyl) propane on the growth of ginseng seeds was significantly alleviated after autotoxins degrading bacteria was inoculated, and which have no evident difference with control. Except for benzoic acid, enzyme activity of SOD, POD and CAT in other autotoxin degrading treatments decreased significantly. The present research showed that, microbial degradation could alleviate the autotoxicity of autotoxins on ginseng seeds effectively, and which will be helpful for the resolution of ginseng continuously cropping obstacle problem.

  10. Low acid hydrothermal fractionation of Giant Miscanthus for production of xylose-rich hydrolysate and furfural.

    PubMed

    Kim, Tae Hyun; Ryu, Hyun Jin; Oh, Kyeong Keun

    2016-10-01

    Low acid hydrothermal (LAH) fractionation was developed for the effective recovery of hemicellulosic sugar (mainly xylose) from Miscanthus sacchariflorus Goedae-Uksae 1 (M. GU-1). The xylose yield was maximized at 74.75% when the M. GU-1 was fractionated at 180°C and 0.3wt.% of sulfuric acid for 10min. At this condition, the hemicellulose (mainly xylan) degradation was 86.41%. The difference between xylan degradation and xylose recovery yield, i.e., xylan loss, was 11.66%, as indicated by the formation of decomposed products. The furfural, the value added biochemical product, was also obtained by 0.42g/L at this condition, which was 53.82% of furfural production yield based on the xylan loss. After then, the furfural production continued to increase to a maximum concentration of 1.87g/L, at which point the xylan loss corresponded to 25.87%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Non-target screening of Allura Red AC photodegradation products in a beverage through ultra high performance liquid chromatography coupled with hybrid triple quadrupole/linear ion trap mass spectrometry.

    PubMed

    Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Calabrese, Giorgio; Gennaro, Maria Carla; Marengo, Emilio

    2013-01-15

    The study deals with the identification of the degradation products formed by simulated sunlight photoirradiation in a commercial beverage that contains Allura Red AC dye. An UHPLC-MS/MS method, that makes use of hybrid triple quadrupole/linear ion trap, was developed. In the identification step the software tool information dependent acquisition (IDA) was used to automatically obtain information about the species present and to build a multiple reaction monitoring (MRM) method with the MS/MS fragmentation pattern of the species considered. The results indicate that the identified degradation products are formed from side-reactions and/or interactions among the dye and other ingredients present in the beverage (ascorbic acid, citric acid, sucrose, aromas, strawberry juice, and extract of chamomile flowers). The presence of aromatic amine or amide functionalities in the chemical structures proposed for the degradation products might suggest potential hazards to consumer health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Ionizing radiation induced degradation of salicylic acid in aqueous solution

    NASA Astrophysics Data System (ADS)

    Albarrán, Guadalupe; Mendoza, Edith

    2018-06-01

    The radiation-induced degradation of salicylic acid (SA-) in aqueous solutions (1.0 and 0.1 mmol dm-3) saturated with N2O or air or without oxygen were studied. Irradiation was carried out using a cobalt-60 source. With a 1 mmol dm-3 solution saturated with N2O a seemingly total degradation occurred at about 18 kGy, although small quantities of 2,3-dihydroxybenzoic acid, catechol and 2,5-dihydroxybenzoic acid were present at that dose at concentrations of 67, 22 and 6 μmol dm-3 respectively. Under air and when free oxygen, the three radiolytic products were present at 18.54 kGy while SA- was destroyed only to 90% and 62%, respectively. In the case of 0.1 mmol dm-3 SA- solutions, the acid was degraded at 3.5 kGy if the solution contained N2O, at 5.8 kGy in air and at 7 kGy without oxygen. The concentration of the radiolytic products increased with increasing dose and after a maximum they decreased. The oxidation was followed by measuring the chemical oxygen demand; the slopes were 0.48 and 0.11, 0.21 and 0.07, 0.15 and 0.03 mmol dm-3 kGy-1 for 1.0 and 0.10 mmol dm-3 solutions saturated with N2O or air or without oxygen, respectively.

  13. Degradation of clofibric acid in acidic aqueous medium by electro-Fenton and photoelectro-Fenton.

    PubMed

    Sirés, Ignasi; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

    2007-01-01

    Acidic aqueous solutions of clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid), the bioactive metabolite of various lipid-regulating drugs, have been degraded by indirect electrooxidation methods such as electro-Fenton and photoelectro-Fenton with Fe(2+) as catalyst using an undivided electrolytic cell with a Pt anode and an O(2)-diffusion cathode able to electrogenerate H(2)O(2). At pH 3.0 about 80% of mineralization is achieved with the electro-Fenton method due to the efficient production of oxidant hydroxyl radical from Fenton's reaction between Fe(2+) and H(2)O(2), but stable Fe(3+) complexes are formed. The photoelectro-Fenton method favors the photodecomposition of these species under UVA irradiation, reaching more than 96% of decontamination. The mineralization current efficiency increases with rising metabolite concentration up to saturation and with decreasing current density. The photoelectro-Fenton method is then viable for treating acidic wastewaters containing this pollutant. Comparative degradation by anodic oxidation (without Fe(2+)) yields poor decontamination. Chloride ion is released during all degradation processes. The decay kinetics of clofibric acid always follows a pseudo-first-order reaction, with a similar rate constant in electro-Fenton and photoelectro-Fenton that increases with rising current density, but decreases at greater metabolite concentration. 4-Chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol, along with carboxylic acids such as 2-hydroxyisobutyric, tartronic, maleic, fumaric, formic and oxalic, are detected as intermediates. The ultimate product is oxalic acid, which forms very stable Fe(3+)-oxalato complexes under electro-Fenton conditions. These complexes are efficiently photodecarboxylated in photoelectro-Fenton under the action of UVA light.

  14. Structural Characterization of the Degradation Products of a Minor Natural Sweet Diterpene Glycoside Rebaudioside M under Acidic Conditions

    PubMed Central

    Prakash, Indra; Chaturvedula, Venkata Sai Prakash; Markosyan, Avetik

    2014-01-01

    Degradation of rebaudioside M, a minor sweet component of Stevia rebaudiana Bertoni, under conditions that simulated extreme pH and temperature conditions has been studied. Thus, rebaudioside M was treated with 0.1 M phosphoric acid solution (pH 2.0) and 80 °C temperature for 24 h. Experimental results indicated that rebaudioside M under low pH and higher temperature yielded three minor degradation compounds, whose structural characterization was performed on the basis of 1D (1H-, 13C-) & 2D (COSY, HSQC, HMBC) NMR, HRMS, MS/MS spectral data as well as enzymatic and acid hydrolysis studies. PMID:24424316

  15. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition

    PubMed Central

    Souri, E.; Aghdami, A. Negahban; Adib, N.

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r2>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms. PMID:25657790

  16. A stability indicating HPLC method for determination of mebeverine in the presence of its degradation products and kinetic study of its degradation in oxidative condition.

    PubMed

    Souri, E; Aghdami, A Negahban; Adib, N

    2014-01-01

    An HPLC method for determination of mebeverine hydrochloride (MH) in the presence of its degradation products was developed. The degradation of MH was studied under hydrolysis, oxidative and photolysis stress conditions. Under alkaline, acidic and oxidative conditions, degradation of MH was observed. The separation was performed using a Symmetry C18 column and a mixture of 50 mM KH2PO4, acetonitrile and tetrahydrfuran (THF) (63:35:2; v/v/v) as the mobile phase. No interference peaks from degradation products in acidic, alkaline and oxidative conditions were observed. The linearity, accuracy and precision of the method were studied. The method was linear over the range of 1-100 μg/ml MH (r(2)>0.999) and the CV values for intra-day and inter-day variations were in the range of 1.0-1.8%. The limit of quantification (LOQ) and the limit of detection (LOD) of the method were 1.0 and 0.2 μg/ml, respectively. Determination of MH in pharmaceutical dosage forms was performed using the developed method. Furthermore the kinetics of the degradation of MH in the presence of hydrogen peroxide was investigated. The proposed method could be a suitable method for routine quality control studies of mebeverine dosage forms.

  17. Influence of diet on growth yields of rumen micro-organisms in vitro and in vivo: influence on growth yield of variable carbon fluxes to fermentation products.

    PubMed

    Blümmel, M; Karsli, A; Russell, J R

    2003-09-01

    The efficiency of rumen microbial production (EMP) in vitro and in vivo was examined for three roughages (lucerne (Medicago sativa L.) hay, oat (Avenia sativa L.)-berseem clover (Trifolium alexandrinum cultivar BigBee) hay and maize (Zea mays L.) crop residue (MCR)) and for five isonitrogenous (106 g crude protein (Nx6.25)/kg) diets formulated from lucerne hay, oat-berseem clover hay, MCR, soybean meal and maize grain to provide degradable intake protein for the production of 130 g microbial protein/kg total digestible nutrients. EMP in vivo was determined by intestinal purine recovery in sheep and ranged from 240 to 360 g microbial biomass/kg organic matter truly degraded in MCR and in one of the diets respectively (P<0.05). EMP in vitro was estimated by the substrate degraded : gas volume produced thereby (termed partitioning factor, PF (mg/ml)) at times of estimated peak microbial production and after 16.0 and 24.0 h of incubation. For the diets, PF values were significantly related to EMP in vivo at peak microbial production (P=0.04), but not after 16.0 (P=0.08) and 24.0 h (P=0.66). For roughages, PF values were significantly related to EMP in vivo only when measured after 16.0 h (P=0.04). For MCR and diets, a close non-linear relationship was found between PF values at peak microbial production and EMP in vivo (R(2) 0.99, P<0.0001) suggesting a maximum EMP in vivo of 0.39. Low gas production per unit substrate degraded (high PF) was associated with high EMP in vivo. The in vitro study of the products of fermentation, short-chain fatty acids, gases and microbial biomass (by purine analysis) after 16.0 h of incubation showed very strong relationships (R(2)> or =0.89, P<0.0001) between short-chain fatty acids, gases and gravimetrically measured apparent degradability. Except for maize grain, the true degradability of organic matter estimated by neutral-detergent solution treatment agreed with the sum of the products of fermentation (R(2) 0.81, P=0.0004). After 16.0 h of incubation, the synergistic effects of diet ingredient on diets were greater for microbial biomass (18 %) than for short-chain fatty acids and gas production (7 %). It is concluded that measurement of gas production only gives incomplete information about fodder quality; complementation of gas measurements by true degradability measurements is recommended.

  18. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel

    NASA Astrophysics Data System (ADS)

    Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal

    2018-03-01

    A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.

  19. 18O stable isotope labeling, quantitative model experiments, and molecular dynamics simulation studies on the trans-specific degradation of the bitter tasting iso-alpha-acids of beer.

    PubMed

    Intelmann, Daniel; Demmer, Oliver; Desmer, Nina; Hofmann, Thomas

    2009-11-25

    The typical bitterness of fresh beer is well-known to decrease in intensity and to change in quality with increasing age. This phenomenon was recently shown to be caused by the conversion of bitter tasting trans-iso-alpha-acids into lingering and harsh bitter tasting tri- and tetracyclic degradation products such as tricyclocohumol, tricyclocohumene, isotricyclocohumene, tetracyclocohumol, and epitetracyclocohumol. Interestingly, the formation of these compounds was shown to be trans-specific and the corresponding cis-iso-alpha-acids were found to be comparatively stable. Application of 18O stable isotope labeling as well as quantitative model studies combined with LC-MS/MS experiments, followed by computer-based molecular dynamics simulations revealed for the first time a conclusive mechanism explaining the stereospecific transformation of trans-iso-alpha-acids into the tri- and tetracyclic degradation products. This transformation was proposed to be induced by a proton-catalyzed carbon/carbon bond formation between the carbonyl atom C(1') of the isohexenoyl moiety and the alkene carbon C(2'') of the isoprenyl moiety of the trans-iso-alpha-acids.

  20. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  1. Stability study of the anticonvulsant enaminone (E118) using HPLC and LC-MS.

    PubMed

    Abdel-Hamid, Mohammed E; Edafiogho, Ivan O; Hamza, Huda M

    2002-01-01

    The stability of the new chemical synthetic enaminone derivative (E118) was investigated using a stability-indicating high-performance liquid chromatography (HPLC) procedure. The examined samples were analyzed using a chiral HSA column and a mobile phase (pH 7.5) containing n-octanoic acid (5 mM), isopropyl alcohol and 100 mM disodium hydrogen phosphate solution (1:9 v/v) at a flow rate of 1 ml min(-1). The developed method was specific, accurate and reproducible. The HPLC chromatograms exhibited well-resolved peaks of E118 and the degradation products at retention times <5 min. The stability of E118 was performed in 0.1 M hydrochloric acid, 0.1 M sodium hydroxide, water/ethanol (1:1) and phosphate buffer (pH approximately 7.5) solutions. E118 was found to undergo fast hydrolysis in 0.1 M hydrochloric acid solution. The decomposition of E118 followed first order kinetics under the experimental conditions. The results confirmed that protonation of the enaminone system in the molecule enhanced the hydrolysis of E118 at degradation rate constant of 0.049 min(-1) and degradation half-life of 14.1 min at 25 degrees C. However, E118 was significantly stable in 0.1 M sodium hydroxide, physiological phosphate buffer (pH 7.5) and ethanol/water (1:1) solutions. The degradation rate constants and degradation half-lives were in the ranges 0.0023-0.0086 h(-1) and 80.6-150.6 h, respectively. Analysis of the acid-induced degraded solution of E118 by liquid chromatography-mass spectrometry (LC-MS) revealed at least two degradation products of E118 at m/z 213.1 and 113.1, respectively.

  2. Combinatorial control of gene expression in Aspergillus niger grown on sugar beet pectin.

    PubMed

    Kowalczyk, Joanna E; Lubbers, Ronnie J M; Peng, Mao; Battaglia, Evy; Visser, Jaap; de Vries, Ronald P

    2017-09-27

    Aspergillus niger produces an arsenal of extracellular enzymes that allow synergistic degradation of plant biomass found in its environment. Pectin is a heteropolymer abundantly present in the primary cell wall of plants. The complex structure of pectin requires multiple enzymes to act together. Production of pectinolytic enzymes in A. niger is highly regulated, which allows flexible and efficient capture of nutrients. So far, three transcriptional activators have been linked to regulation of pectin degradation in A. niger. The L-rhamnose-responsive regulator RhaR controls the production of enzymes that degrade rhamnogalacturonan-I. The L-arabinose-responsive regulator AraR controls the production of enzymes that decompose the arabinan and arabinogalactan side chains of rhamnogalacturonan-II. The D-galacturonic acid-responsive regulator GaaR controls the production of enzymes that act on the polygalacturonic acid backbone of pectin. This project aims to better understand how RhaR, AraR and GaaR co-regulate pectin degradation. For that reason, we constructed single, double and triple disruptant strains of these regulators and analyzed their growth phenotype and pectinolytic gene expression in A. niger grown on sugar beet pectin.

  3. Degradation of lipid regulators by the UV/chlorine process: Radical mechanisms, chlorine oxide radical (ClO•)-mediated transformation pathways and toxicity changes.

    PubMed

    Kong, Xiujuan; Wu, Zihao; Ren, Ziran; Guo, Kaiheng; Hou, Shaodong; Hua, Zhechao; Li, Xuchun; Fang, Jingyun

    2018-06-15

    Degradation of three lipid regulators, i.e., gemfibrozil, bezafibrate and clofibric acid, by a UV/chlorine treatment was systematically investigated. The chlorine oxide radical (ClO • ) played an important role in the degradation of gemfibrozil and bezafibrate with second-order rate constants of 4.2 (±0.3) × 10 8  M -1  s -1 and 3.6 (±0.1) × 10 7  M -1  s -1 , respectively, whereas UV photolysis and the hydroxyl radical (HO • ) mainly contributed to the degradation of clofibric acid. The first-order rate constants (k') for the degradation of gemfibrozil and bezafibrate increased linearly with increasing chlorine dosage, primarily due to the linear increase in the ClO • concentration. The k' values for gemfibrozil, bezafibrate, and clofibric acid degradation decreased with increasing pH from 5.0 to 8.4; however, the contribution of the reactive chlorine species (RCS) increased. Degradation of gemfibrozil and bezafibrate was enhanced in the presence of Br - , whereas it was inhibited in the presence of natural organic matter (NOM). The presence of ammonia at a chlorine: ammonia molar ratio of 1:1 resulted in decreases in the k' values for gemfibrozil and bezafibrate of 69.7% and 7%, respectively, but led to an increase in that for clofibric acid of 61.8%. Degradation of gemfibrozil by ClO • was initiated by hydroxylation and chlorine substitution on the benzene ring. Then, subsequent hydroxylation, bond cleavage and chlorination reactions led to the formation of more stable products. Three chlorinated intermediates were identified during ClO • oxidation process. Formation of the chlorinated disinfection by-products chloral hydrate and 1,1,1-trichloropropanone was enhanced relative to that of other by-products. The acute toxicity of gemfibrozil to Vibrio fischeri increased significantly when subjected to direct UV photolysis, whereas it decreased when oxidized by ClO • . This study is the first to report the transformation pathway of a micropollutant by ClO • . Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Survey of the Anaerobic Biodegradation Potential of Organic Chemicals in Digesting Sludge

    PubMed Central

    Battersby, Nigel S.; Wilson, Valerie

    1989-01-01

    The degradation potential of 77 organic chemicals under methanogenic conditions was examined with an anaerobic digesting sludge from the United Kingdom. Degradation was assessed in terms of net total gas (CH4 plus CO2) produced, expressed as a percentage of the theoretical production (ThGP). The compounds tested were selected from various chemical groups and included substituted phenols and benzoates, pesticides, phthalic acid esters, homocyclic and heterocyclic ring compounds, glycols, and monosubstituted benzenes. The results obtained were in good agreement with published surveys of biodegradability in U.S. digesting sludges and other methanogenic environments. In general, the presence of chloro or nitro groups inhibited anaerobic gas production, while carboxyl and hydroxyl groups facilitated biodegradation. The relationship between substituent position and susceptibility to methanogenic degradation was compound dependent. The following chemicals were completely degraded (≥80% ThGP) at a concentration of 50 mg of carbon per liter: phenol, 2-aminophenol, 4-cresol, catechol, sodium benzoate, 4-aminobenzoic acid, 3-chlorobenzoic acid, phthalic acid, ethylene glycol, diethylene glycol, triethylene glycol, sodium stearate, and quinoline. 3-Cresol, 4-chlorobenzoic acid, dimethyl phthalate, and pyridine were partially degraded. Although the remaining chemicals tested were either persistent or toxic, their behavior may differ at more environmentally realistic chemical-to-biomass ratios. Our findings suggest that biodegradability assessments made with sludge from one source can be extrapolated to sludge from another source with a reasonable degree of confidence and should help in predicting the fate of an organic chemical during the anaerobic digestion of sewage sludge. PMID:16347851

  5. [Studies on the degradation of paracetamol in sono-electrochemical oxidation].

    PubMed

    Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng

    2012-07-01

    A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed.

  6. Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2010-01-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909

  7. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  8. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert.

    PubMed

    Le, Thi Nhi-Cong; Mikolasch, Annett; Awe, Susanne; Sheikhany, Halah; Klenk, Hans-Peter; Schauer, Frieder

    2010-06-01

    A soil bacterium isolated from oil-polluted sand samples collected in the Saudi Arabian Desert has been determined as Nocardia cyriacigeorgica, which has a high capacity of degrading and utilizing a broad range of hydrocarbons. The metabolic pathways of three classes of hydrocarbons were elucidated by identifying metabolites in cell-free extracts analyzed by GC/MS and HPLC/UV-Vis in comparison with standard compounds. During tetradecane oxidation, tetradecanol; tetradecanoic acid; dodecanoic acid; decanoic acid could be found as metabolites, indicating a monoterminal degradation pathway of n -alkanes. The oxidation of pristane resulted in the presence of pristanoic acid; 2-methylglutaric acid; 4,8-dimethylnonanoic acid; and 2,6-dimethylheptanoic acid, which give rise to a possible mono- and di-terminal oxidation. In case of sec -octylbenzene, eight metabolites were detected including 5-phenylhexanoic acid; 3-phenylbutyric acid; 2-phenylpropionic acid; beta -methylcinnamic acid; acetophenone; beta -hydroxy acetophenone; 2,3-dihydroxy benzoic acid and succinic acid. From these intermediates a new degradation pathway for sec -octylbenzene was investigated. Our results indicate that N. cyriacigeorgica has the ability to degrade aliphatic and branched chain alkanes as well as alkylbenzene effectively and, therefore, N. cyriacigeorgica is probably a suitable bacterium for biodegradation of oil or petroleum products in contaminated soils. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  9. Efficient degradation of lignin in raw wood via pretreatment with heteropoly acids in γ-valerolactone/water.

    PubMed

    Zhang, Libo; Zheng, Wenxiu; Wang, Ziming; Ma, Yubo; Jiang, Ling; Wang, Tianfu

    2018-08-01

    The aim of this work was to study the degradation of lignin in raw wood via pretreatment with heteropoly acids as substitutes for traditional H 2 SO 4 in γ-valerolactone/water. By optimizing catalyst concentration, reaction time and temperature, the optimal lignin degradation conditions are obtained (130 °C, 3 h and 20 mM silicotungstic acid). SEM and FTIR measurements demonstrated the efficient lignin degradation ability of HPAs in the GVL/H 2 O solvent, with negligible damage to cellulose within the raw wood. Furthermore, an elaborated enzymatic hydrolysis study of the thus obtained cellulosic feedstock revealed its suitability for enzymatic digestion, with great potential as starting material for the production of fermentable sugar from biomass in future biorefinery applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Putative sex pheromone of the Asian citrus psyllid, Diaphorina citri, breaks down into an attractant.

    PubMed

    Zanardi, Odimar Z; Volpe, Haroldo X L; Favaris, Arodi P; Silva, Weliton D; Luvizotto, Rejane A G; Magnani, Rodrigo F; Esperança, Victoria; Delfino, Jennifer Y; de Freitas, Renato; Miranda, Marcelo P; Parra, José Roberto P; Bento, José Mauricio S; Leal, Walter S

    2018-01-11

    Under laboratory conditions, mating activity in Asian citrus psyllid (ACP) started 4 days after emergence, peaked at day 7, and showed a clear window of activity starting 8 h into the photophase and extending through the first hour of the scotophase. We confirmed that ACP males are attracted to emanations from conspecific females. Traps loaded with a candidate compound enriched with female extract, lignoceryl acetate (24Ac), at various doses were active only after being deployed for several weeks in the field, suggesting that a degradation product, not the test compound, was the active ingredient(s). Lignocerol, a possible product of 24Ac degradation, was not active, whereas acetic acid, another possible degradation product, was found in the airborne volatile collections from lures matured under field conditions and detected in higher amounts in volatiles collected from females at the peak of mating activity than in male samples. Acetic acid elicited dose-dependent electroantennographic responses and attracted ACP males, but not females, in Y-type and 4-way olfactometers. Field tests showed that acetic acid-baited traps captured significantly more males than control traps. Surprisingly, captures of females in acetic acid-baited traps were also higher than in control traps, possibly because of physical stimuli emitted by captured males.

  11. Quantitative analysis of anti-inflammatory drugs using FTIR-ATR spectrometry

    NASA Astrophysics Data System (ADS)

    Hassib, Sonia T.; Hassan, Ghaneya S.; El-Zaher, Asmaa A.; Fouad, Marwa A.; Taha, Enas A.

    2017-11-01

    Four simple, accurate, sensitive and economic Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopic (ATR-FTIR) methods have been developed for the quantitative estimation of some non-steroidal anti-inflammatory drugs. The first method involves the determination of Etodolac by direct measurement of the absorbance at 1716 cm- 1. In the second method, the second derivative of the IR spectra of Tolfenamic acid and its reported degradation product (2-chlorobenzoic acid) was used and the amplitudes were measured at 1084.27 cm- 1 and 1056.02 cm- 1 for Tolfenamic acid and 2-chlorobenzoic acid, respectively. The third method used the first derivative of the IR spectra of Bumadizone and its reported degradation product, N,N-diphenylhydrazine and the amplitudes were measured at 2874.98 cm- 1 and 2160.32 cm- 1 for Bumadizone and N,N-diphenylhydrazine, respectively. The fourth method depends on measuring the amplitude of Diacerein at 1059.18 cm- 1 and of rhein, its reported degradation product, at 1079.32 cm- 1 in their first derivative spectra. The four methods were successfully applied on the pharmaceutical formulations by extracting the active constituent in chloroform and the extract was directly measured in liquid phase mode using a specific cell. Moreover, validation of these methods was carried out following International Conference of Harmonisation (ICH) guidelines.

  12. In vitro analysis of rifampicin and its effect on quality control tests of rifampicin containing dosage forms.

    PubMed

    Agrawal, S; Panchagnula, R

    2004-10-01

    The chemical stability of rifampicin both in solid state and various media has widely been investigated. While rifampicin is appreciably stable in solid-state, its decomposition rate is very high in acidic as well as in alkaline medium and a variety of decomposition products were identified. The literature reports on highly variable rifampicin decomposition in acidic medium. Hence, the objective of this investigation was to study possible reasons responsible for this variability. For this purpose, filter validation and correlation between rifampicin and its degradation products were developed to account for the loss of rifampicin in acidic media. For analysis of rifampicin with or without the presence of isoniazid, a simple and accurate method was developed using high performance chromatography recommended in FDC monographs of the United States Pharmacopoeia. Using the equations developed in this investigation, the amount of rifampicin degraded in the acidic media was calculated from the area under curve of the degradation products. Further, it was proved that in a dissolution study, the colorimetric method of analysis recommended in the United States Pharmacopoeia provides accurate results regarding rifampicin release. Filter type, time of injection as well as interpretation of data are important factors that affect analysis results of rifampicin in in vitro studies and quality control.

  13. Gamma-aminobutyric acid fermentation with date residue by a lactic acid bacterium, Lactobacillus brevis.

    PubMed

    Hasegawa, Momoko; Yamane, Daisuke; Funato, Kouichi; Yoshida, Atsushi; Sambongi, Yoshihiro

    2018-03-01

    Dates are commercially consumed as semi-dried fruit or processed into juice and puree for further food production. However, the date residue after juice and puree production is not used, although it appears to be nutrient enriched. Here, date residue was fermented by a lactic acid bacterium, Lactobacillus brevis, which has been generally recognized as safe. Through degradation of sodium glutamate added to the residue during the fermentation, γ-aminobutyric acid (GABA), which reduces neuronal excitability, was produced at the conversion rate of 80-90% from glutamate. In order to achieve this GABA production level, pretreatment of the date residue with carbohydrate-degrading enzymes, i.e., cellulase and pectinase, was necessary. All ingredients used for this GABA fermentation were known as being edible. These results provide us with a solution for the increasing commercial demand for GABA in food industry with the use of date residue that has been often discarded. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Degradation of Phenolic Compounds and Ring Cleavage of Catechol by Phanerochaete chrysosporium

    PubMed Central

    Leatham, Gary F.; Crawford, R. L.; Kirk, T. Kent

    1983-01-01

    POL-88, a mutant of the white-rot fungus Phanerochaete chrysosporium, was selected for diminished phenol-oxidizing enzyme activity. A wide variety of phenolic compounds were degraded by ligninolytic cultures of this mutant. With several o-diphenolic substrates, degradation intermediates were produced that had UV spectra consistent with muconic acids. Extensive spectrophotometric and polarographic assays failed to detect classical ring-cleaving dioxygenases in cell homogenates or in extracts from ligninolytic cultures. Even so, a sensitive carrier-trapping assay showed that intact cultures degraded [U-14C]catechol to [14C]muconic acid, establishing the presence of a system capable of 1,2-intradiol fission. Significant accumulation of [14C]muconic acid into carrier occurred only when evolution of 14CO2 from [14C]catechol was inhibited by treating cultures with excess nutrient nitrogen (e.g., l-glutamic acid) or with cycloheximide. l-Glutamic acid is known from past work to repress the ligninolytic system in P. chrysosporium and to mimic the effect of cycloheximide. The results here indicate, therefore, that the enzyme system responsible for degrading ring-cleavage products to CO2 turns over faster than does the system responsible for ring cleavage. PMID:16346340

  15. Amino acids as indicators to elucidate organic matter degradation profile in the Cochin estuarine sediments, Southwest coast of India.

    PubMed

    Salas, P M; Sujatha, C H; Ratheesh Kumar, C S; Cheriyan, Eldhose

    2018-02-01

    Surface sediments from three zones (fresh water, estuarine, and riverine/industrial zones) of the Cochin estuary, Southwest coast of India, were seasonally analyzed to understand the nature and degradation status of organic matter. Amino acid-based indices such as total hydrolyzable amino acids (THAAs), percentage contributions of amino acid carbon to total organic carbon (THAA-C%) and those of amino acid nitrogen to total nitrogen (THAA-N%), and degradation index (DI) were calculated. Elevated levels of amino acids in the sediments of the estuary were attributed to river runoff, autochthonous production, allochthonous inputs, and industrial and domestic effluent discharges. Higher levels of THAA-C%, THAA-N%, THAA, and positive DI found in most of the stations suggest the fresh deposition of organic matter. Multivariate statistical analyses revealed that the dispersal pattern of amino acids depends on the sediment texture, organic matter, redox state, and microbial processes in the study region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanism driven structural elucidation of forced degradation products from hydrocortisone in solution.

    PubMed

    Zhang, Fa; Zhou, Jay; Shi, Yiqun; Tavlarakis, Panagiotis; Karaisz, Kenneth

    2016-09-05

    Hydrocortisone degradation products 1, 2, 3, and 4 along with hemiacetal derivatives 5, 6, 7, and 8 were observed through stressed hydrocortisone in solution. Their structures were identified based on HPLC-UV, HPLC-MS, and HPLC-HRMS (high resolution/high accuracy mass spectrometry) analyses as well as reaction mechanistic investigation and synthesis for structural confirmation. 1 and 2 are a pair of E/Z isomers and they were generated through acid catalyzed tautomerization/dehydration of hydrocortisone. Incorporation of water to 1 and 2 resulted in the formation of 3. We also discovered new degradation product 4 which was converted from 3 by oxidation. The degradation products were synthesized by stressing hydrocortisone under the optimized conditions and their structures were characterized by NMR ((1)H/(13)C, COSY, HMBC, HSQC, NOESY) and HRMS analyses. The degradation pathway of hydrocortisone is postulated. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The radiolysis of CMPO: effects of acid, metal complexation and alpha vs. gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce J. Mincher; Stephen P. Mezyk; Gary S. Groenewold

    Abstract The group actinide/lanthanide complexing agent octylphenylcarbamoylmethyl phosphine oxide (CMPO) has been examined for its radiation stability by measuring the kinetics of its reactions with free radicals in both the aqueous and organic phases for the free and metal-complexed ligand, identifying its degradation products for both alpha and gamma irradiation, measuring the effects on solvent extraction performance, and measuring the G-values for its degradation under various conditions. This includes the G-values for CMPO in the absence of, and in contact with the acidic aqueous phase, where it is shown that the acidic aqueous phase provides radio-protection for this ligand. Itmore » was found that both solvent and metal complexation affect the kinetics of the reaction of the •NO3 radical, a product of HNO3 radiolysis, with CMPO. For example, CMPO complexed with lanthanides has a rate constant for this reaction an order of magnitude higher than for the free ligand, and the reaction for the free ligand in the organic phase is about three times faster than in the aqueous phase. In steady state radiolysis kinetics it was determined that HNO3, although not NO3- anion, provides radio-protection to CMPO, with the G-value for its degradation decreasing with increasing acidity, until it was almost completely suppressed by irradiation in contact with 5 M HNO3. The same degradation products were produced by irradiation with alpha and gamma-sources, except that the relative abundances of these products varied. For example, the product of C-C bond scission was produced only in low amounts for gamma-radiolysis, but it was an important product for samples irradiated with a He ion beam. These results are compared to the new data appearing in the literature on DGA radiolysis, since CMPO and the DGAs both contain the amide functional group.« less

  18. Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H₂O₂ treatment.

    PubMed

    Laera, G; Cassano, D; Lopez, A; Pinto, A; Pollice, A; Ricco, G; Mascolo, G

    2012-01-17

    The treatment of a pharmaceutical wastewater resulting from the production of an antibacterial drug (nalidixic acid) was investigated employing a membrane bioreactor (MBR) integrated with either ozonation or UV/H(2)O(2) process. This was achieved by placing chemical oxidation in the recirculation stream of the MBR. A conventional configuration with chemical oxidation as polishing for the MBR effluent was also tested as a reference. The synergistic effect of MBR when integrated with chemical oxidation was assessed by monitoring (i) the main wastewater characteristics, (ii) the concentration of nalidixic acid, (iii) the 48 organics identified in the raw wastewater and (iv) the 55 degradation products identified during wastewater treatment. Results showed that MBR integration with ozonation or UV/H(2)O(2) did not cause relevant drawbacks to both biological and filtration processes, with COD removal rates in the range 85-95%. Nalidixic acid passed undegraded through the MBR and was completely removed in the chemical oxidation step. Although the polishing configuration appeared to give better performances than the integrated system in removing 15 out of 48 secondary organics while similar removals were obtained for 19 other compounds. The benefit of the integrated system was however evident for the removal of the degradation products. Indeed, the integrated system allowed higher removals for 34 out of 55 degradation products while for only 4 compounds the polishing configuration gave better performance. Overall, results showed the effectiveness of the integrated treatment with both ozone and UV/H(2)O(2).

  19. Degradation of carbohydrates during dilute sulfuric acid pretreatment can interfere with lignin measurements in solid residues.

    PubMed

    Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F

    2013-04-03

    The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.

  20. A validated stability-indicating RP-HPLC method for levofloxacin in the presence of degradation products, its process related impurities and identification of oxidative degradant.

    PubMed

    Lalitha Devi, M; Chandrasekhar, K B

    2009-12-05

    The objective of current study was to develop a validated specific stability indicating reversed-phase liquid chromatographic method for the quantitative determination of levofloxacin as well as its related substances determination in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its process related impurities. Forced degradation studies were performed on bulk sample of levofloxacin as per ICH prescribed stress conditions using acid, base, oxidative, water hydrolysis, thermal stress and photolytic degradation to show the stability indicating power of the method. Significant degradation was observed during oxidative stress and the degradation product formed was identified by LCMS/MS, slight degradation in acidic stress and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies and the impurity spiked solution. Good resolution between the peaks corresponds to process related impurities and degradation products from the analyte were achieved on ACE C18 column using the mobile phase consists a mixture of 0.5% (v/v) triethyl amine in sodium dihydrogen orthophosphate dihydrate (25 mM; pH 6.0) and methanol using a simple linear gradient. The detection was carried out at 294 nm. The limit of detection and the limit of quantitation for the levofloxacin and its process related impurities were established. The stressed test solutions were assayed against the qualified working standard of levofloxacin and the mass balance in each case was in between 99.4 and 99.8% indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of levofloxacin at the time of batch release and also during its stability studies (long term and accelerated stability).

  1. Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI).

    PubMed

    Wang, Hongyu; Liu, Yibing; Jiang, Jia-Qian

    2016-07-01

    This paper investigates the degradation of acetaminophen (AAP) in aqueous solutions by ferrate (VI), aiming to propose the kinetics, pathways and the oxidation products' formation in the AAP degradation. A series of jar tests were undertaken over ferrate (VI) dosages (molar ratios of ferrate (VI):AAP, 5:1 to 25:1) and pH values (4-11). The effects of co-existing ions (0.2-5 mM) and humic acid (10-50 mg l(-1)) on the AAP removal were investigated. Ferrate (VI) can remove 99.6% AAP (from 1000 μg l(-1)) in 60 min under study conditions when majority of the AAP reduction occurred in the first 5 min. The treatment performance depended on the ferrate(VI) dosage, pH and the type and strength of co-existing ions and humic acid. Raising ferrate (VI) dosage with optimal pH 7 improved the AAP degradation. In the presence of humic acid, the AAP degradation by ferrate (VI) was promoted in a short period (<30 min) but then inhibited with increasing in humic acid contents. The presence of Al(3+), CO3(2-) and PO4(3-) ions declined but the existence of K(+), Na(+), Mg(2+) and Ca(2+) ions can improve the AAP removal. The catalytic function of Al(3+) on the decomposition of ferrate (VI) in aqueous solution was found. The kinetics of the reaction between ferrate (VI) and AAP was pseudo first-order for ferrete (VI) and pseudo second-order for AAP. The pseudo rate constant of ferrate (VI) with AAP was 1.4 × 10(-5) L(2) mg(-2) min(-1). Three oxidation products (OPs) were identified and the AAP degradation pathways were proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modification and restriction of T-even bacteriophages. In vitro degradation of deoxyribonucleic acid containing 5-hydroxymethylctosine.

    PubMed

    Fleischman, R A; Cambell, J L; Richardson, C C

    1976-03-25

    Using the single-stranded circular DNA of bacteriophage fd as template, double-stranded circular DNA has been prepared in vitro with either 5-hydroxymethylcytosine ([hmdC]DNA) or cytosine ([dC]DNA) in the product strand. Extracts prepared from Escherichia coli cells restrictive to T-even phage containing nonglucosylated DNA degrade [hmdC]DNA to acid-soluble material in vitro, but do not degrade [dC]dna. In contrast, extracts prepared from E. coli K12 rglA- rglB-, a strain permissive to T-even phage containing nonglucosylated DNA, do not degrade [hmdC]DNA or [dC]DNA. In addition, glucosylation of the [hmdC]DNA renders it resistant to degradation by extracts from restrictive strains. The conversion of [hmdC]DNA to acid-soluble material in vitro consists of an HmCyt-specific endonucleolytic cleavage requiring the presence of the RglB gene product to form a linear molecule, followed by a non-HmCyt-specific hydrolysis of the linear DNA to acid-soluble fragments, catalyzed in part by exonuclease V. The RglB protein present in extracts of E. coli K12 rglA- rglB+ has been purified 200-fold by complementation with extracts from E. coli K12 rglA- rglB-. The purified RglB protein does not contain detectable HmCyt-specific endonuclease or exonuclease activity. In vitro endonucleolytic cleavage of [hmdC]DNA thus requires additional factors present in cell extracts.

  3. The effect of methanogenesis inhibition, inoculum and substrate concentration on hydrogen and carboxylic acids production from cassava wastewater.

    PubMed

    Amorim, Norma C S; Amorim, Eduardo L C; Kato, Mario T; Florencio, Lourdinha; Gavazza, Savia

    2018-02-01

    Manipueira is a carbohydrate-rich agro-industrial waste from cassava processing. It is considered well suitable for biotechnological processes, such as hydrogen and carboxylic acids production, due to the high content of easily degradable organic matter. However, the proper methanogenesis inhibition method, inoculum type, and organic loads are factors still limiting the processes. The objective in this work was to evaluate the effects of such factors on byproducts production in anaerobic reactors. Batch experiments were conducted with 2.3-L flasks during two operational phases. In the first phase (P1), inhibition of methanogens in the sludge was evaluated using acetylene (1% v/v of headspace) and heat treatment (120 °C, 1 atm for 30 min). In the second phase (P2), three inoculum types obtained from common anaerobic sludges (bovine rumen and sludges from municipal and textile industrial wastewater treatment plants) were individually assayed. P2 aimed to identify the best inoculum, based on hydrogen production ability, which was tested for three initial concentrations of manipueira in terms of chemical oxygen demand (COD) (10, 20 and 40 g O 2 /L). Results of P1 indicated that either acetylene or heat treatment efficiently inhibited methanogenesis, with no methane production. However, the maximum H 2 production potential by applying heat treatment (~ 563 mL) was more than twice compared with that by acetylene treatment (~ 257 mL); and butyrate was the main carboxylic acid by-product (~ 3 g/L). In P2 experiments after sludge heat treatment, the highest hydrogen yield (1.66 ± 0.07 mol H 2 /mol glucose) and caproic acid production (~ 2 g/L) were observed at 20 g O 2 /L of manipueira COD, when bovine rumen was the inoculum. The primary metabolic degradation products in all P2 experiments were ethanol, acetic, butyric, propionic and caproic acids. The finding of caproic acid detection indicated that the applied conditions in manipueira anaerobic degradation favored carbon chain elongation over methanogenesis.

  4. Nanobiocatalytic Degradation of Acid Orange 7

    NASA Astrophysics Data System (ADS)

    Hastings, Jason

    The catalytic properties of various metal nanoparticles have led to their use in environmental remediation applications. However, these remediation strategies are limited by their ability to deliver catalytic nanoparticles and a suitable electron donor to large treatment zones. Clostridium pasteurianum BC1 cells, loaded with bio-Pd nanoparticles, were used to effectively catalyze the reductive degradation and removal of Acid Orange 7 (AO7), a model azo compound. Hydrogen produced fermentatively by the C. pasteurianum BC1 acted as the electron donor for the process. Pd-free bacterial cultures or control experiments conducted with heat-killed cells showed limited reduction of AO7. Experiments also showed that the in situ biological production of H2 by C. pasteurianum BC1 was essential for the degradation of AO7, which suggests a novel process where the in situ microbial production of hydrogen is directly coupled to the catalytic bio-Pd mediated reduction of AO7. The differences in initial degradation rate for experiments conducted using catalyst concentrations of 1ppm Pd and 5ppm Pd and an azo dye concentration of 100ppm AO7 was 0.39 /hr and 1.94 /hr respectively, demonstrating the importance of higher concentrations of active Pd(0). The degradation of AO7 was quick as demonstrated by complete reductive degradation of 50ppm AO7 in 2 hours in experiments conducted using a catalyst concentration of 5ppm Pd. Dye degradation products were analyzed via Gas Chromatograph-Mass Spectrometer (GCMS), High Performance Liquid Chromatography (HPLC), UltraViolet-Visible spectrophotometer (UV-Vis) and Matrix-Assisted Laser Desorption/Ionization (MALDI) spectrometry. The presence of 1-amino 2-naphthol, one of the hypothesized degradation products, was confirmed using mass spectrometry.

  5. Biodegradation of Endocrine-Disrupting Chemicals and Residual Organic Pollutants of Pulp and Paper Mill Effluent by Biostimulation.

    PubMed

    Chandra, Ram; Sharma, Pooja; Yadav, Sangeeta; Tripathi, Sonam

    2018-01-01

    Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclotetracosane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as Klebsiella pneumoniae IITRCP04 (KU715839), Enterobacter cloacae strain IITRCP11 (KU715840), Enterobacter cloacae IITRCP14 (KU715841), and Acinetobacter pittii strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.

  6. Development and validation of a novel stability-indicating HPLC method for the quantitative determination of eleven related substances in ezetimibe drug substance and drug product.

    PubMed

    Luo, Zhiqiang; Deng, Zhongqing; Liu, Yang; Wang, Guopeng; Yang, Wenning; Hou, Chengbo; Tang, Minming; Yang, Ruirui; Zhou, Huaming

    2015-07-01

    Ezetimibe is a novel lipid-lowering agent that inhibits intestinal absorption of dietary and biliary cholesterol. In the present work, a simple, sensitive and reproducible gradient reverse phase high performance liquid chromatographic (RP-HPLC) method for separation and determination of the related substances of ezetimibe was developed and validated. Eleven potential process-related impurities (starting materials, (3S,4S,3'S)-isomer, degradants and byproducts) were identified in the crude samples. Tentative structures for all the impurities were assigned primarily based on comparison of their retention time and mass spectrometric data with that of available standards and references. This method can be applied to routine analysis in quality control of both bulk drugs and commercial tablets. Separation of all these compounds was performed on a Phenomenex Luna Phenyl-Hexyl (100mm×4.6mm, 5μm) analytical column. The mobile phase-A consists of acetonitrile-water (pH adjusted to 4.0 with phosphoric acid)-methanol at 15:75:10 (v/v/v), and mobile phase-B contains acetonitrile. The eluted compounds were monitored at 210nm. Ezetimibe was subjected to hydrolytic, acid, base, oxidative, photolytic and thermal stress conditions as per ICH serves to generate degradation products that can be used as a worst case to assess the analytical method performance. The drug showed extensive degradation in thermal, acid, oxidative, base and hydrolytic stress conditions, while it was stable to photolytic degradation conditions. The main degradation product formed under thermal, acid, oxidative, base and hydrolytic stress conditions corresponding to (2R,3R,6S)-N, 6-bis(4-fluorophenyl)-2-(4-hydroxyphenyl)-oxane-3-carboxamide (Ezetimibe tetrahydropyran impurity) was characterized by LC-MS/MS analysis. The degradation products were well resolved from the main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per international conference on harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and robustness. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadows, J.R.

    The ozone-induced degradation rates of various purine bases, hydroxylated purine compounds, pyrimidine bases, and uric acid were compared. Of the compounds examined, uric acid was the one most readily degraded while the parent compounds, purine and pyrimidine, were the ones most resistant to ozonation. When the breakdown of hydroxylated purines was studied, it was determined that the more OH substituents on the purine, the more readily it was degraded. Because of the preferential attack by ozone on uric acid in solutions containing a nucleic acid base plus uric acid, the presence of the uric acid had a sparing effect onmore » the base. This effect was readily apparent for guanine, thymine, and uracil which were the bases more labile to ozone. Two of the ozonation products of uric acid were identified as allantoin and urea. Ozonation of bovine and swine erythrocyte suspensions resulted in oxidation of oxyhemoglobin to methemoglobin, formation of thiobarbituric acid-reactive materials-a measure of lipid oxidation- and lysis of the red cells. Each of these changes was inhibited by the presence of uric acid in the solution during ozonation.« less

  8. Identification and Structure Elucidation of Forced Degradation Products of the Novel Propionic acid Derivative Loxoprofen: Development of Stability-Indicating Chromatographic Methods Validated as per ICH Guidelines.

    PubMed

    Eissa, Maya S; Abd El-Sattar, Osama I

    2017-04-01

    Loxoprofen sodium (LOX) is a recently developed novel propionic acid derivative. Owing to its instability under both hydrolytic and oxidative conditions, the development of simple, rapid and sensitive methods for its determination in the presence of its possible forced degradation products becomes essential. Two simple chromatographic methods, high-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC), were developed associated with ultraviolet (UV) detection. In HPTLC-densitometric method, the separation of LOX from its degradation products was achieved using silica gel F254 plates and toluene:acetone:acetic acid (1.8:1.0:0.1, v/v/v) as the developing system followed by densitometric scanning at 220 nm. In the HPLC-UV method, the separation was performed using isocratic elution system with acetonitrile: 0.15% triethylamine (pH 2.2) (50:50, v/v) on C18 analytical column. The flow rate was optimized at 1.0 mL·min-1 and UV detection was achieved at 220 nm. Validation was performed in accordance with the International Conference on Harmonization guidelines and the method was perfectly applied for determination of LOX in its pharmaceutical preparation. The results obtained were statistically compared to those obtained after application of the official HPLC method, where no significant difference was found incompliance with precision and accuracy. Identification and characterization of the possible hydrolytic degradation product under alkaline conditions and that produced during oxidative degradation using hydrogen peroxide were structurally elucidated using infrared and mass spectrometry analyses. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step.

    PubMed

    Vatsal, Aakanksha A; Zinjarde, Smita S; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μ max ) of 0.04 h -1 . Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid-base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC-MS and GC-MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO 2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene.

  10. Cometabolism of DDT analogs by a Pseudomonas sp.

    PubMed Central

    Francis, A J; Spanggord, R J; Ouchi, G I; Bohonos, N

    1978-01-01

    A Pseudomonas sp. capable of growth on several nonchlorinated and mono-p-chloro-substituted analogs of DDT as a sole carbon source degraded bis(p-chlorophenyl)methane and 1,1-bis(p-chlorophenyl)ethane only in the presence of diphenylethane. The products p-chlorophenylacetic acid and 2-(p-chlorophenyl)-propionic acid were not further metabolized by the bacterium. Other chlorinated analogs of DDT were found to be recalcitrant to cometabolic degradation with diphenylethane. PMID:637537

  11. Evaluation of the potential of pentachlorophenol degradation in soil by pulsed corona discharge plasma from soil characteristics.

    PubMed

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-04-15

    Chlorinated organics are frequently found as harmful soil contaminants and persisted for extended periods of time. A novel approach, named pulsed corona discharge plasma (PCDP), was employed for the degradation of pentachlorophenol (PCP) in soil. Experimental results showed that 87% of PCP could be smoothly removed in 60 min. Increasing pulse voltage, enhancing soil pH, lowering humic acid (HA) in soil and reducing granular size of the soil were found to be favorable for PCP degradation efficiency. Oxidation and physical processes simultaneously contributed to PCP removal in soil and ozone was the main factor in PCDP treatment. C-Cl bonds in PCP were cleaved during PCDP treatment by Fourier transform infrared spectroscopy (FTIR) analysis. The mineralization of PCP was confirmed by total organic carbon (TOC) and dechlorination analyses. The main intermediate products such as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid, and oxalic acid were identified by HPLC/MS and ion chromatography. A possible pathway of PCP degradation in soil in such a system was proposed.

  12. Degradability of an Acrylate-Linked, Fluorotelomer Polymer in Soil

    EPA Science Inventory

    Fluorotelomer polymers are used in a broad array of products in modern societies worldwide and, if they degrade at significant rates, potentially are a significant source of perfluorooctanoic acid (PFOA) and related compounds to the environment. To evaluate this possibility, we i...

  13. Impact of Lactic Acid on Cell Proliferation and Free Radical Induced Cell Death in Monolayer Cultures of Neural Precursor Cells

    PubMed Central

    Lampe, Kyle J.; Namba, Rachael M.; Silverman, Tyler R.; Bjugstad, Kimberly B.

    2009-01-01

    Biomaterials prepared from polyesters of lactic acid and glycolic acid, or a mixture of the two, degrade in the presence of water into the naturally occurring metabolites, lactic acid and glycolic acid. While the lactic acid degradation product that is released from biomaterials is well-tolerated by the body, lactic acid can influence the metabolic function of cells; it can serve as an energy substrate for cells, and has been shown to have antioxidant properties. Neural precursor cells, a cell population of considerable interest as a source of cells for neural tissue regeneration strategies, generate a high amount of reactive oxygen species, and when associated with a degradable biomaterial, may be impacted by released lactic acid. In this work, the effect of lactic acid on a neural cell population containing proliferative neural precursor cells was examined in monolayer culture. Lactic acid was found to scavenge exogenously added free radicals produced in the presence of either hydrogen peroxide or a photoinitiator (I2959) commonly utilized in the preparation of photopolymerizable biomaterials. In addition to its effect on exogenously added free radicals, lactic acid reduced intracellular redox state, increased the proliferation of the cell population, and modified the cell composition. The findings of this study provide insight into the role that lactic acid plays naturally on developing neural cells and are also of interest to biomaterials scientists that are focused on the development of degradable lactic-acid based polymers for cell culture devices. The effect of lactic acid on other cell populations may differ and should be characterized to best understand how cells function in degradable cell culture devices. PMID:19408314

  14. Biodegradation of Lignin Monomers Vanillic, p-Coumaric, and Syringic Acid by the Bacterial Strain, Sphingobacterium sp. HY-H.

    PubMed

    Wang, Jinxing; Liang, Jidong; Gao, Sha

    2018-05-10

    Many bacterial strains have been demonstrated to biodegrade lignin for contaminant removal or resource regeneration. The goal of this study was to investigate the biodegradation amount and associated pathways of three lignin monomers, vanillic, p-coumaric, and syringic acid by strain Sphingobacterium sp. HY-H. Vanillic, p-coumaric, and syringic acid degradation with strain HY-H was estimated as 88.71, 76.67, and 72.78%, respectively, after 96 h. Correspondingly, the same three monomers were associated with a COD removal efficiency of 87.30, 55.17, and 67.23%, and a TOC removal efficiency of 82.14, 61.03, and 43.86%. The results of GC-MS, HPLC, FTIR, and enzyme activities show that guaiacol and o-dihydroxybenzene are key intermediate metabolites of the vanillic acid and syringic acid degradation. p-Hydroxybenzoic acid is an important intermediate metabolite for p-coumaric and syringic acid degradation. LiP and MnP play an important role in the degradation of lignin monomers and their intermediate metabolites. One possible pathway is that strain HY-H degrades lignin monomers into guaiacol (through decarboxylic and demethoxy reaction) or p-hydroxybenzoic acid (through side-chain oxidation); then guaiacol demethylates to o-dihydroxybenzene. The p-hydroxybenzoic acid and o-dihydroxybenzene are futher through ring cleavage reaction to form small molecule acids (butyric, valproic, oxalic acid, and propionic acid) and alcohols (ethanol and ethanediol), then these acids and alcohols are finally decomposed into CO 2 and H 2 O through the tricarboxylic acid cycle. If properly optimized and controlled, the strain HY-H may play a role in breaking down lignin-related compounds for biofuel and chemical production.

  15. Influence of irradiation time and solution concentration on the photochemical degradation of EDDHA/Fe3+: effect of its photodecomposition products on soybean growth.

    PubMed

    Hernández-Apaolaza, Lourdes; Lucena, Juan J

    2011-08-30

    Ethylenediamine-N, N'-bis(2-hydroxyphenylacetic acid (EDDHA) is one of the most efficient iron-chelating agents employed to relieve iron chlorosis in plants. It has been well known for decades that this compound is photosensitive, but in spite of this fact its degradation pathways are virtually unknown. The aim of this work was to evaluate how the length of sunlight exposure and the concentration of irradiated EDDHA/Fe(3+) solutions influence the photostability of the chelate at constant pH. Moreover, the possible toxic effect of the chelate photodegradation products, elsewhere proposed, on soybean growth has been tested. The photodecomposition of the chelate increased as the time of sunlight exposure increased, and resulted in a partial decomposition of the organic ligand. Moreover, EDDHA/Fe(3+) photodecomposition was highly correlated with the concentration of solution exposed. Plants did not present differences in recovery from chlorosis among treatments with and without decomposition products. EDDHA/Fe(3+) undergoes photodegradation, like other aminopolycarboxylic acids, being more degraded as solution concentration decreases and exposure time increases. The photodecomposition products salicylic acid, salicylaldehide and Salicylaldehyde ethylenediamine diimine tested did not have negative effects on soybean growth, at least in the short-term hydroponic experimental design tested. Copyright © 2011 Society of Chemical Industry.

  16. Stability and characterization of perphenazine aerosols generated using the capillary aerosol generator.

    PubMed

    Li, Xihao; Blondino, Frank E; Hindle, Michael; Soine, William H; Byron, Peter R

    2005-10-13

    Perphenazine (a potent antiemetic) was aerosolized using capillary aerosol generator to generate respirable condensation aerosols from drug in propylene glycol (PG) solutions, by pumping the liquids through a heated capillary tube. The study characterized the stability of perphenazine during and following aerosol generation. The stability-indicating HPLC method (C-8 column with a mobile phase of 52% 0.01 M pH 3.0 acetate buffer+48% acetonitrile) also enabled the study of perphenazine stability in solution under acidic, basic, oxidizing and photolysing conditions. An LC-MS (ESI+) method was used to characterize the degradation products. Perphenazine was found to be stable in acidic and basic conditions, while perphenazine sulfoxide was the major product formed in dilute peroxide solutions. Two photo-degradation products were formed in PG that were tentatively identified by LC-MS; one of these was synthesized and confirmed to be 2-[4-(3-phenothiazin-10-yl-propyl)-piperazino]-ethanol. Both photolysis products showed that aromatic dechlorination had occurred and one appeared to also result from interaction with the solvent. Within an aerosolization energy window of 84-95 J, fine particle aerosols were generated from perphenazine PG formulations with no significant degradation. Small amounts of degradation products were produced in all samples during aerosolization at elevated (non-optimal) energies. These were largely consistent with those seen to result from oxidation and photolysis in solution, showing that oxidation and dehalogenation appeared to be the main degradation pathways followed when the CAG system was overheated.

  17. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    PubMed Central

    Nelson, K E; Pell, A N; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrogallol, as detected by high-performance liquid chromatography and mass spectrometry. Tannic acid degradation was dependent on the presence of a sugar such as glucose, fructose, arabinose, sucrose, galactose, cellobiose, or soluble starch as an added carbon and energy source. The strain also demonstrated resistance to condensed tannins up to a level of 4 g/liter. PMID:7574640

  18. Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Chen, Nuo; Gu, Xiaogang; Qiu, Zhaofu; Fan, Ji; Lin, Kuangfei

    2009-01-01

    As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.

  19. A validated stability-indicating UPLC method for desloratadine and its impurities in pharmaceutical dosage forms.

    PubMed

    Rao, Dantu Durga; Satyanarayana, N V; Malleswara Reddy, A; Sait, Shakil S; Chakole, Dinesh; Mukkanti, K

    2010-02-05

    A novel stability-indicating gradient reverse phase ultra-performance liquid chromatographic (RP-UPLC) method was developed for the determination of purity of desloratadine in presence of its impurities and forced degradation products. The method was developed using Waters Aquity BEH C18 column with mobile phase containing a gradient mixture of solvents A and B. The eluted compounds were monitored at 280nm. The run time was 8min within which desloratadine and its five impurities were well separated. Desloratadine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. Desloratadine was found to degrade significantly in oxidative and thermal stress conditions and stable in acid, base, hydrolytic and photolytic degradation conditions. The degradation products were well resolved from main peak and its impurities, thus proved the stability-indicating power of the method. The developed method was validated as per ICH guidelines with respect to specificity, linearity, limit of detection, limit of quantification, accuracy, precision and robustness. This method was also suitable for the assay determination of desloratadine in pharmaceutical dosage forms.

  20. Global transcriptomic analysis of the response of Corynebacterium glutamicum to ferulic acid.

    PubMed

    Chen, Can; Pan, Junfeng; Yang, Xiaobing; Xiao, He; Zhang, Yaoling; Si, Meiru; Shen, Xihui; Wang, Yao

    2017-03-01

    Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C. glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.

  1. A proteomic analysis of ferulic acid metabolism in Amycolatopsis sp. ATCC 39116.

    PubMed

    Meyer, Florian; Netzer, Julius; Meinert, Christina; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2018-05-16

    The pseudonocardiate Amycolatopsis sp. ATCC 39116 is used for the biotechnical production of natural vanillin from ferulic acid. Our laboratory has performed genetic modifications of this strain previously, but there are still many gaps in our knowledge regarding its vanillin tolerance and the general metabolism. We performed cultivations with this bacterium and compared the proteomes of stationary phase cells before ferulic acid feeding with those during ferulic acid feeding. Thereby, we identified 143 differently expressed proteins. Deletion mutants were constructed and characterized to analyze the function of nine corresponding genes. Using these mutants, we identified an active ferulic acid β-oxidation pathway and the enzymes which constitute this pathway. A combined deletion mutant in which the β-oxidation as well as non-β-oxidation pathways of ferulic acid degradation were deleted was unable to grow on ferulic acid as the sole source of carbon and energy. This mutant differs from the single deletion mutants and was unable to grow on ferulic acid. Furthermore, we showed that the non-β-oxidation pathway is involved in caffeic acid degradation; however, its deletion is complemented even in the double deletion mutant. This shows that both pathways can complement each other. The β-oxidation deletion mutant produced significantly reduced amounts of vanillic acid (0.12 instead of 0.35 g/l). Therefore, the resulting mutant could be used as an improved production strain. The quinone oxidoreductase deletion mutant (ΔytfG) degraded ferulic acid slower at first but produced comparable amounts of vanillin and significantly less vanillyl alcohol when compared to the parent strain.

  2. Correlation between degradation pathway and toxicity of acetaminophen and its by-products by using the electro-Fenton process in aqueous media.

    PubMed

    Le, Thi Xuan Huong; Nguyen, Thi Van; Amadou Yacouba, Zoulkifli; Zoungrana, Laetitia; Avril, Florent; Nguyen, Duy Linh; Petit, Eddy; Mendret, Julie; Bonniol, Valerie; Bechelany, Mikhael; Lacour, Stella; Lesage, Geoffroy; Cretin, Marc

    2017-04-01

    The evolution of the degradation by-products of an acetaminophen (ACE) solution was monitored by HPLC-UV/MS and IC in parallel with its ecotoxicity (Vibrio fischeri 81.9%, Microtox ® screening tests) during electro-Fenton (EF) oxidation performed on carbon felt. The aromatic compounds 2-hydroxy-4-(N-acetyl) aminophenol, 1,4-benzoquinone, benzaldehyde and benzoic acid were identified as toxic sub-products during the first stage of the electrochemical treatment, whereas aliphatic short-chain carboxylic acids (oxalic, maleic, oxamic, formic, acetic and fumaric acids) and inorganic ions (ammonium and nitrate) were well identified as non-toxic terminal sub-products. Electrogenerated hydroxyl radicals then converted the eco-toxic and bio-refractory property of initial ACE molecule (500 mL, 1 mM) and subsequent aromatic sub-products into non-toxic compounds after 2 h of EF treatment. The toxicity of every intermediate produced during the mineralization of ACE was quantified, and a relationship was established between the degradation pathway of ACE and the global toxicity evolution of the solution. After 8 h of treatment, a total organic carbon removal of 86.9% could be reached for 0.1 mM ACE at applied current of 500 mA with 0.2 mM of Fe 2+ used as catalyst. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  4. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass.

    PubMed

    Reza, M Toufiq; Wirth, Benjamin; Lüder, Ulf; Werner, Maja

    2014-10-01

    In this study, effects of reaction temperature and reaction time on both solid hydrochar and HTC process liquid products were studied for hydrothermal carbonization (HTC) of cellulose, wheat straw, and poplar. A novel slurry sampling system was designed and used with an 18.6L Parr reactor for 0-480 min in 200, 230, and 260 °C. Sugars (sucrose, glucose, and fructose), HMF, and furfural were found maximum in lower HTC temperature and time. However, they degrade following first order degradation kinetics. Activation energies of total sugars (glucose, fructose, sucrose, and xylose), furfural, and HMF for straw and poplar were 95-127, 130-135, and 74-90 kJ mol(-1), respectively and individuals were lower for HTC of cellulose than others. Organic acids (acetic acid, formic acid, and lactic acid) and phenolic compounds (phenol, catechol, and guaiacol) were increasing with higher HTC severity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Enhanced corrosion resistance and cytocompatibility of biodegradable Mg alloys by introduction of Mg(OH)2 particles into poly (L-lactic acid) coating

    PubMed Central

    Shi, Yong-juan; Pei, Jia; Zhang, Jian; Niu, Jia-lin; Zhang, Hua; Guo, Sheng-rong; Li, Zhong-hua; Yuan, Guang-yin

    2017-01-01

    A strategy of suppressing the fast degradation behaviour of Mg-based biomaterials by the introduction of one of Mg degradation products Mg(OH)2 was proposed according to the following degradation mechanism, Mg + 2H2O ⇋ Mg(OH)2 + H2↑. Specifically, Mg(OH)2 submicron particles were mixed into poly (L-lactic acid) (PLLA) to synthesize a composite coating onto hydrofluoric acid-pretreated Mg-Nd-Zn-Zr alloy. The in vitro degradation investigations showed that the addition of Mg(OH)2 particles not only slowed down the corrosion of Mg matrix, but also retarded the formation of gas pockets underneath the polymer coating. Correspondingly, cytocompatibility results exhibited significant improvement of proliferation of endothelial cells, and further insights was gained into the mechanisms how the introduction of Mg(OH)2 particles into PLLA coating affected the magnesium alloy degradation and cytocompatibility. The present study provided a promising surface modification strategy to tailor the degradation behaviour of Mg-based biomaterials. PMID:28150751

  6. [Degradation of fluorene and fluoranthene by the basidiomycete Pleurotus ostreatus].

    PubMed

    Pozdnyakova, N N; Chernyshova, M P; Grinev, V S; Landesman, E O; Koroleva, O V; Turkovskaya, O V

    2016-01-01

    The dependence of the degree of fluorene and fluoranthene degradation by the fungus Pleurotus ostreatus D1 on the culture medium composition has been studied. Polycyclic aromatic hydrocarbons (PAHs) have been transformed in Kirk’s medium (under conditions of laccase production) with the formation of a quinone metabolite and 9-fluorenone upon the use of fluoranthene and fluorene as substrates, respectively. More complete degradation with the formation of an intermediate metabolite, phthalic acid that has undergone subsequent utilization, has occurred in basidiomycete-rich medium (under the production of both laccase and versatile peroxidase). The formation of phthalic acid as a metabolite of fluoranthene degradation by lignolytic fungi has been revealed for the first time. The data allow the supposition that both extracellular laccase and laccase on the mycelium surface can participate in the initial stages of PAH metabolism, while versatile peroxidase is necessary for the oxidation of the formed metabolites. A scheme of fluorene metabolism by Pleurotus ostreatus D1 is suggested.

  7. [Impact factors and degradation mechanism for the ozonation of acetaminophen in aqueous solution].

    PubMed

    Cao, Fei; Yuan, Shou-Jun; Zhang, Meng-Tao; Wang, Wei; Hu, Zhen-Hu

    2014-11-01

    The effect and mechanism of O3 on the degradation of acetaminophen in aqueous solution were studied by the batch experiment. The results showed that acetaminophen could be degraded effectively by ozone and degradation of acetaminophen fitted well with the pseudo-first-order kinetics model (R2 > 0.992). The degradation of acetaminophen was promoted with the increase of pH, the concentration of bicarbonate and ozone. The results of gas chromatography-mass spectrometry (GC-MS) and ion chromatography analysis showed that degradation products such as hydroquinone and a series of carboxylic acids were firstly formed during ozonation of acetaminophen. Then, the products were further oxidized. The degradation pathways of acetaminophen were also discussed by the identified products. The result of TOC showed that the mineralization of acetaminophen was ultimately lower. When the initial concentration of acetaminophen was 20 mg x L(-1) and the concentration of ozone was 9.10 mg x L(-1), the mineralization was only 16.42% after 130 min.

  8. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4.

  9. Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products.

    PubMed

    Sinela, André; Rawat, Nadirah; Mertz, Christian; Achir, Nawel; Fulcrand, Hélène; Dornier, Manuel

    2017-01-01

    Degradation parameters of two main anthocyanins from roselle extract (Hibiscus sabdariffa L.) stored at different temperatures (4-37°C) over 60days were determined. Anthocyanins and some of their degradation products were monitored and quantified using HPLC-MS and DAD. Degradation of anthocyanins followed first-order kinetics and reaction rate constants (k values), which were obtained by non-linear regression, showed that the degradation rate of delphinidin 3-O-sambubioside was higher than that of cyanidin 3-O-sambubioside with k values of 9.2·10(-7)s(-1) and 8.4·10(-7)s(-1) at 37°C respectively. The temperature dependence of the rate of anthocyanin degradation was modeled by the Arrhenius equation. Degradation of delphinidin 3-O-sambubioside (Ea=90kJmol(-1)) tended to be significantly more sensitive to an increase in temperature than cyanidin 3-O-sambubioside (Ea=80kJmol(-1)). Degradation of these anthocyanins formed scission products (gallic and protocatechuic acids respectively) and was accompanied by an increase in polymeric color index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    PubMed

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  11. The contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using diamond anodes.

    PubMed

    Bensalah, Nasr; Dbira, Sondos; Bedoui, Ahmed

    2016-07-01

    In this work, the contribution of mediated oxidation mechanisms in the electrolytic degradation of cyanuric acid using boron-doped diamond (BDD) anodes was investigated in different electrolytes. A complete mineralization of cyanuric acid was obtained in NaCl; however lower degrees of mineralization of 70% and 40% were obtained in Na2SO4 and NaClO4, respectively. This can be explained by the nature of the oxidants electrogenerated in each electrolyte. It is clear that the contribution of active chlorine (Cl2, HClO, ClO(-)) electrogenerated from oxidation of chlorides on BDD is much more important in the electrolytic degradation of cyanuric acid than the persulfate and hydroxyl radicals produced by electro-oxidation of sulfate and water on BDD anodes. This could be explained by the high affinity of active chlorine towards nitrogen compounds. No organic intermediates were detected during the electrolytic degradation of cyanuric acid in any the electrolytes, which can be explained by their immediate depletion by hydroxyl radicals produced on the BDD surface. Nitrates and ammonium were the final products of electrolytic degradation of cyanuric acid on BDD anodes in all electrolytes. In addition, small amounts of chloramines were formed in the chloride medium. Low current density (≤10mA/cm(2)) and neutral medium (pH in the range 6-9) should be used for high efficiency electrolytic degradation and negligible formation of hazardous chlorate and perchlorate. Copyright © 2016. Published by Elsevier B.V.

  12. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Carvalho Oliveira, Fernanda; Srinivas, Keerthi; Helms, Gregory L.

    The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥ 49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly β-O-4 ether linkages. Thermal degradation of pretreated lignin occurred in two stages. Carboxylic acids were the mainmore » degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except from conditions with temperatures over 210 °C, 5 min residence time and 11.7wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of higher-value bioproducts from lignin.« less

  13. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.

  14. Degradation of trimethoprim by gamma irradiation in the presence of persulfate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhonglei; Yang, Qi; Wang, Jianlong

    2016-10-01

    The degradation and mineralization of trimethoprim (TMP) by gamma irradiation was investigated in the presence of persulfate (PS). The TMP was degraded at initial concentration of 20 mg/L in aqueous solution with addition of 0, 0.5, 1, 1.5, 2 mM persulfate respectively. The effect of pH values (6.5, 7.5 and 8.5) on TMP degradation was also determined. The experimental results showed that the degradation and mineralization of TMP could be significantly enhanced by persulfate at acidic condition (pH=6.5). Several intermediate products generated during gamma irradiation process through hydroxylation, demethylation and cleavage were identified using liquid chromatography with tandem mass spectrometry (HPLC-MS). The degradation pathway of TMP was tentatively proposed based on the identification of intermediate products.

  15. Hydrolytic breakdown of lactoferricin by lactic acid bacteria.

    PubMed

    Paul, Moushumi; Somkuti, George A

    2010-02-01

    Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.

  16. Prediction of HPLC retention times of tebipenem pivoxyl and its degradation products in solid state by applying adaptive artificial neural network with recursive features elimination.

    PubMed

    Mizera, Mikołaj; Talaczyńska, Alicja; Zalewski, Przemysław; Skibiński, Robert; Cielecka-Piontek, Judyta

    2015-05-01

    A sensitive and fast HPLC method using ultraviolet diode-array detector (DAD)/electrospray ionization tandem mass spectrometry (Q-TOF-MS/MS) was developed for the determination of tebipenem pivoxyl and in the presence of degradation products formed during thermolysis. The chromatographic separations were performed on stationary phases produced in core-shell technology with particle diameter of 5.0 µm. The mobile phases consisted of formic acid (0.1%) and acetonitrile at different ratios. The flow rate was 0.8 mL/min while the wavelength was set at 331 nm. The stability characteristics of tebipenem pivoxyl were studied by performing stress tests in the solid state in dry air (RH=0%) and at an increased relative air humidity (RH=90%). The validation parameters such as selectivity, accuracy, precision and sensitivity were found to be satisfying. The satisfied selectivity and precision of determination were obtained for the separation of tebipenem pivoxyl from its degradation products using a stationary phase with 5.0 µm particles. The evaluation of the chemical structure of the 9 degradation products of tebipenem pivoxyl was conducted following separation based on the stationary phase with a 5.0 µm particle size by applying a Q-TOF-MS/MS detector. The main degradation products of tebipenem pivoxyl were identified: a product resulting from the condensation of the substituents of 1-(4,5-dihydro-1,3-thiazol-2-yl)-3-azetidinyl]sulfanyl and acid and ester forms of tebipenem with an open β-lactam ring in dry air at an increased temperature (RH=0%, T=393 K) as well as acid and ester forms of tebipenem with an open β-lactam ring at an increased relative air humidity and an elevated temperature (RH=90%, T=333 K). Retention times of tebipenem pivoxyl and its degradation products were used as training data set for predictive model of quantitative structure-retention relationship. An artificial neural network with adaptation protocol and extensive feature selection process was created. Input parameters for model were calculated from molecular geometries optimized with application of Density Functional Theory. The model was prepared and optimized especially for small data sets such as degradation products of specific compound. Validation of the model with statistical test against requirements for QSAR showed its ability for prediction of retention times within given data set. Mean error of 24.75% (0.8 min) was achieved with utilization of topological, geometrical and electronic descriptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2

  18. Degradation of spent craft brewer's yeast by caprine rumen hyper ammonia-producing bacteria.

    PubMed

    Harlow, B E; Bryant, R W; Cohen, S D; O'Connell, S P; Flythe, M D

    2016-10-01

    Spent yeast from craft beers often includes more hops (Humulus lupulus L.) secondary metabolites than traditional recipes. These compounds include α- and β- acids, which are antimicrobial to the rumen hyper ammonia-producing bacteria (HAB) that are major contributors to amino acid degradation. The objective was to determine if the hops acids in spent craft brewer's yeast (CY; ~ 3·5 mg g(-1) hops acids) would protect it from degradation by caprine rumen bacteria and HAB when compared to a baker's yeast (BY; no hops acids). Cell suspensions were prepared by harvesting rumen fluid from fistulated goats, straining and differential centrifugation. The cells were re-suspended in media with BY or CY. After 24 h (39°C), HAB were enumerated and ammonia was measured. Fewer HAB and less ammonia was produced from CY than from BY. Pure culture experiments were conducted with Peptostreptococcus anaerobiusBG1 (caprine HAB). Ammonia production by BG1 from BY was greater than from CY. Ammonia production was greater when exogenous amino acids were included, but similar inhibition was observed in CY treatments. These results indicate that rumen micro-organisms deaminated the amino acids in CY to a lesser degree than BY. Spent brewer's yeast has long been included in ruminant diets as a protein supplement. However, modern craft beers often include more hops (Humulus lupulus L.) than traditional recipes. These compounds include α- and β- acids, which are antimicrobial to the rumen hyper ammonia-producing bacteria (HAB) that are major contributors to amino acid degradation. This study demonstrated that hops acids in spent craft brewer's yeast protected protein from destruction by HABin vitro. These results suggest that the spent yeast from craft breweries, a source of beneficial hops secondary metabolites, could have value as rumen-protected protein. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. A validated stability indicating RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product.

    PubMed

    Venkateswarlu, Kambham; Rangareddy, Ardhgeri; Narasimhaiah, Kanaka; Sharma, Hemraj; Bandi, Naga Mallikarjuna Raja

    2017-01-01

    The main objective of present study was to develop a RP-HPLC method for estimation of Armodafinil in pharmaceutical dosage forms and characterization of its base hydrolytic product. The method was developed for Armodafinil estimation and base hydrolytic products were characterized. The separation was carried out on C18 column by using mobile phase as mixture of water and methanol (45:55%v/v). Eluents were detected at 220nm at 1ml/min. Stress studies were performed with milder conditions followed by stronger conditions so as to get sufficient degradation around 20%. A total of five degradation products were detected and separated from analyte. The linearity of the proposed method was investigated in the range of 20-120µg/ml for Armodafinil. The detection limit and quantification limit was found to be 0.01183μg/ml and 0.035µg/ml respectively. The precision % RSD was found to be less than 2% and the recovery was between 98-102%. Armodafinil was found to be more sensitive to the base hydrolysis and yielded its carboxylic acid as degradant. The developed method was stability indicating assay, suitable to quantify Armodafinil in presence of possible degradants. The drug was sensitive to acid, base &photolytic stress and resistant to thermal &oxidation.

  20. Immobilized laccase mediated dye decolorization and transformation pathway of azo dye acid red 27.

    PubMed

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2015-01-01

    Laccases have good potential as bioremediating agents and can be used continuously in the immobilized form like many other enzymes. In the present study, laccase from Cyathus bulleri was immobilized by entrapment in Poly Vinyl Alcohol (PVA) beads cross-linked with either nitrate or boric acid. Immobilized laccase was used for dye decolorization in both batch and continuous mode employing a packed bed column. The products of degradation of dye Acid Red 27 were identified by LC MS/MS analysis. The method led to very effective (90%) laccase immobilization and also imparted significant stability to the enzyme (more than 70% after 5 months of storage at 4°C). In batch decolorization, 90-95% decolorization was achieved of the simulated dye effluent for up to 10-20 cycles. Continuous decolorization in a packed bed bioreactor led to nearly 90% decolorization for up to 5 days. The immobilized laccase was also effective in decolorization and degradation of Acid Red 27 in the presence of a mediator. Four products of degradation were identified by LC-MS/MS analysis. The immobilized laccase in PVA-nitrate was concluded to be an effective agent in treatment of textile dye effluents.

  1. Optimization of tannase production by Aureobasidium pullulans DBS66.

    PubMed

    Banerjee, Debdulal; Pati, Bikas R

    2007-06-01

    Tannase production by Aureobasidium pullulans DBS66 was optimized. The organism produced maximum tannase in the presence of 1% tannic acid after 36 h. Maximum gallic acid accumulation was observed within 36 h and tannic acid in the fermented broth was completely degraded after 42 h of growth. Glucose had a stimulatory effect on tannase synthesis at 0.1% (w/v) concentration. The organism showed maximum tannase production with (NH4)2HPO4 as nitrogen source. Shaking speed of 120 rpm and 50-ml broth volume have been found to be suitable for maximum tannase production.

  2. Toxicological Impacts of Pharmaceuticals and Personal Care Products on Water Quality: Environmental Fate, Transformation and Health Effects

    NASA Astrophysics Data System (ADS)

    Rubasinghege, G. R. S.; Rijal, H.; Gurung, R.; Maldonado-Torres, S.; Rogelj, S.; Piyasena, M.

    2016-12-01

    The growing medical and personal needs of the human population have escalated release of pharmaceuticals and personal care products (PPCPs) to the nature. The current work investigated abiotic degradation pathways of selected PPCPs in the presence of major mineral components of soil and the acute health effects of degraded PPCPs. Degradation of selected PPCPs (ibuprofen and clofibric acid) was carried out using custom-built glass reactors in batch studies. The secondary products of PPCPs were analyzed and identified using modified HPLC and LC-MS methods. Results from these studies showed that the extent of degradation depends on the type of the clay or mineral oxide, and solar radiation. In the absence of solar radiation (night time chemistry), the dominant reaction mechanism was observed to be the adsorption of PPCPs on to clay particles where surface functional groups and particle size play a key role. In contrast, under solar radiation, PPCPs break down to several fractions in the presence of clay particles. The decay rates were at least 3-fold higher for irradiated samples compared to that of dark conditions. Acute toxicity of selected PPCPs and their degradation products were tested on three microorganisms: gram-positive soil bacteria, Bacillus megaterium; gram-negative marine bacteria, Pseudoaltermonas atlantica; and algae from the Chlorella genus. Growth inhibition was measured using optical density measurements, MTT viability assay, and flow cytometer. The results suggest that the concentrations of primary compounds, Ibuprofen and Clofibric Acid, found in the environment that ranges from μg/L to ng/L are not sufficient to inhibit growth of either three microorganisms. However, selected organisms showed significant differences in sensitivity to degraded products. Results from current work advance our knowledge and understanding in the fields of environmental toxicology, chemistry in aqueous phases, and geochemistry.

  3. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes.

    PubMed

    Zeng, Shengquan; Zhao, Jie; Xia, Liming

    2017-08-01

    Solid state fermentation with Trametes versicolor was carried out on agricultural wastes containing bisphenol A (BPA). It was found that BPA degradation was along with the occurrence of laccase production, and wheat bran and corn straw were identified as suitable mixed substrates for laccase production. In the process of BPA degradation with T. versicolor, laccase activity increased rapidly at the 6th-10th day after inoculation. Moreover, BPA can enhance the production of laccase. After 10 days of fermentation, degradation rate of BPA exceeded 90% without the usage of mediators ABTS and acetosyringone at pH 4.0-8.0. In addition, metal ions did not affect the BPA degradation with T. versicolor. In vitro, the optimum pH range of BPA degradation with laccase was in the acidic region with the optimal performance of pH 5.0. Metal ions Cu 2+ , Zn 2+ , and Co 2+ showed little effect on BPA degradation. However, Fe 3+ and Fe 2+ substantially inhibited the BPA degradation. Natural mediator acetosyringone showed optimum enhancement on BPA degradation. Greater than 90% of the estrogenic activity of BPA was removed by T. versicolor and its laccase. Compared to in vitro degradation with laccase, this study shows that the process of simultaneous laccase production and BPA degradation with T. versicolor was more advantageous since BPA can enhance the laccase production, mediators were unnecessary, degradation rate was not affected by metal ions, and the applicable pH range was broader. This study concludes that T. versicolor and laccase have great potential to treat industrial wastewater containing BPA.

  4. Microbial degradation of usnic acid in the reindeer rumen

    NASA Astrophysics Data System (ADS)

    Sundset, Monica A.; Barboza, Perry S.; Green, Thomas K.; Folkow, Lars P.; Blix, Arnoldus Schytte; Mathiesen, Svein D.

    2010-03-01

    Reindeer ( Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid. Three male reindeer were given ad libitum access to a control diet containing no usnic acid for three weeks and then fed lichens ad libitum (primarily Cladonia stellaris) containing 9.1 mg/g DM usnic acid for 4 weeks. Usnic acid intake in reindeer on the lichen diet was 91-117 mg/kg BM/day. In spite of this, no trace of usnic acid or conjugates of usnic acid was found either in fresh rumen fluid, urine, or feces. This suggests that usnic acid is rapidly degraded by rumen microbes, and that it consequently is not absorbed by the animal. This apparent ability to detoxify lichen phenolic compounds may gain increased importance with future enhanced UV-B radiation expected to cause increased protective usnic acid/phenol production in lichens.

  5. Cell system engineering to produce extracellular polyhydroxyalkanoate depolymerase with targeted applications.

    PubMed

    Martínez, Virginia; Dinjaski, Nina; de Eugenio, Laura I; de la Peña, Fernando; Prieto, María Auxiliadora

    2014-11-01

    Novel platforms based on the application of bacterial cell systems as factories for production of new bioproducts open avenues and dramatically expand the catalogue of existing biomaterials. Herein, we designed the strategy based on in vivo production of extracellular Pseudomonas fluorescens GK13 (PhaZGK13) depolymerase to degrade previously biosynthesized polyhydroxyalkanotes (PHAs) or to obtain 3-hydroxyalkanoic acids (HAs). With this aim, extracellular PhaZGK13 was produced in recombinant strains and the optimal conditions for controlled release of HAs and oligomers by growing cells were set up with a particle suspension of (14)C-labelled PHA, being maximal after 24h of incubation. Genetic modification of key factors involved in fatty acids metabolism revealed the influence of an active β-oxidation pathway on the extracellular degradation of PHA and subsequent HAs isolation. The highest HAs production was obtained using Pseudomonas putida KT2442 fadB mutant (0.27mg/mL) due to the reduced ability of this strain to metabolize the degradation products. The system was applied to produce new added value HAs harboring thioester groups in the side chain from the functionalized mcl-PHA, PHACOS. Remarkably, hydrolyzed PHACOS showed greater potential to inhibit Staphylococcus aureus(T) growth when compared to that of degradation products of non functionalized polyhydroxyoctanoate-co-hexanoate P(HO-co-HH). Copyright © 2014 Elsevier B.V. All rights reserved.

  6. STUDIES ON THE MECHANISM OF THE FORMATION OF THE PENICILLIN ANTIGEN

    PubMed Central

    Levine, Bernard B.

    1960-01-01

    Seven highly purified degradation products of penicillin G (PG) were examined with regard to their ability to cross-react allergically with PG. Guinea pig allergic contact dermatitis was employed as the test system. Three of these degradation products, D-benzylpenicillenic acid (BPE), D-penicillamine, and D-α-benzylpenicilloic acid were found to cross-react with PG and also to be capable of inducing delayed contact allergy in the guinea pig. BPE and PG cross-reacted with particularly intense reactions, and other immunologic experiments indicated that PG and BPE introduce identical allergic determinant groups into epidermal proteins. These experimental results were correlated with the results of previous studies concerning the degradation pathways of PG under physiological conditions in vitro, and the chemical reactivities of these degradation products. Based on these immunologic and chemical data, a schema is proposed which suggests the chemical pathways by which PG may react with epidermal proteins in vivo to form the penicillin antigen. The identity of the specific antigenic determinant groups of the penicillin antigen is suggested. The relationship between PG allergy of the contact dermatitis type in the guinea pig and PG allergy of the immediate type in man is discussed. PMID:13761469

  7. Study of stability of methotrexate in acidic solution spectrofluorimetric determination of methotrexate in pharmaceutical preparations through acid-catalyzed degradation reaction.

    PubMed

    Sabry, Suzy M; Abdel-Hady, M; Elsayed, M; Fahmy, Osama T; Maher, Hadir M

    2003-07-14

    Study of the degradation reaction of methotrexate (MTX) in acidic solution was carried out. Optimization of the experimental parameters of MTX acid hydrolysis was investigated. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (AMP), was developed. Stability of the standard solution of MTX prepared in sulfuric acid was discussed in the view of accelerated stability analysis. Two other comparative spectroflourimetric methods based on measuring the fluorescence intensities from either a condensation reaction with acetylacetone-formaldehyde (Hantzsch reaction) or a reaction with fluorescamine were also described. Beer's law validation, accuracy, precision, limits of detection, limits of quantification, and other aspects of analytical merit are presented in the text. The proposed methods were successfully applied for the analysis of MTX in pure drug and tablets dosage form. The sensitivity of the developed methods was favorable, so it was possible to be adopted for determination of MTX in plasma samples for routine use in high-dose MTX therapy.

  8. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com; Vakhrusheva, Tatyana V.; Sokolov, Alexey V.

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acidmore » (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of neutrophils in blood causes an increase in plasma MPO concentration. ► Intraperitoneal injection of PEG-SWCNTs in mice induces an inflammatory response.« less

  9. Evaluation of the potential of soil remediation by direct multi-channel pulsed corona discharge in soil.

    PubMed

    Wang, Tie Cheng; Qu, Guangzhou; Li, Jie; Liang, Dongli

    2014-01-15

    A novel approach, named multi-channel pulsed corona discharge in soil, was developed for remediating organic pollutants contaminated soil, with p-nitrophenol (PNP) as the model pollutant. The feasibility of PNP degradation in soil was explored by evaluating effects of pulse discharge voltage, air flow rate and soil moisture on PNP degradation. Based on roles of chemically active species and evolution of degradation intermediates, PNP degradation processes were discussed. Experimental results showed that about 89.4% of PNP was smoothly degraded within 60min of discharge treatment at pulse discharge voltage 27kV, soil moisture 5% and air flow rate 0.8Lmin(-1), and the degradation process fitted the first-order kinetic model. Increasing pulse discharge voltage was found to be favorable for PNP degradation, but not for energy yield. There existed appropriate air flow rate and soil moisture for obtaining gratifying PNP degradation efficacy. Roles of radical scavenger and measurement of active species suggested that ozone, H2O2, and OH radicals played very important roles in PNP degradation. CN bond in PNP molecule was cleaved, and the main intermediate products such as hydroquinone, benzoquinone, catechol, phenol, acetic acid, formic acid, oxalic acid, NO2(-) and NO3(-) were identified. Possible pathway of PNP degradation in soil in such a system was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. [Degradation of Acid Orange 7 with Persulfate Activated by Silver Loaded Granular Activated Carbon].

    PubMed

    Wang, Zhong-ming; Huang, Tian-yin; Chen, Jia-bin; Li, Wen-wei; Zhang, Li-ming

    2015-11-01

    Granular activated carbon with silver loaded as activator (Ag/GAC) was prepared using impregnation method. N2 adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) were adopted to characterize the Ag/GAC, showing that silver was successfully loaded on granular activated carbon. The oxidation degradation of acid orange 7 (AO7) by the Ag/GAC activated by persulfate (PS) was investigated at ambient temperature. The influences of factors such as Ag loading, PS or Ag/GAC dosages and initial pH on the degradation of AO7 were evaluated. The results demonstrated that the degradation rate of AO7 could reach more than 95.0% after 180 min when the Ag loading content, PS/AO7 molar ratio, the Ag/GAC dosage were 12.7 mg x g(-1), 120: 1, 1.0 g x L(-1), respectively. The initial pH had significant effect on the AO7 degradation, with pH 5.0 as the optimal pH for the degradation of AO7. The possible degradation pathway was proposed for the AO7 degradation by using UV-visible spectroscopy and gas chromatography-mass spectrometry (GG/MS). The azo bond and naphthalene ring in the AO7 were destroyed during the degradation, with phthalic acid and acetophenone as the main degradation products.

  11. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  12. Chemo-selective high yield microwave assisted reaction turns cellulose to green chemicals.

    PubMed

    Hassanzadeh, Salman; Aminlashgari, Nina; Hakkarainen, Minna

    2014-11-04

    Exceptionally high cellulose liquefaction yields, up to 87% as calculated from the amount of solid residue, were obtained under mild conditions by utilizing the synergistic effect of microwave radiation and acid catalysis. The effect of processing conditions on degradation products was fingerprinted by rapid laser desorption ionization-mass spectrometry (LDI-MS) method. The reaction was chemo-tunable, enabling production of glucose (Glc) or levulinic acid (LeA) at significantly high selectivity and yields, the relative molar yields being up to 50 and 69%, respectively. A turning point from pure depolymerization to glucose to further degradation to levulinic acid and formic acid was observed at approximately 50% liquefaction or above 140 °C. This was accompanied by the formation of small amounts of solid spherical carbonized residues. The reaction was monitored by multiple analytical techniques. The high yields were connected to the ability of the process to break the strong secondary interactions in cellulose. The developed method has great potential for future production of green platform chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. NMR Studies on the Aqueous Phase Photochemical Degradation of TNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorn, Kevin A.; Cox, Larry G.

    2008-04-06

    Aqueous phase photochemical degradation of 2,4,6-trinitrotoluene (TNT) is an important pathway in several environments, including washout lagoon soils, impact craters from partially detonated munitions that fill with rain or groundwater, and shallow marine environments containing unexploded munitions that have corroded. Knowledge of the degradation products is necessary for compliance issues on military firing ranges and formerly used defense sites. Previous laboratory studies have indicated that UV irradiation of aqueous TNT solutions results in a multicomponent product mixture, including polymerization compounds, that has been only partially resolved by mass spectrometric analyses. This study illustrates how a combination of solid and liquidmore » state 1H, 13C, and 15N NMR spectroscopy, including two dimensional analyses, provides complementary information on the total product mixture from aqueous photolysis of TNT, and the effect of reaction conditions. Among the degradation products detected were amine, amide, azoxy, azo, and carboxylic acid compounds.« less

  14. Determination of Major Phenolic Compounds in Echinacea spp. Raw Materials and Finished Products by High-Performance Liquid Chromatography with Ultraviolet Detection: Single-Laboratory Validation Matrix Extension

    PubMed Central

    Brown, Paula N.; Chan, Michael; Paley, Lori; Betz, Joseph M.

    2013-01-01

    A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method. PMID:22165004

  15. Determination of major phenolic compounds in Echinacea spp. raw materials and finished products by high-performance liquid chromatography with ultraviolet detection: single-laboratory validation matrix extension.

    PubMed

    Brown, Paula N; Chan, Michael; Paley, Lori; Betz, Joseph M

    2011-01-01

    A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method.

  16. Growth and Metabolism of Lactic Acid Bacteria during and after Malolactic Fermentation of Wines at Different pH

    PubMed Central

    Davis, C. R.; Wibowo, D. J.; Lee, T. H.; Fleet, G. H.

    1986-01-01

    Commercially produced red wines were adjusted to pH 3.0, 3.2, 3.5, 3.7, or 4.0 and examined during and after malolactic fermentation for growth of lactic acid bacteria and changes in the concentrations of carbohydrates, organic acids, amino acids, and acetaldehyde. With one exception, Leuconostoc oenos conducted the malolactic fermentation in all wines and was the only species to occur in wines at pH below 3.5. Malolactic fermentation by L. oenos was accompanied by degradation of malic, citric, and fumaric acids and production of lactic and acetic acids. The concentrations of arginine, histidine, and acetaldehyde also decreased at this stage, but the behavior of hexose and pentose sugars was complicated by other factors. Pediococcus parvulus conducted the malolactic fermentation in one wine containing 72 mg of total sulfur dioxide per liter. Fumaric and citric acids were not degraded during this malolactic fermentation, but hexose sugars were metabolized. P. parvulus and species of Lactobacillus grew after malolactic fermentation in wines with pH adjusted above 3.5. This growth was accompanied by the utilization of wine sugars and production of lactic and acetic acids. PMID:16347015

  17. Theagalloflavic Acid, a New Pigment Derived from Hexahydroxydiphenoyl Group, and Lignan Oxidation Products Produced by Aerobic Microbial Fermentation of Green Tea.

    PubMed

    Matsuo, Yosuke; Matsuda, Tomoko; Sugihara, Keisuke; Saito, Yoshinori; Zhang, Ying-Jun; Yang, Chong-Ren; Tanaka, Takashi

    2016-01-01

    Chinese ripe pu-erh tea is produced by aerobic microbial fermentation of green tea. To clarify the microbial degradation of tea polyphenols, Japanese commercial green tea was mixed with Chinese ripe pu-erh tea, which retains microorganisms, and fermented for 5 d. Chromatographic separation yielded a novel water-soluble yellow pigment termed theagalloflavic acid. Spectroscopic and chemical evidence suggested that this pigment was produced by oxidative ring cleavage of hexahydroxydiphenoyl esters. In addition, two new oxygenated lignin metabolites, (+)-5,5'-dihydroxypinoresinol and 5-hydroxydihydrodehydrodiconiferyl alcohol, were also isolated together with known degradation products of quercetin and tea catechins.

  18. Toxicology of atmospheric degradation products of selected hydrochlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Kaminsky, Laurence S.

    1990-01-01

    Trifluoroacetic acid (TFA) is a liquid with a sharp biting odor. It has been proposed as the product of environmental degradation of the hydrochlorofluorocarbons HCFC-123, HCFC-124, HFC-134a, and HFC-125. Compounds HCFC-141b and HCFC-142b could yield mixed fluorochloroacetic acids, for which there is no available toxicologic data. The release of hydrochlorofluorocarbons into the environment could also give rise to HF, but the additional fluoride burden (1 to 3 ppb) in rainwater is trivial compared to levels in fluoridated drinking water (1 ppm), and would provide an insignificant risk to humans. Thus, in this paper only the toxocologic data on TFA is reviewed to assess the potential risks of environmental exposure.

  19. Degradation of oxcarbazepine by UV-activated persulfate oxidation: kinetics, mechanisms, and pathways.

    PubMed

    Bu, Lingjun; Zhou, Shiqing; Shi, Zhou; Deng, Lin; Li, Guangchao; Yi, Qihang; Gao, Naiyun

    2016-02-01

    The degradation kinetics and mechanism of the antiepileptic drug oxcarbazepine (OXC) by UV-activated persulfate oxidation were investigated in this study. Results showed that UV/persulfate (UV/PS) process appeared to be more effective in degrading OXC than UV or PS alone. The OXC degradation exhibited a pseudo-first order kinetics pattern and the degradation rate constants (k obs) were affected by initial OXC concentration, PS dosage, initial pH, and humic acid concentration to different degrees. It was found that low initial OXC concentration, high persulfate dosage, and initial pH enhanced the OXC degradation. Additionally, the presence of humic acid in the solution could greatly inhibit the degradation of OXC. Moreover, hydroxyl radical (OH•) and sulfate radical (SO4 (-)••) were identified to be responsible for OXC degradation and SO4 (-)• made the predominant contribution in this study. Finally, major intermediate products were identified and a preliminary degradation pathway was proposed. Results demonstrated that UV/PS system is a potential technology to control the water pollution caused by emerging contaminants such as OXC.

  20. The interfacial pH of acidic degradable polymeric biomaterials and its effects on osteoblast behavior.

    PubMed

    Ruan, Changshun; Hu, Nan; Ma, Yufei; Li, Yuxiao; Liu, Juan; Zhang, Xinzhou; Pan, Haobo

    2017-07-28

    A weak alkaline environment is established to facilitate the growth of osteoblasts. Unfortunately, this is inconsistent with the application of biodegradable polymer in bone regeneration, as the degradation products are usually acidic. In this study, the variation of the interfacial pH of poly (D, L-lactide) and piperazine-based polyurethane ureas (P-PUUs), as the representations of acidic degradable materials, and the behavior of osteoblasts on these substrates with tunable interfacial pH were investigated in vitro. These results revealed that the release of degraded products caused a rapid decrease in the interfacial pH, and this could be relieved by the introduction of alkaline segments. On the contrary, when culturing with osteoblasts, the variation of the interfacial pH revealed an upward tendency, indicating that cell could construct the microenvironment by secreting cellular metabolites to satisfy its own survival. In addition, the behavior of osteoblasts on substrates exhibited that P-PUUs with the most PP units were better for cell growth and osteogenic differentiation of cells. This is due to the hydrophilic surface and the moderate N% in P-PUUs, key factors in the promotion of the early stages of cellular responses, and the interfacial pH contributing to the enhanced effect on osteogenic differentiation.

  1. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  2. Degradation of L-Ascorbic Acid in the Amorphous Solid State.

    PubMed

    Sanchez, Juan O; Ismail, Yahya; Christina, Belinda; Mauer, Lisa J

    2018-03-01

    Ascorbic acid degradation in amorphous solid dispersions was compared to its degradation in the crystalline state. Physical blends and lyophiles of ascorbic acid and polymers (pectins and polyvinylpyrrolidone [PVP]) were prepared initially at 50:50 (w/w), with further studies using the polymer that best inhibited ascorbic acid crystallization in the lyophiles in 14 vitamin : PVP ratios. Samples were stored in controlled environments (25 to 60 °C, 0% to 23% RH) for 1 mo and analyzed periodically to track the physical appearance, change in moisture content, physical state (powder x-ray diffraction and polarized light microscopy), and vitamin loss (high performance liquid chromatography) over time. The glass transition temperatures of select samples were determined using differential scanning calorimetry, and moisture sorption profiles were generated. Ascorbic acid in the amorphous form, even in the glassy amorphous state, was more labile than in the crystalline form in some formulations at the highest storage temperature. Lyophiles stored at 25 and 40 °C and those in which ascorbic acid had crystallized at 60 °C (≥70% ascorbic acid : PVP) had no significant difference in vitamin loss (P > 0.05) relative to physical blend controls, and the length of storage had little effect. At 60 °C, amorphous ascorbic acid lyophiles (≤60% ascorbic acid : PVP) lost significantly more vitamin (P < 0.05) relative to physical blend controls after 1 wk, and vitamin loss significantly increased over time. In these lyophiles, vitamin degradation also significantly increased (P < 0.05) at lower proportions of ascorbic acid, a scenario likely encountered in foods wherein vitamins are naturally present or added at low concentrations and production practices may promote amorphization of the vitamin. Vitamin C is one of the most unstable vitamins in foods. This study documents that amorphous ascorbic acid is less stable than crystalline ascorbic acid in some environments (for example, higher temperatures within 1 wk), especially when the vitamin is present at low concentrations in a product. These findings increase the understanding of how material science properties influence the stability of vitamin C. © 2018 Institute of Food Technologists®.

  3. Development and validation of a predictive model for the influences of selected product and process variables on ascorbic acid degradation in simulated fruit juice.

    PubMed

    Gabriel, Alonzo A; Cayabyab, Jochelle Elysse C; Tan, Athalie Kaye L; Corook, Mark Lester F; Ables, Errol John O; Tiangson-Bayaga, Cecile Leah P

    2015-06-15

    A predictive response surface model for the influences of product (soluble solids and titratable acidity) and process (temperature and heating time) parameters on the degradation of ascorbic acid (AA) in heated simulated fruit juices (SFJs) was established. Physicochemical property ranges of freshly squeezed and processed juices, and a previously established decimal reduction times of Escherichiacoli O157:H7 at different heating temperatures were used in establishing a Central Composite Design of Experiment that determined the combinations of product and process variable used in the model building. Only the individual linear effects of temperature and heating time significantly (P<0.05) affected AA reduction (%AAr). Validating systems either over- or underestimated actual %AAr with bias factors 0.80-1.20. However, all validating systems still resulted in acceptable predictive efficacy, with accuracy factor 1.00-1.26. The model may be useful in establishing unique process schedules for specific products, for the simultaneous control and improvement of food safety and quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Chemical nature and immunotoxicological properties of arachidonic acid degradation products formed by exposure to ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madden, M.C.; Friedman, M.; Hanley, N.

    1993-06-01

    Ozone (O3) exposure in vivo has been reported to degrade arachidonic acid (AA) in the lungs of rodents. The O3-degraded AA products may play a role in the responses to this toxicant. To study the chemical nature and biological activity of O3-exposed AA, we exposed AA in a cell-free, aqueous environment to air, 0.1 ppm O3, or 1.0 ppm O3 for 30-120 min. AA exposed to air was not degraded. All O3 exposures degraded > 98% of the AA to more polar products, which were predominantly aldehydic substances (as determined by reactivity with 2,4-dinitrophenylhydrazine and subsequent separation by HPLC) andmore » hydrogen peroxide. The type and amount of aldehydic substances formed depended on the O3 concentration and exposure duration. A human bronchial epithelial cell line (BEAS-2B, S6 subclone) exposed in vitro to either 0.1 ppm or 1.0 ppm O3 for 1 hr produced AA-derived aldehydic substances, some of which eluted with similar retention times as the aldehydic substances derived from O3 degradation of AA in the cell-free system. In vitro, O3-degraded AA induced an increase in human peripheral blood polymorphonuclear leukocyte (PMN) polarization, decreased human peripheral blood T-lymphocyte proliferation in response to mitogens, and decreased human peripheral blood natural killer cell lysis of K562 target cells. The aldehydic substances, but not hydrogen peroxide, appeared to be the principal active agents responsible for the observed effects. O3-degraded AA may play a role in the PMN influx into lungs and in decreased T-lymphocyte mitogenesis and natural killer cell activity observed in humans and rodents exposed to O3.« less

  5. Photocatalytic degradation of ofloxacin and evaluation of the residual antimicrobial activity.

    PubMed

    Peres, M S; Maniero, M G; Guimarães, J R

    2015-03-01

    Ofloxacin is an antimicrobial agent frequently found in significant concentrations in wastewater and surface water. Its continuous introduction into the environment is a potential risk to non-target organisms or to human health. In this study, ofloxacin degradation by UV/TiO2 and UV/TiO2/H2O2, antimicrobial activity (E. coli) of samples subjected to these processes, and by-products formed were evaluated. For UV/TiO2, the degradation efficiency was 89.3% in 60 min of reaction when 128 mg L(-1) TiO2 were used. The addition of 1.68 mmol L(-1) hydrogen peroxide increased degradation to 97.8%. For UV/TiO2, increasing the catalyst concentration from 4 to 128 mg L(-1) led to an increase in degradation efficiency. For both processes, the antimicrobial activity was considerably reduced throughout the reaction time. The structures of two by-products are presented: m/z 291 (9-fluoro-3-methyl-10-(methyleneamino)-7-oxo-2,3-dihydro-7H-[1,4]oxazino[2,3,4-ij]quinoline-6-carboxylic acid) and m/z 157 ((Z)-2-formyl-3-((2-oxoethyl)imino)propanoic acid).

  6. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    PubMed

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how this knowledge can be used to engineer the isomeric composition and the chain lengths of the olefins produced by this organism.

  7. The impact of compaction and leachate recirculation on waste degradation in simulated landfills.

    PubMed

    Ko, Jae Hac; Yang, Fan; Xu, Qiyong

    2016-07-01

    This study investigated the impact of compaction and leachate recirculation on anaerobic degradation of municipal solid waste (MSW) at different methane formation phases. Two stainless steel lysimeters, C1 and C2, were constructed by equipping a hydraulic cylinder to apply pressure load (42kPs) on the MSW. When MSW started to produce methane, C1 was compacted, but C2 was compacted when the methane production rate declined from the peak generation rate. Methane production of C1was inhibited by the compaction and resulted in producing a total of 106L methane (44L/kgVS). However, the compaction in C2 promoted MSW degradation resulting in producing a total of 298L methane (125L/kgVS). The concentrations of volatile fatty acids and chemical oxygen demand showed temporary increases, when pressure load was applied. It was considered that the increased substrate accessibility within MSW by compaction could cause either the inhibition or the enhancement of methane production, depending the tolerability of methanogens on the acidic inhibition. Leachate recirculation also gave positive effects on methane generation from wet waste in the decelerated methanogenic phase by increasing mass transfer and the concentrations of volatile fatty acids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Development and Validation of a Stability-Indicating RP-HPLC Method for Duloxetine Hydrochloride in its Bulk and Tablet Dosage Form

    PubMed Central

    Chhalotiya, Usmangani K.; Bhatt, Kashyap K.; Shah, Dimal A.; Baldania, Sunil L.

    2010-01-01

    The objective of the present work was to develop a stability-indicating RP-HPLC method for duloxetine hydrochloride (DUL) in the presence of its degradation products generated from forced decomposition studies. The drug substance was found to be susceptible to stress conditions of acid hydrolysis. The drug was found to be stable to dry heat, photodegradation, oxidation and basic condition attempted. Successful separation of the drug from the degradation products formed under acidic stress conditions was achieved on a Hypersil C-18 column (250 mm × 4.6 mm id, 5μm particle size) using acetonitrile: 0.01 M potassium dihydrogen phosphate buffer (pH 5.4 adjusted with orthophosphoric acid) (50:50, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Quantification was achieved with photodiode array detection at 229 nm over the concentration range 1–25 μg/ml with range of recovery 99.8–101.3 % for DUL by the RP-HPLC method. Statistical analysis proved the method to be repeatable, specific, and accurate for estimation of DUL. It can be used as a stability-indicating method due to its effective separation of the drug from its degradation products, PMID:21179321

  9. Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2- naphthol-4-sulfonic acid using Fenton's reagent.

    PubMed

    Zhu, Nanwen; Gu, Lin; Yuan, Haiping; Lou, Ziyang; Wang, Liang; Zhang, Xin

    2012-08-01

    Degradation of naphthalene dye intermediate 1-diazo-2- naphthol-4-sulfonic acid (1,2,4-Acid) by Fenton process has been studied in depth for the purpose of learning more about the reactions involved in the oxidation of 1,2,4-Acid. During 1,2,4-Acid oxidation, the solution color initially takes on a dark red, then to dark black associated with the formation of quinodial-type structures, and then goes to dark brown and gradually disappears, indicating a fast degradation of azo group. The observed color changes of the solution are a result of main reaction intermediates, which can be an indicator of the level of oxidization reached. Nevertheless, complete TOC removal is not accomplished, in accordance with the presence of resistant carboxylic acids at the end of the reaction. The intermediates generated along the reaction time have been identified and quantified. UPLC-(ESI)-TOF-HRMS analysis allows the detection of 19 aromatic compounds of different size and complexity. Some of them share the same accurate mass but appear at different retention time, evidencing their different molecular structures. Heteroatom oxidation products like SO(4)(2-) have also been quantified and explanations of their release are proposed. Short-chain carboxylic acids are detected at long reaction time, as a previous step to complete the process of dye mineralization. Finally, considering all the findings of the present study and previous related works, the evolution from the original 1,2,4-Acid to the final products is proposed in a general reaction scheme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Stability-indicating assay of repaglinide in bulk and optimized nanoemulsion by validated high performance thin layer chromatography technique.

    PubMed

    Akhtar, Juber; Fareed, Sheeba; Aqil, Mohd

    2013-07-01

    A sensitive, selective, precise and stability-indicating high-performance thin-layer chromatographic (HPTLC) method for analysis of repaglinide both as a bulk drug and in nanoemulsion formulation was developed and validated. The method employed TLC aluminum plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of chloroform/methanol/ammonia/glacial acetic acid (7.5:1.5:0.9:0.1, v/v/v/v). This system was found to give compact spots for repaglinide (R f value of 0.38 ± 0.02). Repaglinide was subjected to acid and alkali hydrolysis, oxidation, photodegradation and dry heat treatment. Also, the degraded products were well separated from the pure drug. Densitometric analysis of repaglinide was carried out in the absorbance mode at 240 nm. The linear regression data for the calibration plots showed good linear relationship with r (2)= 0.998 ± 0.032 in the concentration range of 50-800 ng. The method was validated for precision, accuracy as recovery, robustness and specificity. The limits of detection and quantitation were 0.023 and 0.069 ng per spot, respectively. The drug undergoes degradation under acidic and basic conditions, oxidation and dry heat treatment. All the peaks of the degraded product were resolved from the standard drug with significantly different R f values. Statistical analysis proves that the method is reproducible and selective for the estimation of the said drug. As the method could effectively separate the drug from its degradation products, it can be employed as a stability-indicating one. Moreover, the proposed HPTLC method was utilized to investigate the degradation kinetics in 1M NaOH.

  11. Evaluation of the effects of low energetic microwave irradiation on anaerobic digestion.

    PubMed

    Bastiaens, Bert; Van den Broeck, Rob; Appels, Lise; Dewil, Raf

    2017-11-01

    The present study investigates the effects of microwave irradiation on the performance of anaerobic digestion processes. A first set of experiments is performed to distinguish the upper limit of the applied energy levels. Secondly, the effects of these treatments on the performance of the digestion process are evaluated in 3 experimental setups: (i) monitoring the acetic acid degradation, (ii) performing a biological methane potential (BMP) assay and (iii) conducting a specific methanogenic activity (SMA) test. The solubilisation experiment reveals a limited degree of disintegration of anaerobic biomass up to a microwave treatment of 10000 kJ/kg TS. Above this threshold value the soluble COD level started to rise, with up to 350% at 30000 kJ/kg TS regardless of the microwave output power. Because solubilisation of the biomass increases the easily degradable content, this would lead to false observations regarding increased activity. Therefore, solubilisation is minimized by limiting the microwave treatment to a maximum of 6000 kJ/kg TS during the second part of the experiments. Monitoring the degradation of acetic acid after a low intensity microwave treatment, reveals that microwave irradiation shortens the lag phase, e.g., from 21 to 3 h after a microwave treatment of 1000 kJ/kg TS at 100 W. However most treatments also result in a decrease of the maximum degradation and of the degradation rate of acetic acid. BMP assays are performed to evaluate the activity and performance of the entire anaerobic community. Every treatment results in a decreased biogas production potential and decreased biogas production rate. Moreover, each treatment induced an increase of the lag phase. The SMA experiments show no influence of the microwave irradiation in terms of biogas or methane production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Yang, Hong

    2015-01-01

    Isoproturon (IPU) is a herbicide widely used to prevent weeds in cereal production. Due to its extensive use in agriculture, residues of IPU are often detected in soils and crops. Overload of IPU to crops is associated with human health risks. Hence, there is an urgent need to develop an approach to mitigate its accumulation in crops. In this study, the IPU residues and its degradation products in wheat were characterized using ultra performance liquid chromatography-time of fight tandem-mass spectrometer/mass spectrometer (UPLC-TOF-MS/MS). Most detected IPU-derivatives were sugar-conjugated. Degradation and glycosylation of IPU-derivatives could be enhanced by applying salicylic acid (SA). While more sugar-conjugated IPU-derivatives were identified in wheat with SA application, lower levels of IPU were detected, indicating that SA is able to accelerate intracellular IPU catabolism. All structures of IPU-derivatives and sugar-conjugated products were characterized. Comparative data were provided with specific activities and gene expression of certain glucosyltransferases. A pathway with IPU degradation and glucosylation was discussed. Our work indicates that SA-accelerated degradation is practically useful for wheat crops growing in IPU-contaminated soils because such crops with SA application can potentially lower or minimize IPU accumulation in levels below the threshold for adverse effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  14. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acids composition, and nutrient utilization in dairy cows fed grass hay-based diets

    USDA-ARS?s Scientific Manuscript database

    We investigated the interactions of molasses or corn meal [nonstructural carbohydrate (NSC) sources] with flaxseed meal or a soybean-sunflower meal protein mix [rumen-degradable protein (RDP) sources] on animal production, milk fatty acids profile, and nutrient utilization in organic Jersey cows fed...

  15. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.

    PubMed

    Lu, Yi Chen; Zhang, Shuang; Miao, Shan Shan; Jiang, Chen; Huang, Meng Tian; Liu, Ying; Yang, Hong

    2015-01-14

    This study investigated the herbicide isoproturon (IPU) residues in soil, where wheat was cultivated and sprayed with salicylic acid (SA). Provision of SA led to a lower level of IPU residues in rhizosphere soil compared to IPU treatment alone. Root exudation of tartaric acid, malic acid, and oxalic acids was enhanced in rhizosphere soil with SA-treated wheat. We examined the microbial population (e.g., biomass and phospholipid fatty acid), microbial structure, and soil enzyme (catalase, phenol oxidase, and dehydrogenase) activities, all of which are associated with soil activity and were activated in rhizosphere soil of SA-treated wheat roots. We further assessed the correlation matrix and principal component to figure out the association between the IPU degradation and soil activity. Finally, six IPU degraded products (derivatives) in rhizosphere soil were characterized using ultraperformance liquid chromatography with a quadrupole-time-of-flight tandem mass spectrometer (UPLC/Q-TOF-MS/MS). A relatively higher level of IPU derivatives was identified in soil with SA-treated wheat than in soil without SA-treated wheat plants.

  16. Investigation of Thermophysical Properties of Thermal Degraded Biodiesels

    NASA Astrophysics Data System (ADS)

    Regatieri, H. R.; Savi, E. L.; Lukasievicz, G. V. B.; Sehn, E.; Herculano, L. S.; Astrath, N. G. C.; Malacarne, L. C.

    2018-06-01

    Biofuels are an alternative to fossil fuels and can be made from many different raw materials. The use of distinct catalyst and production processes, feedstocks, and types of alcohol results in biofuels with different physical and chemical properties. Even though these diverse options for biodiesel production are considered advantageous, they may pose a setback when quality specifications are considered, since different properties are subject to different reactions during usage, storage and handling. In this work, we present a systematic characterization of biodiesels to investigate how accelerated thermal degradation affects fuel properties. Two different types of biodiesel, commercially obtained from distinct feedstocks, were tested. The thermal degradation process was performed by maintaining the temperature of the sample at 140°C under constant air flux for different times: 0 h, 3 h, 6 h, 9 h, 12 h, 24 h and 36 h. Properties such as density, viscosity, activation energy, volumetric thermal expansion coefficient, gross caloric value, acid value, infrared absorption, and temperature coefficient of the refractive index were used to study the thermal degradation of the biodiesel samples. The results show a significant difference in fuel properties before and after the thermal degradation process suggesting the formation of undesirable compounds. All the properties mentioned above were found to be useful to determine whether a biodiesel sample underwent thermal degradation. Moreover, viscosity and acid value were found to be the most sensitive characteristics to detect the thermal degradation process.

  17. p-Aminophenol degradation by ozonation combined with sonolysis: operating conditions influence and mechanism.

    PubMed

    He, Zhiqiao; Song, Shuang; Ying, Haiping; Xu, Lejin; Chen, Jianmeng

    2007-07-01

    The degradation of p-aminophenol (PAP) in aqueous solution by sonolysis, by ozonation, and by a combination of both was investigated in laboratory-scale experiments. Operation parameters such as pH, temperature, ultrasonic energy density and ozone dose were optimized with regard to the efficiency of PAP removal. The concentration of PAP during the reaction was detected by high-pressure liquid chromatography. The concentrations of ammonium ions and nitrate ions were monitored during the degradation. Intermediate products such as 4-iminocyclohexa-2,5-dien-1-one, phenol, but-2-enedioic acid, and acetic acid were detected by gas chromatography coupled with mass spectrometry. The degradation rate of PAP was higher in the combined system than in the linear combination of separate experiments. The degradation efficiency was decreased rapidly when n-butanol was added to the combined reaction system, which showed that some radical reaction might proceed during the laboratory experiments.

  18. Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study

    NASA Astrophysics Data System (ADS)

    Hedges, John I.; Blanchette, Robert A.; Weliky, Karen; Devol, Allan H.

    1988-11-01

    Duplicate samples of birch wood were degraded for 0, 4, 8 and 12 weeks by the white-rot fungus, Phlebia tremellosus, and for 12 weeks by 6 other white-rot and brown-rot fungi. P. tremellosus caused progressive weight losses and increased the H/C and O/C of the remnant wood by preferentially degrading the lignin component of the middle lamellae. This fungus increased the absolute (weight loss-corrected) yield of the vanillic acid CuO reaction product above its initial level and exponentially decreased the absolute yields of all other lignin-derived phenols. Total yields of syringyl phenols were decreased 1.5 times as fast as total vanillyl phenol yields. Within both phenol families, aldehyde precursors were degraded faster than precursors of the corresponding ketones, which were obtained in constant proportion to the total phenol yield. Although two other white-rot fungi caused similar lignin compositional trends, a fourth white-rot species, Coriolus versicolor, simultaneously eroded all cell wall components and did not concentrate polysaccharides in the remnant wood. Wood degraded by the three brown-rot fungi exhibited porous cell walls with greatly reduced integrity. The brown-rot fungi also preferentially attacked syringyl structural units, but degraded all phenol precursors at a much slower rate than the white-rotters and did not produce excess vanillic acid. Degradation by P. tremellosus linearly increased the vanillic acid/vanillin ratio, (Ad/Al)v, of the remnant birch wood throughout the 12 week degradation study and exponentially decreased the absolute yields of total vanillyl phenols, total syringyl phenols and the syringyl/vanillyl phenol ratio, S/V. At the highest (Ad/Al)v of 0.50 (12 week samples), total yields of syringyl and vanillyl phenols were decreased by 65% and 80%, respectively, with a resulting reduction of 40% in the original S/V. Many of the diagenetically related compositional trends that have been previously reported for lignins in natural environments can be explained by white-rot fungal degradation.

  19. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways.

    PubMed

    Kerwin, Bruce A

    2008-08-01

    Polysorbates 20 and 80 (Tween 20 and Tween 80) are used in the formulation of biotherapeutic products for both preventing surface adsorption and as stabilizers against protein aggregation. The polysorbates are amphipathic, nonionic surfactants composed of fatty acid esters of polyoxyethylene sorbitan being polyoxyethylene sorbitan monolaurate for polysorbate 20 and polyoxyethylene sorbitan monooleate for polysorbate 80. The polysorbates used in the formulation of biopharmaceuticals are mixtures of different fatty acid esters with the monolaurate fraction of polysorbate 20 making up only 40-60% of the mixture and the monooleate fraction of polysorbate 80 making up >58% of the mixture. The polysorbates undergo autooxidation, cleavage at the ethylene oxide subunits and hydrolysis of the fatty acid ester bond. Autooxidation results in hydroperoxide formation, side-chain cleavage and eventually formation of short chain acids such as formic acid all of which could influence the stability of a biopharmaceutical product. Oxidation of the fatty acid moiety while well described in the literature has not been specifically investigated for polysorbate. This review focuses on the chemical structure of the polysorbates, factors influencing micelle formation and factors and excipients influencing stability and degradation of the polyoxyethylene and fatty acid ester linkages.

  20. TEMPERATURE-SENSITIVE, POST-TRANSLATIONAL REGULATION OF PLANT OMEGA-3 FATTY ACID DESATURASES IS MEDIATED BY THE ER-ASSOCIATED DEGRADATION PATHWAY

    USDA-ARS?s Scientific Manuscript database

    In plants, the endoplasmic reticulum (ER)-localized omega-3 fatty acid desaturases (Fad3s) increase the production of polyunsaturated fatty acids at cooler temperatures, but the FAD3 genes themselves are typically not upregulated during this adaptive response. Here, we expressed two closely related ...

  1. Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media.

    PubMed

    Sinela, André Mundombe; Mertz, Christian; Achir, Nawel; Rawat, Nadirah; Vidot, Kevin; Fulcrand, Hélène; Dornier, Manuel

    2017-11-15

    Effect of oxygen, polyphenols and metals was studied on degradation of delphinidin and cyanidin 3-O-sambubioside of Hibiscus sabdariffa L. Experiments were conducted on aqueous extracts degassed or not, an isolated polyphenolic fraction and extract-like model media, allowing the impact of the different constituents to be decoupled. All solutions were stored for 2months at 37°C. Anthocyanin and their degradation compounds were regularly HPLC-DAD-analyzed. Oxygen concentration did not impact the anthocyanin degradation rate. Degradation rate of delphinidin 3-O-sambubioside increased 6-fold when mixed with iron from 1 to 13mg.kg -1 but decreased with chlorogenic and gallic acids. Degradation rate of cyanidin 3-O-sambubioside was not affected by polyphenols but increased by 3-fold with increasing iron concentration with a concomitant yield decrease of scission product, protocatechuic acid. Two pathways of degradation of anthocyanins were identified: a major metal-catalyzed oxidation followed by condensation and a minor scission which represents about 10% of degraded anthocyanins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Analysis of palmitoyl apo-astaxanthinals, apo-astaxanthinones, and their epoxides by UHPLC-PDA-ESI-MS.

    PubMed

    Weesepoel, Yannick; Gruppen, Harry; de Bruijn, Wouter; Vincken, Jean-Paul

    2014-10-22

    Food products enriched with fatty acid-esterified xanthophylls may result in deviating dietary apo-carotenoids. Therefore, free astaxanthin and its mono- and dipalmitate esters were subjected to two degradation processes in a methanolic model system: light-accelerated autoxidation and hypochlorous acid/hypochlorite (HOCl/OCl(-)) bleaching. Reversed phase ultrahigh-performance liquid chromatography photodiode array with in-line electrospray ionization mass spectrometry (RP-UHPLC-PDA-ESI-MS) was used for assessment of degradation products. Apo-astaxanthinals and -astaxanthinones containing 3 (apo-9) to 10 (apo-8') conjugated double bonds were found upon autoxidation for all three types of astaxanthin (except free apo-8'-astaxanthinal). Fragmentation of [M + H](+) and [M + Na](+) parent masses of apo-astaxanthins from dipalmitate astaxanthin indicated palmitate esterification. Astaxanthin monopalmitate degradation resulted in a mixture of free and palmitate apo-astaxanthins. HOCl/OCl(-) rapidly converted the astaxanthins into a mixture of epoxy-apo-9- and epoxy-apo-13-astaxanthinones. The palmitate ester bond was hardly affected by autoxidation, whereas for HOCl/OCl(-) the ester bond of the apo-astaxanthin palmitoyl esters was degraded.

  3. The Fe(III) and Ga(III) coordination chemistry of 3-(1-hydroxymethylidene) and 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione: Novel tetramic acid degradation products of homoserine lactone bacterial quorum sensing molecules

    PubMed Central

    Romano, Ariel A.; Hahn, Tobias; Davis, Nicole; Lowery, Colin A.; Struss, Anjali K.; Janda, Kim D.; Böttger, Lars H.; Matzanke, Berthold F.; Carrano, Carl J.

    2011-01-01

    Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C12-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication. Because these tetramic acids also appear to bind iron with appreciable affinity it was suggested that metal binding might contribute to their biological activity. Here, using a variety of spectroscopic tools, we describe the coordination chemistry of both the methylidene and decylidene tetramic acid derivatives with Fe(III) and Ga(III) and discuss the potential biological significance of such metal binding. PMID:22178671

  4. Degradation of sec-hexylbenzene and its metabolites by a biofilm-forming yeast Trichosporon asahii B1 isolated from oil-contaminated sediments in Quangninh coastal zone, Vietnam.

    PubMed

    Nhi-Cong, Le Thi; Mai, Cung Thi Ngoc; Minh, Nghiem Ngoc; Ha, Hoang Phuong; Lien, Do Thi; Tuan, Do Van; Quyen, Dong Van; Ike, Michihiko; Uyen, Do Thi To

    2016-01-01

    This article reports on the ability of yeast Trichosporon asahii B1 biofilm-associated cells, compared with that of planktonic cells, to transform sec-hexylbenzene and its metabolites. This B1 strain was isolated from a petroleum-polluted sediment collected in the QuangNinh coastal zones in Vietnam, and it can transform the branched aromatic hydrocarbons into a type of forming biofilm (pellicle) more efficiency than that the planktonic forms can. In the biofilm cultivation, seven metabolites, including acetophenone, benzoic acid, 2,3-dihydroxybenzoic acid, β-methylcinnamic acid, 2-phenylpropionic acid, 3-phenylbutyric acid, and 5-phenylhexanoic acid were extracted by ethyl acetate and analyzed by HPLC and GC-MS. In contrast, in the planktonic cultivation, only three of these intermediates were found. An individual metabolite was independently used as an initial substrate to prove its degradation by biofilm and planktonic types. The degradation of these products indicated that their inoculation with B1 biofilms was indeed higher than that observed in their inoculation with B1 planktonic cells. This is the first report on the degradation of sec-hexylbenzene and its metabolites by a biofilm-forming Trichosporon asahii strain. These results enhance our understanding of the degradation of branched-side-chain alkylbenzenes by T. asahii B1 biofilms and give a new insight into the potential role of biofilms formed by such species in the bioremediation of other recalcitrant aromatic compounds.

  5. Reconnaissance data for glyphosate, other selected herbicides, their degradation products, and antibiotics in 51 streams in nine midwestern states, 2002

    USGS Publications Warehouse

    Scribner, Elisabeth A.; Battaglin, William A.; Dietze, Julie E.; Thurman, E.M.

    2003-01-01

    Since 1989, the U.S. Geological Survey has conducted periodic reconnaissance studies of streams in the Midwestern United States to determine the geographic and seasonal distribution of herbicide compounds. These studies have documented that large amounts of acetochlor, alachlor, atrazine, cyanazine, metolachlor, and their degradation products are flushed into streams during post-application runoff. Additional studies show that peak herbicide concentrations tend to occur during the first runoff after herbicide application and that herbicide flushes can occur during runoff for several weeks to months following application. Since the first stream study conducted in 1989, several significant changes in herbicide use have occurred. The most substantial change is the tripling in the use of glyphosate during the past 5 years. Over this same time period (1997-2001), usage of acetochlor and atrazine increased slightly, whereas alachlor, cyanazine, and metolachlor usage decreased. During 2002, 154 samples were collected from 51 streams in nine Midwestern States during three periods of runoff. This report provides a compilation of the analytical results of five laboratory methods. Results show that glyphosate was detected in 55 (36 percent) of the samples, and aminomethylphosphonic acid (a degradation product of glyphosate) was detected in 107 (69 percent) of the samples. Atrazine, the most frequently detected herbicide, was found in 93 percent of the samples, followed by metolachlor, found in 73 percent of the samples; metolachlor ethanesulfonic acid (ESA) and oxanilic acid (OXA) were the most frequently detected herbicide degradation products, both being found in more than 95 percent of the samples. The data presented here are valuable for comparison with results from the earlier reconnaissance studies.

  6. Removal of endocrine disruptors and non-steroidal anti-inflammatory drugs through wastewater chlorination: the effect of pH, total suspended solids and humic acids and identification of degradation by-products.

    PubMed

    Noutsopoulos, Constantinos; Koumaki, Elena; Mamais, Daniel; Nika, Maria-Christina; Bletsou, Anna A; Thomaidis, Nikolaos S

    2015-01-01

    Endocrine disrupting chemicals (EDCs) and non-steroidal anti-inflammatory drugs (NSAIDs) are two groups of emerging pollutants the significance of which rests on their persistent detection in the aquatic environment and their possible adverse effects. Wastewater treatment plants are one of the major ways for transporting such chemicals in the aquatic environment. Chlorination is usually the last stage of treatment before wastewater being disposed to the aquatic environment. This work focuses on the evaluation of the effect of chlorine dose and specific wastewater characteristics (pH, total suspended solids and humic acids) on the removal of target EDCs and NSAIDs through chlorination. Another objective of this study is the identification of chlorination by-products of specific EDCs and NSAIDs and their dependence on contact time. Based on the results it is concluded that the effect of chlorine dose and humic acids concentration on the degradation of target compounds during chlorination is minimal. On the contrary, pH is a critical parameter which highly affects process performance. Moreover, it is concluded that not only the free available chlorine species, but also the properties of EDCs and NSAIDs under different pH conditions can affect chlorination process performance. The effect of TSS on the degradation of the target compounds during chlorination is more profound for chemicals with high Kow values and therefore higher affinity to partition to the particulate phase (i.e. nonylphenols, triclosan). Several degradation by-products were identified through chlorination of nonylphenol, bisphenol A and diclofenac. The dependence of these by-products on chlorination contact time is also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Radical Cations and Acid Protection during Radiolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mincher, Bruce J.; Zarzana, Christopher A.; Mezyk, Stephen P.

    2016-09-09

    Ligand molecules for used nuclear fuel separation schemes are exposed to high radiation fields and high concentrations of acid. Thus, an understanding of the complex interactions between extraction ligands, diluent, and acid is critical to understanding the performance of a separation process. The diglycolamides are ligands with important structural similarities to CMPO; however, previous work has shown that their radiolytic degradation has important mechanistic differences from CMPO. The DGAs do not enjoy radioprotection by HNO3 and the kinetics of DGA radiolytic degradation are different. CMPO degrades with pseudo-zero-order kinetics in linear fashion with absorbed dose while the DGAs degrade inmore » pseudo-first-order, exponential fashion. This suggests that the DGAs degrade by simple reaction with some product of direct diluent radiolysis, while CMPO degradation is probably multi-step, with a slow step that is not dependent on the CMPO concentration, and mitigated by HNO 3. It is thus believed that radio-protection and the zero-order radiolytic degradation kinetics are related, and that these phenomena are a function of either the formation of strong acid complexes with CMPO and/or to the presence of the CMPO phenyl ring. Experiments to test both these hypotheses have been designed and partially conducted. This report summarizes findings related to these phenomena for FY16, in satisfaction of milestone M3FT-16IN030104053. It also reports continued kinetic measurements for the reactions of the dodecane radical cation with solvent extraction ligands.« less

  8. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production.

    PubMed

    De Vuyst, Luc; Leroy, Frédéric

    2011-09-01

    Inulin-type fructans are not digested and reach the human colon intact, where they are selectively fermented by the colon microbiota, in particular bifidobacteria. As a result, they are converted, directly or indirectly, to short-chain fatty acids and other organic acids, as well as gases, and lead to both bifidogenic and butyrogenic health-promoting effects. Bifidobacteria display phenotypic variation on strain level as to their capacity to degrade inulin-type fructans. Also, different chain lengths of inulin-type fructans may stimulate different subgroups within the bifidobacterial population. The end-metabolites of inulin-type fructan degradation by bifidobacteria reflect their growth rates on these polymers. Other colon bacteria are also able to degrade inulin-type fructans, as is the case for lactobacilli, Bacteroides, certain enterobacteria, and butyrate producers. Bacterial cross-feeding mechanisms in the colon lay at the basis of overall butyrate production, a functional characteristic of several colon bacteria that is always accompanied by gas production. Finally, specificity of polysaccharide use by the colon microbiota may determine diet-induced alterations in the microbiota and consequent metabolic effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Catabolism of coffee chlorogenic acids by human colonic microbiota.

    PubMed

    Ludwig, Iziar A; Paz de Peña, Maria; Concepción, Cid; Alan, Crozier

    2013-01-01

    Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs. © 2013 International Union of Biochemistry and Molecular Biology.

  10. Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Nelson, Bryan; Blanchette, Robert A.; Hedges, John I.

    1993-08-01

    The elemental compositions and yields of CuO-derived phenol dimers and monomers from woods degraded by different fungi under laboratory and natural conditions were compared to those from undegraded controls. In laboratory experiments, white-rot fungi caused pronounced mass losses, lowered the organic carbon content of the remnant woods, and decreased the absolute carbon-normalized yields of the major classes of lignin phenol dimers and monomers. White-rot decay induced large losses of some CuO reaction products, such as (β,1-diketone and α,l-monoketone dimers and syringyl monomers, and increased the absolute yields of individual acidic reaction products, such as dehydrodivanillic acid, vanillic acid, and 2-syringylsyringic acid. In contrast, the brown-rot fungus, Fomitopsis pinicola, was less efficient in decaying lignin, inducing lower absolute lignin phenol losses and, in some cases, increasing the organic carbon content of remnant woods. Several lignin constituents, mainly carboxyvanillyl monomers and α,2-methyl and α,5-monoketone dimers, were produced during brown-rot degradation. Similar diagenetic trends were also apparent in the five woods collected from the field, suggesting the differences between white- and brown-rot decay are still apparent after more extensive degradation in natural environments. The lignin compositions from a selected set of previously analyzed sedimentary mixtures were generally consistent with the diagenetic trends observed in both laboratory and field samples. In some cases, however, geochemical parameters such as elevated dimer/monomer and carboxyvanillyl/ vanillyl monomer ratios clearly distinguished certain sedimentary lignins. In these samples, other processes, such as extensive fungal decay, bacterial degradation, or a nonwoody vascular plant origin, could be important factors affecting lignin compositions.

  11. Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.

    Treesearch

    Danilo Scordia; Salvatore L. Consentino; Thomas W. Jeffries

    2010-01-01

    Saccharum (Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack.), is a rapidly growing, wide ranging high-yield perennial, suitable for second generation bioethanol production. This study evaluated oxalic acid as a pretreatment for bioconversion. Overall sugar yields, sugar degradation products, enzymatic glucan hydrolysis and ethanol production were studied as...

  12. Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition.

    PubMed

    de Carvalho Oliveira, Fernanda; Srinivas, Keerthi; Helms, Gregory L; Isern, Nancy G; Cort, John R; Gonçalves, Adilson Roberto; Ahring, Birgitte Kiær

    2018-06-01

    The full use of biomass in future biorefineries has stimulated studies on utilization of lignin from agricultural crops, such as coffee husk, a major residue from coffee processing. This study focuses on characterizing the lignin obtained from coffee husk and its further wet oxidation products as a function of alkali loading, temperature and residence time. The lignin fraction after diluted acid and alkali pretreatments is composed primarily of p-hydroxylphenyl units (≥49%), with fewer guaiacyl and syringyl units. Linkages appear to be mainly β-O-4 ether linkages. Thermal degradation of pretreated lignin during wet oxidation occurred in two stages. Carboxylic acids were the main degradation product. Due to the condensed structure of this lignin, relatively low yields of aromatic aldehydes were achieved, except with temperatures over 210 °C, 5 min residence time and 11.7 wt% NaOH. Optimization of the pretreatment and oxidation parameters are important to maximizing yield of high-value bioproducts from lignin. Copyright © 2018. Published by Elsevier Ltd.

  13. Degradation of Perfluorooctanoic Acid and Perfluoroctane Sulfonate by Enzyme Catalyzed Oxidative Humification Reactions

    NASA Astrophysics Data System (ADS)

    Huang, Q.

    2016-12-01

    Poly- and perfluoroalkyl substances (PFASs) are alkyl based chemicals having multiple or all hydrogens replaced by fluorine atoms, and thus exhibit high thermal and chemical stability and other unusual characteristics. PFASs have been widely used in a wide variety of industrial and consumer products, and tend to be environmentally persistent. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two representative PFASs that have drawn particular attention because of their ubiquitous presence in the environment, resistance to degradation and toxicity to animals. This study examined the decomposition of PFOA and PFOS in enzyme catalyzed oxidative humification reactions (ECOHR), a class of reactions that are ubiquitous in the environment involved in natural organic humification. Reaction rates and influential factors were examined, and high-resolution mass spectrometry was used to identify possible products. Fluorides and partially fluorinated compounds were identified as likely products from PFOA and PFOS degradation, which were possibly formed via a combination of free radical decomposition, rearrangements and coupling processes. The findings suggest that PFOA and PFOS may be transformed during humification, and ECOHR can potentially be used for the remediation of these chemicals.

  14. HPLC and HPLC/MS/MS Studies on Stress, Accelerated and Intermediate Degradation Tests of Antivirally Active Tricyclic Analog of Acyclovir.

    PubMed

    Lesniewska, Monika A; Dereziński, Paweł; Klupczyńska, Agnieszka; Kokot, Zenon J; Ostrowski, Tomasz; Zeidler, Joanna; Muszalska, Izabela

    2015-01-01

    The degradation behavior of a tricyclic analog of acyclovir [6-(4-MeOPh)-TACV] was determined in accordance with International Conference on Harmonization guidelines for good clinical practice under different stress conditions (neutral hydrolysis, strong acid/base degradation, oxidative decomposition, photodegradation, and thermal degradation). Accelerated [40±2°C/75%±5% relative humidity (RH)] and intermediate (30±2°C/65%±5% RH) stability tests were also performed. For observation of the degradation of the tested compound the RP-HPLC was used, whereas for the analysis of its degradation products HPLC/MS/MS was used. Degradation of the tested substance allowed its classification as unstable in neutral environment, acidic/alkaline medium, and in the presence of oxidizing agent. The tested compound was also light sensitive and was classified as photolabile both in solution and in the solid phase. However, the observed photodegradation in the solid phase was at a much lower level than in the case of photodegradation in solution. The study showed that both air temperature and RH had no significant effect on the stability of the tested substance during storage for 1 month at 100°C (dry heat) as well as during accelerated and intermediate tests. Based on the HPLC/MS/MS analysis, it can be concluded that acyclovir was formed as a degradation product of 6-(4-MeOPh)-TACV.

  15. Synthesis, characterization and properties of uridine 5'-( -D-apio-D-furanosyl pyrophosphate).

    PubMed

    Kindel, P K; Watson, R R

    1973-06-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5'-(alpha-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5'-(alpha-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5'-(alpha-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [(3)H]UDP-[U-(14)C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the (3)H/(14)C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100 degrees C for 15min; (b) degraded at pH8.0 and 100 degrees C for 3min; (c) used as a substrate in the enzymic synthesis of [(14)C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [(3)H]UDP-[U-(14)C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-(14)C]apiose and phosphate formed on alkaline degradation of UDP-[U-(14)C]apiose was alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-(14)C]apiose and phosphate formed on acid hydrolysis of alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-(14)C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-(14)C]apiose to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80 degrees C, at pH8.0 and 25 degrees C and at pH8.0 and 4 degrees C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-(14)C]-apiose to d-[U-(14)C]apiose and UDP at pH3.0 and 40 degrees C was 4.67min. After 20 days at pH6.2-6.6 and 4 degrees C, 17% of the starting UDP-[U-(14)C]apiose was degraded to alpha-d-[U-(14)C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-(14)C]apiose and UDP. After 120 days at pH6.4 and -20 degrees C 2% of the starting UDP-[U-(14)C]apiose was degraded and 4% was hydrolysed.

  16. Synthesis, characterization and properties of uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)

    PubMed Central

    Kindel, Paul K.; Watson, Ronald R.

    1973-01-01

    1. A method was developed for synthesizing UDP-apiose [uridine 5′-(α-d-apio-d-furanosyl pyrophosphate)] from UDP-glucuronic acid [uridine 5′-(α-d-glucopyranosyluronic acid pyrophosphate)] in 62% yield with the enzyme UDP-glucuronic acid cyclase. 2. UDP-apiose had the same mobility as uridine 5′-(α-d-xylopyranosyl pyrophosphate) when chromatographed on paper and when subjected to paper electrophoresis at pH5.8. When [3H]UDP-[U-14C]glucuronic acid was used as the substrate for UDP-glucuronic acid cyclase, the 3H/14C ratio in the reaction product was that expected if d-apiose remained attached to the uridine. In separate experiments doubly labelled reaction product was: (a) hydrolysed at pH2 and 100°C for 15min; (b) degraded at pH8.0 and 100°C for 3min; (c) used as a substrate in the enzymic synthesis of [14C]apiin. In each type of experiment the reaction products were isolated and identified and were found to be those expected if [3H]UDP-[U-14C]apiose was the starting compound. 3. Chemical characterization established that the product containing d-[U-14C]apiose and phosphate formed on alkaline degradation of UDP-[U-14C]apiose was α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate. 4. Chemical characterization also established that the product containing d-[U-14C]apiose and phosphate formed on acid hydrolysis of α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate was d-[U-14C]apiose 2-phosphate. 5. The half-life periods for the degradation of UDP-[U-14C]apiose to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP at pH8.0 and 80°C, at pH8.0 and 25°C and at pH8.0 and 4°C were 31.6s, 97.2min and 16.5h respectively. The half-life period for the hydrolysis of UDP-[U-14C]-apiose to d-[U-14C]apiose and UDP at pH3.0 and 40°C was 4.67min. After 20 days at pH6.2–6.6 and 4°C, 17% of the starting UDP-[U-14C]apiose was degraded to α-d-[U-14C]apio-d-furanosyl 1:2-cyclic phosphate and UMP and 23% was hydrolysed to d-[U-14C]apiose and UDP. After 120 days at pH6.4 and −20°C 2% of the starting UDP-[U-14C]apiose was degraded and 4% was hydrolysed. PMID:4723773

  17. Biodegradation of six haloacetic acids in drinking water.

    PubMed

    Bayless, Walt; Andrews, Robert C

    2008-03-01

    Haloacetic acids (HAAs) are produced by the reaction of chlorine with natural organic matter and are regulated disinfection by-products of health concern. Biofilms in drinking water distribution systems and in filter beds have been associated with the removal of some HAAs, however the removal of all six routinely monitored species (HAA(6)) has not been previously reported. In this study, bench-scale glass bead columns were used to investigate the ability of a drinking water biofilm to degrade HAA(6). Monochloroacetic acid (MCAA) and monobromoacetic acid (MBAA) were the most readily degraded of the halogenated acetic acids. Trichloroacetic acid (TCAA) was not removed biologically when examined at a 90% confidence level. In general, di-halogenated species were removed to a lesser extent than the mono-halogenated compounds. The order of biodegradability by the biofilm was found to be monobromo > monochloro > bromochloro > dichloro > dibromo > trichloroacetic acid.

  18. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic acid (CbA), the aldonic acid form of cellobiose. We previously demonstrated that the intracellular enzyme belonging to glycoside hydrolase family 94 from cellulolytic fungus and bacterium is cellobionic acid phosphorylase (CBAP), which catalyzes reversible phosphorolysis of CbA into glucose 1-phosphate and gluconic acid (GlcA). In this report, we describe the biochemical characterization and the three-dimensional structure of CBAP from the marine cellulolytic bacterium Saccharophagus degradans. Structures of ligand-free and complex forms with CbA, GlcA, and a synthetic disaccharide product from glucuronic acid were determined at resolutions of up to 1.6 Å. The active site is located near the dimer interface. At subsite +1, the carboxylate group of GlcA and CbA is recognized by Arg-609 and Lys-613. Additionally, one residue from the neighboring protomer (Gln-190) is involved in the carboxylate recognition of GlcA. A mutational analysis indicated that these residues are critical for the binding and catalysis of the aldonic and uronic acid acceptors GlcA and glucuronic acid. Structural and sequence comparisons with other glycoside hydrolase family 94 phosphorylases revealed that CBAPs have a unique subsite +1 with a distinct amino acid residue conservation pattern at this site. This study provides molecular insight into the energetically efficient metabolic pathway of oxidized sugars that links the oxidative cellulolytic pathway to the glycolytic and pentose phosphate pathways in cellulolytic microbes. PMID:26041776

  19. Degradation studies of quizalofop-p and related compounds in soils using liquid chromatography coupled to low and high resolution mass analyzers.

    PubMed

    López-Ruiz, Rosalía; Romero-González, Roberto; Martínez Vidal, José Luis; Fernández-Pérez, Manuel; Garrido Frenich, Antonia

    2017-12-31

    A comprehensive degradation study of quizalofop-p, quizalofop-p-ethyl, quizalofop-p-tefuryl and propaquizafop in soil samples have been firstly performed using ultra high performance liquid chromatography coupled to Orbitrap mass spectrometry (UHPLC-Orbitrap-MS). Thus, metabolites or degradation products, such as CHHQ (dihydroxychloroquinoxalin), CHQ (6-chloroquinoxalin-2-ol), PPA ((R)-2-(4-hydroxyphenoxy)propionic acid) and 2,3-dihydroxyquinoxaline were also monitored. An extraction procedure based on QuEChERS procedure was used. Acidified water (0.1M hydrochloric acid) and acidified acetonitrile (1% acetic acid, (v/v)) were used as extraction solvents, and magnesium sulfate and sodium chloride were used as salts. Dispersive solid phase extraction with C 18 as sorbent, was needed as a clean-up step. Several commercial products (Panarex®, Master-D® and Dixon®) were used to evaluate the degradation of the target compounds into their metabolites. The concentration of the main active substances (quizalofop-p-tefuryl, quizalofop-p-ethyl and propaquizafop) decreased during the degradation studies, whereas the concentration of quizalofop-p increased. Dissipation rates of half-live of quizalofop-p were also evaluated, and it was observed that this compound is easily degraded, obtaining values lower than 1day. Taking into account that quizalofop-p is the R enantiomer of quizalofop, a chiral separation was performed by liquid chromatography coupled to tandem mass spectrometry, concluding that in samples containing quizalofop-p-tefuryl, there was a 15% contribution from the S enantiomer and a 85% contribution from the R enantiomer. Metabolites such as PPA, CHHQ and CHQ were detected in soil samples after 15days of application commercial product at concentrations between the limits of detection (LOD) and the limits of quantification (LOQ). CHQ and CHHQ were detected at concentrations higher than the LOQ in samples after 50 and 80days of application, with their concentration increasing during this time up to 500%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Mulberry anthocyanin biotransformation by intestinal probiotics.

    PubMed

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi; Zhang, You-Sheng; Zhang, Ye-Hui

    2016-12-15

    This study was designed to evaluate mulberry anthocyanins bioconversion traits for intestinal probiotics. Five intestinal beneficial bacteria were incubated with mulberry anthocyanins under anaerobic conditions at 37°C, and bacterial β-glucosidase activity and anthocyanin level were determined. Results demonstrated that all strains could convert mulberry anthocyanins to some extent. With high β-glucosidase production capacity, Streptococcus thermophiles GIM 1.321 and Lactobacillus plantarum GIM 1.35 degraded mulberry anthocyanins by 46.17% and 43.62%, respectively. Mulberry anthocyanins were mainly biotransformed to chlorogenic acid, crypto-chlorogenic acid, caffeic acid, and ferulic acid during the anaerobic process. Non-enzymatic deglycosylation of anthocyanins also occurred and approximately 19.42% of the anthocyanins were degraded within 48h by this method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hydroxyl radical mediated degradation of phenylarsonic acid.

    PubMed

    Xu, Tielian; Kamat, Prashant V; Joshi, Sachin; Mebel, Alexander M; Cai, Yong; O'Shea, Kevin E

    2007-08-16

    Phenyl-substituted arsonic acids have been widely used as feed additives in the poultry industry. While very few studies have been reported on the environmental impact of these compounds, they have been introduced into the environment through land application of poultry litter in large quantities (about 10(6) kg/year). Phenylarsonic acid (PA) was used as a model for problematic arsonic acids. Dilute aqueous solutions of PA were subjected to gamma radiolysis under hydroxyl radical generating conditions, which showed rapid degradation of PA. Product studies indicate addition of (.)OH to the phenyl ring forms the corresponding phenols as the primary products. Arsenite, H3As(III)O3, and arsenate, H3As(V)O4, were also identified as products. The optimized structures and relative calculated energies (using GAUSSIAN 98, the B3LYP/6-31G(d) method) of the various transient intermediates are consistent with the product studies. Pulse radiolysis was used to determine the rate constants of PA with (.)OH (k = 3.2 x 10(9) M(-1) s(-1)) and SO4(.-) (k = 1.0 x 10(9) M(-1) s(-1)). PA reacts slower toward O(.-) (k = 1.9 x 10(7) M(-1) s(-1)) and N3(.) (no detectable transient), due to the lower oxidation potential of these two radicals. Our results indicate advanced oxidative processes employing (.)OH and SO4(.-) can be effective for the remediation of phenyl-substituted arsonic acids.

  2. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells.

    PubMed

    Hasegawa, S; Ichiyama, T; Sonaka, I; Ohsaki, A; Okada, S; Wakiguchi, H; Kudo, K; Kittaka, S; Hara, M; Furukawa, S

    2012-02-01

    The activation of nuclear factor-kappa B (NF-κB) in vascular endothelial cells may be involved in vascular pathogeneses such as vasculitis or atherosclerosis. Recently, it has been reported that some amino acids exhibit anti-inflammatory effects. We investigated the inhibitory effects of a panel of amino acids on cytokine production or expression of adhesion molecules that are involved in inflammatory diseases in various cell types. The activation of NF-κB was determined in human coronary arterial endothelial cells (HCAECs) because NF-κB modulates the production of many cytokines and the expression of adhesion molecules. We examined the inhibitory effects of the amino acids cysteine, histidine and glycine on the induction of NF-κB activation, expression of CD62E (E-selectin) and the production of interleukin (IL)-6 in HCAECs stimulated with tumour necrosis factor (TNF)-α. Cysteine, histidine and glycine significantly reduced NF-κB activation and inhibitor κBα (IκBα) degradation in HCAECs stimulated with TNF-α. Additionally, all the amino acids inhibited the expression of E-selectin and the production of IL-6 in HCAECs, and the effects of cysteine were the most significant. Our results show that glycine, histidine and cysteine can inhibit NF-κB activation, IκBα degradation, CD62E expression and IL-6 production in HCAECs, suggesting that these amino acids may exhibit anti-inflammatory effects during endothelial inflammation. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.

  3. Development and validation of a stability-indicating RP-HPLC method for determination of atomoxetine hydrochloride in tablets.

    PubMed

    Patel, Sejal K; Patel, Natvarlal J

    2010-01-01

    This paper describes the development of a stability-indicating RP-HPLC method for the determination of atomoxetine hydrochloride (ATX) in the presence of its degradation products generated from forced decomposition studies. The drug substance was subjected to stress conditions of acid, base, oxidation, wet heat, dry heat, and photodegradation. In stability tests, the drug was susceptible to acid, base, oxidation, and dry and wet heat degradation. It was found to be stable under the photolytic conditions tested. The drug was successfully separated from the degradation products formed under stress conditions on a Phenomenex C18 column (250 x 4.6 mm id, 5 microm particle size) by using acetonitrile-methanol-0.032 M ammonium acetate (55 + 05 + 40, v/v/v) as the mobile phase at 1.0 mL/min and 40 degrees C. Photodiode array detection at 275 nm was used for quantitation after RP-HPLC over the concentration range of 0.5-5 microg/mL with a mean recovery of 100.8 +/- 0.4% for ATX. Statistical analysis demonstrated that the method is repeatable, specific, and accurate for the estimation of ATX. Because the method effectively separates the drug from its degradation products, it can be used as a stability-indicating method.

  4. First derivative ratio spectrophotometric, HPTLC-densitometric, and HPLC determination of nicergoline in presence of its hydrolysis-induced degradation product.

    PubMed

    Ahmad, Abdel Kader S; Kawy, M Abdel; Nebsen, M

    2002-10-15

    Three methods are presented for the determination of Nicergoline in presence of its hydrolysis-induced degradation product. The first method was based on measurement of the first derivative of ratio spectra amplitude of Nicergoline at 291 nm. The second method was based on separation of Nicergoline from its degradation product followed by densitometric measurement of the spots at 287 nm. The separation was carried out on HPTLC silica gel F(254) plates, using methanol-ethyl acetate-glacial acetic acid (5:7:3, v/v/v) as mobile phase. The third method was based on high performance liquid chromatographic (HPLC) separation and determination of Nicergoline from its degradation product on a reversed phase, nucloesil C(18) column using a mobile phase of methanol-water-glacial acetic acid (80:20:0.1, v/v/v) with UV detection at 280 nm. Chlorpromazine hydrochloride was used as internal standard. Laboratory prepared mixtures containing different percentages of the degradation product were analysed by the proposed methods and satisfactory results were obtained. These methods have been successfully applied to the analysis of Nicergoline in Sermion tablets. The validities of these methods were ascertained by applying standard addition technique, the mean percentage recovery +/- R.S.D.% was found to be 99.47 +/- 0.752, 100.01 +/- 0.940, 99.75 +/- 0.740 for the first derivative of ratio spectra method, the HPTLC method and the HPLC method, respectively. The proposed methods were statistically compared with the manufacturer's HPLC method of analysis of Nicergoline and no significant difference was found with respect to both precision and accuracy. They have the advantage of being stability indicating. Therefore, they can be used for routine analysis of the drug in quality control laboratories. Copyright 2002 Elsevier Science B.V.

  5. Isolation and identification of oligomers from partial degradation of lime fruit cutin.

    PubMed

    Tian, Shiying; Fang, Xiuhua; Wang, Weimin; Yu, Bingwu; Cheng, Xiaofang; Qiu, Feng; Mort, Andrew J; Stark, Ruth E

    2008-11-12

    Complementary degradative treatments with low-temperature hydrofluoric acid and methanolic potassium hydroxide have been used to investigate the protective biopolymer cutin from Citrus aurantifolia (lime) fruits, augmenting prior enzymatic and chemical strategies to yield a more comprehensive view of its molecular architecture. Analysis of the resulting soluble oligomeric fragments with one- and two-dimensional NMR and MS methods identified a new dimer and three trimeric esters of primary alcohols based on 10,16-dihydroxyhexadecanoic acid and 10-oxo-16-hydroxyhexadecanoic acid units. Whereas only 10-oxo-16-hydroxyhexadecanoic acid units were found in the oligomers from hydrofluoric acid treatments, the dimer and trimer products isolated to date using diverse degradative methods included six of the seven possible stoichiometric ratios of monomer units. A novel glucoside-linked hydroxyfatty acid tetramer was also identified provisionally, suggesting that the cutin biopolymer can be bound covalently to the plant cell wall. Although the current findings suggest that the predominant molecular architecture of this protective polymer in lime fruits involves esters of primary and secondary alcohols based on long-chain hydroxyfatty acids, the possibility of additional cross-linking to enhance structural integrity is underscored by these and related findings of nonstandard cutin molecular architectures.

  6. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.

    PubMed

    Salma, Alaa; Thoröe-Boveleth, Sven; Schmidt, Torsten C; Tuerk, Jochen

    2016-08-05

    Ciprofloxacin (CIP) is a broad-spectrum antibiotic with five pH dependent species in aqueous medium, which makes its degradation behavior difficult to predict. For the identification of transformation products and prediction of degradation mechanisms, a new experimental concept making use of isotopically labeled compounds together with high resolution mass spectrometry was successfully established. The utilization of deuterated ciprofloxacin (CIP-d8) facilitated the prediction of three different degradation pathways and the corresponding degradation products, four of which were identified for the first time. Moreover, two molecular structures of previously reported transformation products were revised according to the mass spectra and product ion spectra of the deuterated transformation products. Altogether, 18 transformation products have been identified during the photolytic and photocatalytic reactions at different pH values (3, 5, 7 and 9). In this work the influence of pH on both reaction kinetics and degradation mechanism was investigated for direct ultraviolet photolysis (UV-C irradiation) and photocatalysis (TiO2/UV-C). It could be shown that the removal rates strongly depended on pH with highest removal rates at pH 9. A comparison with those at pH 3 clearly indicated that under acidic conditions ciprofloxacin cannot be easily excited by UV irradiation. We could confirm that the first reaction step for both oxidative treatment processes is mainly defluorination, followed by degradation at the piperazine ring of CIP. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Investigation of lactic acid bacterial strains for meat fermentation and the product's antioxidant and angiotensin-I-converting-enzyme inhibitory activities.

    PubMed

    Takeda, Shiro; Matsufuji, Hisashi; Nakade, Koji; Takenoyama, Shin-Ichi; Ahhmed, Abdulatef; Sakata, Ryoichi; Kawahara, Satoshi; Muguruma, Michio

    2017-03-01

    In the lactic acid bacteria (LAB) strains screened from our LAB collection, Lactobacillus (L.) sakei strain no. 23 and L. curvatus strain no. 28 degraded meat protein and tolerated salt and nitrite in vitro. Fermented sausages inoculated strains no. 23 and no. 28 showed not only favorable increases in viable LAB counts and reduced pH, but also the degradation of meat protein. The sausages fermented with these strains showed significantly higher antioxidant activity than those without LAB or fermented by each LAB type strain. Angiotensin-I-converting-enzyme (ACE) inhibitory activity was also significantly higher in the sausages fermented with strain no. 23 than in those fermented with the type strain. Higher ACE inhibitory activity was also observed in the sausages fermented with strain no. 28, but did not differ significantly from those with the type strain. An analysis of the proteolysis and degradation products formed by each LAB in sausages suggested that those bioactivities yielded fermentation products such as peptides. Therefore, LAB starters that can adequately ferment meat, such as strains no. 23 and no. 28, should contribute to the production of bioactive compounds in meat products. © 2016 Japanese Society of Animal Science.

  8. Molecular and physiological comparison of spoilage wine yeasts.

    PubMed

    Sangorrín, M P; García, V; Lopes, C A; Sáez, J S; Martínez, C; Ganga, M A

    2013-04-01

    Dekkera bruxellensis and Pichia guilliermondii are contaminating yeasts in wine due to the production of phenolic aromas. Although the degradation pathway of cinnamic acids, precursors of these phenolic compounds has been described in D. bruxellensis, no such pathway has been described in P. guilliermondii. A molecular and physiological characterization of 14 D. bruxellensis and 15 P. guilliermondii phenol-producing strains was carried out. Both p-coumarate decarboxylase (CD) and vinyl reductase (VR) activities, responsible for the production of volatile phenols, were quantified and the production of 4-vinylphenol and 4-ethylphenol were measured. All D. bruxellensis and some P. guilliermondii strains showed the two enzymatic activities, whilst 11 of the 15 strains of this latter species showed only CD activity and did not produce 4-EP in the assay conditions. Furthermore, PCR products obtained with degenerated primers showed a low homology with the sequence of the gene for a phenyl acrylic acid decarboxylase activity described in Saccharomyces cerevisiae. D. bruxellensis and P. guilliermondii may share a similar metabolic pathway for the degradation of cinnamic acids. This is the first work that analyses the CD and VR activities in P. guilliermondii, and the results suggest that within this species, there are differences in the metabolization of cinnamic acids. © 2013 The Society for Applied Microbiology.

  9. Spectroscopic study of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed in ozonated wastewater.

    PubMed

    Liu, Chen; Nanaboina, Venkateswarlu; Korshin, Gregory V; Jiang, Wenju

    2012-10-15

    This study addressed the formation and properties of degradation products of ciprofloxacin, norfloxacin and lomefloxacin formed during ozonation of secondary wastewater effluent containing these fluoroquinolone antibiotics. The generation of the degradation products was interpreted in the context of transformations of effluent organic matter (EfOM) tracked via absorbance measurements. The structures of 20 degradation products were elucidated for ciprofloxacin and norfloxacin, respectively. 27 degradation products were identified for lomefloxacin. The prevalent oxidation pathways were suggested based on the structures of the identified products formed in the absence and presence of the hydroxyl radical scavenger t-butanol. These pathways were largely similar for all studied fluoroquinolones and involved attacks on the piperazine ring and the quinolone structure. The quinolone ring remained intact in the presence of t-butanol thus indicating that this functional group could only be oxidized by OH radicals while the piperazine ring was readily oxidized by molecular ozone. The cleavage of the quinolone moiety that resulted in several identified degradation products occurred via the attack by hydroxyl radicals on the carbon-carbon double bond adjacent to the carboxylic acid group. Lomefloxacin had more diverse oxidation products due to the presence of a methyl group on its piperazinyl ring. The concentrations of the identified degradation products behaved non-monotonically as a function of ozone dose or treatment time, yet exhibited interpretable correlations versus changes of EfOM absorbance. Examination of these correlations allowed developing a novel approach for elucidating the transformations of fluoroquinolone antibiotics during ozonation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market.

    PubMed

    Baumann, Ivan; Westermann, Peter

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed.

  11. Microbial Production of Short Chain Fatty Acids from Lignocellulosic Biomass: Current Processes and Market

    PubMed Central

    Baumann, Ivan

    2016-01-01

    Biological production of organic acids from conversion of biomass derivatives has received increased attention among scientists and engineers and in business because of the attractive properties such as renewability, sustainability, degradability, and versatility. The aim of the present review is to summarize recent research and development of short chain fatty acids production by anaerobic fermentation of nonfood biomass and to evaluate the status and outlook for a sustainable industrial production of such biochemicals. Volatile fatty acids (VFAs) such as acetic acid, propionic acid, and butyric acid have many industrial applications and are currently of global economic interest. The focus is mainly on the utilization of pretreated lignocellulosic plant biomass as substrate (the carbohydrate route) and development of the bacteria and processes that lead to a high and economically feasible production of VFA. The current and developing market for VFA is analyzed focusing on production, prices, and forecasts along with a presentation of the biotechnology companies operating in the market for sustainable biochemicals. Finally, perspectives on taking sustainable product of biochemicals from promise to market introduction are reviewed. PMID:27556042

  12. Comparative Genomics of Syntrophic Branched-Chain Fatty Acid Degrading Bacteria

    PubMed Central

    Narihiro, Takashi; Nobu, Masaru K.; Tamaki, Hideyuki; Kamagata, Yoichi; Sekiguchi, Yuji; Liu, Wen-Tso

    2016-01-01

    The syntrophic degradation of branched-chain fatty acids (BCFAs) such as 2-methylbutyrate and isobutyrate is an essential step in the production of methane from proteins/amino acids in anaerobic ecosystems. While a few syntrophic BCFA-degrading bacteria have been isolated, their metabolic pathways in BCFA and short-chain fatty acid (SCFA) degradation as well as energy conservation systems remain unclear. In an attempt to identify these pathways, we herein performed comparative genomics of three syntrophic bacteria: 2-methylbutyrate-degrading “Syntrophomonas wolfei subsp. methylbutyratica” strain JCM 14075T (=4J5T), isobutyrate-degrading Syntrophothermus lipocalidus strain TGB-C1T, and non-BCFA-metabolizing S. wolfei subsp. wolfei strain GöttingenT. We demonstrated that 4J5 and TGB-C1 both encode multiple genes/gene clusters involved in β-oxidation, as observed in the Göttingen genome, which has multiple copies of genes associated with butyrate degradation. The 4J5 genome possesses phylogenetically distinct β-oxidation genes, which may be involved in 2-methylbutyrate degradation. In addition, these Syntrophomonadaceae strains harbor various hydrogen/formate generation systems (i.e., electron-bifurcating hydrogenase, formate dehydrogenase, and membrane-bound hydrogenase) and energy-conserving electron transport systems, including electron transfer flavoprotein (ETF)-linked acyl-CoA dehydrogenase, ETF-linked iron-sulfur binding reductase, ETF dehydrogenase (FixABCX), and flavin oxidoreductase-heterodisulfide reductase (Flox-Hdr). Unexpectedly, the TGB-C1 genome encodes a nitrogenase complex, which may function as an alternative H2 generation mechanism. These results suggest that the BCFA-degrading syntrophic strains 4J5 and TGB-C1 possess specific β-oxidation-related enzymes for BCFA oxidation as well as appropriate energy conservation systems to perform thermodynamically unfavorable syntrophic metabolism. PMID:27431485

  13. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.

    PubMed

    Park, Junghoon; Park, Seyong; Kim, Moonil

    2014-01-01

    The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion.

  14. Proteinases secreted by Fasciola hepatica degrade extracellular matrix and basement membrane components.

    PubMed

    Berasaín, P; Goñi, F; McGonigle, S; Dowd, A; Dalton, J P; Frangione, B; Carmona, C

    1997-02-01

    The invasive stages of the parasitic trematode Fasciola hepatica release proteinases into the medium in which they are maintained. In this study, we investigated the interaction of F. hepatica excretory/secretory (E/S) products and 2 cysteine proteinases (CL1 and CL2) purified from these products with extracellular matrix and basement membrane macromolecules. Fasciola hepatica E/S products contained collagenolytic activity on fibrillar types I and III collagen as well as basement membrane type IV collagen. CL1 and CL2 were capable of degrading acid-soluble type III and type IV collagen but not insoluble type I collagen. In contrast, neither the E/S products nor the purified CL1 and CL2 showed elastinolytic activity. Fibronectin and laminin were degraded by E/S products and by CL1 and CL2. Sequence analysis of fibronectin degradation products showed that the fragments obtained corresponded to complete biologically active domains. These results indicate that the cysteine proteinases secreted by F. hepatica may be involved in the process of tissue invasion by the parasite.

  15. Characterization of a low-level unknown isomeric degradation product using an integrated online-offline top-down tandem mass spectrometry platform.

    PubMed

    Yu, Xiang; Warme, Christopher; Lee, Dinah; Zhang, Jing; Zhong, Wendy

    2013-10-01

    An integrated online-offline platform was developed combining automated online LC-MS fraction collection, continuous accumulation of selected ions (CASI), and offline top-down electron capture dissociation (ECD) tandem mass spectrometry experiments to identify a low-level, unknown isomeric degradant in a formulated drug product during an accelerated stability study. By identifying the diagnostic ions of the isoaspartic acid (isoAsp), the top-down ECD experiment showed that the Asp9 in exenatide was converted to isoAsp9 to form the unknown isomeric degradant. The platform described here provides an accurate, straightforward, and low limit of detection method for the analysis of Asp isomerization as well as other potential low-level degradants in therapeutic polypeptides and proteins. It is especially useful for unstable and time-sensitive degradants and impurities.

  16. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone.

    PubMed

    Choe, Jong Kwon; Richards, David H; Wilson, Corey J; Mitch, William A

    2015-11-17

    Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation.

  17. Varying Conditions for Hexanoic Acid Degradation with BioTiger™

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, Koji; Milliken, Charles; Brigmon, Robin

    BioTiger™ (BT) is a consortium of 12 bacteria designed for petroleum waste biodegradation. BT is currently being studied and could be considered for bioremediation of the Athabasca oil sands refineries in Canada and elsewhere. The run-off ponds from the petroleum extraction processes, called tailings ponds, are a mixture of polycyclic aromatic hydrocarbons, naphthenic acids, hydrocarbons, toxic chemicals like heavy metals, water, and sand. Due to environmental regulations the oil industry would like to separate and degrade the hazardous chemical species from the tailings ponds while recycling the water. It has been shown that BT at 30 C° is able tomore » completely degrade 10 mM hexanoic acid (HA) co-metabolically with 0.2% yeast extract (w/v) in 48 hours when starting at 0.4 OD 600nm. After establishing this stable degradation capability, variations were tested to explore the wider parameters of BT activity in temperature, pH, intermediate degradation, co-metabolic dependence, and transfer stability. Due to the vast differences in temperature at various points in the refineries, a wide range of temperatures were assessed. The results indicate that BT retains the ability to degrade HA, a model surrogate for tailings pond contaminants, at temperatures ranging from 15°C to 35°C. Hexanamide (HAM) was shown to be an intermediate generated during the degradation of HA in an earlier work and HAM is completely degraded after 48 hours, indicating that HAM is not the final product of HA degradation. Various replacements for yeast extract were attempted. Glucose, a carbon source; casein amino acids, a protein source; additional ammonia, mimicking known media; and additional phosphate with Wolffe’s vitamins and minerals all showed no significant degradation of HA compared to control. Decreasing the yeast extract concentration (0.05%) demonstrated limited but significant degradation. Finally, serial inoculations of BT were performed to determine the stability of degradation over several generations. Overall, BT has shown to be moderately flexible for HA co-metabolic biodegradation.« less

  18. Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass.

    PubMed

    Sandhya, Soolamkandath Variem; Kiran, Kumar; Kuttiraja, Mathiyazhakan; Preeti, Varghese Elizabeth; Sindhu, Raveendran; Vani, Sankar; Kumar, Sukumaran Rajeev; Pandey, Ashok; Binod, Parameswaran

    2013-11-01

    Production of fuel ethanol from lignocellulosic biomass conventionally includes biomass pretreatment, hydrolysis, and fermentation. The liquor generated during dilute acid pretreatment of biomass contains considerable quantities of pentose sugars as well as various degradation products of sugars and lignin, like furfural, hydroxymethyl furfural (HMF), organic acids, aldehydes and others, which are known to be inhibitory for microbial growth. This pentose rich liquor is a potent resource which can be used to produce alcohol or other value added metabolites by microbial fermentation. However, the presence of these inhibitory compounds is a major hindrance and their removal is essential for efficient utilization of this byproduct stream. In the present work, the polymeric adsorbent resins, XAD-4, XAD-7 and XAD-16 were evaluated for their ability to adsorb fermentation inhibitors like furfural and HMF from the acid pretreated liquor. These resins could remove 55-75% of furfural and 100% of HMF and more than 90% sugar remained un-adsorbed in the pretreated liquor. Desorption of furfural from stationary phase was evaluated by using ethanol and hot water. The results suggest that these polymeric resins may be used for detoxification of acid pretreatment liquor with selective removal of sugar degradation products without affecting the sugar content in the solution.

  19. Effects of different tannin-rich extracts and rapeseed tannin monomers on methane formation and microbial protein synthesis in vitro.

    PubMed

    Wischer, G; Boguhn, J; Steingaß, H; Schollenberger, M; Rodehutscord, M

    2013-11-01

    Tannins, polyphenolic compounds found in plants, are known to complex with proteins of feed and rumen bacteria. This group of substances has the potential to reduce methane production either with or without negative effects on digestibility and microbial yield. In the first step of this study, 10 tannin-rich extracts from chestnut, mimosa, myrabolan, quebracho, sumach, tara, valonea, oak, cocoa and grape seed, and four rapeseed tannin monomers (pelargonidin, catechin, cyanidin and sinapinic acid) were used in a series of in vitro trials using the Hohenheim gas test, with grass silage as substrate. The objective was to screen the potential of various tannin-rich extracts to reduce methane production without a significant effect on total gas production (GP). Supplementation with pelargonidin and cyanidin did not reduce methane production; however, catechin and sinapinic acid reduced methane production without altering GP. All tannin-rich extracts, except for tara extract, significantly reduced methane production by 8% to 28% without altering GP. On the basis of these results, five tannin-rich extracts were selected and further investigated in a second step using a Rusitec system. Each tannin-rich extract (1.5 g) was supplemented to grass silage (15 g). In this experiment, nutrient degradation, microbial protein synthesis and volatile fatty acid production were used as additional response criteria. Chestnut extract caused the greatest reduction in methane production followed by valonea, grape seed and sumach, whereas myrabolan extract did not reduce methane production. Whereas chestnut extract reduced acetate production by 19%, supplementation with grape seed or myrabolan extract increased acetate production. However, degradation of fibre fractions was reduced in all tannin treatments. Degradation of dry matter and organic matter was also reduced by tannin supplementation, and no differences were found between the tannin-rich extracts. CP degradation and ammonia-N accumulation in the Rusitec were reduced by tannin treatment. The amount and efficiency of microbial protein synthesis were not significantly affected by tannin supplementation. The results of this study indicated that some tannin-rich extracts are able to reduce methane production without altering microbial protein synthesis. We hypothesized that chestnut and valonea extract have the greatest potential to reduce methane production without negative side effects.

  20. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    PubMed

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  1. Transformation of Dibenzo-p-Dioxin by Pseudomonas sp. Strain HH69

    PubMed Central

    Harms, Hauke; Wittich, Rolf-Michael; Sinnwell, Volker; Meyer, Holger; Fortnagel, Peter; Francke, Wittko

    1990-01-01

    Dibenzo-p-dioxin was oxidatively cleaved by the dibenzofuran-degrading bacterium Pseudomonas sp. strain HH69 to produce minor amounts of 1-hydroxydibenzo-p-dioxin and catechol, while a 2-phenoxy derivative of muconic acid was formed as the major product. Upon acidic methylation, the latter yielded the dimethylester of cis, trans-2-(2-hydroxyphenoxy)-muconic acid. PMID:16348160

  2. NRL/NAVSEA Research and Related

    DTIC Science & Technology

    2009-03-30

    leading to production of monomeric hydroxyl carboxylic acids which in turn can be metabolized by bacteria (3). The hydrolytic degradation proceeds either...in most instances higher than that exhibited by poly(ethylene terephthalate) ( PET ). A search for new biodegradable aliphatic esters with more...Boltorn• polyols) attracted our attention as potentially very interesting candidates for the aforementioned applications because of their degradable

  3. Understanding the degradation of ascorbic acid and glutathione in relation to the levels of oxidative stress biomarkers in broccoli (Brassica oleracea L. italica cv. Bellstar) during storage and mechanical processing.

    PubMed

    Raseetha, Siva; Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2013-06-01

    The purpose of this research was to understand the degradation of ascorbic acid and glutathione content in broccoli florets (Brassica oleracea L. italica cv. Bellstar) during prolonged storage and subsequent mechanical processing. The initial content of total ascorbic acid and glutathione in broccoli florets averaged at 5.18 ± 0.23 and 0.70 ± 0.03 μmol/g fresh weight, respectively. Results showed that the content of ascorbic acid and glutathione in broccoli degraded during storage at 23°C, for at least 4.5-fold after 6 days of storage. On each day of storage, broccoli florets were mechanically processed, but the content of total ascorbic acid and glutathione was not significantly affected. When the mechanically processed broccoli florets were further incubated for up to 6h, the amount of ascorbic acid was greatly reduced as compared to glutathione. To obtain an in-depth understanding on the degradation of ascorbic acid and glutathione, the activity of enzymes involved in plant antioxidative system via ascorbate-glutathione cycle, as a response towards oxidative stress that took place during storage was determined in this study. The content of total ascorbic acid and glutathione in broccoli florets before and after mechanical processing were found to decrease concurrently with the activity of ascorbic acid peroxidase and glutathione reductase over the experimental storage duration. Meanwhile, the effect of oxidative stress on the content of ascorbic acid and glutathione was apparent during the 6h of incubation after mechanical processing. This phenomenon was demonstrated by the level of oxidative stress biomarkers examined, in which the formation of lipid peroxides, protein carbonyls and DNA oxidised products was positively associated with the degradation of total ascorbic acid and glutathione. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.

    PubMed

    Stams, A J M; Plugge, C M; de Bok, F A M; van Houten, B H G W; Lens, P; Dijkman, H; Weijma, J

    2005-01-01

    In environments where the amount of electron acceptors is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic consortia of acetogenic bacteria and methanogenic archaea. Hydrogen consumption by methanogens is essential for acetogenic bacteria to convert organic acids to acetate and hydrogen. Several syntrophic cocultures growing on propionate and butyrate have been described. These syntrophic fatty acid-degrading consortia are affected by the presence of sulfate. When sulfate is present sulfate-reducing bacteria compete with methanogenic archaea for hydrogen and acetate, and with acetogenic bacteria for propionate and butyrate. Sulfate-reducing bacteria easily outcompete methanogens for hydrogen, but the presence of acetate as carbon source may influence the outcome of the competition. By contrast, acetoclastic methanogens can compete reasonably well with acetate-degrading sulfate reducers. Sulfate-reducing bacteria grow much faster on propionate and butyrate than syntrophic consortia.

  5. Rumen modulatory effect of thyme, clove and peppermint oils in vitro using buffalo rumen liquor.

    PubMed

    Roy, Debashis; Tomar, S K; Kumar, Vinod

    2015-02-01

    The present study was conducted to examine the rumen modulatory effect of thyme, clove and peppermint oils on rumen fermentation pattern in vitro using roughage based diet. Thyme, clove and peppermint oils were tested at concentration of 0, 30, 300 and 600 mg/l (ppm) of total culture fluid using in vitro gas production technique in wheat straw based diet (concentrate: Wheat straw 50:50). Different in vitro parameters e.g., total gas production, methane production, nutrient degradability, volatile fatty acid (VFA) production and ammonia nitrogen concentration were studied using buffalo rumen liquor. Thyme oil at higher dose level (600 ppm) reduced (p<0.05) total gas production, feed degradability and ammonia nitrogen (NH3-N) concentration whereas total VFA concentration was significantly lower (p>0.05) in 300 and 600 ppm dose levels. 600 ppm dose level of clove oil reduced (p<0.05) total gas production, feed degradability, total VFA and acetate to propionate ratio. Methane production was significantly reduced (p<0.05) in 300 and 600 ppm dose levels of clove and peppermint oil. Right combination of these essential oils may prove to enhance performance of animals by reducing methane production and inhibiting protein degradation in rumen.

  6. Destruction of carcinogenic and mutagenic N-nitrosamides in laboratory wastes.

    PubMed

    Lunn, G; Sansone, E B; Andrews, A W; Castegnaro, M; Malaveille, C; Michelon, J; Brouet, I; Keefer, L K

    1984-01-01

    The chemical degradation of five N-nitrosamides used widely for the experimental induction of cancer has been studied with the goal of identifying, and experimentally validating, reliable methods that can be recommended for the destruction of carcinogenic N-nitrosoureas and related compounds in laboratory wastes. Although data are not yet complete, preliminary evidence indicates that none of the five methods studied thus far is ideal for hazard-control purposes. Decomposition with 1 mol/L potassium hydroxide solution destroyed the N-nitrosamides, but generated diazoalkanes, which are carcinogenic, toxic and potentially explosive. Treatment with strong acid in the presence of sulfamic acid or iron filings completely decomposed all N-nitrosamides without forming diazoalkanes, but failed in the presence of solvents which were immiscible with water. Cleavage with hydrogen bromide in glacial acetic acid proceeded to a point of maximum degradation, following which gradual reformation of the N-nitrosamide was observed; this resynthesis could be avoided by carefully bubbling nitrogen through the reaction mixture, but degradation was slow or failed completely in the presence of hydroxylic solvents. Permanganate oxidation was effective in sulfuric acid solution, but was incomplete when an alcohol or dimethyl sulfoxide was present. Salmonella typhimurium tester strains TA1535, TA1530 and TA100, which detect base-pair substitutions in DNA, detected mutagenic degradation products in each of the destruction methods, with the exception of the hydrobromic acid/acetic acid procedure.

  7. Thermally induced processes in mixtures of aluminum with organic acids after plastic deformations under high pressure

    NASA Astrophysics Data System (ADS)

    Zhorin, V. A.; Kiselev, M. R.; Roldugin, V. I.

    2017-11-01

    DSC is used to measure the thermal effects of processes in mixtures of solid organic dibasic acids with powdered aluminum, subjected to plastic deformation under pressures in the range of 0.5-4.0 GPa using an anvil-type high-pressure setup. Analysis of thermograms obtained for the samples after plastic deformation suggests a correlation between the exothermal peaks observed around the temperatures of degradation of the acids and the thermally induced chemical reactions between products of acid degradation and freshly formed surfaces of aluminum particles. The release of heat in the mixtures begins at 30-40°C. The thermal effects in the mixtures of different acids change according to the order of acid reactivity in solutions. The extreme baric dependences of enthalpies of thermal effects are associated with the rearrangement of the electron subsystem of aluminum upon plastic deformation at high pressures.

  8. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters

    USGS Publications Warehouse

    Nipper, M.; Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.; Miller, K.

    2002-01-01

    Toxicological and chemical studies were performed with a silty and a sandy marine sediment spiked with 2,6-dinitrotoluene (2,6-DNT), 2,4,6-trinitrophenylmethylnitramine (tetryl), or 2,4,6-trinitrophenol (picric acid). Whole sediment toxicity was analyzed by the 10-day survival test with the amphipod Ampelisca abdita, and porewater toxicity tests assessed macro-algae (Ulva fasciata) zoospore germination and germling growth, sea urchin (Arbacia punctulata) embryological development, and polychaete (Dinophilus gyrociliatus) survival and reproduction. Whole sediments spiked with 2,6-DNT were not toxic to amphipods. The fine-grained sediment spiked with tetryl was also not acutely toxic. The tetryl and picric acid LC50 values in the sandy sediment were 3.24 and 144 mg/kg dry weight, respectively. The fine-grained sediment spiked with picric acid generated a U-shaped concentration-response curve in the amphipod test, with increased survival both in the lowest and highest concentration. Grain-size distribution and organic carbon content strongly influenced the behavior of ordnance compounds in spiked sediments. Very low concentrations were measured in some of the treatments and irreversible binding and biodegradation are suggested as the processes responsible for the low measurements. Porewater toxicity varied with its sedimentary origin and with ordnance compound. The sea urchin embryological development test tended to be the least sensitive. Tetryl was the most toxic chemical in all porewater tests, and picric acid the least toxic. Samples spiked with 2,6-DNT contained a degradation product identified as 2-methyl-3-nitroaniline (also known as 2-amino-6-nitrotoluene), and unidentified peaks, possibly degradation products, were also seen in some of the picric acid- and tetryl-spiked samples. Degradation products may have played a role in observed toxicity. ?? 2002 Elsevier Science Ltd. All rights reserved.

  10. Degradation of Acid Blue 25 in aqueous media using 1700kHz ultrasonic irradiation: ultrasound/Fe(II) and ultrasound/H(2)O(2) combinations.

    PubMed

    Ghodbane, Houria; Hamdaoui, Oualid

    2009-06-01

    In this work, the sonolytic degradation of an anthraquinonic dye, C.I. Acid Blue 25 (AB25), in aqueous phase using high frequency ultrasound waves (1700kHz) for an acoustic power of 14W was investigated. The sonochemical efficiency of the reactor was evaluated by potassium iodide dosimeter, Fricke reaction and hydrogen peroxide production yield. The three investigated methods clearly show the production of oxidizing species during sonication and well reflect the sonochemical effects of high frequency ultrasonic irradiation. The effect of operational conditions such as the initial AB25 concentration, solution temperature and pH on the degradation of AB25 was studied. Additionally, the influence of addition of salts on the degradation of dye was examined. The rate of AB25 degradation was dependent on initial dye concentration, pH and temperature. Addition of salts increased the degradation of dye. Experiments conducted using distilled and natural waters demonstrated that the degradation was more efficient in the natural water compared to distilled water. To increase the efficiency of AB25 degradation, experiments combining ultrasound with Fe(II) or H(2)O(2) were conducted. Fe(II) induced the dissociation of ultrasonically produced hydrogen peroxide, leading to additional OH radicals which enhance the degradation of dye. The combination of ultrasound with hydrogen peroxide looks to be a promising option to increase the generation of free radicals. The concentration of hydrogen peroxide plays a crucial role in deciding the extent of enhancement obtained for the combined process. The results of the present work indicate that ultrasound/H(2)O(2) and ultrasound/Fe(II) processes are efficient for the degradation of AB25 in aqueous solutions by high frequency ultrasonic irradiation.

  11. The Inhibitory Effect of Natural Products on Protein Fibrillation May Be Caused by Degradation Products--A Study Using Aloin and Insulin.

    PubMed

    Lobbens, Eva S; Foderà, Vito; Nyberg, Nils T; Andersen, Kirsten; Jäger, Anna K; Jorgensen, Lene; van de Weert, Marco

    2016-01-01

    Protein fibrillation is the pathological hallmark of several neurodegenerative diseases and also complicates the manufacturing and use of protein drugs. As a case study, the inhibitory activity of the natural compound aloin against insulin fibrillation was investigated. Based on Thioflavin T assays, high-performance liquid chromatography and transmission electron microscopy it was found that a degradation product of aloin, formed over weeks of storage, was able to significantly inhibit insulin fibrillation. The activity of the stored aloin was significantly reduced in the presence of small amounts of sodium azide or ascorbic acid, suggesting the active compound to be an oxidation product. A high-performance liquid chromatography method and a liquid chromatography-mass spectrometry method were developed to investigate the degradation products in the aged aloin solution. We found that the major compounds in the solution were aloin A and aloin B. In addition, 10-hydroxy aloin and elgonica dimers were detected in smaller amounts. The identified compounds were isolated and tested for activity by means of Thioflavin T assays, but no activity was observed. Thus, the actual fibrillation inhibitor is an as yet unidentified and potentially metastable degradation product of aloin. These results suggest that degradation products, and in particular oxidation products, are to be considered thoroughly when natural products are investigated for activity against protein fibrillation.

  12. Optimization of hyaluronic acid production and its cytotoxicity and degradability characteristics.

    PubMed

    Gedikli, Serap; Güngör, Gökhan; Toptaş, Yağmur; Sezgin, Dilber Ece; Demirbilek, Murat; Yazıhan, Nuray; Aytar Çelik, Pınar; Denkbaş, Emir Baki; Bütün, Vural; Çabuk, Ahmet

    2018-06-14

    In the present study, culture conditions of Streptococcus equi was optimized through Box-Behnken experimental design for hyaluronic acid production. About 0.87 gL -1 of hyaluronic acid was produced under the determined conditions and optimal conditions were found as 38.42 °C, 24 hr and 250 rpm. The validity and practicability of this statistical optimization strategy were confirmed relation between predicted and experimental values. The hyaluronic acid obtained under optimal conditions was characterized. The effects of different conditions such as ultraviolet light, temperature and enzymatic degradation on hyaluronic acid produced under optimal conditions were determined. 118 °C for 32 min of autoclaved HA sample included 63.09 µg mL -1 of d-glucuronic acid, which is about two-fold of enzymatic effect. Cytotoxicity of hyaluronic acid on human dermal cells (HUVEC, HaCaT), L929 and THP-1 cells was studied. In vitro effect on pro or anti-inflammatory cytokine release of THP-1 cells was determined. Although it varies depending on the concentration, cytotoxicity of hyaluronic acid is between 5 and 30%. However, it varies depending on the concentration of hyaluronic acid, TNF-α release was not much increased compared to control study. Consequently, purification procedure is necessary to develop and it is worth developing the bacterial hyaluronic acid.

  13. Degradation and adsorption of selected pharmaceuticals and personal care products (PPCPs) in agricultural soils.

    PubMed

    Xu, Jian; Wu, Laosheng; Chang, Andrew C

    2009-11-01

    Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in the environment, which have drawn popular concerns recently. Most studies on the environmental fate of PPCPs have focused on their behaviors during wastewater treatment processes, in aquatic environments, and in the sludge, however, little is known about their behavior in agricultural soils. In this study, adsorption and degradation of six selected PPCPs, including clofibric acid, ibuprofen, naproxen, triclosan, diclofenac and bisphenol A have been investigated in the laboratory using four US agricultural soils associated with reclaimed wastewater reuse. Adsorption test using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of triclosan>bisphenol A>clofibric acid>naproxen>diclofenac>ibuprofen. Retardation factor (R(F)) suggested that ibuprofen had potential to move downward with percolating water, while triclosan and bisphenol A were readily retarded in soils. Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, with half-lives ranging from 0.81 to 20.44 d. Degradation of PPCPs in soils appeared to be influenced by the soil organic matter and clay contents. Sterilization generally decreased the degradation rates, indicating microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

  14. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity

    PubMed Central

    Rudrappa, Thimmaraju; Choi, Yong Seok; Levia, Delphis F; Legates, David R; Lee, Kelvin H

    2009-01-01

    Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants. PMID:19816146

  15. Phragmites australis root secreted phytotoxin undergoes photo-degradation to execute severe phytotoxicity.

    PubMed

    Rudrappa, Thimmaraju; Choi, Yong Seok; Levia, Delphis F; Legates, David R; Lee, Kelvin H; Bais, Harsh P

    2009-06-01

    Our study organism, Phragmites australis (common reed), is a unique invader in that both native and introduced lineages are found coexisting in North America. This allows one to make direct assessments of physiological differences between these different subspecies and examine how this relates to invasiveness. Recent efforts to understand plant invasive behavior show that some invasive plants secrete a phytotoxin to ward-off encroachment by neighboring plants (allelopathy) and thus provide the invaders with a competitive edge in a given habitat. Here we show that a varying climatic factor like ultraviolet (UV) light leads to photo-degradation of secreted phytotoxin (gallic acid) in P. australis rhizosphere inducing higher mortality of susceptible seedlings. The photo-degraded product of gallic acid (hereafter GA), identified as mesoxalic acid (hereafter MOA), triggered a similar cell death cascade in susceptible seedlings as observed previously with GA. Further, we detected the biological concentrations of MOA in the natural stands of exotic and native P. australis. Our studies also show that the UV degradation of GA is facilitated at an alkaline pH, suggesting that the natural habitat of P. australis may facilitate the photo-degradation of GA. The study highlights the persistence of the photo-degraded phytotoxin in the P. australis's rhizosphere and its inhibitory effects against the native plants.

  16. Detoxification of acidic biorefinery waste liquor for production of high value amino acid.

    PubMed

    Christopher, Meera; Anusree, Murali; Mathew, Anil K; Nampoothiri, K Madhavan; Sukumaran, Rajeev Kumar; Pandey, Ashok

    2016-08-01

    The current study evaluates the detoxification of acid pretreatment liquor (APL) using adsorbent (ADS 400 & ADS 800) or ion-exchange (A-27MP & A-72MP) resins and its potential for amino acid production. The APL is generated as a by-product from the pretreatment of lignocellulosic biomass and is rich monomeric sugars as well as sugar degradation products (fermentation inhibitors) such as furfural and hydroxymethyl furfural (HMF). Of the four resins compared, ADS 800 removed approximately 85% and 60% of furfural and HMF, respectively. ADS 800 could be reused for up to six cycles after regeneration without losing its adsorption properties. The study was further extended by assessing the fermentability of detoxified APL for l-lysine production using wild and mutant strains of Corynebacterium glutamicum. The detoxified APL was superior to APL for l-lysine production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste.

    PubMed

    Yousuf, Ahasa; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye

    2018-04-28

    Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 g lactic /g totalacids . The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mechanism and kinetics of electrochemical degradation of uric acid using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed

    2016-12-01

    Uric acid (UA) is one of the principal effluents of urine wastewaters, widely used in agriculture as fertilizer, which is potentially dangerous and biorefractory. Hence, the degradation of UA (2,6,8-trihydroxy purine) in aqueous solution of pH 3.0 has been studied by conductive-diamond electrochemical oxidation. Hydroxyl radicals formed from water oxidation at the surface of boron-doped diamond anodes were the main oxidizing agents. Effects of current density and supporting electrolyte on the degradation rate and process efficiency are assessed. Results show that the increase of current density from 20 to 60 mA cm(-2) leads to a decrease in the efficiency of the electrochemical process. In addition, the best degradation occurred in the presence of NaCl as conductive electrolyte. Interestingly, an almost total mineralization of 50 ppm UA was obtained when anodic oxidation was performed at low current densities (20 mA cm(-2)) and in the presence of NaCl. This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of UA. The identification of UA transformation products was performed by high-performance liquid chromatography (HPLC). HPLC analysis of treated solutions revealed that oxalic acid and urea were the two intermediates found. Oxalic acid was the most persistent product. Based on detected intermediates and bibliographic research, a mechanism of UA mineralization by anodic oxidation has been proposed. Ionic chromatography analysis confirmed the release of [Formula: see text] and [Formula: see text] ions during UA mineralization.

  19. Fe0 catalyzed photo-Fenton process to detoxify the biodegraded products of azo dye Mordant Yellow 10.

    PubMed

    Brindha, R; Muthuselvam, P; Senthilkumar, S; Rajaguru, P

    2018-06-01

    Inspired by the efficiency of the photo-Fenton process on oxidation of organic pollutants, we herein present the feasibility of visible light driven photo-Fenton process as a post treatment of biological method for the effective degradation and detoxification of monoazo dye Mordant Yellow 10 (MY10). Anaerobic degradation of MY10 by Pseudomonas aeroginosa formed aromatic amines which were further degraded in the subsequent Fe catalyzed photo-Fenton process carried out at pH 3.0, with iron shavings and H 2 O 2 under blue LED light illumination. LC-MS and stoichiometric analysis confirmed that reductive azo bond cleavage was the major reaction in anaerobic bacterial degradation of MY10 producing 4-amino benzene sulfonic acid (4-ABS) and 5-amino salicylic acid (5-ASA) which were further degraded into hydroxyl amines, nitroso and di/tri carboxylic acids by the photo-Fenton process. Toxicity studies with human small cell lung cancer A549 cells provide evidence that incorporation of Fe 0 catalyzed photo-Fenton step after anaerobic bacterial treatment improved the mineralization and detoxification of MY10 dye. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia.

    PubMed

    Reddy, M Venkateswar; Mohan, S Venkata

    2012-01-01

    The functional role of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production using food waste (UFW) and effluents from acidogenic biohydrogen production process (FFW) were studied employing aerobic mixed culture as biocatalyst. Anoxic microenvironment documented higher PHA production, while aerobic microenvironment showed higher substrate degradation. FFW showed higher PHA accumulation (39.6%) than UFW (35.6%) due to ready availability of precursors (fatty acids). Higher fraction of poly-3-hydroxy butyrate (PHB) was observed compared to poly-3-hydroxy valerate (PHV) in the accumulated PHA in the form of co-polymer [P3(HB-co-HV)]. Dehydrogenase, phosphatase and protease enzymatic activities were monitored during process operation. Integration with fermentative biohydrogen production yielded additional substrate degradation under both aerobic (78%) and anoxic (72%) microenvironments apart from PHA production. Microbial community analysis documented the presence of aerobic and facultative organisms capable of producing PHA. Integration strategy showed feasibility of producing hydrogen along with PHA by consuming fatty acids generated during acidogenic process in association with increased treatment efficiency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering.

    PubMed

    Tajbakhsh, Saeid; Hajiali, Faezeh

    2017-01-01

    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites containing ceramic reinforcements, including various methods of production and the evaluation of the scaffolds in terms of porosity, mechanical properties, in vitro and in vivo biocompatibility and bioactivity for bone tissue engineering applications. The production routes range from traditional approaches such as the use of porogens to provide porosity in the scaffolds to novel methods such as solid free-form techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Removal of the endocrine disrupter butyl benzyl phthalate from the environment

    PubMed Central

    Karlovsky, Petr

    2010-01-01

    Butyl benzyl phthalate (BBP), an aryl alkyl ester of 1,2-benzene dicarboxylic acid, is extensively used in vinyl tiles and as a plasticizer in PVC in many commonly used products. BBP, which readily leaches from these products, is one of the most important environmental contaminants, and the increased awareness of its adverse effects on human health has led to a dramatic increase in research aimed at removing BBP from the environment via bioremediation. This review highlights recent progress in the degradation of BBP by pure and mixed bacterial cultures, fungi, and in sludge, sediment, and wastewater. Sonochemical degradation, a unique abiotic remediation technique, and photocatalytic degradation are also discussed. The degradation pathways for BBP are described, and future research directions are considered. PMID:20396882

  3. Modelling the degradation and elastic properties of poly(lactic-co-glycolic acid) films and regular open-cell tissue engineering scaffolds.

    PubMed

    Shirazi, Reyhaneh Neghabat; Ronan, William; Rochev, Yury; McHugh, Peter

    2016-02-01

    Scaffolding plays a critical rule in tissue engineering and an appropriate degradation rate and sufficient mechanical integrity are required during degradation and healing of tissue. This paper presents a computational investigation of the molecular weight degradation and the mechanical performance of poly(lactic-co-glycolic acid) (PLGA) films and tissue engineering scaffolds. A reaction-diffusion model which predicts the degradation behaviour is coupled with an entropy-based mechanical model which relates Young׳s modulus and the molecular weight. The model parameters are determined based on experimental data for in-vitro degradation of a PLGA film. Microstructural models of three different scaffold architectures are used to investigate the degradation and mechanical behaviour of each scaffold. Although the architecture of the scaffold does not have a significant influence on the degradation rate, it determines the initial stiffness of the scaffold. It is revealed that the size of the scaffold strut controls the degradation rate and the mechanical collapse. A critical length scale due to competition between diffusion of degradation products and autocatalytic degradation is determined to be in the range 2-100μm. Below this range, slower homogenous degradation occurs; however, for larger samples monomers are trapped inside the sample and faster autocatalytic degradation occurs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Degradation of sinigrin by Lactobacillus agilis strain R16.

    PubMed

    Llanos Palop, M; Smiths, J P; Brink, B T

    1995-07-01

    Forty-two lactobacilli were screened for their potential to degrade glucosinolate sinigrin. One of them, strain R16, demonstrated a high level of sinigrin degradation; it was identified as Lactobacillus agilis. The sinigrin degrading activity of L. agilis R16 could only be demonstrated when intact cells were used. The products of sinigrin degradation are allyl-isothiocyanate (AITC) and glucose (which is further fermented to DL-lactic acid), suggesting that myrosinase activity is involved. The activity was induced by the presence of sinigrin. Glucose inhibited the myrosinase activity, even in induced cells. Lactobacillus agilis R16 was able to grow on an extract of brown mustard seed and caused glucosinolate degradation.

  5. Determination of CMPO using HPLC -UV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracy Elias; Gary S. Groenewold; Bruce J. Mincher

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) is an extractant proposed for selective separation of radionuclide metals from used nuclear fuel solutions using solvent extraction. Radiolysis reactions can degrade CMPO and reduce separation performance and hence methods for measuring concentration of CMPO and identifying degradation products are needed. A novel high performance liquid chromatography (HPLC) method employing ultraviolet detection (UV) was developed to detect and quantitate CMPO in dodecane. Some radiolysis products in gamma and alpha irradiated CMPO solutions were identified using HPLC/electrospray ionization-mass spectrometry (ESI-MS). Validation data indicated that the HPLC-UV method for CMPO determination provided good linearity, sensitivity, procedure accuracy and systemmore » precision. CMPO-nitric acid complexes were also identified, that account for the apparent loss of CMPO in acidic environment, independent of irradiation.« less

  6. Biochemical pathways and enhanced degradation of di-n-octyl phthalate (DOP) in sequencing batch reactor (SBR) by Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6 isolated from activated sludge.

    PubMed

    Zhang, Ke; Liu, Yihao; Chen, Qiang; Luo, Hongbing; Zhu, Zhanyuan; Chen, Wei; Chen, Jia; Mo, You

    2018-04-01

    Two bacterial strains designated as Arthrobacter sp. SLG-4 and Rhodococcus sp. SLG-6, capable of utilizing di-n-octyl phthalate (DOP) as sole source of carbon and energy, were isolated from activated sludge. The analysis of DOP degradation intermediates indicated Arthrobacter sp. SLG-4 could completely degrade DOP. Whereas DOP could not be mineralized by Rhodococcus sp. SLG-6 and the final metabolic product was phthalic acid (PA). The proposed DOP degradation pathway by Arthrobacter sp. SLG-4 was that strain SLG-4 initially transformed DOP to PA via de-esterification pathway, and then PA was metabolized to protocatechuate acid and eventually converted to tricarboxylic acid (TCA) cycle through meta-cleavage pathway. Accordingly, Phthalate 3,4-dioxygenase genes (phtA) responsible for PA degradation were successfully detected in Arthrobacter sp. SLG-4 by real-time quantitative PCR (q-PCR). q-PCR analysis demonstrated that the quantity of phthalate 3,4-dioxygenase was positively correlated to DOP degradation in SBRs. Bioaugmentation by inoculating DOP-degrading bacteria effectively shortened the start-up of SBRs and significantly enhanced DOP degradation in bioreactors. More than 91% of DOP (500 mg L -1 ) was removed in SBR bioaugmented with bacterial consortium, which was double of the control SBR. This study suggests bioaugmentation is an effective and feasible technique for DOP bioremediation in practical engineering.

  7. Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12.

    PubMed

    Jin, Decai; Kong, Xiao; Liu, Huijun; Wang, Xinxin; Deng, Ye; Jia, Minghong; Yu, Xiangyang

    2016-06-25

    A bacterial strain QH-12 isolated from activated sludge was identified as Gordonia sp. based on analysis of 16S rRNA gene sequence and was found to be capable of utilizing dibutyl phthalate (DBP) and other common phthalate esters (PAEs) as the sole carbon and energy source. The degradation kinetics of DBP under different concentrations by the strain QH-12 fit well with the modified Gompertz model (R² > 0.98). However, strain QH-12 could not utilize the major intermediate product phthalate (phthalic acid; PA) as the sole carbon and energy source, and only a little amount of PA was detected. The QH-12 genome analysis revealed the presence of putative hydrolase/esterase genes involved in PAEs-degradation but no phthalic acid catabolic gene cluster was found, suggesting that a novel degradation pathway of PAEs was present in Gordonia sp. QH-12. This information will be valuable for obtaining a more holistic understanding on diverse genetic mechanisms of PAEs-degrading Gordonia sp. strains.

  8. Quality changes of pasteurised orange juice during storage: A kinetic study of specific parameters and their relation to colour instability.

    PubMed

    Wibowo, Scheling; Grauwet, Tara; Santiago, Jihan Santanina; Tomic, Jovana; Vervoort, Liesbeth; Hendrickx, Marc; Van Loey, Ann

    2015-11-15

    In view of understanding colour instability of pasteurised orange juice during storage, to the best of our knowledge, this study reports for the first time in a systematic and quantitative way on a range of changes in specific quality parameters as a function of time and as well as temperature (20-42 °C). A zero-order (°Brix, fructose, glucose), a first-order (vitamin C), a second-order (sucrose) and a fractional conversion model (oxygen) were selected to model the evolution of the parameters between parentheses. Activation energies ranged from 22 to 136 kJ mol(-1), HMF formation being the most temperature sensitive. High correlations were found between sugars, ascorbic acid, their degradation products (furfural and HMF) and total colour difference (ΔE(∗)). Based on PLS regression, the importance of the quality parameters for colour degradation was ranked relatively among each other: the acid-catalysed degradation of sugars and ascorbic acid degradation reactions appeared to be important for browning development in pasteurised orange juice during ambient storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    PubMed

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Elucidation of stress-induced degradation products of mangiferin: Method development and validation.

    PubMed

    Khurana, Rajneet Kaur; Kaur, Satvinder; Kaur, Jasleen; Singh, Bhupinder

    2017-08-01

    The degradation behavior of mangiferin, under various ICH Q1A(R2) recommended stress conditions, was studied using an isocratic elution with mobile phase (pH 2.4), composed of acetonitrile and 1% orthophosphoric acid (12:88 v/v) at a flow rate of 1.0 mL/min, with λ max 262 nm. It was suitably adapted for LC-MS studies by replacing with 1% acetic acid (ACN-1% acetic acid; 18:82) and the pH was adjusted to 3.0. Extensive degradation was found to occur during alkaline medium stress studies at 2.31 min of retention time at λ max of 235 nm. The mass spectrum of mangiferin, 3 h after treatment with 0.1 M NaOH, clearly shows the rupture of the tricyclic ring, indicating that a fragment at m/z - 269 was formed. Furthermore, the results were supported by nuclear magnetic resonance as well. However, no degradation was observed in other stress conditions. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids.

    PubMed

    Bhattarai, Sushila; Tran, Van H; Duke, Colin C

    2007-11-30

    The degradation kinetics of [6]-gingerol and [6]-shogaol were investigated in simulated gastric (pH 1) and intestinal (pH 7.4) fluids at 37 degrees C. Degradation products were quantitatively determined by HPLC (Lichrospher 60 RP select B column, 5 microm, 125 mm x 4 mm; mobile phase: methanol-water-acetic acid (60:39:1 v/v); flow rate: 0.6 ml/min; detection UV: 280 nm). In simulated gastric fluid (SGF) [6]-gingerol and [6]-shogaol underwent first-order reversible dehydration and hydration reactions to form [6]-shogaol and [6]-gingerol, respectively. The degradation was catalyzed by hydrogen ions and reached equilibrium at approximately 200 h. In simulated intestinal fluid (SIF) both [6]-gingerol and [6]-shogaol showed insignificant interconversion between one another. Addition of amino acids glycine, 3-amino propionic acid (beta-alanine) and gamma-amino butyric acid (GABA), and ammonium acetate at a range of concentrations of 0.05-0.5mM had no effect on the rate of degradation of [6]-shogaol in SGF and 0.1M HCl solution. However, at exceedingly high concentration (0.5M) of ammonium acetate and glycine, significant amounts of [6]-shogaol ammonia and glycine adducts were detected. The degradation profile of [6]-gingerol and [6]-shogaol under simulated physiological conditions reported in this study will provide insight into the stability of these compounds when administered orally.

  12. Chondroitin Lyase from a Marine Arthrobacter sp. MAT3885 for the Production of Chondroitin Sulfate Disaccharides.

    PubMed

    Kale, Varsha; Friðjónsson, Ólafur; Jónsson, Jón Óskar; Kristinsson, Hörður G; Ómarsdóttir, Sesselja; Hreggviðsson, Guðmundur Ó

    2015-08-01

    Chondroitin sulfate (CS) saccharides from cartilage tissues have potential application in medicine or as dietary supplements due to their therapeutic bioactivities. Studies have shown that depolymerized CS saccharides may display enhanced bioactivity. The objective of this study was to isolate a CS-degrading enzyme for an efficient production of CS oligo- or disaccharides. CS-degrading bacteria from marine environments were enriched using in situ artificial support colonization containing CS from shark cartilage as substrate. Subsequently, an Arthrobacter species (strain MAT3885) efficiently degrading CS was isolated from a CS enrichment culture. The genomic DNA from strain MAT3885 was pyro-sequenced by using the 454 FLX sequencing technology. Following assembly and annotation, an orf, annotated as family 8 polysaccharide lyase genes, was identified, encoding an amino acid sequence with a similarity to CS lyases according to NCBI blastX. The gene, designated choA1, was cloned in Escherichia coli and expressed downstream of and in frame with the E. coli malE gene for obtaining a high yield of soluble recombinant protein. Applying a dual-tag system (MalE-Smt3-ChoA1), the MalE domain was separated from ChoA1 with proteolytic cleavage using Ulp1 protease. ChoA1 was defined as an AC-type enzyme as it degraded chondroitin sulfate A, C, and hyaluronic acid. The optimum activity of the enzyme was at pH 5.5-7.5 and 40 °C, running a 10-min reaction. The native enzyme was estimated to be a monomer. As the recombinant chondroitin sulfate lyase (designated as ChoA1R) degraded chondroitin sulfate efficiently compared to a benchmark enzyme, it may be used for the production of chondroitin sulfate disaccharides for the food industry or health-promoting products.

  13. Phenol Is the Initial Product Formed during Growth and Degradation of Bromobenzene by Tropical Marine Yeast, Yarrowia lipolytica NCIM 3589 via an Early Dehalogenation Step

    PubMed Central

    Vatsal, Aakanksha A.; Zinjarde, Smita S.; RaviKumar, Ameeta

    2017-01-01

    Bromobenzene (BrB), a hydrophobic, recalcitrant organic compound, is listed by the environmental protection agencies as an environmental and marine pollutant having hepatotoxic, mutagenic, teratogenic, and carcinogenic effects. The tropical marine yeast Yarrowia lipolytica 3589 was seen to grow aerobically on BrB and displayed a maximum growth rate (μmax) of 0.04 h-1. Furthermore, we also observed an increase in cell size and sedimentation velocity for the cells grown on BrB as compared to the glucose grown cells. The cells attached to the hydrophobic bromobenzene droplets through its hydrophobic and acid–base interactions. The BrB (0.5%, 47.6 mM) was utilized by the cells with the release of a corresponding amount of bromide (12.87 mM) and yielded a cell mass of 1.86 g/L after showing 34% degradation in 96 h. Maximum dehalogenase activity of 16.16 U/mL was seen in the cell free supernatant after 24 h of growth. Identification of metabolites formed as a result of BrB degradation, namely, phenol, catechol, cis, cis muconic acid, and carbon dioxide were determined by LC–MS and GC–MS. The initial attack on bromobenzene by Y. lipolytica cells lead to the transient accumulation of phenol as an early intermediate which is being reported for the first time. Degradation of phenol led to catechol which was degraded by the ortho- cleavage pathway forming cis, cis muconic acid and then to Krebs cycle intermediates eventually leading to CO2 production. The study shows that dehalogenation via an extracellular dehalogenase occurs prior to ring cleavage with phenol as the preliminary degradative compound being produced. The yeast was also able to grow on the degradative products, i.e., phenol and catechol, to varying degrees which would be of potential relevance in the degradation and remediation of xenobiotic environmental bromoaromatic pollutants such as bromobenzene. PMID:28690604

  14. CHARACTERIZATION OF ARSENOSUGARS AND ASSOCIATED DEGRADATION PRODUCTS FOLLOWING AN AGGRESSIVE ACID/BASE EXTRACTION PROCEDURE

    EPA Science Inventory

    The speciation of arsenic in seafood products is important for the determination of an improved toxicity based relative source (water vs. diet) contribution estimate. The two major sources of arsenic are drinking water and seafood ingestion. Drinking water contains predominatel...

  15. [Furfural degradation by filamentous fungus Amorphotheca resinae ZN1].

    PubMed

    Wang, Xiaofeng; Zhang, Jian; Xin, Xiujuan; Bao, Jie

    2012-09-01

    Some degradation products from lignocellulose pretreatment strongly inhibit the activities of cellulolytic enzymes and ethanol fermentation strains, thus the efficient removal of the inhibitor substances ("detoxification") is the inevitable step for the biotransformation processes. In this study, the biological detoxification of furfural by a newly isolated fungus, Amorphotheca resinae ZN1, was studied and the metabolic pathways of furfural degradation was analyzed. The metabolic pathway of furfural degradation in A. resinae ZN1 was described as follows: first, furfural was quickly converted into the low toxic furfuryl alcohol; then the furfuryl alcohol was gradually converted into furfural again but under the low concentration under aerobic condition, which was not lethal to the growth of the fungi; furfural continued to be oxidized to furoic acid by A. resinae ZN1. It is likely that furoic acid was further degraded in the TCA cycle to complete the biological degradation of furfural. The present study provided the important experimental basis for speeding up the biodetoxification of furfural by A. resinae ZN1 and the rate-limiting step in the lignocellulose biotransformation to ethanol.

  16. A validated specific stability-indicating RP-HPLC assay method for Ambrisentan and its related substances.

    PubMed

    Narayana, M B V; Chandrasekhar, K B; Rao, B M

    2014-09-01

    A validated specific stability-indicating reverse-phase liquid chromatographic method was developed for the quantitative determination of Ambrisentan as well as its related substances in bulk samples, pharmaceutical dosage forms in the presence of degradation products and its related impurities. Forced degradation studies were performed on bulk samples of Ambrisentan as per the ICH-prescribed stress conditions using acid, base, oxidative, thermal stress and photolytic degradation to show the stability-indicating power of the LC method. Significant degradation in acidic, basic stress conditions was observed and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from the forced degradation studies and the impurity-spiked solution. Good resolution between the peaks corresponds to Ambrisentan-related impurities and degradation products from the analyte were achieved on a SunFire C18 column using a mobile phase consisting of a mixture of potassium dihydrogen orthophosphate at a pH adjusted to 2.5 with ortho-phosphoric acid in water and a mixture of acetonitrile:methanol using a simple linear gradient. The detection was carried out at 225 nm. The limit of detection and the limit of quantification for the Ambrisentan and its related impurities were established. The stressed test solutions were assayed against the qualified working standard of Ambrisentan and the mass balance in each case was between 98.9 and 100.3%, indicating that the developed LC method was stability indicating. Validation of the developed LC method was carried out as per the ICH requirements. The developed method was found to be suitable to check the quality of bulk samples of Ambrisentan at the time of batch release and also during its storage (long-term and accelerated stability). © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production.

    PubMed

    Karlovsky, P

    1999-01-01

    Enzymatic inactivation of fungal toxins is an attractive strategy for the decontamination of agricultural commodities and for the protection of crops from phytotoxic effects of fungal metabolites. This review summarizes research on the biological detoxification of fungal toxins by microorganisms and plants and its practical applications. Some mycotoxins are detoxified during ensiling and other fermentation processes (aflatoxins, alternariol, mycophenolic acid, patulin, PR toxin) while others are transformed into toxic products or survive fermentation unchanged. Plants can detoxify fomannoxin, fusaric acid, HC-toxin, ochratoxin A and oxalate but the degradation of deoxynivalenol has yet to be proven. Microflora of the digestive tract of vertebrates and invertebrates exhibit detoxification activities towards aflatoxins, ochratoxin A, oxalate and trichothecenes. Some toxin-producing fungi are able to degrade or transform their own products under suitable conditions. Pure cultures of bacteria and fungi which detoxify mycotoxins have been isolated from complex microbial populations by screening and enrichment culture techniques. Genes responsible for some of the detoxification activities have been cloned and expressed in heterologous hosts. The detoxification of aflatoxins, cercosporin, fumonisins, fusaric acid, ochratoxin A, oxalic acid, patulin, trichothecenes and zearalenone by pure cultures is reviewed. Finally, current application of these results in food and feed production and plant breeding is summarized and expected future developments are outlined. Copyright 1999 John Wiley & Sons, Ltd.

  18. Role of superoxide radical anion in the mechanism of apoB100 degradation induced by DHA in hepatic cells

    PubMed Central

    Andreo, Ursula; Elkind, Josh; Blachford, Courtney; Cederbaum, Arthur I.; Fisher, Edward A.

    2011-01-01

    VLDL is produced by the liver. Its major protein is apoB100. Docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid (PUFA), reduces VLDL levels and is used therapeutically for hypertriglyceridemia. In model systems, DHA lowers VLDL secretion by inducing presecretory apoB100 degradation, a process dependent on PUFA-derived lipid peroxides. We hypothesized that superoxide (SO) was a major participant in DHA-induced apoB100 degradation, given its promotion of lipid peroxidation. SO levels in a model of VLDL metabolism, rat hepatoma McArdle cells, were either decreased by a mimetic of superoxide dismutase 1 (SOD1) or by overexpressing SOD1 or increased by SOD1 siRNA. ApoB100 recovery was assessed by immunoprecipitation, SO by 2-hydroxyethidine, and lipid peroxides by thiobarbituric acid reactive substances. The SOD1 mimetic or SOD1 overexpression reduced SO and inhibited apoB100 degradation in DHA-treated cells by up to 100%. Surprisingly, silencing SOD1 did not increase DHA-induced degradation, although levels of SO were higher (+44%); those of lipid peroxides were similar, and their reduction by α-tocopherol decreased degradation by 50%. SO is required for lipid peroxidation in DHA-induced apoB100 degradation, but it is the peroxide level that has a tighter relationship to the level of degradation and the regulation of VLDL production.—Andreo, U., Elkind, J., Blachford, C., Cederbaum, A. I., Fisher, E. A. Role of superoxide radical anion in the mechanism of apoB100 degradation induced by DHA in hepatic cells. PMID:21757500

  19. Hydrolysis of aceto-hydroxamic acid under UREX+ conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyapyshev, M.; Paulenova, A.; Tkac, P.

    2007-07-01

    Aceto-hydroxamic acid (AHA) is used as a stripping agent In the UREX process. While extraction yields of uranium remain high upon addition of AHA, hexavalent plutonium and neptunium are rapidly reduced to the pentavalent state while the tetravalent species and removed from the product stream. However, under acidic conditions, aceto-hydroxamic acid undergoes hydrolytic degradation. In this study, the kinetics of the hydrolysis of aceto-hydroxamic acid in nitric and perchloric acid media was investigated at several temperatures. The decrease of the concentration of AHA was determined via its ferric complex using UV-Vis spectroscopy. The data obtained were analyzed using the methodmore » of initial rates. The data follow the pseudo-first order reaction model. Gamma irradiation of AHA/HNO{sub 3} solutions with 33 kGy/s caused two-fold faster degradation of AHA. The rate equation and thermodynamic data will be presented for the hydrolysis reaction with respect to the concentrations of aceto-hydroxamic acid, nitrate and hydronium ions, and radiation dose. (authors)« less

  20. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius

    DOE PAGES

    Aston, John E.; Apel, William A.; Lee, Brady D.; ...

    2015-11-05

    Alicyclobacillus acidocaldarius, a thermoacidophilic bacterium, has a repertoire of thermo- and acid-stable enzymes that deconstruct lignocellulosic compounds. The work presented here describes the ability of A. acidocaldarius to reduce the concentration of the phenolic compounds: phenol, ferulic acid, ρ-coumaric acid and sinapinic acid during growth conditions. The extent and rate of the removal of these compounds were significantly increased by the presence of micro-molar copper concentrations, suggesting activity by copper oxidases that have been identified in the genome of A. acidocaldarius. Substrate removal kinetics was first order for phenol, ferulic acid, ρ-coumaric acid and sinapinic acid in the presence ofmore » 50 μM copper sulfate. In addition, laccase enzyme assays of cellular protein fractions suggested significant activity on a lignin analog between the temperatures of 45 and 90 °C. As a result, this work shows the potential for A. acidocaldarius to degrade phenolic compounds, demonstrating potential relevance to biofuel production and other industrial processes.« less

  1. The role of oxygen in the liquid fermentation of wheat bran.

    PubMed

    Savolainen, Otto I; Coda, Rossana; Suomi, Katja; Katina, Kati; Juvonen, Riikka; Hanhineva, Kati; Poutanen, Kaisa

    2014-06-15

    The extensive use of wheat bran as a food ingredient is limited due to its bitter taste and hard texture. To overcome these, some preprocessing methods, such as fermentation with yeast and lactic acid bacteria or enzymatic treatments have been proposed. The current work studied microbial communities, acidification, ethanol formation and metabolite profile of wheat bran fermented in either aerated or anaerobic conditions. In aerated conditions, yeasts grew better and the production of organic acids was smaller, and hence pH was higher. In anaerobic conditions, lactic acid bacteria and endogenous heterotrophic bacteria grew better. Aeration had a large effect on the sourdough metabolite profile, as analyzed by UPLC-qTOF-MS. Anaerobic conditions induced degradation of ferulic and caffeic acids, whereas the amount of sinapic acid increased. Aeration caused degradation of amino acids and hydroxycinnamic acid derivatives of polyamines. The results suggest that the control of oxygen could be used for tailoring the properties of bran sourdough. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine.

    PubMed

    Floriani, Gisele; Gasparetto, João Cleverson; Pontarolo, Roberto; Gonçalves, Alan Guilherme

    2014-02-01

    Here, an HPLC-DAD method was developed and validated for simultaneous determination of cocaine, two cocaine degradation products (benzoylecgonine and benzoic acid), and the main adulterants found in products based on cocaine (caffeine, lidocaine, phenacetin, benzocaine and diltiazem). The new method was developed and validated using an XBridge C18 4.6mm×250mm, 5μm particle size column maintained at 60°C. The mobile phase consisted of a gradient of acetonitrile and ammonium formate 0.05M - pH 3.1, eluted at 1.0mL/min. The volume of injection was 10μL and the DAD detector was set at 274nm. Method validation assays demonstrated suitable sensitivity, selectivity, linearity, precision and accuracy. For selectivity assay, a MS detection system could be directly adapted to the method without the need of any change in the chromatographic conditions. The robustness study indicated that the flow rate, temperature and pH of the mobile phase are critical parameters and should not be changed considering the conditions herein determined. The new method was then successfully applied for determining cocaine, benzoylecgonine, benzoic acid, caffeine, lidocaine, phenacetin, benzocaine and diltiazem in 115 samples, seized in Brazil (2007-2012), which consisted of cocaine paste, cocaine base and salt cocaine samples. This study revealed cocaine contents that ranged from undetectable to 97.2%, with 97 samples presenting at least one of the degradation products or adulterants here evaluated. All of the studied degradation products and adulterants were observed among the seized samples, justifying the application of the method, which can be used as a screening and quantification tool in forensic analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Organoarsenicals in poultry litter: detection, fate, and toxicity.

    PubMed

    P Mangalgiri, Kiranmayi; Adak, Asok; Blaney, Lee

    2015-02-01

    Arsenic contamination in groundwater has endangered the health and safety of millions of people around the world. One less studied mechanism for arsenic introduction into the environment is the use of organoarsenicals in animal feed. Four organoarsenicals are commonly employed as feed additives: arsanilic acid, carbarsone, nitarsone, and roxarsone. Organoarsenicals are composed of a phenylarsonic acid molecule with substituted functional groups. This review documents the use of organoarsenicals in the poultry industry, reports analytical methods available for quantifying organic arsenic, discusses the fate and transport of organoarsenicals in environmental systems, and identifies toxicological concerns associated with these chemicals. In reviewing the literature on organoarsenicals, several research needs were highlighted: advanced analytical instrumentation that allows for identification and quantification of organoarsenical degradation products; a greater research emphasis on arsanilic acid, carbarsone, and nitarsone; identification of degradation pathways, products, and kinetics; and testing/development of agricultural wastewater and solid treatment technologies for organoarsenical-laden waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system.

    PubMed

    Malihan, Lenny B; Nisola, Grace M; Chung, Wook-Jin

    2012-08-01

    The amenability of three brown algal species, Sargassum fulvellum, Laminaria japonica and Undaria pinnatifida, to hydrolysis were investigated using the ionic liquid (IL), 1-n-butyl-3-methylimidazolium chloride ([BMIM]Cl). Compositional analyses of the brown algae reveal that sufficient amounts of sugars (15.5-29.4 wt.%) can be recovered. Results from hydrolysis experiments show that careful selection of the type of mineral acid as catalyst and control of acid loading could maximize the recovery of sugars. Optimal reaction time and temperature were determined from the kinetic studies on the sequential reducing sugar (TRS) formation and degradation. Optimal reaction times were determined based on the extent of furfurals formation as TRS degradation products. X-ray diffraction and environmental scanning electron microscopy confirmed the suitability of [BMIM]Cl as solvent for the hydrolysis of the three brown algae. Overall results show the potential of brown algae as renewable energy resources for the production of valuable chemicals and biofuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors.

    PubMed

    Riggio, S; Torrijos, M; Vives, G; Esposito, G; van Hullebusch, E D; Steyer, J P; Escudié, R

    2017-05-01

    In anaerobic leach-bed reactors (LBRs) co-digesting an easily- and a slowly-degradable substrate, the importance of the leachate flush both on extracting volatile fatty acids (VFAs) at the beginning of newly-started batches and on their consumption in mature reactors was tested. Regarding VFA extraction three leachate flush-rate conditions were studied: 0.5, 1 and 2Lkg -1 TSd -1 . Results showed that increasing the leachate flush-rate during the acidification phase is essential to increase degradation kinetics. After this initial phase, leachate injection is less important and the flush-rate could be reduced. The injection in mature reactors of leachate with an acetic acid concentration of 5 or 10gL -1 showed that for an optimized VFA consumption in LBRs, VFAs should be provided straight after the methane production peak in order to profit from a higher methanogenic activity, and every 6-7h to maintain a high biogas production rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    PubMed

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Interaction of gamma-glutamyltranspeptidase with clofibryl-S-acyl-glutathione in vitro and in vivo in rat.

    PubMed

    Grillo, M P; Benet, L Z

    2001-08-01

    Clofibric acid (CA) is metabolized to chemically reactive acylating products that can transacylate glutathione to form clofibryl-S-acyl-glutathione (CA-SG) in vitro and in vivo. We investigated the first step in the degradation of CA-SG to the mercapturic acid conjugate, clofibryl-S-acyl-N-acetylcysteine (CA-SNAC), which is catalyzed by gamma-glutamyltranspeptidase (gamma-GT). After gamma-GT mediated cleavage of glutamate from CA-SG, the product clofibryl-S-acyl-cysteinylglycine (CA-S-CG) should undergo an intramolecular rearrangement reaction [Tate, S. S. (1975) FEBS Lett. 54, 319-322] to form clofibryl-N-acyl-cysteinylglycine (CA-N-CG). We performed in vitro studies incubating CA-SG with gamma-GT to determine the products formed, and in vivo studies examining the products excreted in urine after dosing rats with CA-SG or CA. Thus, CA-SG (0.1 mM) was incubated with gamma-GT (0.1 unit/mL) in buffer (pH 7.4, 25 degrees C) and analyzed for products formed by reversed-phase HPLC and electrospray mass spectrometry (ESI/MS). Results showed that CA-SG is degraded completely after 6 h of incubation leading to the formation of two products, CA-N-CG and its disulfide, with no detection of CA-S-CG thioester. After 36 h of incubation, only the disulfide remained in the incubation. Treatment of the disulfide with dithiothreitol led to the reappearance of CA-N-CG. ESI/LC/MS analysis of urine (16 h) extracts of CA-SG-dosed rats (200 mg/kg, iv) showed that CA-SG is degraded to CA-N-CG, CA-N-acyl-cysteine (CA-N-C) and their respective S-methylated products. The mercapturic acid conjugate (CA-SNAC) was found as a minor product. Analysis of urine extracts from CA-dosed rats (200 mg/kg, ip) resulted in the detection of clofibryl-N-acyl-cysteine (CA-N-C), but no evidence for the formation of CA-SNAC was obtained. These in vitro and in vivo experiments indicate that gamma-GT mediated degradation of clofibryl-S-acyl-glutathione leads primarily to the formation and excretion of clofibryl-N-acyl-cysteine products rather than the S-acyl-NAC conjugate.

  8. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.

    PubMed

    Monteil-Rivera, Fanny; Halasz, Annamaria; Manno, Dominic; Kuperman, Roman G; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2009-01-01

    Hexanitrohexaazaisowurtzitane (CL-20) is an emerging explosive that may replace the currently used explosives such as RDX and HMX, but little is known about its fate in soil. The present study was conducted to determine degradation products of CL-20 in two sandy soils under abiotic and biotic anaerobic conditions. Biotic degradation was prevalent in the slightly acidic VT soil, which contained a greater organic C content, while the slightly alkaline SAC soil favored hydrolysis. CL-20 degradation was accompanied by the formation of formate, glyoxal, nitrite, ammonium, and nitrous oxide. Biotic degradation of CL-20 occurred through the formation of its denitrohydrogenated derivative (m/z 393 Da) while hydrolysis occurred through the formation of a ring cleavage product (m/z 156 Da) that was tentatively identified as CH(2)=N-C(=N-NO(2))-CH=N-CHO or its isomer N(NO(2))=CH-CH=N-CO-CH=NH. Due to their chemical specificity, these two intermediates may be considered as markers of in situ attenuation of CL-20 in soil.

  9. Accelerated azo dye degradation and concurrent hydrogen production in the single-chamber photocatalytic microbial electrolysis cell.

    PubMed

    Hou, Yanping; Zhang, Renduo; Yu, Zebin; Huang, Lirong; Liu, Yuxin; Zhou, Zili

    2017-01-01

    The single-chamber microbial electrolysis cell constructed with a TiO 2 -coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H 2 ) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300mg/L at an applied voltage of 0.8V, decolorization efficiencies decreased from 98% to 76% within 12h, and cyclic H 2 production declined from 113 to 68mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by OH generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H 2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol.

    PubMed

    Esatbeyoglu, Tuba; Ulbrich, Katrin; Rehberg, Clemens; Rohn, Sascha; Rimbach, Gerald

    2015-03-01

    Curcumin is a secondary plant metabolite present in Curcuma longa L. Since curcumin is widely used as a food colorant in thermally processed food it may undergo substantial chemical changes which in turn could affect its biological activity. In the current study, curcumin was roasted at 180 °C up to 70 minutes and its kinetic of degradation was analyzed by means of HPLC-PDA and LC-MS, respectively. Roasting of curcumin resulted in the formation of the degradation products vanillin, ferulic acid, and 4-vinyl guaiacol. In cultured hepatocytes roasted curcumin as well as 4-vinyl guaiacol enhanced the transactivation of the redox-regulated transcription factor Nrf2, known to be centrally involved in cellular stress response and antioxidant defense mechanisms. The antioxidant enzyme paraoxonase 1 was induced by roasted curcumin and 4-vinyl guaiacol. Furthermore, roasted curcumin and 4-vinyl guaiacol decreased interleukin-6 gene expression in lipopolysaccharide stimulated murine macrophages. Current data suggest that curcumin undergoes degradation due to roasting and its degradation product exhibit significant biological activity in cultured cells.

  11. Solar photo-Fenton treatment of microcystin-LR in aqueous environment: Transformation products and toxicity in different water matrices

    EPA Science Inventory

    Transformation products and toxicity patterns of microcystin-LR (MC-LR), a common cyanotoxin in freshwaters, during degradation by solar photo-Fenton process were studied in the absence and presence of two major water components, namely fulvic acid and alkalinity. The transformat...

  12. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.

    PubMed

    Zhang, Jingli; Cao, Zhanping; Zhang, Hongwei; Zhao, Lianmei; Sun, Xudong; Mei, Feng

    2013-11-15

    The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10(-2) h(-1), 19.73 × 10(-2) h(-1) and 3.54 × 10(-2) h(-1), respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Chlorination kinetics of glyphosate and its by-products: modeling approach.

    PubMed

    Brosillon, Stephan; Wolbert, Dominique; Lemasle, Marguerite; Roche, Pascal; Mehrsheikh, Akbar

    2006-06-01

    Chlorination reactions of glyphosate, glycine, and sodium cyanate were conducted in well-agitated reactors to generate experimental kinetic measurements for the simulation of chlorination kinetics under the conditions of industrial water purification plants. The contribution of different by-products to the overall degradation of glyphosate during chlorination has been identified. The kinetic rate constants for the chlorination of glyphosate and its main degradation products were either obtained by calculation according to experimental data or taken from published literature. The fit of the kinetic constants with experimental data allowed us to predict consistently the concentration of the majority of the transitory and terminal chlorination products identified in the course of the glyphosate chlorination process. The simulation results conducted at varying aqueous chlorine/glyphosate molar ratios have shown that glyphosate is expected to degrade in fraction of a second under industrial aqueous chlorination conditions. Glyphosate chlorination products are not stable under the conditions of drinking water chlorination and are degraded to small molecules common to the degradation of amino acids and other naturally occurring substances in raw water. The kinetic studies of the chlorination reaction of glyphosate, together with calculations based on kinetic modeling in conditions close to those at real water treatment plants, confirm the reaction mechanism that we have previously suggested for glyphosate chlorination.

  14. Metabolic Regulation of Invadopodia and Invasion by Acetyl-CoA Carboxylase 1 and De novo Lipogenesis

    PubMed Central

    Scott, Kristen E. N.; Wheeler, Frances B.; Davis, Amanda L.; Thomas, Michael J.; Ntambi, James M.; Seals, Darren F.; Kridel, Steven J.

    2012-01-01

    Invadopodia are membrane protrusions that facilitate matrix degradation and cellular invasion. Although lipids have been implicated in several aspects of invadopodia formation, the contributions of de novo fatty acid synthesis and lipogenesis have not been defined. Inhibition of acetyl-CoA carboxylase 1 (ACC1), the committed step of fatty acid synthesis, reduced invadopodia formation in Src-transformed 3T3 (3T3-Src) cells, and also decreased the ability to degrade gelatin. Inhibition of fatty acid synthesis through AMP-activated kinase (AMPK) activation and ACC phosphorylation also decreased invadopodia incidence. The addition of exogenous 16∶0 and 18∶1 fatty acid, products of de novo fatty acid synthesis, restored invadopodia and gelatin degradation to cells with decreased ACC1 activity. Pharmacological inhibition of ACC also altered the phospholipid profile of 3T3-Src cells, with the majority of changes occurring in the phosphatidylcholine (PC) species. Exogenous supplementation with the most abundant PC species, 34∶1 PC, restored invadopodia incidence, the ability to degrade gelatin and the ability to invade through matrigel to cells deficient in ACC1 activity. On the other hand, 30∶0 PC did not restore invadopodia and 36∶2 PC only restored invadopodia incidence and gelatin degradation, but not cellular invasion through matrigel. Pharmacological inhibition of ACC also reduced the ability of MDA-MB-231 breast, Snb19 glioblastoma, and PC-3 prostate cancer cells to invade through matrigel. Invasion of PC-3 cells through matrigel was also restored by 34∶1 PC supplementation. Collectively, the data elucidate the novel metabolic regulation of invadopodia and the invasive process by de novo fatty acid synthesis and lipogenesis. PMID:22238651

  15. Chromatographic determination of itopride hydrochloride in the presence of its degradation products.

    PubMed

    Kaul, Neeraj; Agrawal, Himani; Maske, Pravin; Rao, Janhavi Ramchandra; Mahadik, Kakasaheb Ramoo; Kadam, Shivajirao S

    2005-08-01

    Two sensitive and reproducible methods are described for the quantitative determination of itopride hydrochloride (IH) in the presence of its degradation products. The first method is based on HPLC separation on a reversed phase Kromasil column [C18 (5-microm, 25 cm x 4.6 mm, ID)] at ambient temperature using a mobile phase consisting of methanol and water (70:30, v/v) adjusted to pH 4.0 with orthophosphoric acid with UV detection at 258 nm. The flow rate was 1.0 mL per min with an average operating pressure of 180 kg/cm2. The second method is based on HPTLC separation on silica gel 60 F254 using toluene:methanol:chloroform:10% ammonia (5.0:3.0:6.0:0.1, v/v/v/v) as mobile phase at 270 nm. The analysis of variance (ANOVA) and Student's t-test were applied to correlate the results of IH determination in dosage form by means of HPLC and HPTLC methods. The drug was subjected to acid and alkali hydrolysis, oxidation, dry heat, wet heat treatment, UV, and photodegradation. The proposed HPLC method was utilized to investigate the kinetics of the acidic, alkaline, and oxidative degradation processes at different temperatures and the apparent pseudo-first-order rate constant, half-life, and activation energy were calculated. In addition the pH-rate profile of degradation of IH in constant ionic strength buffer solutions in the pH range 2-11 was studied.

  16. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    PubMed

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  17. Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).

    PubMed

    Guo, Anque; Kontoudakis, Nikolaos; Scollary, Geoffrey R; Clark, Andrew C

    2017-03-22

    This study establishes the influence of Cu(II), Fe(II), Fe(III), Zn(II), Al(III), and Mn(II) on the oxidative production of xanthylium cations from (+)-catechin and either tartaric acid or glyoxylic acid in model wine systems. The reaction was studied at 25 °C using UHPLC and LC-HRMS for the analysis of phenolic products and their isomeric distribution. In addition to the expected products, a colorless product, tentatively assigned as a lactone, was detected for the first time. The results show the importance of Fe ions and a synergistic influence of Mn(II) in degrading tartaric acid to glyoxylic acid, whereas the other metal ions had minimal activity in this mechanistic step. Fe(II) and Fe(III) were shown to mediate the (+)-catechin-glyoxylic acid addition reaction, a role previously attributed to only Cu(II). Importantly, the study demonstrates that C-8 addition products of (+)-catechin are promoted by Cu(II), whereas C-6 addition products are promoted by Fe ions.

  18. In Vitro Biodegradation of Hepatotoxic Indospicine in Indigofera spicata and Its Degradation Derivatives by Camel Foregut and Cattle Rumen Fluids.

    PubMed

    Tan, Eddie T T; Al Jassim, Rafat; D'Arcy, Bruce R; Fletcher, Mary T

    2017-08-30

    The known accumulation of the hepatotoxin indospicine in tissues of camels and cattle grazing Indigofera pasture plants is unusual in that free amino acids would normally be expected to be degraded during the fermentation processes in these foregut fermenters. In this study, in vitro experiments were carried out to examine the degradability of indospicine of Indigofera spicata by camel and cattle foregut microbiota. In the first experiment, a 48 h in vitro incubation was carried out using foregut fluid samples that were collected from 15 feral camels and also a fistulated cow. Degradability of indospicine ranged between 97% and 99%, with the higher value of 99% for camels. A pooled sample of foregut fluids from three camels that were on a roughage diet was used in a second experiment to examine the time-dependent degradation of indospicine present in the plant materials. Results indicated that camels' foregut fluids have the ability to biodegrade ∼99% of the indospicine in I. spicata within 48 h of incubation and produced 2-aminopimelamic acid and 2-aminopimelic acid. The time-dependent degradation analysis showed rapid indospicine degradation (65 nmol/h) during the first 8-18 h of incubation followed by a slower degradation rate (12 nmol/h) between 18 and 48 h. Indospicine degradation products were also degraded toward the end of the experiment. The results of these in vitro degradation studies suggest that dietary indospicine may undergo extensive degradation in the foregut of the camel, resulting in trace levels after 48 h. The retention time for plant material in the camel foregut varies depending on feed quality, and the results of this study together with the observed accumulation of indospicine in camel tissues suggest that, although indospicine can be degraded by foregut fermentation, this degradation is not complete before the passage of the digesta into the intestine.

  19. Stability-indicating RP-HPLC method for the simultaneous determination of escitalopram oxalate and clonazepam.

    PubMed

    Kakde, Rajendra B; Satone, Dinesh D; Gadapayale, Kamalesh K; Kakde, Megha G

    2013-07-01

    The objective of the current study was to develop a validated, specific stability-indicating reversed-phase liquid chromatographic (LC) method for the quantitative determination of escitalopram oxalate and clonazepam and their related substances in bulk drugs and pharmaceutical dosage forms in the presence of degradation products. Forced degradation studies were performed on the pure drugs of escitalopram oxalate and clonazepam, as per the stress conditions prescribed by the International Conference on Harmonization (ICH) using acid, base, oxidation, thermal stress and photolytic degradation to show the stability-indicating power of the method. Significant degradation was observed during acid and alkaline hydrolysis and no degradation was observed in other stress conditions. The chromatographic method was optimized using the samples generated from forced degradation studies. Good resolution between the peaks corresponded to the active pharmaceutical ingredients, escitalopram oxalate and clonazepam, and degradation products from the analyte were achieved on an ODS Hypersil C18 column (250 × 4.6 mm) using a mobile phase consisting of a mixture of acetonitrile-50 mM phosphate buffer + 10 mM triethylamine (70:30, v/v). The detection was conducted at 268 nm. The limit of detection and the limit of quantitation for escitalopram oxalate and clonazepam were established. The stress test solutions were assayed against the qualified working standards of escitalopram oxalate and clonazepam, which indicated that the developed LC method was stability-indicating. Validation of the developed LC method was conducted as per ICH requirements. The developed LC method was found to be suitable to check the quality of bulk samples of escitalopram oxalate and clonazepam.

  20. Stability Indicating HPLC Method for Simultaneous Determination of Mephenesin and Diclofenac Diethylamine

    PubMed Central

    Mulgund, S. V.; Phoujdar, M. S.; Londhe, S. V.; Mallade, P. S.; Kulkarni, T. S.; Deshpande, A. S.; Jain, K. S.

    2009-01-01

    A simple, specific, accurate and stability-indicating reversed phase high performance liquid chromatographic method was developed for the simultaneous determination of mephenesin and diclofenac diethylamine, using a Spheri-5-RP-18 column and a mobile phase composed of methanol: water (70:30, v/v), pH 3.0 adjusted with o-phosphoric acid. The retention times of mephenesin and diclofenac diethylamine were found to be 3.9 min and 14.5 min, respectively. Linearity was established for mephenesin and diclofenac diethylamine in the range of 50-300 μg/ml and 10-60 μg/ml, respectively. The percentage recoveries of mephenesin and diclofenac diethylamine were found to be in the range of 99.06-100.60% and 98.95-99.98%, respectively. Both the drugs were subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, photolytic and UV degradation. The degradation studies indicated, mephenesin to be susceptible to neutral hydrolysis, while diclofenac diethylamine showed degradation in acid, H2O2, photolytic and in presence of UV radiation. The degradation products of diclofenac diethylamine in acidic and photolytic conditions were well resolved from the pure drug with significant differences in their retention time values. This method can be successfully employed for simultaneous quantitative analysis of mephenesin and diclofenac diethylamine in bulk drugs and formulations. PMID:20177453

  1. Stability indicating HPLC method for simultaneous determination of mephenesin and diclofenac diethylamine.

    PubMed

    Mulgund, S V; Phoujdar, M S; Londhe, S V; Mallade, P S; Kulkarni, T S; Deshpande, A S; Jain, K S

    2009-01-01

    A simple, specific, accurate and stability-indicating reversed phase high performance liquid chromatographic method was developed for the simultaneous determination of mephenesin and diclofenac diethylamine, using a Spheri-5-RP-18 column and a mobile phase composed of methanol: water (70:30, v/v), pH 3.0 adjusted with o-phosphoric acid. The retention times of mephenesin and diclofenac diethylamine were found to be 3.9 min and 14.5 min, respectively. Linearity was established for mephenesin and diclofenac diethylamine in the range of 50-300 mug/ml and 10-60 mug/ml, respectively. The percentage recoveries of mephenesin and diclofenac diethylamine were found to be in the range of 99.06-100.60% and 98.95-99.98%, respectively. Both the drugs were subjected to acid, alkali and neutral hydrolysis, oxidation, dry heat, photolytic and UV degradation. The degradation studies indicated, mephenesin to be susceptible to neutral hydrolysis, while diclofenac diethylamine showed degradation in acid, H(2)O(2), photolytic and in presence of UV radiation. The degradation products of diclofenac diethylamine in acidic and photolytic conditions were well resolved from the pure drug with significant differences in their retention time values. This method can be successfully employed for simultaneous quantitative analysis of mephenesin and diclofenac diethylamine in bulk drugs and formulations.

  2. The ygeW encoded protein from Escherichia coli is a knotted ancestral catabolic transcarbamylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongdong; Jin, Zhongmin; Yu, Xiaolin

    Purine degradation plays an essential role in nitrogen metabolism in most organisms. Uric acid is the final product of purine catabolism in humans, anthropoid apes, birds, uricotelic reptiles, and almost all insects. Elevated levels of uric acid in blood (hyperuricemia) cause human diseases such as gout, kidney stones, and renal failure. Although no enzyme has been identified that further degrades uric acid in humans, it can be oxidized to produce allantoin by free-radical attack. Indeed, elevated levels of allantoin are found in patients with rheumatoid arthritis, chronic lung disease, bacterial meningitis, and noninsulin-dependent diabetes mellitus. In other mammals, some insectsmore » and gastropods, uric acid is enzymatically degraded to the more soluble allantoin through the sequential action of three enzymes: urate oxidase, 5-hydroxyisourate (HIU) hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase. Therefore, an elective treatment for acute hyperuricemia is the administration of urate oxidase. Many organisms, including plants, some fungi and several bacteria, are able to catabolize allantoin to release nitrogen, carbon, and energy. In Arabidopsis thaliana and Eschrichia coli, S-allantoin has recently been shown to be degraded to glycolate and urea by four enzymes: allantoinase, allantoate amidohydrolase, ureidoglycine aminohydrolase, and ureidoglycolate amidohydrolase.« less

  3. Products of anaerobic phloroglucinol degradation by Coprococcus sp. Pe15.

    PubMed

    Tsai, C G; Gates, D M; Ingledew, W M; Jones, G A

    1976-02-01

    Under anaerobic conditions, resting cell suspensions of Coprococcus sp. Pe15 degraded 1 molecule of phloroglucinol to 2 molecules of acetic acid and 2 molecules of carbon dioxide. The organism metabolized the flavonoids rhamnetin and quercetin anaerobically in 20% rumen fluid medium but failed to grow under similar conditions at the expense of any of 39 other aromatic or flavonoid compounds tested.

  4. Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains.

    PubMed

    Egel-Mitani; Andersen; Diers; Hach; Thim; Hastrup; Vad

    2000-06-01

    Heterologous protein expression levels in Saccharomyces cerevisiae fermentations are highly dependent on the susceptibility to endogenous yeast proteases. Small peptides, such as glucagon and glucagon-like-peptides (GLP-1 and GLP-2), featuring an open structure are particularly accessible for proteolytic degradation during fermentation. Therefore, homogeneous products cannot be obtained. The most sensitive residues are found at basic amino acid residues in the peptide sequence. These heterologous peptides are degraded mainly by the YPS1-encoded aspartic protease, yapsin1, when produced in the yeast. In this article, distinct degradation products were analyzed by HPLC and mass spectrometry, and high yield of the heterologous peptide production has been achieved by the disruption of the YPS1 gene (previously called YAP3). By this technique, high yield continuous fermentation of glucagon in S. cerevisiae is now possible.

  5. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizingmore » propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.« less

  6. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    PubMed

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of Total Reflection X-ray fluorescence spectrometry quantitative methodologies for elemental characterization of building materials and their degradation products

    NASA Astrophysics Data System (ADS)

    García-Florentino, Cristina; Maguregui, Maite; Marguí, Eva; Torrent, Laura; Queralt, Ignasi; Madariaga, Juan Manuel

    2018-05-01

    In this work, a Total Reflection X-ray fluorescence (TXRF) spectrometry based quantitative methodology for elemental characterization of liquid extracts and solids belonging to old building materials and their degradation products from a building of the beginning of 20th century with a high historic cultural value in Getxo, (Basque Country, North of Spain) is proposed. This quantification strategy can be considered a faster methodology comparing to traditional Energy or Wavelength Dispersive X-ray fluorescence (ED-XRF and WD-XRF) spectrometry based methodologies or other techniques such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In particular, two kinds of liquid extracts were analysed: (i) water soluble extracts from different mortars and (ii) acid extracts from mortars, black crusts, and calcium carbonate formations. In order to try to avoid the acid extraction step of the materials and their degradation products, it was also studied the TXRF direct measurement of the powdered solid suspensions in water. With this aim, different parameters such as the deposition volume and the measuring time were studied for each kind of samples. Depending on the quantified element, the limits of detection achieved with the TXRF quantitative methodologies for liquid extracts and solids were set around 0.01-1.2 and 2-200 mg/L respectively. The quantification of K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Sn and Pb in the liquid extracts was proved to be a faster alternative to other more classic quantification techniques (i.e. ICP-MS), accurate enough to obtain information about the composition of the acidic soluble part of the materials and their degradation products. Regarding the solid samples measured as suspensions, it was quite difficult to obtain stable and repetitive suspensions affecting in this way the accuracy of the results. To cope with this problem, correction factors based on the quantitative results obtained using ED-XRF were calculated to improve the accuracy of the TXRF results.

  8. Extremely fast increase in the organic loading rate during the co-digestion of rapeseed oil and sewage sludge in a CSTR--characterization of granules formed due to CaO addition to maintain process stability.

    PubMed

    Kasina, M; Kleyböcker, A; Michalik, M; Würdemann, H

    2015-01-01

    In a co-digestion system running with rapeseed oil and sewage sludge, an extremely fast increase in the organic loading rate was studied to develop a procedure to allow for flexible and demand-driven energy production. The over-acidification of the digestate was successfully prevented by calcium oxide dosage, which resulted in granule formation. Mineralogical analyses revealed that the granules were composed of insoluble salts of long chain fatty acids and calcium and had a porous structure. Long chain fatty acids and calcium formed the outer cover of granules and offered interfaces on the inside thereby enhancing the growth of biofilms. With granule size and age, the pore size increased and indicated degradation of granular interfaces. A stable biogas production up to the organic loading rate of 10.4 kg volatile solids m(-3) d(-1) was achieved although the hydrogen concentration was not favorable for propionic acid degradation. However, at higher organic loading rates, unbalanced granule formation and degradation were observed. Obviously, the adaption time for biofilm growth was too short to maintain the balance, thereby resulting in a low methane yield.

  9. Use of nutrient supplements to increase the microbial degradation of PAH in contaminated soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, L.M.; Pfaender, F.K.

    1994-12-31

    The microbial degradation of polycyclic aromatic hydrocarbons (PAH) is often low in soils due to unavailability of PAH and/or to conditions in the soil that are not favorable to microbial activity. As a result, successful bioremediation of PAH contaminated soils may require the addition of supplements to impact PAH availability or soil conditions. This paper reports on the addition of supplements (Triton X-100, Inopol, nutrient buffer, an organic nutrient solution, salicylic acid) on the fate of (9-{sup 14}C) phenanthrene, a model PAH, in creosote contaminated soils. Phenanthrene metabolism was assessed using a mass balance approach that accounts for metabolism ofmore » phenanthrene to CO{sub 2}, relative metabolite production, and uptake of phenanthrene into cells. Most of the supplements did not drastically alter the fate of phenanthrene in the contaminated soils. Additions of Inopol, however, increased phenanthrene mineralization, while salicylic acid decreased phenanthrene mineralization but greatly increased the production of polar and water soluble metabolites. All supplements (excluding salicylic acid and the organic nutrient solution) increased populations of heterotrophic microorganisms, as measured by plate counts. Phenanthrene degrader populations, however, were only slightly increased by additions of the nutrient buffer, as measured by the Most Probable Number assay.« less

  10. Isolation and survey of novel fluoroacetate-degrading bacteria belonging to the phylum Synergistetes.

    PubMed

    Davis, Carl K; Webb, Richard I; Sly, Lindsay I; Denman, Stuart E; McSweeney, Chris S

    2012-06-01

    Microbial dehalogenation of chlorinated compounds in anaerobic environments is well known, but the degradation of fluorinated compounds under similar conditions has rarely been described. Here, we report on the isolation of a bovine rumen bacterium that metabolizes fluoroacetate under anaerobic conditions, the mode of degradation and its presence in gut ecosystems. The bacterium was identified using 16S rRNA gene sequence analysis as belonging to the phylum Synergistetes and was designated strain MFA1. Growth was stimulated by amino acids with greater quantities of amino acids metabolized in the presence of fluoroacetate, but sugars were not fermented. Acetate, formate, propionate, isobutryate, isovalerate, ornithine and H(2) were end products of amino acid metabolism. Acetate was the primary end product of fluoroacetate dehalogenation, and the amount produced correlated with the stoichiometric release of fluoride which was confirmed using fluorine nuclear magnetic resonance ((19) F NMR) spectroscopy. Hydrogen and formate produced in situ were consumed during dehalogenation. The growth characteristics of strain MFA1 indicated that the bacterium may gain energy via reductive dehalogenation. This is the first study to identify a bacterium that can anaerobically dehalogenate fluoroacetate. Nested 16S rRNA gene-specific PCR assays detected the bacterium at low numbers in the gut of several herbivore species. © 2012 Commonwealth of Australia.

  11. Stability-Indicating TLC-Densitometric Assay for Methyltestosterone and Quantum Chemical Calculations.

    PubMed

    Musharraf, Syed Ghulam; Ul Arfeen, Qamar; Ul Haq, Faraz; Khatoon, Aliya; Azher Ali, Rahat

    2017-10-01

    Methyltestosterone is a synthetic testosterone derivative commonly used for the treatment of testosterone deficiency in males and one the anabolic steroids whose use is banned by World Anti-Doping Agency (WADA). This study presents a simple, cost-effective and rapid stability-indicating assay for densitometric quantification of methyltestosterone in pharmaceutical formulation. The developed method employed pre-coated TLC plates with mobile phase hexane:acetone (6.5:3.5 v/v). Limit of detection and limit of quantitation were found to be 2.06 and 6.24 ng/spot, respectively. Stress degradation study of methyltestosterone was conducted by applying various stress conditions such as hydrolysis under acidic, basic and neutral conditions, heating in anhydrous conditions and exposure to light. Methyltestosterone was found to be susceptible to photodegradation, acidic and basic hydrolysis. Degraded products were well resolved with significantly different Rf values. Acid degraded product was identified as 17,17-dimethyl-18-norandrosta-4,13(14)-dien-3-one through spectroscopic methods. The reactivity of methyltestosterone under applied stress conditions was also explained by quantum chemical calculations. The developed method is found to be repeatable, selective and accurate for quantification of methyltestosterone and can be employed for routine analysis. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus,more » CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.« less

  13. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    PubMed

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effect of poly-β-hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal system.

    PubMed

    Wei, Yan; Wang, Shuying; Ma, Bin; Li, Xiyao; Yuan, Zhiguo; He, Yuelan; Peng, Yongzhen

    2014-10-01

    Poly-β-hydroxyalkanoates (PHAs) and free nitrous acid (FNA) have been revealed as significant factors causing nitrous oxide (N2O) production in denitrifying phosphorus removal systems. In this study, the effect of PHA degradation rate on N2O production was studied at low FNA levels. N2O production always maintained at approximately 40% of the amount of nitrite reduced independent of the PHA degradation rate. The electrons distributed to nitrite reduction were 1.6 times that to N2O reduction. This indicated that electron competition between these two steps was not affected by the PHA degradation rate. Continuous feed of nitrate was proposed, and demonstrated to reduce N2O accumulation by 75%. While being kept low, a possible compounding effect of a low-level FNA could not be ruled out. The sludge used likely contained both polyphosphate- and glycogen-accumulating organisms, and the results could not be simply attributed to either group of organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Degradation of selected agrochemicals by the white rot fungus Trametes versicolor.

    PubMed

    Mir-Tutusaus, Josep Anton; Masís-Mora, Mario; Corcellas, Cayo; Eljarrat, Ethel; Barceló, Damià; Sarrà, Montserrat; Caminal, Glòria; Vicent, Teresa; Rodríguez-Rodríguez, Carlos E

    2014-12-01

    Use of agrochemicals is a worldwide practice that exerts an important effect on the environment; therefore the search of approaches for the elimination of such pollutants should be encouraged. The degradation of the insecticides imiprothrin (IP) and cypermethrin (CP), the insecticide/nematicide carbofuran (CBF) and the antibiotic of agricultural use oxytetracycline (OTC) were assayed with the white rot fungus Trametes versicolor. Experiments with fungal pellets demonstrated extensive degradation of the four tested agrochemicals, at rates that followed the pattern IP>OTC>CP>CBF. In vitro assays with laccase-mediator systems showed that this extracellular enzyme participates in the transformation of IP but not in the cases of CBF and OTC. On the other hand, in vivo studies with inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the degradation of IP, OTC and CBF, but not for CP. The compounds 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA) and 3-phenoxybenzoic acid (PBA) were detected as transformation products of CP, as a result of the breakdown of the molecule. Meanwhile, 3-hydroxycarbofuran was detected as a transformation product of CBF; this metabolite tended to accumulate during the process, nonetheless, the toxicity of the system was effectively reduced. Simultaneous degradation of CBF and OTC showed a reduction in toxicity; similarly, when successive additions of OTC were done during the slower degradation of CBF, the fungal pellets were able to degrade both compounds. The simultaneous degradation of the four compounds successfully took place with minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus supporting the potential use of T. versicolor for the treatment of diverse agrochemicals. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.

    PubMed

    Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan

    2017-03-01

    Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO 3 - , and CO 3 2- on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.

  17. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment.

    PubMed

    Charles, C J; Rout, S P; Garratt, E J; Patel, K; Laws, A P; Humphreys, P N

    2015-08-01

    Anthropogenic hyperalkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyze to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonized by a Clostridia-dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and proteins stabilized by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyperalkaline conditions. © FEMS 2015.

  18. An assessment of the feasibility of employing biochemical acidogenic potential tests for characterizing anaerobic biodegradability of raw and pretreated waste activated sludge.

    PubMed

    Kianmehr, Peiman; Parker, Wayne; Seto, Peter

    2012-04-01

    The potential to use the results of biochemical acid potential (BAP) tests to predict the ultimate digestibility of raw and pretreated waste activated sludge (WAS) was investigated. The ultimate methane production from biochemical methane potential (BMP) tests on raw and pretreated samples which spanned a range of biodegradability proved linearly related to the volatile fatty acid (VFA) and soluble chemical oxygen demand (COD) production in corresponding BAP tests. In addition, a linear relationship between NH4-N production in the BMP and BAP tests was observed. Despite the linear nature of the relationships, the ratio of the production of methane in the BMP tests to the production of VFAs in the BAP tests varied with the biodegradability of the sludge samples. Waste Activated Sludge samples with low digestibility had ultimate yields of CH4 that were greater than the VFA yields in BAP tests, whereas sludge samples with high digestibility had lower yields of CH4 than the corresponding VFA yields. This trend contrasted with the NH4 results, in which the yields in the BAP tests were consistently less than those observed in the BMP tests. It was hypothesized that the varying relationship between CH4 and VFA yields was because of the inhibition of anaerobic oxidation of long-chain fatty acids (LCFAs) in the BAP tests. Long-chain fatty acids would be converted to CH4 in BMP tests but produced as digestion intermediates in the BAP tests and were not measured as part of the VFA yield. Hydrogen and acetate were identified as the two most likely intermediates that would accumulate in the BAP tests (which would cause inhibition). A stoichiometric model to facilitate the development of an improved understanding of the biodegradation processes in the BAP and BMP tests was assembled. When the model was applied to the BAP tests the anaerobic oxidation of LCFAs and propionate and methanogenesis were excluded from the model. The model was employed to estimate the extent of degradation of lipids, carbohydrates, and proteins in the batch tests as a function of the ultimate biodegradability of the sludge samples. On the basis of model fitting, it was determined that the degradation of lipids in BMP tests decreased, whereas the degradation of carbohydrates and proteins increased as the digestibility of the sludge samples increased. The varying ratio of lipid to protein and carbohydrate degradability with increasing digestibility of the sludge samples describes the relationship between VFA production and CH4 production in the BAP, and BMP tests, respectively.

  19. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    USDA-ARS?s Scientific Manuscript database

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  20. Biodegradation of photo-oxidized lignite and characterization of the products

    NASA Astrophysics Data System (ADS)

    Li, Jiantao; Liu, Xiangrong; Yue, Zilin; Zhang, Yaowen

    2018-01-01

    Biodegradation of photo-oxidized Inner Mongolia lignite by pseudomonas aeruginosa was studied and the degradation percentage reached 56.27%, while the corresponding degradation percentage of the strain degrading raw Inner Mongolia lignite is only 23.16%. The degradation products were characterized. Proximate and ultimate analyses show that the higher oxygen content increased by photo-oxidation pretreatment maybe promoted the degradation process. Ultraviolet spectroscopy (UV) analysis of the liquid product reveals that it contains unsaturated structures and aromatic rings are the main structure units. Gas chromatography-mass spectrometry (GC-MS) analysis indicates that the main components of the ethyl acetate extracts are low molecular weight organic compounds, such as ketones, acids, hydrocarbons, esters and alcohols. Infrared spectroscopy (IR) analysis of raw lignite, photo-oxidized lignite and residual lignite demonstrates that the absorption peaks of functional groups in residual lignite disappeared or weakened obviously. Scanning electron microscopy (SEM) analysis manifests that small holes appear in photo-oxidized lignite surface, which may be promote the degradation process and this is only from the physical morphology aspects, so it can be inferred from the tests and analyses results that the more important reason of the high degradation percentage is mostly that the photo-oxidation pretreatment changes the chemical structures of lignite.

  1. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m -3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  2. Investigating Marine Dissolved Organic Matter Fluorescence Transformations with Organic Geochemical Proxies in a Growth and Degradation Experiment using Amino Acids, Amino Sugars, and Phenols

    NASA Astrophysics Data System (ADS)

    Shields, M. R.; Bianchi, T. S.; Osburn, C. L.; Kinsey, J. D.; Ziervogel, K.; Schnetzer, A.

    2017-12-01

    The origin and mechanisms driving the formation of fluorescent dissolved organic matter (FDOM) in the open ocean remain unclear. Although recent studies have attempted to deconvolve the chemical composition and source of marine FDOM, these studies have been qualitative in nature. Here, we investigate these transformations using a more quantitative biomarker approach in a controlled growth and degradation experiment. In this experiment, a natural assemblage of phytoplankton was collected off the coast of North Carolina and incubated within roller bottles containing 0.2 µm-filtered North Atlantic surface water amended with f/2 nutrients. Samples were collected at the beginning (day 0), during exponential growth (day 13), stationary (day 20), and degradation (day 62) phases of the phytoplankton incubation. Amino acids, amino sugars, and phenolic compounds of the dissolved (DOM) were measured in conjunction with enzyme assays and bacterial counts to track shifts in OM quality as FDOM formed and was then transformed throughout the experiment. The results from the chemical analyses showed that the OM composition changed significantly from the initial and exponential phases to the stationary and degradation phases of the experiment. The percentage of aromatic amino acids to the total amino acid pool increased significantly during the exponential phase of phytoplankton growth, but then decreased significantly during the stationary and degradation phases. This increase was positively correlated to the fractional contribution of the protein-like peak in fluorescence to the total FDOM fluorescence. An increase in the concentration of amino acid degradation products during the stationary and degradation phases suggests that compositional changes in OM were driven by microbial transformation. This was further supported by a concurrent increase in total enzyme activity and increase in "humic-like" components of the FDOM. These findings link the properties and formation of FDOM to the overall quality and diagenetic state of marine OM and to the marine carbon and nitrogen cycles.

  3. EIMS Fragmentation Pathways and MRM Quantification of 7α/β-Hydroxy-Dehydroabietic Acid TMS Derivatives

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Aubert, Claude; Belt, Simon T.

    2015-09-01

    EI mass fragmentation pathways of TMS derivatives οf 7α/β-hydroxy-dehydroabietic acids resulting from NaBH4-reduction of oxidation products of dehydroabietic acid (a component of conifers) were investigated and deduced by a combination of (1) low energy CID-GC-MS/MS, (2) deuterium labeling, (3) different derivatization methods, and (4) GC-QTOF accurate mass measurements. Having identified the main fragmentation pathways, the TMS-derivatized 7α/β-hydroxy-dehydroabietic acids could be quantified in multiple reaction monitoring (MRM) mode in sea ice and sediment samples collected from the Arctic. These newly characterized transformation products of dehydroabietic acid constitute potential tracers of biotic and abiotic degradation of terrestrial higher plants in the environment.

  4. Effect of warming on the degradation and production of low-molecular-weight labile organic carbon in an Arctic tundra soil

    DOE PAGES

    Yang, Ziming; Wullschleger, Stan D.; Liang, Liyuan; ...

    2016-01-16

    The fate of soil organic carbon (SOC) stored in the Arctic permafrost is a key concern as temperatures continue to rise in the northern hemisphere. Studies and conceptual models suggest that SOC degradation is affected by the composition of SOC, but it is unclear exactly what portions of SOC are vulnerable to rapid breakdown and what mechanisms may be controlling SOC degradation upon permafrost thaw. Here, we examine the dynamic consumption and production of labile SOC in an anoxic incubation experiment using soil samples from the active layer at the Barrow Environmental Observatory, Barrow, Alaska, USA. Free-reducing sugars, alcohols, andmore » low-molecular-weight (LMW) organic acids were analyzed during incubation at either –2 or 8 °C for up to 240 days. Results show that simple sugar and alcohol SOC largely account for the initial rapid release of CO 2 and CH 4 through anaerobic fermentation, whereas the fermentation products, acetate and formate, are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important role as an electron acceptor in tundra SOC respiration. These observations are further supported in a glucose addition experiment, in which rapid CO 2 and CH 4 production occurred concurrently with rapid production and consumption of labile organics such as acetate. However, addition of tannic acid, as a more complex organic substrate, showed little influence on the overall production of CO 2 and CH 4 and organic acids. Together our study shows that LMW labile organics in SOC control the initial rapid release of green-house gases upon warming. We thus present a conceptual framework for the labile SOC transformations and their relations to fermentation, iron reduction and methanogenesis, thereby providing the basis for improved model prediction of climate feedbacks in the Arctic.« less

  5. Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters.

    PubMed

    Alexandrino, M; Knief, C; Lipski, A

    2001-10-01

    Deuterated styrene ([(2)H(8)]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [(2)H(8)]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [(2)H(8)]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.

  6. Microbial screening test for lignite degradation. Quarterly progress report No. 1, January-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Potassium permanganate and sodium hypochlorite oxidation of lignitic coal were performed. Ion chromatography of low molecular weight carboxylic acids - oxalic acid, formic acid, and acetic acid - produced by potassium permanganate and sodium hypochlorite oxidation was executed. Oxalic acid was found to be the most predominant low molecular weight species. It was estimated that about 10% of the carbon present in the chemical structure of lignite was converted to oxalic acid by sodium hypochlorite oxidation. Ion chromatography analysis showed that about 43% of the lignite carbon was converted to carbon dioxide in all experiments. Biological degradation of lignite bymore » P. versicolor, a white-rot fungus, on lignite/agar and lignite slurry was attempted. Apparently, P. versicolor is capable of growing on lignite slurry. Acclimation of P. versicolor to lignite was proceeded. Biochemical reaction test for laccase production of P. versicolor was performed and found to be positive. 15 refs., 5 figs., 6 tabs.« less

  7. Docosahexaenoic acid induces the degradation of HPV E6/E7 oncoproteins by activating the ubiquitin–proteasome system

    PubMed Central

    Jing, K; Shin, S; Jeong, S; Kim, S; Song, K-S; Park, J-H; Heo, J-Y; Seo, K-S; Park, S-K; Kweon, G-R; Wu, T; Park, J-I; Lim, K

    2014-01-01

    The oncogenic human papillomavirus (HPV) E6/E7 proteins are essential for the onset and maintenance of HPV-associated malignancies. Here, we report that activation of the cellular ubiquitin–proteasome system (UPS) by the omega-3 fatty acid, docosahexaenoic acid (DHA), leads to proteasome-mediated degradation of E6/E7 viral proteins and the induction of apoptosis in HPV-infected cancer cells. The increases in UPS activity and degradation of E6/E7 oncoproteins were associated with DHA-induced overproduction of mitochondrial reactive oxygen species (ROS). Exogenous oxidative stress and pharmacological induction of mitochondrial ROS showed effects similar to those of DHA, and inhibition of ROS production abolished UPS activation, E6/E7 viral protein destabilization, and apoptosis. These findings identify a novel role for DHA in the regulation of UPS and viral proteins, and provide evidence for the use of DHA as a mechanistically unique anticancer agent for the chemoprevention and treatment of HPV-associated tumors. PMID:25393480

  8. Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study.

    PubMed

    Glaus, Martin A; Van Loon, Luc R

    2008-04-15

    Cellulose degradation under alkaline conditions is of relevance to the mobility of many cations of the transition metal, lanthanide, and actinide series in the geosphere because strong complexants such as isosaccharinic acids, 3-deoxy-2-C-hydroxymethyl-D-erythro-pentonic acid (alpha-ISA) and 3-deoxy-2-C-hydroxymethyl-D-threo-pentonic acid (beta-ISA) may be formed. In the context of the long-term safety of cementitious repositories for low- and intermediate-level radioactive waste, where large amounts of cellulose may be present, the question of the time scales needed for the complete degradation of cellulose is important. The present paper reports the results of a 12 year study of the degradation of four different cellulosic materials (pure cellulose, tissue, cotton, paper) in an artificial cement pore water under anaerobic conditions at approximately 25 degrees C. The observed reaction characteristics can be divided into a fast reaction phase (2-3 years), dominated by the stepwise conversion of terminal glucose monomeric units to alpha-ISA and beta-ISA, and a very slow reaction phase during which the same products were found. The slow rate of the alkaline degradation of cellulose during this second reaction phase shows that previous kinetic models of cellulose degradation did not adequately describe the long-term behavior under alkaline conditions and need to be reassessed. It is postulated that a previously unknown mechanism by which crystalline or inaccessible reducing end groups of the polysaccharide chain become temporarily susceptible to alkaline attack is responsible for the slow rate of cellulose degradation.

  9. A validated stability-indicating LC method for the separation of enantiomer and potential impurities of Linezolid using polar organic mode.

    PubMed

    Satyanarayana Raju, T; Vishweshwari Kutty, O; Ganesh, V; Yadagiri Swamy, P

    2012-08-01

    Although a number of methods are available for evaluating Linezolid and its possible impurities, a common method for separation if its potential impurities, degradants and enantiomer in a single method with good efficiency remain unavailable. With the objective of developing an advanced method with shorter runtimes, a simple, precise, accurate stability-indicating LC method was developed for the determination of purity of Linezolid drug substance and drug products in bulk samples and pharmaceutical dosage forms in the presence of its impurities and degradation products. This method is capable of separating all the related substances of Linezolid along with the chiral impurity. This method can also be used for the estimation of assay of Linezolid in drug substance as well as in drug product. The method was developed using Chiralpak IA (250 mm×4.6 mm, 5 μm) column. A mixture of acetonitrile, ethanol, n-butyl amine and trifluoro acetic acid in 96:4:0.10:0.16 (v/v/v/v) ratio was used as a mobile phase. The eluted compounds were monitored at 254 nm. Linezolid was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal and photolytic degradation. The degradation products were well resolved from main peak and its impurities, proving the stability-indicating power of the method. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, limit of detection, limit of quantification, precision, linearity, accuracy, robustness and system suitability.

  10. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium.

    PubMed

    Baena, S; Fardeau, M L; Ollivier, B; Labat, M; Thomas, P; Garcia, J L; Patel, B K

    1999-07-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 microns) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35 degrees C and pH 7.5 on arginine with a generation time of 16 h. Good growth was obtained on arginine, histidine, threonine and glycine. Acetate was the end-product formed from all these substrates, but in addition, a trace of formate was detected from arginine and histidine, and ornithine was produced from arginine. Strain GLU-3T grew slowly on glutamate and produced acetate, carbon dioxide, formate, hydrogen and traces of propionate as the end-products. In syntrophic association with Methanobacterium formicicum, strain GLU-3T oxidized arginine, histidine and glutamate to give propionate as the major product; acetate, carbon dioxide and methane were also produced. Strain GLU-3T did not degrade alanine and the branched-chain amino acids valine, leucine and isoleucine either in pure culture or in association with M. formicicum. The nearest phylogenetic relative of strain GLU-3T was the thermophile Selenomonas acidaminovorans (similarity value of 89.5%). As strain GLU-3T is phylogenetically, physiologically and genotypically different from other amino-acid-degrading genera, it is proposed that it should be designated a new species of a new genus Aminomonas paucivorans gen. nov., sp. nov. (DSM 12260T).

  11. Transcriptome survey of the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the salmon louse Caligus rogercresseyi (Crustacea: Copepoda).

    PubMed

    Gonçalves, Ana Teresa; Farlora, Rodolfo; Gallardo-Escárate, Cristian

    2014-10-01

    The goal of this study was to identify and analyze the lipid metabolic pathways involved in energy production and ecdysteroid synthesis in the ectoparasite copepod Caligus rogercresseyi. Massive transcriptome sequencing analysis was performed during the infectious copepodid larval stage, during the attached chalimus larval stage, and also in female and male adults. Thirty genes were selected for describing the pathways, and these were annotated for proteins or enzymes involved in lipid digestion, absorption, and transport; fatty acid degradation; the synthesis and degradation of ketone bodies; and steroid and ecdysteroid syntheses. Differential expression of these genes was analyzed by ontogenic stage and discussed considering each stage's feeding habits and energetic needs. Copepodids showed a low expression of fatty acid digestion genes, reflected by a non-feeding behavior, and the upregulation of genes involved in steroid biosynthesis, which was consistent with a pathway for cholesterol synthesis during ecdysis. The chalimus stage showed an upregulation of genes related to fatty acid digestion, absorption, and transport, as well as to fatty acid degradation and the synthesis of ketone bodies, therefore suggesting that lipids ingested from the mucus and skin of the host fish are metabolized as important sources of energy. Adult females also showed a pattern of high lipid metabolism for energy supply and mobilization in relation to reproduction and vitellogenesis. Adult females and males revealed different lipid metabolism patterns that reflected different energetic needs. This study reports for the first time the probable lipid metabolic pathways involved in the energy production and ecdysteroid synthesis of C. rogercresseyi. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement.

    PubMed

    Akbar, Shamsa; Sultan, Sikander

    2016-01-01

    Since 1960s, the organophosphate pesticide chlorpyrifos has been widely used for the purpose of pest control. However, given its persistence and toxicity towards life forms, the elimination of chlorpyrifos from contaminated sites has become an urgent issue. For this process bioremediation is the method of choice. Two bacterial strains, JCp4 and FCp1, exhibiting chlorpyrifos-degradation potential were isolated from pesticide contaminated agricultural fields. These isolates were able to degrade 84.4% and 78.6% of the initial concentration of chlorpyrifos (100mgL(-1)) within a period of only 10 days. Based on 16S rRNA sequence analysis, these strains were identified as Achromobacter xylosoxidans (JCp4) and Ochrobactrum sp. (FCp1). These strains exhibited the ability to degrade chlorpyrifos in sterilized as well as non-sterilized soils, and were able to degrade 93-100% of the input concentration (200mgkg(-1)) within 42 days. The rate of degradation in inoculated soils ranged from 4.40 to 4.76mg(-1)kg(-1)d(-1) with rate constants varying between 0.047 and 0.069d(-1). These strains also displayed substantial plant growth promoting traits such as phosphate solubilization, indole acetic acid production and ammonia production both in absence as well as in the presence of chlorpyrifos. However, presence of chlorpyrifos (100 and 200mgL(-1)) was found to have a negative effect on indole acetic acid production and phosphate solubilization with percentage reduction values ranging between 2.65-10.6% and 4.5-17.6%, respectively. Plant growth experiment demonstrated that chlorpyrifos has a negative effect on plant growth and causes a decrease in parameters such as percentage germination, plant height and biomass. Inoculation of soil with chlorpyrifos-degrading strains was found to enhance plant growth significantly in terms of plant length and weight. Moreover, it was noted that these strains degraded chlorpyrifos at an increased rate (5.69mg(-1)kg(-1)d(-1)) in planted soil. The results of this study clearly demonstrate that the chlorpyrifos-degrading strains have the potential to develop into promising candidates for raising the productivity of crops in pesticide contaminated soils. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  13. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.

    PubMed

    Wang, Jindong; Li, Wenzhi; Wang, Huizhen; Ma, Qiaozhi; Li, Song; Chang, Hou-Min; Jameel, Hasan

    2017-11-01

    In this study, a novel catalyst, S 2 O 8 2- -KNO 3 /TiO 2 , which has active acidic and basic sites, was prepared and used in lignin hydrocracking with a co-catalyst, Ru/C. Ru/C is an efficient hydrogenation catalyst and S 2 O 8 2- -KNO 3 /TiO 2 is a dual catalyst, which could efficiently degrade lignin. This catalytic hydrogenation system can reduce solid products to less than 1%, while giving a high liquid product yield of 93%. Catalytic hydrocracking of kraft lignin at 320°C for 6h gave 93% liquid product with 0.5% solid product. Most of this liquid product was soluble in petroleum ether (60% of 93%), which is a clear liquid and comprises mainly of monomeric and dimeric degradation products. These results demonstrated that the combination of the two catalysts is an efficient catalyst for liquefaction of lignin, with little char formation (∼1%). This concept has the potential to produce valuable chemicals and fuels from lignin under moderate conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea.

    PubMed

    Lavelli, Vera; Corey, Mark; Kerr, William; Vantaggi, Claudia

    2011-07-15

    Intermediate moisture products made from blanched apple flesh and green tea extract (about 6mg of monomeric flavan 3-ols added per g of dry apple) or blanched apple flesh (control) were produced, and their quality attributes were investigated over storage for two months at water activity (a(w)) levels of 0.55 and 0.75, at 30°C. Products were evaluated for colour (L(∗), a(∗), and b(∗) Hunter's parameters), phytochemical contents (flavan 3-ols, chlorogenic acid, dihydrochalcones, ascorbic acid and total polyphenols), ferric reducing antioxidant potential, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical-scavenging activity and ability to inhibit formation of fructose-induced advanced glycation end-products. During storage of the fortified and unfortified intermediate moisture apples, water availability was sufficient to support various chemical reactions involving phytochemicals, which degraded at different rates: ascorbic acid>flavan 3-ols>dihydrochalcones and chlorogenic acid. Colour variations occurred at slightly slower rates after green tea addition. In the intermediate moisture apple, antioxidant and anti-glycoxidative properties decreased at similar rates (half-life was about 80d at a(w) of 0.75, 30°C). In the green tea-fortified intermediate moisture apple, the antioxidant activity decreased at a slow rate (half-life was 165d at a(w) of 0.75, 30°C) and the anti-glycoxidative properties did not change, indicating that flavan 3-ol degradation involved the formation of derivatives that retained the properties of their parent compounds. Since these properties are linked to oxidative- and advanced glycation end-product-related diseases, these results suggest that green tea fortification of intermediate moisture apple products could be a valuable means of product innovation, to address consumers' nutritional needs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fast Startup of Semi-Pilot-Scale Anaerobic Digestion of Food Waste Acid Hydrolysate for Biogas Production.

    PubMed

    Huang, Chao; Zhao, Cheng; Guo, Hai-Jun; Wang, Can; Luo, Mu-Tan; Xiong, Lian; Li, Hai-Long; Chen, Xue-Fang; Chen, Xin-De

    2017-12-27

    In this study, a fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production was carried out for the first time. During the period of fast startup, more than 85% of chemical oxygen demand (COD) can be degraded, and even more than 90% of COD can be degraded during the later stage of anaerobic digestion. During this anaerobic digestion process, the biogas yield, the methane yield, and the CH 4 content in biogas were 0.542 ± 0.056 m 3 /kg COD consumption , 0.442 ± 0.053 m 3 /kg COD consumption , and 81.52 ± 3.05%, respectively, and these values were high and stable. Besides, the fermentation pH was very stable, in which no acidification was observed during the anaerobic digestion process (outlet pH was 7.26 ± 0.05 for the whole anaerobic digestion). Overall, the startup of this anaerobic digestion can be completed in a short period (the system can be stable 2 days after the substrate was pumped into the bioreactor), and anaerobic digestion of food waste acid hydrolysate is feasible and attractive for industrial treatment of food waste and biogas production.

  16. Degradation of polyvinyl alcohol (PVA) by UV/chlorine oxidation: Radical roles, influencing factors, and degradation pathway.

    PubMed

    Ye, Bei; Li, Yue; Chen, Zhuo; Wu, Qian-Yuan; Wang, Wen-Long; Wang, Ting; Hu, Hong-Ying

    2017-11-01

    Polyvinyl alcohol (PVA) is widely used in industry but is difficult to degrade. In this study, the synergistic effect of UV irradiation and chlorination on degradation of PVA was investigated. UV irradiation or chlorination alone did not degrade PVA. By contrast, UV/chlorine oxidation showed good efficiency for PVA degradation via generation of active free radicals, such as OH and Cl. The relative importance of these two free radicals in the oxidation process was evaluated, and it was shown that OH contributed more to PVA degradation than Cl did. The degradation of PVA followed pseudo first order kinetics. The rate constant k increased linearly from 0 min -1 to 0.3 min -1 with increasing chlorine dosage in range of 0 mg/L to 20 mg/L. However, when the chlorine dosage was increased above 20 mg/L, scavenging effect of free radicals occurred, and the degradation efficiency of PVA did not increase much more. Acidic media increased the degradation efficiency of PVA by UV/chlorine oxidation more than basic or neutral media because of the higher ratio of [HOCl]/[OCl - ], higher free radical quantum yields, and the lower free radical quenching effect under acidic conditions. Results of Fourier Transform Infrared Spectroscopy showed that carbonyl groups in degradation products were formed during UV/chlorine oxidation, and a possible degradation pathway via alcohol to carbonyl was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products.

    PubMed

    Nipper, Marion; Carr, R Scott; Biedenbach, James M; Hooten, Russell L; Miller, Karen

    2005-11-01

    The toxicity of transformation products of 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked sandy and fine-grained marine sediments and in seawater. Toxicity of pore water from sediments spiked with 2,6-DNT decreased for the macro-alga, Ulva fasciata, zoospores as biotransformation proceeded, but increased for the copepod, Schizopera knabeni, nauplii. The primary biotransformation product of 2,6-DNT, 2-amino-6-nitrotoluene, was also more toxic than the parent compound to copepod nauplii, but not to alga zoospores, in spiked seawater tests. Two biotransformation products of picric acid, picramic acid and 2,4-DNP, were more toxic than their parent compound. Porewater toxicity from picric acid-spiked sediments decreased significantly at the end of six-months incubation. Fine-grained sediment spiked with either ordnance compound had lower toxicity than its sandy counterpart after six months, suggesting faster microbial transformation in the former and production of less toxic products. Photo-transformation of 2,6-DNT in seawater resulted in a reduction in toxicity.

  18. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: implications for wood biodegradation.

    PubMed

    Contreras, David; Rodríguez, Jaime; Freer, Juanita; Schwederski, Brigitte; Kaim, Wolfgang

    2007-09-01

    Brown rot fungi degrade wood, in initial stages, mainly through hydroxyl radicals (.OH) produced by Fenton reactions. These Fenton reactions can be promoted by dihydroxybenzenes (DHBs), which can chelate and reduce Fe(III), increasing the reactivity for different substrates. This mechanism allows the extensive degradation of carbohydrates and the oxidation of lignin during wood biodegradation by brown rot fungi. To understand the enhanced reactivity in these systems, kinetics experiments were carried out, measuring .OH formation by the spin-trapping technique of electron paramagnetic resonance spectroscopy. As models of the fungal DHBs, 1,2-dihydroxybenzene (catechol), 2,3-dihydroxybenzoic acid and 3,4-dihydroxybenzoic acid were utilized as well as 1,2-dihydroxy-3,5-benzenedisulfonate as a non-Fe(III)-reducing substance for comparison. Higher amounts and maintained concentrations of .OH were observed in the driven Fenton reactions versus the unmodified Fenton process. A linear correlation between the logarithms of complex stability constants and the .OH production was observed, suggesting participation of such complexes in the radical production.

  19. Malolactic bioconversion using a Oenococcus oeni strain for cider production: effect of yeast extract supplementation.

    PubMed

    Herrero, Mónica; García, Luis A; Díaz, Mario

    2003-12-01

    Yeast extract addition to reconstituted apple juice had a positive impact on the development of the malolactic starter culture used to ensure malolactic fermentation in cider, using active but non-proliferating cells. In this work, the reuse of fermentation lees from cider is proposed as an alternative to the use of commercial yeast extract products. Malolactic enzymatic assays, both in whole cells and cell-free extracts, were carried out to determine the best time to harvest cells for use as an inoculum in cider. Cells harvested at the late exponential phase, the physiological stage of growth corresponding to the maximum values of specific malolactic activity, achieved a good rate of malic acid degradation in controlled cider fermentation. Under the laboratory conditions used, malic acid degradation rates in the fermentation media turned out to be near 2.0 and 2.5 times lower, compared with the rates obtained in whole-cell enzymatic assays, as useful data applicable to industrial cider production.

  20. The anaerobic digestion of biologically and physicochemically pretreated oily wastewater.

    PubMed

    Peng, Liyu; Bao, Meidan; Wang, Qingfeng; Wang, Fangchao; Su, Haijia

    2014-01-01

    To enhance the degradation of oily wastewater and its biogas production, a biological-physicochemical pretreatment was introduced prior to the anaerobic digestion system. The digestion thereafter proceeded more efficiently due to the inoculation by oil degrading bacteria (Bacillus). A 2-stage pre-mixing is more effective than directly mixing. The effects on the methane production were also investigated by pre-treatment with ultrasonic (US) treatment, combined with citric acid (CA) addition. US pre-treatment was found to improve the initial methane production, and CA pre-treatment could maintain this improvement during the whole digestion stage. Pre-mixing Bacillus at 9 wt.% inoculation, combined with US for 10 min and a CA concentration of 500 mg/L provided the optimum conditions. The most effective enhancement of methane yield was 1100.46 ml/g VS, exceeding that of the control by 280%. The change of coenobium shape and fatty acid content further proved that such pretreatment of oily wastewater can facilitate digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The Effect of Acid Pre-Treatment using Acetic Acid and Nitric Acid in The Production of Biogas from Rice Husk during Solid State Anaerobic Digestion (SS-AD)

    NASA Astrophysics Data System (ADS)

    Nugraha, Winardi Dwi; Syafrudin; Keumala, Cut Fadhila; Matin, Hasfi Hawali Abdul; Budiyono

    2018-02-01

    Pretreatment during biogas production aims to assist in degradation of lignin contained in the rice husk. In this study, pretreatment which is used are acid and biological pretreatment. Acid pretreatment was performed using acetic acid and nitric acid with a variety levels of 3% and 5%. While biological pretreatment as a control variable. Acid pretreatment was conducted by soaking the rice straw for 24 hours with acid variation. The study was conducted using Solid State Anaerobic Digestion (SS-AD) with 21% TS. Biogas production was measured using water displacement method every two days for 60 days at room temperature conditions. The results showed that acid pretreatment gave an effect on the production of biogas yield. The yield of the biogas produced by pretreatment of acetic acid of 5% and 3% was 43.28 and 45.86 ml/gr.TS. While the results without pretreatment biogas yield was 29.51 ml/gr.TS. The results yield biogas produced by pretreatment using nitric acid of 5% and 3% was 12.14 ml/gr.TS and 21.85 ml/gr.TS. Results biogas yield with acetic acid pretreatment was better than the biogas yield results with nitric acid pretreatment.

  2. CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass

    PubMed Central

    Liu, Xinyao; Fallon, Sarah; Sheng, Jie; Curtiss, Roy

    2011-01-01

    Using genetically modified cyanobacterial strains, we engineered a Green Recovery strategy to convert membrane lipids into fatty acids for economical and environmentally sustainable biofuel production. The Green Recovery strategy utilizes lipolytic enzymes under the control of promoters induced by CO2 limitation. Data indicate that strains of the cyanobacterium Synechocystis sp. PCC6803 engineered for Green Recovery underwent degradation of membrane diacylglycerols upon CO2 limitation, leading to release of fatty acids into the culture medium. Recovered fatty acid yields of 36.1 × 10-12 mg/cell were measured in one of the engineered strains (SD239). Green Recovery can be incorporated into previously constructed fatty-acid-secretion strains, enabling fatty acid recovery from the remaining cyanobacterial biomass that will be generated during fatty acid biofuel production in photobioreactors. PMID:21482802

  3. Phage-Encoded Colanic Acid-Degrading Enzyme Permits Lytic Phage Infection of a Capsule-Forming Resistant Mutant Escherichia coli Strain

    PubMed Central

    Kim, Min Soo; Kim, Young Deuk; Hong, Sung Sik; Park, Kwangseo; Ko, Kwan Soo

    2014-01-01

    In this study, we isolated a bacteriophage T7-resistant mutant strain of Escherichia coli (named S3) and then proceeded to characterize it. The mutant bacterial colonies appeared to be mucoid. Microarray analysis revealed that genes related to colanic acid production were upregulated in the mutant. Increases in colanic acid production by the mutant bacteria were observed when l-fucose was measured biochemically, and protective capsule formation was observed under an electron microscope. We found a point mutation in the lon gene promoter in S3, the mutant bacterium. Overproduction of colanic acid was observed in some phage-resistant mutant bacteria after infection with other bacteriophages, T4 and lambda. Colanic acid overproduction was also observed in clinical isolates of E. coli upon phage infection. The overproduction of colanic acid resulted in the inhibition of bacteriophage adsorption to the host. Biofilm formation initially decreased shortly after infection but eventually increased after 48 h of incubation due to the emergence of the mutant bacteria. Bacteriophage PBECO4 was shown to infect the colanic acid-overproducing mutant strains of E. coli. We confirmed that the gene product of open reading frame 547 (ORF547) of PBECO4 harbored colanic acid-degrading enzymatic (CAE) activity. Treatment of the T7-resistant bacteria with both T7 and PBECO4 or its purified enzyme (CAE) led to successful T7 infection. Biofilm formation decreased with the mixed infection, too. This procedure, using a phage cocktail different from those exploiting solely receptor differences, represents a novel strategy for overcoming phage resistance in mutant bacteria. PMID:25416767

  4. Pathway and rate-limiting step of glyphosate degradation by Aspergillus oryzae A-F02.

    PubMed

    Fu, Gui-Ming; Chen, Yan; Li, Ru-Yi; Yuan, Xiao-Qiang; Liu, Cheng-Mei; Li, Bin; Wan, Yin

    2017-09-14

    Aspergillus oryzae A-F02, a glyphosate-degrading fungus, was isolated from an aeration tank in a pesticide factory. The pathway and rate-limiting step of glyphosate (GP) degradation were investigated through metabolite analysis. GP, aminomethylphosphonic acid (AMPA), and methylamine were detected in the fermentation liquid of A. oryzae A-F02, whereas sarcosine and glycine were not. The pathway of GP degradation in A. oryzae A-F02 was revealed: GP was first degraded into AMPA, which was then degraded into methylamine. Finally, methylamine was further degraded into other products. Investigating the effects of the exogenous addition of substrates and metabolites showed that the degradation of GP to AMPA is the rate-limiting step of GP degradation by A. oryzae A-F02. In addition, the accumulation of AMPA and methylamine did not cause feedback inhibition in GP degradation. Results showed that degrading GP to AMPA was a crucial step in the degradation of GP, which determines the degradation rate of GP by A. oryzae A-F02.

  5. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    PubMed

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  6. Aerobic Growth of Rhodococcus aetherivorans BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources

    PubMed Central

    Presentato, Alessandro; Cappelletti, Martina; Sansone, Anna; Ferreri, Carla; Piacenza, Elena; Demeter, Marc A.; Crognale, Silvia; Petruccioli, Maurizio; Milazzo, Giorgio; Fedi, Stefano; Steinbüchel, Alexander; Turner, Raymond J.; Zannoni, Davide

    2018-01-01

    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs. PMID:29706937

  7. Physiological and Chemical Investigations into Microbial Degradation of Synthetic Poly(cis-1,4-isoprene)

    PubMed Central

    Bode, Helge B.; Zeeck, Axel; Plückhahn, Kirsten; Jendrossek, Dieter

    2000-01-01

    Streptomyces coelicolor 1A and Pseudomonas citronellolis were able to degrade synthetic high-molecular-weight poly(cis-1,4-isoprene) and vulcanized natural rubber. Growth on the polymers was poor but significantly greater than that of the nondegrading strain Streptomyces lividans 1326 (control). Measurement of the molecular weight distribution of the polymer before and after degradation showed a time-dependent increase in low-molecular-weight polymer molecules for S. coelicolor 1A and P. citronellolis, whereas the molecular weight distribution for the control (S. lividans 1326) remained almost constant. Three degradation products were isolated from the culture fluid of S. coelicolor 1A grown on vulcanized rubber and were identified as (6Z)-2,6-dimethyl-10-oxo-undec-6-enoic acid, (5Z)-6-methyl-undec-5-ene-2,9-dione, and (5Z,9Z)-6,10-dimethyl-pentadec-5,9-diene-2,13-dione. An oxidative pathway from poly(cis-1,4-isoprene) to methyl-branched diketones is proposed. It includes (i) oxidation of an aldehyde intermediate to a carboxylic acid, (ii) one cycle of β-oxidation, (iii) oxidation of the conjugated double bond resulting in a β-keto acid, and (iv) decarboxylation. PMID:10966376

  8. Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids.

    PubMed

    Sousa, Diana Z; Smidt, Hauke; Alves, Maria M; Stams, Alfons J M

    2009-06-01

    Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae. The principle pathway of LCFA degradation is through beta-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.

  9. Validated stability-indicating densitometric thin-layer chromatography: application to stress degradation studies of minocycline.

    PubMed

    Jain, Nilu; Jain, Gaurav Kumar; Ahmad, Farhan Jalees; Khar, Roop Krishen

    2007-09-19

    A simple, stability-indicating high-performance thin-layer liquid chromatographic (HPTLC) method for analysis of minocycline was developed and validated. The densitometric analysis was carried out at 345 nm using methanol-acetonitrile-isopropyl alcohol-water (5:4:0.5:0.5, v/v/v/v) as mobile phase. The method employed TLC aluminium plates pre-coated with silica gel 60F-254 as the stationary phase. To achieve good result, plates were sprayed with a 10% (w/v) solution of disodium ethylene diaminetetraacetic acid (EDTA), the pH of which was adjusted to 9.0. Compact spots of minocycline were found at R(f) = 0.30+/-0.02. For proposed procedure, linearity (r = 0.9997), limit of detection (3.7 ng spot(-1)), recovery (99.23-100.16%), and precision (% R.S.D. < or = 0.364) was found to be satisfactory. The drug undergoes acidic and basic degradation, oxidation and photodegradation. All the peaks of degradation products were well resolved from the pure drug with significantly different R(f) values. The acidic and alkaline degradation kinetics of minocycline, evaluated using this method, is found to be of first order.

  10. Evidence for Interspecies Gene Transfer in the Evolution of 2,4-Dichlorophenoxyacetic Acid Degraders

    PubMed Central

    McGowan, Catherine; Fulthorpe, Roberta; Wright, Alice; Tiedje, J. M.

    1998-01-01

    Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient. PMID:9758850

  11. Characterization of Volatile Nylon 6.6 Thermal-Oxidative Degradation Products by Selective Isotopic Labeling and Cryo-GC/MS

    NASA Astrophysics Data System (ADS)

    Smith, Jonell N.; V. White, Gregory; White, Michael I.; Bernstein, Robert; Hochrein, James M.

    2012-09-01

    Aged materials, such as polymers, can exhibit modifications to their chemical structure and physical properties, which may render the material ineffective for its intended purpose. Isotopic labeling was used to characterize low-molecular weight volatile thermal-oxidative degradation products of nylon 6.6 in an effort to better understand and predict changes in the aged polymer. Headspace gas from aged (up to 243 d at 138 °C) nylon 6.6 monomers (adipic acid and 1,6-hexanediamine) and polymer were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). Observations regarding the relative concentrations observed in each chromatographic peak with respect to aging time were used in conjunction with mass spectra for samples aged under ambient air to determine the presence and identity of 18 degradation products. A comparison of the National Institute of Standards and Technology (NIST) library, unlabeled, and isotopically labeled mass spectra (C-13 or N-15) and expected fragmentation pathways of each degradation product were used to identify the location of isotopically labeled atoms within the product's chemical structure, which can later be used to determine the exact origin of the species. In addition, observations for unlabeled nylon 6.6 aged in an O-18 enriched atmosphere were used to determine if the source of oxygen in the applicable degradation products was from the gaseous environment or the polymer. Approximations for relative isotopic ratios of unlabeled to labeled products are reported, where appropriate.

  12. SYNTHESIS AND DEGRADATION OF POLY-β-HYDROXYBUTYRIC ACID IN CONNECTION WITH SPORULATION OF BACILLUS MEGATERIUM

    PubMed Central

    Slepecky, Ralph A.; Law, John H.

    1961-01-01

    Slepecky, Ralph A. (Northwestern University, Evanston, Ill.), and John H. Law. Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J. Bacteriol. 82:37–42. 1961.—The production of poly-β-hydroxybutyrate has been followed in Bacillus megaterium, a sporulating strain, and B. megaterium strain KM, a nonsporulating strain, by an improved assay procedure and by the use of C14-acetate. The production of polymer in the KM strain follows the growth curve very slowly and reaches a peak at the time the cells are entering the stationary phase of growth. Slow utilization of polymer follows. When the sporulating strain is grown under conditions favorable for polymer production, no spores are formed; polymer production and utilization follow kinetics similar to those observed with asporogenous strains. When the sporulating strain is grown under conditions unfavorable for polymer production but favorable for sporulation, less polymer is produced and peak production occurs during the log phase of growth. Rapid utilization of the polymer precedes sporulation. If the medium is made favorable for polymer production by the addition of glucose and acetate and vigorous aeration conditions are used, sporulation can be obtained after good polymer production and subsequent utilization. PMID:16561914

  13. Data of thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid as crosslinking agent

    PubMed Central

    González Seligra, Paula; Medina Jaramillo, Carolina; Famá, Lucía; Goyanes, Silvia

    2016-01-01

    Interest in biodegradable edible films as packaging or coating has increased because their beneficial effects on foods. In particular, food products are highly dependents on thermal stability, integrity and transition process temperatures of the packaging. The present work describes a complete data of the thermal degradation and dynamic mechanical properties of starch–glycerol based films with citric acid (CA) as crosslinking agent described in the article titled: “Biodegradable and non-retrogradable eco-films based on starch–glycerol with citric acid as crosslinking agent” González Seligra et al. (2016) [1]. Data describes thermogravimetric and dynamical mechanical experiences and provides the figures of weight loss and loss tangent of the films as a function of the temperature. PMID:27158645

  14. Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways.

    PubMed

    Zhang, Jing Jing; Lu, Yi Chen; Yang, Hong

    2014-10-08

    Atrazine is a member of the triazine herbicide family intensively used to control weeds for crop production. In this study, atrazine residues and its degraded products in alfalfa (Medicago sativa) were characterized using UPLC-TOF-MS/MS. Most of atrazine absorbed in plants was found as chemically modified derivatives like deisopropylated atrazine (DIA), dehydrogenated atrazine (DHA), or methylated atrazine (MEA), and some atrazine derivatives were conjugated through different functional groups such as sugar, glutathione, and amino acids. Interestingly, the specific conjugates DHA+hGSH (homoglutathione) and MEA-HCl+hGSH in alfalfa were detected. These results suggest that atrazine in alfalfa can be degraded through different pathways. The increased activities of glycosyltransferase and glutathione S-transferase were determined to support the atrazine degradation models. The outcome of the work uncovered the detailed mechanism for the residual atrazine accumulation and degradation in alfalfa and will help to evaluate whether the crop is suitable to be cultivated in the atrazine-polluted soil.

  15. Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview

    NASA Astrophysics Data System (ADS)

    Wang, Jianlong; Chu, Libing

    2016-08-01

    Pharmaceutical and personal care products (PPCPs), especially the pharmaceutically active compounds (PhACs) such as antibiotics and hormones have attracted great concerns worldwide for their persistence and potential threat to ecosystem and public health. This paper presents an overview on the ionizing irradiation-induced degradation of PPCPs in aqueous solution. Parameters that affect PPCPs degradation, such as the absorbed dose, solution pH, dose rate, water matrices and the presence of some inorganic ions and humic acid are evaluated. The mechanism and pathways of radiolytic degradation of PPCPs are reviewed. In many cases, PPCPs such as antibiotics and X-ray contrast agent could be removed completely by radiation, but a higher absorbed dose was needed for their mineralization and toxicity reduction. The combination of ionizing irradiation with other methods such as H2O2, ozonation and TiO2 nanoparticles could improve the degradation efficacy and reduce the cost. Ionizing irradiation is a promising alternative for degradation of PPCPs in aqueous solution.

  16. Shared strategies for β-lactam catabolism in the soil microbiome.

    PubMed

    Crofts, Terence S; Wang, Bin; Spivak, Aaron; Gianoulis, Tara A; Forsberg, Kevin J; Gibson, Molly K; Johnsky, Lauren A; Broomall, Stacey M; Rosenzweig, C Nicole; Skowronski, Evan W; Gibbons, Henry S; Sommer, Morten O A; Dantas, Gautam

    2018-06-01

    The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.

  17. Endosulfan Degradation by Selected Strains of Plant Growth Promoting Rhizobacteria.

    PubMed

    Rani, Rupa; Kumar, Vipin

    2017-07-01

    Sixty endosulfan tolerant bacterial strains were isolated from pesticide stressed agricultural soils. Five most tolerant strains were tested for plant growth promoting (PGP) activities and endosulfan degradation under different optimizing conditions in broth and soil. The strains PRB101 and PRB77 were the most efficient in terms of endosulfan degradation and PGP activities and showed solubilization indexes of 3.3 and 3.1 mm, indole acetic acid production of 71 and 68 μg mL -1 , siderophore zones of 13 mm each at the recommended dosage, respectively. Hydrogen cyanide and ammonia production remained unaffected in the presence of endosulfan. PRB101 and PRB77 strains were able to degrade 74% and 70% of endosulfan in broth and 67% and 63% in soil, respectively. Based on 16S rDNA analysis, the strains PRB101 and PRB77 exhibited 99% homology with Bacillus sp. KF984414 and Bacillus sp. LN849696, respectively.

  18. Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

    PubMed Central

    Murillo, M.; Herrera, E.; Carrete, F. O.; Ruiz, O.; Serrato, J. S.

    2012-01-01

    The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers’ diets. Diet samples were collected with four esophageal cannulated steers (350±3 kg BW); and four ruminally cannulated heifers (342±1.5 kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen (NH3N) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance. PMID:25049495

  19. Cyanogenic glycosides in plant-based foods available in New Zealand.

    PubMed

    Cressey, Peter; Saunders, Darren; Goodman, Janet

    2013-01-01

    Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread. 

  20. Photodegradation of organic pollutants in water and green hydrogen production via methanol photoreforming of doped titanium oxide nanoparticles.

    PubMed

    Rico-Oller, Beatriz; Boudjemaa, Amel; Bahruji, Hasliza; Kebir, Mohammed; Prashar, Sanjiv; Bachari, Khaldoun; Fajardo, Mariano; Gómez-Ruiz, Santiago

    2016-09-01

    Novel nanomaterials based on doped TiO2 nanoparticles with different morphological, textural and band-gap properties have been synthesized using scalable methods. The influence of synthetic parameters such as titanium source (titanium(IV) isopropoxide and titanium(IV) butoxide), doping quantity (0%, 2% or 5% Zn), acidic solution for the hydrolysis reaction (ascorbic acid, nitric acid) and calcination temperatures (500°C and 600°C) was simultaneously investigated. The obtained nanomaterials were characterized by different methods and photocatalytic tests of methylene blue (MB) degradation under UV-light were conducted to determine their activity. The results revealed that the synthesized nanomaterials are porous aggregates with very high crystallinity and are mainly composed of the anatase phase; although their physical properties vary depending on the different synthetic parameters employed. These changes are able to modify the apparent rate constant of the degradation of MB up to one order of magnitude, indicating, substantial changes in their photoactivity. Hybrid materials TiO2-Pd nanoparticles have also been prepared, characterized and tested for hydrogen production using photocatalytic methanol reforming where supported palladium nanoparticles acted as co-catalyst. Furthermore, the hybrid materials TiO2-Pd nanoparticles were studied in photocatalytic tests of methylene blue degradation under visible LED-light. The results obtained in the production of hydrogen from the photocatalytic reforming of methanol by hybrid materials suggest that the reported hybrid systems could be suitable photocatalysts for future sustainable hydrogen production upon tuning of the morphological, textural and band gap energy properties to allow processes to be carried out under visible light. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    PubMed

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Photocatalytic degradation of sunscreen active ingredients mediated by nanostructured materials

    NASA Astrophysics Data System (ADS)

    Soto-Vazquez, Loraine

    Water scarcity and pollution are environmental issues with terrible consequences. In recent years several pharmaceutical and personal care products, such as sunscreen active ingredients, have been detected in different water matrices. Its recalcitrant behavior in the environment has caused controversies and generated countless questions about its safety. During this research, we employed an advanced oxidation process (photocatalysis) to degrade sunscreen active ingredients. For this study, we used a 3x3 system, evaluating three photocatalysts and three different contaminants. From the three catalysts employed, two of them were synthesized. ZnO nanoparticles were obtained using zinc acetate dihydrated as the precursor, and TiO2 nanowires were synthesized from titanium tetrachloride precursor. The third catalyst employed (namely, P25) was obtained commercially. The synthesized photocatalysts were characterized in terms of the morphology, elemental composition, crystalline structure, elemental oxidation states, vibrational modes and surface area, using SEM-EDS, XRD, XPS, Raman spectroscopy and BET measurements, respectively. The photocatalysts were employed during the study of the degradation of p-aminobenzoic acid, phenylbenzimidazole sulfonic acid, and benzophenone-4. In all the cases, at least 50% degradation was achieved. P25 showed degradation efficiencies above 90%, and from the nine systems, 7 of them degraded at least 86%.

  3. Identification of chemical warfare agents using a portable microchip-based detection device

    NASA Astrophysics Data System (ADS)

    Petkovic-Duran, K.; Swallow, A.; Sexton, B. A.; Glenn, F.; Zhu, Y.

    2011-12-01

    Analysis of chemical warfare agents (CWAs) and their degradation products is an important verification component in support of the Chemical Weapons Convention and urgently demanding rapid and reliable analytical methods. A portable microchip electrophoresis (ME) device with contactless conductivity (CCD) detection was developed for the in situ identification of CWA and their degradation products. A 10mM MES/His, 0.4mM CTAB - based separation electrolyte accomplished the analysis of Sarin (GB), Tabun( GA) and Soman (GD) in less than 1 min, which is the fastest screening of nerve agents achieved with portable ME and CCD based detection methods to date. Reproducibility of detection was successfully demonstrated on simultaneous detection of GB (200ppm) and GA (278ppm). Reasonable agreement for the four consecutive runs was achieved with the mean peak time for Sarin of 29.15s, and the standard error of 0.58s or 2%. GD and GA were simultaneously detected with their degradation products methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (PMPA) and O-Ethyl Phosphorocyanidate (GAHP and GAHP1) respectively. The detection limit for Sarin was around 35ppb. To the best of our knowledge this is the best result achieved in microchip electrophoresis and contactless conductivity based detection to date.

  4. Extraction of medium chain fatty acids from organic municipal waste and subsequent production of bio-based fuels.

    PubMed

    Kannengiesser, Jan; Sakaguchi-Söder, Kaori; Mrukwia, Timo; Jager, Johannes; Schebek, Liselotte

    2016-01-01

    This paper provides an overview on investigations for a new technology to generate bio-based fuel additives from bio-waste. The investigations are taking place at the composting plant in Darmstadt-Kranichstein (Germany). The aim is to explore the potential of bio-waste as feedstock in producing different bio-based products (or bio-based fuels). For this investigation, a facultative anaerobic process is to be integrated into the normal aerobic waste treatment process for composting. The bio-waste is to be treated in four steps to produce biofuels. The first step is the facultative anaerobic treatment of the waste in a rotting box namely percolate to generate a fatty-acid rich liquid fraction. The Hydrolysis takes place in the rotting box during the waste treatment. The organic compounds are then dissolved and transferred into the waste liquid phase. Browne et al. (2013) describes the hydrolysis as an enzymatically degradation of high solid substrates to soluble products which are further degraded to volatile fatty acids (VFA). This is confirmed by analytical tests done on the liquid fraction. After the percolation, volatile and medium chain fatty acids are found in the liquid phase. Concentrations of fatty acids between 8.0 and 31.5 were detected depending on the nature of the input material. In the second step, a fermentation process will be initiated to produce additional fatty acids. Existing microorganism mass is activated to degrade the organic components that are still remaining in the percolate. After fermentation the quantity of fatty acids in four investigated reactors increased 3-5 times. While fermentation mainly non-polar fatty acids (pentanoic to octanoic acid) are build. Next to the fermentation process, a chain-elongation step is arranged by adding ethanol to the fatty acid rich percolate. While these investigations a chain-elongation of mainly fatty acids with pair numbers of carbon atoms (acetate, butanoic and hexanoic acid) are demonstrated. After these three pre-treatments, the percolate is brought to a refinery to extract the non-polar fatty acids using bio-diesel, which was generated from used kitchen oil at the refinery. The extraction tests in the lab have proved that the efficiency of the liquid-liquid-extraction is directly linked with the chain length and polarity of the fatty acids. By using a non-polar bio-diesel mainly the non-polar fatty acids, like pentanoic to octanoic acid, are extracted. After extraction, the bio-diesel enriched with the fatty acids is esterified. As a result bio-diesel with a lower viscosity than usual is produced. The fatty acids remaining in the percolate after the extraction can be used in another fermentation process to generate biogas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Optimization Technology of the LHS-1 Strain for Degrading Gallnut Water Extract and Appraisal of Benzene Ring Derivatives from Fermented Gallnut Water Extract Pyrolysis by Py-GC/MS.

    PubMed

    Wang, Chengzhang; Li, Wenjun

    2017-12-20

    Gallnut water extract (GWE) enriches 80~90% of gallnut tannic acid (TA). In order to study the biodegradation of GWE into gallic acid (GA), the LHS-1 strain, a variant of Aspergillus niger , was chosen to determine the optimal degradation parameters for maximum production of GA by the response surface method. Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) was first applied to appraise benzene ring derivatives of fermented GWE (FGWE) pyrolysis by comparison with the pyrolytic products of a tannic acid standard sample (TAS) and GWE. The results showed that optimum conditions were at 31 °C and pH of 5, with a 50-h incubation period and 0.1 g·L -1 of TA as substrate. The maximum yields of GA and tannase were 63~65 mg·mL -1 and 1.17 U·mL -1 , respectively. Over 20 kinds of compounds were identified as linear hydrocarbons and benzene ring derivatives based on GA and glucose. The key benzene ring derivatives were 3,4,5-trimethoxybenzoic acid methyl ester, 3-methoxy-1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzoic acid hydrazide.

  6. Identification of crude-oil components and microorganisms that cause souring under anaerobic conditions.

    PubMed

    Hasegawa, R; Toyama, K; Miyanaga, K; Tanji, Y

    2014-02-01

    Oil souring has important implications with respect to energy resources. Understanding the physiology of the microorganisms that play a role and the biological mechanisms are both important for the maintenance of infrastructure and mitigation of corrosion processes. The objective of this study was to identify crude-oil components and microorganisms in oil-field water that contribute to crude-oil souring. To identify the crude-oil components and microorganisms that are responsible for anaerobic souring in oil reservoirs, biological conversion of crude-oil components under anaerobic conditions was investigated. Microorganisms in oil field water in Akita, Japan degraded alkanes and aromatics to volatile fatty acids (VFAs) under anaerobic conditions, and fermenting bacteria such as Fusibacter sp. were involved in VFA production. Aromatics such as toluene and ethylbenzene were degraded by sulfate-reducing bacteria (Desulfotignum sp.) via the fumarate-addition pathway and not only degradation of VFA but also degradation of aromatics by sulfate-reducing bacteria was the cause of souring. Naphthenic acid and 2,4-xylenol were not converted.

  7. Ethyl Carbamate Formation Regulated by Lactic Acid Bacteria and Nonconventional Yeasts in Solid-State Fermentation of Chinese Moutai-Flavor Liquor.

    PubMed

    Du, Hai; Song, Zhewei; Xu, Yan

    2018-01-10

    This study aimed to identify specific microorganisms related to the formation of precursors of EC (ethyl carbamate) in the solid-state fermentation of Chinese Moutai-flavor liquor. The EC content was significantly correlated with the urea content during the fermentation process (R 2 = 0.772, P < 0.01). Differences in urea production and degradation were found at both species and functional gene levels by metatranscriptomic sequencing and culture-dependent analysis. Lactobacillus spp. could competitively degrade arginine through the arginine deiminase pathway with yeasts, and most Lactobacillus species were capable of degrading urea. Some dominant nonconventional yeasts, such as Pichia, Schizosaccharomyces, and Zygosaccharomyces species, were shown to produce low amounts of urea relative to Saccharomyces cerevisiae. Moreover, unusual urea degradation pathways (urea carboxylase, allophanate hydrolase, and ATP-independent urease) were identified. Our results indicate that EC precursor levels in the solid-state fermentation can be controlled using lactic acid bacteria and nonconventional yeasts.

  8. Shape memory polyurethanes with oxidation-induced degradation: In vivo and in vitro correlations for endovascular material applications.

    PubMed

    Weems, Andrew C; Wacker, Kevin T; Carrow, James K; Boyle, Anthony J; Maitland, Duncan J

    2017-09-01

    The synthesis of thermoset shape memory polymer (SMP) polyurethanes from symmetric, aliphatic alcohols and diisocyanates has previously demonstrated excellent biocompatibility in short term in vitro and in vivo studies, although long term stability has not been investigated. Here we demonstrate that while rapid oxidation occurs in these thermoset SMPs, facilitated by the incorporation of multi-functional, branching amino groups, byproduct analysis does not indicate toxicological concern for these materials. Through complex multi-step chemical reactions, chain scission begins from the amines in the monomeric repeat units, and results, ultimately, in the formation of carboxylic acids, secondary and primary amines; the degradation rate and product concentrations were confirmed using liquid chromatography mass spectrometry, in model compound studies, yielding a previously unexamined degradation mechanism for these biomaterials. The rate of degradation is dependent on the hydrogen peroxide concentration, and comparison of explanted samples reveals a much slower rate in vivo compared to the widely accepted literature in vitro real-time equivalent of 3% H 2 O 2 . Cytotoxicity studies of the material surface, and examination of the degradation product accumulations, indicate that degradation has negligible impact on cytotoxicity of these materials. This paper presents an in-depth analysis on the degradation of porous, shape memory polyurethanes (SMPs), including traditional surface characterization as well as model degradation compounds with absolute quantification. This combination of techniques allows for determination of rates of degradation as well as accumulation of individual degradation products. These behaviors are used for in vivo-in vitro comparisons for determination of real time degradation rates. Previous studies have primarily been limited to surface characterization without examination of degradation products and accumulation rates. To our knowledge, our work presents a unique example where a range of material scales (atomistic-scale model compounds along with macroscopic porous SMPs) are used in conjunction with ex planted samples for calculation of degradation rates and toxicological risk. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Kinetic study and mechanism of Niclosamide degradation.

    PubMed

    Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M

    2014-11-11

    A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria.

    PubMed

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei; Xu, Shiguo; Luo, Feng

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP.

  11. Protection of therapeutic antibodies from visible light induced degradation: Use safe light in manufacturing and storage.

    PubMed

    Du, Cheng; Barnett, Gregory; Borwankar, Ameya; Lewandowski, Angela; Singh, Nripen; Ghose, Sanchayita; Borys, Michael; Li, Zheng Jian

    2018-06-01

    As macromolecules, biologics are susceptible to light exposure, which induces oxidation of multiple amino acid residues including tryptophan, tyrosine, phenylalanine, cysteine and methionine. Pertaining to safety, efficacy and potency, light-induced oxidation of biologics has been widely studied and necessary precautions need to be taken during biologics manufacturing process, drug substance and products handling and storage. Proteins will degrade to varying extents depending on the protein properties, degradation pathways, formulation compositions and type of light source. In addition to UV light, which has been widely known to degrade proteins, visible light from indoor fluorescent lighting also can mediate protein degradation. In this report, we examine and identify wavelengths in the visual spectrum (400-700 nm) that can cause monoclonal antibody and histidine buffer degradation. Installation of safe lights which exclude the identified damaging wavelengths from visible spectra in manufacturing and storage areas can provide a balance between lighting requirement for human operators and their safety and conservation of product quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Biodegradation of the alkaline cellulose degradation products generated during radioactive waste disposal.

    PubMed

    Rout, Simon P; Radford, Jessica; Laws, Andrew P; Sweeney, Francis; Elmekawy, Ahmed; Gillie, Lisa J; Humphreys, Paul N

    2014-01-01

    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7 × 10(-2) hr(-1) (SE ± 2.9 × 10(-3)). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility.

  13. Sorption and degradation of wastewater-associated pharmaceuticals and personal care products in agricultural soils and sediment.

    PubMed

    Zhang, Ting; Wu, Bo; Sun, Na; Ye, Yong; Chen, Huaixia

    2013-01-01

    Pharmaceuticals and personal care products (PPCPs) have drawn popular concerns recently as an emerging class of aquatic contaminants. In this study, adsorption and degradation of four selected PPCPs, metronidazole, tinidazole, caffeine and chloramphenicol, have been investigated in the laboratory using two agricultural soils in China and sediment from Changjiang River. Adsorption tests using a batch equilibrium method demonstrated that adsorption of all tested chemicals in soils could be well described with Freundlich equation, and their adsorption affinity on soil followed the order of chloramphenicol > caffeine > tinidazole > metronidazole. Generally, higher Kf value was associated with soils which had higher organic matter contents (except for caffeine acid in this study). Degradation of selected PPCPs in soils generally followed first-order exponential decay kinetics, and half-lives ranging from 0.97 to 10.21 d. Sterilization generally decreased the degradation rates, indicating that microbial activity played a significant role in the degradation in soils. The degradation rate constant decreased with increasing initial chemical concentrations in soil, implying that the microbial activity was inhibited with high chemical loading levels.

  14. Biodegradation of Dimethyl Phthalate by Freshwater Unicellular Cyanobacteria

    PubMed Central

    Zhang, Xiaohui; Liu, Lincong; Zhang, Siping; Pan, Yan; Li, Jing; Pan, Hongwei

    2016-01-01

    The biodegradation characteristics of dimethyl phthalate (DMP) by three freshwater unicellular organisms were investigated in this study. The findings revealed that all the organisms were capable of metabolizing DMP; among them, Cyanothece sp. PCC7822 achieved the highest degradation efficiency. Lower concentration of DMP supported the growth of the Cyanobacteria; however, with the increase of DMP concentration growth of Cyanobacteria was inhibited remarkably. Phthalic acid (PA) was detected to be an intermediate degradation product of DMP and accumulated in the culture solution. The optimal initial pH value for the degradation was detected to be 9.0, which mitigated the decrease of pH resulting from the production of PA. The optimum temperature for DMP degradation of the three species of organisms is 30°C. After 72 hours' incubation, no more than 11.8% of the residual of DMP aggregated in Cyanobacteria cells while majority of DMP remained in the medium. Moreover, esterase was induced by DMP and the activity kept increasing during the degradation process. This suggested that esterase could assist in the degradation of DMP. PMID:28078293

  15. Algal toxicity of the alternative disinfectants performic acid (PFA), peracetic acid (PAA), chlorine dioxide (ClO2) and their by-products hydrogen peroxide (H2O2) and chlorite (ClO2-).

    PubMed

    Chhetri, Ravi Kumar; Baun, Anders; Andersen, Henrik Rasmus

    2017-05-01

    Environmental effect evaluation of disinfection of combined sewer overflow events with alternative chemical disinfectants requires that the environmental toxicity of the disinfectants and the main by-products of their use are known. Many disinfectants degrade quickly in water which should be included in the evaluation of both their toxicity as determined in standardized tests and their possible negative effect in the water environment. Here we evaluated according to the standardized ISO 8692 test the toxicity towards the green microalgae, Pseudokirchneriella subcapitata, of three disinfectants: performic acid (PFA), peracetic acid (PAA) and chlorine dioxide (ClO 2 ) as well as two by-products of their use: hydrogen peroxide (H 2 O 2 ) and chlorite. All of the five chemicals investigated showed clear toxicity to the algae with well-defined dose response curves. The EC 50 values ranged from 0.16 to 2.9mg/L based on nominal concentrations leading to the labeling of the chemicals as either toxic or very toxic. The five investigated chemicals decreased in toxicity in the order chlorine dioxide, performic acid, peracetic acid, chlorite and hydrogen peroxide. The stability of the chemicals increased in the same order as the toxicity decrease. This indicates that even though ClO 2 has the highest environmental hazard potential, it may still be suitable as an alternative disinfectant due to its rapid degradation in water. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors.

    PubMed

    Song, Haoran; Yan, Linxia; Ma, Jun; Jiang, Jin; Cai, Guangqiang; Zhang, Wenjuan; Zhang, Zhongxiang; Zhang, Jiaming; Yang, Tao

    2017-06-01

    Electrochemical activation of peroxydisulfate (PDS) at Ti/Pt anode was systematically investigated for the first time in this work. The synergistic effect produced from the combination of electrolysis and the addition of PDS demonstrates that PDS can be activated at Ti/Pt anode. The selective oxidation towards carbamazepine (CBZ), sulfamethoxazole (SMX), propranolol (PPL), benzoic acid (BA) rather than atrazine (ATZ) and nitrobenzene (NB) was observed in electrochemical activation of PDS process. Moreover, addition of excess methanol or tert-butanol had negligible impact on CBZ (model compound) degradation, demonstrating that neither sulfate radical (SO 4 - ) nor hydroxyl radical (HO) was produced in electrochemical activation of PDS process. Direct oxidation (PDS oxidation alone and electrolysis) and nonradical oxidation were responsible for the degradation of contaminants. The results of linear sweep voltammetry (LSV) and chronoamperometry suggest that electric discharge may integrate PDS molecule with anode surface into a unique transition state structure, which is responsible for the nonradical oxidation in electrochemical activation of PDS process. Adjustment of the solution pH from 1.0 to 7.0 had negligible effect on CBZ degradation. Increase of either PDS concentration or current density facilitated the degradation of CBZ. The presence of chloride ion (Cl - ) significantly enhanced CBZ degradation, while addition of bicarbonate (HCO 3 - ), phosphate (PO 4 3- ) and humic acid (HA) all inhibited CBZ degradation with the order of HA > HCO 3 -  > PO 4 3- . The degradation products of CBZ and chlorinated products were also identified. Electrochemical activation of PDS at Ti/Pt anode may serve as a novel technology for selective oxidation of organic contaminants in water and soil. Copyright © 2017. Published by Elsevier Ltd.

  17. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Validation of an HPLC method for the quantification of ambroxol hydrochloride and benzoic acid in a syrup as pharmaceutical form stress test for stability evaluation.

    PubMed

    Heinänen, M; Barbas, C

    2001-03-01

    A method is described for ambroxol, trans-4-(2-amino-3,5-dibromobenzylamino) cyclohexanol hydrochloride, and benzoic acid separation by HPLC with UV detection at 247 nm in a syrup as pharmaceutical presentation. Optimal conditions were: Column Symmetry Shield RPC8, 5 microm 250 x 4.6 mm, and methanol/(H(3)PO(4) 8.5 mM/triethylamine pH=2.8) 40:60 v/v. Validation was performed using standards and the pharmaceutical preparation which contains the compounds described above. Results from both standards and samples show suitable validation parameters. The pharmaceutical grade substances were tested by factors that could influence the chemical stability. These reaction mixtures were analysed to evaluate the capability of the method to separate degradation products. Degradation products did not interfere with the determination of the substances tested by the assay.

  19. Identification, Characterization, and Quantification of Impurities of Safinamide Mesilate: Process-Related Impurities and Degradation Products.

    PubMed

    Zou, Liang; Sun, Lili; Zhang, Hui; Hui, Wenkai; Zou, Qiaogen; Zhu, Zheying

    2017-07-01

    The characterization of process-related impurities and degradation products of safinamide mesilate (SAFM) in bulk drug and a stability-indicating HPLC method for the separation and quantification of all the impurities were investigated. Four process-related impurities (Imp-B, Imp-C, Imp-D, and Imp-E) were found in the SAFM bulk drug. Five degradation products (Imp-A, Imp-C, Imp-D, Imp-E, and Imp-F) were observed in SAFM under oxidative conditions. Imp-C, Imp-D, and Imp-E were also degradation products and process-related impurities. Remarkably, one new compound, identified as (S)-2-[4-(3-fluoro-benzyloxy) benzamido] propanamide (i.e., Imp-D), is being reported here as an impurity for the first time. Furthermore, the structures of the aforementioned impurities were characterized and confirmed via IR, NMR, and MS techniques, and the most probable formation mechanisms of all impurities proposed according to the synthesis route. Optimum separation was achieved on an Inertsil ODS-3 column (250 × 4.6 mm, 5 μm), using 0.1% formic acid in water (pH adjusted to 5.0) and acetonitrile as the mobile phase in gradient mode. The proposed method was found to be stability-indicating, precise, linear, accurate, sensitive, and robust for the quantitation of SAFM and its process-related substances, including its degradation products.

  20. Chemical composition, nitrogen degradability and in vitro ruminal biological activity of tannins in vines harvested from four tropical sweet potato (Ipomoea batatas L.) varieties.

    PubMed

    Ali, R; Mlambo, V; Mangwe, M C; Dlamini, B J

    2016-02-01

    This study investigated the potential of vines from four sweet potato varieties (Tia Nong 57, Tia Nong 66, Ligwalagwala and Kenya) as alternative feed resources for ruminant livestock. The chemical composition [neutral detergent fibre (NDF), acid detergent fibre (ADF), crude protein (CP) and acid detergent insoluble nitrogen (ADIN)], in vitro ruminal nitrogen (N) degradability and in vitro ruminal biological activity of tannins in the vines, harvested at 70 and 110 days after planting (DAP), were determined. Variety and harvesting stage did not (p > 0.05) influence CP and NDF content of the vines. Concentration of CP ranged from 104.9 to 212.2 g/kg DM, while NDF ranged from 439.4 to 529.2 g/kg DM across harvesting stages and varieties. Nitrogen degradability (ND) at 70 and 110 DAP was highest (p < 0.05) in Ligwalagwala (743.1 and 985.0 g/kg DM, respectively). Treatment of vines with tannin-binding polyethylene glycol (PEG) increased (p < 0.05) in vitro ruminal cumulative gas production parameters (a, b and c). The in vitro ruminal biological activity of tannins, as measured by increment in gas production parameters upon PEG inclusion, had a maximum value of 18.2%, suggesting low to moderate antinutritional tannin activity. Ligwalagwala vines, with highly degradable N, would be the best protein supplement to use during the dry season when ruminant animals consume low N basal diets and maintenance is an acceptable production objective. Tia Nong 66 and Kenya varieties, with less degradable N, may be more suitable for use as supplements for high-producing animals such as dairy goats. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  1. Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover.

    PubMed

    Xu, Chunyan; Ma, Fuying; Zhang, Xiaoyu

    2009-11-01

    The white rot fungus Irpex lacteus CD2 was incubated on corn stover under solid-state fermentation conditions for different durations, from 5 days up to 120 days. Lignocellulose component loss, enzyme production and Fe3+-reducing activity were studied. The average weight loss ranged from 1.7% to 60.5% during the period of 5-120 days. In contrast to lignin, hemicellulose and cellulose were degraded during the initial time period. After 15 days, 63.0% of hemicellulose was degraded. Cellulose was degraded the most during the first 10 days, and 17.2% was degraded after 10 days. Lignin was significantly degraded and modified, with acid insoluble lignin loss being nearly 80% after 60 days. That weight loss, which was lower than the total component loss, indicated that not all of the lost lignocellulose was converted to carbon dioxide and water, which was indicated by the increase in soluble reducing sugars and acid soluble lignin. Filter paper activity, which corresponds to total cellulase activity, peaked at day 5 and remained at a high level from 40 to 60 days. High hemicellulase activity appeared after 30 days. No ligninases activity was detected during the incipient stage of lignin removal and only low lignin peroxidase activity was detected after 25 days. Apparently, neither of the enzymatic peaks coincided well with the highest amount of component loss. Fe3+-reducing activity could be detected during all the decay periods, which might play an important role in lignin biodegradation by I. lacteus CD2.

  2. [Degradation of Organic Sunscreens 2-hydroxy-4-methoxybenzophenone by UV/ H2O2 Process: Kinetics and Factors].

    PubMed

    Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang

    2015-06-01

    Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.

  3. Enzymatic tailoring of oleuropein from Olea europaea leaves and product identification by HRMS/MS spectrometry.

    PubMed

    Nikolaivits, Efstratios; Termentzi, Aikaterini; Skaltsounis, Alexios-Leandros; Fokialakis, Nikolas; Topakas, Evangelos

    2017-07-10

    Oleuropein, a bioactive compound found in all parts of olive tree, especially in leaves and branches, presents numerous health promoting properties that increase research and market interest the last few years. In addition, oleuropein degradation products, such as hydroxytyrosol, elenolic acid, and the aglycones also exhibit biological activities with different properties compared to the starting compound. Under this view, a commercial lipase preparation Lipolase 100L and a thermophilic β-glucosidase from Myceliophthora thermophila were used for the regioselective hydrolysis of oleuropein towards the production of the corresponding biologically active compounds. The enzymatic degradation products of oleuropein, such as hydroxytyrosol, elenolic acid and its glucoside, and oleuropein aglycones were identified by LC-HRMS/MS and NMR spectroscopy. The latter, was found as a mix of diastereomers of the monoaldehydic form of oleuropein aglycone, identified as (5S, 8R, 9S)-, (5S, 8S, 9S)- and (5S, 8R, 9R). The high substrate specificity exhibited by both lipase and β-glucosidase allows the successful tailoring of oleuropein towards the production of different biologically active compounds with significant potential in the cosmeceutical and food industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Furan in Thermally Processed Foods - A Review

    PubMed Central

    Seok, Yun-Jeong; Her, Jae-Young; Kim, Yong-Gun; Kim, Min Yeop; Jeong, Soo Young; Kim, Mina K.; Lee, Jee-yeon; Kim, Cho-il; Yoon, Hae-Jung

    2015-01-01

    Furan (C4H4O) is a volatile compound formed mostly during the thermal processing of foods. The toxicity of furan has been well documented previously, and it was classified as “possible human carcinogen (Group 2B)” by the International Agency for Research on Cancer. Various pathways have been reported for the formation of furan, that is, thermal degradation and/or thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids, including aspartic acid, threonine, α-alanine, serine, and cysteine, oxidation of ascorbic acid at higher temperatures, and oxidation of polyunsaturated fatty acids and carotenoids. Owing to the complexity of the formation mechanism, a vast number of studies have been published on monitoring furan in commercial food products and on the potential strategies for reducing furan. Thus, we present a comprehensive review on the current status of commercial food monitoring databases and the possible furan reduction methods. Additionally, we review analytical methods for furan detection and the toxicity of furan. PMID:26483883

  5. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose.

    PubMed

    Um, Byung-Hwan; van Walsum, G Peter

    2012-09-01

    The concept of reaction severity, which combines residence time and temperature, is often used in the pulp and paper and biorefining industries. The influence of corn stover pretreatment severity on yield of sugar and major degradation products and subsequent effects on enzymatic cellulose hydrolysis was investigated. The pretreatment residence time and temperature, combined into the severity factor (Log R(o)), were varied with constant acid concentration. With increasing severity, increasing concentrations of furfural and 5-hydroxymethylfurfural (5-HMF) coincided with decreasing yields of oligosaccharides. With further increase in severity factor, the concentrations of furans decreased, while the formation of formic acid and lactic acid increased. For example, from severity 3.87 to 4.32, xylose decreased from 6.39 to 5.26 mg/mL, while furfural increased from 1.04 to 1.33 mg/mL; as the severity was further increased to 4.42, furfural diminished to 1.23 mg/mL as formate rose from 0.62 to 1.83 mg/mL. The effects of dilute acid hydrolyzate, acetic acid, and lignin, in particular, on enzymatic hydrolysis were investigated with a rapid microassay method. The microplate method gave considerable time and cost savings compared to the traditional assay protocol, and it is applicable to a broad range of lignocellulosic substrates.

  6. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO4-Gallic Acid Supplement for Improvement in Lignin Degradation, Selectivity, and Enzymatic Saccharification.

    PubMed

    Mishra, Vartika; Jana, Asim K

    2017-09-01

    Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO 4 -gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO 4 /gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.

  7. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    PubMed

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  8. Effects of co-fermentation by Saccharomyces cerevisiae and Issatchenkia orientalis on sea buckthorn juice.

    PubMed

    Negi, Bharti; Dey, Gargi

    2013-06-01

    This work relates to the development of a co-fermented product of sea buckthorn (Hippophae rhamnoides L.) with Saccharomyces cerevisiae and Issatchenkia orientalis. Besides malic acid degradation, the parameters of present production technology were also standardized with emphasis on the retainability of total phenolic content (TPC) of sea buckthorn juice. The effect of co-fermentation on physico-chemical characteristics, organic acids, flavonoids, TPC and antioxidant activities was studied. The high-performance liquid chromatography (HPLC) analysis showed 55% reduction in malic acid content after the co-fermentation of sea buckthorn juice. The TPC of sea buckthorn product was 2.18 g gallic acid equivalent (GAE)/l. The estimated scavenging effect on 2,2-diphenyl-1-picrylhydrazyl free radicals was 2.63 Trolox equivalent (TE) mmol/l. Ferric-reducing antioxidant power and 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulphonic acid) assays also showed that sea buckthorn product was on a par with commercial wines (Cabernet Shiraz and Beaujolais). We conclude that the process of co-fermentation resulted in a significant antioxidant potential of sea buckthorn product.

  9. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity.

    PubMed

    Hasan, Salah Din Mahmud; Giongo, Citieli; Fiorese, Mônica Lady; Gomes, Simone Damasceno; Ferrari, Tatiane Caroline; Savoldi, Tarcio Enrico

    2015-01-01

    The production of volatile fatty acids (VFAs), intermediates in the anaerobic degradation process of organic matter from waste water, was evaluated in this work. A batch reactor was used to investigate the effect of temperature, and alkalinity in the production of VFAs, from the fermentation of industrial cassava waste water. Peak production of total volatile fatty acids (TVFAs) was observed in the first two days of acidogenesis. A central composite design was performed, and the highest yield (3400 mg L(-1) of TVFA) was obtained with 30°C and 3 g L(-1) of sodium bicarbonate. The peak of VFA was in 45 h (pH 5.9) with a predominance of acetic (63%) and butyric acid (22%), followed by propionic acid (12%). Decreases in amounts of cyanide (12.9%) and chemical oxygen demand (21.6%) were observed, in addition to the production of biogas (0.53 cm(3) h(-1)). The process was validated experimentally and 3400 g L(-1) of TVFA were obtained with a low relative standard deviation.

  10. Stability of cefozopran hydrochloride in aqueous solutions.

    PubMed

    Zalewski, Przemysław; Skibiński, Robert; Paczkowska, Magdalena; Garbacki, Piotr; Talaczyńska, Alicja; Cielecka-Piontek, Judyta; Jelińska, Anna

    2016-01-01

    The influence of pH on the stability of cefozopran hydrochloride (CZH) was investigated in the pH range of 0.44-13.00. Six degradation products were identified with a hybrid ESI-Q-TOF mass spectrometer. The degradation of CZH as a result of hydrolysis was a pseudo-first-order reaction. As general acid-base hydrolysis of CZH was not occurred in the solutions of hydrochloric acid, sodium hydroxide, acetate, borate and phosphate buffers, kobs = kpH because specific acid-base catalysis was observed. Specific acid-base catalysis of CZH consisted of the following reactions: hydrolysis of CZH catalyzed by hydrogen ions (kH+), hydrolysis of dications (k1H2O), monocations (k2H2O) and zwitter ions (k3H2O) and hydrolysis of zwitter ions (k1OH-) and monoanions (k2OH-) of CZH catalyzed by hydroxide ions. The total rate of the reaction was equal to the sum of partial reactions: [Formula: see text]. CZH similarly like other fourth generation cephalosporin was most stable at slightly acidic and neutral pH and less stable in alkaline pH. The cleavage of the β-lactam ring resulting from a nucleophilic attack on the carbonyl carbon in the β-lactam moiety is the preferred degradation pathway of β-lactam antibiotics in aqueous solutions.

  11. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    PubMed

    Bhat, Swapna; Boynton, Tye O; Pham, Dan; Shimkets, Lawrence J

    2014-01-01

    Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these processes.

  12. Structure of the Cyanuric Acid Hydrolase TrzD Reveals Product Exit Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bera, Asim K.; Aukema, Kelly G.; Elias, Mikael

    Cyanuric acid hydrolases are of industrial importance because of their use in aquatic recreational facilities to remove cyanuric acid, a stabilizer for the chlorine. Degradation of excess cyanuric acid is necessary to maintain chlorine disinfection in the waters. Cyanuric acid hydrolase opens the cyanuric acid ring hydrolytically and subsequent decarboxylation produces carbon dioxide and biuret. In the present study, we report the X-ray structure of TrzD, a cyanuric acid hydrolase from Acidovorax citrulli. The crystal structure at 2.19 Å resolution shows a large displacement of the catalytic lysine (Lys163) in domain 2 away from the active site core, whereas themore » two other active site lysines from the two other domains are not able to move. The lysine displacement is proposed here to open up a channel for product release. Consistent with that, the structure also showed two molecules of the co-product, carbon dioxide, one in the active site and another trapped in the proposed exit channel. Previous data indicated that the domain 2 lysine residue plays a role in activating an adjacent serine residue carrying out nucleophilic attack, opening the cyanuric acid ring, and the mobile lysine guides products through the exit channel.« less

  13. Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil.

    PubMed

    Shen, Jinyou; Zhang, Jianfa; Zuo, Yi; Wang, Lianjun; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; He, Rui

    2009-04-30

    A picric acid-degrading bacterium, strain NJUST16, was isolated from a soil contaminated by picric acid and identified as a member of Rhodococcus sp. based on 16S rRNA sequence. The degradation assays suggested that the strain NJUST16 could utilize picric acid as the sole source of carbon, nitrogen and energy. The isolate grew optimally at 30 degrees C and initial pH 7.0-7.5 in the mineral salts medium supplemented with picric acid. It was basically consistent with degradation of picric acid by the isolate. Addition of nitrogen sources such as yeast extract and peptone accelerated the degradation of picric acid. However, the stimulation was concentration dependent. The degradation was accompanied by release of stoichiometric amount of nitrite and acidification. The degradation of picric acid at relatively high concentrations (>3.93 mM) demonstrated that the degradation was both pH and nitrite dependent. Neutral and slightly basic pH was crucial to achieve high concentrations of picric acid degradation by the NJUST16 strain.

  14. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater.

    PubMed

    Dutta, Anirban; Vasudevan, Venugopal; Nain, Lata; Singh, Neera

    2016-01-01

    An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL(-1), 265.6 and 1805.2 µg mL(-1) and 1.85 and 16.12 µg mL(-1), respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.

  15. RETINOIC ACID SYNTHESIS AND DEGRADATION

    PubMed Central

    Kedishvili, Natalia Y.

    2017-01-01

    Retinoic acid was identified as the biologically active form of vitamin A almost 70 years ago, but the exact enzymes and control mechanisms that regulate its biosynthesis and degradation are yet to be fully defined. The currently accepted model postulates that RA is produced in two sequential oxidative steps: first, retinol is oxidized reversibly to retinaldehyde, and then retinaldehyde is oxidized irreversibly to RA, which is inactivated by conversion to hydroxylated derivatives. This chapter describes the history, development and recent advances in our understanding of the enzymatic pathways and mechanisms that control the rate of RA production and degradation. Gene knockout studies provided strong evidence that the members of the short chain dehydrogenase reductase superfamily of proteins play indispensable roles in retinoic acid biosynthesis during development. Furthermore, recent finding that two of these proteins regulate the rate of retinoic acid biosynthesis by mutually activating each other provided a novel insight into the mechanism of this regulation. Despite significant progress made since the middle of the 20th century many unanswered questions still remain, and there is much to be learned, especially about trafficking of the hydrophobic retinoid substrates between membrane bound and cytosolic enzymes and the roles of the retinoid binding proteins. PMID:27830503

  16. Identification of degradation products in loxoprofen sodium adhesive tapes by liquid chromatography-mass spectrometry and dynamic pressurized liquid extraction-solid-phase extraction coupled to liquid chromatography-nuclear magnetic resonance spectroscopy.

    PubMed

    Murakami, Tomonori; Kawasaki, Takao; Takemura, Akira; Fukutsu, Naoto; Kishi, Naoyuki; Kusu, Fumiyo

    2008-10-24

    Rapid and unambiguous identification of three degradation products (DP-1, DP-2 and DP-3) found in heat-stressed loxoprofen sodium adhesive tapes (Loxonin tapes) was achieved by LC-MS and dynamic pressurized liquid extraction (PLE)-solid-phase extraction (SPE) coupled to LC-NMR without complicated isolation or purification processes. The molecular formulae of the degradation products were determined by accurate mass measurements and product ion analyses and on-line hydrogen/deuterium (H/D) exchange experiments provided information about changes in the degradation of loxoprofen. To compensate for the low sensitivity of NMR, on-line dynamic PLE-SPE was employed and higher concentrations of degradation products trapped on the SPE column were afforded in a shorter time than they would be in such time-consuming sample preparations as pre-concentration after extraction. The loop-storage procedure was used in the LC-NMR analysis to allow the acquisition of the (1)H spectra of the three degradation products in one chromatographic run without affecting the peak separation and to avoid the carry-over of previously eluted DP-1 of high concentration by washing the NMR detection cell prior to the measurement of the DP-2 spectrum. Based on the resulting (1)H NMR spectra in combination with the MS results, DP-1 was successfully identified as an oxidation product having an oxodicarboxylic acid structure formed by the cleavage of the cyclopentanone ring of loxoprofen, DP-2 as a cyclopentanone ring-hydroxylated loxoprofen and DP-3 as a loxoprofen l-menthol ester.

  17. Optimal experimental condition for hemicellulosic hydrolyzate treatment with activated charcoal for xylitol production.

    PubMed

    Mussatto, Solange I; Roberto, Inês C

    2004-01-01

    Rice straw was hydrolyzed into a mixture of sugars using diluted H(2)SO(4). During hydrolysis, a variety of inhibitors was also produced, including acetic acid, furfural, hydroxymethylfurfural, and lignin degradation products (several aromatic and phenolic compounds). To reduce the toxic compounds concentration in the hydrolyzate and to improve the xylitol yield and volumetric productivity, rice straw hemicellulosic hydrolyzate was treated with activated charcoal under different pH values, stirring rates, contact times, and temperatures, employing a 2(4) full-factorial design. Fermentative assays were conducted with treated hydrolyzates containing 90 g/L xylose. The results indicated that temperature, pH, and stirring rate strongly influenced the hydrolyzate treatment, temperature and pH interfering with all of the responses analyzed (removal of color and lignin degradation products, xylitol yield factor, and volumetric productivity). The combination of pH 2.0, 150 rpm, 45 degrees C, and 60 min was considered an optimal condition, providing significant removal rates of color (48.9%) and lignin degradation products (25.8%), as well as a xylitol production of 66 g/L, a volumetric productivity of 0.57 g/L.h, and a yield factor of 0.72 g/g.

  18. Pathways for degradation of plastic polymers floating in the marine environment.

    PubMed

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids.

  19. Heterogeneous kinetics, products, and mechanisms of ferulic acid particles in the reaction with NO3 radicals

    NASA Astrophysics Data System (ADS)

    Liu, Changgeng; Zhang, Peng; Wen, Xiaoying; Wu, Bin

    2017-03-01

    Methoxyphenols, as an important component of wood burning, are produced by lignin pyrolysis and considered to be the potential tracers for wood smoke emissions. In this work, the heterogeneous reaction between ferulic acid particles and NO3 radicals was investigated. Six products including oxalic acid, 4-vinylguaiacol, vanillin, 5-nitrovanillin, 5-nitroferulic acid, and caffeic acid were confirmed by gas chromatography-mass spectrometry (GC-MS). In addition, the reaction mechanisms were proposed and the main pathways were NO3 electrophilic addition to olefin and the meta-position to the hydroxyl group. The uptake coefficient of NO3 radicals on ferulic acid particles was 0.17 ± 0.02 and the effective rate constant under experimental conditions was (1.71 ± 0.08) × 10-12 cm3 molecule-1 s-1. The results indicate that ferulic acid degradation by NO3 can be an important sink at night.

  20. Identification of the Phenol Functionality in Deprotonated Monomeric and Dimeric Lignin Degradation Products via Tandem Mass Spectrometry Based on Ion-Molecule Reactions with Diethylmethoxyborane

    NASA Astrophysics Data System (ADS)

    Zhu, Hanyu; Max, Joann P.; Marcum, Christopher L.; Luo, Hao; Abu-Omar, Mahdi M.; Kenttämaa, Hilkka I.

    2016-11-01

    Conversion of lignin into smaller molecules provides a promising alternate and sustainable source for the valuable chemicals currently derived from crude oil. Better understanding of the chemical composition of the resulting product mixtures is essential for the optimization of such conversion processes. However, these mixtures are complex and contain isomeric molecules with a wide variety of functionalities, which makes their characterization challenging. Tandem mass spectrometry based on ion-molecule reactions has proven to be a powerful tool in functional group identification and isomer differentiation for previously unknown compounds. This study demonstrates that the identification of the phenol functionality, the most commonly observed functionality in lignin degradation products, can be achieved via ion-molecule reactions between diethylmethoxyborane (DEMB) and the deprotonated analyte in the absence of strongly electron-withdrawing substituents in the ortho- and para-positions. Either a stable DEMB adduct or an adduct that has lost a methanol molecule (DEMB adduct-MeOH) is formed for these ions. Deprotonated phenols with an adjacent phenol or hydroxymethyl functionality or a conjugated carboxylic acid functionality can be identified based on the formation of DEMB adduct-MeOH. Deprotonated compounds not containing the phenol functionality and phenols containing an electron-withdrawing ortho- or para-substituent were found to be unreactive toward diethylmethoxyborane. Hence, certain deprotonated isomeric compounds with phenol and carboxylic acid, aldehyde, carboxylic acid ester, or nitro functionalities can be differentiated via these reactions. The above mass spectrometry method was successfully coupled with high-performance liquid chromatography for the analysis of a complex biomass degradation mixture.

Top